WorldWideScience

Sample records for safe water sources

  1. Acceptance and Use of Eight Arsenic-Safe Drinking Water Options in Bangladesh

    Science.gov (United States)

    Inauen, Jennifer; Hossain, Mohammad Mojahidul; Johnston, Richard B.; Mosler, Hans-Joachim

    2013-01-01

    Arsenic contamination of drinking water is a serious public health threat. In Bangladesh, eight major safe water options provide an alternative to contaminated shallow tubewells: piped water supply, deep tubewells, pond sand filters, community arsenic-removal, household arsenic removal, dug wells, well-sharing, and rainwater harvesting. However, it is uncertain how well these options are accepted and used by the at-risk population. Based on the RANAS model (risk, attitudes, norms, ability, and self-regulation) this study aimed to identify the acceptance and use of available safe water options. Cross-sectional face-to-face interviews were used to survey 1,268 households in Bangladesh in November 2009 (n = 872), and December 2010 (n = 396). The questionnaire assessed water consumption, acceptance factors from the RANAS model, and socioeconomic factors. Although all respondents had access to at least one arsenic-safe drinking water option, only 62.1% of participants were currently using these alternatives. The most regularly used options were household arsenic removal filters (92.9%) and piped water supply (85.6%). However, the former result may be positively biased due to high refusal rates of household filter owners. The least used option was household rainwater harvesting (36.6%). Those who reported not using an arsenic-safe source differed in terms of numerous acceptance factors from those who reported using arsenic-safe sources: non-users were characterized by greater vulnerability; showed less preference for the taste and temperature of alternative sources; found collecting safe water quite time-consuming; had lower levels of social norms, self-efficacy, and coping planning; and demonstrated lower levels of commitment to collecting safe water. Acceptance was particularly high for piped water supplies and deep tubewells, whereas dug wells and well-sharing were the least accepted sources. Intervention strategies were derived from the results in order to

  2. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries.

    Science.gov (United States)

    Bain, Rob E S; Gundry, Stephen W; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K

    2012-03-01

    To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement.

  3. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries

    Science.gov (United States)

    Bain, Rob ES; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K

    2012-01-01

    Abstract Objective To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Methods Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Findings Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. Conclusion The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement. PMID:22461718

  4. Irrigation water as a source of drinking water: is safe use possible?

    Science.gov (United States)

    van der Hoek, W; Konradsen, F; Ensink, J H; Mudasser, M; Jensen, P K

    2001-01-01

    In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water reservoirs is to use the water that has seeped from the irrigation canals and irrigated fields and that has formed a small layer of fresh water on top of the brackish groundwater. The objective of this study was to assess whether use of irrigation seepage water for drinking results in less diarrhoea than direct use of irrigation water and how irrigation water management would impact on health. The study was undertaken in an irrigated area in the southern Punjab, Pakistan. Over a one-year period, drinking water sources used and diarrhoea episodes were recorded each day for all individuals of 200 households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained by the generally poor quality of water in the in-house storage vessels, reflecting considerable in-house contamination of drinking water. Risk factors for diarrhoea were absence of a water connection and water storage facility, lack of a toilet, low standard of hygiene, and low socio-economic status. The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water was used (relative risk 1.68; 95% CI 1.31-2.15). For people with less water available the direction of the association between water quality and diarrhoea was different (relative risk 0.80; 95% CI 0

  5. Sustainable Supply of Safe Drinking Water for Underserved Households in Kenya: Investigating the Viability of Decentralized Solutions

    Directory of Open Access Journals (Sweden)

    Pauline Chepchirchir Cherunya

    2015-10-01

    Full Text Available Water quality and safe water sources are pivotal aspects of consideration for domestic water. Focusing on underserved households in Kenya, this study compared user perceptions and preferences on water-service provision options, particularly investigating the viability of decentralized models, such as the Safe Water Enterprise (SWE, as sustainable safe drinking water sources. Results showed that among a number of water-service provision options available, the majority of households regularly sourced their domestic water from more than one source (86% Ngoliba/Maguguni, 98% Kangemi Gichagi. A majority of households perceived their water sources to be unsafe to drink (84% Ngoliba/Maguguni, 73% Kangemi Gichagi. For this reason, drinking water was mainly chlorinated (48% Ngoliba/Maguguni, 33% Kangemi Gichagi or boiled (42% Ngoliba/Maguguni, 67% Kangemi Gichagi. However, this study also found that households in Kenya did not apply these household water treatment methods consistently, thus indicating inconsistency in safe water consumption. The SWE concept, a community-scale decentralized safe drinking water source, was a preferred option among households who perceived it to save time and to be less cumbersome as compared to boiling and chlorination. Willingness to pay for SWE water was also a positive indicator for its preference by the underserved households. However, the long-term applicability of such decentralized water provision models needs to be further investigated within the larger water-service provision context.

