WorldWideScience

Sample records for safeguarding equipment-specific requirements

  1. Equipment support for the implementation of safeguards

    International Nuclear Information System (INIS)

    Arlt, R.; Bosler, G.; Goldfarb, M.; Schanfein, M.; Whichello, J.

    2001-01-01

    Full text: The provision of effective, reliable, and user-friendly equipment needed for the implementation of safeguards is one of the main objectives of the Division of Technical Services (SOTS) in the Department of Safeguards. As an outcome of a review by an independent external consultant firm, the instrumentation sections of the SGTS were reorganized in January 2001 into two new sections, the Section for NDA Systems and Seals (TNS) and Section for Installed Systems (TIE). Each section has 'cradle-to-grave' responsibilities for development, implementation, maintenance, and decommissioning of safeguards instruments and measurement systems. Unattended assay, monitoring and surveillance instruments are the responsibility of TIE while attended nondestructive assay (NDA) instruments and seals are handled by TNS. The principal goals of both sections are to define equipment requirements based on Departmental needs, to coordinate Support Programme tasks concerning development and implementation activities, to provide system engineering of commercial components, manage laboratory and to do field testing and prove system suitability for defined safeguards applications. In addition both sections coordinate equipment and supply needs for the Department, including acquisition, preparation, servicing, installation, commissioning, troubleshooting, maintenance and repair, ensuring their availability when needed. As required, TIE and TNS provide specialized field support to the Operations Divisions. Each section is working to standardize equipment as much as possible and reduce the number of instruments performing the same function. This reduces both inspector and technician training, required parts inventories, and overall life-cycle costs. Development based on User Needs from the Operations Divisions follows a strict quality control program that includes a thorough qualification testing procedure with the last phase being field-testing under actual facility conditions. A

  2. Safeguards techniques and equipment. 2003 ed

    International Nuclear Information System (INIS)

    2003-01-01

    The 1990s saw significant non-proliferation related developments in the world, resulting in a new period of safeguards development. Over several years an assessment was made of how to strengthen the effectiveness and improve the efficiency of IAEA safeguards. In May 1997 this culminated in the adoption by the IAEA Board of Governors of a Protocol Additional to Safeguards Agreements which significantly broadens the role of IAEA safeguards. As a consequence, the IAEA safeguards system entered a new era. In 1997 the IAEA began to publish a new series of booklets on safeguards, called the International Nuclear Verification Series (NVS). The objective of these booklets was to help in explaining IAEA safeguards, especially the new developments in safeguards, particularly for facility operators and government officers involved with these topics. The current booklet, which is a revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. A completely new section on data security has been added to describe the specific features that are included in installed equipment systems in order to ensure the authenticity and confidentiality of information. As new verification measures continue to be developed the material in this booklet will be periodically reviewed and updated versions issued. The basic verification measure used by the IAEA is nuclear material accountancy. In applying nuclear material accountancy, IAEA safeguards inspectors make independent measurements to verify quantitatively the amount of nuclear material presented in the State's accounts. For this purpose, inspectors count items (e.g. fuel assemblies, bundles or rods, or containers of powdered compounds of uranium or plutonium) and measure attributes of these items during their inspections using non

  3. Strategic plan for the development of IAEA safeguards equipment

    International Nuclear Information System (INIS)

    Khlebnikov, N.

    2001-01-01

    Full text: The need for a top-down Safeguards Strategy to focus departmental objectives was recognized by the Programme Performance Appraisal System (PPAS) performed on the Equipment Development Project in 1999. The Department of Safeguards prepared at the end of 2000 a 5-year Strategic Plan to identify the changes and improvements expected to take place over the 2001-2005 period. Those Strategic Objectives were supposed to be used to properly plan IAEA Safeguards activities and define appropriate and coherent R and D programmes. The present paper describes the strategic directions that the IAEA will follow in the area of equipment development in order to meet the Safeguards Department long-term objectives for 2001-2005. The paper, which is derived from the IAEA Strategic Equipment Development Plan, prepared by the Division of Technical Support, includes two parts: general principles and policies applicable to all equipment development tasks; specific strategic guidance. The paper will not describe the detailed plans which are prepared based on the strategic plan on a biannual basis. Equipment development activities have been divided in five major projects (NDA, Seals, Surveillance, Unattended Monitoring and Remote Monitoring). Strategic directions for each of these projects will be described in the paper. Separate sections will deal with equipment development strategic guidance in the area of additional protocol inspections, JNFL projects, illicit trafficking and Trilateral Initiative. (author)

  4. LESSONS LEARNED IN TESTING OF SAFEGUARDS EQUIPMENT

    International Nuclear Information System (INIS)

    Pepper, S.; Farnitano, M.; Carelli, J.; Hazeltine, J.; Bailey, D.

    2001-01-01

    The International Atomic Energy Agency's (IAEA) Department of Safeguards uses complex instrumentation for the application of safeguards at nuclear facilities around the world. Often, this equipment is developed through cooperation with member state support programs because the Agency's requirements are unique and are not met by commercially available equipment. Before approving an instrument or system for routine inspection use, the IAEA subjects it to a series of tests designed to evaluate its reliability. In 2000, the IAEA began to observe operational failures in digital surveillance systems. In response to the observed failures, the IAEA worked with the equipment designer and manufacturer to determine the cause of failure. An action plan was developed to correct the performance issues and further test the systems to make sure that additional operational issues would not surface later. This paper addresses the steps taken to address operation issues related to digital image surveillance systems and the lessons learned during this process

  5. Lessons learned in testing of Safeguards equipment

    International Nuclear Information System (INIS)

    Pepper, Susan; Farnitano, Michael; Carelli, Joseph

    2001-01-01

    Upgrade Travel Funding' - This subtask provides funding for the upgrade of DIS equipment installed in the field; E.125.3, 'DIS Radiation Field Characterization' - This subtask provides for the procurement by the IAEA of radiation measurement equipment and technical assistance for the characterization of radiation conditions in the locations where DIS will be installed. This will help the IAEA ensure that the design specifications for the equipment are consistent with the location where the instrument will be used; E.125.4, 'DIS Design Limit Testing and Advise to Strengthen IAEA's Current Equipment Qualification Criteria' - Under this subtask, Wyle Laboratories and Quanterion Solutions will conduct SDIS design limit testing, including harsh environmental testing and accelerated aging, to determine the expected lifetime and produce a design limit report to include maximum operating environment vs. design limit analysis. Additionally, this task will include the development of a strengthened environmental qualification test plan and reliability and maintainability definition methodology for all safeguards equipment. The implementation of new equipment by the Department of Safeguards is costly. Expected costs associated with the implementation of equipment include capital costs, training and in some cases travel. The cost is dramatically increased when operational issues arise due to the costs of studying the issues, modifying and upgrading the equipment and additional travel. The U.S. Support Program believes that the IAEA's Division of Safeguards Technical Support (SGTS) must strengthen its equipment-testing program to ensure that the equipment it approves for inspection use is reliable and will not place additional burden on the Department of Safeguards' maintenance and inspection staff. The U.S. Support Program recognizes that SGTS already requires a series of fundamentally important and revealing tests, but we believe that additional tests should be added to the testing

  6. Use of Equipment Information System (EQUIS) to determine priority for purchasing safeguards equipment

    International Nuclear Information System (INIS)

    Silberberg, S.

    1988-01-01

    To manage its large world-wide inventory of safeguards equipment, the IAEA Safeguards department uses a computerized Equipment Information System (EQUIS). EQUIS data have been analyzed using Queueing Theory to determine if inventory is adequate to meet inspector demands and in those cases where it is inadequate, to indicate how many additional units should be procured. Results are tabulated for various types of non-destructive analysis (NDA) equipment. For equipment where there is a high turnover and hence a large amount of data, the analysis provides a powerful tool for assisting procurement decisions

  7. Safeguards techniques and equipment

    International Nuclear Information System (INIS)

    1997-01-01

    The current booklet is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. As new verification measures continue to be developed, the material in the booklet will be periodically reviewed and updated versions issued. (author)

  8. IAEA preparations for the year 2000 compliance of safeguards equipment systems

    International Nuclear Information System (INIS)

    Aparo, M.; Barnes, B.; Lewis, W.; Hsiung, Sue

    1999-01-01

    The Department of Safeguards, IAEA, has used equipment systems for acquiring relevant data to support safeguards evaluation and verification activities. Typically an equipment system consists of EPROM (embedded system), a connecting personal computer with instrument software for data acquisition, and may include data evaluation software. Complementing the equipment systems is a collection of general evaluation software systems (application software) which support the analysis of the acquired data. In preparing for the year 2000 compliance of all safeguards systems, SGTS (Safeguards Division of Technical Services) in IAEA, must ascertain the equipment systems and the evaluation software authorised for inspection use can properly operate through the passage of year 2000. We present the year 2000 challenge for these systems, the approach we use to tackle the problem, and the status of our year 2000 project. (author)

  9. Safeguards equipment of the future: Integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    From the beginning, equipment to support IAEA Safeguards could be characterized as that which is used to measure nuclear material, Destructive Assay (DA) and Non Destructive Assay (NDA), and that which is used to provide continuity of knowledge between inspection intervals, Containment ampersand Surveillance (C/S). C/S equipment has often been thought of as Cameras and Seals, with a limited number of monitors being employed as they became available. In recent years, technology has advanced at an extremely rapid rate, and continues to do so. The traditional film cameras are being replaced by video equipment, and fiber optic and electronic seals have come into rather widespread use. Perhaps the most interesting aspect of this evolution, and that which indicates the wave of the future without much question, is the integration of video surveillance and electronic seals with a variety of monitors. This is demonstrated by safeguards systems which are installed in several nuclear facilities in France, Germany, Japan, the UK, the USA, and elsewhere. The terminology of Integrated Monitoring Systems (IMS) has emerged, with the employment of network technology capable of interconnecting all desired elements in a very flexible manner. Also, the technology for transmission of a wide variety of information to off-site locations, termed Remote Monitoring, is in widespread industrial use, requiring very little adaptation for safeguards use. This paper examines the future of the Integrated Monitoring Systems and Remote Monitoring in International Safeguards, including technical and other related factors

  10. Applying new safeguards technology to existing nuclear facilities

    International Nuclear Information System (INIS)

    Harris, W.J.; Wagner, E.P.

    1979-01-01

    The application and operation of safeguards instrumentation in a facility containing special nuclear material is most successful when the installation is desinged for the operation of the specific facility. Experience at the Idaho National Engineering Laboratory demonstrates that installation designs must consider both safeguards and production requirements of specific facilities. Equipment selection and installation design influenced by the training and experience of production operations and safeguards personnel at a specific facility help assure successful installation, reliable operation, and minimal operator training. This minimizes impacts on existing plant production activities while maximizing utility of the safeguards information obtained

  11. Applying new safeguards technology to existing nuclear facilities

    International Nuclear Information System (INIS)

    Johnson, C.E.; Wagner, E.P.

    1979-01-01

    The application and operation of safeguards instrumentation in a facility containing special nuclear material is most successful when the installation is designed for the operation of the specific facility. Experience at the Idaho National Engineering Laboratory demonstrates that installation designs must consider both Safeguards and Production requirements of specific facilities. Equipment selection and installation design influenced by the training and experience of production operations and safeguards personnel at a specific facility help assure successful installation, reliable operation, and minimal operator training. This minimizes impacts on existing plant production activities while maximizing utility of the safeguards information obtained

  12. Performance monitoring of safeguards equipment

    International Nuclear Information System (INIS)

    Sirisena, K.; Peltoranta, M.; Goussarov, V.; Vodrazka, P.

    1999-01-01

    SGTCS is responsible for monitoring and reporting the performance of the SG equipment. Performance monitoring (PM) has been implemented in most important safeguards equipment operating unattended in nuclear facilities. Inspectors acquire equipment performance data in facilities. After inspection, the data package is submitted to SGTCS for processing and analysis. The performance data is used for identification of systems or components, which should be changed in the field and for identification of modules which, should be diagnosed at HQ in order to determine the cause of failure. Moreover, the performance data is used for preventive maintenance and spares distribution planning, and to provide statistics for official reports and management decision making. An important part of the performance monitoring is reporting. Equipment performance reports contain information about equipment inventory, utilization, failure types, failure distribution, and reliability. Trends in performance are given in graphical form in cases, where past data is available. Reliability estimates such as expected times between failures are provided. The automated reporting tools are obtainable through EMIS database application. (author)

  13. A Safeguardability Check-List for Safeguards by Design

    Energy Technology Data Exchange (ETDEWEB)

    Sevini, F. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy); Renda, G. [European Commission, DG Energy, Directorate E ' Nuclear Safeguards' , Unit 4 ' Inspections: reactors, storages and others facilities, Luxembourg (Luxembourg); Sidlova, V. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy)

    2011-12-15

    Safeguards by design is a complex step-by-step interactive decision process involving various stake-holders and design choices to be made over a certain period of time. The resulting plant design should be a compromise among economical, safety, security and safeguards implementation constraints. Access to technology and equipment, as well as to the nuclear fuel cycle, determines the basic choices that the designer has to make. Once the boundary conditions for a given facility have been fixed, the designer still faces the challenge of setting several design and operational parameters that will require various trade-offs . Concerning safeguards, these can be seen in three groups, i.e. those related to the general design and its intrinsic proliferation resistance; those related to the specific lay-out and planning; those related to the actual safeguards instrumentation, its effectiveness and efficiency. The paper aims at describing a model for a phased, or 'layered' approach to safeguards-by-design, focusing on the example of off-load reactors.

  14. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  15. Gamma scanning equipment for nuclear safeguards

    International Nuclear Information System (INIS)

    De Grandi, G.; Stanchi, L.

    1975-01-01

    Many reasons justify the use of gamma techniques in the field of nuclear safeguards. The paper describes electronic equipment for gamma-scanning of non-irradiated fuel elements. The control of the operation is completely digital and driven by a minicomputer and gives more accurate results in respect of an analog chain which has been successfully used in fuel element manufacturing plants

  16. A safeguards case study of the Nuclear Materials and equipment corporation uranium processing plant Apollo, Pennsylvania. Appendix B with proprietary information removed. Staff technical report

    International Nuclear Information System (INIS)

    Altman, W.; Hockert, J.; Quinn, E.

    1980-04-01

    The report characterizes the Atomic Energy Commission safeguards requirements and the safeguards systems and procedures in place at the Nuclear Materials and Equipment (NUMEC) uranium processing plant in Apollo, Pennsylvania during the spring of 1964. Based upon this characterization, a list of safeguards weaknesses which would be considered deficiencies under 1979 requirements is developed. Appendixes A and B to the report provide a detailed characterization of AEC safeguards requirements as well as a side by side comparison of NUMEC's safeguards program in 1964 with the safeguards program currently required of a comparable licensed facility

  17. 30 CFR 77.203 - Use of material or equipment overhead; safeguards.

    Science.gov (United States)

    2010-07-01

    ...; safeguards. 77.203 Section 77.203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS...; safeguards. Where overhead repairs are being made at surface installations and equipment or material is taken...

  18. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  19. International safeguards

    International Nuclear Information System (INIS)

    Sanders, B.; Ha Vinh Phuong

    1976-01-01

    Since the start of the post-war era, international safeguards were considered essential to ensure that nuclear materials should not be diverted to unauthorised uses. In parallel, it was proposed to set up an international atomic energy agency within the United Nations through which international cooperation in nuclear matters would be channelled and controlled. Created in 1957, the IAEA was authorized to administer safeguards in connection with any assistance it provided as well as at the request of Member State and of any party to bilateral or multilateral arrangements in its ambit. Today, there are two international treaties requiring that its parties should accept Agency safeguards unilaterally, the Latin America Tlatelolco Treaty of 1967, and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), operative since 1970, which requires in particular that non-nuclear weapon states should accept Agency safeguards on its peaceful nuclear activities. Thus while NPT covers peaceful nuclear activities indiscriminately in a country, the Agency's original safeguards system is applied according to specific agreements and to given facilities. A basic conflict has now emerged between commercial interests and the increasing wish that transfer of nuclear equipment and know-how should not result in proliferation of military nuclear capacity; however, serious efforts are currently in progress to ensure universal application of IAEA safeguards and to develop them in step with the uses of nuclear energy. (N.E.A.) [fr

  20. Commercial-off-the-shelf digital surveillance systems for safeguards

    International Nuclear Information System (INIS)

    Neufing, C.; Tschritter, C.; Meylemans, P.; Vandaele, R.; Heppleston, M.; Chare, P.; Kloeckner, W.

    2001-01-01

    The reasons why safeguards authorities are from time to time looking for Commercial-Off-The-Shelf (C.O.T.S.) equipment for safeguards purposes are for the following reasons: Equipment that is designed from scratch to satisfy specific safeguards requirements is very likely to go through a period of teething problems. If these problems are only discovered once the equipment is deployed for routine use, this will be accompanied with large overhead costs for the safeguards authorities to maintain and repair such equipment. The overhead costs are much higher if unattended equipment is concerned that is permanently installed on-site. In that case an extra mission has to be organised to return the faulty equipment to our headquarters before it can be repaired. Using C.O.T.S. equipment that is also used by others reduces the risk of teething problems. At least the burden of going through such kind of problem period is shared with other customers of the concerned equipment. It is clear that safeguards is not a big market on its own. The non-negligible cost of the development of equipment that only fits safeguards requirements will therefore have to be recovered on the expected sales. If the market is small, if the expected number of units that can be sold is small, a large part of the unit cost will depend on the initial development costs. Going for C.O.T.S. equipment that is also sold in other markets, would in that respect lower the equipment cost. That not any safeguards equipment can be obtained commercially off the shelf is clear, but in certain domains like digital surveillance, the functionality of C.O.T.S. equipment has been approaching the one needed for safeguards. That is why in 1998 the Euratom Safeguards Office published an open call for tender for the purchase of a digital surveillance system that is able to support up to 64 colour camera channels. In response to a successful bid for this call for tender a contract for the delivery of 3 prototype systems and 6

  1. Leveraging physical protection technology for international safeguards applications

    International Nuclear Information System (INIS)

    Glidewell, Don

    2001-01-01

    Full text: In an effort to improve the effectiveness, efficiency, and reliability of equipment used for International Safeguards, the European Safeguards Research and Development Association (ESARDA) Reflection Group requested the ESARDA Containment and Surveillance Working Group to investigate the feasibility of employing physical protection technologies for international safeguards applications. The physical protection market has traditionally been much greater than the international safeguards market. Consequently, physical protection technology has been subjected to greater testing and evaluation, and has enjoyed much greater real world experience. The larger market yields economies of scale, and the greater testing and experience should arguably result in improved reliability. This paper will compare requirements for physical protection versus international safeguards equipment, and identify types of physical protection equipment, which have potential for safeguards applications. It will evaluate both Commercial Off-the-Shelf (COTS) and non-COTS equipment. Finally, for selected physical protection equipment, the paper will evaluate the degree of modification that would be needed to make it acceptable for safeguards applications. (author)

  2. IAEA safeguards: Staying ahead of the game

    International Nuclear Information System (INIS)

    2007-07-01

    What are nuclear safeguards and why are they important? Answers are provided in the booklet, describing and explaining the fundamentals of the IAEA safeguards system and its role as a key element of international security, and addressing the system's implementation, costs, requirements, resources and historical development, with an emphasis on trends and strengthening measures over the past 10-15 years. Topics discussed include the safeguards State evaluation process and and the key requirements of the safeguards system including information sources (open source information, commercial satellite imagery and nuclear trade related information) and the state of the art equipment, techniques and technology (unattended and remote monitoring equipment, environmental sampling, etc.)

  3. Logistical and safeguards aspects related to the introduction and implementation of video surveillance equipment by EURATOM

    International Nuclear Information System (INIS)

    Chare, P.J.; Wagner, H.G.; Otto, P.; Schenkel, R.

    1987-01-01

    With the growing availability of reliable video equipment for surveillance applications in safeguards and the disappearance of the Super 8 mm cameras, there will be a period of transition from film camera to video surveillance, a process which started two years ago. This gradual transition, as the film cameras come to the end of their useful lives, will afford the safeguards authorities the opportunity to examine in detail the logistical and procedural changes necessary. This paper examines, on the basis of existing video equipment in use or under development, the differences and problems to be encountered in the approach to surveillance. These problems include tamper resistance of signal transmission, on site and headquarters review, preventative maintenance, reliability, repair, and overall performance evaluation. In addition the advantages and flexibility offered by the introduction of video, such as on site review and increased memory capacity, are also discussed. The paper also considers the overall costs and manpower required by EURATOM for the implementation of the video systems as compared to the existing twin Minolta film camera system to ensure the most efficient use of manpower and equipment

  4. International inspection activity impacts upon DOE safeguards requirements

    International Nuclear Information System (INIS)

    Zack, N.R.

    1995-01-01

    The US has placed certain special nuclear materials declared excess to their strategic needs under international safeguards through the International Atomic Energy Agency (IAEA). This Presidential initiative has obligated materials at several Department of Energy (DOE) facilities for these safeguards activities to demonstrate the willingness of the US to ban production or use of nuclear materials outside of international safeguards. However, IAEA inspection activities generally tend to be intrusive in nature and are not consistent with several domestic safeguards procedures implemented to reduce worker radiation exposures and increase the cost-effectiveness and efficiency of accounting for and storing of special nuclear materials. To help identify and provide workable solutions to these concerns, the Office of Safeguards and Security has conducted a program to determine possible changes to the DOE safeguards and security requirements designed to help facilities under international safeguards inspections more easily comply with domestic safeguards goals during international inspection activities. This paper will discuss the impact of international inspection activities on facility safeguards operations and departmental safeguards procedures and policies

  5. IAEA safeguards for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  6. Contribution of the 'safeguarded' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  7. IAEA safeguards for the 21st century

    International Nuclear Information System (INIS)

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  8. Safeguards Export-Import Training: Adapting to Changes in the Department of Safeguards Over 6 Years of Experience

    International Nuclear Information System (INIS)

    Chatelus, R.; ); Crete, J.-M.; Schot, P.-M.; Hushbeck, E.C.; Heine, P.

    2015-01-01

    Safeguards relevant information encompasses information available to the Agency in exercising its rights and fulfiling its obligations under relevant safeguards agreement(s). It includes information relating to nuclear or nuclear related trade like international transfers of nuclear material, or export (or import upon request by the Agency) of specified equipment described in annex 2 of the Additional Protocol. It may also include information provided by States on a voluntary basis. In 2005, the General Conference (see GC(49)/RES/13) encouraged the provision of information on procurement enquiries, export denials and other nuclear related information. Objectively and independently assessing this information and combining it with other Safeguards data and knowledge requires relevant expertise and well defined processes. Since 2008, the bi-annual Export-Import (EXIM) Training Workshop, jointly run by the IAEA Department of Safeguards and the U.S. Department of Energy, enables SG staff to develop competencies required for collecting, processing and drawing objective conclusions in this area. Over the years, more than 150 SG staff have been exposed to technical information on relevant non-nuclear material and equipment, trade data from different origins, analytical processes, and exercises to use this knowledge in realistic safeguards work scenarios. The EXIM training has also been an opportunity to develop analytical best practices and explore how this analytical work finds it place in the verification process. The paper describes the background and purpose of the EXIM training, how it helps Safeguards to independently collect and analyze relevant trade information to fulfil its obligations. It also touches on the lessons learned from six years of training experience, observing how the Department of Safeguards develops and implements structured processes to collect, process and evaluate safeguards relevant trade information, in order to establish findings and draw

  9. Objectives and techniques of an advanced safeguards system for the CANDU reactor

    International Nuclear Information System (INIS)

    Smith, R.M.; Zarecki, C.W.; Head, D.A.

    1981-01-01

    In 1975, Canada began to actively assist the IAEA with manpower and research and development efforts to meet this requirement for CANDU reactors. This paper describes various aspects of the CANDU safeguards scheme, including the containment and surveillance equipment that has been developed. It includes consideration of the following: objectives of the safeguards system, role of equipment in meeting system objectives, cost and maintenance of equipment, capabilities and limitations of equipment, and effectiveness of the scheme and equipment in providing assurance of diversion detection. 11 refs

  10. Recent advances in safeguards operations

    International Nuclear Information System (INIS)

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  11. 10 CFR 73.22 - Protection of Safeguards Information: Specific requirements.

    Science.gov (United States)

    2010-01-01

    ... protection. Information not classified as Restricted Data or National Security Information related to physical protection, including: (i) The composite physical security plan for the facility or site; (ii... Safeguards Information. (2) Each computer not located within an approved and lockable security storage...

  12. Safeguards instrumentation: a computer-based catalog

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  13. Safeguards instrumentation: a computer-based catalog

    Energy Technology Data Exchange (ETDEWEB)

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  14. Contribution of the ''safeguarded'' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    measurement systems and physical inventory procedures relevant to Safeguards. Attention is also drawn to those areas where the specific objectives of I.A.E.A. Safeguards lead to requirements additional to those required for managment purposes

  15. The potential use of domestic safeguards interior monitors in International Safeguards

    International Nuclear Information System (INIS)

    Williams, J.D.; Dupree, S.A.; Sonnier, C.S.

    1998-01-01

    An important future element of International Safeguards instrumentation is expected to be the merging of containment/surveillance and nondestructive assay equipment with domestic physical protection equipment into integrated systems, coupled with remote monitoring. Instrumentation would include interior monitoring and assessment and entry/exit monitoring. Of particular importance is the application of interior monitors in spaces of declared inactivity; for example, in nuclear material storage locations that are entered infrequently. The use of modern interior monitors in International Safeguards offers potential for improving effectiveness and efficiency. Within the context of increased cooperation, one can readily envision increased interaction between International Safeguards and Domestic Safeguards, including increased joint use of State System of Accounting and Control data

  16. Tour of safeguards equipment van

    International Nuclear Information System (INIS)

    Smith, B.W.; Fager, J.E.

    1984-01-01

    Increasing use is being made of nondestructive assay instruments for identification and measurements of nuclear materials. Important advantages of NDA are: timeliness, portability, and ease of use. Recent development in computer systems and NDA allow for the integration of sample planning, control of NDA, and data analysis into one transportable system. This session acquainted the course participants with the use of mobile NDA safeguards measurement systems. This session considered the practical problems and the type of results that can be expected from field use of NDA instruments. An existing mobile safeguards system was used to demonstrate some of the differences between field and laboratory conditions

  17. Safeguards Considerations for the Design of a Future Fast Neutron Sodium Cooled Reactor

    International Nuclear Information System (INIS)

    Cazalet, J.; Raymond, P.; Masson, M.; Saturnin, A.

    2015-01-01

    Incorporating safeguards at an early stage of a reactor design is a way to increase the effectiveness and efficiency of safeguards measures minimizing the possibilities of misuse of the plant or nuclear material diversion. It also reduces the impact on the construction and operation cost. At the preliminary phase, the design will integrate: confinement, containment, surveillance features and non-destructive assay equipment. Taking into account these requirements will help the operator in the approval of the plant at the design phase by national and international authorities in charge of Nuclear Material accounting and safeguards. A large amount of work has been made by the GEN IV International Forum to assess the proliferation resistance of nuclear systems. The IAEA has developed guidelines on ''Safeguards by design'' describing reference requirements for future nuclear facilities. Based on these studies, this communication details implementation of safeguards in the design of a sodium cooled fast neutron reactor (SFR) currently studied in France. Specificities are the use of MOX fuel with high concentration of plutonium and the potential capacity of breeding. A great attention should be paid to avoid diversion of nuclear material contained in fresh or irradiated fuel. Scenarios of reactor misuse are analyzed. The identification of diversion pathways and requirements for nuclear material accountancy, leads to an approach of safeguards, specific to SFR: Material Balance Areas (MBA) and some key measurement points (KMP) are characterized. Specific instrumentation assay helping in the identification and/or characterization of fuel elements and the inventory of nuclear material is described. As concerns the fuel cycle, the safeguards of the reprocessing unit will be progressively increased through the development of materials monitoring and the implementation of these measures at strategic locations of buildings, thus providing real-time information

  18. A safeguards program for implementing Department of Energy requirements

    International Nuclear Information System (INIS)

    Erkkila, B.H.

    1989-01-01

    The U.S. Department of Energy (DOE) issued a new materials control and accountability (MC ampersand A) order 5633.3 in February of 1988. This order contains all of the requirements for an effective MC ampersand A (safeguards) program for facilities that control and account for nuclear materials in their operations. All contractors were expected to come into compliance with the order by April 30, 1989, or obtain approval for exceptions and/or extensions. The order also contains various performance requirements that are not in effect until the DOE issues the guidelines to the performance requirements. After evaluations were completed in February 1989, it was determined there were several deficiencies in the Los Alamos National Laboratory's (LANL's) safeguards program. Documentation of policy and procedures needed correction before LANL could be in compliance with the new MC ampersand A order. Differences between the old and new orders were addressed. After this determination, action teams were established to corrected LANL's safeguards program. Compliance with the DOE requirements was the goal of this activity. The accomplishments of the action teams are the subject of this paper

  19. Future issues in international safeguards

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Markin, J.T.; Mullen, M.F.

    1991-01-01

    The introduction of large bulk-handling facilities into the internationally safeguarded, commercial nuclear fuel cycle, increased concerns for radiation exposure, and the constant level of resources available to the International Atomic Energy Agency (IAEA) are driving new and innovative approaches to international safeguards. Inspector resources have traditionally been allocated on a facility-type basis. Approaches such as randomization of inspections either within a facility or across facilities in a State or the application of a fuel-cycle approach within a State are being considered as means of conserving resources. Large bulk-handling facilities require frequent material balance closures to meet IAEA timeliness goals. Approaches such as near-real-time accounting, running book inventories, and adjusted running book inventories are considered as means to meet these goals. The automated facilities require that safeguards measures also be automated, leading to more reliance on operator-supplied equipment that must be authenticated by the inspectorate. New Non-Proliferation Treaty signatory States with advanced nuclear programs will further drain IAEA resources. Finally, the role of special inspections in IAEA safeguards may be expanded. This paper discusses these issues in terms of increasing safeguards effectiveness and the possible impact on operators. 14 refs

  20. Assessment of the performance of containment and surveillance equipment part 1: methodology

    International Nuclear Information System (INIS)

    Rezniczek, A.; Richter, B.

    2009-01-01

    Equipment performance aims at the creation of relevant data. As Containment and Surveillance (C/S) is playing an ever increasing role in safeguards systems, the issue of how to assess the performance of C/S equipment is being addressed by the ESARDA Working Group on C/S. The issue is important not only for the development of appropriate safeguards approaches but also for the review of existing approaches with regard to the implementation of the Additional Protocol (A P) and Integrated Safeguards. It is expected that the selection process of appropriate equipment, especially for unattended operation, is facilitated by the availability of methods to determine the performance of such equipment. Apart from EURATOM, the users of assessment methodologies would be the International Atomic Energy Agency (IAEA), plant operators, and instrument developers. The paper describes a non-quantitative performance assessment methodology. A structured procedure is outlined that allows assessing the suitability of different C/S instrumentation to comply with the objectives of its application. The principle to determine the performance of C/S equipment is to define, based on safeguards requirements, a task profile and to check the performance profile against the task profile. The performance profile of C/S equipment can be derived from the functional specifications and design basis tolerances provided by the equipment manufacturers.

  1. DOE/ABACC safeguards cooperation

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Toth, P.; Rubio, J.

    1995-01-01

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) through the Office of Nonproliferation and National Security to countries and international organizations to enhance their capabilities to control and verify nuclear material inventories. Specific activities initiated under the safeguards agreement include: (1) active US participation in ABACC's safeguards training courses, (2) joint development of specialized measurement training workshops, (3) characterization of laboratory standards, and (4) development and application of an extensive analytical laboratory comparison program. The results realized from these initial activities have been mutually beneficial in regard to strengthening the application of international safeguards in Argentina and Brazil

  2. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  3. Guarantying and testing the nuclear safeguards

    International Nuclear Information System (INIS)

    Turcu, Ilie

    2002-01-01

    Apparently, the nuclear power will ensure an important share of the world energy demand at least for the next decades because there is no viable alternative in the fan of energy sources neither one complying with the environment preservation requirements. The nuclear energy future depends not only on technical and economical aspects but also on preventing any danger of nuclear safeguards nature. The main international legal instrument which provides concrete commitments for nations in this field is the Nuclear Safeguard Convention. It provides guarantees and testings of the nuclear safeguards over the entire service life of the nuclear power plants. In the two general conferences (of 1999 and 2002) the status and measures adopted in the field of nuclear safeguards by the states adhering to the convention were discussed and reviewed, as well as the issues of financial resources, licensing and the adequate measures in emergency cases. The nuclear safeguards is a major issue among the criteria of integration in UE. Essential for maintaining and endorsing the provisions of nuclear safeguards in Romania are specific research and development activities aiming at integrating the equipment and structures, solving the operation problems of nuclear facilities, studying the behavior of installations in transient regimes, investigating the reliability and probabilistic assessing of nuclear safeguards, examining the phenomenology and simulating severe accidents or human factor behavior. Of major importance appears to be the international cooperation aiming that a permanent exchange of information and experience, dissemination of the best results, solutions and practices. The paper presents the status and trends at the world level, as well as in Romania, underlining the main issues of the strategy in this field and stressing the financial and human resources implied the implementing the nuclear safeguards provisions

  4. Process data in safeguards at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1988-01-01

    The desire to improve timeliness and sensitivity of material control and accounting capabilities is the basis for evaluation and upgrade of regulatory requirements throughout the nuclear industry. Improvements invariably require better measurement capabilities and more frequent measurements. Operating plants typically include a broad range of measurements and equipment devoted to process control. How can these measurements be used to benefit safeguards? A part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory has focused on the use of process data for safeguards. This report discusses recent safeguards demonstrations and current activities in a test facility at Oak Ridge

  5. Design and Implementation of Equipment for Enhanced Safeguards of a Plutonium Storage in a Reprocessing Plant

    International Nuclear Information System (INIS)

    Richir, P.; Dechamp, L.; Buchet, P.; Dransart, P.; Dzbikowicz, Z.; Peerani, P.; ); Pierssens, L.; Persson, L.; Ancius, D.; Synetos, S.; ); Edmonds, N.; Homer, A.; Benn, K.-A.; Polkey, A.

    2015-01-01

    The Nuclear Security unit (NUSEC) of the Institute for Transuranium Elements (ITU, JRC) was entrusted by DG ENER to design and implement equipment in order to achieve enhanced safeguards of a plutonium dioxide storage located on the MAGNOX reprocessing plant in Sellafield (UK). Enhanced safeguards must lead to a win-win situation for all parties involved. In this case the DG ENER inspectorate will save inspection time, manpower and future financial resources and the operator will have the right to access its storage without the need for inspector presence. To reach this goal, while at the same time taking into account current budget constraints, NUSEC developed applications that use equipment commonly used in the safety and security fields but so far have not been used in safeguards. For instance, two laser scanners are used to detect entry/exit events into and out of the store and to provide the necessary information to an algorithm in order to categorize objects/people passing the scanners, e.g., a Fork Lift Truck, a trolley used to bring in PuO 2 containers, a system used for the dispatch of cans, people, etc. An RFID reader is used to identify equipment duly authorized to access the store. All PuO 2 containers arriving from the production line must be weighed, identified and measured using gamma and neutron detectors before they can be transferred to the store. For this purpose an Unattended Combined Measurement System (UCMS) was designed and manufactured by the JRC in order to do all verification activities using a single instrument. This paper describes the design features of the equipment and its implementation with the support of the Sellafield Ltd. in the framework of the MAGNOX store project. (author)

  6. The effect of safeguards on the contractual relations of nuclear suppliers

    International Nuclear Information System (INIS)

    MacIsaac, J.F.D.

    1976-01-01

    Canada applies a safeguards system aimed to ensure that nuclear materials and equipment are not diverted from their peaceful uses. These control requirements have a direct influence on the conditions of export contracts concluded by Canadian suppliers of nuclear materials or equipment. In particular if the buyer does not comply with the safeguards clauses, it may not be possible for the Canadian supplier to fulfill the contract. This possibility is covered by the force majeure clauses. (N.E.A.) [fr

  7. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    International Nuclear Information System (INIS)

    Thomas, L.L.; Strait, R.S.

    1994-10-01

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient

  8. Use of operator-provided, installed C/S equipment in IAEA safeguards

    International Nuclear Information System (INIS)

    Shea, T.; Rundquist, D.; Gaertner, K.; Yellin, E.

    1987-01-01

    Developing solutions for complex safe guards problems in close cooperation with Operators is becoming more common, especially as the IAEA continues to operate under zero-growth limitations. This has in practice taken on various forms; from the extreme case of very specific equipment developed and constructed by the State/Operator for use in only one facility, to the more normal case where only the development is carried out by the State/Operator. This practice has advantages and disadvantages. For example, to ensure that Agency inspections will be carried out in a predictable manner, it will be in the Operator's interest to ensure that any equipment he provides is of the highest quality, meets all national safety requirements, and is installed and maintained in such a manner that it will provide years of service. Agency equipment performs its intended function in a reliable manner, but with very specific, limited applications in mind, improvements in reliability over that obtained with normal Agency equipment are to be expected. Also, the authors experience is that reaching acceptable arrangements for the use of State- of Operator-supplied equipment is often far more straightforward than when arranging to apply Agency equipment

  9. Development and application of a safeguards system in a fabrication plant for highly enriched uranium

    International Nuclear Information System (INIS)

    Cuypers, M.; Stricht, E. van der

    1979-01-01

    This paper gives a general view of the safeguards activities performed at the Nukem Fabrication plant (Hanau, Federal Republic of Germany) during the last seven years. The main safeguards-relevant features of the plant are given and discussed. The importance is stressed of a good working relationship between the three principal partners, viz. the operator, the safeguards authority and the latter's technical support service. The definition, implementation and improvement of safeguards equipment and activities are outlined. The paper describes the internal organization established by the operator to fulfil his responsibilities, the safeguards philosophy, the Non-Destructive Assay equipment permanently installed by Euratom Safeguards, the results obtained, and the evaluation of the material balances. Conclusions are drawn (and specific comments made throughout the paper) from the experience gained over this period of seven years. (author)

  10. Holdup-related issues in safeguarding of nuclear materials

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1988-03-01

    Residual inventories of special nuclear materials (SNM) remaining in processing facilities (holdup) are recognized as an insidious problem for both safety and safeguards. This paper identifies some of the issues that are of concern to the safeguards community at-large that are related to holdup of SNM in large-scale process equipment. These issues range from basic technologies of SNM production to changing regulatory requirements to meet the needs of safeguarding nuclear materials. Although there are no magic formulas to resolve these issues, there are several initiatives that could be taken in areas of facility design, plant operation, personnel training, SNM monitoring, and regulatory guidelines to minimize the problems of holdup and thereby improve both safety and safeguards at nuclear material processing plants. 8 refs

  11. Safeguards '85

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  12. Feasibility Study of Implementing a Mobile Collaborative Information Platform for International Safeguards Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Gastelum, Zoe N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gitau, Ernest T. N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doehle, Joel R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toomey, Christopher M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    In response to the growing pervasiveness of mobile technologies such as tablets and smartphones, the International Atomic Energy Agency and the U.S. Department of Energy National Laboratories have been exploring the potential use of these platforms for international safeguards activities. Specifically of interest are information systems (software, and accompanying servers and architecture) deployed on mobile devices to increase the situational awareness and productivity of an IAEA safeguards inspector in the field, while simultaneously reducing paperwork and pack weight of safeguards equipment. Exploratory development in this area has been met with skepticism regarding the ability to overcome technology deployment challenges for IAEA safeguards equipment. This report documents research conducted to identify potential challenges for the deployment of a mobile collaborative information system to the IAEA, and proposes strategies to mitigate those challenges.

  13. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  14. Safeguards by design - The early consideration of safeguards concepts

    International Nuclear Information System (INIS)

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  15. The Canadian safeguards program

    International Nuclear Information System (INIS)

    Zarecki, C.W.; Smith, R.M.

    1981-12-01

    In support of the Treaty on the Non-Proliferation of Nuclear Weapons Canada provides technical support to the International Atomic Energy Agency for the development of safeguards relevant to Canadian designed and built nuclear facilities. Some details of this program are discussed, including the philosophy and development of CANDU safeguards systems; the unique equipment developed for these systems; the provision of technical experts; training programs; liaison with other technical organizations; research and development; implementation of safeguards systems at various nuclear facilities; and the anticipated future direction of the safeguards program

  16. The evolution of safeguards

    International Nuclear Information System (INIS)

    Heinonen, O.

    1999-01-01

    The Agency's safeguards system has demonstrated a flexibility capable of responding to the verification demands of its Member States. It is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The Agency is in the process of strengthening safeguards in its verification of declared activities. Since the early 1990's the Board of Governors took up the issue of strengthening measures such as inspections at undeclared locations, the early provision of design information, a system of universal reporting on nuclear material and certain nuclear-related equipment and non-nuclear material. Following the Agency's 'Programme 93+2', a major step forward was the adoption by the Board of Governors of the Additional Protocol in May 1997. This included important strengthened safeguards measures based on greater access to information and locations. A number of member states have already indicated their willingness to participate in this system by signing the Additional Protocol and this is now in the early stages of implementation for a few states. (author)

  17. Assessment of the performance of containment and surveillance equipment part 2: trial application

    International Nuclear Information System (INIS)

    Rezniczek, A.; Richter, B.; Jussofie, A.

    2009-01-01

    The adopted methodological approach for assessing the performance of Containment and Surveillance (C/S) equipment resulted from an account of work performed for and in cooperation with the ESARDA Working Group on C/S. It was applied on a trial basis to a dry storage facility for spent nuclear fuel and consisted of the following steps: (1) Acquisition and analysis of design information and operational characteristics of the facility under consideration, (2) assumptions on diversion and misuse scenarios, (3) assumptions on safeguards approach and definition of safeguards requirements, (4) compilation and characterisation of candidate C/S equipment, (5) performance assessment of C/S equipment. The candidate equipment taken into account was routinely used by the IAEA: DCM14-type camera, Type E capand- wire seal, COBRA fibre optic seal, and VACOSS electronic seal. Four applications were considered: camera mounted in the reception area, seal on secondary lid of transport and storage cask, seal on protective lid, and seal on group of casks. For these applications, requirements were defined and requirement levels were attributed. The assignment of performance levels was carried out by using the technical specifications and design basis tolerances provided by the equipment manufacturers. The results were entered into four performance assessment tables. Although the assessment methodology was not yet fully developed, its trial application yielded promising results with regard to the selection of appropriate C/S equipment.

  18. Facility Safeguardability Analysis in Support of Safeguards by Design

    International Nuclear Information System (INIS)

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  19. Providing reliable equipment to IAEA through a low risk transition plan

    International Nuclear Information System (INIS)

    Green, L.; Weinstock, E.V.; Karlin, E.W.

    1988-01-01

    The development and production of safeguards equipment is a complex process containing many potential pitfalls between the conceptual design and its implementation in the field. The conditions for equipment use are especially demanding. At the same time, the consequences of failure may be serious. Repeated failure may result in the loss of credibility of safeguards. Expensive back up measures such as re-verification of inventories may be required. Inspectors may come to distrust the equipment. Finally, the expense of maintaining the equipment may be excessive. It is therefore essential that the process for bringing equipment for the conceptual stage to actual routine use minimizes the risk of producing equipment that is unsuitable for the job. Fortunately, approaches for accomplishing this have already been developed in both the industrial and commercial sectors. One such approach, the Low Risk Transition Plan (LRTP) is described to show it can be applied to the production of reliable safeguards equipment

  20. Current Status of J-MOX Safeguards Design and Future Prospects

    International Nuclear Information System (INIS)

    Sampei, T.; Hiruta, K.; Shimizu, J.; Ikegame, K.

    2015-01-01

    The construction of JNFL MOX Fuel Fabrication Plant (J-MOX) is proceeding toward active test using uranium and MOX in July 2017, and completion of construction in October 2017. Although the construction schedule is largely impacted by progress of licencing, according to domestic law, JNFL is making every effort to get necessary permission of business licence and authorization of design and construction method as soon as possible. On the other hand, it is desirable that integrated safeguards approach is effective, efficient and consistent with J-MOX facility features. Discussion about the approach is going on among IAEA, Japan Safeguards Office (JSGO) and JNFL, and IAEA is planning to introduce the measures into the approach such as application of Near Real-Time Accountancy with frequent declaration from operator, Containment/Surveillance measures to storages, internal flow verification with 100%, random interim inspection (RII) and so on. RII scheme is intended to increase efficiency without compromising effectiveness and makes interruption of facility operation minimum. Also newly developed and improved safeguards equipment will be employed and it is possible to realize to increase credibility and efficiency of inspection by introduction of unattended/automatic safeguards equipment. Especially IAEA and JSGO share the development of non-destructive assay systems which meet the requirements from both parties. These systems will be jointly utilized at the flow verification, RII and PIV. JNFL will continue to provide enough design information in a timely manner toward early establishment of safeguards approach for J-MOX. Also JNFL will implement the coordination of installation and commissioning of safeguards equipment, and Design Information Verification activities for completion of construction in October 2017

  1. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  2. Safeguards technology research and development at CIAE

    International Nuclear Information System (INIS)

    Yang Qun

    2001-01-01

    Full text: China Institute of Atomic Energy (CIAE) is a multi-disciplinary institute under the leadership of China National Nuclear Corporation (CNNC). The Laboratory of Technical Research for Nuclear Safeguards was established at CIAE in 1991 to develop safeguards technology and to provide technical assistance to competent authorities for nuclear material management and control, which became one of the key laboratories approved by CNNC in 1993. The main research works for safeguards at CIAE include: nuclear material control and accounting, facilities license review and assessment, domestic inspection, NDA and DA analysis, physical protection and technical training. Research and development of equipment and technique for safeguards has been continuing at CIAE. A variety of NDA equipment that has different resolution and analysis capability has been developed. Method of NDA measurement has been investigated for nuclear material with different characteristics. Mathematics method such as Monte Carlo simulation is applied in NDA. Advanced destructive analysis (DA) instrument is installed at laboratory of CIAE, such as TIMS, ICP-MS and electronic chemistry analyzing system. The high accuracy results of element analysis and isotopic analysis for nuclear material can be obtained. It is possible to measure the types and quantities of nuclear material in a given area by means of NDA and DA. Physical protection system has also been developed. It consists of access control and management, various alarm (including perimeter alarm, intrusion alarms, fire alarms), video and audio monitors, intercommunication set and central console. The system can meet technical requirement for safeguards of first rank. Nuclear material accounting is an important aspect of safeguards research at CIAE. The computer software related to material accounting has been developed. It is the important task for scientists at CIAE to design and review nuclear accounting systems in various facilities. For

  3. A Little Customs Glossary for IAEA Safeguards: Customs Procedures and Concepts that Matter for the Implementation of Modern Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, Renaud [Consultant, Export Control and IAEA Safeguards Specialist, IAEA (International Atomic Energy Agency (IAEA))

    2012-06-15

    The additional protocols to the IAEA comprehensive safeguards agreements include provisions about the reporting by states of their imports and exports of listed equipment and non-nuclear material, also known as the 'trigger list', as well as nuclear materials. Beyond declarations and their verification, IAEA Safeguards also looks at other Imports and exports as part of its efforts to build confidence on the absence of undeclared nuclear activities or material. In all cases, information about international transfers of interest to Nuclear Safeguards is closely related to export control activities. But, if much has been written about the material and equipment to be declared, neither IAEA Safeguards nor Export control related documents provide much explanation about what exports and imports actually are. In fact, precise legal definitions are to be found generally in national customs regulations and international agreements on customs and trade. Unfortunately, these are not necessarily in line with Safeguards understanding. It is therefore essential that IAEA safeguards comprehends the customs concepts and procedures that are behind Safeguards relevant information.

  4. A Little Customs Glossary for IAEA Safeguards: Customs Procedures and Concepts that Matter for the Implementation of Modern Safeguards

    International Nuclear Information System (INIS)

    Chatelus, Renaud; )

    2012-01-01

    The additional protocols to the IAEA comprehensive safeguards agreements include provisions about the reporting by states of their imports and exports of listed equipment and non-nuclear material, also known as the “trigger list”, as well as nuclear materials. Beyond declarations and their verification, IAEA Safeguards also looks at other Imports and exports as part of its efforts to build confidence on the absence of undeclared nuclear activities or material. In all cases, information about international transfers of interest to Nuclear Safeguards is closely related to export control activities. But, if much has been written about the material and equipment to be declared, neither IAEA Safeguards nor Export control related documents provide much explanation about what exports and imports actually are. In fact, precise legal definitions are to be found generally in national customs regulations and international agreements on customs and trade. Unfortunately, these are not necessarily in line with Safeguards understanding. It is therefore essential that IAEA safeguards comprehends the customs concepts and procedures that are behind Safeguards relevant information.

  5. Safeguards activities in Japan

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  6. Functional Requirements for Continuation Period Equipment and Drilling

    International Nuclear Information System (INIS)

    Sweeney, J.J.

    2000-01-01

    For geophysical measurements, creating a functional requirement based on finding a specific-sized target at a specific depth is difficult because of the wide variation of subsurface and surface geologic conditions that can be encountered. An alternative approach used in this paper is to specify functional requirements based on what is needed to search for the effects of a given target within a reasonable background of environmental or geological variation (noise). There is a gap between what the state-of-the-art expert with a large amount of experience can be expected to accomplish and what a non-expert inspector with limited experience can do. There are also limitations because of the Treaty environment (equipment certification, transparency, managed access, etc.); thus, for OSI, we must opt for pragmatic approach. Equipment must be easy to use, rugged, and functional over a wide range of environmental conditions. Equipment should consist of commercially available technology. Well-established operational procedures should be used for taking measurements, reducing data, and presenting data, with software mostly provided by the manufacturer along with the equipment. Equipment should be used in conjunction with WGB-approved position-finding equipment capable of relative position determinations pertinent to the type of equipment and measurement

  7. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  8. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  9. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  10. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  11. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  12. Safeguards instrumentation: past, present, future

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    1982-01-01

    Instruments are essential for accounting, for surveillance and for protection of nuclear materials. The development and application of such instrumentation is reviewed, with special attention to international safeguards applications. Active and passive nondestructive assay techniques are some 25 years of age. The important advances have been in learning how to use them effectively for specific applications, accompanied by major advances in radiation detectors, electronics, and, more recently, in mini-computers. The progress in seals has been disappointingly slow. Surveillance cameras have been widely used for many applications other than safeguards. The revolution in TV technology will have important implications. More sophisticated containment/surveillance equipment is being developed but has yet to be exploited. On the basis of this history, some expectations for instrumentation in the near future are presented

  13. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    Science.gov (United States)

    2012-12-20

    ...-intensity discharge lamps, distribution transformers, and small electric motors as covered equipment. (42 U... following: Electric motors and pumps; commercial HVAC and water heating equipment (small, large, and very... prescribed for certain types of covered equipment. Specific requirements are established for electric motors...

  14. Safeguards management inspection procedures

    International Nuclear Information System (INIS)

    Barth, M.J.; Dunn, D.R.

    1984-08-01

    The objective of this inspection module is to independently assess the contributions of licensee management to overall safeguards systems performance. The inspector accomplishes this objective by comparing the licensee's safeguards management to both the 10 CFR, parts 70 and 73, requirements and to generally accepted management practices. The vehicle by which this comparison is to be made consists of assessment questions and key issues which point the inspector to areas of primary concern to the NRC and which raise additional issues for the purpose of exposing management ineffectiveness. Further insight into management effectiveness is obtained through those assessment questions specifically directed toward the licensee's safeguards system performance. If the quality of the safeguards is poor, then the inspector should strongly suspect that management's role is ineffective and should attempt to determine management's influence (or lack thereof) on the underlying safeguards deficiencies. (The converse is not necessarily true, however.) The assessment questions in essence provide an opportunity for the inspector to identify, to single out, and to probe further, questionable management practices. Specific issues, circumstances, and concerns which point to questionable or inappropriate practices should be explicitly identified and referenced against the CFR and the assessment questions. The inspection report should also explain why the inspector feels certain management practices are poor, counter to the CFR, and/or point to ineffecive management. Concurrent with documenting the inspection results, the inspector should provide recommendations for alleviating observed management practices that are detrimental to effective safeguards. The recommendations could include: specific changes in the practices of the licensee, followup procedures on the part of NRC, and proposed license changes

  15. Safeguards surveillance equipment and data sharing between IAEA and a member state

    International Nuclear Information System (INIS)

    Park, Seung Sik

    1999-01-01

    Efficiency and reliability are two prongs of implementation of safeguards policy. Unattended surveillance is getting wide acceptance through its field trials and technical advances. In achieving goal of safeguards, new safeguards system should provide less intrusiveness than conventional inspection. Unattended surveillance data share will be a major issue among some countries that have own national inspection scheme in place in parallel with international safeguards to check the resources consuming incurred by the repeated installations. Nonetheless, the issue has not been focussed yet among the States concerned, especially for the country like Korea with national inspection in operation. For balanced development in safeguards regime between IAEA and Korea, sharing of unattended surveillance data with SSAC needs to be worked out in conjunction with the joint use of safeguards instruments that is in the process

  16. Course modules on nuclear safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Bril, L.-V.; Janssens-Maenhout, G.

    2004-01-01

    Full text: One of major current concern in the nuclear field is the conservation of developed knowledge and expertise. The relevance of this subject is steadily increasing for several reasons: retirement of the generation of first industrial development of nuclear energy, only one new reactor under construction in Europe while several in Eastern and Asian countries, the public's concern on safety, radioactive waste and safeguards aspects, and some lack of interest common to many activities in engineering and physics. Moreover nuclear safeguards is nowadays characterised with an enlarged scope and no longer strictly limited to the accountancy of nuclear material; today it encompasses non proliferation of nuclear material, and deals with the control of dual use equipment and technologies, illicit trafficking and External Security. Some higher education networks, such as the European Nuclear Engineering Network (ENEN), have been established to make better use of dwindling teaching capacity, scientific equipment and research infrastructure, through co-operation amongst universities and research centres. The European Safeguards Research and Development Association (ESARDA) initiated the set-up of course modules under an e-learning medium, to preserve knowledge in nuclear safeguards. These course modules should be considered as basic pedagogical documentation, which will be accessible via the Internet. Monitoring or controlling of the accesses will be ensured. The modules are structured with an increasing level of detail, in function of the audience. On one hand the course modules should be attractive to University students in nuclear, chemical or mechanical engineering, in radiochemistry, statistics, law, political science etc. at universities or specialised institutes. On the other hand the course modules aim to give professionals, working on specific safeguards or non-proliferation issues an overview and detailed technical information on the wide variety of nuclear

  17. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in open-quotes Observational Skillsclose quotes. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector's job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector's job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA's consideration in further developing its Safeguards training program

  18. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  19. Improvements to Technical Specifications surveillance requirements

    International Nuclear Information System (INIS)

    Lobel, R.; Tjader, T.R.

    1992-12-01

    In August 1983 an NRC task group was formed to investigate problems with surveillance testing required by Technical Specifications, and to recommend approaches to effect improvements. NUREG-1024 (''Technical Specifications-Enhancing Safety Impact'') resulted, and it contained recommendations to review the basis for test frequencies; to ensure that the tests promote safety and do not degrade equipment; and to review surveillance tests so that they do not unnecessarily burden personnel. The Technical Specifications Improvement Program (TSIP) was established in December 1984 to provide the framework for rewriting and improving the Technical Specifications. As an element of the TSIP, all Technical Specifications surveillance requirements were comprehensively examined as recommended in NUREG-1024. The results of that effort are presented in this report. The study found that while some testing at power is essential to verify equipment and system operability, safety can be improved, equipment degradation decreased, and unnecessary personnel burden relaxed by reducing the amount of testing at power

  20. EURATOM safeguards. Safeguards verifications in reprocessing plants

    International Nuclear Information System (INIS)

    Heppleston, M.

    1999-01-01

    This paper provides a brief historical view of the legal basis for EURATOM. The specific application of safeguards to large scale reprocessing plants, from the theoretical model to the practical application of inspection is considered. The challenge to adequately safeguard major commercial reprocessing facilities has led to many novel approaches being developed. These lessons will also benefit other safeguard projects as a result. Good cooperation between the operator and regulator is essential for the satisfactory installation of adequate safeguard controls. The use of modern data processing technology combined with other diverse monitoring techniques has shown that a major industrial scale reprocessing plant can be controlled under international safeguards to provide a high level of assurance [ru

  1. Safeguards implementation in UP3 reprocessing plant

    International Nuclear Information System (INIS)

    Laurent, J.P.; Regnier, J.; Talbourdet, Y.; De Jong, P.

    1991-01-01

    The implementation of safeguards in a large size reprocessing plant is a challenge, considering the high throughput of nuclear material and the sophisticated automation of such facilities. In the case of UP3, a pragmatic and realistic approach has been devised and is applied through an efficient cooperation between the safeguards organizations, the french national authorities and the operator. In essence, they consist in verification of every significant inputs and outputs, in timely analysis by NDA (e.g. solutions of dissolution through an on site k-edge equipment), in monitoring selected parts of the inprocess inventory and in specific containment/surveillance systems for the spent fuel storage ponds and the PuO2 storage. (author)

  2. Recent advances in IAEA safeguards systems analysis

    International Nuclear Information System (INIS)

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  3. The IAEA inspectorate, including new requirements

    International Nuclear Information System (INIS)

    Alston, W.

    1998-01-01

    The basic purpose of the IAEA safeguards system is 'timely detection of diversion of significant quantities of nuclear material'. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  4. The IAEA inspectorate, including new requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alston, W [International Atomic Energy Agency, Department of Safeguards, Division of Operations A, Vienna (Austria)

    1999-12-31

    The basic purpose of the IAEA safeguards system is `timely detection of diversion of significant quantities of nuclear material`. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  5. Nuclear safeguards: power tool for ensuring nuclear safety and security

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2016-01-01

    The quantitative measurement of fissile nuclear materials through independent measurements is one of the cornerstones of the Nuclear Material Accounting and Control (NUMAC) edifice. The verification of the accountancy also represents one of the key elements of international nuclear materials Safeguards. The very basis of NUMAC is to ensure safeguarding nuclear material and to state with confidence, “no significant amount of nuclear material has been withdrawn from its intended civilian use.” Thus, materials accounting systems are designed to account for or keep track of the amounts and locations of sensitive nuclear materials by periodic measurements. The purpose of this activity is to detect missing items (gross defects). A variety of C/S techniques are used, primarily optical surveillance and sealing. These measures serve to back up nuclear material accountancy by providing means by which access to nuclear material can be monitored. Unattended monitoring is a special mode of application of NDA or C/S techniques, or a combination of these, that operates for extended periods of time. The complexity and diversity of facilities containing safeguarded nuclear material require a correspondingly diverse set of verification techniques and equipment. The equipment and techniques used in safeguards are briefly described in this talk

  6. The standing advisory group on safeguards implementation

    International Nuclear Information System (INIS)

    Jennekens, J.H.F.

    1982-09-01

    In 1975 the Director General of the IAEA called together ten persons from member states with nuclear programs at varying stages of development to form the Standing Advisory Group on Safeguards Implementation. The group was later expanded to twelve. The Director General asked the group to evaluate the technical objectives of Agency safeguards, assess the effectiveness and efficiency of specific safeguards operating methods in meeting these technical objectives, advise on techniques to be employed in safeguards operations, and recommend areas where further work is needed. This paper reviews the work of the Standing Advisory Group on Safeguards Implementation since its formation in 1975, summarizes the subjects that have been examined and the advice rendered, and outlines the problem areas requiring further study

  7. Optimizing and joining future safeguards efforts by 'remote inspections'

    International Nuclear Information System (INIS)

    Zendel, M.; Khlebnikov, N.

    2009-01-01

    Full-text: Remote inspections have a large potential to save inspection effort in future routine safeguards implementation. Such inspections involve remote activities based on the analysis of data acquired in the field without the physical presence of an inspector, shifting the inspectors' priorities further toward unannounced inspections, complementary access activities and data evaluation. Large, automated and complex facilities require facility resident and specific safeguards equipment systems with features for unattended and remotely controlled operation as well as being integrated in the nuclear process. In many instances the use of such equipment jointly with the SSAC/RSAC and the operator is foreseen to achieve affordable effectiveness with a minimum level of intrusiveness to the facility operation. Where it becomes possible to achieve independent conclusions by this approach, the IAEA would make full use of the SSAC/RSAC, involving State inspectors and/or facility operators to operate inspection systems under remotely controlled IAEA mechanisms. These mechanisms would include documented procedures for routine joint-use, defining arrangements for data sharing, physical security and authentication mechanisms, recalibration and use of standards and software, maintenance, repair, storage and transportation. The level of cooperation and willingness of a State to implement such measures requested and properly justified by the IAEA will demonstrate its commitment to full transparency in its nuclear activities. Examples of existing remote inspection activities, including joint-use activities will be discussed. The future potential of remote inspections will be assessed considering technical developments and increased needs for process monitoring. Enhanced cooperation with SSAC/RSAC within the framework of remote inspections could further optimize the IAEA's inspection efforts while at the same time maintaining effective safeguards implementation. (author)

  8. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1988-01-01

    In recent years considerable attention has been given to upgrading security education programs at facilities across the country. At Pacific Northwest Laboratory (PNL), a Laboratory-wide Safeguard Awareness Training Program has been established in order to raise the cognizance of the entire staff with regard to safeguards issues and concerns. This aggressive safeguards program involves a strong interface of physical security measure and material control and accountability systems. Within PNL, four distinct audiences were defined and a needs assessment analysis performed for each to determine specific training requirements. The target audiences identified were: material balance area (MBA) custodians, managers of material balance areas, material handlers, and new employees. Five safeguards training courses were created to meet the needs of those audiences. This paper discusses the development of the Safeguards Awareness Program at PNL and its benefits to the Laboratory

  9. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  10. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  11. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Ade lndra B; Kasturi; Tatang Eryadi

    2004-01-01

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  12. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  13. How safe are nuclear safeguards

    International Nuclear Information System (INIS)

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  14. Ergonomic requirements for the operation of machines and technical equipment

    Directory of Open Access Journals (Sweden)

    Górny Adam

    2017-01-01

    Full Text Available In order to operate machinery and equipment safely, it is critical for the solutions in place to conform to design-related and operating requirements. Design-related requirements are primarily the responsibility of machine designers/developers and manufacturers. Operating requirements should be satisfied by employers, who are responsible for ensuring safe working conditions for their employees. Under applicable laws, machinery and equipment should be designed, produced and then operated without placing excessive loads on workers and in keeping with machine functionality and intended use. One should also ensure that machinery and equipment can be maintained and adjusted without exposing their operators to hazards. Ergonomic criteria are an integral part of such requirements. They ensure that human users and operators of technical equipment are enabled to function properly. Design-related requirements are viewed as a priority safety consideration. While they facilitate the use of technical tools, the actual safety of employees ultimately depends on the satisfaction of specific requirements during operation.

  15. Inspection technologies -Development of national safeguards technology-

    International Nuclear Information System (INIS)

    Hong, J. S.; Kim, B. K.; Kwack, E. H.

    1996-12-01

    17 facility regulations prepared by nuclear facilities according to the Ministerial Notices were evaluated. Safeguards inspection activities under Safeguards are described. Safeguards inspection equipments and operation manuals to be used for national inspection are also described. Safeguards report are produced and submitted to MOST by using the computerized nuclear material accounting system at state level. National inspection support system are developed to produce the on-site information for domestic inspection. Planning and establishment of policy for nuclear control of nuclear materials, international cooperation for nuclear control, CTBT, strengthening of international safeguards system, and the supply of PWRs to North Korea are also described. (author). 43 tabs., 39 figs

  16. Design considerations for an integrated safeguards system for fuel-reprocessng plants

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1982-05-01

    This report presents design ideas for safeguards systems in nuclear fuels reprocessing plants. The report summarizes general safeguards requirements and describes a safeguards system concept being developed and tested at the Idaho Chemical Processing Plant. The report gives some general concepts intended for design consideration and a checklist of specific problems that should be considered. The report is intended as an aid for the safeguards system designer and as a source of useful information

  17. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard PhD; Joseph Alexander; Robert Bean; Brian Castle; Scott DeMuth, Ph.D.; Phillip Durst; Michael Ehinger; Prof. Michael Golay, Ph.D.; Kevin Hase, Ph.D.; David J. Hebditch, DPhil; John Hockert, Ph.D.; Bruce Meppen; James Morgan; Jerry Phillips, Ph.D., PE

    2009-02-01

    participation in facility design options analysis in the conceptual design phase to enhance intrinsic features, among others. The SBD process is unlikely to be broadly applied in the absence of formal requirements to do so, or compelling evidence of its value. Neither exists today. A formal instrument to require the application of SBD is needed and would vary according to both the national and regulatory environment. Several possible approaches to implementation of the requirements within the DOE framework are explored in this report. Finally, there are numerous barriers to the implementation of SBD, including the lack of a strong safeguards culture, intellectual property concerns, the sensitive nature of safeguards information, and the potentially divergent or conflicting interests of participants in the process. In terms of SBD implementation in the United States, there are no commercial nuclear facilities that are under IAEA safeguards. Efforts to institutionalize SBD must address these issues. Specific work in FY09 could focus on the following: finalizing the proposed SBD process for use by DOE and performing a pilot application on a DOE project in the planning phase; developing regulatory options for mandating SBD; further development of safeguards-related design guidance, principles and requirements; development of a specific SBD process tailored to the NRC environment; and development of an engagement strategy for the IAEA and other international partners.

  18. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    International Nuclear Information System (INIS)

    Bjornard, Trond; Alexander, Joseph; Bean, Robert; Castle, Brian; DeMuth, Scott; Durst, Phillip; Ehinger, Michael; Golay, Michael; Hase, Kevin; Hebditch, David J.; Hockert, John; Meppen, Bruce; Morgan, James; Phillips, Jerry

    2009-01-01

    facility design options analysis in the conceptual design phase to enhance intrinsic features, among others. The SBD process is unlikely to be broadly applied in the absence of formal requirements to do so, or compelling evidence of its value. Neither exists today. A formal instrument to require the application of SBD is needed and would vary according to both the national and regulatory environment. Several possible approaches to implementation of the requirements within the DOE framework are explored in this report. Finally, there are numerous barriers to the implementation of SBD, including the lack of a strong safeguards culture, intellectual property concerns, the sensitive nature of safeguards information, and the potentially divergent or conflicting interests of participants in the process. In terms of SBD implementation in the United States, there are no commercial nuclear facilities that are under IAEA safeguards. Efforts to institutionalize SBD must address these issues. Specific work in FY09 could focus on the following: finalizing the proposed SBD process for use by DOE and performing a pilot application on a DOE project in the planning phase; developing regulatory options for mandating SBD; further development of safeguards-related design guidance, principles and requirements; development of a specific SBD process tailored to the NRC environment; and development of an engagement strategy for the IAEA and other international partners.

  19. Safeguards equipment of the future integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    Becoming aware of the significant events of the past four years and their effect on the expectations to international safeguards, it is necessary to reflect on which direction the development of nuclear safeguards in a new era needs to take and the implications. The lime proven monitoring techniques, based on quantitative factor's and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent and open implementation regime. Within such a regime, the associated measures need to be determined and technological support identified. This paper will identify the proven techniques which, with appropriate implementation support, could most quickly make available additional measures for a comprehensive, transparent and open implementation regime. In particular, it will examine the future of Integrated Monitoring Systems and Remote Monitoring in international safeguards, including technical and other related factors

  20. CIPSS [computer-integrated process and safeguards system]: The integration of computer-integrated manufacturing and robotics with safeguards, security, and process operations

    International Nuclear Information System (INIS)

    Leonard, R.S.; Evans, J.C.

    1987-01-01

    This poster session describes the computer-integrated process and safeguards system (CIPSS). The CIPSS combines systems developed for factory automation and automated mechanical functions (robots) with varying degrees of intelligence (expert systems) to create an integrated system that would satisfy current and emerging security and safeguards requirements. Specifically, CIPSS is an extension of the automated physical security functions concepts. The CIPSS also incorporates the concepts of computer-integrated manufacturing (CIM) with integrated safeguards concepts, and draws upon the Defense Advance Research Project Agency's (DARPA's) strategic computing program

  1. Transparency and other State-specific factors: exploration of Ideas for evolving the system of State-evaluations and safeguards implementation of IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Everton, C.; Leslie, R.; Bayer, S.; East, M. [Craig Everton, Russell Leslie, Stephan Bayer, Michael East, Australia (Australia)

    2011-12-15

    In November 2010 the IAEA Department of Safeguards launched its Long Term Strategic Plan at the IAEA Symposium on International Safeguards: 'Preparing for Future Verification Challenges'. A key element of the Long Term Strategic Plan is the further evolution of the State-level approach for safeguards implementation away from criteria driven safeguards approaches focussed at the facility level, to a safeguards system that is objectives-based and fully information-driven. The State-level approach is a holistic approach to safeguards implementation, applicable to all States, incorporating comprehensive State evaluations and safeguards implementation approaches that make use of all information available to the IAEA. In further evolving the State-level concept State-specific factors and acquisition path analysis will become increasingly important in State evaluations and in the determination of safeguards approaches for each State. It will be important to determine objective modalities for incorporating these factors. Consideration of State-specific factors in determining safeguards approaches is not new - in fact, paragraph 81 of INFCIRC/153 (concluded June 1972) enumerates several such factors that can be considered. This paper will explore some ideas for State-specific factors that could be used in State-evaluations, and how these factors could be used for determining State-by-State safeguards approaches. Ideas for State-specific factors will include effectiveness of State Systems of Accountancy and Control (SSAC), transparency of States in their dealings with the IAEA, and characteristics of a nuclear fuel cycle of a State.

  2. Transparency and other State-specific factors: exploration of Ideas for evolving the system of State-evaluations and safeguards implementation of IAEA

    International Nuclear Information System (INIS)

    Everton, C.; Leslie, R.; Bayer, S.; East, M.

    2011-01-01

    In November 2010 the IAEA Department of Safeguards launched its Long Term Strategic Plan at the IAEA Symposium on International Safeguards: 'Preparing for Future Verification Challenges'. A key element of the Long Term Strategic Plan is the further evolution of the State-level approach for safeguards implementation away from criteria driven safeguards approaches focussed at the facility level, to a safeguards system that is objectives-based and fully information-driven. The State-level approach is a holistic approach to safeguards implementation, applicable to all States, incorporating comprehensive State evaluations and safeguards implementation approaches that make use of all information available to the IAEA. In further evolving the State-level concept State-specific factors and acquisition path analysis will become increasingly important in State evaluations and in the determination of safeguards approaches for each State. It will be important to determine objective modalities for incorporating these factors. Consideration of State-specific factors in determining safeguards approaches is not new - in fact, paragraph 81 of INFCIRC/153 (concluded June 1972) enumerates several such factors that can be considered. This paper will explore some ideas for State-specific factors that could be used in State-evaluations, and how these factors could be used for determining State-by-State safeguards approaches. Ideas for State-specific factors will include effectiveness of State Systems of Accountancy and Control (SSAC), transparency of States in their dealings with the IAEA, and characteristics of a nuclear fuel cycle of a State.

  3. Some Examples of the Relationship Between Containment and Other Engineered Safeguard Requirements, Accident Analyses and Site Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vinck, W. F.; Maurer, H. [EURATOM, Brussels (Belgium)

    1967-09-15

    The paper refers primarily to nuclear power reactors for which EURATOM has performed safety reviews in co-operation with national technical advisory organizations concerned in the licensing procedures. Comparative data are tabulated on a number of containment concepts and other engineered safeguards to protect against or to limit the consequences of major hypothetical accidents for a number of power reactors. Main environmental data, such as magnitudes of exclusion areas and population densities, are also presented. A number of topics of particular interest which were encountered during the safety analysis and which find widespread application in the assessment of the siting conditions and emergency planning are discussed. In this discussion, emphasis is placed on containment, engineered safeguards and emergency equipment. These items are considered in general with emphasis on: (a ) the importance of meeting operability and high efficiency requirements (reliability ) when needed through design and layout; (b) periodic testing and/or inspection possibilities and requirements in order to maintain high availability standards. Attention is drawn to some difficulties which have arisen in connection with design, material choice and construction of steel containment structures and which in the interests of safety as well as of economic optimization justify in the future more care in the use of possibly uniform or single-code requirements. Examples of uncertainties encountered in some accident analyses and their influence on siting considerations are discussed, with emphasis on safeguards intended to retain radioactive material in the plant, such as extent of core damage, iodine plate-out, filtering efficiency, wash-out effects. The means by which some of the main uncertainties have been or can in the future be eliminated through appropriate experimental programmes performed throughout the world are discussed. Some examples are also given of the influence of factors which

  4. Safeguards Implementation Practices Guide on Establishing and Maintaining State Safeguards Infrastructure

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreements. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This

  5. Nuclear safeguards considerations for pebble bed reactors (PBRs)

    International Nuclear Information System (INIS)

    Moses, David L.

    2012-01-01

    Recent reports by the Department of Energy National Laboratories have discussed safeguards considerations for low enriched uranium (LEU)-fueled pebble bed reactors (PBRs) and the need for bulk accountancy of the plutonium in “used fuel.” These reports fail to account for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency (IAEA) “provisional” guidelines for termination of safeguards on “measured discards.” The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel is not sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of the uranium minor isotopes 232 U and 236 U in the used fuel at the target burnup of ∼90 Gigawatt-days per metric ton (GWD/MT) exceed standard specification limits for reprocessed uranium and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the 236 U content to fall within specification. Hence, the PBR used fuel is less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBR specific activity of a reprocessed uranium isotopic mixture and its A 2 values for effective dose limits if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light-water-reactor used fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product (technetium, 99 Tc) and plutonium contamination. Thus, the potentially recoverable uranium from PBR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of reprocessing, but a more significant consideration is that reprocessing technologies for

  6. Visualizing Safeguards: Software for Conceptualizing and Communicating Safeguards Data

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-12

    The nuclear programs of states are complex and varied, comprising a wide range of fuel cycles and facilities. Also varied are the types and terms of states’ safeguards agreements with the IAEA, each placing different limits on the inspectorate’s access to these facilities. Such nuances make it difficult to draw policy significance from the ground-level nuclear activities of states, or to attribute ground-level outcomes to the implementation of specific policies or initiatives. While acquiring a firm understanding of these relationships is critical to evaluating and formulating effective policy, doing so requires collecting and synthesizing large bodies of information. Maintaining a comprehensive working knowledge of the facilities comprising even a single state’s nuclear program poses a challenge, yet marrying this information with relevant safeguards and verification information is more challenging still. To facilitate this task, Brookhaven National Laboratory has developed a means of capturing the development, operation, and safeguards history of all the facilities comprising a state’s nuclear program in a single graphic. The resulting visualization offers a useful reference tool to policymakers and analysts alike, providing a chronology of states’ nuclear development and an easily digestible history of verification activities across their fuel cycles.

  7. Equipment Operational Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  8. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  9. Containment and surveillance - A principal IAEA safeguards measure

    International Nuclear Information System (INIS)

    Drayer, D.D.; Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    The growth of the safeguards inspectorate of the Agency, spanning more than 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. Although the Agency was established in 1957, the first practical inspections did not occur until the early 1960s. In the early inspections, thee was little C/S equipment available, and no optical surveillance was used. However, by the third decade of the IAEA, the 1980s, many technology advances were made, and the level of C/S equipment activities increased. By the late 1980s, some 200 Twin Minolta film camera systems were deployed by the Agency for safeguards use. At the present time, the Agency is evaluating and beginning to implement remote monitoring as part of the Strengthened Safeguards System. However, adoption of remote monitoring by international agencies cannot occur rapidly because of the many technical and policy issues associated with this activity. A glimpse into the future indicates that an important element of safeguards instrumentation will be the merging of C/S and NDA equipment into integrated systems. The use of modern interior area monitors in International Safeguards also offers a great potential for advancing C/S measures. The research in microsensors is in its infancy, and the opportunities for their reducing the cost, increasing the life time, and increasing the reliability of sensors for safeguards applications are manifold. A period may be approaching in which the terminology of C/S will no longer have its original meaning, as integrated systems combining NDA instruments and C/S instruments are already in use and are expected to be the norm in the near future

  10. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  11. Safeguards agreements - Their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.H.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (Safeguards Agreements) between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute. On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: The Agency's Safeguards System 1965, extended in 1966 and 1968; and the basis for negotiating safeguards agreements with NNWS pursuant to NPT. The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is ensured through the application of various safeguards measures. Containment and surveillance measures are expected to play an increasingly important role. One of the specific features of NPT Safeguards Agreements is the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under the non-NPT safeguards agreements implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular regarding the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the Safeguards System document, which is incorporated in these agreements by reference, are in continuous evolution. The Agency's Safeguards System document (INFCIRC/66/Rev.2) continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from this document, and further provision for notification, inventories and financial matters, legal and political provisions such as sanctions in the case of non-compliance, and privileges and immunities. The paper discusses the

  12. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities

  13. Proliferation Resistance and Safeguards by Design: The Safeguardability Assessment Tool Provided by the INPRO Collaborative Project ''INPRO'' (Proliferation Resistance and Safeguardability Assessment)

    International Nuclear Information System (INIS)

    Haas, E.; Chang, H.-L.; Phillips, J.R.; Listner, C.

    2015-01-01

    Since the INPRO Collaborative Project on Proliferation Resistance and Safeguardability Assessment Tools (PROSA) was launched in 2011, Member State experts have worked with the INPRO Section and the IAEA Department of Safeguards to develop a revised methodology for self-assessment of sustainability in the area of proliferation resistance of a nuclear energy system (NES). With the common understanding that there is ''no proliferation resistance without safeguards'' the revised approach emphasizes the evaluation of a new 'User Requirement' for ''safeguardability'', that combines metrics of effective and efficient implementation of IAEA Safeguards including ''Safeguards-by-Design'' principles. The assessment with safeguardability as the key issue has been devised as a linear process evaluating the NES against a ''Basic Principle'' in the area of proliferation resistance, answering fundamental questions related to safeguards: 1) Do a State's legal commitments, policies and practices provide credible assurance of the exclusively peaceful use of the NES, including a legal basis for verification activities by the IAEA? 2) Does design and operation of the NES facilitate the effective and efficient implementation of IAEA safeguards? To answer those questions, a questionnaire approach has been developed that clearly identifies gaps and weaknesses. Gaps include prospects for improvements and needs for research and development. In this context, the PROSA approach assesses the safeguardability of a NES using a layered ''Evaluation Questionnaire'' that defines Evaluation Parameters (EP), EP-related questions, Illustrative Tests and Screening Questions to present and structure the evidence of findings. An integral part of the assessment process is Safeguards-by-Design, the identification of potential diversion, misuse and concealment strategies (coarse diversion path

  14. Assessment of the requirements for placing and maintaining Savannah River Site spent fuel storage basins under International Atomic Energy Agency safeguards

    International Nuclear Information System (INIS)

    Amacker, O.P. Jr.; Curtis, M.M.; Delegard, C.H.; Hsue, S.T.; Whitesel, R.N.

    1997-03-01

    The United States is considering the offer of irradiated research reactor spent fuel (RRSF) for international safeguards applied by the International Atomic Energy Agency (IAEA). The offer would be to add one or more spent fuel storage basins to the list of facilities eligible for IAEA safeguards. The fuel to be safeguarded would be stored in basins on the Savannah River Site (SRS). This RRSF potentially can include returns of Material Test Reactor (MTR) VAX fuel from Argentina, Brazil, and Chile (ABC); returns from other foreign research reactors; and fuel from domestic research reactors. Basins on the SRS being considered for this fuel storage are the Receiving Basin for Offsite Fuel (RBOF) and the L-Area Disassembly Basin (L-Basin). A working group of SRS, U.S. Department of Energy International Safeguards Division (NN-44), and National Laboratory personnel with experience in IAEA safeguards was convened to consider the requirements for applying the safeguards to this material. The working group projected the safeguards requirements and described alternatives

  15. Challenges for Incorporation of additional safeguards requirements in a fuel fabrication facility in Japan

    International Nuclear Information System (INIS)

    Ishikawa, Tadatsugu; Suzuki, Katsuyuki

    2004-01-01

    Recent introduction of strengthened SG measure (i.e.: SNRI (Short Notice Random Inspection)) necessitated semi-real-time reporting including non-prescribed data in the FA for vital processes. These requirements have been bet by endeavors of both Inspectorates and operators. Using the integrated databases it will also be possible to produce most of reports required for safeguards purposes on a semi-real time basis, albeit with additional investment for softwares. However, in order to fully enjoy the advancements of information technology it is necessary to streamline the legal and procedural platform in addition to technical matters, in particular what are 'must' for safeguards and abolish if they are not really needed anymore. (author)

  16. Design impacts of safeguards and security requirements for a US MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Rinard, P.M.; Thomas, K.E.; Zack, N.R.; Jaeger, C.D.

    1998-01-01

    The disposition of plutonium that is no longer required for the nation's defense is being structured to mitigate risks associated with the material's availability. In the 1997 Record of Decision, the US Government endorsed a dual-track approach that could employ domestic commercial reactors to effect the disposition of a portion of the plutonium in the form of mixed oxide (MOX) reactor fuels. To support this decision, the Office of Materials Disposition requested preparation of a document that would review US requirements for safeguards and security and describe their impact on the design of a MOX fuel fabrication facility. The intended users are potential bidders for the construction and operation of the facility. The document emphasizes the relevant DOE Orders but also considers the Nuclear Regulatory Commission (NRC) requirements. Where they are significantly different, the authors have highlighted this difference and provided guidance on the impact to the facility design. Finally, the impacts of International Atomic Energy Agency (IAEA) safeguards on facility design are discussed. Security and materials control and accountability issues that influence facility design are emphasized in each area of discussion. This paper will discuss the prepared report and the issues associated with facility design for implementing practical, modern safeguards and security systems into a new MOX fuel fabrication facility

  17. Future directions for international safeguards - ESARDA WG on integrated safeguards

    International Nuclear Information System (INIS)

    Rezniczek, A.

    2013-01-01

    Reducing IAEA inspection effort does not mean that the overall safeguards effort will be reduced. There will be compensation and additional effort spent by states and SSACs (State Systems of Accounting and Control). State and/or regional authorities take very serious their responsibilities to safeguard the nuclear material. Enhanced cooperation between all players should be more seriously considered by the IAEA. A more effective implementation of the principle 'one job - one person' and sub-delegation of verification tasks should be taken into account for future evolution. At present, the state level approach is still based on a bottom up approach and not developed top down. The basis is still an aggregation of the facility specific safeguards approaches with some minor adjustments by state specific factors. The touchstone for a true state level approach would be a top-down development process with the result that safeguards effort spent in a state is no longer strongly correlated to the amount and quality of nuclear material in that state. The limitation of the Physical Model is that only the technical aspects are reflected. To actually perform a proliferation, the technical capability is a necessary but insufficient condition. Besides the pure technical capabilities, one has to consider the feasibility for a state to actually implement a proliferation action in its given environment. Factors to be considered are for example institutional factors, ownership of facilities and social and political structures in the state. The help a purely technical assessment can provide is also limited in cases where states have a well developed fuel cycle and thus have at their disposal all required technical capabilities. The paper is followed by the slides of the presentation. (authors)

  18. Nuclear safeguards technology 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This publication presents the results of the sixth in a series of international symposia on nuclear material safeguards. Development efforts related to safeguards for reprocessing plants constituted over twenty per cent of the programme. Other papers present results of over four years of field testing of near real time material accountancy at a plant in Japan, and results for a lesser period of time at a plant in Scotland. Papers reporting work on destructive and non-destructive measurement procedures or equipment constituted another thirty per cent of the programme, more if measurements in reprocessing and poster presentations are included. In honour of the tenth anniversary of the founding of the Safeguards Analytical Laboratory, two sessions were devoted to a review of destructive analytical measurement procedures. Some subjects received only minor attention during the Symposium. The statistical theory of random sampling, safeguards for uranium enrichment plants, material accountancy systems and several other topics appear only incidentally in the programme, but primarily because there are few remaining problems, not because there is little remaining interest

  19. Japan-IAEA Workshops on Advanced Safeguards for Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Hoffheins, B.; Hori, M.; Suzuki, M.; Kuno, Y.; Kimura, N.; Naito, K.; Hosoya, M.; Khlebnikov, N.; Whichello, J.; Zendel, M.

    2010-01-01

    Beginning in 2007, the Japan Atomic Energy Agency (JAEA) and the International Atomic Energy Agency (IAEA) Department of Safeguards initiated a workshop series focused on advanced safeguards technologies for the future nuclear fuel cycle (NFC). The goals for these workshops were to address safeguards challenges, to share implementation experiences, to discuss fuel cycle plans and promising research and development, and to address other issues associated with safeguarding new fuel cycle facilities. Concurrently, the workshops also served to promote dialog and problem solving, and to foster closer collaborations for facility design and planning. These workshops have sought participation from IAEA Member States' support programmes (MSSP), the nuclear industry, R and D organizations, state systems of accounting and control (SSAC), regulators and inspectorates to ensure that all possible stakeholder views can be shared in an open process. Workshop presentations have covered, inter alia, national fuel cycle programs and plans, research progress in proliferation resistance (PR) and safeguardability, approaches for nuclear measurement accountancy of large material throughputs and difficult to access material, new and novel radiation detectors with increased sensitivity and automation, and lessons learned from recent development and operation of safeguards systems for complex facilities and the experiences of integrated safeguards (IS) in Japan. Although the title of the workshops presumes an emphasis on technology, participants recognized that early planning and organization, coupled with close cooperation among stakeholders, that is, through the application of 'Safeguards by Design' (SBD) processes that include nuclear safety and security coordination, 'Remote Inspections' and 'Joint-Use of Equipment (JUE)' would be required to enable more successful implementations of safeguards at future NFC facilities. The needs to cultivate the future workforce, effectively preserve

  20. The European experience in safeguarding nuclear fuel recycle processes and Pu stores

    International Nuclear Information System (INIS)

    Synetos, Sotiris

    2013-01-01

    Civil nuclear programs in the European Union member states have from their onset included fuel recycling as an option. The EURATOM Treaty gives to the European Commission the obligation to apply safeguards controls to all civil Nuclear Material in the European Union, and to facilitate the implementation of IAEA safeguards. The European Commission (EURATOM) has thus gained years of experience in safeguarding reprocessing plants, Pu storages, and MOX fuel fabrication plants and is currently participating in the development of approaches and measures for safeguarding long term repositories. The aim of this paper is to present the regulator's views and experience on safeguarding nuclear fuel recycle processes and Pu stores, which is based on the following principles: -) Early involvement of the control organizations in the design of the safeguards measures to be developed for a plant (currently referred to as Safeguards by Design); -) Early definition of a safeguards strategy including key measurement points; -) The design and development of plant specific Safeguards equipment, including an on site laboratory for sample analysis; -) The development by the operator of an appropriate Nuclear Material accountancy system to facilitate their declaration obligations; -) The introduction of an inspection regime allowing comprehensive controls under the restrictions imposed by financial and Human Resources limitations; -) Optimization of the inspection effort by using unattended measuring stations, containment and surveillance systems and secure remote transmission of data to the regulator's headquarters. The paper is followed by the slides of the presentation. (authors)

  1. An analytical laboratory to facilitate international safeguards

    International Nuclear Information System (INIS)

    Clark, B.E.; Muellner, P.; Deron, S.

    1976-01-01

    Member States which have concluded safeguards agreements accept safeguards on part or all of their nuclear facilities and nuclear materials. The Agreements enable the Agency to make inspections in order to verify the location, identity, quantity and composition of all safeguarded nuclear material. The independent analysis of samples of safeguards material is an essential part of the verification process. A new analytical laboratory has been made available to the Agency by the Austrian Government. This facility is staffed by the Agency with scientists and technicians from five Member States. Design criteria for the laboratory were defined by the Agency. Construction was carried out under the project management of the Oesterreichische Studiengesellschaft fuer Atomenergie Ges.m.b.H. Scientific equipment was procured by the Agency. Samples of feed and product material from the nuclear fuel cycle will constitute the main work load. Irradiated and unirradiated samples of uranium, plutonium and mixtures of both will be analysed for concentration and isotopic composition. Since highly diluted solutions of spent fuel will be the most active beta-gamma samples, shielded and remote manipulation facilities are not necessary. Ptentiometry, mass spectrometry and coulometry are the main techniques to be employed. Gravimetry, alpha and gamma spectrometry and emission spectroscopy will also be utilized as required. It is not intended that this laboratory, should carry the whole burden of the Agency's safeguards analytical work, but that it should function as a member of a network of international laboratories which has been set up by the Agency for this purpose. (author)

  2. 7 CFR 3015.169 - Equipment management requirements.

    Science.gov (United States)

    2010-01-01

    ... following requirements (including replacement equipment) until such actions as transfer, replacement or... transfer, replacement, or disposal of the equipment. (b) Every two years, at a minimum, a physical... 7 Agriculture 15 2010-01-01 2010-01-01 false Equipment management requirements. 3015.169 Section...