  6. Effect of Safe Water on Arsenicosis: A Follow-up Study.

    Science.gov (United States)

    Majumdar, Kunal K; Ghose, Aloke; Ghose, Nilima; Biswas, Anirban; Mazumder, D N Guha

    2014-04-01

    Arsenic pollution in groundwater, used for drinking purposes, has been envisaged as a problem of global concern. Treatment options for the management symptoms of chronic arsenicosis are limited. Mitigation option available for dealing with the health problem of ground water arsenic contamination rests mainly on supply of arsenic safe water in arsenic-endemic region of Indo-Bangladesh subcontinent. Limited information is available regarding the long-term effect of chronic arsenic toxicity after stoppage of consumption of arsenic-containing water. The current study was, therefore, done to assess, objectively, the effect of drinking arsenic safe water (water source in their houses were supplied with arsenic removal filters for getting arsenic-free water during the follow-up period. In participants belonging to Cohort-I, the skin score was found to improve significantly at the end of each year, and it was found to be reduced significantly from 2.17 ± 1.09 to 1.23 ± 1.17; P water on skin lesions. The systemic disease symptom score was also found to improve, but less significantly, at the end of 3 years in both the cohorts. Most important observation during the follow-up study was persistence of severe symptoms of chronic lung disease and severe skin lesion including Bowen's disease in spite of taking arsenic-safe water. Further, death could not be prevented to occur because of lung cancer and severe lung disease. It is, therefore, an urgent need to make arrangement for availability of safe water source among the arsenic-affected people in the district. Many of the people in the affected villages are not aware of contamination of their home tube wells with arsenic. Awareness generation and motivation of the people for testing their drinking water sources for arsenic and environmental interventions like rain water harvesting, ground water recharge, and restricting excessive use of ground water for domestic and agricultural purposes are also important to prevent further

  7. Safe handling of radiation sources

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    This chapter discussed the subjects related to the safe handling of radiation sources: type of radiation sources, method of use: transport within premises, transport outside premises; Disposal of Gamma Sources

  8. Effect of safe water on arsenicosis: A follow-up study

    Directory of Open Access Journals (Sweden)

    Kunal K Majumdar

    2014-01-01

    Full Text Available Background: Arsenic pollution in groundwater, used for drinking purposes, has been envisaged as a problem of global concern. Treatment options for the management symptoms of chronic arsenicosis are limited. Mitigation option available for dealing with the health problem of ground water arsenic contamination rests mainly on supply of arsenic safe water in arsenic-endemic region of Indo-Bangladesh subcontinent. Limited information is available regarding the long-term effect of chronic arsenic toxicity after stoppage of consumption of arsenic-containing water. Objective: The current study was, therefore, done to assess, objectively, the effect of drinking arsenic safe water (<50 μg/L on disease manifestation of arsenicosis. Results: Manifestations of various skin lesions and systemic diseases associated with chronic arsenic exposure were ascertained initially by carrying on baseline study on 208 participants in Nadia (Cohort-I, with skin lesion and Cohort-II, without skin lesion using a scoring system, as developed by us, and compared objectively at the end of each year for 3 year follow-up period. All the participants who had arsenic contaminated drinking water source in their houses were supplied with arsenic removal filters for getting arsenic-free water during the follow-up period. In participants belonging to Cohort-I, the skin score was found to improve significantly at the end of each year, and it was found to be reduced significantly from 2.17 ± 1.09 to 1.23 ± 1.17; P < 0.001 at the end of 3 year′s intervention study indicating beneficial effect of safe water on skin lesions. The systemic disease symptom score was also found to improve, but less significantly, at the end of 3 years in both the cohorts. Most important observation during the follow-up study was persistence of severe symptoms of chronic lung disease and severe skin lesion including Bowen′s disease in spite of taking arsenic-safe water. Further, death could not be

  9. Household's willingness to pay for arsenic safe drinking water in Bangladesh.

    Science.gov (United States)

    Khan, Nasreen Islam; Brouwer, Roy; Yang, Hong

    2014-10-01

    This study examines willingness to pay (WTP) in Bangladesh for arsenic (As) safe drinking water across different As-risk zones, applying a double bound discrete choice value elicitation approach. The study aims to provide a robust estimate of the benefits of As safe drinking water supply, which is compared to the results from a similar study published almost 10 years ago using a single bound estimation procedure. Tests show that the double bound valuation design does not suffer from anchoring or incentive incompatibility effects. Health risk awareness levels are high and households are willing to pay on average about 5 percent of their disposable average annual household income for As safe drinking water. Important factors influencing WTP include the bid amount to construct communal deep tubewell for As safe water supply, the risk zone where respondents live, household income, water consumption, awareness of water source contamination, whether household members are affected by As contamination, and whether they already take mitigation measures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water.