  3. Recommendations for equipment requirements and specifications for digital and interventional radiology: Dosimetric aspects

    International Nuclear Information System (INIS)

    Suliman, I.I.; Zoetelief, J.

    2002-01-01

    The recognition of radiation induced injuries from fluoroscopically guided interventional procedures has resulted in the current demand for development of recommendations and standards to limit dose to both patients and staff. This paper outlines the recommendations drafted within the framework of European Project DIMOND III. The actual work involves survey and review of national and international documents as well as scientific publications in areas relevant to the digital and/or interventional radiology with an aim of developing recommendations for equipment requirements and specifications for digital and interventional radiology. A pilot study of experimental investigations in at least three hospitals will be conducted to test the requirements and the specifications, the result of which will be presented. The recommendations are expected to provide an effective means of dose reduction to both patients and staff while maintaining image quality adequate for the specific diagnosis or interventional procedure. Different components of x-ray systems that have direct impact on patient and staff doses have been considered. Where necessary a compromise between patient dose and image quality has been made. The dosimetric aspects of the recommendations propose detailed descriptions and limits to dosimetric information relevant to patient and staff doses. International recommendations on maximum patient entrance surface dose rate vary in the range from 25 to 65 mGy.min -1 for normal mode fluoroscopy. Maximum image intensifier or image receptor input dose rate around 0.1 Gy min -1 at a distance 30 cm from the image intensifier input surface has been generally recommended. Maximum fluoroscopic dose rate in air must not exceed 50 mGy.min -1 at a location depending on the configuration e.g. for undertable x-ray tube at 10 mm from the patient support on the patient side of the support. The use of pulsed fluoroscopy or low dose fluoroscopy is proposed as good options to minimize

  4. Safeguards system design methodology

    International Nuclear Information System (INIS)

    Cravens, M.N.; Winblad, A.E.

    1977-01-01

    Sandia Laboratories is developing methods for the design of physical protection systems to safeguard special nuclear material and vital equipment at fixed sites. One method is outlined and illustrated with simplified examples drawn from current programs. The use of an adversary sequence diagram as an analysis tool is discussed

  5. Safeguards by Design - Experiences from New Nuclear Installation

    International Nuclear Information System (INIS)

    Okko, O.; Honkamaa, T.; Kuusi, A.; Rautjaervi, J.

    2010-01-01

    The experiences obtained from the current construction projects at Olkiluoto clearly point out the need to introduce the safeguards requirements into facility design process at an early stage. The early Design Information is completed, in principle, before the construction. However, during the design of containment, surveillance systems, and non-destructive assay equipment and their cabling, the design requirements for safeguards systems were not available either for the new reactor unit or for the disposal plant with a geological repository. Typically, the official Design Information documents are not available early enough for efficient integration of safeguards systems into new facilities. In case of the Olkiluoto projects, this was due to understandable reasons: at the new reactor unit the design acceptance by the ordering company and by the nuclear safety authorities was a long process, ongoing simultaneously with parts of the construction; and at the geological repository the national legislation assigns the repository the status of a nuclear facility only after the initial construction and research phase of the repository when the long-term safety of the disposal concept is demonstrated. As similar factors are likely to delay the completion of the official Design Information documents with any new reactor projects until the construction is well underway and efficient integration of safeguards systems is impossible. Therefore, the proliferation resistance of new nuclear installations should be addressed in the design phase before the official Design Information documents are finished. This approach was demonstrated with the enlargement of the Olkiluoto spent fuel storage building. For this approach to work, strong national contribution is needed to facilitate the early communication and exchange of information between the IAEA and the other stakeholders to enable the design of facilities that can be efficiently safeguarded. With the renaissance of nuclear

  6. Canada and international safeguards. Verifying nuclear non-proliferation

    International Nuclear Information System (INIS)

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result

  7. Safeguards and security deficiencies fulfilled through technology development

    International Nuclear Information System (INIS)

    Smoot, W.

    1996-01-01

    The Office of Safeguards and Security (OSS) sponsors research and development activities based on identified field and headquarters customer requirements. Annually, a formal solicitation of safeguards and security user needs is conducted. Currently, there are over 300 valid safeguards and security deficiencies that have been identified. These user needs serve as the basis for formulating the OSS Technology Development Program (TDP). Due to budget constraints, the TDP can only address approximately 47% of these needs in FY 1996. This paper will discuss, in a general sense, the current deficiencies and how the TDP is responding to each. Specifically, the paper will highlight technologies in the areas of Material Control and Accounting, Physical Security, and Information Security. A brief discussion of unfulfilled user requirements will also be presented as a catalyst for leveraging available or developing technologies from other similar programs or from private industry

  8. Institutionalizing Safeguards By Design for Nuclear Facilities

    International Nuclear Information System (INIS)

    Morgan, James B.; Kovacic, Donald N.; Whitaker, J. Michael

    2008-01-01

    Safeguards for nuclear facilities can be significantly improved by developing and implementing methodologies for integrating proliferation resistance into the design of new facilities. This paper proposes a method to systematically analyze a facility's processes, systems, equipment, structures and management controls to ensure that all relevant proliferation scenarios that could potentially result in unacceptable consequences have been identified, evaluated and mitigated. This approach could be institutionalized into a country's regulatory structure similar to the way facilities are licensed to operate safely and are monitored through inspections and incident reporting to ensure compliance with domestic and international safeguards. Furthermore, taking credit for existing systems and equipment that have been analyzed and approved to assure a facility's reliable and safe operations will reduce the overall cost of implementing intrinsic and extrinsic proliferation-resistant features. The ultimate goal is to integrate safety, reliability, security and safeguards operations into the design of new facilities to effectively and efficiently prevent diversion, theft and misuse of nuclear material and sensitive technologies at both the facility and state level. To facilitate this approach at the facility level, this paper discusses an integrated proliferation resistance analysis (IPRA) process. If effectively implemented, this integrated approach will also facilitate the application of International Atomic Energy Agency (IAEA) safeguards

  9. Structure of safeguards systems

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1978-06-01

    An effective safeguards system for domestic nuclear fuel cycle facilities consists of several important subsystems that must coordinate their functions with plant management and process control. The safeguards system must not unnecessarily disrupt plant operations, compromise safety requirements, or infringe on employee working conditions. This report describes concepts, which have been developed with the cooperation of the nuclear industry and the safeguards community, for achieving these objectives

  10. Implementing Safeguards-by-Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Durst, Phillip Casey; Hockert, John; Morgan, James

    2010-01-01

    Excerpt Safeguards-by-Design (SBD) is an approach to the design and construction of nuclear facilities whereby safeguards are designed-in from the very beginning. It is a systematic and structured approach for fully integrating international and national safeguards (MC and A), physical security, and other proliferation barriers into the design and construction process for nuclear facilities. SBD is primarily a project management or project coordination challenge, and this report focuses on that aspect of SBD. The present report continues the work begun in 2008 and focuses specifically on the design process, or project management and coordination - the planning, definition, organization, coordination, scheduling and interaction of activities of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project, in order to provide the project context within which the safeguards design activities take place, describes the involvement of safeguards experts in the design process, the nature of their analyses, interactions and decisions, as well as describing the documents created and how they are used. Designing and constructing a nuclear facility is an extremely complex undertaking. The stakeholders in an actual project are many - owner, operator, State regulators, nuclear facility primary contractor, subcontractors (e.g. instrument suppliers), architect engineers, project management team, safeguards, safety and security experts, in addition to the IAEA and its team. The purpose of the present report is to provide a common basis for discussions amongst stakeholders to collaboratively develop a SBD approach that will be both practically useful and mutually beneficial. The principal conclusions from the present study are: (1) In the short term, the successful implementation of SBD is principally a project management problem. (2) Life-cycle cost

  11. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of systems upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and cost and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers

  12. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of system upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and costs and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers. The model is in the preliminary stages of implementation, and an effort is ongoing to make the approach and quantitative model available for general use. The model, which is designed to complement existing nuclear safeguards evaluation tools, incorporates a variety of factors and integrates information on the likelihood of potential threats, safeguards capabilities to defeat threats, and the relative consequences if safeguards fail. The model uses this information to provide an overall measure for comparing safeguards upgrade projects at a facility

  13. IAEA safeguards - a 1988 perspective

    International Nuclear Information System (INIS)

    Jennekens, J.

    1988-01-01

    The problem of IAEA safeguards as regards its perspectives for 1988 is discussed. The necessity of balancing between safeguards measures required for the timely detection of nuclear material diversion to military purposes and measures to prove the absence of diversion is stated. Accurately working safeguards system aimed at the provision of nondiversion can include, as an accompanying component, any deterrence element required. Such a system will be more expensive than any other altrenatives but it will undoubtly be more suitable and accepatble

  14. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fritzell, Anni

    2008-03-01

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  15. System aspects on safeguards for the back-end of the Swedish nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fritzell, Anni (Dept. of Physics and Astronomy, Uppsala Univ., Uppsala (Sweden))

    2008-03-15

    This thesis has investigated system aspects of safeguarding the back-end of the Swedish nuclear fuel cycle. These aspects include the important notion of continuity of knowledge, the philosophy of verifying measurements and the need to consider the safeguards system as a whole when expanding it to include the encapsulation facility and the geological repository. The research has been analytical in method both in the identification of concrete challenges for the safeguards community in Paper 1, and in the diversion path analysis performed in Paper 2. This method of work is beneficial for example when abstract notions are treated. However, as a suggestion for further work along these lines, a formal systems analysis would be advantageous, and may even reveal properties of the safeguards system that the human mind so far has been to narrow to consider. A systems analysis could be used to model a proposed safeguards approach with the purpose of finding vulnerabilities in its detection probabilities. From the results, capabilities needed to overcome these vulnerabilities could be deduced, thereby formulating formal boundary conditions. These could include: The necessary partial defect level for the NDA measurement; The level of redundancy required in the C/S system to minimize the risk of inconclusive results due to equipment failure; and, Requirements on the capabilities of seismic methods, etc. The field of vulnerability assessment as a tool for systems analysis should be of interest for the safeguards community, as a formal approach could give a new dimension to the credibility of safeguards systems

  16. Dynamic material accountancy in an integrated safeguards system

    International Nuclear Information System (INIS)

    Murrell, J.S.

    1979-01-01

    The nuclear material safeguards system at the Portsmouth Gaseous Diffusion Plant is currently being improved. A new material control system will provide computerized monitoring and accountability, and a new physical protection system will provide upgraded perimeter and portal entry monitoring. The control system incorporates remote computer terminals at all processing, transfer and storage areas throughout the plant. Terminal equipment is interfaced to a computer through teletype equipment. A typical terminal transaction would require verification that the particular activity (material movement or process operation) is authorized, identifying the container involved, weighing the container, and then verifying the enrichment with non-destructive assay instrumentation. The system, when fully operational, will provide near real-time accountability for each eight-hour work shift for all items in process. (author)

  17. Dynamic material accountancy in an integrated safeguards system

    International Nuclear Information System (INIS)

    Murrell, J.S.

    1978-01-01

    The nuclear material safeguards system at the Portsmouth Gaseous Diffusion Plant is currently being improved. A new material control system will provide computerized monitoring and accountability, and a new physical protection system will provide upgraded perimeter and portal entry monitoring. The control system incorporates remote computer terminals at all processing, transfer, and storage areas throughout the plant. Terminal equipment is interfaced to a computer through teletype equipment. A typical terminal transaction would require verification that the particular activity (material movement or process operation) is authorized, identifying the container involved, weighing the container, and then verifying the enrichment with non-destructive assay instrumentation. The system, when fully operational, will provide near real-time accountability for each eight-hour work shift for all items in process

  18. Safeguarding the fuel cycle: Methodologies

    International Nuclear Information System (INIS)

    Gruemm, H.

    1984-01-01

    The effectiveness of IAEA safeguards is characterized by the extent to which they achieve their basic purpose - credible verification that no nuclear material is diverted from peaceful uses. This effectiveness depends inter alia but significantly on manpower in terms of the number and qualifications of inspectors. Staff increases will be required to improve effectiveness further, if this is requested by Member States, as well as to take into account new facilities expected to come under safeguards in the future. However, they are difficult to achieve due to financial constraints set by the IAEA budget. As a consequence, much has been done and is being undertaken to improve utilization of available manpower, including standardization of inspection procedures; improvement of management practices and training; rationalization of planning, reporting, and evaluation of inspection activities; and development of new equipment. This article focuses on certain aspects of the verification methodology presently used and asks: are any modifications of this methodology conceivable that would lead to economies of manpower, without loss of effectiveness. It has been stated in this context that present safeguards approaches are ''facility-oriented'' and that the adoption of a ''fuel cycle-oriented approach'' might bring about the desired savings. Many studies have been devoted to this very interesting suggestion. Up to this moment, no definite answer is available and further studies will be necessary to come to a conclusion. In what follows, the essentials of the problem are explained and some possible paths to a solution are discussed

  19. Specification and acceptance testing of nuclear medicine equipment

    International Nuclear Information System (INIS)

    Wegst, A.V.; Erickson, J.J.

    1984-01-01

    The purchase of nuclear medicine equipment is of prime importance in the operation of a clinical service. Failure to properly evaluate the potential uses of the instrumentation and the various operational characteristics of the equipment can often result in the purchase of inappropriate or inferior instruments. The magnitude of the purchase in terms of time and financial investments make it imperative that the purchase be approached in a systematic manner. Consideration of both the intended clinical functions and personnel requirements is important. It is necessary also to evaluate the ability of the equipment vendor to support the instrumentation after the purchase has been completed and the equipment installed in the clinical site. The desired specifications of the instrument characteristics should be stated in terms that can be verified by acceptance testing. The complexity of modern instrumentation and the sensitivity of it to the environment require the buyer to take into account the potential problems of controlling the temperature, humidity, and electrical power of the installation site. If properly and systematically approached, the purchase of new nuclear medicine instrumentation can result in the acquisition of a powerful diagnostic tool which will have a useful lifetime of many years. If not so approached, it may result in the expenditure of a large amount of money and personnel time without the concomitant return in useful clinical service. (author)

  20. Safeguards planning in a plant design process

    International Nuclear Information System (INIS)

    Heinrich, L.A.

    1977-01-01

    The safeguards efforts for the partitioning fuel cycle are considered. Included in the discussion are the organization of the safeguards study, the development of safeguards criteria, the expression of these criteria as requirements for facility design, and some preliminary details of the implementation of these requirements in facility and process layout

  1. Life sciences payload definition and integration study, task C and D. Volume 4: Preliminary equipment item specification catalog

    Science.gov (United States)

    1973-01-01

    A specification catalog to define the equipment to be used for conducting life sciences experiments in a space laboratory is presented. The specification sheets list the purpose of the equipment item, and any specific technical requirements which can be identified. The status of similar hardware for ground use is stated with comments regarding modifications required to achieve spaceflight qualified hardware. Pertinent sketches, commercial catalog sheets, or drawings of the applicable equipment are included.

  2. 47 CFR 64.2009 - Safeguards required for use of customer proprietary network information.

    Science.gov (United States)

    2010-10-01

    ... other manner, of their own and their affiliates' sales and marketing campaigns that use their customers... outbound marketing request for customer approval. (e) A telecommunications carrier must have an officer, as... 47 Telecommunication 3 2010-10-01 2010-10-01 false Safeguards required for use of customer...

  3. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  4. Development of safeguards approach for the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Johnson, S.J.; Abedin-Zadeh, R.; Pearsall, C.; Chesnay, B.; Creusot, C.; Ehinger, M.; Kuhn, E.; Robson, N.; Higuchi, H.; Takeda, S.; Fujimaki, K.; Ai, H.; Uehara, S.; Amano, H.; Hoshi, K.

    2001-01-01

    Full text: The Rokkasho Reprocessing Plant (RRP), which is currently undergoing construction and commissioning by the Japan Nuclear Fuels Limited (JNFL), is scheduled to begin active operations in 2005. The planned operating capacity is 800 tonnes of spent fuel per year containing approximately 8 tonnes of plutonium. The International Atomic Energy Agency (IAEA) and the Japan safeguards authorities are working with JNFL to develop a Safeguards Approach that is both effective and efficient. In order to accomplish this goal, a number of advanced concepts are being introduced and many currently applied safeguards measures are being enhanced. These new and improved techniques and procedures will provide for more sensitive and reliable verification of nuclear material and facility operations while reducing the required inspection effort. The Safeguards Approach incorporates systematic Design Information Examination and Verification (DIE/DIV) during all phases of construction, commissioning and operation. It incorporates installed, unattended radiation and solution measurement and monitoring systems along with a number of inspector attended measurement systems. While many of the measurement systems will be independent-inspector controlled, others will require authentication of a split signal from operator controlled systems. The independent and/or authenticated data from these systems will be transmitted over a network to a central inspector center for evaluation. Near-Real-Time-Accountancy (NRTA) will be used for short period sequential analysis of the operator and inspector data which, when combined with Solution Monitoring data, will provide higher assurance in the verification of nuclear material for timeliness and of the operational status of the facility. Samples will be taken using a facility installed, but IAEA authenticated, automatic sampling system and will then be transferred to a jointly used IAEA-JSGO On-Site Laboratory (OSL). This paper provides an

  5. Non-proliferation of nuclear weapons and nuclear security. Overview of safeguards requirements for States with limited nuclear material and activities

    International Nuclear Information System (INIS)

    Lodding, J.; Ribeiro, B.

    2006-06-01

    This booklet provides an overview of safeguards obligations that apply to States which are parties to the Nuclear Non-Proliferation Treaty (NPT) that have no nuclear facilities and only limited quantities of nuclear material. Most State parties to the NPT have no nuclear facilities and only limited quantities of nuclear material. For such States, safeguards implementation is expected to be simple and straightforward. This booklet provides an overview of the safeguards obligations that apply to such States. It is hoped that a better understanding of these requirements will facilitate the conclusion and implementation of safeguards agreements and additional protocols, and thereby contribute to the strengthening of the IAEA?s safeguards system and of collective security

  6. Non-proliferation of nuclear weapons and nuclear security. Overview of Safeguards requirements for States with limited nuclear material and activities

    International Nuclear Information System (INIS)

    Lodding, J.; Ribeiro, B.

    2006-06-01

    This booklet provides an overview of safeguards obligations that apply to States which are parties to the Nuclear Non-Proliferation Treaty (NPT) that have no nuclear facilities and only limited quantities of nuclear material. Most State parties to the NPT have no nuclear facilities and only limited quantities of nuclear material. For such States, safeguards implementation is expected to be simple and straightforward. This booklet provides an overview of the safeguards obligations that apply to such States. It is hoped that a better understanding of these requirements will facilitate the conclusion and implementation of safeguards agreements and additional protocols, and thereby contribute to the strengthening of the IAEA?s safeguards system and of collective security

  7. Safeguards and security by design (SSBD) for the domestic threat. Theft and sabotage

    International Nuclear Information System (INIS)

    DeMuth, Scott; Mullen, Mark; Pan, Paul

    2011-01-01

    In recent years, the Safeguards by Design (SBD) concept has received significant interest with respect to international (IAEA) safeguards objectives. However, less attention has been focused on the equally important topic of domestic (or national) Safeguards and Security by Design (SSBD), which addresses domestic requirements for material control and accounting (MC and A) and for physical protection, such as those of the Nuclear Regulatory Commission (NRC) in the United States. While international safeguards are concerned with detecting State diversion of nuclear material from peaceful uses to nuclear explosives purposes, domestic material control and accounting (MC and A) and physical protection are focused on non-State theft and sabotage. The International Atomic Energy Agency (IAEA) has described the Safeguards by Design (SBD) concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' This same concept is equally applicable to SSBD for domestic requirements. The United States Department of Energy (DOE) has initiated a project through its Office of Nuclear Energy (NE), and more specifically its Materials Protection, Accounting, and Control Technologies (MPACT) program, to develop a domestic SSBD discipline and methodology in parallel with similar efforts for international safeguards sponsored by the DOE Next Generation Safeguards Initiative (NGSI) and the IAEA. This paper identifies the key domestic safeguards and security requirements (i.e., MC and A and physical protection) and explains how and why Safeguards and Security by Design (SSBD) is important and beneficial for the design of future US nuclear energy systems. (author)

  8. Safeguards and security by design (SSBD) for the domestic threat - theft and sabotage

    International Nuclear Information System (INIS)

    Demuth, Scott F.; Mullen, Mark

    2011-01-01

    Safeguards by Design (SBD) is receiving significant interest with respect to international safeguards objectives. However, less attention has been focused on the equally important topic of domestic Safeguards and Security by Design (SSBD), which addresses requirements such as those of the Nuclear Regulatory Commission (NRC) in the United States. While international safeguards are concerned with detecting State diversion of nuclear material from peaceful to nuclear explosives purposes, domestic Material Protection, Control and Accounting measures (MPC and A) are focused on non-State theft and sabotage. The International Atomic Energy Agency (IAEA) has described the Safeguards by Design (SBD) concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' This same concept is equally applicable to SSBD for domestic requirements. The United States Department of Energy (DOE) has initiated a project through its Office of Nuclear Energy (NE) and more specifically its Fuel Cycle Research and Development (FCRD) program, to develop a domestic SSBD discipline and methodology in parallel with similar efforts sponsored by the DOE Next Generation Safeguards Initiative (NGSI) and the IAEA for international safeguards. This activity includes the participation of industry (through DOE-sponsored contracts) and DOE National Laboratories. This paper will identify the key domestic safeguards and security requirements (i.e. MC and A and physical protection) and explain how and why Safeguards and Security by Design (SSBD) is important and beneficial for the design of future US nuclear energy systems.

  9. Protecting safeguards information / Division of technical support

    International Nuclear Information System (INIS)

    2002-01-01

    This DVD contains two films representing the key aspects of the IAEA Department of Safeguards. 'Protecting Safeguards Information' is a narrative/fiction film which presents the Agency's information handling and protection measures. A security representative from a fictional nation receives a briefing on the procedures and methods used by the Department. These techniques will assure member states that the information they provide to the Agency is kept safe and confidential. 'Division of Technical Support' is a non-fiction documentary which presents a detailed look at the technical capabilities and management techniques used by the Agency in nuclear material accountancy. The film covers many aspects of safeguards equipment and techniques including: NDA and DA instruments, seals, surveillance, training, development and maintenance. Taken together, these films provide an introduction and overview to many important aspects of the IAEA Department of Safeguards. (IAEA)

  10. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-01-01

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency's (IAEA's) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL's International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  11. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  12. The status of safeguarding 600 MW(e) CANDU reactors

    International Nuclear Information System (INIS)

    Von Baeckmann, A.; Rundquist, D.E.; Pushkarjov, V.; Smith, R.M.; Zarecki, C.W.

    1982-09-01

    There has been extensive work in the development of CANDU safeguards since the last International Conference on Nuclear Power, and this has resulted in the development of improved equipment for the safeguards system now being installed in the 600 MW(e) CANDU generating stations. The overall system is designed to improve on the existing IAEA safeguards and to provide adequate coverage for each plausible nuclear material diversion route. There is sufficient sensitivity and redundancy to enable the timely detection of the possible diversion of significant quantities of nuclear material

  13. Safeguards agreements - their legal and conceptual basis

    International Nuclear Information System (INIS)

    Sanders, B.; Rainer, R.

    1977-01-01

    The application of Agency safeguards requires treaty arrangements (''Safeguards Agreements'') between the State or States concerned and the Agency. The authority for the Agency to conclude such agreements and to implement them is provided for in the Agency's Statute (Articles II, III A.5 and XII). On the basis of the statutory provisions safeguards principles and procedures have been elaborated. These have been laid down in: (a) The Agency's Safeguards System 1965, extended in 1966 and 1968 (INFCIRC/66/Rev.2); and (b) The basis for negotiating safeguards agreements with NNWS pursuant to NPT (INFCIRC/153). The verification of the undertaking by the State concerned not to use items subject to safeguards for purposes contrary to the terms of the agreement is verified through the application of various safeguards measures (design review, records, reports and inspection). Containment and surveillance measures are expected to play an increasingly important role. NPT Safeguards Agreements foresee as one of their specific features the establishment of national systems of accounting and control of nuclear material. The majority of the agreements concluded under document INFCIRC/66/Rev.2 - i.e. the non-NPT safeguards agreements - implement obligations undertaken under co-operation agreements between States for peaceful uses of nuclear energy. These agreements naturally reflect approaches adopted by the parties, in particular as to the circumstances under which safeguards should be applied. Thus, the concepts used in the non-NPT safeguards agreements and the safeguards system of document INFCIRC/66/Rev.2 which is incorporated in these agreements by reference are in continuous evolution. Document INFCIRC/66/Rev.2 continues to be supplemented in practical application and through explicit decision by the Board. The non-NPT safeguards agreements contain, besides technical safeguards provisions from document INFCIRC/66/Rev.2, and further provision for notification, inventories

  14. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1984-01-01

    The general structure of the safeguards system, the SSAC interfaces, and physical protection principles, equipment, and techniques are reviewed. In addition, the interactions between the State, the facility operator, and the IAEA are described

  15. Integrated safeguards and facility design and operations

    International Nuclear Information System (INIS)

    Tape, J.W.; Coulter, C.A.; Markin, J.T.; Thomas, K.E.

    1987-01-01

    The integration of safeguards functions to deter or detect unauthorized actions by an insider requires the careful communication and management of safeguards-relevant information on a timely basis. The traditional separation of safeguards functions into physical protection, materials control, and materials accounting often inhibits important information flows. Redefining the major safeguards functions as authorization, enforcement, and verification, and careful attention to management of information from acquisition to organization, to analysis, to decision making can result in effective safeguards integration. The careful inclusion of these ideas in facility designs and operations will lead to cost-effective safeguards systems. The safeguards authorization function defines, for example, personnel access requirements, processing activities, and materials movements/locations that are permitted to accomplish the mission of the facility. Minimizing the number of authorized personnel, limiting the processing flexibility, and maintaining up-to-date flow sheets will facilitate the detection of unauthorized activities. Enforcement of the authorized activities can be achieved in part through the use of barriers, access control systems, process sensors, and health and safety information. Consideration of safeguards requirements during facility design can improve the enforcement function. Verification includes the familiar materials accounting activities as well as auditing and testing of the other functions

  16. Structure and drafting of safeguards regulatory documents

    International Nuclear Information System (INIS)

    Cole, R.J.; Bennett, C.A.; Edelhertz, H.; Wood, M.T.; Brown, R.J.; Roberts, F.P.

    1977-09-01

    This study develops hypothesis about the relation between the structure and drafting of safeguards regulatory documents and the ability of document users to understand and implement them in a way that reflects the intent and requirements of the NRC. Four decisions are needed to improve communication: (1) Should improvement of safeguards regulatory documents as communication instruments be an explicit NRC program. (2) What specific methods of communication should be the focus of improvement efforts. (3) What actions to improve communications are feasible and desirable. (4) How should the NRC divide its available effort and resources among desirable actions in order to provide the most effective communication through regulatory documents. This volume contains: introduction, conceptual bases, legal requirements, targets, choice of documents, preparation of documents, readability, and further study of recommended changes in structure and drafting

  17. IAEA safeguards for the Fissile Materials Disposition Project

    International Nuclear Information System (INIS)

    Close, D.A.

    1995-06-01

    This document is an overview of International Atomic Energy Agency (IAEA) safeguards and the basic requirements or elements of an IAEA safeguards regime. The primary objective of IAEA safeguards is the timely detection of the diversion of a significant quantity of material and the timely detection of undeclared activities. The two important components of IAEA safeguards to accomplish their primary objective are nuclear material accountancy and containment and surveillance. This overview provides guidance to the Fissile Materials Disposition Project for IAEA inspection requirements. IAEA requirements, DOE Orders, and Nuclear Regulatory Commission regulations will be used as the basis for designing a safeguards and security system for the facilities recommended by the Fissile Materials Disposition Project

  18. Implementation of the CNEN's safeguards laboratory

    International Nuclear Information System (INIS)

    Almeida, S.G. de

    1986-01-01

    The International Safeguards Agreements between Brazil and others countries has been concluded with the participation of the International Atomic Energy Agency (AIEA), and involve the Physical Protection and Control of Nuclear Material activities, which set up the National Safeguards System. The Safeguards Laboratory was constructed to the implementation and maintenance of this National Safeguards System, under responsability of CNEN's Safeguards Division, in order to carry out measurements of nuclear materials under safeguards. Technical requirements applied to the construction, setting up and operation of the laboratory are showed. The first results refer to the implementation of safeguards methods and techniques, as well as its participation within international scientific and technical co-operation programs in the safeguards area, through of them we wait its credencement by the AIEA as Regional Safeguards Laboratory for every countries of the Latin America. (Author) [pt

  19. Implementation of 'Davies and Gray/NBL Method' for potentiometric titration of uranium in the Safeguards Laboratory of CNEN by the use of a DL-67 mettler titrator

    International Nuclear Information System (INIS)

    Araujo, Radier Mario Silveira de; Barros, Pedro Dionisio de

    2005-01-01

    To meet the requirements of the Brazilian State System of Accounting for and Control of Nuclear Materials - SSAC, the Safeguards Laboratory of CNEN - LASAL has been applying the 'Davies and Gray/NBL' method for potentiometric determination of total uranium concentration in uranium samples taken during safeguards inspections at nuclear facilities since 1984, using a Radiometer ETS 822 titrator. In order to improve the analytical capability and the procedures related to the titration methodology, the same method was also implemented by using a METTLER DL - 67 titrator. This equipment is microprocessor - controlled and can be connected to additional devices such as printers, analytical balances, etc. It also provides accurate and reproducible results for end-point titrations, providing analytical performance according to the current international safeguards requirements. The implementation of the method in such equipment included the addition of analytical data as well as the improvement of the equipment parameters for uranium determination. Parameters like predispensing volume; titrant data and end-point value were studied. Some uranium samples (solids and solutions) were used during the initial tests with the titrator. A solution of pure uranyl nitrate was used as reference sample for this paper. From this, aliquots were analyzed in both Radiometer ETS-822 and METTLER DL-67. Results obtained from each equipment were compared with the reference value of the sample. The comparison showed that results from METTLER DL-67 meets the precision and accuracy requirements for this kind of analysis and led to the conclusion that the performance of this titrator is adequate for the determination of total uranium content in samples of nuclear materials for safeguards purposes. (author)

  20. Safeguard Verification as Cooperative Measure for Non Proliferation Control in Peru

    International Nuclear Information System (INIS)

    Ramirez, R.

    2010-01-01

    Peru applies the safeguard measures on its nuclear activities based in the International Atomic Energy Agency (IAEA) Safeguard Agreement and the Additional Protocol which has been fully implemented becoming part of the Integrated Safeguard since 2005. In addition to international safeguard commitments Peru is also committed with the United Nations 1540 Resolution by which national controls has to be established for preventing the proliferation of mass destruction weapons and their vector systems. The safeguards measures have become an important part of the verification activities related to this Resolution by analyzing of materials and equipment to be imported or that may be in transit across the country. These activities are part of those developed jointly with other governmental organizations. (author)

  1. Nuclear safeguards

    International Nuclear Information System (INIS)

    Estrampres, J.

    2010-01-01

    Close cooperation with the Ministry of Industry with representation from the UNESA Safeguards Group, has meant that, after almost two years of intense meetings and negotiations, Spain has a specific plant to plant agreement for the application of Safeguards under this new method. This is an agreement which aims to be a benchmark for all other EU countries, as the IAEA tends to apply a generic agreement that, in many cases, majority interferes in the nuclear power plants own processes. (Author).

  2. An integrated approach to validation of safeguards and security program performance

    International Nuclear Information System (INIS)

    Altman, W.D.; Hunt, J.S.; Hockert, J.W.

    1988-01-01

    Department of Energy (DOE) requirements for safeguards and security programs are becoming increasingly performance oriented. Master Safeguards and Security Agreemtns specify performance levels for systems protecting DOE security interests. In order to measure and validate security system performance, Lawrence Livermore National Laboratory (LLNL) has developed cost effective validation tools and a comprehensive validation approach that synthesizes information gained from different activities such as force on force exercises, limited scope performance tests, equipment testing, vulnerability analyses, and computer modeling; into an overall assessment of the performance of the protection system. The analytic approach employs logic diagrams adapted from the fault and event trees used in probabilistic risk assessment. The synthesis of the results from the various validation activities is accomplished using a method developed by LLNL, based upon Bayes' theorem

  3. Standard on fire protection for self-propelled and mobile surface mining equipment. 2001 ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Safeguard life and property against fire and related hazards in mines with the latest requirements in NFPA 121. This 2001 edition covers fire detection, suppression, ignition sources, fire risk assessment and maintenance of mining equipment systems. 4 apps.

  4. Tracking and position recognition applied to remote monitoring to be used in integrated safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, Anibal D; Perez, Adrian C; Krimer, Mario J; Teira, Ruben O; Vigile, Rodolfo S; Valentino, Lucia I; Giordano, Luis A; Ferro, Juan M [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2001-07-01

    In the framework of the Strengthening and integrated Safeguards Systems new measures and tools are available to meet the safeguards objective. The credible assurance on the absence of undeclared nuclear material and activities derived from the implementation of the Additional Protocol has an impact on the current safeguards approach to declared facilities thus their through review is advisable. Among these tools, a more intensive use of unattended systems and remote transmission of safeguards relevant information are considered, specifically for On Load Reactors (ORLs). A Remote Monitoring Systems (RMS) to cover the transfers of spent fuels from the ponds to a dry storage is being tested at Embalse nuclear power plant. In connection with the RMS, this paper describes some of the technologies involved: the Global Position System (GPS) and the Radio Frequency IDentification (RFID), which were implemented due to the requirement to ascertain the position of valuable elements. The main objective of this design aimed at safeguarding the spent fuels transfers from the welding cell to the silos field by a strict surveillance of the whereabouts. The bases for the development were settled by the specifications imposed by the integrated Safeguards of the Nuclear Regulatory Authority in Argentina. The resultant tracking and position recognition system is based on GPS receivers operating in Differential Mode, with the aid of Radio Frequency Identification. In compliance with the safeguard requirement the whole system is able to operate in a continuous and remote mode, what means without human being attention. (author)

  5. The Concept of Goals-Driven Safeguards

    International Nuclear Information System (INIS)

    Wigeland, R.; Bjornard, T.; Castle, B.

    2009-01-01

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization's purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations' approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  6. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with

  7. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  8. A Critical Element to Successful Implementation Of Future Safeguards Systems

    International Nuclear Information System (INIS)

    Dickman, Deborah A.

    2003-01-01

    As we look to the future of nuclear materials management and safeguards systems, it is essential to place significant emphasis on creation of a strong infrastructure to support and sustain modern systems. Traditionally, safeguards infrastructure development has focused on such elements as equipment development, strengthening of the national regulatory base, creation of state-of-the-art accounting and control systems, and procedure development. Less emphasis has been placed on recognition of the 'human element' as a primary component of the necessary infrastructure and the key to successful implementation of new or existing systems. The importance of the human element can be recognized by considering the broad span of influence and control, direction, regulation and implementation of safeguards systems exhibited by a large number of professionals: diplomats, scholars, politicians, facility managers, program directors and technical specialists. These individuals provide the connectivity or 'glue' that binds together a myriad of smaller safeguards program elements and ensures a holistic approach is fostered and maintained. The education and training of our future leaders and experts must receive the highest priority. In addition, this effort must consider factors beyond development of technical capabilities. Given the rapidly evolving world climate since the end of the cold war, our safeguards leaders and experts need education and training that will provide a well-developed understanding of the broader political dimensions of current nonproliferation challenges. They need to learn how to think, rather than what to think. A sustained effort is required to highlight the importance of the human dimension of safeguards and nuclear materials management and how these systems support international nonproliferation efforts. New educational initiatives are needed to better prepare the next generation of leaders and experts. Increased regional and national cooperation in the

  9. Strengthened safeguards: Present and future challenges

    International Nuclear Information System (INIS)

    Goldschmidt, Pierre

    2001-01-01

    Full text: The safeguards system is experiencing what has been seen as a revolution and, in doing so, it is confronting a series of challenges. These can be grouped into three areas. Drawing and maintaining safeguards conclusions - The process by which the safeguards conclusions are derived is based upon the analysis, evaluation and review of all the information available to the Agency. This process is on- going, but the State Evaluation Reports are compiled and reviewed periodically. For States with an additional protocol in force, the absence of indicators of the presence of undeclared nuclear material or activities provides the basis for the safeguards conclusion. Future challenges center on States' expectations of, and reactions to, the results of the evaluation and review process. Designing and implementing integrated safeguards - The conceptual framework of integrated safeguards is being actively pursued. Basic principles have been defined and integrated safeguards approaches have been developed for various types of facilities. Work is also progressing on the design of integrated safeguards approaches for specific States. Complementary access is being successfully implemented, and procedures for the use of unannounced inspections are being developed with the prospect of cost- effectiveness gains. Costs neutrality vs. quality and credibility - The Department faces serious staff and financial challenges. It has succeeded so far in 'doing more' and 'doing better' within a zero-real growth budget, but the scope for further significant efficiency gains is exhausted. There is no capacity to absorb new or unexpected tasks. Difficulties in recruiting and retaining qualified and experienced staff exacerbate the problems and add to costs. The Director General of the IAEA has referred to the need for new initiatives to bridge the budgetary gap; a possible measure is proposed. The tasks of meeting the challenges and demands of strengthened safeguards have been added to

  10. The urgent requirement for new radioanalytical certified reference materials for nuclear safeguards, forensics, and consequence management

    International Nuclear Information System (INIS)

    Inn, K.G.W.; Martin Johnson, Jr.C.; Warren Oldham; Lav Tandon; Simon Jerome; Thomas Schaaff; Robert Jones; Daniel Mackney; Pam MacKill; Brett Palmer

    2013-01-01

    A multi-agency workshop was held from 25 to 27 August 2009, at the National Institute of Standards and Technology (NIST), to identify and prioritize the development of radioanalytical Certified Reference Materials (CRMs, generally provided by National Metrology Institutes; Standard Reference Materials, a CRM issued by NIST) for field and laboratory nuclear measurement methods to be used to assess the consequences of a domestic or international nuclear event. Without these CRMs, policy makers concerned with detecting proliferation and trafficking of nuclear materials, attribution and retribution following a nuclear event, and public health consequences of a nuclear event would have difficulty making decisions based on analytical data that would stand up to scientific, public, and judicial scrutiny. The workshop concentrated on three areas: post-incident Improvised Nuclear Device (IND) nuclear forensics, safeguard materials characterization, and consequence management for an IND or a Radiological Dispersion Device detonation scenario. The workshop identified specific CRM requirements to fulfill the needs for these three measurement communities. Of highest priority are: (1) isotope dilution mass spectrometry standards, specifically 233 U, 236 gNp, 244 Pu, and 243 Am, used for quantitative analysis of the respective elements that are in critically short supply and in urgent need of replenishment and certification; (2) CRMs that are urgently needed for post-detonation debris analysis of actinides and fission fragments, and (3) CRMs used for destructive and nondestructive analyses for safeguards measurements, and radioisotopes of interest in environmental matrices. (author)

  11. Technical specifications requirements: Automated reasoning applications

    International Nuclear Information System (INIS)

    Lidsky, L.M.; Dobrzeniecki, A.B.

    1990-03-01

    Several software systems were developed and tested to determine what advantages could be gained from explicitly translating complicated regulatory requirements into computerized relationships. The Technical Specifications for US nuclear power plants were chosen as the test-bed application domain, and two analysis systems were developed to monitor plant compliance with operational limits, and track and schedule equipment test and maintenance activities mandated by Technical Specifications. Choosing PROLOG as the computer language to represent these regulatory requirements resulted in a natural match between the semantic structure of the written specifications and the corollary coded rules. Additional research results affirmed the utility of declarative programming styles, explicit management of problem complexity, and attention to the robustness and flexibility of the overall software systems. 5 refs., 2 figs

  12. Safeguards and security aspects of a potential Canadian used-fuel disposal facility

    International Nuclear Information System (INIS)

    Smith, R.M.; Wuschke, D.; Baumgartner, P.

    1994-09-01

    Large quantities of highly radioactive used fuel have been produced by Canadian nuclear generating stations. Conceptual design and development is under way to assess a means of disposing of this used fuel within a vault located 500 to 1000 m deep in plutonic rock in the Canadian Shield. In parallel with this work, the safeguards and physical security measures that will be required for this used fuel during transportation, packaging, and containment in a disposal vault are being studied in Canada, in several other countries that have similar requirements and by the International Atomic Energy Agency. Canadian commitments and regulations applicable to used-fuel transportation and disposal are described. The experience gained from applying safeguards and physical security measures at similar facilities is considered together with the availability of equipment that might be used in applying these measures. Possible safeguards and physical security measures are outlined and considered. These measures are based on the conceptual design studies for a reference Used-Fuel Disposal Centre and associated transportation systems undertaken by Atomic Energy of Canada Limited and Ontario Hydro. These studies show that effective and practical safeguards, which meet present IAEA objectives, can be applied to the used fuel in transportation and at a disposal facility. They also show that physical security measures can be employed that have a high probability of preventing theft or sabotage. 27 refs., 8 figs., 3 tabs., glossary, 2 appendices

  13. Safeguards and security aspects of a potential Canadian used-fuel disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R M; Wuschke, D; Baumgartner, P

    1994-09-01

    Large quantities of highly radioactive used fuel have been produced by Canadian nuclear generating stations. Conceptual design and development is under way to assess a means of disposing of this used fuel within a vault located 500 to 1000 m deep in plutonic rock in the Canadian Shield. In parallel with this work, the safeguards and physical security measures that will be required for this used fuel during transportation, packaging, and containment in a disposal vault are being studied in Canada, in several other countries that have similar requirements and by the International Atomic Energy Agency. Canadian commitments and regulations applicable to used-fuel transportation and disposal are described. The experience gained from applying safeguards and physical security measures at similar facilities is considered together with the availability of equipment that might be used in applying these measures. Possible safeguards and physical security measures are outlined and considered. These measures are based on the conceptual design studies for a reference Used-Fuel Disposal Centre and associated transportation systems undertaken by Atomic Energy of Canada Limited and Ontario Hydro. These studies show that effective and practical safeguards, which meet present IAEA objectives, can be applied to the used fuel in transportation and at a disposal facility. They also show that physical security measures can be employed that have a high probability of preventing theft or sabotage. 27 refs., 8 figs., 3 tabs., glossary, 2 appendices.

  14. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  15. Licensee safeguards contingency plans

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Nuclear Regulatory Commission is amending its regulations to require that licensees authorized to operate a nuclear reactor (other than certain research and test reactors), and those authorized to possess strategic quantities of plutonium, uranium-233, or uranium-235 develop and implement acceptable plans for responding to threats, thefts, and industrial sabotage of licensed nuclear materials and facilities. The plans will provide a structured, orderly, and timely response to safeguards contingencies and will be an important segment of NRC's contingency planning programs. Licensee safeguards contingency plans will result in organizing licensee's safeguards resources in such a way that, in the unlikely event of a safeguards contingency, the responding participants will be identified, their several responsibilities specified, and their responses coordinated

  16. Report on the US Program of Technical Assistance to Safeguards of the International Atomic Energy Agency (POTAS)

    International Nuclear Information System (INIS)

    1981-01-01

    This document summarizes the work done under the US Program of Technical Assistance to IAEA Safeguards (POTAS), providing the US Government, IAEA, and others with a short review of the progress made in the program since its inception. Becaue of the size and complexity of the program, only major accomplishments are presented. These are grouped under the following categories: (1) equipment and standard which cover assay of irradiated and unirradiated nuclear materials, automatic data processing, and physical standards; (2) experts who are involved in technology transfer, training, system design, and safeguard information processing and analysis; (3) system studies which cover diversion hazard analysis, safeguards approaches and application, and inspection effort planning and forecasting; (4) techniques, procedures, and equipment evaluation; (5) training of IAEA inspectors and safeguards specialists from member states. The major achievement has been the provisions of safeguards equipment designed to be reliable, and tamper resistant, some of which have already been in use in the field by inspector or by IAEA staff members in Vienna. These are listed in a table

  17. Application of Safeguards-by-Design to a Reactor Design Process

    International Nuclear Information System (INIS)

    Whitlock, J.J.

    2010-01-01

    The application of 'Safeguards-by-Design' (SBD) to a reactor design process is described. The SBD concept seeks to improve the efficiency and effectiveness of IAEA safeguards by incorporating the needs of safeguards at an early stage of reactor design. Understanding and accommodating safeguards in the design process requires a set of 'design requirements for safeguards'; however, such requirements (a) do not traditionally exist, and (b) must exist alongside other more traditional design requirements based upon compliance and operational goals. In the absence of design requirements, a 'Design Guide' for safeguards was created, consisting of recommendations based on best practices. To acquire an understanding of safeguards requirements at the design level, a systematic accounting of diversion pathways was required. However, because of the crowded field of other design requirements, this process needed a methodology that was also flexible in interpretation. The GenIV Proliferation Resistance and Physical Protection (PR and PP) methodology (Rev.5, 2005) was chosen for this exercise. The PR and PP methodology is a general approach and therefore it was necessary to restrict its application; in effect, turning 'off' various options so as to simplify the process. The results of this exercise were used to stimulate discussions with the design team and initiate changes that accommodate safeguards without negatively impacting other design requirements. The process yielded insights into the effective application of SBD, and highlighted issues that must be resolved for effective incorporation of an 'SBD culture' within the design process. (author)

  18. International safeguards data management system

    International Nuclear Information System (INIS)

    Argentesi, F.; Costantini, L.; Franklin, M.; Dondi, M.G.

    1981-01-01

    The data base management system ''ISADAM'' (i.e. International Safeguards Data Management System) described in this report is intended to facilitate the safeguards authority in making efficient and effective use of accounting reports. ISADAM has been developed using the ADABAS data base management system and is implemented on the JRC-Ispra computer. The evaluation of safeguards declarations focuses on three main objectives: - the requirement of syntactical consistency with the legal conventions of data recording for safeguards accountancy; - the requirement of accounting evidence that there is no material unaccounted for (MUF); - the requirement of semantic consistency with the technological characteristics of the plant and the processing plans of the operator. Section 2 describes in more detail the facilities which ISADAM makes available to a safeguards inspector. Section 3 describes how the MUF variance computation is derived from models of measurement error propagation. Many features of the ISADAM system are automatically provided by ADABAS. The exceptions to this are the utility software designed to: - screen plant declarations before loading into the data base, - prepare variance summary files designed to support real-time computation of MUF and variance of MUF, - provide analyses in response to user requests in interactive or batch mode. Section 4 describes the structure and functions of this software which have been developed by JRC-Ispra

  19. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    professional societies who either are experts in international safeguards, or understand the challenges of recruiting for technical positions. The 44 participants represented eight national laboratories, four universities, three government organizations, two international organizations, two professional organizations, and three small companies. The goal of the ERIS workshop was to improve efforts to engage U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. At the workshop's conclusion, participants presented their findings to the NNSA Office of International Regimes and Agreements (NA-243). The report's major findings are summarized.

  20. Safeguards By Design - As applied to the Sellafield Product and Residue Store (SPRS)

    Energy Technology Data Exchange (ETDEWEB)

    Chare, Peter; Lahogue, Yves; Schwalbach, Peter; Smejkal, Andreas; Patel, Bharat [European Commission, Directorate-General for Energy, Directorate E - Nuclear Safeguards, Euroforum, Luxembourg (Luxembourg)

    2011-12-15

    Sellafield Product and Residue Store (SPRS) is a new facility that has been constructed on the site of Sellafield. The design work started in early 2001 and active commissioning commenced with the introduction of the first nuclear material which arrived in the building early 2011. The store has been designed for the long term storage of Plutonium product (PuO2) from Thorp and Magnox, MOX residue powder from Sellafield MOX Plant (SMP) as well as pellet, powder or granular PuO2 residues from the older stores on the Sellafield site. This paper describes the application of Safeguards By Design commencing at the early design stage based upon the Safeguards Approach to be applied by DG ENER at the Sellafield Product and Residue Store (SPRS). The approach had been developed based upon the requirements for implementing Commission Regulation 302(2005) and the technical measures to be implemented in order to meet Article 77(a) of the Euratom Treaty. In order to meet these requirements a close dialogue was established between the different interested parties and the design team for the installation of instrumentation with associated cabling in order to implement the agreed safeguards measures. Early contacts at the design stage facilitated the inclusion of installed safeguards supplied instrumentation into the overall design and facility construction. The equipment and cabling supplied by Euratom was incorporated into the planning and construction phases. This ensured that upon plant completion the safeguards tools were commissioned and ready for the verification of the first nuclear material to be introduced into SPRS. Detailed discussions at the early stages of the design phase raised the profile of nuclear material safeguards and made certain that the necessary instrumentation infrastructure was incorporated into the plant infrastructure.

  1. Safeguards by Design at the Encapsulation Plant in Finland

    International Nuclear Information System (INIS)

    Ingegneri, M.; Baird, K.; Park, W.-S.; Coyne, J.M.; Enkhjin, L.; Chew, L.S.; Plenteda, R.; Sprinkle, J.; Yudin, Y.; Ciuculescu, C.; Koutsoyannopoulos, C.; Murtezi, M.; Schwalbach, P.; Vaccaro, S.; Pekkarinen, J.; Thomas, M.; Zein, A.; Honkamaa, T.; Hamalainen, M.; Martikka, E.; Moring, M.; Okko, O.

    2015-01-01

    Finland has launched a spent fuel disposition project to encapsulate all of its spent fuel assemblies and confine the disposal canisters in a deep geological repository. The construction of the underground premises started several years ago with the drilling, blasting and reinforcement of tunnels and shafts to ensure the safe deep underground construction and disposal techniques in the repository, while the design of the encapsulation plant (EP) enters the licencing phase preliminary to its construction. The spent fuel assemblies, which have been safeguarded for decades at the nuclear power plants, are going to be transported to the EP, loaded into copper canisters and stored in underground tunnels where they become inaccessible after backfilling. Safeguards measures are needed to ensure that final spent fuel verification is performed before its encapsulation and that no nuclear material is diverted during the process. This is an opportunity for the inspectorates to have the infrastructure necessary for the safeguards equipment incorporated in the design of the encapsulation plant before licencing for construction occurs. The peculiarity of this project is that it is going to run for more than a century. Therefore, significant changes are to be expected in the technical capabilities available for implementing safeguards (e.g., verification techniques and instruments), as well as in the process itself, e.g., redesign for the encapsulation of future fuel types. For these reasons a high degree of flexibility is required in order to be able to shift to different solutions at a later stage while minimizing the interference with the licencing process and facility operations. This paper describes the process leading to the definition of the technical requirements by IAEA and Euratom to be incorporated in the facility's design. (author)

  2. Safeguards as an evolutionary system

    International Nuclear Information System (INIS)

    Carlson, J.

    1998-01-01

    NPT safeguards pursuant to INFCIRC/153 retain a strong emphasis on materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognized as a major shortcoming in the safeguards system. Since the 'classical' safeguards system is unable to provide credible assurance of the absence of clandestine nuclear activities, substantial efforts are being made to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the Agency's authority, and good progress has been made in developing the new approaches, technologies and techniques required to ensure this authority is used effectively. Increasingly, safeguards will involve more qualitative judgements. Transparency will be very important - without a clear understanding by Member States of how the Agency goes about its new tasks and reaches its conclusions about the absence of undeclared activities, the safeguards system will not fulfil its vital confidence-building role. A major theme in current safeguards thinking is integration, the rationalization of classical safeguards with the new safeguards strengthening measures. As part of the rationalization process, it is timely to re-assess traditional safeguards implementation practices. One of these is uniformity in the way safeguards activities are implemented in different States. Another is whether the traditional concept of safeguards confidentiality is consistent with the increasing importance of transparency. (author)

  3. Some developments in safeguards techniques

    International Nuclear Information System (INIS)

    Beets, C.

    1977-01-01

    The fundamental principles of safeguards and the research and development of safeguards techniques are described. Safeguard accountancy based upon the partition of the fuel cycle into suitable material balance areas will be further improved. Implementation of international safeguards in the European fuel fabrication and reprocessing facilities is described. The effectiveness of a material accounting system depends on the quality of the quantitative data. The allocation of the tasks in the framework of an integrated safeguards is concerned with R and D work only and has no bearing on the allocation of the implementation costs. Bulk measurements, sampling and destructive or non-destructive analysis of samples are described for the determination of batch data. Testing of the safeguards techniques as a keystone in relation to plant instrumentation programmes are still being developed throughout the world. In addition to accountancy and control, it also includes an effective physical security program. The system of international safeguards that prevailed in the sixties has been re-modelled to comply with the new requirements of the Non-Proliferation Treaty and with the growth of nuclear energy

  4. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1978-11-01

    The present IAEA approach to safeguarding various types of nuclear facilities is examined. The IAEA safeguards objectives, criteria and specific techniques are addressed, with reference e.g. to concepts like timely detection, quantities of safeguards significance, and conversion times. Material accountancy and containment and surveillance as basic features of IAEA safeguards verification are discussed. Safeguards measures for specific facility types are considered and corresponding levels of IAEA safeguards experience are assessed. Outlines of expected IAEA safeguard approaches to large bulk handling facilities are discussed. The evolutionary nature of safeguards based on experience and research and development is mentioned

  5. Use of fuel reprocessing plant instrumentation for international safeguards

    International Nuclear Information System (INIS)

    Ayers, A.L.

    1977-01-01

    The International Atomic Energy Agency has a program for developing instrumentation to be used by safeguards inspectors at reprocessing facilities. These instruments have generally been individual pieces of equipment for improving the accuracy of existing measurement instrumentation or equipment to perform nondestructive assay on a selected basis. It is proposed that greater use be made of redundant plant instrumentation and data recovery systems that could augment plant instrumentation to verify the validity of plant measurements. Use of these methods for verfication must be proven as part of an operating plant before they can be relied upon for safeguards surveillance. Inspectors must be qualified in plant operations, or have ready access to those so qualified, if the integrity of the operation is to be properly assessed. There is an immediate need for the development and in-plant proof testing of an integrated gamma, passive neutron, and active neutron measurement system for drum quantities of radioactive trash. The primary safeguards effort should be limited to plutonium and highly enriched uranium

  6. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  7. Safeguards Envelope Progress FY08

    International Nuclear Information System (INIS)

    Bean, Robert; Metcalf, Richard; Bevill, Aaron

    2008-01-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant's large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis

  8. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  9. 10 CFR 72.184 - Safeguards contingency plan.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safeguards contingency plan. 72.184 Section 72.184 Energy... Protection § 72.184 Safeguards contingency plan. (a) The requirements of the licensee's safeguards contingency plan for responding to threats and radiological sabotage must be as defined in appendix C to part...

  10. Application of safeguards procedures

    International Nuclear Information System (INIS)

    1977-01-01

    The earliest applications of safeguards procedures took place in a political and technical climate far different from that of today. In the early 1960's there was a fear of the proliferation possibilities which could arise as more and more countries acquired nuclear power plants. Today nuclear power is being produced in some 20 countries without resulting in nuclear weapons proliferation. The export of equipment and technology for the nuclear fuel cycle, however, has become the subject of current concern. In view of these developments, it is not surprising that techniques in the application of safeguards have also changed. In order to appreciate the nature of these changes, it is important to be aware of the original general attitude towards the technical problems of safeguards applications. Originally, the common attitude was that the objectives of safeguards were self-evident and the methods, while in need of development, were known at least in outline. Today, it has become evident that before a safeguards procedure can be applied, the objectives must first be carefully defined, and the criteria against which success in meeting those objectives can be measured must also be developed. In line with this change, a significant part of the effort of the safeguards inspectorate is concerned with work preliminary and subsequent to the actual inspection work in the field. Over the last two years, for example, a considerable part of the work of experienced safeguards staff has been spent in analysing the possibilities of diverting material at each facility to be safeguarded. These analyses are carried out in depth by a 'facility officer' and are subjected to constructive criticism by teams composed of staff responsible for similar types of facilities as well as other technical experts. The analyses consider the measures currently considered practicable, to meet the diversion possibilities and where necessary list the development work needed to overcome any present

  11. 40 CFR 86.206-11 - Equipment required; overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Equipment required; overview. 86.206-11 Section 86.206-11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.206-11 Equipment required...

  12. 40 CFR 86.206-94 - Equipment required; overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Equipment required; overview. 86.206-94 Section 86.206-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.206-94 Equipment required...

  13. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    International Nuclear Information System (INIS)

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  14. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security.

  15. Work Group 1: Future Directions for International Safeguards

    International Nuclear Information System (INIS)

    Casterton, J.; Meylemans, P.

    2013-01-01

    The State-Level Concept (SLC) is a holistic approach to safeguards implementation, applicable to all States with safeguards agreements. It is based on a comprehensive and continuous State evaluation and a State level approach for each State, including a specific combination of safeguards measures. It is executed through an annual implementation plan. The SLC has the value of considering the State as a whole. It provides the opportunity to take State-specific factors into account through all stages of safeguards implementation. The implementation of the SLC permits the IAEA to be responsive to all kinds of changes arising from continuous analysis. As a result the safeguards conclusions remain soundly based and up-to-date. The SLC is implemented by the IAEA as a continuous process involving three major components: establishing knowledge about the State and drawing conclusions, determining the specific State level approach, and planning and implementing safeguards activities. The major products that emerge from this process are the State level approach, the annual implementation plan that is the basis for implementing safeguards activities in a State on an annual basis, and the safeguards conclusions, which are set out in the Safeguards Implementation Report on an annual basis. A better cooperation between IAEA and SSAC (State Systems of Accounting for and Control of nuclear material), RSAC (Regional State Systems of Accounting for and Control of nuclear material is important for developing and implementing SLC. The paper is followed by the slides of the presentation. (A.C.)

  16. A study on strengthening measures of non-proliferation regime through the export control system of sensitive materials, equipment and technology related to nuclear activities

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Kurosawa, Mitsuru; Komizo, Yasuyoshi

    2004-01-01

    The strengthened safeguards caused from safeguards experiences to Iraq and DPRK leads to the expansion of the IAEA's activities for verification of all nuclear activities as well as verification of nuclear material in the States. The purpose of the activities, of course, includes detection of undeclared exports and imports of specified equipment and non-nuclear material. The Additional Protocol to the agreements between States and the IAEA for the application of safeguards requires to the States to declare the exports and imports information regarding specified equipment and non-nuclear material corresponding to the export control list that is established by the nuclear suppliers group. The Additional Protocol also insists the IAEA's right to access to the location identified by the State to resolve a question related to the declarations. Recently, the IAEA detected the black market group of the sensitive materials, equipment and technologies relevant to the nuclear proliferation through the safeguards activities to Iran and Libya. International community stated deeply concerns to the indecent facts. This paper would discuss and propose the supplemental strengthening measures of non-proliferation regime by effective combination of the safeguards activities under additional protocol and the export control regime. (author)

  17. Remote monitoring in safeguards: Security of information and enhanced cooperation

    International Nuclear Information System (INIS)

    Galdoz, Erwin; Calzetta, Osvaldo; Fernández Moreno, Sonia; Llacer, Carlos; Díaz, Gustavo; Vigile, Sebastián; Brunhuber, Christoph

    2011-01-01

    Unattended systems with remote transmission capabilities (RM) have the potential to improve safeguards efficiency. Moreover, the evolution of technology and the steady growing of nuclear materials subject to control, lead modern safeguards increasingly utilizing unattended equipment with the capability to store relevant data for long periods of time coupled with the option of being remotely accessed and checked. Remote inspection is still a concept under development, but it may end to be a powerful more efficient verification modality in medium term future. An important part of drawing meaningful safeguards conclusions rests on authenticity and reliability of the information on nuclear material and facilities acquired through the various verification activities and measures applied by IAEA and regional safeguards organizations, like ABACC. The increasing utilization of such technology to further optimize safeguards responds to a multifaceted environment where security of information for all relevant parties is of utmost importance. From the point of view of the IAEA and ABACC, the use of any technology for safeguards application, and specially the use of RM, requires to ensure the security of data collected to guarantee the validity and veracity of such information throughout the whole process (e.g., from collecting to reviewing). This is also valid to the SSAC involved in the process. Information security is also relevant for States and Operators. Assurance should be given that the information could not be withdrawn by non-authorized entities and that facility data is also fully secured. Another important aspect related to RM that may also fall in the security aspect of safeguards relevant information that merits further consideration, is the sharing of information between organizations like ABACC and the IAEA as well as the possibility to make this data available for States authorities purposes. This paper discusses three main themes related to RM: (i) the extent

  18. Approach to integrate current safeguards measures with additional protocol requirements at national level

    International Nuclear Information System (INIS)

    Ramirez, R.

    2001-01-01

    material are required to be previously authorized. However, other types of non-specific nuclear material or related equipment which are included in the Additional Protocol are not regulated in the same way

  19. Underwater fuel handling equipment maintenance. Verification of design assumptions, specific problems and tools, case study

    International Nuclear Information System (INIS)

    Kurek, J.B.

    1995-01-01

    The majority of CANDU Fuel Transfer System equipment at Pickering is located under fourteen feet of water, as dictated by the containment and shielding requirements. Such arrangement, however, creates specific problems with equipment maintenance. Each single piece of equipment serves two generating units, which means in case of defect- double losses on production, or two units shut down simultaneously for planned maintenance. The requirement for underwater maintenance was not anticipated at the design stage, which multiples the level of difficulty, and creates requirement for developing special tools for each work. Removal of the damaged fuel from the receiving bays and decontamination of submerged equipment is also part of the problem. The purpose of this presentation is to share our experience with the designers, operators, maintenance mechanics and technical personnel of the other CANDU generating stations

  20. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  1. Project Report on Development of a Safeguards Approach for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean

    2010-09-01

    The Idaho National Laboratory has undertaken an effort to develop a standard safeguards approach for international commercial pyroprocessing facilities. This report details progress for the fiscal year 2010 effort. A component by component diversion pathway analysis has been performed, and has led to insight on the mitigation needs and equipment development needed for a valid safeguards approach. The effort to develop an in-hot cell detection capability led to the digital cloud chamber, and more importantly, the significant potential scientific breakthrough of the inverse spectroscopy algorithm, including the ability to identify energy and spatial location of gamma ray emitting sources with a single, non-complex, stationary radiation detector system. Curium measurements were performed on historical and current samples at the FCF to attempt to determine the utility of using gross neutron counting for accountancy measurements. A solid cost estimate of equipment installation at FCF has been developed to guide proposals and cost allocations to use FCF as a test bed for safeguards measurement demonstrations. A combined MATLAB and MCNPX model has been developed to perform detector placement calculations around the electrorefiner. Early harvesting has occurred wherein the project team has been requested to provide pyroprocessing technology and safeguards short courses.

  2. 30 CFR 49.6 - Equipment and maintenance requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Equipment and maintenance requirements. 49.6... TRAINING MINE RESCUE TEAMS § 49.6 Equipment and maintenance requirements. (a) Each mine rescue station... indicates that a corrective action is necessary, the corrective action shall be made and the person shall...

  3. Implementation of Safeguards in Thailand

    International Nuclear Information System (INIS)

    Rueanngoen, A.; Changkrueng, K.; Srijittawa, L.; Mungpayaban, H.; Wititteeranon, A.

    2015-01-01

    Thailand is a non-nuclear weapon state. The non-nuclear activities are mainly medical, agricultural, and industrial. Therefore, Thailand ratified the Nuclear Non-Proliferation Treaty (NPT) since 1972 and has been entry into force of the Comprehensive Safeguards Agreement (INFCIRC 241) since 1974. Based on the INFCIRC 153, Thailand established a system of accounting for and control of all nuclear material subject to safeguards under the Agreement. In order to ensure the peaceful use of nuclear in Thailand the Nuclear-Non- Proliferation Center of Office of Atoms for Peace (NPC, OAP) was established to act as State level Safeguards. NPC is responsible for keeping records and providing information under requirement of Comprehensive Safeguards Agreement. In addition, the strengthening of cooperation and good coordination between Thailand and IAEA are indeed important and necessary to implementation safeguards in country. Based on the report of IAEA safeguards statement, there is no indication of the diversion of nuclear materials or misuse of the facility or the items in Thailand. Up to present, nuclear activities in Thailand are peaceful without diversion of using. This paper reviews the current status of the implementation Safeguards in Thailand. (author)

  4. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved airborne...

  5. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1985-01-01

    In this session, physical protection, nuclear material accounting and control, and containment and surveillance have been discussed, with emphasis on the interactions of these measures within the context of IAEA safeguards. In addition, the current physical protection equipment and techniques have been reviewed. The interactions can be summarized as follows. Although physical protection is a fundamental element of IAEA safeguards, it is solely a state/facility operator responsibility. While the IAEA has an interest in promoting the implementation of effective physical protection systems, it serves only in an advisory capacity. Nuclear material accounting directly involves the state, facility operator, and the IAEA. Facility records and reports provided by the state are independently verified by the IAEA. The SSAC is of fundamental importance in this process. Containment and surveillance measures are used by the UAEA. Installation and routine use of C/S equipment must be approved by the state and facility operator, and must not affect facility operations or safety

  6. Safeguards by Design Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  7. Safeguards by Design Challenge

    International Nuclear Information System (INIS)

    Alwin, Jennifer Louise

    2016-01-01

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA's limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  8. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    International Nuclear Information System (INIS)

    Musembi, Mutava Victor; Jeong, Seung Young; Kwon, Eun Ha

    2013-01-01

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making

  9. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Musembi, Mutava Victor [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Eun Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making.

  10. International safeguards for critical facilities

    International Nuclear Information System (INIS)

    Ney, J.F.; Todd, J.L.

    1979-01-01

    A study was undertaken to investigate various approaches to provide international safeguards for critical facilities and to select an optimized system. Only high-inventory critical facilities were considered. The goal of the study was to detect and confirm the protracted or abrupt diversion of 8kg of plutonium or 25kg of the uranium isotope 235 within approximately a week of the diversion. The general safeguards alternatives considered were (1) continuous inspections by resident inspectors, with varying degrees of comprehensiveness, (2) periodic inspections by regional inspectors at varying time intervals, (3) unattended containment/surveillance measures, and (4) various combinations of the above. It was concluded that a practical and effective international safeguards system can be achieved by employing a method of continuously monitoring facility activities which could lead to diversion. This is in addition to the routine inspections typical of current international safeguards. Monitoring detects inventory discrepancies and violations of agreed-upon procedural restrictions, as well as unauthorized removal of Special Nuclear Materials (SNM). A special inventory is used following detection to confirm any suspected diversion. Comparison of 28 safeguards options led to the selection of a system for further development which uses a combination of surveillance and inspection by resident IAEA personnel, containment/surveillance by unattended equipment, and routine inventory sampling. A development programme is described which is intended to demonstrate the feasibility of several containment and surveillance measures proposed in the study. Included are a personnel portal and an instrument/material pass-through as well as associated recording and tamper-protection features. (author)

  11. New safeguards system and JNC's activities in the new safeguards system

    International Nuclear Information System (INIS)

    Iwanaga, Masayuki

    2000-01-01

    The Japan Nuclear Fuel Cycle Development Institute (JNC) has been developing the various area of the technology in the nuclear fuel cycle more than 30 years, as the leading organization. Standing on the accumulated experiences through those activities, JNC will construct the new fuel cycle concept based on the principle for safety, environment, economy and nonproliferation. In this process, evaluation of the specific nonproliferation features with the nuclear material control methods taking in to account of the safegurdability might have one of the major importance. On the other hand, recently, in addition to the conventional safeguards (INFCIRC153), an additional protocol (INFCIRC540) which defines the activities that complement the integrity of a member country's declaration has come into effect in several countries, including Japan. IAEA and other international organizations are now discussing the safeguards concept, which integrates the conventional as well as new safeguards measures. In JNC's efforts to construct the new fuel cycle concept, it is necessary to give sufficient consideration to reflect the integrated safeguards concept. In the process of implementing the concept of the new integrated safeguards system, we presume that changes will have to be made in the traditional approach, which mainly deals with nuclear material. It will become necessary to develop a concrete method and approach in order to analyze and evaluate information, and work will have to be undertaken to optimize such a method based on its effects and efficiency. JNC will make contributions to international society by making the best use of its experience and technological infrastructure to reflect further safeguards development program in JNC so that the new IAEA safeguards can be firmly established. Related to this point of view, the following two subjects is to be introduced on the whole; 1. JNC's experiences and expertise of the development of safeguards technology with the fuel

  12. Third International Meeting on Next Generation Safeguards: Safeguards-by-Design at Enrichment Facilities

    International Nuclear Information System (INIS)

    Long, Jon D.; McGinnis, Brent R.; Morgan, James B.; Whitaker, Michael; Lockwood, Dunbar; Shipwash, Jacqueline L.

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  13. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    International Nuclear Information System (INIS)

    Metcalf, Richard; Bevill, Aaron; Charlton, William; Bean, Robert

    2008-01-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of 'non-traditional' operating data, and exploration of new methods of identifying subtle events in transient processes

  14. Secure Video Surveillance System (SVSS) for unannounced safeguards inspections

    International Nuclear Information System (INIS)

    Galdoz, Erwin G.; Pinkalla, Mark

    2010-01-01

    The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed. ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains

  15. Attribute measurement equipment for the verification of plutonium in classified forms for the Trilateral Initiative

    International Nuclear Information System (INIS)

    Langner, D.G.; Hsue, S.-T.; Macarthur, D.W.

    2001-01-01

    teams have agreed are important to a verification regime of this kind include the presence of plutonium, the presence of plutonium that is of weapons grade (a 240 Pu to 239 Pu ratio of less than 0.1), and the presence of plutonium with a mass that is more than some agreed-upon threshold. The technical experts have provisionally agreed to general technical requirements and functional specifications for an attribute measurement system with an information barrier. Briefly, the information barrier must be designed to both physically protect the classified information from unauthorized access by the inspecting party and to facilitate the use of inspectorate-employed means to detect tampering by the host party. In addition, the measurement equipment must be able to be calibrated and validated using unclassified reference materials, and the data obtained from unclassified measurements must be available to the inspector. Finally, the information barrier must isolate the security functions from the measurement functions in such a way that the inspector can have confidence that the measurement equipment and data analysis functions operate in exactly the same manner whether the system is measuring an unclassified or a classified item. With careful attention to the design and implementation of these systems, the technical teams are optimistic that the inspectors will be able to authenticate such equipment and thus reach independent conclusions. In addition to the challenge of producing a measurement system that can both protect classified information and be authenticated, the discussions of the technical experts have revealed some other measurement challenges associated with the types of plutonium that might come under a Trilateral Initiative regime. The greatest challenge will be to provide high-confidence, timely measurements of items that are stored in containers specifically designed to shield the radiation emissions required for the measurements. The shielding characteristics

  16. An American Academy for Training Safeguards Inspectors - An Idea Revisited

    International Nuclear Information System (INIS)

    Durst, Philip Casey; Bean, Robert

    2010-01-01

    In 2009, we presented the idea of an American academy for training safeguards inspectors for the International Atomic Energy Agency (IAEA), due to the declining percentage of Americans in that international organization. In this paper we assert that there is still a compelling need for this academy. While the American Safeguards Academy would be useful in preparing and pre-training American inspectors for the IAEA, it would also be useful for preparing Americans for domestic safeguards duties in the U.S. Department of Energy (DOE), U.S. DOE National Laboratories, and the U.S. Nuclear Regulatory Commission (NRC). It is envisioned that such an academy would train graduate and post-graduate university students, DOE National Laboratory interns, and nuclear safeguards professionals in the modern equipment, safeguards measures, and approaches currently used by the IAEA. It is also envisioned that the Academy would involve the domestic nuclear industry, which could provide use of commercial nuclear facilities for tours and demonstrations of the safeguards tools and methods in actual nuclear facilities. This would be in support of the U.S. DOE National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI). This training would also help American nuclear safeguards and non-proliferation professionals better understand the potential limitations of the current tools used by the IAEA and give them a foundation from which to consider even more effective and efficient safeguards measures and approaches.

  17. Safeguards summary event list (SSEL)

    International Nuclear Information System (INIS)

    1989-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Because of public interest, also included are events reported involving byproduct material which is exempt from safeguards requirements. Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage, alcohol and drugs, and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  18. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    Fadden, M.; Yardumian, J.

    1993-07-01

    The Safeguards Summary Event List provides brief summaries of hundreds of safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission. Events are described under the categories: Bomb-related, Intrusion, Missing/Allegedly Stolen, Transportation-related, Tampering/Vandalism, Arson, Firearms-related, Radiological Sabotage, Non-radiological Sabotage, and Miscellaneous. Because of the public interest, the Miscellaneous category also includes events reported involving source material, byproduct material, and natural uranium, which are exempt from safeguards requirements. Information in the event descriptions was obtained from official NRC sources

  19. Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  20. Canada and international safeguards. Verifying nuclear non-proliferation. Verification brochure no. 5

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result.

  1. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses. Addendum

    International Nuclear Information System (INIS)

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards ( including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  2. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W S; Cha, H R; Ham, Y S; Lee, Y G; Kim, K P; Hong, Y D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  3. The Use of Performance Metrics for the Assessment of Safeguards Effectiveness at the State Level

    Energy Technology Data Exchange (ETDEWEB)

    Bachner K. M.; George Anzelon, Lawrence Livermore National Laboratory, Livermore, CA Yana Feldman, Lawrence Livermore National Laboratory, Livermore, CA Mark Goodman,Department of State, Washington, DC Dunbar Lockwood, National Nuclear Security Administration, Washington, DC Jonathan B. Sanborn, JBS Consulting, LLC, Arlington, VA.

    2016-07-24

    In the ongoing evolution of International Atomic Energy Agency (IAEA) safeguards at the state level, many safeguards implementation principles have been emphasized: effectiveness, efficiency, non-discrimination, transparency, focus on sensitive materials, centrality of material accountancy for detecting diversion, independence, objectivity, and grounding in technical considerations, among others. These principles are subject to differing interpretations and prioritizations and sometimes conflict. This paper is an attempt to develop metrics and address some of the potential tradeoffs inherent in choices about how various safeguards policy principles are implemented. The paper carefully defines effective safeguards, including in the context of safeguards approaches that take account of the range of state-specific factors described by the IAEA Secretariat and taken note of by the Board in September 2014, and (2) makes use of performance metrics to help document, and to make transparent, how safeguards implementation would meet such effectiveness requirements.

  4. Australian nuclear safeguards

    International Nuclear Information System (INIS)

    Kerin, J.C.

    1988-01-01

    The Australian Government considers that allegations made by the West German magazine - Der Spiegel in its January and February 1988 editions, flow from a lack of understanding of the complexities of international trade in nuclear materials, confusion between internal and international flag swaps and failure to comprehend the equivalence principle used in nuclear materials accounting. The Ministerial statement briefly outlines these issues and concludes that there is no evidence that any material subject to Australia's bilateral safeguards agreement has been diverted from peaceful uses or that Australia's safeguard requirements have been breached

  5. Current technical issues in international safeguards

    International Nuclear Information System (INIS)

    Bennett, C.A.

    1977-01-01

    Safeguards systems, and the associated need for technical and systems development, reflect changing conditions and concerns associated with the nuclear fuel cycle and the safety and security of nuclear materials and facilities. In particular, the implementation of international safeguards has led to the recognition of certain technical issues, both old and new, which are in need of resolution. These are: 1. The grading of nuclear materials and facilities with respect to their relative safeguards significance. 2. The extension and upgrading of safeguards techniques to maintain adequate protection in view of constantly increasing amounts of material to be safeguarded. 3. The balance between safeguards mechanisms based on physical protection and material accounting, and the role of surveillance and containment in each case. 4. The role of information systems as a basis for both analytical feedback and the determination of the factors affecting system effectiveness and their interrelationship. 5. A determination of the degree to which the overall technical effectiveness of international inspection activities can be quantified. Each of these technical issues must be considered in light of the specific objectives of international safeguards, which differ from domestic safeguards in terms of the level of the threat, the safeguards mechanisms available, and the diversion strategies assumed. Their resolution in this international context is essential if the effectiveness and viability of international safeguards are to be maintained

  6. Australian Safeguards and Non-Proliferation Office and the Chemical Weapons Convention Annual Report 1999-2000

    International Nuclear Information System (INIS)

    2000-01-01

    The Director General, Australian Safeguards and Non-Proliferation Office (ASNO), combines the statutory office of Director of Safeguards with that of Director, Chemical Weapons Convention Office (CWCO). The Director General also performs the functions of the Director, Australian Comprehensive Test-Ban Office (ACTBO) on an informal basis, as the relevant legislation has not yet come into effect. Throughout the year, ASNO made a substantial contribution to the development of strengthened IAEA safeguards and the integration of strengthened safeguards with the established (classical) safeguards system. ASNO is working closely with the IAEA to develop the procedures and methods required to effectively implement the IAEA's authority and responsibilities as the Additional Protocol enters general application, as well as the specific arrangements which will apply in Australia. In the latter context, ASNO offers the IAEA a safeguards-friendly environment, together with constructive critique, to assist in the development and testing of new techniques. This work is important in ensuring the effective implementation of strengthened safeguards elsewhere. Substantial progress were made on several new bilateral nuclear safeguards agreements. An agreement with the US covering transfer of the Silex laser enrichment technology came into force, and ASNO is now working with US authorities to develop the detailed administrative arrangements required to give effect to this agreement. Also concluded during the year was an agreement with New Zealand covering transfers of uranium for non-nuclear use (as a colouring agent in glass manufacture). ASNO was also working closely with ANSTO to ensure that nuclear material accountancy and control at Lucas Heights accords with best international practice, particularly having regard to the requirements of the IAEA under integrated safeguards. Excellent professional relationship were maintained with the OPCW and counterpart national authorities

  7. Implementing The Safeguards-By-Design Process

    International Nuclear Information System (INIS)

    Whitaker, J. Michael; McGinnis, Brent; Laughter, Mark D.; Morgan, Jim; Bjornard, Trond; Bean, Robert; Durst, Phillip; Hockert, John; DeMuth, Scott; Lockwood, Dunbar

    2010-01-01

    The Safeguards-by-Design (SBD) approach incorporates safeguards into the design and construction of nuclear facilities at the very beginning of the design process. It is a systematic and structured approach for fully integrating international and national safeguards for material control and accountability (MC and A), physical protection, and other proliferation barriers into the design and construction process for nuclear facilities. Implementing SBD is primarily a project management or project coordination challenge. This paper focuses specifically on the design process; the planning, definition, organization, coordination, scheduling and interaction of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project in order to provide the project context within which the safeguards design activities take place, describes the involvement of the safeguards experts in the design process, the nature of their analyses, interactions and decisions, and describes the documents created and how they are used. This report highlights the project context of safeguards activities, and identifies the safeguards community (nuclear facility operator, designer/builder, state regulator, SSAC and IAEA) must accomplish in order to implement SBD within the project.

  8. Safeguards Implementation Practices Guide on Provision of Information to the IAEA

    International Nuclear Information System (INIS)

    2016-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement and is furthered through a common understanding of the respective rights and obligations of States and the IAEA. To address this, in 2012 the IAEA published IAEA Services Series No. 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding and improving cooperation in safeguards implementation. To meet their safeguards obligations, States may establish different processes and procedures at the national level, and set up their infrastructure to meet their specific needs. Indeed, a variety of approaches are to be expected, owing to differences in the size and complexity of States’ nuclear programmes, their regulatory framework and other factors. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. This SIP Guide addresses the important topic of the provision of information by States to the IAEA. Declarations by States form the basis for IAEA verification activities, and the quality and timeliness of such declarations impact significantly the efficiency of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and their use is voluntary. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear

  9. 30 CFR 77.410 - Mobile equipment; automatic warning devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mobile equipment; automatic warning devices. 77... UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.410 Mobile equipment; automatic warning devices. (a) Mobile equipment such as front-end loaders, forklifts, tractors, graders, and trucks, except...

  10. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    International Nuclear Information System (INIS)

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

    2010-01-01

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad

  11. The international safeguards and domestic safeguards and security interface

    International Nuclear Information System (INIS)

    Whitworth, A.

    1996-01-01

    The International Safeguards Division, in conjunction with the Office of Safeguards and Security, organized a workshop on the international safeguards/domestic safeguards and security interface that was held in March 1996. The purpose of the workshop was to identify and resolve domestic safeguards and security issues associated with the implementation of International Atomic Energy Agency (IAEA) safeguards in the Department of Energy (DOE) complex. The workshop drew heavily upon lessons learned in the application of IAEA safeguards at storage facilities in oak Ridge, Hanford, and Rocky Flats. It was anticipated that the workshop would facilitate a consistent DOE safeguards and security approach for the implementation of IAEA safeguards in the DOE complex. This paper discusses the issues and resolutions of several issues raised at the workshop that involve primarily the domestic material control and accountability program

  12. Processing large sensor data sets for safeguards : the knowledge generation system.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Maikel A.; Smartt, Heidi Anne; Matthews, Robert F.

    2012-04-01

    Modern nuclear facilities, such as reprocessing plants, present inspectors with significant challenges due in part to the sheer amount of equipment that must be safeguarded. The Sandia-developed and patented Knowledge Generation system was designed to automatically analyze large amounts of safeguards data to identify anomalous events of interest by comparing sensor readings with those expected from a process of interest and operator declarations. This paper describes a demonstration of the Knowledge Generation system using simulated accountability tank sensor data to represent part of a reprocessing plant. The demonstration indicated that Knowledge Generation has the potential to address several problems critical to the future of safeguards. It could be extended to facilitate remote inspections and trigger random inspections. Knowledge Generation could analyze data to establish trust hierarchies, to facilitate safeguards use of operator-owned sensors.

  13. Setting priorities for safeguards upgrades

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; Patenaude, C.J.; Sicherman, A.

    1987-01-01

    This paper describes an analytic approach and a computer program for setting priorities among safeguards upgrades. The approach provides safeguards decision makers with a systematic method for allocating their limited upgrade resources. The priorities are set based on the upgrades cost and their contribution to safeguards effectiveness. Safeguards effectiveness is measured by the probability of defeat for a spectrum of potential insider and outsider adversaries. The computer program, MI$ER, can be used alone or as a companion to ET and SAVI, programs designed to evaluate safeguards effectiveness against insider and outsider threats, respectively. Setting the priority required judgments about the relative importance (threat likelihoods and consequences) of insider and outsider threats. Although these judgments are inherently subjective, MI$ER can analyze the sensitivity of the upgrade priorities to these weights and determine whether or not they are critical to the priority ranking. MI$ER produces tabular and graphical results for comparing benefits and identifying the most cost-effective upgrades for a given expenditure. This framework provides decision makers with an explicit and consistent analysis to support their upgrades decisions and to allocate the safeguards resources in a cost-effective manner

  14. Safeguards can not operate alone

    International Nuclear Information System (INIS)

    Martikka, E.; Honkamaa, T.; Haemaelaeinen, M.; Okko, O.

    2013-01-01

    There are around 20 new states which are planning to use nuclear energy in the near future. Globally there are several nuclear power plants under construction and they will be bigger than ever. Also new type of nuclear facility, final disposal facility for spent nuclear fuel, will be constructed and in operation in Finland and Sweden in ca. 10 years time. It is evident that the nuclear world is changing much and quickly. After the Additional Protocol, safeguards are no longer only about accounting and control of nuclear materials, but also about verifying that there are no undeclared nuclear materials and activities in the state. It is not possible or effective anymore to implement safeguards without taking into account of the nuclear safety and security. The safeguards should not be isolated. The synergy between safeguards, security and safety exist, when implementing nationally that there are no undeclared nuclear materials or activities. In safeguards we could not do our duties effectively if we ignore some of those other S's. Safeguards by Design process does not work properly if only international safeguards and security requirements has been taken into account, it urges all 3S to be taken care at the same time. Safeguards should operate also with other synergetic regimes and organisations like CTBTO, Fissile Material Cut-off, disarmament, export control, border control,... The paper is followed by the slides of the presentation

  15. Process monitoring for reprocessing plant safeguards: a summary review

    International Nuclear Information System (INIS)

    Kerr, H.T.; Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.

    1986-10-01

    Process monitoring is a term typically associated with a detailed look at plant operating data to determine plant status. Process monitoring has been generally associated with operational control of plant processes. Recently, process monitoring has been given new attention for a possible role in international safeguards. International Safeguards Project Office (ISPO) Task C.59 has the goal to identify specific roles for process monitoring in international safeguards. As the preliminary effort associated with this task, a review of previous efforts in process monitoring for safeguards was conducted. Previous efforts mentioned concepts and a few specific applications. None were comprehensive in addressing all aspects of a process monitoring application for safeguards. This report summarizes the basic elements that must be developed in a comprehensive process monitoring application for safeguards. It then summarizes the significant efforts that have been documented in the literature with respect to the basic elements that were addressed

  16. Norm in the matter of safeguards

    International Nuclear Information System (INIS)

    Saavedra, Analia; Maceiras, Elena; Valentino, Lucia; Chiliutti, Mauro

    2001-01-01

    The Nuclear Regulatory Authority (NRA), through its norm, establishes requirements in the matter of safeguards that allow him to control the fulfillment of the objectives established at national level and the international commitments that the Argentine Republic has assumed in the scope of Nuclear Non-proliferation. The measures of fortification of the safeguards proposed by the International Atomic Energy Agency (IAEA), will imply new obligations for the country and consequently it will require the update of the effective norm in the matter. The objective of this work is to describe the reach of the update of the norm in the matter of safeguards and their relation with some procedures of application in the scope of the radiological protection and the nuclear security

  17. The IAEA's safeguards systems. Ready for the 21st century

    International Nuclear Information System (INIS)

    1998-01-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? what assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification? (author)

  18. The IAEA's safeguards system. Ready for the 21st century

    International Nuclear Information System (INIS)

    1997-09-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? What assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification?

  19. Safeguards technology development for spent fuel storage and disposal

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1991-01-01

    This paper reports on facilities for monitored retrievable storage and geologic repository that will be operating in the US by 1998 and 2010 respectively. The international safeguards approach for these facilities will be determined broadly by the Safeguards Agreement and the IAEA Safeguards Criteria (currently available for 1991-1995) and defined specifically in the General Subsidiary Arrangements and Specific Facility Attachments negotiated under the US/IAEA Safeguards Agreement. Design information for these facilities types, as it is conceptualized, will be essential input to the safeguards approach. Unique design and operating features will translate into equally unique challenges to the application of international safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards by enabling efficient and effective application with regard to the operator's interest, US policies, and the IAEA's statutorial obligations. Advanced unattended or remote measurement, authentication of operator's measurement, authentication of operator's measurement data, and integration of monitoring and containment/surveillance potentially are among the most fruitful areas of technology development. During the next year, a long range program plan for international safeguard technology development for monitored retrievable storage and geologic repository will be developed by the International Branch in close coordination with the Office of Civilian Radioactive Waste Management. This presentation preliminarily identifies elements of this long range program

  20. International safeguards problem

    International Nuclear Information System (INIS)

    Scheinman, L.; Curtis, H.B.

    1977-01-01

    To recognize the limitations of safeguards as a barrier to nuclear proliferation is not to deny their essential role in the effort to contain that problem. Without a safeguards system, international nuclear commerce and development would not, indeed could not, be what they are today. The problems evoked in the discussion of the spread of sensitive nuclear technology underscore the importance of ensuring that activities do not outpace our ability to control them. To sustain a global nuclear economy requires a readiness to live within the constraints that such an economy requires. Enhanced safeguards and strengthened national commitments to facilitate their application are key elements of those constraints. So also may be a prepardness by many nations to forego explicitly national control over all facets of the nuclear fuel cycle while still sharing fully and equally in the benefits of the peaceful atom. The challenge of the coming years will be to craft mechanisms and institutions enabling the continued growth of peaceful nuclear activity without further impairing international security. The constraints that such an outcome entails are not limited to nations lacking sophisticated nuclear technology; they apply to the most advanced nuclear nations as well--partly through adherence to the safeguards system that these countries call upon others to adopt, and partly through greater willingness to entertain solutions that may involve greater international involvement in, and control over, their own peaceful nuclear productive activities. With time, the relative incompatibility of nuclear energy with full national sovereignty, and the far-sighted wisdom of the Baruch Plan, are becoming increasingly clear. 1 table, 10 references

  1. Assurance of the effectiveness of safeguards in light of their objectives

    International Nuclear Information System (INIS)

    Kennedy, R.T.; Lyon, H.E.

    1977-01-01

    The purpose of nuclear safeguards is to prevent unauthorized use of SNM or sabotage of facilities in which significant quantities of SNM are located. A balanced safeguards system includes the three elements of material accountability, material control, and physical protection. These safeguard systems must detect unauthorized activities, initiate timely response and, as necessary, provide sufficient delay for an appropriate action to be taken. Methods used to assure effectiveness of safeguards systems for both ERDA and licensed facilities will be reviewed in this paper. The respective responsibilities of ERDA and NRC are briefly outlined as are the procedures and methods used for implementing these responsibilities. The objective of achieving overall comparability between ERDA and licensed facilities is discussed. The manner in which adequacy of safeguards is assessed is discussed. New techniques which are beginning to be employed and further refined is presented. These involve characterization of the representative threats, development of modeling of outsider and insider threats, site specific analysis of facility vulnerabilities to threats and selection of critical paths. Modeling is used to assess effectiveness with which a system protects against a postulated threat along critical attack paths. Assumptions with regard to the protection provided by the different elements can be varied to improve (decrease) vulnerability along any path. This method along with graphic analysis techniques can be used to: - Identify current weaknesses in existing or as designed systems. - Evaluate upgrading plans. - Develop design trade-offs. - Identify hardware or other developments required. Research and development is required to deal with the problems identified in these assessments and in the safeguards related studies conducted by both ERDA and NRC. These efforts and a summary of the areas currently under review will be described briefly. The practical problems of proof testing

  2. Safeguards effectiveness criteria and safeguards efficiency

    International Nuclear Information System (INIS)

    Stein, G.; Canty, M.J.; Knapp, U.; Munch, E.

    1983-01-01

    A critical examination of current tendencies in quantification, assessment and enhancement of the effectiveness of international safeguards is undertaken. It is suggested that the present narrow and overly technical interpretation of some elements of international safeguards is both impractical and detrimental. A pragmatic, case-bycase approach is called for to implement the provisions of safeguards agreements in a more balanced, efficient way

  3. Authentication in the context of international safeguards

    International Nuclear Information System (INIS)

    Drayer, D.D.; Sonnier, C.S.; Augustson, R.

    1991-01-01

    The International atomic Energy Agency held its first Advisory Group meeting on the subject of authentication in 1981. This meeting concentrated on the application of authentication to in-plant Non-Destructive Assay equipment supplied by the Facility Operator/State. In the decade since this meeting, a considerable amount of interest has developed over the use of authentication technology as a vital element of effective International Safeguards. Attendant with this interest, confusion has developed over the meaning and the need for the application of the technology as it exists today, and it may exist in the future. This paper addresses the subject of authentication, with emphasis on its basic definition and the applications of authentication technology in International Safeguards

  4. IAEA safeguards information system

    International Nuclear Information System (INIS)

    Nardi, J.

    1984-01-01

    The basic concepts, structure, and operation of the Agency Safeguards Information System is discussed with respect to its role in accomplishing the overall objectives of safeguards. The basis and purposes of the Agency's information system, the structure and flow of information within the Agency's system, the relationship of the components is the Agency system, the requirements of Member States in respect of their reporting to the Agency, and the relationship of accounting data vis-a-vis facility and inspection data are described

  5. Safeguards Summary Event List (SSEL)

    International Nuclear Information System (INIS)

    1991-07-01

    The Safeguards Summary Event List (SSEL) provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC). Because of public interest, the Miscellaneous category includes a few events which involve either source material, byproduct material, or natural uranium which are exempt from safeguards requirements. Events are described under the categories of bomb-related, intrusion, missing and/or allegedly stolen, transportation, tampering/vandalism, arson, firearms, radiological sabotage, nonradiological sabotage, pre-1990 alcohol and drugs (involving reactor operators, security force members, or management persons), and miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels

  6. Some reflections on nuclear safeguards

    International Nuclear Information System (INIS)

    Campbell, Ross.

    1981-01-01

    The author doubts whether, in view of the 1976 policy of requiring adherence to the Non-Proliferation Treaty or equivalent IAEA safeguards, Canada still needs the 1974 policy of bilateral safeguards on technology as well as material. The opinion is expressed that bilateral safeguards create difficulties for the IAEA, and are resented by some potential customers. Much better, if it were achievable, would be a code agreed by a convention of vendors and customers alike, to include sanctions against transgressors. The author expresses confidence in the IAEA, but perceives a need for more men and money. Also needed are better instruments to account for materials

  7. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  8. Studies on the introduction of remote data transmission in international nuclear safeguards

    International Nuclear Information System (INIS)

    Neumann, G.; Richter, B.; Rudolf, K.; Schink, F.J.

    1999-08-01

    In two field tests, the interaction of components and equipment was tested, which had on the one hand been specifically developed for international safeguards and, on the other hand, were commercially available off the shelf. The former included, in particular, the DCM14 digital camera module developed in Germany for IAEA and Euratom, as well as the DCMDispatch software. The latter included, for example, PCs from well-known manufacturers as well as the Windows NT 4.0 server operating system from Microsoft and the public communication services of Deutsche Telekom AG. Particular attention was paid to the remote interrogation of video images since particularly great technical efforts are necessary due to the volume of data involved. The technical demands made on data management, storage and transmission as well as on authentication and encryption were therefore to be clarified and their feasibility demonstrated. Added to this was the requirement of the nuclear industry that the images should be transmitted with a time delay. (orig.) [de

  9. A Legal Analysis of Safeguard Measures in the European Community

    Directory of Open Access Journals (Sweden)

    Guang Ma

    2006-12-01

    Full Text Available In 2002, the European Community imposed its first safeguard measure since the establishment of the WTO. And in 2003, it introduced two new regulations on safeguard measures, namely the “Council Regulation on a transitional product- specific safeguard mechanism for imports originating in the People's Republic of China” and the “Council Regulation on measures that the Community may take in relation to the combined effect of anti-dumping or anti-subsidy measures with safeguard measures." In this article, the author analyzes these safeguard measures and the European Commission's practice of such measures. By comparing the safeguard laws and their practice, it is the author's intention to clarify whether the safeguard measures in thIn 2002, the European Community imposed its first safeguard measure since the establishment of the WTO. And in 2003, it introduced two new regulations on safeguard measures, namely the "Council Regulation on a transitional product- specific safeguard mechanism for imports originating in the People's Republic of China" and the "Council Regulation on measures that the Community may take in relation to the combined effect of anti-dumping or anti-subsidy measures with safeguard measures." In this article, the author analyzes these safeguard measures and the European Commission's practice of such measures. By comparing the safeguard laws and their practice, it is the author's intention to clarify whether the safeguard measures in the European Community comply with the WTO Agreement on Safeguards. In conclusion, based on the analysis of safeguard measures in the European Community's legal system and their practice in actual cases, it apparent that the European Community is making a serious effort to comply with the standards of the WTO Safeguards Agreement. In certain respects, the European Community has a comparatively higher level of standards than the WTO. Nevertheless, there continue to be challenges to WTO

  10. 29 CFR 1910.306 - Specific purpose equipment and installations.

    Science.gov (United States)

    2010-07-01

    ...) Cranes and hoists. This paragraph applies to the installation of electric equipment and wiring used in..., and similar events. This paragraph covers the installation of portable wiring and equipment, including... 29 Labor 5 2010-07-01 2010-07-01 false Specific purpose equipment and installations. 1910.306...

  11. Elementary survey of nuclear safeguards problems

    International Nuclear Information System (INIS)

    Tobias, M.L.

    1975-01-01

    The discussion presented on nuclear safeguards is confined primarily to the subject of safeguards for fixed sites. The legal and quasi-legal requirements are briefly outlined. Preventive measures against theft, terrorism, sabotage, or irrational acts by employees and against sabotage by armed gangs are the aspects emphasized. Some of the cost aspects are indicated

  12. IAEA Safeguards: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A. [Los Alamos National Laboratory; Hypes, Philip A. [Los Alamos National Laboratory

    2012-06-14

    This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

  13. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  14. Principles in safeguards: A Canadian perspective

    International Nuclear Information System (INIS)

    Keen, L.J.

    2007-01-01

    L.J. Keen presented the Canadian perspective on safeguards. She noted that the IAEA safeguards system has responded well to challenges and has acted as the effective early warning system that it was intended to be. The exit from the non-proliferation regime by the Democratic People's Republic of Korea has demonstrated how effective safeguards and verification are seen to be in detecting proliferation activity. The main areas of importance for Canada are effectiveness, efficiency and transparency. Effectiveness requires information and access, and assures citizens of the exclusively peaceful uses of nuclear energy. Efficiency requires risk informed decisions for the sound allocation of resources and the early incorporation of proliferation resistance in design and construction, so that IAEA efforts can concentrate on where the risks are greatest. Openness and transparency include the public, and for the IAEA this includes its Member States since ultimately they control its activities and finances. Canada received its broader safeguards conclusion in 2005 and intends to maintain it. This will require continuous improvement in an era of rapid expansion of the nuclear industry. One problem foreseen is the adequate supply of qualified personnel, with the CNSC's resources growing at about 12%. The CNSC is looking at internal training programmes and internships

  15. Points for Improvement in Mexican Legislation on Safeguards

    International Nuclear Information System (INIS)

    Maciel Sánchez, S.; Carreño Padilla, A. L.

    2015-01-01

    The main goal of this paper is to underline the specific points needed still to be improved on safeguards in the Mexican legal framework. The problem: Mexico proposed the Tlatelolco Treaty which was before the TNP. So the Mexican legislation on safeguards should to be one of the best around the world, but there are still points to be improved, such as a specific regulation on the topic. Justification: Remembering that the exact sciences need of the law in order to be applied in a desirable way. I mean, the safeguards could be well conceived and well worked from the physics and mathematics point of view, but in order to be followed in any country, it is necessary the right legal framework. Hypothesis: What has Mexico now in its legislation on safeguards and what remains to be done (what is pending in the Mexican legal scope of the safeguards)? Objectives: – To propose legal solutions to correct the weakness of the Mexican legal framework on Safeguards; taking into account my own experience drafting the Mexican regulation on safeguards from 2008 for the Mexican Government in my nuclear law firm “Martínez and Maciel”. – To propose a legal framework on safeguards for Mexico as it is understood by the IAEA. – To update the legal frame work on safeguards in Mexico linking it to the Back end of the spent fuel. (Considering that sooner or later the Mexican Government will have to define its politic on this topic). (author)

  16. Reporting of safeguards events

    International Nuclear Information System (INIS)

    Dwyer, P.A.; Ervin, N.E.

    1988-02-01

    On June 9, 1987, the Commission published in the Federal Register a final rule revising the reporting requirements for safeguards events. Safeguards events include actual or attempted theft of special nuclear material (SNM); actual or attempted acts or events which interrupt normal operations at power reactors due to unauthorized use of or tampering with machinery, components, or controls; certain threats made against facilities possessing SNM; and safeguards system failures impacting the effectiveness of the system. The revised rule was effective October 8, 1987. On September 14, 1987, the NRC held a workshop in Bethesda, MD, to answer affected licensees' questions on the final rule. This report documents questions discussed at the September 14 meeting, reflects a completed staff review of the answers, and supersedes previous oral comment on the topics covered

  17. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  18. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  19. Implementation of Safeguards and Non-Proliferation in Sierra Leone

    International Nuclear Information System (INIS)

    George, M.

    2015-01-01

    Sierra Leone under the Comprehensive Safeguards Agreements (CSAs) has enacted the Nuclear Safety and Radiation Protection (NSRP) Act 2012 and has given numerous powers to the Authority to implement the above mentioned act fully. The NSRP Act 2012 established the Nuclear Safety and Radiation Protection Authority which among other things to regulate, control and supervise the acquisition, importation, exportation, use, transportation and disposal of radioactive sources and devices emitting Ionizing Radiation. The Authority is bounded by law to cooperate with the International Atomic Energy Agency in the application of Safeguards Agreement and any protocol thereto between Sierra Leone and the International Atomic Energy Agency including conducting inspections and providing any assistance or information required by designated IAEA inspectors in the fulfillment of their responsibilities pursuant to Section 5, Subsection 2, Article xvi of the NSRP Act 2012. The Authority is also granted powers to adopt all necessary measures including a system of licensing to control the export, re-export, transit and transhipment of any nuclear material, equipment or technology in order to protect the safety and security of Sierra Leone. The Regulatory Authority has established departments for the control of nuclear materials: One of which is The Regulatory Control Department; responsible for Inspections, Authorization and Enforcement actions for all radiation sources and nuclear materials. The Authority has been conducting inspections regularly on various facilities ranging from medical radiation generating equipment to industrial radiography sources. The methodology to be used is the issuance of the standard IAEA checklist which is consistent with the Regulatory Authority’s documents for inspection of sources and is in line with the General Safety Requirements(GSR)Part III. The expected outcomes would be increasing training of regulatory authority’s staff, the procurement of

  20. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  1. Development of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Doo; Song, Dae Yong; So, Dong Sup; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-04-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described. 3 tabs. (Author)

  2. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-01-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: a problem definition phase that specifies resources and constraints composing the problem boundary values, a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives, a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them, and a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs

  3. Next Generation Safeguards Initiative: Human Capital Development

    International Nuclear Information System (INIS)

    Scholz, M.; Irola, G.; Glynn, K.

    2015-01-01

    Since 2008, the Human Capital Development (HCD) subprogramme of the U.S. National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) has supported the recruitment, education, training, and retention of the next generation of international safeguards professionals to meet the needs of both the International Atomic Energy Agency (IAEA) and the United States. Specifically, HCD's efforts respond to data indicating that 82% of safeguards experts at U.S. Laboratories will have left the workforce within 15 years. This paper provides an update on the status of the subprogramme since its last presentation at the IAEA Safeguards Symposium in 2010. It highlights strengthened, integrated efforts in the areas of graduate and post-doctoral fellowships, young and midcareer professional support, short safeguards courses, and university engagement. It also discusses lessons learned from the U.S. experience in safeguards education and training as well as the importance of long-range strategies to develop a cohesive, effective, and efficient human capital development approach. (author)

  4. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-07-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: (1) a problem definition phase that specifies resources and constraints composing the problem boundary values; (2) a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives; (3) a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them; and (4) a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs. 6 references, 4 figures, 5 tables

  5. Special safeguards study. Scopes of work

    International Nuclear Information System (INIS)

    1975-06-01

    The Special Safeguards Study (SSS) will be conducted by a combination of (1) contacts with other agencies, (2) NRC staff studies and analysis and (3) contracted studies in specific areas. Most of the study effort will be carried out by contractual support activities. These activities will be devoted to providing technical information, primarily qualitative because of the short term of the study, to enable the staff to determine the most cost-effective sets of measures for plutonium recycle and high-enriched uranium fuel cycle safeguards. The scope of work for these activities is given. The scope of work describes tasks that range from confirming the Commission's safeguards objective to defining specific protection systems for the following siting arrangements: dispersed sites, collocated fuel cycle plants, and mixed parks where reactors, reprocessing plants and fuel fabrication plants are collocated. (U.S.)

  6. The Canadian Safeguards Support Program - A future outlook

    International Nuclear Information System (INIS)

    Keeffe, R.; Truong, Q.S. Bob

    2001-01-01

    Full text: The Canadian Safeguards Support Program (CSSP) is one of the first safeguards support programs with an overall objective to assist the IAEA by providing technical assistance and other resources and by developing equipment to improve the effectiveness of international safeguards. This paper provides a brief discussion of the evolution of the CSSP, from the beginning when the program was under joint management between the Atomic Energy Control Board (AECB) and Atomic Energy of Canada Limited (AECL), a Canadian crown corporation, until recent years when the AECB became responsible for all projects and financial management. Recently, new legislation came into force and the AECB became the Canadian Nuclear Safety Commission (CNSC). However, the mandate and management of the CSSP under the CNSC remain fundamentally unchanged. Major CSSP activities are devoted to the following areas: (a) Human resource assistance through the provision of cost-free experts (CFEs) to the IAEA; (b) Training of IAEA inspectors and facility operators, development of training resources and integrated approaches for training; (c) System studies, e.g. the development of integrated safeguards approach for CANDU reactors, geological repository, and physical model; (d) Equipment development, e.g. the VXI Integrated Fuel Monitor, Digital Cerenkov Viewing Device, seals, remote monitoring, encryption and authentication; (e) Information technology which includes satellite imagery, Geographical Information System (GIS), and position tracking of spent fuel containers. The CSSP has continued to evolve during the past 25 years. Although formerly larger the CSSP budget has settled to a stable level of just slightly above (Canadian) $2M. Leveraging of the CSSP budget through collaborations with several Member State Support Programs and Canadian government departments has provided mutual benefits for all parties involved and useful results that have been put into practical use by the IAEA. (author)

  7. The IAEA safeguards information system

    International Nuclear Information System (INIS)

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  8. Safeguards culture on 3S interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice.

  9. Safeguards culture on 3S interfaces

    International Nuclear Information System (INIS)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun

    2015-01-01

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice

  10. Domestic safeguards: annual report to Congress, fiscal year 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The annual report includes an assessment of the effectiveness and adequacy of safeguards at facilities and activities licensed by the Commission. The report details NRC's criteria for judging the adequacy of safeguards at fuel cycle facilities; the report also summarizes actions required by NRC at any fuel facility whose safeguards systems are judged to provide less than high assurance protection against our design threat. The report also contains a discussion of NRC's criteria for safeguards adequacy at nuclear reactors and for transportation activities

  11. IAEA safeguards and detection of undeclared nuclear activities

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.).

  12. IAEA safeguards and detection of undeclared nuclear activities

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.)

  13. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    substantially large. Change in social, economic, environmental and other scenarios might demand recovery of nuclear and other material from the repository sometime in the future. To this end, the Department of Safeguards has developed a policy paper to guide the planner, designer and operator to incorporate safeguards related features, as appropriate. In parallel, a programme for the Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories (SAGOR) was launched to foster technological advancement. The mission of SAGOR has been to ensure that the safeguards systems developed for the final disposal of spent fuel effectively meet the objectives of IAEA safeguards, optimise IAEA resources, and make best use of existing technologies while still meeting the requirements for safety and environmental protection. (author)

  14. 14 CFR 31.85 - Required basic equipment.

    Science.gov (United States)

    2010-01-01

    ... following equipment is required: (a) For all balloons: (1) [Reserved] (2) An altimeter. (3) A rate of climb indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Operating Limitations and Information § 31.85 Required basic...

  15. Coordination of Croatian National Legislative with EU Commission Regulation on the Application of Euratom Safeguards

    International Nuclear Information System (INIS)

    Ilijas, B.; Medakovic, S.

    2012-01-01

    Having regard to the Treaty establishing the European Atomic Energy Community (Euratom) in the view of increasing quantities of nuclear materials produced, used, carried and recycled in the Community, and also development of trade in these materials, especially in the scope of the successive enlargements of the EU, it is essential to ensure effectiveness of safeguards. Commission Regulation on the application of Euratom safeguards of 8 February 2005 is a comprehensive regulation dealing with basic technical characteristics and particular safeguard provisions of installations for the production, separation, reprocessing, storage or other use of source material or special fissile material, as well as nuclear material accountancy, transfer between states and some specific provisions. Croatia signed the 'Agreement Between the Republic of Croatia and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-proliferation of Nuclear Weapons (NPT)' and a few years later 'Protocol Additional' to this Agreement that stipulates strict obligations of the Republic of Croatia under Safeguards in connection with NPT. Also, in Croatia is on power 'Act on Radiological and Nuclear Safety' which, beside others, establishes measures for ensuring the safe performance of practices involving ionising radiation sources, nuclear activities, radioactive waste disposal and the physical protection of ionising radiation sources and nuclear facilities. But on power is also 'Ordinance on control of the nuclear materials and special equipment' which refers to an old 'Act on nuclear safety', and also takes into account provisions of the NPT and 'Protocol Additional' regarding safeguards. A new ordinance should be promulgated in accordance with new act. As a new act also should be corrected before Croatia joins EU, an extensive job must be done in adjusting Croatian national legislative to Euratom safeguards.(author).

  16. Development of nuclear materials accounting for international safeguards

    International Nuclear Information System (INIS)

    Markin, J.T.; Augustson, R.H.; Eccleston, G.W.; Hakkila, E.A.

    1991-01-01

    This paper reports that nuclear materials accountancy was introduced as a primary safeguards measure in international safeguards at the inception of the EURATOM safeguards directorate in 1959 and in IAEA safeguards in 1961 with the issuance of INFCIRC 26. As measurement technology evolved and safeguarded facilities increased in both number and size, measurement methodology requirements increased as reflected in INFCIRC 66 (Rev 2.) in 1968 and later in INFCIRC 153 in 1972. Early measurements relied heavily on chemical analysis, but in the 1960s the measurements evolved more and more toward nondestructive assay. Future nuclear materials accountancy systems will increase in complexity, driven by larger and more complex facilities; more stringent health, safety, and environmental considerations; and unattended automation in facility operations

  17. Training to raise staff awareness about safeguarding children.

    Science.gov (United States)

    Fleming, Jane

    2015-04-01

    To improve outcomes for children and young people health organisations are required to train all staff in children's safeguarding. This creates difficulties for large complex organisations where most staff provide services to the adult population. Heart of England NHS Foundation Trust is a large acute and community trust that had difficulties in engaging staff in children's safeguarding training. Compliance rates for clinical staff who were trained in children's safeguarding were low and needed to be addressed. This article sets out why safeguarding training is important for all staff and how the trust achieved staff engagement and improved compliance rates. To evaluate, maintain and develop safeguarding knowledge, understanding, skills, attitude and behaviour further resources are planned to allow access to learning resources in a variety of formats.

  18. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  19. Evaluation of safeguards procedures: a summary of a methodology

    International Nuclear Information System (INIS)

    Salisbury, J.D.; Savage, J.W.

    1979-01-01

    A methodology for the evaluation of safeguards procedures is described. As presently conceptualized, the methodology will consist of the following steps: (1) expansion of the general protection requirements that are contained in the NRC regulations into more detailed but still generic requirements for use at the working level; (2) development of techniques and formats for using the working-level requirements in an evaluation; (3) development of a technique for converting specific facility protection procedures into a format that will allow comparison with the working-level requirements; (4) development of an evaluation technique for comparing the facility protection procedures to determine if they meet the protection requirements

  20. A day in the life of a safeguards inspector

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2016-01-01

    Walking several miles through the winding, narrow corridors of a nuclear facility in protective gear while carrying heavy equipment, often escorted by facility operator personnel: welcome to the life of an IAEA safeguards inspector. Safeguards inspectors are an essential part of the global non-proliferation regime, carrying out verification activities, so the IAEA can provide assurances to States worldwide that other countries are not diverting nuclear material from peaceful to military purposes or misusing nuclear technology. One important activity is the inspection of declared stocks of nuclear material: the IAEA is the only organization in the world with the mandate to verify the use of nuclear material and technology globally.

  1. International safeguards 1979

    International Nuclear Information System (INIS)

    Fischer, D.

    1979-01-01

    First, the nature of the nuclear proliferation problem is reviewed. Afterward, the extent to which the risk of further horizontal proliferation of nuclear weapons is being contained by international agreements and by the application of the IAEA's safeguards under these agreements is investigated. The geographical scope of such safeguards, the gaps in safeguards coverage, and the political and technical effectiveness of such safeguards are examined. In conclusion, it is pointed out that IAEA safeguards are the cutting edge of almost every nonproliferation measure that has so far been applied or put forward. Safeguards would also play a part in any international scheme for limiting vertical proliferation. If the cutting edge of safeguards is blunted or if, for one reason or another, safeguards cannot be or are not being applied, the nonproliferation regime will suffer commensurate damage

  2. Safeguards and security design guidelines for conceptual monitored retrievable storage (MRS) facilities

    International Nuclear Information System (INIS)

    Byers, K.R.; Clark, R.G.; Harms, N.L.; Roberts, F.P.

    1984-07-01

    Existing safeguards/security regulations and licensing requirements that may be applicable to an MRS facility are not currently well-defined. Protection requirements consistent with the NRC-graded safeguards approach are identified, as a baseline safeguards system with a comparison of the impacts on safeguards and security of salient features of the different storage concepts. In addition, MRS facility design features and operational considerations are proposed that would enhance facility protection and provide additional assurance that protection systems and procedures would be effectively implemented. 3 figures

  3. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  4. Safeguarding uranium enrichment facilities. Review and analysis of the status of safeguards technology for uranium enrichment facilities

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this paper is to examine critically the diversion potential at uranium enrichment facilities and to outline a basic safeguards strategy which counters all identified hazards as completely as possible yet with a minimum of non-essential redundancy. Where existing technology does not appear to be adequate for effective safeguards, the limitations are examined, and suggestions for further R and D effort are made. Parts of this report are generally applicable to all currently known enrichment processes, while other parts are specifically directed toward facilities based on the gas centrifuge process. It is hoped that additional sections discussing a safeguards strategy for gas diffusion facilities can be added later. It should be emphasized that this is a technical report, and does not reflect any legal positions. The safeguards strategy and subsequent inspection procedures are intended as guidelines, not as negotiating positions

  5. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the present approach of the International Atomic Energy Agency (IAEA) to safeguarding various types of facilities in the nuclear fuel cycle, in the hope that it will serve as useful background material for several of the various working groups of the International Nuclear Fuel Cycle Evaluation (INFCE). The objectives and criteria of safeguards as well as the specific safeguards techniques which are utilized by the Agency, are addressed. In Part I, a general overview of safeguards as well as a discussion of procedures applicable to most if not all IAEA safeguarded facilities are included. Part II is broken down into specific facility types and focusses on the particular safeguards measures applied to them. Safeguards have reached different degrees of development for different types of facilities, in part because the Agency's experience in safeguarding certain types is considerably greater than for other types. Thus the Agency safeguards described herein are not static, but are continuously evolving. This evolution results not only from the fact that larger and more complex facilities have been coming under safeguards. Changes are also continually being introduced based on practical experience and research and development aimed at improving safeguards efficiency, reducing intrusiveness into plant operations, minimizing operator and inspector radiation exposure, and reducing subjective evaluations in determining the effectiveness of safeguards. To these ends, the technical support programmes of various countries are playing an important role. It is emphasized that this paper is not intended to evaluate the effectiveness of Agency safeguards or to highlight problem areas. It is simply aimed at providing a picture of what safeguards are or are planned to be at various stages of the fuel cycle

  6. A Comparative Study on Safeguards Implementation under Bilateral Nuclear Cooperation Agreements and the IAEA Comprehensive Safeguards Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jihye; Kim, Ki-Hyun; Lee, Young Wook [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    A Nuclear Cooperation Agreement (NCA) requires several conditions, so-called obligations, on the items under the agreement such as: 1) peaceful use, 2) retransfer consent, 3) consent prior to reprocessing or enrichment and 4) safeguards and security. These obligations of the NCAs are imposed by the supplier country. The Comprehensive Safeguards Agreement (CSA) between the International Atomic Energy Agency (IAEA) and its member states require similar activities. However, there is a significant gap in nuclear material accountancy between safeguards implementation under the NCA and CSA. The difference of those two frameworks is compared herein, focusing on the unique features of the NCA safeguards and its implications are presented. In this study, the NCAs between the ROK and Canada, Australia and US were analyzed since each of them is one of the ROK’s major nuclear trading partners. The safeguards implementation under the NCA is usually specified in an Administrative Arrangement (AA) under the Agreement. The ROK has two AAs in force with Canada and Australia among 29 countries with NCA. Recently, the AA with Canada was revised in December 2015, with those concepts mentioned above. The AA with the US is currently under discussion. Cooperation in nuclear energy between two countries could be further enhanced through reliable implementation of the NCA undertakings. Taking into account the unique features of the NCA, we need to establish effective strategy for fulfilling the obligation under the Agreement.

  7. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-01-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a track-etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have beeen developed and evaluated. These include a super-8 mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. The information provided by these different instruments should increase the effectiveness of Agency safeguards and, when used in combination with other measures, will facilitate inspection at reactor sites

  8. Safeguards and security progress report, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B. (comp.)

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments.

  9. Safeguards and security progress report, January-December 1984

    International Nuclear Information System (INIS)

    Smith, D.B.

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments

  10. The Site Approach - Lessons Learned from the Integrated Safeguards Approach for JNC-1

    International Nuclear Information System (INIS)

    Kikuchi, M.; Iso, S.; Tomine, K.; Hirato, Y.; Namekawa, M.; Takasugi, N.; Watanabe, M.; Tsutaki, Y.; Asano, T.; Nagatani, T.; Ninagawa, J.; Fujiwara, S.; Takahashi, S.; Kimura, T.; Kodani, Y.; Fukuhara, J.; Miyaji, N.; Kawakami, Y.; Koizumi, A.; Yamazaki, Y.; Nishinosono, S.; Sasaki, K.

    2010-01-01

    Integrated safeguards approaches for specific sites are recognized important elements in the design of a State-level approach under the concept of grouping facilities. Japan and the IAEA agreed further improvement of integrated safeguards implementation in effective and efficient manner, particularly at large complex nuclear sites in Japan. Japan and the IAEA developed the integrated safeguards approach for specific sites defined at Article 18 of Additional Protocol. In 2008, the IAEA started the three-year test implementation of JNC-1 site approach for improving the effectiveness and efficiency of the safeguards implementation of UDU material handling facilities. Japan and IAEA agreed to adopt the sector concept in order to make clear of subjected nuclear material to be verified. The sector is defined as spatial assignment that treats the same material stratum beyond MBAs in the site. The arrangement of MBAs and related material balance calculations as well as statistical analysis is maintained as a fundamental safeguards measure. At the boundaries of each sector, appropriate unattended NDA system and/or C/S system are installed, and material flows across the boundaries are verified by the system or attendance of resident inspectors. For inventory verification of the nuclear material stayed in sectors, an appropriate numbers of randomly scheduled inspections will be implemented. IAEA can access to the randomly selected sectors within 2 hours after notification. NRTA based on frequent operator's declaration will be performed for achievement of timeliness detection goal. The JNC-1 site approach has been implemented under the enhanced co-operation between the IAEA and SSAC through joint use of equipment and arrangements for DA analysis. Especially, national inspectors are working with IAEA together for coordination with operators. Because NMCC lab analyses all DA samples taken from facilities and the analysis results will be shared by the IAEA, certain numbers of DA

  11. Societal risk approach to safeguards design and evaluation

    International Nuclear Information System (INIS)

    Bennett, C.A.; Murphey, W.M.; Sherr, T.S.

    1975-06-01

    There has been much discussion and public debate concerning the effectiveness of the national system of safeguards against malevolent acts involving nuclear materials. Useful dialogue on this subject has been hampered by the lack of well-defined objectives, system parameters and boundary conditions as a framework for communication. This study provides such a framework. Expressing the safeguards objective in terms of societal risk represents a change in focus, rather than intent, from the earlier view of safeguards as a system for protecting nuclear material against theft or diversion. The study defines both the safeguards problem and the safeguards system in terms that can be related to the general safeguards objective. It is axiomatic that the first step to an effective solution is a careful definition of the problem. The significant and immediate value of this study lies in the rigorous definition and systematic organization of recognized elements into a coherent and comprehensive pattern. Although the title specifically addresses design and evaluation, the framework provided by the study will be a useful management tool for safeguards implementation and administration as well. (U.S.)

  12. IAEA preparations for the year 2000 compliance of safeguards information systems

    International Nuclear Information System (INIS)

    Smith, P.M.

    1999-01-01

    The year-2000 (Y2K) problem affects both information systems and equipment systems. This paper describes the work which has been done, and is currently underway, to make the information systems of the Department of Safeguards year-2000 compliant. (author)

  13. Computer-based safeguards information and accounting system

    International Nuclear Information System (INIS)

    1977-01-01

    Acquiring, processing and analysing information about inventories and flow of nuclear materials are essential parts of IAEA safeguards. Safeguards information originates from several sources. The information to be provided is specified in the various safeguards agreements between the States and the IAEA, including both NPT agreements and safeguards trilateral agreements. Most of the safeguards information currently received by the IAEA is contained in accounting reports from the States party to the NPT. Within the frame of the material balance concept of NPT, three types of reports are provided to the IAEA by the States: Physical Inventory Listings (PIL); Inventory Change Reports (ICR); Material Balance Reports (MBR). In addition, facility design information is reported when NPT safeguards are applied and whenever there is a change in the facility or its operation. Based on this data, an accounting system is used to make available such information as the book inventories of nuclear material as a function of time, material balance evaluations, and analysis of shipments versus receipts of nuclear material. A second source of NPT safeguards information is the inspection activities carried out in the field as a necessary counterpart for verification of the data presented by the States in their accounting reports. The processing of inspection reports and other inspection data is carried out by the present system in a provisional manner until a new system, which is under development is available. The major effort currently is directed not to computer processing but toward developing and applying uniform inspection procedures and information requirements. A third source of NPT safeguards information is advanced notifications and notifications of transfer of source materials before the starting point of safeguards. Since, however, the States are not completely aware of the need and requirement to provide these data, this is a point to be emphasized in future workshops and

  14. Nuclear regulatory policy concept on safety, security, safeguards and emergency preparedness (3S+EP)

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2009-01-01

    Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. By undertaking proper regulatory oversight on Safety, Security and Emergency Preparedness (3S+EP) as an integrated and comprehensive system, safe and secure use of nuclear energy can be assured. Licence requirements and conditions should fulfil regulatory requirements pertaining to 3S+EP for nuclear installation as an integrated system. An effective emergency capacity that can be immediately mobilized is important. The capacity in protecting the personnel before, during and after the disaster should also be planned. Thus, proper emergency preparedness should be supported by adequate resources. The interface between safety, security, safeguards and emergency preparedness has to be set forth in nuclear regulations, such as regulatory requirements; 3S+EP; components, systems and structures of nuclear installations and human resources. Licensing regulations should stipulate, among others, DIQ, installations security system, safety analysis report, emergency preparedness requirements and necessary human resources that meet the 3S+EP requirements.

  15. The structure of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1989-01-01

    Safeguards systems for facilities that handle special nuclear material combine procedural, protective, and materials accounting elements to prevent and/or detect sabotage and diversion or theft of material. Because most of the discussion in this course is devoted to materials accounting topics only, this chapter provides a brief introduction to some of the procedural and protective elements of safeguards systems, placing the materials accounting system in its proper context. The chapter begins by reviewing certain pertinent DOE definitions and then surveys some protection requirements and technology - protective personnel, personnel identification systems, barriers, detectors, and communication systems. Considered next are the procedures of personnel selection and monitoring, definition and division of job functions, and operation. The chapter then describes the way the procedural, protective, and materials accounting elements can be combined, becoming a total safeguards system. Although such a system necessarily requires elements of procedure, protection, and materials accounting, only the materials accounting gives positive assurance that nuclear material is not diverted or stolen

  16. Nuclear material data management and integration. A safeguard perspective

    International Nuclear Information System (INIS)

    Wilkey, David D.; Martin, H.R.; O'Leary, Jerry

    1999-01-01

    This paper is a discussion of the use of available data in the performance of nuclear material (NM) safeguards. The discussion considers the various sources of data and system requirements for collecting and managing that data, and is preliminary concerned with domestic safeguards requirements such as those specified by the US Department of Energy. The preferred configuration for integrated data management does not necessarily require a single computer system; however, separate computerized systems with direct inter-system connections is preferred. Use of all relevant data NM accounting, NM control, physical protection, and non-safeguards) is necessary to assure the most effective protection for the NM inventories. Where direct exchange of data is not possible, a systematic program to implement indirect exchange is essential [ru

  17. The role of IAEA Safeguards in connection with nuclear trade

    International Nuclear Information System (INIS)

    Imai, R.

    1977-01-01

    IAEA safeguards is one of the means to prevent proliferation of military and/or explosive utilization of nuclear material. As such; safeguards can be a potent instrument, and its characteristics are primarily technical. Other means may include; a) political incentives which make possession of nuclear weapons unnecessary and undescribable; b) an extent of trade restrictions regarding certain sensitive material, equipment and technology; and c) accompanying requirements of physical protection. Peaceful nuclear industry has an aspect which naturally calls for international exchange. The technology itself represents one of the most advanced in our times, and therefore, should be shared throughout the world. Uranium resources of economic grades are found only in a limited number of countries. Many of the components of the industry, including reactor manufacture and fuel cycle, are very capital-intensive and technology-intensive, so that it would be natural that a relatively limited number of manufacturing or processing capabilities should serve the rest of the world. It is useful to look at the existing pattern of nuclear trade, as well as to forecast the effects of increasing trade volume. Regarding technology, the problem divides itself into three in order that safeguards should be effective and non-intrusive. There is a need to decrease international shipper/receiver difference by means of containment/surveillance as well as quick and accurate reporting. Obviously, its effectiveness will be maximized if all the world's trading partners should participate in a system of coordination. Improving technical effectiveness of safeguards is very important, once nuclear material is in a country. Thirdly, in addition to nuclear material accountancy, new techniques may be employed to recognize characteristic patterns of a nations's nuclear activities, or deviation from such a pattern. Tracing nuclear trade might become important input to such an analysis

  18. Integrated safeguards and security for the INEL Special Isotope Separation Plant

    International Nuclear Information System (INIS)

    Warner, G.F.; Zack, N.R.

    1990-01-01

    This paper describes the development of the safeguards and security system that was to be used for the Special Isotope Separation (SIS) Production Plant. The US Department of Energy has postponed the construction of the SIS Plant that was to be built at the Idaho National Engineering Laboratory (INEL) site near Idaho Falls, Idaho. The Plant was designed to produce weapons grade plutonium from DOE owned fuel grade plutonium by converting off-spec. plutonium dioxide into metal buttons that would meet required chemical and isotopic specifications. Because this was to be a completely new facility there was a unique opportunity to provide an in-depth, ''state-of-the- art'' safeguards and security system without attempting to overlay upon an existing, older system. This facility was being designed to be in complete compliance with the new DOE Orders by integrating safeguards and security into the plant operating system and by providing graded protection to the areas of varying sensitivity within the plant

  19. Oak Ridge National Laboratory Next-Generation Safeguards Initiative: Human Capital Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, Kimberly [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    In 2007, the US Department of Energy National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined: trends and events that have an effect on the mission of international safeguards; the implications of expanding and evolving mission requirements of the legal authorities and institutions that serve as the foundation of the international safeguards system; and, the technological, financial, and human resources required for effective safeguards implementation. The review’s findings and recommendations were summarized in the report International Safeguards: Challenges and Opportunities for the 21st Century (October 2007). The executive summary is available at the following link: http://nnsa.energy.gov/sites/default/files/nnsa/inlinefiles/NGSI_Report.pdf.

  20. Nuclear Security and Nuclear Safeguards; Differences, Commonalities and Synergies

    International Nuclear Information System (INIS)

    Jorant, C.

    2015-01-01

    Reference to the three S's in the nuclear world is recurring and much has been said about the need to build on synergies to reinforce safeguards, safety and security. In practice, the 3S's communities are seldom interconnected even though some interaction can be observed between safety and security and security and safeguards. Ensuring a better understanding between those three sectors about their scope, requirements, implementation methods and tools would stimulate cooperation. The second Nuclear Security Summit and particularly the industry related event stressed the synergies between safety and security. The first IAEAs Security Conference organized in July 2013 did not address specifically nuclear safeguards and security relations. Last Security Summit took place in The Hague in March 2014 and this type of issue was not really raised either. The safeguards Symposium provides a timely opportunity to tackle possible enhanced cooperation between safeguards and security communities and assess the prospect for addressing such issue at the next and allegedly last security summit in 2016. This presentation will analyze the differences and commonalities between those two sectors, in particular with regards to the objectives and actors, the organization and technicalities, or to the conceptual approaches (DBT and APA/SLC, attractiveness/accessibility). It will then assess the possible synergies or cooperation between both communities. It will discuss the merits of a global and comprehensive involvement of the different actors, (State, industry and international bodies including the NGOs) and of exchanges on good practices to contribute to a common understanding and references while allowing for an adaptable and national approach. Indeed the need to reassure the stakeholders, including the general public, that security, as well as safeguards are addressed in a consistent manner worldwide is of utmost importance for building future nuclear energy programmes on a

  1. 30 CFR 77.1707 - First aid equipment; location; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid equipment; location; minimum... OF UNDERGROUND COAL MINES Miscellaneous § 77.1707 First aid equipment; location; minimum requirements. (a) Each operator of a surface coal mine shall maintain a supply of the first aid equipment set forth...

  2. Safeguards approach for conditioning facility for spent fuel

    International Nuclear Information System (INIS)

    Younkin, J.M.; Barham, M.; Moran, B.W.

    1999-01-01

    effectively and efficiently in safeguarding spent fuel conditioning facilities. The model approach can be tailored to specific facilities by selecting from the safeguards measures those that best apply to the given facility. The measures that collectively comprise the model safeguards approach were presented by operational activity within the generic conditioning facility. (author)

  3. CASDAC system: Data Terminal Equipment user's guide

    International Nuclear Information System (INIS)

    Yamamoto, Yoichi; Koyama, Kinji

    1993-03-01

    The CASDAC (Containment And Surveillance Data Authenticated Communication) system has been developed by JAERI for nuclear safeguards and physical protection of nuclear material. This system is a remote monitoring system for continual verification of security and safeguards status of nuclear material. The CASDAC system consists of two subsystems, one of them is a Grand Command Center (GCC) subsystem and the other is a facility subsystem. This report describes the outline and usage of the Data Terminal Equipment (DTE), which makes available of message data communication between the GCC and a facility subsystem. This work has been carried out in the framework of Japan Support Programme for Agency Safeguards (JASPAS) as a project, JA-1. (author)

  4. Safeguards

    International Nuclear Information System (INIS)

    Carchon, R.

    1998-01-01

    Safeguards activities at the Belgian Nuclear Research Centre SCK/CEN answer internal needs, support the Belgian authorities, and support the IAEA. The main objectives of activities concerning safeguards are: (1) to contribute to a prevention of the proliferation of nuclear materials by maintaining an up-to-date expertise in the field of safeguards and providing advice and guidance as well as scientific and technical support to the Belgian authorities and nuclear industry; (2) to improve the qualification and quantification of nuclear materials via nondestructive assay. The main achievements for 1997 are described

  5. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    International Nuclear Information System (INIS)

    Gunning, John E.; Laughter, Mark D.; March-Leuba, Jose A.

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  6. 47 CFR 15.305 - Equipment authorization requirement.

    Science.gov (United States)

    2010-10-01

    ... Section 15.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unlicensed Personal Communications Service Devices § 15.305 Equipment authorization requirement. PCS devices... 2 of this chapter before marketing. The application for certification must contain sufficient...

  7. Radiological equipment analyzed by specific developed phantoms and software

    International Nuclear Information System (INIS)

    Soto, M.; Campayo, J. M.; Mayo, P.; Verdu, G.; Rodenas, F.

    2010-10-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be computerized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In case of film-screen equipment s this analysis could be applied digitalising the image in a professional scanner. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment s. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment s and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques... etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (m As). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (Author)

  8. Radiological equipment analyzed by specific developed phantoms and software

    Energy Technology Data Exchange (ETDEWEB)

    Soto, M.; Campayo, J. M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, Local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Mayo, P. [TITANIA Servicios Tecnologicos SL, Sorolla Center, Local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Verdu, G.; Rodenas, F., E-mail: m.soto@lainsa.co [ISIRYIM Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain)

    2010-10-15

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be computerized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In case of film-screen equipment s this analysis could be applied digitalising the image in a professional scanner. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment s. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment s and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques... etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (m As). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (Author)

  9. An analysis of USMC heavy construction equipment (HCE) requirements

    OpenAIRE

    Blaxton, Allen C.; Fay, Michael J.; Hansen, Cheryl M.; Zuchristian, Christopher M.

    2003-01-01

    MBA Professional Report Approved for public release; distribution is unlimited. According to I and L, HQMC, the Marine Corps needs to re-evaluate current operational requirements for engineer construction equipment. Acquisition and force allocation levels for equipment have remained essentially at constant 1970's, Cold War levels. Because acquisition and allocation levels haven't changed at the same rate as personnel, there is a perception that much of the existing equipment is unnecess...

  10. Nuclear safeguards - a system in transition

    International Nuclear Information System (INIS)

    Carlson, J.

    1999-01-01

    'Classical' safeguards have a strong emphasis on nuclear materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - what has been termed the correctness of States' declarations. Following the Gulf War, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognised as a major shortcoming in the classical safeguards system, and major changes are in progress to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the IAEA's authority, and there has been good progress in developing the new approaches and technologies required to ensure this authority is used effectively. IAEA safeguards are undergoing a major transition, towards greater emphasis on information collection and analysis, diversity of verification methods, incorporation of more qualitative judgments, and improved efficiency. These changes present major challenges to the IAEA and to the international community, but the end result will be a more effective safeguards system

  11. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together

  12. Safeguards in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J.

    2010-01-01

    The former Czechoslovakia acceded to the Non-Proliferation Treaty in 1968. Based on requirements of the Safeguard Agreement the State System of Accounting for and Control of nuclear material has been established. After dissolution of Czechoslovakia the Slovak Republic succeeded to the Safeguards Agreement. As a regulator the Nuclear Regulatory Authority of the Slovak Republic (UJD) has been constituted. After European Union (EU) accession EU legislation became valid in the Slovak republic. Atomic Law No. 541/2004 Coll. on Peaceful Use of Nuclear Energy adopts this legislation. In the frame of strengthening the IAEA safeguards an implementation of the Protocol Additional became actual. The Protocol Additional was signed by the government of the Slovak Republic in September 1999. On 1 December 2005 safeguards agreement INFCIRC/193 including the relevant Additional Protocol entered into force. As an instrument supporting non-proliferation of nuclear weapons a control of export/import of nuclear material, nuclear related and dual-use material following the EC regulation 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual use items. The execution of accountancy and control of nuclear material inspection activities has been considerably influenced by the implementation of integrated safeguards, implemented in the Slovak Republic on 1 September 2009. The aim of mentioned integrated safeguards regime is to decrease the amount and difficulty of inspections. At the same time the possibility of accountancy and control of nuclear material inspections announced 24 hours in advance took effect. The execution of Protocol Additional inspections remains the same. Additionally to international safeguards system UJD has kept the national safeguards system which observes all nuclear material on the territory of the Slovak Republic. The government of the Slovak Republic plays active role within activities of the NSG

  13. Safeguards and Security by Design (SSBD) for Small Modular Reactors (SMRs) through a Common Global Approach

    Energy Technology Data Exchange (ETDEWEB)

    Badwan, Faris M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Michael Conrad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pshakin, Gennady [Obninsk Institute of Physics and Power Engineering (Russian Federation)

    2015-02-23

    Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fully integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may

  14. Safeguards and Security by Design (SSBD) for Small Modular Reactors (SMRs) through a Common Global Approach

    International Nuclear Information System (INIS)

    Badwan, Faris M.; Demuth, Scott Francis; Miller, Michael Conrad; Pshakin, Gennady

    2015-01-01

    Small Modular Reactors (SMR) with power levels significantly less than the currently standard 1000 to 1600-MWe reactors have been proposed as a potential game changer for future nuclear power. SMRs may offer a simpler, more standardized, and safer modular design by using factory built and easily transportable components. Additionally, SMRs may be more easily built and operated in isolated locations, and may require smaller initial capital investment and shorter construction times. Because many SMRs designs are still conceptual and consequently not yet fixed, designers have a unique opportunity to incorporate updated design basis threats, emergency preparedness requirements, and then fully integrate safety, physical security, and safeguards/material control and accounting (MC&A) designs. Integrating safety, physical security, and safeguards is often referred to as integrating the 3Ss, and early consideration of safeguards and security in the design is often referred to as safeguards and security by design (SSBD). This paper describes U.S./Russian collaborative efforts toward developing an internationally accepted common approach for implementing SSBD/3Ss for SMRs based upon domestic requirements, and international guidance and requirements. These collaborative efforts originated with the Nuclear Energy and Nuclear Security working group established under the U.S.-Russia Bilateral Presidential Commission during the 2009 Presidential Summit. Initial efforts have focused on review of U.S. and Russian domestic requirements for Security and MC&A, IAEA guidance for security and MC&A, and IAEA requirements for international safeguards. Additionally, example SMR design features that can enhance proliferation resistance and physical security have been collected from past work and reported here. The development of a U.S./Russian common approach for SSBD/3Ss should aid the designer of SMRs located anywhere in the world. More specifically, the application of this approach may

  15. The impact of customer-specific requirements on supply chain management

    Directory of Open Access Journals (Sweden)

    Hubert I.P. Conceivious

    2010-11-01

    Full Text Available The complexities of being a supplier to motorcar manufacturers, also known as original equipment manufacturers (OEMs, provide an array of challenges to component manufacturers. Customer-specific requirements (CSRs add to the convolutions of a supplier’s quality management systems when producing components for the various motor manufacturers. The catalytic converter industry (CCI forms part of the component supply chain in the motor industry. The CCI consists of a plethora of suppliers to produce the catalytic converter. This paper focuses on three of the five main suppliers, namely the ‘monolith substrate manufacturers’, the ‘coaters’, and the ‘canners’. Most OEMs required that critical and strategic suppliers should be ISO/TS 16949:2009 certified. ISO/TS 16949:2009 refers to an internationally recognised specification, specifically adapted for the motor industry. The specification indicates the minimum requirements and also makes provision for additional requirements known as CSRs that can be specified by the OEM.

  16. Non-proliferation and safeguards in South Africa

    International Nuclear Information System (INIS)

    Broodryk, Alta

    2001-01-01

    ; Control of non-conforming products; Corrective Action; and Preventative Action. The following instructions were prepared to ensure that the IAEA expectations were met and that the products conform to the requirements as specified: Completion of Design Information Questionnaires; MBA-KMP Structure; Completion of Accounting Reports and Related Document; Planning and Conducting of Inspections; Physical Inventory Taking and Verification; Measurement System and Measurement Control Programme; Shipper / Receiver Differences; Material Unaccounted For. Technical Specifications were also prepared to define requirements regarding the supply of support systems, infrastructure and facilities to ensure the successful implementation of monitoring systems. The objective of these procedures, instructions and specifications is to provide assurance to the Safeguards Division that it can state, with a high level of confidence, that the information and products provided to the IAEA are formally and physically correct and that no diversion of significant quantities of nuclear material occurred. Benchmarking is a good method to measure the performance of the SSAC and to enhance continual improvement. Therefore one of the objectives is to measure South Africa's SSAC's performance against that of other member states

  17. Panel on protection and management of plutonium: Subpanel on safeguards and security

    International Nuclear Information System (INIS)

    Tape, J.W.

    1995-01-01

    Nuclear materials safeguards and security systems are described in the context of the nuclear nonproliferation regime. Materials of interest to safeguards, threats, proposals to strengthen International Atomic Energy Agency safeguards, evolving safeguards issues and requirements, system effectiveness, and elements of a global nuclear materials management regime are discussed. Safeguards are seen as an essential element of nuclear materials management, but not a driver for decisions regarding nuclear power or the disposal of excess weapon nuclear materials

  18. Equipment design guidance document for flammable gas waste storage tank new equipment

    International Nuclear Information System (INIS)

    Smet, D.B.

    1996-01-01

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas

  19. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  20. Investigation of novel spent fuel verification system for safeguard application

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source

  1. Containment and Surveillance Equipment Compendium

    International Nuclear Information System (INIS)

    Luetters, F.O.

    1980-02-01

    The Containment and Surveillance Equipment Compendium contains information sections describing the application and status of seals, optical surveillance systems, and monitors for international safeguards systems. The Compendium is a collection of information on equipment in use (generally by the IAEA) or under development in the US in diverse programs being conducted at numerous facilities under different sponsors. The Compendium establishes a baseline for the status and applications of C/S equipment and is a tool to assist in the planning of future C/S hardware development activities. The Appendix contains design concepts which can be developed to meet future goals

  2. Material control and accounting at a CANDU reactor: the instrumented safeguards scheme

    International Nuclear Information System (INIS)

    Stirling, A.J.; Payne, E.

    1985-01-01

    While CANDU reactors differ from LWRs quite markedly in the way they operate, the principles of materials accounting and safeguards are equally applicable. Indeed, since CANDU fuel is not reprocessed, the relatively simple procedure of item accounting is sufficient for CANDUs. However, on-power refueling means that automatic item counting is needed to independently confirm operator records. Surveillance and sealing techniques for spent fuel are needed for a practical system. The equipment developed has allowed the IAEA to apply safeguards at reasonable cost and with minimal interference to the utility operating the station

  3. Promoting Safeguards Best Practice through the Asia-Pacific Safeguards Network (APSN)

    International Nuclear Information System (INIS)

    Floyd, R.; Everton, C.; Lestari, S.

    2015-01-01

    There is a growing international focus on effective regulatory oversight of nuclear energy across the three pillars of nuclear safety, security and safeguards. Regarding nuclear safeguards, States in the Asia-Pacific region recognize the importance of cooperation and sharing of experiences to ensure that this is implemented to high international standards. For this reason the Asia-Pacific Safeguards Network (APSN) was formed in 2009 - an informal network of departments, agencies and regulatory authorities with safeguards responsibilities from some 15 countries across the Asia-Pacific region. The objective of APSN it to bring States in the region together to develop practical measures for enhancing effective safeguards implementation, through workshops, sharing experiences and other safeguards projects. APSN works closely with the IAEA to achieve these objectives. This paper will outline the role and objectives of APSN and provide examples of how APSN work together to enhance safeguards effectiveness and raise awareness. The paper will also explore how this model of a broad community of States working together on safeguards could enhance implementation and awareness in other regions of the world. (author)

  4. IAEA's Safeguards Implementation Practices Guides

    International Nuclear Information System (INIS)

    Mathews, C.; Sahar, S.; Cisar, V.

    2015-01-01

    Implementation of IAEA safeguards benefits greatly from effective cooperation among the IAEA, State or regional authorities (SRAs), and operators of facilities and other locations. To improve such cooperation, the IAEA has produced numerous safeguards guidance documents in its Services Series publications. The IAEA also provides assistance, training and advisory services that are based on the published guidance. The foundation of the IAEA's safeguards guidance is the Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (IAEA Services Series 21) published in March of 2012. The large majority of States have concluded CSAs and therefore will benefit from this guidance. Many States with CSAs also have concluded small quantities protocols (SQPs) to their CSAs. In April of 2013, the IAEA published the Safeguards Implementation Guide for States with SQPs (IAEA Services Series 22). Other guidance focuses on specific topics such as preparing additional protocol declarations and nuclear material accounting. This paper will describe a recent effort to produce a ''Safeguards Implementation Practices'' (SIP) series of guides that will provide additional explanatory information about safeguards implementation, and share the practical experiences and lessons learned of States and the IAEA over the many decades of implementing safeguards. The topics to be addressed in four SIP guides include: 1) Facilitating IAEA Verification Activities; 2) Establishing and Maintaining State Safeguards Infrastructure; 3) Provision of Information to the IAEA; and 4) Collaborative Approaches to Safeguards Implementation. The SIP Guides build upon the content of IAEA Services Series 21. Because the SIP Guides are intended to share implementation practices and lessons learned of States, a number of experienced State experts have participated in the development of the documents, through a joint Member State Support Programme task

  5. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Holzemer, Michael; Carvo, Alan

    2012-01-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC and A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S and S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

  6. Study on the development of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Song, D. Y.; So, D. S.; Kwak, E. H. [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this paper, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described.

  7. Safeguards and security progress report, January-December 1985

    International Nuclear Information System (INIS)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  8. Safeguards and security progress report, January-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  9. Nuclear Resonance Fluorescence for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, Bernhard A; Quiter, Brian J; Ambers, Scott D

    2011-02-04

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment

  10. Fundamentals of materials accounting for nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. (comp.)

    1989-04-01

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

  11. The 50 Years of Safeguards and Non-Proliferation in Poland

    International Nuclear Information System (INIS)

    Pawlak, A.; Jurkowski, M.; Zagrajek, M.

    2015-01-01

    Milestones of safeguards and non-proliferation activities are presented. Poland has declared its compliance with non-proliferation regime by ratification of Treaty of Nonproliferation of Nuclear Weapons in 1969. Poland concluded in 1972 Agreement with IAEA for application of safeguards — INFCIRC/153. Next steps in implementation of international safeguards were: ratification of Additional Protocol and introduction of Integrated Safeguards. After accession to European Union, Poland fulfils its safeguards obligations according to following international legal instruments: Treaty establishing Euratom, Agreement between Poland, European Commission and International Atomic Energy Agency in connection with implementation of Article III of Treaty of Non-proliferation of Nuclear Weapons — INFCIRC/193 and Additional Protocol to this Agreement — INFCIRC/193 Add.8. Detailed safeguards requirements are established by domestic Act of Parliament of 29th November 2000 — Atomic law and European Union's Regulations of Commission (Euratom) No 302/2005 on application of Euratom safeguards and the Commission Recommendation on guidelines for the application of Regulation (Euratom) No 302/2005. SSAC was established in 1972 as required by CSA. Activities related to accounting for and control of nuclear material were conducted from 1970s till 1990s by Central Laboratory for Radiological Protection and National Inspectorate for Radiation and Nuclear Safety. Currently, NAEA is responsible for collecting and maintenance of accounting data and safeguards inspections at all MBAs. Around 30 routine inspections/year are performed by the NAEA, Euratom and IAEA. In addition, usually 2 unannounced inspections/year under framework of Integrated Safeguards are conducted. In accordance with implementation of Global Threat Reduction Initiative seven shipments of high enriched nuclear fuel from research reactor to Russian Federation under supervision of safeguards inspectors from NAEA

  12. Evolution of general design requirements for french pressurized water reactors

    International Nuclear Information System (INIS)

    Gros, G.; Jalouneix, J.; Rollinger, F.

    1988-10-01

    The design of French pressurized water reactors is based first on deterministic principles, using the well-known defense in depth concept. This safety approach, basically reflected current American practice at that time, which consisted notably in designing engineered safeguard systems capable of limiting the consequences of accidents assumed to be credible despite the preventive measures taken. Further reflections have led to complete this approach, resulting in modifications to regulatory practice, mainly related to better practical assimilation of the problems arising during plant unit operation and reactor control after an accident and to the determination to enhance the overall consistency of the safety approach. As regards system redundancy, it should be noted that common cause failures can result in the total loss of a redundant system. System redundancy aspects will be dealt with in Chapter 2. As regards study of design basis accidents, attention was focused on the human intervention stage following automatic activation of protection and safeguard systems. This resulted, for all plant units, in the revision of operating procedures, accompanied by examination of the means required for their implementation. These subjects will be discussed in Chapter 3. Finally, as regards equipment classification, the range of equipment subjected to particular requirements, formerly limited to design basis safety classified equipment, was enlarged to include important for safety equipment. This subject will be dealt with in Chapter 5

  13. Safeguards-By-Design: Guidance and Tools for Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schanfein; Shirley Johnson

    2012-02-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  14. Safeguards-By-Design: Guidance and Tools for Stakeholders

    International Nuclear Information System (INIS)

    Schanfein, Mark; Johnson, Shirley

    2012-01-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  15. Review of potential technology contributions to safeguards

    International Nuclear Information System (INIS)

    Sellers, T.A.

    1977-01-01

    Separate, uncoordinated approaches to nuclear facility safeguards such as physical security and accounting are no longer adequate. A comprehensive, integrated strategy for improved in-depth protection of nuclear facilities with acceptable operational impact is needed. The safeguards system concept, analysis techniques, and hardware required to implement such a strategy are presented in this paper. Handbooks for intrusion detection, entry control systems, barrier, etc. are described briefly. 17 figures

  16. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  17. Achieving the Benefits of Safeguards by Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Hebditch, David; Morgan, Jim; Meppen, Bruce; DeMuth, Scott; Ehinger, Michael; Hockert, John

    2008-01-01

    The overarching driver for developing a formalized process to achieve safeguards by design is to support the global growth of nuclear power while reducing 'nuclear security' risks. This paper discusses an institutional approach to the design process for a nuclear facility, for designing proliferation resistance, international safeguards and U.S. national safeguards and security into new nuclear facilities. In the United States, the need exists to develop a simple, concise, formalized, and integrated approach for incorporating international safeguards and other non-proliferation considerations into the facility design process. An effective and efficient design process is one which clearly defines the functional requirements at the beginning of the project and provides for the execution of the project to achieve a reasonable balance among competing objectives in a cost effective manner. Safeguards by Design is defined as 'the integration of international and national safeguards, physical security and non-proliferation features as full and equal partners in the design process of a nuclear energy system or facility,' with the objective to achieve facilities that are intrinsically more robust while being less expensive to safeguard and protect. This Safeguards by Design process has been developed such that it: (sm b ullet) Provides improved safeguards, security, and stronger proliferation barriers, while reducing the life cycle costs to the operator and regulatory agencies, (sm b ullet) Can be translated to any international context as a model for nuclear facility design, (sm b ullet) Fosters a culture change to ensure the treatment of 'nuclear security' considerations as 'full and equal' partners in the design process, (sm b ullet) Provides a useful tool for the project manager responsible for the design, construction, and start-up of nuclear facilities, and (sm b ullet) Addresses the key integration activities necessary to efficiently incorporate International Atomic

  18. Safeguards effectiveness evaluations in safeguards planning

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.

    1987-01-01

    This paper describes analytic tools we developed to quantify the effectiveness of safeguards against theft of special nuclear material by insiders. These tools help identify vulnerabilities in existing safeguards, suggest potential improvements, and help assess the benefits of these upgrades prior to implementation. Alone, these tools are not sufficient for safeguards planning, since the cost of implementing all suggested upgrades almost always exceeds the available resources. This paper describes another tool we developed to allow comparsion of benefits of various upgrades to identify those upgrade packages that achieve the greatest improvement in protection for a given cost and to provide a priority ranking among cost-effective packages, thereby helping decision-makers select the upgrades to implement and highlight the mount of residual risk. 5 refs., 3 figs

  19. 22 CFR 135.32 - Equipment.

    Science.gov (United States)

    2010-04-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  20. 21 CFR 1403.32 - Equipment.

    Science.gov (United States)

    2010-04-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  1. 45 CFR 602.32 - Equipment.

    Science.gov (United States)

    2010-10-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  2. 49 CFR 18.32 - Equipment.

    Science.gov (United States)

    2010-10-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  3. 34 CFR 80.32 - Equipment.

    Science.gov (United States)

    2010-07-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  4. 10 CFR 600.232 - Equipment.

    Science.gov (United States)

    2010-01-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  5. 45 CFR 1183.32 - Equipment.

    Science.gov (United States)

    2010-10-01

    ... specifically permitted or contemplated by Federal statute. (4) When acquiring replacement equipment, the...) Management requirements. Procedures for managing equipment (including replacement equipment), whether... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no...

  6. Nuclear Safeguards Culture

    International Nuclear Information System (INIS)

    Findlay, T.

    2015-01-01

    The paper will consider safeguards culture both at the IAEA and among member states. It will do so through the lens of organizational culture theory and taking into account developments in safeguards since the Iraq case of the early 1990s. The study will seek to identify the current characteristics of safeguards culture and how it has evolved since the 93+2 programme was initiated, as well as considering the roles of the most important purveyors of such culture, including member states and their national safeguards authorities, the General Conference and Board of Governors, the Director General, the Secretariat as a whole, the Safeguards Department and the inspectorate. The question of what might be an optimal safeguards culture at the Agency and among member states will be investigated, along with the issue of how such a culture might be engendered or encouraged. (author)

  7. Middle term prospects for Japan's safeguards

    International Nuclear Information System (INIS)

    Ogawa, T.

    2001-01-01

    Japan has responded to IAEA requirements on reinforced safeguard regulations. The IAEA additional protocol entered in force in Japan on December 1999. Japan submitted a preliminary information report to IAEA on June 2000 after joint works with the Nuclear Material Control Center (NMCC) of Japan. The first annual report was submitted to IAEA on May 2001. Another activity for the additional protocol is complementary accesses. The total 36 accesses to facilities have been done from November 2000 to September 2001. Procedures of access to managements are under discussion. MEXT (Ministry of Education, Culture, Sports, Science and Technology) has been constructing the Rokkasho Safeguards On-Site Laboratory from 1997, and the Rokkasho Safeguards Center from 2000. The Design Information Verification (DIV) is now ongoing. Much more personal resources will be needed for future inspections. Therefore, the budget for safeguards is increasing in contrast to the flat base budget for the total atomic energy. As for future activity, a MOX (Mixed Oxide Fuels) fuel processing plant is one of the issues for discussion. The construction of the MOX processing plant is supposed to begin on around 2004. The conclusion of additional protocol will be given by IAEA until end of 2002. Shift to integrated safeguards are under discussions by MEXT, NMCC and utilities of Japan parallel with IAEA. Key issues of discussion are cost saving for safeguards, development of personal resources for inspectors and the role of NMCC. (Y. Tanaka)

  8. Office of Safeguards and Security - Operational Interface

    International Nuclear Information System (INIS)

    Hammond, G.A.

    1987-01-01

    The mission of the Office of Safeguards and Security (OSS), Department of Energy (DOE) is to: Develop policy and programs to protect DOE facilities, nuclear materials, and classified information; Provide oversight for safeguards and security operations; Direct research and development (RandD) to support the protection program; and Strengthen international safeguards in support of nonproliferation policy. Objectives are to maintain an integrated safeguards and security system that is effective against a wide range of threats, and do so in a manner to minimize impacts on facility operation. Implementation is the responsibility of field offices and contractors operating DOE facilities. The OSS-operational interface is the focus of this discussion with emphasis on RandD to meet user needs. The scope and project selection process will be discussed along with information required for evaluation, and field operational planning and budgeting commitments to permit implementation of successful RandD results

  9. The future of IAEA safeguards: challenges and responses

    International Nuclear Information System (INIS)

    Pilat, Joseph F.; Budlong-Sylvester, Kory W.

    2011-01-01

    For nearly two decades, the International Atomic Energy Agency (lAEA) has been transforming its safeguards system to address the challenges posed by undeclared nuclear programs, the associated revelation of an extensive non-State nuclear procurement network and other issues, including past limits to its verification mandate and the burden of noncompliance issues. Implementing the new measures, including those in the Additional Protocol, and integrating new and old safeguards measures, remains a work in progress. Implementation is complicated by factors including the limited teclmological tools that are available to address such issues as safeguarding bulk handling facilities, detection of undeclared facilities/activities, especially related to enrichment, etc. As this process continues, new challenges are arising, including the demands of expanding nuclear power production worldwide, so-called safeguards by design for a new generation of facilities, the possible IAEA role in a fissile material cutoff treaty and other elements of the arms control and disarmament agenda, the possible role in 'rollback' cases, etc. There is no doubt safeguards will need to evolve in the future, as they have over the last decades. In order for the evolutionary path to proceed, there will inter alia be a need to identify technological gaps, especially with respect to undeclared facilities, and ensure they are filled by adapting old safeguards technologies, by developing and introducing new and novel safeguards teclmologies and/or by developing new procedures and protocols. Safeguards will also need to respond to anticipated emerging threats and to future, unanticipated threats. This will require strategic planning and cooperation among Member States and with the Agency. This paper will address challenges to IAEA safeguards and the technological possibilities and R and D strategies needed to meet those challenges in the context of the forty-year evolution of safeguards, including the

  10. Understanding national and international safeguards: an evolutionary process

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    1983-01-01

    Domestic and international safeguards have been evolving and will continue to evolve. in the case of the United States, the concern was to protect the classified materials, at first. Then attention focussed on material accounting, then on measures to promptly detect theft by individuals with access, and later on physical protection to ward-off armed terrorists. The objective of the IAEA has always been to provide assurance that nuclear materials are not being diverted from the peaceful facilities that are under safeguards. The evolution has taken place in deciding how to provide this assurance, and in the definition of specific safeguards goals. In both cases the technology needed to meet the goals has improved due to R and D and to experience. A plea is made for more cooperation betwen those who develop and manage the policies, those who develop safeguards techniques, and those who are subject to national and IAEA safeguards. Some illustrations of the evolution of policies, inadequate coordination and general progress are given

  11. Performance results from the first integrated NDA VXI safeguards system

    International Nuclear Information System (INIS)

    Bot, D.; Messner, R.

    1999-01-01

    The VIFM system is the first integrated safeguard system to be developed and deployed by the IAEA. The system is also noteworthy in that it is the most versatile of any NDA system thus far deployed. Due to the high level of functionality, the VIFM is probably the most 'tested' of all IAEA systems. This paper discusses the results obtained from detailed in field and laboratory testing of a variety of VIFM configurations ranging from simple single systems to highly integrated system implementations. A total of 4 sites have had VIFM equipment installed. Data collected from these sites have been of very high quality and consistency despite the failure of commercial hard disk drive equipment. The systematic failure of these drives have been corrected using a variety of methods and performance since those corrections have been excellent with no equipment failures. The tests carried out also included the test of a twisted pair to coaxial cable interface. This interface was required in order to allow installation even with a significant facility cabling limitation. The performance obtained from the system utilizing this device showed no degradation as compared to that of systems utilizing direct coaxial cable connections. To conclude, the VIFM system, has been reliable even after partial failure of commercial off-the-shelf components which required the systems to operate on full fail-safe backup. These tests have thus shown both the reliable operation of the VIFM in normal operating conditions as well as the most adverse

  12. Safeguards sealing systems for Zebra

    International Nuclear Information System (INIS)

    Ingram, G.; Jamieson, G.R.

    1983-01-01

    A relatively simple design has been produced for safeguards seals to be applied throughout the fuel containing areas at Zebra. It is based on the use of wire seals and regular Inspector surveillance. The application of the system would allow an Inspector to establish to a high degree of confidence that significant quantities of fuel had not been diverted during an intensive experimental programme. It would add about 5% to the time required for experiments, and careful planning would reduce this value. The inspection effort required to witness element movements during the experimental programme would average about 2 hours per day, with a further 2 hours spent each week on NDA of the fuel exposed. The Safeguards Inspector would require to spend about 25% of his time in the reactor area and would have ample time to deal with the relatively small number of fuel movements taking place in the storage area and with his duties elsewhere in the plant. During a core change, full-time inspection effort would be required for about 6 weeks each year. (author)

  13. Safeguarding aspects of large-scale commercial reprocessing plants

    International Nuclear Information System (INIS)

    1979-03-01

    The paper points out that several solutions to the problems of safeguarding large-scale plants have been put forward: (1) Increased measurement accuracy. This does not remove the problem of timely detection. (2) Continuous in-process measurement. As yet unproven and likely to be costly. (3) More extensive use of containment and surveillance. The latter appears to be feasible but requires the incorporation of safeguards into plant design and sufficient redundancy to protect the operators interests. The advantages of altering the emphasis of safeguards philosophy from quantitative goals to the analysis of diversion strategies should be considered

  14. Collecting Safeguards Relevant Trade Information: The IAEA Procurement Outreach Programme

    International Nuclear Information System (INIS)

    Schot, P.; El Gebaly, A.; Tarvainen, M.

    2010-01-01

    The increasing awareness of activities of transnational procurement networks to covertly acquire sensitive nuclear related dual use equipment prompted an evolution of safeguards methodologies. One of the responses to this challenge by the Department of Safeguards in the IAEA was to establish the Trade and Technology Unit (TTA) in November 2004 to analyse and report on these covert nuclear related trade activities. To obtain information relevant to this analysis, TTA is engaging States that might be willing to provide this information to the Secretariat on a voluntary basis. This paper will give an overview of current activities, sum up the results achieved and discuss suggestions to further improve this programme made by Member States. (author)

  15. Protection of unclassified safeguards information; criteria and guidance

    International Nuclear Information System (INIS)

    Kasun, D.J.

    1981-10-01

    The document was prepared to assist licensees and other persons who possess unclassified safeguards information in establishing an information protection system that satisfies the requirements of 10 CFR 73.21. Section 73.21 was issued by the Nuclear Regulatory Commission in response to the provisions of a new Section 147 of the Atomic Energy Act of 1954, as amended, titled Safeguards Information

  16. Safeguards and security progress report, January-December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B. (comp.)

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  17. Safeguards and security progress report, January-December 1983

    International Nuclear Information System (INIS)

    Smith, D.B.

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  18. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-05-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a Track-Etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have been developed and evaluated. These include a super-8-mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. (author)

  19. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  20. IAEA safeguards and the additional protocol in the Eurasia Region

    International Nuclear Information System (INIS)

    Murakami, K.

    2001-01-01

    Developing and implementing safeguards against misuse of nuclear material and facilities has always been the Agency's main activities. Like the nuclear non-proliferation regime itself, the development of the safeguards system has been an evolutionary process. The first safeguards inspection was carried out in 1962 (in Norway). In the sixties, the basic concepts behind safeguards were developed (INFCIRC/26, adopted in 1961, for some of you it might still have a familiar ring) and the number of inspections and types of facilities inspected grew slowly. With the advent of INFCIRC/66/Rev. 2, a more complete, albeit limited, system of safeguards covering nuclear material, equipment and facilities emerged. But the quantum leap came, of course, wit the entry into force of the NPT. Today, the IAEA has 224 safeguards agreements in force with 140 States. Nearly all of these States are NPT States. In the Eurasia Region, particularly the Newly Independent States (NIS) significant achievements have been made in the Safeguards Implementation. States with nuclear activities have the SG Agreement in force. Some states are already signing the Additional Protocol and it is in force in two of these States in the NIS region. Much progress has been made in the area of nuclear material and accountancy through the IAEA Coordinated Technical Support Programme (CTSP). The programme was organized to co-ordinate the donor states activities and has been successful for the last seven years in providing assistance in the area of nuclear legislation establishment of the State System of Accountancy of nuclear material (SSAC) and other related areas. Improvement is still foreseen in these areas, particularly as more states in the region will be signing and implementing the Additional Protocols

  1. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  2. Safeguards Implementation at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Lee, Byung-Doo; Kim, Hyun-Sook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The main objective of the safeguards implementation activities is to assure that there are no diversions of declared nuclear material and/or no undeclared activity. The purpose of safeguards implementation activities is the assistance facility operators to meet the safeguards criteria set forth by the Atomic Energy Safety Acts and Regulations. In addition, the nuclear material and technology control team has acted as a contact point for domestic and international safeguards inspection activities and for the relevant safeguards cooperation. Domestic inspections were successfully carried out at the KAERI nuclear facilities pursuant to the domestic laws and regulations in parallel with the IAEA safeguards inspections. It is expected that safeguards work will be increased due to the pyro-related facilities such as PRIDE, ACPF and DUPIC, for which the IAEA is making an effort to establish safeguards approach. KAERI will actively cope with the plan of the NSSC by changing its domestic inspection regulations on the accounting and control of nuclear materials.

  3. Safeguarding the atom

    International Nuclear Information System (INIS)

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  4. 30 CFR 75.1713-7 - First-aid equipment; location; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First-aid equipment; location; minimum... § 75.1713-7 First-aid equipment; location; minimum requirements. (a) Each operator of an underground coal mine shall maintain a supply of the first-aid equipment set forth in paragraph (b) of this § 75...

  5. Inventory of safeguards software

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Horino, Koichi

    2009-03-01

    The purpose of this survey activity will serve as a basis for determining what needs may exist in this arena for development of next-generation safeguards systems and approaches. 23 software tools are surveyed by JAEA and NMCC. Exchanging information regarding existing software tools for safeguards and discussing about a next R and D program of developing a general-purpose safeguards tool should be beneficial to a safeguards system design and indispensable to evaluate a safeguards system for future nuclear fuel facilities. (author)

  6. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    International Nuclear Information System (INIS)

    Santi, Peter A.; Demuth, Scott F.; Klasky, Kristen L.; Lee, Haeok; Miller, Michael C.; Sprinkle, James K.; Tobin, Stephen J.; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  7. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  8. Safeguards for a nuclear weapon convention

    International Nuclear Information System (INIS)

    Fischer, D.

    1999-01-01

    An NDT presupposes a fundamental commitment by all parties to its final objective and hence requires a high and sustained level of confidence amongst all states concerned. The appropriate format for an Nuclear Disarmament Treaty (NDT) would probably be a multilateral treaty open to all states. The treaty must necessarily include the five nuclear weapon states and a procedure would have to be found for securing the ratification of the threshold states without conferring upon them the status of nuclear weapon states. While the IAEA may well be able to carry out the safeguards tasks required by an NDT it would probably be necessary to establish a new international organization to verify the elimination of all nuclear weapons. The experience of UNSCOM and the IAEA in Iraq, and of the IAEA in the DPRK, have shown how difficult the verification of international obligations is in the absence of a commitment to disarm, while the experience of the INF and START treaties, and of the IAEA in South Africa have shown how much simpler it is when the parties concerned are fully committed to the process. Verifying and safeguarding an NDT would be largely an extrapolation of activities already carried out by the nuclear weapon states under the INF and START treaties and by the IAEA in the routine application of safeguards as well as in its less routine work in Iraq, South Africa and the DPRK. Both the verification and safeguarding tasks would be made very much easier if it were possible to bring down to a few hundred the number of nuclear warheads remaining in the hands of any avowed nuclear weapon state, and to conclude a cutoff convention. Experience is needed to show whether the additional safeguards authority accorded to the IAEA by 'programme 93+2' will enable it to effectively safeguard the facilities that would be decommissioned as a result of an NDT and those that would remain in operation to satisfy civilian needs. Subject to this rider and on condition that the IAEA

  9. The role of IAEA safeguards in connection with nuclear trade

    International Nuclear Information System (INIS)

    Imai, R.

    1977-01-01

    IAEA safeguards are one of the means to prevent the proliferation of nuclear material for military purposes. As such safeguards can be a potent instrument, and its characteristics are primarily technical. Other means may include (a) political incentives which render possession of nuclear weapons unnecessary and undesirable; (b) extension of trade restrictions regarding certain sensitive material, equipment and technology; and (c) accompanying requirements for physical protection. Peaceful nuclear industry has certain aspects which naturally call for international exchange. The technology itself represents one of the most advanced in our times, and therefore needs to be shared throughout the world. Uranium resources of economic levels are found in only a limited number of countries. Many of the components of the industry, including reactor manufacture and fuel cycle, are vey capital-intensive and technology-intensive, so that it would be natural for a relatively limited number of manufacturing or processing capabilities to serve the rest of the world. It is useful to examine the existing pattern of nuclear trade, as well as to forecast the effects of increasing trade volume. Regarding technology, there is a need to decrease the international shipper/receiver difference by means of containment/surveillance as well as by rapid and accurate reporting. Obviously, its effectiveness will be maximized if all the world's trading partners participated in a system of co-ordination. Improving technical effectiveness of safeguards is very important once nuclear material is in a country. In addition to nuclear material accountancy, new techniques may be employed to recognize the characteristic pattern of a nation's nuclear activities, or deviation from such a pattern. Tracing nuclear trade might become an important input to such an analysis. (author)

  10. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  11. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  12. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  13. Technological developments and safeguards instrumentation: Responding to new challenges

    International Nuclear Information System (INIS)

    Naito, K.; Rundquist, D.E.

    1994-01-01

    Entering the 1990s, technological tools that were in the research and development stage not so long ago are changing the way inspectors are able to verify nuclear materials at many facilities around the world. Many new instruments - ranging from advanced video monitoring systems to miniature detectors and analysers - already are in place. In some cases, they have been custom-made for specific safeguards tasks, or for placement in locations, such as underwater storage pools for spent reactor fuel, where inspectors cannot go. Standing behind the development of many of these new safeguards instruments are a number of factors. They include: technological advances In computer related fields, such as microprocessing and electronics, and specific areas of instrumentation; technical developments in the nuclear industry and Efficiency improvements and efforts to reduce the costs of safeguards implementation

  14. Safeguards and nuclear forensics

    International Nuclear Information System (INIS)

    Gangotra, Suresh

    2016-01-01

    Nuclear Safeguards is the detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons, or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by early detection. Safeguards implementation involves nuclear material accounting and containment and surveillance measures. The safeguards are implemented in nuclear facilities by the states, or agencies and International Atomic Energy Agency (IAEA). The measures for the safeguards include nuclear material Accounting (NUMAC) and Containment and surveillance systems. In recent times, there have been advances in safeguards like Near Real Time Monitoring (NRTM), Dynamic Nuclear Material Accounting (DNMA), Safeguards-by-Design (SBD), satellite imagery, information from open sources, remote monitoring etc

  15. Survey on requirements for independent reviews and inspections of electrical and I and C equipment

    Energy Technology Data Exchange (ETDEWEB)

    Byman, Karin; Groenkvist, Stefan; Egerbo, Anders; Nilsson, Thomas (AaF Consult AB, Stockholm (Sweden))

    2009-03-15

    In this survey, licensing procedures for the implementation of different kinds of components and systems in nuclear power plants have been studied in four European countries: Belgium (Finland), Germany, and Switzerland. The main focus has been to describe the general features of the licensing procedures for electrical and for instrumentation and control (IandC) equipment and systems. The regulatory framework for the operation of nuclear power plants in Belgium is based on the American regulations. The licensing procedure for each modification of significance for the safety of a plant is carried out by the authorised inspection organisation (AVN), which follows its own procedures for the review of the modification file, the commissioning, and conformity check of the installation. These procedures are general and independent of the technical domain of the equipment or system and AVN uses the US regulations standard review plan (SRP) as a reference for technical reviews. The Federal Agency for Nuclear Control (FANC) is responsible for the surveillance of all nuclear activities in Belgium, but the private non-profit authorised inspection organisation (AVN) does perform inspections and other regulatory tasks delegated by FANC. Controls of electrical components and systems with regard to the general Belgian electrical regulations are performed by accredited inspection organisations. The regulatory framework for the safety of nuclear activities in Finland is domestic and detailed safety requirements are provided by the Radiation and Nuclear Safety Authority (STUK). They cover specific requirements for the licensing procedure for electrical and IandC equipment. In Finland, there are no general differences in the licensing procedure for electrical, instrumentation, and mechanical equipment and the licensing procedure is basically the same for all types of systems, structures and equipment. STUK has the responsibility for the regulatory control in Finland and may seek

  16. Safeguarding of spent fuel conditioning and disposal in geological repositories

    International Nuclear Information System (INIS)

    Forsstroem, H.; Richter, B.

    1997-01-01

    Disposal of spent nuclear fuel in geological formations, without reprocessing, is being considered in a number of States. Before disposal the fuel will be encapsulated in a tight and corrosion resistant container. The method chosen for disposal and the design of the repository will be determined by the geological conditions and the very strict requirements on long-term safety. From a safeguards perspective spent fuel disposal is a new issue. As the spent fuel still contains important amounts of material under safeguards and as it can not be considered practicably irrecoverable in the repository, the IAEA has been advised not to terminate safeguards, even after closure of the repository. This raises a number of new issues where there could be a potential conflict of interests between safety and safeguards demands, in particular in connection with the safety principle that burdens on future generations should be avoided. In this paper some of these issues are discussed based on the experience gained in Germany and Sweden about the design and future operation of encapsulation and disposal facilities. The most important issues are connected to the required level of safeguards for a closed repository, the differences in time scales for waste management and safeguards, the need for verification of the fissile content in the containers and the possibility of retrieving the fuel disposed of. (author)

  17. Evolution of safeguards systems design

    International Nuclear Information System (INIS)

    Shipley, J.P.; Christensen, E.L.; Dietz, R.J.

    1979-01-01

    Safeguards systems play a vital detection and deterrence role in current nonproliferation policy. These safeguards systems have developed over the past three decades through the evolution of three essential components: the safeguards/process interface, safeguards performance criteria, and the technology necessary to support effective safeguards. This paper discusses the background and history of this evolutionary process, its major developments and status, and the future direction of safeguards system design

  18. Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-01-01

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  19. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    reluctant to bear the burden of it. Optimization can also weaken the argument according to which States should not accept new obligations while others are not committed to the existing ones, since 'new obligations' finally result in more effective and efficient verification scheme, benefiting to both States and the Agency. The current evolution of the safeguards system tending to better allocate safeguards activities and resources, doing away with a quantitative approach and promoting qualitative, customized implementation of safeguards is reviewed in Chapter 2. The latter suggests that despite ongoing and positive efforts, remaining difficulties slow down the move to a real 'analytical' or 'factors' driven system. Chapter 3 therefore looks at ways to overcome weaknesses in safeguards approaches, institutional and collaborative practices, in order to develop safeguards resources and measures where the proliferation risk lies and not necessarily on States with large nuclear power and industries. In that sense, optimization implies targeting verification. Three main interconnected tracks are suggested: enhanced selectiveness of verification efforts could be based on a more flexible application of safeguards allowing for transparency and openness dividends; it would require improved institutional transparency; finally, it could be supported by furthering cooperation both at the regional level and with relevant international organisations. (author)

  20. Evolution of a safeguards support program: POTAS past and future

    International Nuclear Information System (INIS)

    Kessler, J.C.; Reisman, A.W.

    1992-01-01

    When the Non-Proliferation Treaty came into force, the International Atomic Energy Agency (IAEA) became for the first time responsible for implementing full-scope safeguards in many countries, including countries with large and sophisticated nuclear programs. The IAEA's Department of Safeguards did not have the safeguards technology appropriate for these rapidly expanding responsibilities, nor did it have a research and development program to respond to that need. In response to this situation, the United States initiated the US Program of Technical Assitance to IAEA Safeguards (POTAS) in 1977. This program was originally intended to be a 5-yr, $5 million program. As the United States and the IAEA began to implement this program, several things rapidly became clear. Meeting the evolving safeguards technology needs would require much more than $5 million; within the first 5 yr, the United States allocated more than $20 million. This paper summarizes the policies activities, and practices POTAS has employed in support of IAEA safeguards program

  1. Preliminary considerations on developing IAEA technical safeguards for LMFBR power systems

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1980-09-01

    Nuclear fuel cycles safeguards should be considered in the dynamic context of a world deployment of various reactor types and varying availability of fuel-cycle services. There will be a close interaction between thermal-reactor cycles and the future deployment of fast breeders. The quantitites of plutonium and the reprocessing, conversion, fabrication, and storage methods of the fuel for the fast breeders will have a significant impact on safeguards techniques. The approach to the fast breeder fuel cycle safeguards follows the general safeguards system approach proposed by the IAEA. Objective of IAEA safeguards is the detection of diversion of nuclear material and deterrence of such diversion. To achieve independent verification of material balance accountancy requires the capability to monitor inventory status and verify material flows and quantities of all nuclear materials subject to safeguards. Containment and surveillance measures are applied to monitor key measurement points, maintain integrity of material balance, and complement material accountancy. The safeguards study attempts to develop a generic reference IAEA Safeguards System and explores various system options using containment/surveillance and material accountancy instrumentation and integrated systems designs

  2. Development of equipment qualification requirements for NPP instrumentation and control systems

    International Nuclear Information System (INIS)

    Siora, A. A.; Reshetitskij, S. V.; Harybin, A. V.

    2012-01-01

    The main stages of equipment qualification are presented. The aim of the work is to ensure compatibility between Ukrainian and international requirements. A comparison with US NRC requirements has been done. The approach in equipment qualification is presented for the resistance to: irradiation; dust; seismic motion, vibrations and mechanical impact; environmental impact (temperature, humidity, pressure); power supply parameters etc., as well as the technological testing

  3. How the Office of Safeguards and Security Technology development program facilitates safeguarding and securing the DOE complex

    International Nuclear Information System (INIS)

    Smoot, W.

    1995-01-01

    The technology development program's (TDP's) mission is to provide technologies or methodologies that address safeguards and security requirements throughout the U.S. DOE complex as well as to meet headquarters' policy needs. This includes developing state-of-the-art technologies or modifying existing technologies in physical security, material control and accountability, information security, and integrated safeguards systems. The TDP has an annual process during which it solicits user requirements from the field. These requirements are analyzed by DOE headquarters and laboratory personnel for technical merit. The requirements are then prioritized at headquarters, and the highest priorities are incorporated into our budget. Although this user-needs process occurs formally once a year, user requirements are accepted at any time. The status of funded technologies is communicated through briefings, programs reviews, and various documents that are available to all interested parties. Participants in several interagency groups allows our program to benefit from what others are doing and to prevent duplications of efforts throughout the federal community. Many technologies are transferred to private industry

  4. Changing Landscapes in Safeguarding Babies and Young Children in England

    Science.gov (United States)

    Lumsden, Eunice

    2014-01-01

    The importance of safeguarding children from violence is internationally recognised. However, detecting, intervening and protecting children from abuse both within the family and in institutions is complex. This paper specifically focuses on safeguarding in England and how workforce reform in the early years offers the opportunity to forge new…

  5. The Impact of Interdependencies on the Effectiveness and Efficiency of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakopoulos, Nicholas [Department of Electrical and Computer Engineering, The George Washington University, Washington, DC (United States)

    2012-06-15

    The purpose of Integrated Safeguards is to evaluate a State as a whole and provide credible assurance of the absence of undeclared nuclear activities. The new system is not viewed as an addition to the traditional safeguards system but as a collection of measures to verify the correctness and completeness of the declarations. The broadening of the scope to evaluate the State for the purpose of enhancing non-proliferation introduces uncertainties that affect the performance of the safeguards system. The processes within a State that Integrated Safeguards seeks to monitor are not clearly defined. Neither are the measurement and evaluation systems for the verification of the absence of undeclared activities. A refinement of the existing diversion process model is needed that takes into account the likelihood that a State would undertake a clandestine program. To develop such a model this paper examines the nuclear programs of seven States that have built or attempted to build nuclear weapons and one that is being accused of having one but denies it. Analysis of the factors that are essential in the decision of a State to embark on a nuclear weapons program indicates leads to the identification of certain indicators for clandestine nuclear weapons programs. It identifies the conditions and interdependencies that most likely lead those States to undertake clandestine weapons programs and develops a set of likelihood indicators that can be used in the application of safeguards to a State as a whole. Existence of serious conflicts involving territorial disputes, transparency in the social system, militarization of the State, and democratization of the political process are the common characteristics of those States. Although these are not easily quantifiable indicators, concepts such as fuzzy logic can be used to construct likelihood estimators for the presence of absence of clandestine programs leading to a State-specific safeguards approach adapted to the conditions of

  6. Synergies across verification regimes: Nuclear safeguards and chemical weapons convention compliance

    International Nuclear Information System (INIS)

    Kadner, Steven P.; Turpen, Elizabeth

    2001-01-01

    In the implementation of all arms control agreements, accurate verification is essential. In setting a course for verifying compliance with a given treaty - whether the NPT or the CWC, one must make a technical comparison of existing information-gathering capabilities against the constraints in an agreement. Then it must be decided whether this level of verifiability is good enough. Generally, the policy standard of 'effective verification' includes the ability to detect significant violations, with high confidence, in sufficient time to respond effectively with policy adjustments or other responses, as needed. It is at this juncture where verification approaches have traditionally diverged. Nuclear safeguards requirements have taken one path while chemical verification methods have pursued another. However, recent technological advances have brought a number of changes affecting verification, and lately their pace has been accelerating. First, all verification regimes have more and better information as a result of new kinds of sensors, imagery, and other technologies. Second, the verification provisions in agreements have also advanced, to include on-site inspections, portal monitoring, data exchanges, and a variety of transparency, confidence-building, and other cooperative measures, Together these developments translate into a technological overlap of certain institutional verification measures such as the NPT's safeguards requirements and the IAEA and the CWC's verification visions and the OPCW. Hence, a priority of international treaty-implementing organizations is exploring the development of a synergistic and coordinated approach to WMD policy making that takes into account existing inter-linkages between nuclear, chemical, and biological weapons issues. Specific areas of coordination include harmonizing information systems and information exchanges and the shared application of scientific mechanisms, as well as collaboration on technological developments

  7. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  8. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  9. Survey on requirements for independent reviews and inspections of electrical and I and C equipment

    International Nuclear Information System (INIS)

    Byman, Karin; Groenkvist, Stefan; Egerbo, Anders; Nilsson, Thomas

    2009-03-01

    In this survey, licensing procedures for the implementation of different kinds of components and systems in nuclear power plants have been studied in four European countries: Belgium (Finland), Germany, and Switzerland. The main focus has been to describe the general features of the licensing procedures for electrical and for instrumentation and control (IandC) equipment and systems. The regulatory framework for the operation of nuclear power plants in Belgium is based on the American regulations. The licensing procedure for each modification of significance for the safety of a plant is carried out by the authorised inspection organisation (AVN), which follows its own procedures for the review of the modification file, the commissioning, and conformity check of the installation. These procedures are very general and independent of the technical domain of the equipment or system and AVN uses the US regulations standard review plan (SRP) as a reference for technical reviews. The Federal Agency for Nuclear Control (FANC) is responsible for the surveillance of all nuclear activities in Belgium, but the private non-profit authorised inspection organisation (AVN) does perform inspections and other regulatory tasks delegated by FANC. Controls of electrical components and systems with regard to the general Belgian electrical regulations are performed by accredited inspection organisations. The regulatory framework for the safety of nuclear activities in Finland is domestic and detailed safety requirements are provided by the Radiation and Nuclear Safety Authority (STUK). They cover specific requirements for the licensing procedure for electrical and IandC equipment. In Finland, there are no general differences in the licensing procedure for electrical, instrumentation, and mechanical equipment and the licensing procedure is basically the same for all types of systems, structures and equipment. STUK has the responsibility for the regulatory control in Finland and may seek

  10. Assessment of ambient-temperature, high-resolution detectors for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Ruhter, W.D.; McQuaid, J.H.; Lavietes, A.

    1993-01-01

    High-resolution, gamma- and x-ray spectrometry are used routinely in nuclear safeguards verification measurements of plutonium and uranium in the field. These measurements are now performed with high-purity germanium (HPGe) detectors that require cooling liquid-nitrogen temperatures, thus limiting their utility in field and unattended safeguards measurement applications. Ambient temperature semiconductor detectors may complement HPGe detectors for certain safeguards verification applications. Their potential will be determined by criteria such as their performance, commercial availability, stage of development, and costs. We have conducted as assessment of ambient temperature detectors for safeguards measurement applications with these criteria in mind

  11. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    International Nuclear Information System (INIS)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste

  12. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  13. Working Group 2: Future Directions for Safeguards and Verification, Technology, Research and Development

    International Nuclear Information System (INIS)

    Zykov, S.; Blair, D.

    2013-01-01

    For traditional safeguards it was recognized that the hardware presently available is, in general, addressing adequately fundamental IAEA needs, and that further developments should therefore focus mainly on improving efficiencies (i.e. increasing cost economies, reliability, maintainability and user-friendliness, keeping abreast of continual advancements in technologies and of the evolution of verification approaches). Specific technology areas that could benefit from further development include: -) Non-destructive measurement systems (NDA), in particular, gamma-spectroscopy and neutron counting techniques; -) Containment and surveillance tools, such as tamper indicating seals, video-surveillance, surface identification methods, etc.; -) Geophysical methods for design information verification (DIV) and safeguarding of geological repositories; and -) New tools and methods for real-time monitoring. Furthermore, the Working Group acknowledged that a 'building block' (or modular) approach should be adopted towards technology development, enabling equipment to be upgraded efficiently as technologies advance. Concerning non-traditional safeguards, in the area of satellite-based sensors, increased spatial resolution and broadened spectral range were identified as priorities. In the area of wide area surveillance, the development of LIDAR-like tools for atmospheric sensing was discussed from the perspective of both potential benefits and certain limitations. Recognizing the limitations imposed by the human brain in terms of information assessment and analysis, technologies are needed that will enable the more effective utilization of all information, regardless of its format and origin. The paper is followed by the slides of the presentation. (A.C.)

  14. IAEA safeguards information system re-engineering project (IRP)

    International Nuclear Information System (INIS)

    Whitaker, G.; Becar, J.-M.; Ifyland, N.; Kirkgoeze, R.; Koevesd, G.; Szamosi, L.

    2007-01-01

    The Safeguards Information System Re-engineering Project (IRP) was initiated to assist the IAEA in addressing current and future verification and analysis activities through the establishment of a new information technology framework for strengthened and integrated safeguards. The Project provides a unique opportunity to enhance all of the information services for the Department of Safeguards and will require project management 'best practices' to balance limited funds, available resources and Departmental priorities. To achieve its goals, the Project will require the participation of all stakeholders to create a comprehensive and cohesive plan that provides both a flexible and stable foundation for address changing business needs. The expectation is that high quality integrated information systems will be developed that incorporate state-of-the-art technical architectural standards, improved business processes and consistent user interfaces to store various data types in an enterprise data repository which is accessible on-line in a secure environment. (author)

  15. 7 CFR 946.55 - Safeguards.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguards. 946.55 Section 946.55 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... channels of trade and other outlets for other than the specific purposes authorized therefor, and the...

  16. 7 CFR 966.56 - Safeguards.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguards. 966.56 Section 966.56 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... from entering channels of trade for other than the specific purpose authorized therefor, and rules...

  17. Measuring Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  18. Integrated safeguards: Australian views and experience

    International Nuclear Information System (INIS)

    Carlson, J.; Bragin, V.; Leslie, R.

    2001-01-01

    Full text: Australia has had a pioneering role in assisting the IAEA to develop the procedures and methods for strengthened safeguards, both before and after the conclusion of Australia's additional protocol. Australia played a key role in the negotiation of the model additional protocol, and made ratification a high priority in order to encourage early ratification by other States. Australia was the first State to ratify an additional protocol, on 10 December 1997, and was the first State in which the IAEA exercised complementary access and managed access under an additional protocol. Australia has undergone three full cycles of evaluation under strengthened safeguards measures, enabling the Agency to conclude it was appropriate to commence implementation of integrated safeguards. In January 2001 Australia became the first State in which integrated safeguards are being applied. As such, Australia's experience will be of interest to other States as they consult with the IAEA on the modalities for the introduction of integrated safeguards in their jurisdictions. The purpose of the paper is to outline Australia's experience with strengthened safeguards and Australia's views on the implementation of integrated safeguards. Australia has five Material Balance Areas (MBAs), the principal one covering the 10 MWt research reactor at Lucas Heights and the associated inventory of fresh and irradiated HEU fuel. Under classical safeguards, generally Australia was subject to annual Physical Inventory Verifications (PIVs) for the four MBAs at Lucas Heights, plus quarterly interim inspections, making a total of four inspections a year (PIVs for the different MBAs were conducted concurrently with each other or with interim inspections in other MBAs), although there was a period when the fresh fuel inventory exceeded one SQ, requiring monthly inspections. Under strengthened safeguards, this pattern of four inspections a year was maintained, with the addition of complementary

  19. Modeling and Simulation for Safeguards

    International Nuclear Information System (INIS)

    Swinhoe, Martyn T.

    2012-01-01

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R and D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  20. Optimal facility and equipment specification to support cost-effective recycling

    International Nuclear Information System (INIS)

    Redus, K.S.; Yuracko, K.L.

    1998-01-01

    The authors demonstrate a project management approach for D and D projects to select those facility areas or equipment systems on which to concentrate resources so that project materials disposition costs are minimized, safety requirements are always met, recycle and reuse goals are achieved, and programmatic or stakeholder concerns are met. The authors examine a facility that contains realistic areas and equipment, and they apply the approach to illustrate the different results that can be obtained depending on the strength or weakness of safety risk requirements, goals for recycle and reuse of materials, and programmatic or stakeholder concerns

  1. REQUIREMENTS FOR DESIGN, EQUIPMENT AND OPERATION MODE OF TAXI VEHICLES

    Directory of Open Access Journals (Sweden)

    Norayr Oganesovich Bludyan

    2015-09-01

    Full Text Available The analysis of international experience in application of requirements for the taxi vehicles design and equipment. The approaches to improvement of cabbing have been defined by determination of requirements for taxi vehicles.

  2. Safeguards Envelope Progress FY10

    International Nuclear Information System (INIS)

    Metcalf, Richard

    2010-01-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  3. 40 CFR 1060.105 - What diurnal requirements apply for equipment?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What diurnal requirements apply for... EQUIPMENT Emission Standards and Related Requirements § 1060.105 What diurnal requirements apply for... for controlling diurnal emissions: (1) If you are subject to both running loss and diurnal emission...

  4. Recent developments in the implementation of Euratom safeguards

    International Nuclear Information System (INIS)

    Gmelin, W.; Bommelle, P.; Sharpe, B.W.; Love, B.

    1983-01-01

    The EURATOM safeguards system is based legally on the 1958 Treaty of Rome establishing the original Community of six (now 10) countries. Under this safeguards system, the Commission has, inter alia, ''to satisfy itself that any particular safeguarding obligations assumed by the Community under an agreement concluded with a third state or an international organisation are complied with'' (art. 77b). The practical implementation of safeguards within the Community is significantly influenced by the requirements of: (a) the three different agreements between the Community, its Member States and the IAEA, concerning the application of IAEA safeguards to some or all of the civil nuclear materials in the Community, and (b) the various agreements between the Community and certain third countries, concerning inter alia the application of safeguards within the Community to nuclear materials supplied, directly or indirectly, by these third countries. Within the past four years significant developments have occurred in both groups of agreements. The EURATOM safeguards organisation is the only multinational safeguards organisation in the world, and currently has a staff of some 120 inspectors, with appropriate administrative support, and can draw for research and development work on the resources of the Community's Joint Research Centre. The recent changes in inspection techniques, particularly in relation to non-destructive assay techniques, and the implementation of containment and surveillance measures, are discussed. A description is given of the experience gained in recent years in the operation of ''Joint Teams'' of EURATOM and IAEA inspectors in certain plants as well as the continuing experience gained under the normal regime, using the observation principle, as foreseen in the respective Agreement

  5. Potential development of non-destructive assay for nuclear safeguards

    International Nuclear Information System (INIS)

    Benoit, R.; Cuypers, M.; Guardini, S.

    1983-01-01

    After a brief summary on the role of non-destructive assay in safeguarding the nuclear fuel cycle, its evolution from NDA methods development to other areas is illustrated. These areas are essentially: a) the evaluation of the performances of NDA techniques in field conditions; b) introduction of full automation of measurement instrument operation, using interactive microprocessors and of measurement data handling evaluation and retrieval features; c) introduction of the adequate link and compatibility to assure NDA measurement data transfer in an integrated safeguards data evaluation scheme. In this field, the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) is developing and implementing a number of techniques and methodologies allowing an integrated and rational treatment of the large amount of safeguards data produced. In particular for the non-destructive assay measurements and techniques, the JRC has studied and tested methodologies for the automatic generation and validation of data of inventory verification. In order to apply these techniques successfully in field, the JRC has studied the design requirements of NDA data management and evaluation systems. This paper also discusses the functional requirements of an integrated system for NDA safeguards data evaluation

  6. Characteristics of specifications of transportable inverter-type X-ray equipment

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Miyazaki, Shigeru

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment. (author)

  7. 13 CFR 108.504 - Equipment and office requirements.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Equipment and office requirements. 108.504 Section 108.504 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS... convenient to the public and is open for business during normal working hours. ...

  8. Safeguards and security issues for the disposition of fissile materials

    International Nuclear Information System (INIS)

    Jaeger, C.D.; Moya, R.W.; Duggan, R.A.; Mangan, D.L.; Tolk, K.M.; Rutherford, D.; Fearey, B.; Moore, L.

    1995-01-01

    The Department of Energy's Office of Fissile Material Disposition (FMD) is analyzing long-term storage and disposition options for surplus weapons-usable fissile materials, preparing a programmatic environmental impact statement (PEIS), preparing for a record of decision (ROD) regarding this material and conducting other activities. The primary security objectives of this program are to reduce major security risks and strengthen arms reduction and nonproliferation (NP). To help achieve these objectives, a safeguards and security (S ampersand S) team consisting of participants from Sandia, Los Alamos, and Lawrence Livermore National Laboratories was established. The S ampersand S activity for this program is a cross-cutting task which addresses all of the FMD program options. It includes both domestic and international safeguards and includes areas such as physical protection, nuclear materials accountability and material containment and surveillance. This paper will discuss the activities of the Fissile Materials Disposition Program (FMDP) S ampersand S team as well as some specific S ampersand S issues associated with various FMDP options/facilities. Some of the items to be discussed include the threat, S ampersand S requirements, S ampersand S criteria for assessing risk, S ampersand S issues concerning fissile material processing/facilities, and international and domestic safeguards

  9. SNAP/SOS: a package for simulating and analyzing safeguards systems

    International Nuclear Information System (INIS)

    Grant, F.H. III; Polito, J.; Sabuda, J.

    1983-01-01

    The effective analysis of safeguards systems at nuclear facilities requires significant effort. The Safeguards Network Analysis Procedure (SNAP) and the SNAP Operating System (SOS) reduce that effort to a manageable level. SNAP provides a detailed analysis of site safeguards for tactical evaluation. SOS helps the analyst organize and manage the SNAP effort effectively. SOS provides a database for model storage, automatic model generation, and computer graphics. The SOS/SNAP combination is a working example of a simulation system including executive-level control, database system, and facilities for model creation, editing, and output analysis

  10. Safeguards document (INFCIRC/153) and the new safeguards system

    International Nuclear Information System (INIS)

    Haginoya, Tohru

    1997-01-01

    INFCIRC/153. The NPT covers nuclear weapons and nuclear explosive devices but not other military uses of nuclear materials. The NPT safeguards applies all nuclear materials including undeclared nuclear materials. The protection of commercially sensitive information is important. The new safeguards system. The Model protocol amends INFCIRC/153 (the Protocol prevails). Apply nuclear fuel cycle related activities with no nuclear material. The environmental monitoring is an important measure, but non-weapon countries have no such technology. Impact and benefit from the new system. Simplification of the conventional safeguards. Could possibly define three categories of plutonium. (author)

  11. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  12. Alternatives to reach safeguards goals at Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Palacios, E.; Orpet, P.; Marzo, M.; Valentino, L.; Vicens, H.

    2001-01-01

    Full text: This paper describes the main features of Atucha I Nuclear Power Plant and the current safeguards' approach applied to this installation by the International Atomic Energy Agency (IAEA) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The reasons for not completely fulfilling the IAEA safeguards criteria with the current approach are also described and a conceptual proposal of an unattended system developed jointly by ABACC and the Nuclear Regulatory Authority of Argentina (ARN) is presented. Finally, the paper addresses an alternative proposal to the previous one aiming at fulfilling the above mentioned objectives. Atucha I Nuclear Power Plant (NPP) was built in the 70's and has been under operation since 1974, This is an On Load Reactor, moderated and refrigerated with heavy water (PHWR). From its starting up to about a year ago, this NPP operated with natural uranium fuel assemblies but presently the reactor core is fed with slightly enriched uranium fuel assemblies (0,85 %). This Plant generates up to 357 Mwe. An outstanding operating characteristic of this power reactor is that low burn-up fuels assemblies already discharged into the pond may be re-used when necessary upon neutron flux requirements (re-shuffling). This installation has a pond storage capacity of about 10,000 fuel assemblies. At the highest power rate, the reactor core must be fed with a frequency of about 0,72 fuel assemblies per day. Before the application of the Agency Safeguards Criteria (IAEA-SC) in (1991), Atucha l had always satisfied the IAEA safeguards goals. Since 1991 the IAEA-SC demanded for On Load Reactors the control of the flow of irradiated fuel assemblies that leave or enter into the core (re-shuffling). By that time, Atucha I had been working for about seventeen years and there was no possibilities to install specific safeguards equipment without making significant construction modifications on this installation. Under the

  13. International safeguards concerns of Spent Fuel Disposal Program

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1988-01-01

    The purpose of this paper is to stimulate discussions on the subjects of safeguarding large quantities of plutonium contained in spent fuels to be disposed of in geologic respositories. All the spent fuel disposal scenarios examined here pose a variety of safeguards problems, none of which are adequately addressed by the international safeguards community. The spent fuels from once-through fuel cycles in underground repositories would become an increasingly attractive target for diversion because of their plutonium content and decreasing radioactivity. Current design of the first geologic repository in the US will have the capacity to accommodate wastes equivalent to 70,000 Mt of uranium from commercial and defense fuel cycles. Of this, approximately 62,000 Mt uranium equivalent will be commerical spent fuel, containing over 500 Mt of plutonium. International safeguards commitments may require us to address the safeguards issues of disposing of such large quanities of plutonium in a geologic repository, which has the potential to become a plutonium mine in the future. This paper highlights several issues that should be addressed in the near term by US industries and the DOE before geologic repositories for spent fuels become a reality

  14. Nuclear safeguards policy

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Claims have been made that Australia's nuclear safeguards policy, announced in 1977, has changed. However, examination of the texts of nuclear safeguards agreements negotiated by Australia shows that the policy has been implemented and adhered to. The purpose of these agreements is to obtain assurance that uranium exported is used exclusively for peaceful purposes. The questions of reprocessing, transfer to third countries and the application of IAEA safeguards are discussed

  15. Nuclear safeguards in challenging times [Experts on nuclear safeguards and verification assess the global picture

    International Nuclear Information System (INIS)

    Park, W.S.; Hillerman, J.

    2007-01-01

    Meeting at the IAEA's International Safeguards Symposium in October 2006, more than 500 experts from 60-plus countries and organizations addressed current and future challenges related to safeguards concepts, approaches, technologies, and experience. Sessions addressed five main issues driving developments: Current challenges to the safeguards system; Further strengthening safeguards practices and approaches; Improving the collection and analysis of safeguards information; Advances in safeguards techniques and technology; and Future challenges. Every four to five years, the IAEA brings together safeguards experts from all over the world at international symposia. In October 2001, they met in the shadow of 9/11 and the symposium included a special session on the prevention of nuclear terrorism

  16. IAEA Safeguards and technical support programs: POTAS in the 1990s

    International Nuclear Information System (INIS)

    Kessler, C.J.

    1991-01-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) has since 1978 provided technology and technical assistance to the IAEA to support its nuclear safeguards activities. The present level of support, $6.9 million per year, equals 10% of the Department of Safeguards annual budget. During the next decade, the International Atomic Energy Agency (IAEA) will face new technical challenges in carrying out its verification activities. To help the IAEA acquire the technology and other technical support that it will require in the 1990s, POTAS expects to continue its assistance, both in the areas established in the past and in additional areas dictated by newly identified IAEA safeguards requirements. This paper will look at the political and policy context within which the Department of Safeguards, and hence POTAS, operates, and how that context is expected to evolve over the next decade. The roles and functions of POTAS will be identified and discussed in terms of their historical evolution. Lastly, the paper will consider how POTAS is expected to change during the 1990s, both to maintain effectiveness in existing roles and functions, and to meet the challenge of the changing policy context. 5 refs

  17. Influence of safeguards and fire protection on criticality safety

    International Nuclear Information System (INIS)

    Six, D.E.

    1980-01-01

    There are several positive influences of safeguards and fire protection on criticality safety. Experts in each discipline must be aware of regulations and requirements of the others and work together to ensure a fault-tree design. EG and G Idaho, Inc., routinely uses an Occupancy-Use Readiness Manual to consider all aspects of criticality safety, fire protection, and safeguards. The use of the analytical tree is described

  18. Safeguards systems analysis research and development and the practice of safeguards at DOE facilities

    International Nuclear Information System (INIS)

    Zack, N.R.; Thomas, K.E.; Markin, J.T.; Tape, J.W.

    1991-01-01

    Los Alamos Safeguards Systems Group personnel interact with Department of Energy (DOE) nuclear materials processing facilities in a number of ways. Among them are training courses, formal technical assistance such as developing information management or data analysis software, and informal ad hoc assistance especially in reviewing and commenting on existing facility safeguards technology and procedures. These activities are supported by the DOE Office of Safeguards and Security, DOE Operations Offices, and contractor organizations. Because of the relationships with the Operations Office and facility personnel, the Safeguards Systems Group research and development (R and D) staff have developed an understanding of the needs of the entire complex. Improved safeguards are needed in areas such as materials control activities, accountability procedures and techniques, systems analysis and evaluation methods, and material handling procedures. This paper surveys the generic needs for efficient and cost effective enhancements in safeguards technologies and procedures at DOE facilities, identifies areas where existing safeguards R and D products are being applied or could be applied, and sets a direction for future systems analysis R and D to address practical facility safeguards needs

  19. Specific developed phantoms and software to assess radiological equipment image quality

    International Nuclear Information System (INIS)

    Verdu, G.; Rodenas, F.

    2011-01-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  20. Specific developed phantoms and software to assess radiological equipment image quality

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G., E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear; Mayo, P., E-mail: p.mayo@titaniast.com [TITANIA Servicios Teconologicos, Valencia (Spain); Rodenas, F., E-mail: frodenas@mat.upv.es [Universidad Politecnica de Valencia (Spain). Dept. de Matematica Aplicada; Campayo, J.M., E-mail: j.campayo@lainsa.com [Logistica y Acondicionamientos Industriales S.A.U (LAINSA), Valencia (Spain)

    2011-07-01

    The use of radiographic phantoms specifically designed to evaluate the operation of the radiographic equipment lets the study of the image quality obtained by this equipment in an objective way. In digital radiographic equipment, the analysis of the image quality can be automatized because the acquisition of the image is possible in different technologies that are, computerized radiography or phosphor plate and direct radiography or detector. In this work we have shown an application to assess automatically the constancy quality image in the image chain of the radiographic equipment. This application is integrated by designed radiographic phantoms which are adapted to conventional, dental equipment and specific developed software for the automatic evaluation of the phantom image quality. The software is based on digital image processing techniques that let the automatic detection of the different phantom tests by edge detector, morphological operators, threshold histogram techniques, etc. The utility developed is enough sensitive to the radiographic equipment of operating conditions of voltage (kV) and charge (mAs). It is a friendly user programme connected with a data base of the hospital or clinic where it has been used. After the phantom image processing the user can obtain an inform with a resume of the imaging system state with accepting and constancy results. (author)

  1. Accountability and Transparency: Essential Underpinnings of Quality Safeguards

    International Nuclear Information System (INIS)

    Everton, C.; Floyd, R.

    2015-01-01

    The fundamental purpose of IAEA safeguards is to maintain confidence in the international community of the compliance of States with their respective non-proliferation commitments. The safeguards system for ensuring this compliance produces the most important output, the IAEA's compliance findings. Confidence in the findings of any compliance verification system requires some basic elements such as independence, accountability, transparency, and quality management systems. Quality management systems are an internal set of documents and procedures that, while clearly important, need to incorporate an external communication component in order to engender confidence as to how compliance is being managed and ensured. This paper will explore the importance of these fundamentals to confidence in IAEA safeguards compliance conclusions, with a focus on the external communication elements of accountability and transparency. Accountability and transparency will be considered with different communication channels through which safeguards implementation matters are explained and reported and at different levels, facility, State, regional, and the IAEA. This will include communications by: the IAEA and State authorities to the general public; State authorities to peers in other national safeguards authorities (regional and beyond); and, the IAEA and State authorities to the international community as represented through the Board of Governors and General Conference. Examples will be presented of good practices in these areas to encourage greater accountability and transparency in the work of safeguards. (author)

  2. Safeguards against Takeover after Volkswagen

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2009-01-01

    The article analyses the significance of the European Court's decision on the effects of the rules on the free movement of capital on the takeover safeguards in Volkswagen AG for restrictions on the right to vote, ownership ceilings, division into A and B share classes, increased majority require...

  3. Conditions applying to Australian uranium exports - safeguards obligations under NPT

    International Nuclear Information System (INIS)

    Rotsey, W.B.

    1975-08-01

    The Australian Government's expressed desire to inhibit the spread of nuclear weapons and its wish to prevent Australia's uranium exports being used for manufacture of nuclear explosives are underwritten by Australia's formal international obligations. Australia is not free to export its material without paying due regard to supra-national requirements. This paper defines two safeguards regimes, one applying to countries such as Australia which are party to the Treaty on Non-Proliferation of Nuclear Weapons (NPT), the other to those which are not parties. The application of safeguards and the role of the International Atomic Energy Agency (IAEA) are briefly explained. Australia's obligations under the NPT and those stemming from specific undertakings to the IAEA are stated. The latter require Australia to ensure that Non-Nuclear Weapons States not party to the NPT give assurances that Australian uranium will not be used for the manufacture of nuclear explosives and that they will permit verification by the IAEA. These obligations give rise to a set of minimum conditions applying to exports of Australian uranium which vary according to the NPT status of the importing countries. (author)

  4. Computerization of the safeguards analysis decision process

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1990-01-01

    This paper reports that safeguards regulations are evolving to meet new demands for timeliness and sensitivity in detecting the loss or unauthorized use of sensitive nuclear materials. The opportunities to meet new rules, particularly in bulk processing plants, involve developing techniques which use modern, computerized process control and information systems. Using these computerized systems in the safeguards analysis involves all the challenges of the man-machine interface experienced in the typical process control application and adds new dimensions to accuracy requirements, data analysis, and alarm resolution in the regulatory environment

  5. 7 CFR 906.44 - Safeguards.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Safeguards. 906.44 Section 906.44 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... pursuant to § 906.41 or § 906.42 from entering channels of trade for other than the specific purpose...

  6. Safety requirements and feedback of commonly used material handling equipment

    International Nuclear Information System (INIS)

    Pathak, M.K.

    2009-01-01

    Different types of cranes, hoists, chain pulley blocks are the most commonly used material handling equipment in industry along with attachments like chains, wire rope slings, d-shackles, etc. These equipment are used at work for transferring loads from one place to another and attachments are used for anchoring, fixing or supporting the load. Selection of the correct equipment, identification of the equipment planning of material handling operation, examination/testing of the equipment, education and training of the persons engaged in operation of the material handling equipment can reduce the risks to safety of people in workplace. Different safety systems like boom angle indicator, overload tripping device, limit switches, etc. should be available in the cranes for their safe use. Safety requirement for safe operation of material handling equipment with emphasis on different cranes and attachments particularly wire rope slings and chain slings have been brought out in this paper. An attempt has also been made to bring out common nature of deficiencies observed during regulatory inspection carried out by AERB. (author)

  7. Quality assurance procedures in radiotherapy - IEC specifications for equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rassow, J; Klieber, E

    1986-08-01

    The International Electrotechnical Commission (IEC) worked out international standards for requirements and tests of electrical, mechanical and radiation safety as well as for definition and tests of functional performance characteristics of radiotherapy equipments (medical electron accelerators, gamma beam teletherapy and afterloading equipments, simulators and accessories) and for clinical dosimeters and terminology for medical radiology. A survey is given on the actual state of standardization projects. The problems of such standards are shown for the standard for functional performance characteristics of medical electron accelerators as example.

  8. Quality assurance procedures in radiotherapy - IEC specifications for equipment

    International Nuclear Information System (INIS)

    Rassow, J.; Klieber, E.

    1986-01-01

    The International Electrotechnical Commission (IEC) worked out international standards for requirements and tests of electrical, mechanical and radiation safety as well as for definition and tests of functional performance characteristics of radiotherapy equipments (medical electron accelerators, gamma beam teletherapy and afterloading equipments, simulators and accessories) and for clinical dosimeters and terminology for medical radiology. A survey is given on the actual state of standardization projects. The problems of such standards are shown for the standard for functional performance characteristics of medical electron accelerators as example. (orig.) [de

  9. The challenges of integrating multiple safeguards systems in a large nuclear facility

    International Nuclear Information System (INIS)

    Lavietes, A.; Liguori, C.; Pickrell, M.; Plenteda, R.; Sweet, M.

    2009-01-01

    Full-text: Implementing safeguards in a cost-effective manner in large nuclear facilities such as fuel conditioning, fuel reprocessing, and fuel fabrication plants requires the extensive use of instrumentation that is operated in unattended mode. The collected data is then periodically reviewed by the inspectors either on-site at a central location in the facility or remotely in the IAEA offices. A wide variety of instruments are deployed in large facilities, including video surveillance cameras, electronic sealing devices, non-destructive assay systems based on gamma ray and neutron detection, load cells for mass measurement, ID-readers, and other process-specific monitors. The challenge to integrate these different measurement instruments into an efficient, reliable, and secure system requires implementing standardization at various levels throughout the design process. This standardization includes the data generator behaviour and interface, networking solutions, and data security approaches. This standardization will provide a wide range of savings, including reduced training for inspectors and technicians, reduced periodic technical maintenance, reduced spare parts inventory, increased system robustness, and more predictive system behaviour. The development of standard building blocks will reduce the number of data generators required and allow implementation of simplified architectures that do not require local collection computers but rather utilize transmission of the acquired data directly to a central server via Ethernet connectivity. This approach will result in fewer system components and therefore reduced maintenance efforts and improved reliability. This paper discusses in detail the challenges and the subsequent solutions in the various areas that the IAEA Department of Safeguards has committed to pursue as the best sustainable way of maintaining the ability to implement reliable safeguards systems. (author)

  10. The Office of Safeguards and Security Nonproliferation Support Program

    International Nuclear Information System (INIS)

    Desmond, W.J.

    1996-01-01

    The Nonproliferation Support Program was established in the Department of Energy, Office of Safeguards and Security on october 1, 1995. its mission includes providing assistance to Departmental efforts for improved international material protection, control and accounting programs by coordinating and leveraging domestic safeguards and security policy, practice and experience into the international arena. A major objective of the program is to balance US national security requirements with global support of the nonproliferation objectives. This paper describes the organization of the Office of Safeguards and Security and the Nonproliferation Support Program role and responsibility, and presents some of the current areas of program emphasis and activity

  11. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  12. Information collection strategies to support strengthened safeguards

    International Nuclear Information System (INIS)

    Costantini, L.; Hill, J.

    2001-01-01

    The IAEA Board of Governors approved the implementation of Part 1 of Strengthened Safeguards in June 1995. Since then, the collection and analysis of information beyond that provided by States parties and acquired by inspectors under NPT Safeguards Agreements has been an integral part of IAEA safeguards. The Agency has formally established internal structures and procedures to facilitate the effective use of open-source and other information not previously used in safeguards. Over this period the IAEA Division of Safeguards Information Technology (SGIT) has been building its collections of electronically held open source information. Some of these collections are quite nuclear-specific, such as material from the Monterey Institute in California, and nuclear news collections provided voluntarily by a number of Member States. Others are completely general news sources. Several of these collections contain many more reports than could possibly be reviewed by a human analyst. So a need has arisen for computerised search facilities to identify nuclear-relevant items from those collections. The Agency has more than one piece of software available to help searching and analysis of substantial collections of reports. Search 97 from Verity was chosen for this particular application because it is very straightforward to use, and it was expected that personnel from all over the Department of Safeguards would carry out these searches on a routine basis. The approach whereby special-purpose search mechanisms are designed for use by a large number of users, who are unfamiliar with the details of the search software, seems to be unusual if not unique to the Agency

  13. Exercising Synergy of Safeguards Safety and Security at Facility Level of the GA Siwabessy Multi-Purpose Reactor, Indonesia

    International Nuclear Information System (INIS)

    Susilowati, E.

    2015-01-01

    Safeguards, safety and security (3Ss) constitute as essential elements for successful development of nuclear technology in the life time of nuclear installation. All 3Ss need to be coordinated due workers, the public and the environment require protection from plant malfunction, human error, malicious acts and proliferation of nuclear materials and technologies. Then the importance of the 3Ss was deemed valuable, particularly to a country having willingness to expand to nuclear power reactor such as Indonesia that in the near future plans to build small experimental power reactor. This paper is aimed to discuss synergy among safeguards, safety and security which will have opportunity been exercising at the GA Siwabessy Reactor (RSG-GAS), Indonesia. Synergy among safeguards, safety and security offers much opportunity for cost savings and enhance efficiency. Discussion is carried out by first investigating common values and conflicts exist among 3S. Up to now each of them was accomplished separately by different division and using different equipment due lack of coordination among them. The objective of this exercise is to develop more efficient and effective 3Ss infrastructures and also to support skill and knowledge of human resources. Benefitting from synergy between safeguards and security such as management of nuclear material and non proliferation; safeguards and safety such as management of nuclear material and waste management; safety and security such as prevent radiological release and also tension among them if any are discussed. It is expected that outcome of this exercise will able to develop a role model of infrastructures to the up-coming small experimental power reactor in Indonesia. (author)

  14. Coordinated safeguards for materials management in a mixed-oxide fuel facility

    International Nuclear Information System (INIS)

    Shipley, J.P.; Cobb, D.D.; Dietz, R.J.; Evans, M.L.; Schelonka, E.P.; Smith, D.B.; Walton, R.B.

    1977-02-01

    A coordinated safeguards system is described for safeguarding strategic quantities of special nuclear materials in mixed-oxide recycle fuel fabrication facilities. The safeguards system is compatible with industrial process requirements and combines maximum effectiveness consistent with modest cost and minimal process interference. It is based on unit process accounting using a combination of conventional and state-of-the-art NDA measurement techniques. The effectiveness of the system against single and multiple thefts is evaluated using computer modeling and simulation techniques

  15. Coordinated safeguards for materials management in a mixed-oxide fuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, J.P.; Cobb, D.D.; Dietz, R.J.; Evans, M.L.; Schelonka, E.P.; Smith, D.B.; Walton, R.B.

    1977-02-01

    A coordinated safeguards system is described for safeguarding strategic quantities of special nuclear materials in mixed-oxide recycle fuel fabrication facilities. The safeguards system is compatible with industrial process requirements and combines maximum effectiveness consistent with modest cost and minimal process interference. It is based on unit process accounting using a combination of conventional and state-of-the-art NDA measurement techniques. The effectiveness of the system against single and multiple thefts is evaluated using computer modeling and simulation techniques.

  16. The SSAC in international safeguards and non-proliferation aspects

    International Nuclear Information System (INIS)

    Bett, F.L.; Humphreys, J.J.

    1989-01-01

    The history of international efforts against horizontal proliferation, including the Baruch Plan, bilateral safeguards agreement, IAEA safeguards, the Nuclear Non-Proliferation Treaty, the Zangger Committee, the Nuclear Supplier Group guidelines and the Physical Protection Convention, is reviewed. The role of IAEA NPT safeguards in verifying nondiversion and ensuring no misuse of supplied nuclear items is discussed. The vital importance of successful performance of this role to peaceful nuclear commerce is stressed. The application of NPT safeguards by the IAEA is described, particularly the IAEA's requirement that a State System of Accounting for and Control of Nuclear Material be established. Such a State System has two different but complementary areas of responsibility - ensuring that the use of nuclear material is controlled effectively and can be readily accounted for (this includes the area of physical protection), and providing accounts of nuclear material to responsible bodies such as the State's government and equally importantly to the IAEA for safeguards purpose, as the IAEA bases its conclusions about diversion on its verification of the data provided by the State System

  17. Evaluation of safeguards inspection techniques--a time for change

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The adequacy of safeguards is a subject of highest concern--not only to the public and the government but to the nuclear community as a whole. The unusual nature of safeguards with its potential for risk, even to hypothetical and severe threats which have never occurred but are nevertheless being postulated, requires that the highest attention be given. It is with this thought in mind that this paper was written to endorse a new approach to safeguards which not only permits more flexibility for the industry but in large measure should provide a significantly increased assurance to the public and to the world that the nuclear industry can safeguard plutonium and other strategic nuclear material in a fully acceptable manner. The costs of these changes will undoubtedly be high. However, the benefits to be derived from the long-term utilization of nuclear resources, such as those embodied in plutonium, will more than compensate for these additional costs. It may be only with such strict attention to safeguards that the long-term nuclear option will be permitted to prevail

  18. Safeguards uses of confirmatory measurements

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1985-01-01

    An analysis is made of the role of shipper and receiver measurements in safeguarding special nuclear materials (SNM) transferred from one facility to another, with emphasis on the case where the receiver requires an analytical accounting measurement of the transferred SNM and does not need the material for process purposes at the time of receipt. Seven possible diversion periods are considered, ranging from the interval between the shipper's final accounting measurement on the material and the time it is placed in the shipper's vault, through the actual transport of the material between facilities, to the time the material is removed from the receiver's vault and placed in the process. The detection power of various combinations of six possible shipper/receiver measurements for these diversion opportunities is then evaluated; the measurements considered include the shipper's and receiver's accounting measurements, the latter at two possible times, and various nondestructive assay (NDA) confirmatory measurements. It is concluded that all safeguards measurement objectives can be met by a combination of a shipper's accounting measurement at the time the material is removed from the process, an appropriate shipper's NDA confirmatory measurement either immediately after canning or immediately before shipping, an equivalent receiver's NDA confirmatory measurement immediately after the material is received, and a receiver's accounting measurement when the material is placed in the process. Furthermore, it is found that a receiver's analytical accounting measurement immediately after receipt when the material is not yet required for process has dubious safeguards value

  19. The tendency of medical electrical equipment - IEC 60601-2-54: Particular requirements for the basic safety and essential performance of x-ray equipment for radiography and radioscopy

    International Nuclear Information System (INIS)

    Roh, Young Hoon; Kim, Jung Min

    2015-01-01

    Medical electrical equipment - Part 1: General requirement for basic safety and essential performance of MFDS was revised as 3th edition and Medical electrical equipment Part 2-54: Particular requirements for the basic safety and essential performance of X-ray equipment will be expected to be announced as notification. Therefore this technical report was written to introduce provision of the particular requirements, replacement, addition, amendment. The purpose of this particular requirements is to secure requirements for basic safety and essential performance of X-ray equipment for radiography and radioscopy. X-ray high voltage generator, mechanical protective device, protection against radiation is included in this particular requirements. Medical electrical equipment - Part 1, Part 1-2, Part 1-3 is applied to this particular requirements. If the requirements is announced as notification, It is expected to widen understanding for basic safety and essential performance of X-ray equipment for radiography and radioscopy and play a part to internationalize of medical equipment

  20. Design measures to facilitate implementation of safeguards at future water cooled nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The report is intended to present guidelines to the State authorities, designers and prospective purchasers of future water cooled power reactors which, if taken into account, will minimize the impact of IAEA safeguards on plant operation and ensure efficient and effective acquisition of safeguards data to the mutual benefit of the Member State, the plant operator and the IAEA. These guidelines incorporate the IAEA's experience in establishing and carrying out safeguards at currently operating nuclear power plants, the ongoing development of safeguards techniques and feedback of experience from plant operators and designers on the impact of IAEA safeguards on plant operation. The following main subjects are included: The IAEA's safeguards function for current and future nuclear power plants; summary of the political and legal foundations of the IAEA's safeguards system; the technical objective of safeguards and the supply and use of required design information; safeguards approaches for nuclear power plants; design implications of experience in safeguarding nuclear power plants and guidelines for future water cooled reactors to facilitate the implementation of safeguards

  1. Global partnering related to nuclear materials safeguards and security - A pragmatic approach to international safeguards work

    International Nuclear Information System (INIS)

    Stanford, Dennis

    2007-01-01

    This paper documents issues Nuclear Fuel Services, Inc. has addressed in the performance of international work to safeguards and security work. It begins with a description of the package we put together for a sample proposal for the Global Threat Reduction Initiative, for which we were ranked number one for technical approach and cost, and concludes with a discussion of approaches that we have taken to performing this work, including issues related to performing the work as part of a team. The primary focus is on communication, workforce, equipment, and coordination issues. Finally, the paper documents the rules that we use to assure the work is performed safely and successfully. (author)

  2. Safeguards and security. Progress report, August 1982-January 1983

    International Nuclear Information System (INIS)

    Smith, D.B.

    1983-11-01

    Activities are described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats a relatively new set of Los Alamos activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments

  3. Safeguards and security status report, August 1981-January 1982

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, J.P. (comp.)

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer.

  4. Safeguards and security status report, August 1981-January 1982

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer

  5. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    International Nuclear Information System (INIS)

    2014-01-01

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSI's ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSI's long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  6. Development of a Safeguards Approach for a Pyroprocessing Plant by IAEA Member State Support Program

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, H. D.; Song, D. Y.; Eom, S. H.; Lee, T. H.; Ahn, S. K.; Park, S. H.; Han, B. Y.; Choi, Y.

    2012-01-01

    The objective of this project is to analyze the safeguard ability of pyroprocess facility and to establish the safeguards system for pyroprocess by developing the technology of nuclear material accounting for unit process, surveillance technology and nuclear characteristic analysis technology which are needed to demonstrate the safeguards technology of pyroprocess. Therefore, the development of a safeguards approach for pyroprocessing facilities is required as the interest of pyroprocessing increases. Regarding this issue, the IAEA made a contract the 3-years long Member State Support Program (MSSP) for the 'Support for Development of a Safeguards Approach for a Pyroprocessing Plant' with the Republic of Korea (ROK) in July 2008. Even though the pyroprocess technology is currently being developed all over the world, its safeguards approach has not been established yet, and especially, nuclear material accountancy technology which is the core of safeguards has not been established as well. Therefore, the development of new accountancy technology which is appropriate for the construction of pyroprocess facility is needed. Due to the nature of the process, pyroprocess has various kinds of process material form, and the composition of Pu and U isotopes included in process material is not homogeneous. Also, the existing nuclear material accountancy technology for a wet reprocessing facility is hard to apply because of a large quantity of gamma-ray radiation which is emitted from the fissile products in process material. In this report, the study for the development of a safeguards approach for a pyroprocessing plant pyroprocessing has been described. As the previous results six pyroprocessing facility concepts suggested by US, Japan, and Republic of Korea had been summarized and analyzed, and the determination principles were established to determine a reference pyroprocessing facility concept. The reference pyroprocessing facility was determined to be the ESPF of KAERI

  7. Solution Monitoring Evaluated by Proliferation Risk Assessment and Fuzzy Optimization Analysis for Safeguards in a Reprocessing Process

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Suzuki

    2013-01-01

    Full Text Available Solution monitoring (SM has been used in a nuclear reprocessing plant as an additional measure to provide assurance that the plant is operated as declared. The inline volume and density monitoring equipment with dip tubes is important for safety and safeguards purposes and is a typical example of safeguards by design (SBD. Recently safety, safeguards, and security by design (3SBD are proposed to promote an efficient and effective generation of nuclear energy. In 3SBD, proliferation risk assessment has the potential to consider likelihood of the incidence and proliferation risk in safeguards. In this study, risk assessment methodologies for safeguards and security are discussed and several mathematical methods are presented to investigate risk notion applied to intentional acts of facility misuse in an uncertainty environment. Proliferation risk analysis with the Markov model, deterrence effect with the game model, and SBD with fuzzy optimization are shown in feasibility studies to investigate the potential application of the risk and uncertainty analyses in safeguards. It is demonstrated that the SM is an effective measurement system using risk-informed and cost-effective SBD, even though there are inherent difficulties related to the possibility of operator’s falsification.

  8. U.S. safeguards history and the evolution of safeguards research and development

    International Nuclear Information System (INIS)

    Brenner, L.M.; McDowell, S.C.T.

    1989-01-01

    In discussing the U.S. safeguards history and the evolution of safeguards research and development, five significant eras are identified. The period ending January 1, 1947, may be called the first era. Safeguards as known today did not exist and the classic military approach of security protection applied. The second era covers the period from 1947 to 1954 (when the Atomic Energy Act was completely rewritten to accommodate the then foreseen Civil uses Program and international cooperation in peaceful uses of nuclear energy), and the first steps were taken by the Atomic Energy Commission to establish material accounting records for all source and fissionable materials on inventory. The third era covers the period 1954 through 1968, which focused on nuclear safeguards in its domestic activities and made major policy changes in its approach to material control and accountability. The fourth era, 1968 to 1972 saw a quantum jump in the recognition and need for a significant safeguards research and development program, answered by the formation of a safeguards technical support organization at Brookhaven National Laboratory and a safeguards Laboratory at Los Alamos Scientific Laboratory for the development and application of non-destructive assay technology. The fifth era had its beginning in 1972 with the burgeoning of international terrorism. The corresponding need for a strong physical protection research and development support program was responded to by the Sandia National Laboratory

  9. Concepts on integration of physical protection and material accounting functions in a safeguards system

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1981-01-01

    Concepts on integration of physical protection and material accounting systems to enhance overall safeguards capability are developed and presented. Integration is approached by coordinating all safeguards information through a safeguards coordination center. This center represents a higher level in a communication, data-processing, and decision-making structure which is needed for efficient real-time operation of the integrated system. The safeguards coordination center functions to assess alarm and warning data required to resolve threats in the safeguards system, coordinate information and interaction involving the material accounting, physical protection, and facility monitoring and control systems, and present a single unified interface for interaction with facility management, facility operations, safeguards system personnel, and response forces

  10. Improved verification methods for safeguards verifications at enrichment plants

    International Nuclear Information System (INIS)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D.

    2009-01-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF 6 cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  11. Improved verification methods for safeguards verifications at enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D. [Department of Safeguards, International Atomic Energy Agency, Wagramer Strasse 5, A1400 Vienna (Austria)

    2009-07-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF{sub 6} cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  12. Selected topics in special nuclear materials safeguard system design

    International Nuclear Information System (INIS)

    King, L.L.; Thatcher, C.D.; Clarke, J.D.; Rodriguez, M.P.

    1991-01-01

    During the past two decades the improvements in circuit integration have given rise to many new applications in digital processing technology by continuously reducing the unit cost of processing power. Along with this increase in processing power a corresponding decrease in circuit volume has been achieved. Progress has been so swift that new classes of applications become feasible every 2 or 3 years. This is especially true in the application of proven new technology to special nuclear materials (SNM) safeguard systems. Several areas of application were investigated in establishing the performance requirements for the SNM safeguard system. These included the improvements in material control and accountability and surveillance by using multiple sensors to continuously monitor SNM inventory within the selected value(s); establishing a system architecture to provide capabilities needed for present and future performance requirements; and limiting operating manpower exposure to radiation. This paper describes two selected topics in the application of state-of-the-art, well-proven technology to SNM safeguard system design

  13. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Risa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Rebecca [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frazar, Sarah [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burbank, Roberta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, Rebecca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cain, Ron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morell, Sean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps. Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.

  14. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  15. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-06-01

    commonly used, for instance, in shielding on radioactive sources used in hospitals. Other radioactive material, such as most radioactive sources and isotopes used in medicine, industry, agriculture, and water resource management, are not the subject of safeguards and need not be reported to the IAEA under safeguards agreements. Reporting depends on the level of nuclear activity in the country. Declarations pursuant to safeguards agreements and additional protocols for States that do not have nuclear facilities are expected to be short and simple. The IAEA has prepared a document, available upon request, which provides guidance on the reporting requirements for such States. More elaborate guidelines have been prepared for States that do have nuclear facilities subject to routine safeguards inspections. Through its activities in the field, the IAEA seeks to verify the correctness and completeness of States' reports and declarations regarding nuclear material. Each State with a comprehensive safeguards agreement is required to establish and maintain a State system of accounting for and control of nuclear material (SSAC), which is the national authority formally designated to keep track of nuclear material and activities in the country. For all States with safeguards agreements in force, the IAEA draws an annual conclusion on the non-diversion of nuclear material and other items placed under safeguard. The IAEA's focal point for the negotiation of safeguards agreements and additional protocols, and the amendment of SQPs, is the Office of External Relations and Policy Coordination. Once a State has decided to conclude such an agreement and/or protocol, or amend its SQP, the IAEA can help the country with the implementation of related legal and technical requirements. The appendix of this publication informs how to conclude a comprehensive Safeguards Agreement and/or an Additional Protocol and provides 3 model notification letters for (a) conclusion of a safeguards agreement, a

  16. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-04-01

    commonly used, for instance, in shielding on radioactive sources used in hospitals. Other radioactive material, such as most radioactive sources and isotopes used in medicine, industry, agriculture, and water resource management, are not the subject of safeguards and need not be reported to the IAEA under safeguards agreements. Reporting depends on the level of nuclear activity in the country. Declarations pursuant to safeguards agreements and additional protocols for States that do not have nuclear facilities are expected to be short and simple. The IAEA has prepared a document, available upon request, which provides guidance on the reporting requirements for such States. More elaborate guidelines have been prepared for States that do have nuclear facilities subject to routine safeguards inspections. Through its activities in the field, the IAEA seeks to verify the correctness and completeness of States' reports and declarations regarding nuclear material. Each State with a comprehensive safeguards agreement is required to establish and maintain a State system of accounting for and control of nuclear material (SSAC), which is the national authority formally designated to keep track of nuclear material and activities in the country. For all States with safeguards agreements in force, the IAEA draws an annual conclusion on the non-diversion of nuclear material and other items placed under safeguard. The IAEA's focal point for the negotiation of safeguards agreements and additional protocols, and the amendment of SQPs, is the Office of External Relations and Policy Coordination. Once a State has decided to conclude such an agreement and/or protocol, or amend its SQP, the IAEA can help the country with the implementation of related legal and technical requirements. The appendix of this publication informs how to conclude a comprehensive Safeguards Agreement and/or an Additional Protocol and provides 3 model notification letters for (a) conclusion of a safeguards agreement, a

  17. Current trends in the implementation of IAEA safeguards

    International Nuclear Information System (INIS)

    Adamson, A.; Bychkov, V.

    1993-01-01

    A practical goal, embodying the principle that a minimum amount of material is required in order to manufacture a nuclear explosive device, is that safeguards activities should enable the timely detection of the diversion of a significant quantity of nuclear material. It is important to note that the safeguards activities are not restricted to the International Atomic Energy Agency (the agency) but impose obligations on both state (and consequently on facility operators) and the agency. The beneficiaries are member states of the world community which have enhanced confidence in the competence and probity of states with safeguards agreements. Neither safeguards nor the nuclear industry have remained stationary. As new techniques have been developed, they have found applications, and as new challenges were encountered, the system has responded, for example, through improved measurements; through new or improved techniques for the operator, state or agency; and through new regulations. This paper details approaches, procedures and techniques developed for new complex nuclear facilities. Trends toward increase efficiency and effectiveness, and developments leading to more automated analysis and collection of data and the development of nondestructive assay methods are examined. Also important are trends in the presentation of safeguards results to the states and the general public

  18. The DOE safeguards and security technology development program

    International Nuclear Information System (INIS)

    Cherry, R.C.; Wheelock, A.J.

    1991-01-01

    This paper reports that strategic planning for safeguards and security within the Department of Energy emphasizes the contributions of advanced technologies to the achievement of Departmental protection program goals. The Safeguards and Security Technology Development Program provides state-of-the-art technologies, systems and technical services in support of the policies and programmatic requirements for the protection of Departmental assets. The Program encompasses research and development in physical security, nuclear material control and accountability, information security and personnel security, and the integration of these disciplines in advanced applications. Technology development tasks serve goals that range from the maintenance of an effective technology base to the development, testing and evaluation of applications to meet field needs. A variety of factors, from the evolving threat to reconfiguration of the DOE complex and the technical requirements of new facilities, are expected to influence safeguards and security technology requirements and development efforts. Implementation of the Program is based on the systematic identification, prioritization and alignment of technology development tasks and needs. Initiatives currently underway are aimed at enhancing technology development project management. Increased management attention is also being placed on efforts to promote the benefits of the Program through technology transfer and interagency liaison

  19. Nuclear safeguards technology handbook

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included. (LK)

  20. Safeguards Culture: lesson learned

    International Nuclear Information System (INIS)

    Frazar, S.; Mladineo, S.V.

    2010-01-01

    After the discovery of Iraq's clandestine nuclear program in 1991, the international community developed new tools for evaluating and demonstrating states' nuclear intentions. The International Atomic Energy Agency (IAEA) developed a more holistic approach toward international safeguards verification to garner more complete information about states' nuclear activities. This approach manifested itself in State Level Evaluations, using information from a variety of sources, including the implementation of integrated safeguards in Member States, to reach a broader conclusion. Those wishing to exhibit strong nonproliferation postures to a more critical international community took steps to demonstrate their nonproliferation 'bona fides'. As these Member States signed and brought into force the Additional Protocol, submitted United Nations Security Council Resolution 1540 reports and strengthened their export control laws, the international community began to consider the emergence of so-called safeguards cultures. Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been under appreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured.

  1. Safeguards and security research and development: Progress report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, D.R.; Henriksen, P.W. [comp.

    1997-03-01

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IV is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years.

  2. Safeguards and security research and development: Progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    Rutherford, D.R.; Henriksen, P.W.

    1997-03-01

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IV is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years

  3. A data management system for safeguards applications (DMSSA)

    International Nuclear Information System (INIS)

    Wu Yuan

    1994-09-01

    Implementation of the State System of Accounting for and Control of nuclear material (SSAC) in China has begun since 1989. DESSA serves as an automated tool to provide the quality Accounting Reports to the IAEA as well as to perform the data management of safeguards database. It is implemented on an IBM-compatible PC. The system is characterized as a single-user, small-scale system with cost-effective and easy-to-use feature. It consists of a data manipulating system and a database specially designed for safeguards applications. It involves several functions such as: Report Edit, Quality Control, Auditing and Data Verification, Information Retrieval and Film Management, Database Querying and so on. All functions of the system are used in an interactive mode and organized in a pull-down menu. The general design consideration of the system is that it should completely meet the requirements of the safeguards activities to provide the basis for the application of safeguards pursuant to the provisions of the Agreement between China and IAEA

  4. A data management system for safeguards applications (DMSSA)

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wu [Beijing Inst. of Nuclear Engineering (China)

    1994-09-01

    Implementation of the State System of Accounting for and Control of nuclear material (SSAC) in China has begun since 1989. DESSA serves as an automated tool to provide the quality Accounting Reports to the IAEA as well as to perform the data management of safeguards database. It is implemented on an IBM-compatible PC. The system is characterized as a single-user, small-scale system with cost-effective and easy-to-use feature. It consists of a data manipulating system and a database specially designed for safeguards applications. It involves several functions such as: Report Edit, Quality Control, Auditing and Data Verification, Information Retrieval and Film Management, Database Querying and so on. All functions of the system are used in an interactive mode and organized in a pull-down menu. The general design consideration of the system is that it should completely meet the requirements of the safeguards activities to provide the basis for the application of safeguards pursuant to the provisions of the Agreement between China and IAEA.

  5. Safeguard sleuths

    International Nuclear Information System (INIS)

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  6. A database model for evaluating material accountability safeguards effectiveness against protracted theft

    International Nuclear Information System (INIS)

    Sicherman, A.; Fortney, D.S.; Patenaude, C.J.

    1993-07-01

    DOE Material Control and Accountability Order 5633.3A requires that facilities handling special nuclear material evaluate their effectiveness against protracted theft (repeated thefts of small quantities of material, typically occurring over an extended time frame, to accumulate a goal quantity). Because a protracted theft attempt can extend over time, material accountability-like (MA) safeguards may help detect a protracted theft attempt in progress. Inventory anomalies, and material not in its authorized location when requested for processing are examples of MA detection mechanisms. Crediting such detection in evaluations, however, requires taking into account potential insider subversion of MA safeguards. In this paper, the authors describe a database model for evaluating MA safeguards effectiveness against protracted theft that addresses potential subversion. The model includes a detailed yet practical structure for characterizing various types of MA activities, lists of potential insider MA defeat methods and access/authority related to MA activities, and an initial implementation of built-in MA detection probabilities. This database model, implemented in the new Protracted Insider module of ASSESS (Analytic System and Software for Evaluating Safeguards and Security), helps facilitate the systematic collection of relevant information about MA activity steps, and ''standardize'' MA safeguards evaluations

  7. Prioritizing and scheduling Portsmouth Gaseous Diffusion Plant safeguards upgrades

    International Nuclear Information System (INIS)

    Edmunds, T.; Saleh, R.; Zevanove, S.

    1992-02-01

    As part of the Site Safeguards and Security Plan (SSSP), facilities are required to develop a Resource Plan (RP). The Resource Plan provides documentation and justification for the facility's planned upgrades, including the schedule, priority, and cost estimates for the safeguards and security upgrades. Portsmouth Gaseous Diffusion Plant (PORTS) management has identified and obtained funding approval for a number of safeguards and security upgrades, including line-item construction projects. These upgrade projects were selected to address a variety of concerns identified in the PORTS vulnerability assessments and other reviews performed in support of the SSSP process. However, budgeting and scheduling constraints do not make it possible to simultaneously begin implementation of all of the upgrade projects. A formal methodology and analysis are needed to explicitly address the trade-offs between competing safeguards objectives, and to prioritize and schedule the upgrade projects to ensure that the maximum benefit can be realized in the shortest possible time frame. The purpose of this report is to describe the methodology developed to support these upgrade project scheduling decisions. The report also presents the results obtained from applying the methodology to a set of the upgrade projects selected by PORTS S ampersand S management. Data for the analysis are based on discussions with personnel familiar with the PORTS safeguards and security needs, the requirements for implementing these upgrades, and upgrade funding limitations. The analysis results presented here assume continued highly enriched uranium (HEU) operations at PORTS. However, the methodology developed is readily adaptable for the evaluation of other operational scenarios and other resource allocation issues relevant to PORTS

  8. Safeguards and Security Technology Development Directory. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  9. Activities of special committee on 'quality assurance of accountancy analysis for safeguards'

    International Nuclear Information System (INIS)

    2010-01-01

    For the long-term stable operation of nuclear fuel cycle facilities, it is essential to satisfy the requirements of IAEA safeguards agreement. It could be attained by precise implementation of accountancy analysis of nuclear materials and application of Destructive Analysis (DA) which enables highly precise measurement is necessary. The requirements to maintain and improve the precision of DA are supposed to grow along with nuclear fuel cycle fully in progress and Pu handling amount increases. In order to maintain long-term stability of quality level of accountancy analysis for safeguards, a special committee on 'Quality Assurance (QA) for Accountancy /Safeguards analysis' was established at Atomic Energy Society Japan supported by INNM-Japan Chapter. Experts of safeguards analysis, reference materials, statistics and QA were gathered and drafted the committee standard document for isotope dilution mass spectrometry, the major accountancy analysis technique for Pu and U, supported Pu standard preparation at JAEA and summarized the items needed for QA of DA. (author)

  10. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  11. Negotiating supranational rules. The genesis of the International Atomic Energy Agency safeguards system

    Energy Technology Data Exchange (ETDEWEB)

    Forland, A.

    1997-12-31

    The object of this study is the evolution from 1954-56 up until the mid-1970s of the nuclear safeguards system administered by the International Atomic Energy Agency (IAEA) in Vienna. The main aim of the study is not to describe the IAEA safeguards system as such. The focus will be on analysing the arguments advanced in the various negotiations, and the main objective will be to single out the factors determining the result. In the course of the time span under study two international treaties were negotiated which were decisive for the development of international nuclear safeguards. These were the IAEA Stature (1956) and the Non-Proliferation Treaty (1968). The Statue as well as the NPT contain articles on international nuclear safeguards. These articles limit themselves to spelling out the safeguards principles. It was thus left to the IAEA Board of Governors to develop the safeguards procedures in detail. Two IAEA safeguards documents were negotiated between 1959 and 1965 in order to implement the safeguards article of the Statue. The safeguards requirements of the NPT were spelled out in a new model agreement in 1972. 58 refs.

  12. Negotiating supranational rules. The genesis of the International Atomic Energy Agency safeguards system

    Energy Technology Data Exchange (ETDEWEB)

    Forland, A

    1998-12-31

    The object of this study is the evolution from 1954-56 up until the mid-1970s of the nuclear safeguards system administered by the International Atomic Energy Agency (IAEA) in Vienna. The main aim of the study is not to describe the IAEA safeguards system as such. The focus will be on analysing the arguments advanced in the various negotiations, and the main objective will be to single out the factors determining the result. In the course of the time span under study two international treaties were negotiated which were decisive for the development of international nuclear safeguards. These were the IAEA Stature (1956) and the Non-Proliferation Treaty (1968). The Statue as well as the NPT contain articles on international nuclear safeguards. These articles limit themselves to spelling out the safeguards principles. It was thus left to the IAEA Board of Governors to develop the safeguards procedures in detail. Two IAEA safeguards documents were negotiated between 1959 and 1965 in order to implement the safeguards article of the Statue. The safeguards requirements of the NPT were spelled out in a new model agreement in 1972. 58 refs.

  13. Negotiating supranational rules. The genesis of the International Atomic Energy Agency safeguards system

    International Nuclear Information System (INIS)

    Forland, A.

    1997-01-01

    The object of this study is the evolution from 1954-56 up until the mid-1970s of the nuclear safeguards system administered by the International Atomic Energy Agency (IAEA) in Vienna. The main aim of the study is not to describe the IAEA safeguards system as such. The focus will be on analysing the arguments advanced in the various negotiations, and the main objective will be to single out the factors determining the result. In the course of the time span under study two international treaties were negotiated which were decisive for the development of international nuclear safeguards. These were the IAEA Stature (1956) and the Non-Proliferation Treaty (1968). The Statue as well as the NPT contain articles on international nuclear safeguards. These articles limit themselves to spelling out the safeguards principles. It was thus left to the IAEA Board of Governors to develop the safeguards procedures in detail. Two IAEA safeguards documents were negotiated between 1959 and 1965 in order to implement the safeguards article of the Statue. The safeguards requirements of the NPT were spelled out in a new model agreement in 1972. 58 refs

  14. Evaluation of excess nuclear materials suitability for international safeguards

    International Nuclear Information System (INIS)

    Newton, J.W.; White, W.C.; Davis, R.M.; Cherry, R.C.

    1996-01-01

    President Clinton announced in March 1995 the permanent withdrawal of 200 tons of fissile material from the US nuclear stockpile. This action was made possible by the dramatic reduction in nuclear weapons stockpile size and a desire to demonstrate the US'' commitment to nonproliferation goals. To provide further assurance of that commitment, the US is addressing placement of these materials under International Atomic Energy Agency (IAEA) safeguards. An initial step of this overall assessment was evaluation of the nuclear materials'' suitability for international safeguards. US Department of Energy (DOE) field organizations reviewed a detailed listing of all candidate materials with respect to characterization status, security classification, and acceptability for international safeguards compared to specified criteria. These criteria included form, location, environment and safety considerations, measurability, and stability. The evaluation resulted in broad categorizations of all materials with respect to preparing and placing materials under IAEA safeguards and provided essential information for decisions on the timing for offering materials as a function of materials attributes. A plan is being prepared to determine the availability of these materials for IAEA safeguards considering important factors such as costs, processes and facilities required to prepare materials, and impacts on other programs

  15. Policy and technical issues for international safeguards in nuclear weapons states

    International Nuclear Information System (INIS)

    Markin, J.T.; Stanbro, W.D.

    1994-01-01

    Expansion of international safeguards into the military and commercial fuel cycles of the nuclear weapons states (NWS) -- the subject of previous proposals in international safeguards discussions and of studies in the safeguards literature -- has been given impetus by recent US government initiatives for safeguards on excess weapons materials and a verified fissile materials production cutoff. These proposals, if implemented, would have implications on the safeguards objectives, approaches, and technologies that are traditionally employed in international safeguards. This paper examines the modifications and innovations that might be required to the current international safeguards regime in meeting these proposed new roles. Although the examples given are in the context of the US materials and facilities, many of the conclusions are valid for other NWS. None of the statements in this paper represent official US position on policy for international safeguards in weapons states. Instead, the purpose is to identify policy and technical issues and to offer, where possible, options for their resolution. This paper limits consideration to the potential role of the IAEA in verifying these proposed initiatives for declared facilities, recognizing that there may also be a role for bilateral, multilateral, or regional verification regimes. Indeed, in some cases verification of weapons materials may be more appropriate for a bilateral arrangement. Because traditional IAEA safeguards may not be admissible for weapons materials, the concept of ''transparency'' is suggested as a less intrusive alternative providing some confidence that materials are as declared

  16. Safeguards material control at licensed processing facilities

    International Nuclear Information System (INIS)

    Cleland, L.L.; Johnson, W.A.; Maimoni, A.; Sacks, I.J.; Spogen, L.R.

    1977-01-01

    This report is a review of presentations made by Lawrence Livermore Laboratory at the NRC Office of Regulatory Research contractors review held in Bethesda, Maryland, on February 2-3, 1977. An overview of LLL's approach in assisting the NRC in its creation of Performance Based Regulations and attendant compliance testing is presented. This approach consists of the development of a hierarchy of safeguards functions, a set of measures for these functions, and a usable assessment approach. A summary of progress based on present project status is then given. A complete hierarchy of functions has been developed by LLL and is presented along with a description of the physical measures and mathematical aggregation requirements. Next, a discussion of the need for expansion of currently available data required for portions of MC system detailed evaluation is given. LLL's assessment approach is outlined in a preliminary step-by-step assessment procedure. The basic requirements, in addition to specific NRC criteria, for assessment include the development of various tools and procedures. These tools and procedures and their methodology requirements are discussed in detail and examples given

  17. Proposals for the 1989/90 Safeguards R and D programme and associated meetings

    International Nuclear Information System (INIS)

    1987-07-01

    The R and D programme of the IAEA Department of Safeguards as carried out by or undertaken on behalf of the Division of Development and Technical Support, the Division of Safeguards Evaluation and the Division of Safeguards Information Treatment is set out in tables which give the objective of the programme elements, a description of the activities to be performed and a number of items of information required for assessment of the activities. The linkage between R and D activities and planned meetings on safeguards topics in 1989/90 is shown in a table too. 4 tabs

  18. Exploratory study on potential safeguards applications for shared ledger technology

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jarman, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joslyn, Cliff A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kreyling, Sean J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sayre, Amanda M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schanfein, Mark J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); West, Curtis L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Winters, Samuel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-07

    The International Atomic Energy Agency (IAEA) is responsible for providing credible assurance that countries are meeting their obligations not to divert or misuse nuclear materials and facilities for non-peaceful purposes. To this end, the IAEA integrates information about States’ nuclear material inventories and transactions with other types of data to draw its safeguards conclusions. As the amount and variety of data and information has increased, the IAEA’s data acquisition, management, and analysis processes have greatly benefited from advancements in computer science, data management, and cybersecurity during the last 20 years. Despite these advancements, inconsistent use of advanced computer technologies as well as political concerns among certain IAEA Member States centered on trust, transparency, and IAEA authorities limit the overall effectiveness and efficiency of IAEA safeguards. As a result, there is an ongoing need to strengthen the effectiveness and efficiency of IAEA safeguards while improving Member State cooperation and trust in the safeguards system. These chronic safeguards needs could be met with some emerging technologies, specifically those associated with the digital currency bitcoin.

  19. The remote monitoring systems LOVER and RECOVER for international safeguards technical, economic and legal aspects

    International Nuclear Information System (INIS)

    Lauppe, W.D.; Stein, G.; Rezniczek, A.; Stienen, U.

    1983-12-01

    The electronic remote monitoring systems RECOVER and LOVER were developed to comply with the IAEA's tasks concerning international nuclear materials safeguards with the aim of reducing the inspection expenditure and enhancing control effectiveness. The present study on the technical, economic and legal aspects of an application of these systems is intended to show possible implications and provide argumentation aids for discussions on the application of these systems. RECOVER and LOVER offer the possibility of establishing a direct communication path between containment and surveillance system (c/s), instruments at the site of application and a central monitoring station. The demonstration versions of both systems have shown that remote interrogation of data under safeguards-specific boundary conditions (e.g. requirement of tamper safety) will be technically feasible. (orig./HP)

  20. Integrating Safeguards and Security with Safety into Design

    International Nuclear Information System (INIS)

    Bean, Robert S.; Hockert, John W.; Hebditch, David J.

    2009-01-01

    There is a need to minimize security risks, proliferation hazards, and safety risks in the design of new nuclear facilities in a global environment of nuclear power expansion, while improving the synergy of major design features and raising operational efficiency. In 2008, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) covering many safeguards areas. One of these, launched by NNSA with support of the DOE Office of Nuclear Energy, was a multi-laboratory project, led by the Idaho National Laboratory (INL), to develop safeguards by design. The proposed Safeguards-by-Design (SBD) process has been developed as a structured approach to ensure the timely, efficient, and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical security, and safety objectives into the overall design process for the nuclear facility lifecycle. A graded, iterative process was developed to integrate these areas throughout the project phases. It identified activities, deliverables, interfaces, and hold points covering both domestic regulatory requirements and international safeguards using the DOE regulatory environment as exemplar to provide a framework and guidance for project management and integration of safety with security during design. Further work, reported in this paper, created a generalized SBD process which could also be employed within the licensed nuclear industry and internationally for design of new facilities. Several tools for integrating safeguards, safety, and security into design are discussed here. SBD appears complementary to the EFCOG TROSSI process for security and safety integration created in 2006, which focuses on standardized upgrades to enable existing DOE facilities to meet a more severe design basis threat. A collaborative approach is suggested.

  1. The IAEA's activities in safeguarding nuclear materials and in developing internationally acceptable safety codes and guides for nuclear power plants

    International Nuclear Information System (INIS)

    Rometsch, Rudolf; Specter, Herschel

    1977-01-01

    Promoting the peaceful use of nuclear energy and aiming at the international sharing of its benefits are objectives that guide the activities of the Agency. But this promotional work is carried out on condition that security and safety are provided for. All Agency assistance involving nuclear facilities will be subjected to standards of safety or other standards, which are proposed by a State the Agency finds essentially equivalent. Safeguards are always applied on the basis of agreement. States party to NPT are obligated to negotiate and conclude with the Agency agreements which cover all their peaceful nuclear activities. Safeguards agreements concluded outside NPT are applied to specific supplies of facilities, equipment and material. To assist countries in laying down their nuclear safety regulations the Agency's program for the developing of codesof practice and safety guides for nuclear power plants draws up guidelines for governmental organizations, siting, design, operation and quality assurance. Codes are the fundamental documents laying down the objectives of each field of nuclear safety

  2. Safeguards First Principle Initiative (SFPI) Cost Model

    International Nuclear Information System (INIS)

    Price, Mary Alice

    2010-01-01

    The Nevada Test Site (NTS) began operating Material Control and Accountability (MC and A) under the Safeguards First Principle Initiative (SFPI), a risk-based and cost-effective program, in December 2006. The NTS SFPI Comprehensive Assessment of Safeguards Systems (COMPASS) Model is made up of specific elements (MC and A plan, graded safeguards, accounting systems, measurements, containment, surveillance, physical inventories, shipper/receiver differences, assessments/performance tests) and various sub-elements, which are each assigned effectiveness and contribution factors that when weighted and rated reflect the health of the MC and A program. The MC and A Cost Model, using an Excel workbook, calculates budget and/or actual costs using these same elements/sub-elements resulting in total costs and effectiveness costs per element/sub-element. These calculations allow management to identify how costs are distributed for each element/sub-element. The Cost Model, as part of the SFPI program review process, enables management to determine if spending is appropriate for each element/sub-element.

  3. U.S. next generation safeguards initiative: the human capital development program

    International Nuclear Information System (INIS)

    Scholz, M.A.

    2013-01-01

    The Human Capital Development (HCD) subprogram of the U.S. Next Generation Safeguards Initiative (NGSI) is developing sustainable academic and technical programs that support the recruitment, education, training, and retention of the next generation of international safeguards professionals. This wide-ranging HCD effort endeavors to develop additional human resources to address current shortfalls, encourage U.S. experts to seek employment at the IAEA, and identify and train a new cadre of safeguards experts to meet the needs of both the United States and the IAEA for decades to come. In recent years, a convergence of factors has challenged the IAEA's ability to carry out its safeguards mission effectively. A staffing study shows that less than 20% of the international safeguards specialists in the U.S. workforce are 44 years of age or younger and that over 80% of the international safeguards specialists at the National Laboratories will be retired or otherwise resigned within 15 years. An aging workforce nearing retirement and growing workload, coupled with a safeguards budget that has remained essentially flat in real terms for nearly two decades, have posed particular challenges to the IAEA's Department of Safeguards. Recognizing the trends, the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) launched NGSI in the fall of 2007. Since that time, the HCD subprogram of NGSI has sponsored over 300 safeguards internships at U.S. National Labs, organized eight annual short safeguards policy and technical courses, worked with ten universities to develop new undergraduate and graduate course-work on international safeguards and nonproliferation, established a highly competitive graduate fellowship program, and completed a human capital requirements study that closely examined the safeguards workforce within the U.S. National Lab complex. Of past NGSI students and interns, nearly four in ten pursue multiple NGSI

  4. A study on the national safeguards system -Current status and suggested development-

    International Nuclear Information System (INIS)

    Park, Wan Su; Kwack, Eun Ho; An, Jong Sung; Kim, Hyun Tae; Min, Kyung Sik; Park, Chan Sik

    1995-03-01

    In Korea, 17 nuclear facilities are currently under IAEA's safeguards and it is expected that more than 25 nuclear facilities will be under IAEA's safeguards in the year 2000 according to nuclear R and D and industry expansion. In connection with unlimited extension of NPT in 1995 and IAEA's measures to strengthen the safeguards like 'Programme 93+2', the international non-proliferation regime will be strengthened more and nuclear advanced countries will require the transparency and credibility of nuclear activities in recipient countries instead of transferring advanced nuclear technologies and nuclear material. In 1995, the Korean government had revised the Atomic Energy Law to control increasing nuclear facilities and nuclear material effectively and to establish international transparency and credibility. In the revised Atomic Energy Law, it is provided that the national inspection, other than IAEA inspection, will be started from 1996. Currently, necessary arrangements for national inspection are being prepared by MOST and TCNC at KAERI. However, the safeguards system in Korea is still beginning stage, Korea's safeguards activity was passive and fragmentary that leads non-attainment of safeguards goal in many facilities. The reasons were; absence of systematic safeguards system (SSAC); lack of understanding safeguards concepts; lack of manpower, designated organization for safeguards, etc. As Korea ranked world top 10 nuclear power generation country and has a plan to be a nuclear advanced country, Korea should have appropriate safeguards system and should not spare necessary assistance to that system. 14 tabs., 15 figs., 29 refs. (Author)

  5. Novel technologies for safeguards

    International Nuclear Information System (INIS)

    Annese, C.; Monteith, A.; Whichello, J.

    2009-01-01

    Full-text: The International Atomic Energy Agency (IAEA) Novel Technologies Project is providing access to a wider range of methods and instruments, as well as establishing a systematic mechanism to analyse gaps in the inspectorate's technical support capabilities. The project also targets emerging and future inspectorate needs in the areas of verification and the detection of undeclared nuclear activities, materials, and facilities, providing an effective pathway to technologies in support of safeguards implementation. The identification of safeguards-useful nuclear fuel cycle (NFC) indicators and signatures (I and S) is a fundamental sub-task within the Project. It interfaces with other IAEA efforts currently underway to develop future safeguards approaches through undertaking an in-depth review of NFC processes. Primarily, the sub-task aims to identify unique and safeguards-useful 'indicators', which identify the presence of a particular process, and 'signatures', which emanate from that process when it is in operation. The matching of safeguards needs to detection tool capabilities facilitates the identification of gaps where no current method or instrument exists. The Project has already identified several promising technologies based on atmospheric gas sampling and analysis, laser spectrometry and optically stimulated luminescence. Instruments based on these technologies are presently being developed through support programme tasks with Member States. This paper discusses the IAEA's project, Novel Technologies for the Detection of Undeclared Nuclear Activities, Materials and Facilities and its goal to develop improved methods and instruments. The paper also describes the method that has been devised within the Project to identify safeguards-useful NFC I and S and to determine how the sub-task interfaces with other IAEA efforts to establish emerging safeguards approaches. As with all safeguards-targeted research and development (R and D), the IAEA depends

  6. The Agency's Safeguards System (1965)

    International Nuclear Information System (INIS)

    1965-01-01

    On 28 September 1965 the Board of Governors approved the Agency's revised safeguards system which is set forth in this document for the information of all Members. For ease of reference the revised system may be cited as 'The Agency's Safeguards System (1965)' to distinguish it from the original system - 'The Agency's Safeguards System (1961)'- and from the original system as extended to large reactor facilities - 'The Agency's Safeguards System (1961, as Extended in 1964)'

  7. EURATOM safeguards implementation in France and cooperation with the IAEA

    International Nuclear Information System (INIS)

    Oddou, J.

    2013-01-01

    International safeguards in France are applied both by: -) the European Commission (EC), through the Chapter 7 of the EURATOM Treaty; -) the International Atomic Energy Agency (IAEA) as France is a party to the NPT and has concluded a safeguards agreement with IAEA. With the exception of mining, France has a complete nuclear fuel cycle from ore concentrates to waste. Based on the legal framework of the EURATOM Treaty, all civil nuclear facilities and all civil nuclear materials are safeguarded by EURATOM wherever they are in France. Therefore the two conversion plants, the two enrichment plants, the three fuel fabrication plants, the 59 nuclear power plants including the EPR of Flamanville under construction, the 2 reprocessing plants in La Hague, the five facilities for waste treatment and numerous research centers and reactors of CEA are declared and controlled by the European Commission. The activities of the EURATOM inspectors are of various kind depending of the facility and the type of inspection. The most common checks are: identification and counting of the nuclear material, verification of accountancy declaration vs. physical follow-up of the nuclear material, non-destructive analysis and destructive analysis after sampling in large bulk handling facilities. There is a strong cooperation between IAEA and EC: the majority of IAEA inspections in France are joint team inspections with the EC. This pooling of equipment and teams can save money and human resources. Equipment for containment and surveillance are paid whether by the EC or by the IAEA and can be used by both bodies of inspectors. With the principle of 'One Job One Person', verification activities are done only once and it saves time for the inspectors and the operators. The paper is followed by the slides of the presentation. (A.C.)

  8. Synergy between Security and Safeguards in Uranium Concentrate Export Control

    International Nuclear Information System (INIS)

    Soumana, T.

    2010-01-01

    This paper is a proposal to the government of Niger and all national institutions involved in the ISSAS and INSSERV Missions held in Niger to optimally coordinate they activities in nuclear field. It is essential to notice that Niger has significant nuclear activities, mainly in uranium prospecting, mining, milling, and export. In Niger, there are also many radioactive sources in non nuclear use. The safeguards agreement of Niger, infcirc/664, is in force since 16 February 2005 and its relating additional protocol since 2 May 2007. For the safeguards implementation in Niger, Government has requested to the IAEA an ISSAS Mission which was completed in February 2008. A main recommendation of this mission is to consider an overall plan for security measures and in this regards, an INSSERV Mission was completed in December 2008. Nuclear safeguards conclusions focus on correctness and completeness of declarations provided by operators. Nuclear security activities (prevention, detection and response) are useful contributions to confirm safeguards conclusions specially, a good detection strategy at national level can help to confirm the absence of undeclared activities in a country like Niger. Many governmental institutions are involved in nuclear activities and there are lacks of communication between them. Creating a synergy between safeguards and security can federate the mechanisms of control at national level and have impact in many aspects specially in (i) awareness of decision makers (ii) optimal use of the equipments (iii) organizing training activities and human resource management and (iv) designing national strategic plans. The institution which hosted the two IAEA consultative missions (Directorate of Peaceful Use of Nuclear Techniques-DUPTN for the ISSAS Mission and Civil Defence for INSSERV Mission) in consultation with other national institutions had to create a framework for this synergy. This framework must be submitted to the IAEA for observation and

  9. Validating safeguards effectiveness given inherently limited test data

    International Nuclear Information System (INIS)

    Sicherman, A.

    1987-01-01

    A key issue in designing and evaluating nuclear safeguards systems is how to validate safeguards effectiveness against a spectrum of potential threats. Safeguards effectiveness is measured by a performance indicator such as the probability of defeating an adversary attempting a malevolent act. Effectiveness validation means a testing program that provides sufficient evidence that the performance indicator is at an acceptable level. Traditional statistical program when numerous independent system trials are possible. However, within the safeguards environment, many situations arise for which traditional statistical approaches may be neither feasible nor appropriate. Such situations can occur, for example, when there are obvious constraints on the number of possible tests due to operational impacts and testing costs. Furthermore, these tests are usually simulations (e.g., staged force-on-force exercises) rather than actual tests, and the system is often modified after each test. Under such circumstances, it is difficult to make and justify inferences about system performance by using traditional statistical techniques. In this paper, the authors discuss several alternative quantitative techniques for validating system effectiveness. The techniques include: (1) minimizing the number of required tests using sequential testing; (2) combining data from models inspections and exercises using Bayesian statistics to improve inferences about system performance; and (3) using reliability growth and scenario modeling to help specify which safeguards elements and scenarios to test

  10. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS

    International Nuclear Information System (INIS)

    PEPPER, S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-01-01

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R and D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose

  11. Interim Procedures Safeguarding Mobile Devices during International Travel

    Science.gov (United States)

    This procedure is for safeguarding EPA information and systems for all employees, contractors, and other users while on international travel or to specifically designated locations within the United States and foreign embassies.

  12. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  13. Strengthening regional safeguards

    International Nuclear Information System (INIS)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-01-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980's and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States

  14. 32 CFR 310.13 - Safeguarding personal information.

    Science.gov (United States)

    2010-07-01

    .... (a) General responsibilities. DoD Components shall establish appropriate administrative, technical..., the sensitivity of the personal information stored, the storage medium used and, to a degree, the... automated environment (see appendix A). (5) Tailor safeguards specifically to the vulnerabilities of the...

  15. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  16. Information required from States, including 'small quantities protocol' status, under the Protocol Additional to Safeguards Agreements

    International Nuclear Information System (INIS)

    Tuley, N.

    1999-01-01

    The Model, or Additional, Protocol to the Model Safeguards Agreement, INFCIRC/153, contains, inter alia, provisions for expanded declarations from Member States to the IAEA. These provisions include earlier design information declarations and information on fuel cycles activities, such a mining and milling, that were not previously part of safeguards. The session discusses the extent of the expanded declarations and provides examples of the forms that will be used to provide the information to the Agency. (author)

  17. Development of an advanced safeguards system as a proliferation deterrent

    International Nuclear Information System (INIS)

    Ayers, A.A.; Barnes, L.D.

    1978-11-01

    The Advanced Safeguards System consists of Computerized Nuclear Materials Control and Accounting System, Physical Protection System, and Safeguards Coordination Center (SCC). Should all the computer-based monitoring systems be overcome (i.e., the NMC computer programmed not to recognize a materials inventory change, the SCC computer programmed to accept a falsified area and personnel authorization, and the physical security system programmed not to alarm for area intrusion), the requirements of the physical security system remain formidable barriers to successful theft since all SNM is separated from the uncontrolled areas by at least one entry control portal. An egress from the protected area--by either a vehicle through the vehicle access portal, or on foot through the personnel access portal--requires that the individuals be subjected to a search for metal and SNM before egress is permitted. The material access areas are further controlled by an interior access portal imposing the same SNM and metal search criteria. The portal search criteria are not subject to computer interpretation, but direct positive--negative indications to the portal patrolman. The physical security system then provides an independent backup should the computerized systems be defeated. Thus, the computer systems themselves will not, if defeated, guarantee an adversary success. The corollary also holds true; a defeat of the physical search elements of the physical security system will not guarantee adversary success because of the monitoring/surveillance function of the computerized systems. The complementary and overlapping nature of the safeguards systems is intended to provide multiple layers of safeguards, each layer providing an effective element of protection. Tests to date indicate that it appears feasible to meet operational objectives and maintain a high safeguards performance level using these concepts which are being incorporated into the Advanced Safeguards System.None

  18. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  19. Implications for advanced safeguards derived from PR and PP case study results

    International Nuclear Information System (INIS)

    Boyer, Brian D.

    2009-01-01

    The proliferation resistance and physical protection (PR and PP) working group produced a case study on the Example Sodium Fast Reactor (ESFR). The ESFR is a hypothetical nuclear energy system consisting of four sodium-cooled fast reactors of medium size collocated with an on-site dry fuel storage facility and a spent fuel reprocessing facility using pyroprocessing technology. This study revealed how safeguards would be applied at such site consisting of integrated multiple fuel cycle facilities and the implications of what safeguards technology and safeguards concepts would need to be adapted and developed to safeguard successfully this Generation IV nuclear energy system concept. The major safeguards concepts driving our safeguards analysis are timeliness goals and material quantity goals. Because the fresh transuranic (TRU) fuel to be produced in the ESFR fuel fabrication facility contains plutonium, the ESFR will be reprocessing, using in the reactor, and storing material on site that will have IAEA defined 'direct-use material' in it with stringent timeliness goals and material quantity goals that drive the safeguards implementation. Specifically, the TRU fresh fuel, pyroprocessing in process material, LWR spent fuel sent to the ESFR, and TRU spent fuel will contain plutonium. This material will need to be verified at interim intervals four times per year because the irradiated direct-use material, as defined previously, has three-month timeliness goals and 8 kg material quantity goals for plutonium. The TRU in-process material is, of course, irradiated direct-use material as defined by the IAEA. Keeping the plutonium and uranium together with TRu products should provide a radiation barrier. this radiation barrier slows down the ability to reprocess the fuel. Furthermore, the reprocessing technique, if it has some intrinsic proliferation resistance, will need major modifications to be able to separate plutonium from the uranium and TRU mixture. The ESFR design

  20. Implications for Advanced Safeguards Derived from PR and PP Case Study Results

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian D. [Los Alamos National Laboratory, Nuclear Nonproliferation Division, N-4, Safeguards and Security Group, P. O. Box 1663, N-4, Mail Stop E541, Los Alamos, New Mexico 87545 (United States)

    2009-06-15

    The proliferation resistance and physical protection (PR and PP) working group produced a case study on the Example Sodium Fast Reactor (ESFR). The ESFR is a hypothetical nuclear energy system consisting of four sodium-cooled fast reactors of medium size collocated with an on-site dry fuel storage facility and a spent fuel reprocessing facility using pyro-processing technology. This study revealed how safeguards would be applied at such site consisting of integrated multiple fuel cycle facilities and the implications of what safeguards technology and safeguards concepts would need to be adapted and developed to safeguard successfully this Generation IV nuclear energy system concept. The major safeguards concepts driving our safeguards analysis are timeliness goals and material quantity goals. Because the fresh transuranic (TRU) fuel to be produced in the ESFR fuel fabrication facility contains plutonium, the ESFR will be reprocessing, using in the reactor, and storing material on site that will have IAEA defined 'direct use material' in it with stringent timeliness goals and material quantity goals that drive the safeguards implementation. Specifically, the TRU fresh fuel, pyro-processing in process material, LWR spent fuel sent to the ESFR, and TRU spent fuel will contain plutonium. This material will need to be verified at interim intervals four times per year because the irradiated direct use material, as defined previously, has three-month timeliness goals and 8 kg material quantity goals for plutonium. The TRU in-process material is, of course, irradiated direct-use material because of keeping the plutonium and uranium together with TRU products that should provide a radiation barrier that slows down the ability to reprocess the fuel and by the process if it intrinsically will take major modification to be able to separate plutonium from the uranium and TRU mixture. This is an issue that the ESFR design must answer to state it has valuable