    Science.gov (United States)

    Stoler, Justin

    2012-12-01

    The advent and rapid spread of sachet drinking water in West Africa presents a new challenge for providing sustainable access to global safe water. Sachet water has expanded drinking water access and is often of sufficient quality to serve as an improved water source for Millennium Development Goals (MDG) monitoring purposes, yet sachets are an unsustainable water delivery vehicle due to their overwhelming plastic waste burden. Monitoring of primary drinking water sources in West Africa generally ignores sachet water, despite its growing ubiquity. Sub-Saharan Africa as a region is unlikely to meet the MDG Target for drinking water provision, and post-2015 monitoring activities may depend upon rapid adaptability to local drinking water trends. © 2012 Blackwell Publishing Ltd.

  11. The safe use of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  12. The safe use of radiation sources

    International Nuclear Information System (INIS)

    1995-01-01

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  13. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  14. Staying Safe in the Water

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Julie Gilchrist, a pediatrician and medical epidemiologist from CDC’s Injury Center, talks about staying safe in the water. Tips are for all audiences, with a focus on preventing drownings and keeping children safe in and around the pool, lake, or ocean.

  15. Arsenic-safe drinking water and antioxidants for the management of arsenicosis patients

    Directory of Open Access Journals (Sweden)

    Salamat Khandker, Ranjit Kumar Dey, AZM Maidul Islam, Sheikh Akhtar Ahmad and Ifthaker-Al-Mahmud

    2006-12-01

    Full Text Available The role of arsenic-safe drinking water and antioxidants in the management of arsenicosis patients were observed. Two hundred and fifty patients of arsenicosis from an arsenic-affected area of Bangladesh were included and divided into five groups based on the source of drinking water (green- or red-marked tube well and intake of antioxidants (vitamin A, C and E. Melanosis improved in 43 patients of the group who took arsenic-safe drinking water from green-marked tube well and antioxidants regularly. Patients of the group who took green-marked tube well water regularly but not the antioxidant showed improvement in melanosis in 22 cases. The respondents who were using red-marked tube well water and antioxidants, only two of them improved; and all other respondents either deteriorated or did not improve. The respondents who were using red-marked tube well water but not the antioxidant, none did show any improvement of their illness. The respondents who took antioxidants irregularly and had irregular intake of safe water, were not considered to compare the prognosis of skin lesions. Regarding keratosis, the respondents who took green-marked tube well water regularly and antioxidant regularly, 8 of them improved, 1 case didn’t change; while the respondents who took green-marked tube well water regularly but not the antioxidant, 8 cases didn’t improve much but majority of them remain unchanged. Among the respondents of other groups, keratosis deteriorated. This study suggests that both arsenic-safe drinking water and use of antioxidants gave good result in improvement of the arsenicosis.

  16. Spark-safe power source

    Energy Technology Data Exchange (ETDEWEB)

    Mester, I M; Konushkin, N A; Nevozinskiy, A K; Rubinshteyn, B Sh; Serov, V I; Vasnev, M A

    1981-01-01

    A shortcoming of the known power sources is their low reliability. The purpose of the invention is to improve the reliability of the device. This is achieved because the spark-safe power source is equipped with a by-passing transistor and potentiometer, and also a generator of control interruptions in the circuit, an I-element, first separating transformer, control block, second separating transformer whose secondary winding has a relay winding whose contacts are connected to the load circuit are connected in series. The generator of control separations of the circuit is connected to the base of the by-passing transistor and to the power source outlet, the potentiometer is connected in series to the main thyristor. The middle point of the potentiometer is connected to the second inlet of the I-element.

  17. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  18. The Dutch secret: how to provide safe drinking water without chlorine in the Netherlands

    Directory of Open Access Journals (Sweden)

    G. J. Medema

    2009-03-01

    Full Text Available The Netherlands is one of the few countries where chlorine is not used at all, neither for primary disinfection nor to maintain a residual disinfectant in the distribution network. The Dutch approach that allows production and distribution of drinking water without the use of chlorine while not compromising microbial safety at the tap, can be summarized as follows:
    1. Use the best source available, in order of preference:
        – microbiologically safe groundwater,
        – surface water with soil passage such as artificial recharge or bank filtration,
        – direct treatment of surface water in a multiple barrier treatment;
    2. Use a preferred physical process treatment such as sedimentation, filtration and UV-disinfection. If absolutely necessary, also oxidation by means of ozone or peroxide can be used, but chlorine is avoided;
    3. Prevent ingress of contamination during distribution;
    4. Prevent microbial growth in the distribution system by production and distribution of biologically stable (biostable water and the use of biostable materials;
    5. Monitor for timely detection of any failure of the system to prevent significant health consequences.

    New developments in safe drinking water in the Netherlands include the adaptation of the Dutch drinking water decree, implementation of quantitative microbial risk assessment (QMRA by water companies and research into source water quality, drinking water treatment efficacy, safe distribution and biostability of drinking water during distribution and Legionella. This paper summarizes how the Dutch water companies warrant the safety of the drinking water without chlorine.

  19. Staying Safe in the Water

    Centers for Disease Control (CDC) Podcasts

    2008-05-15

    In this podcast, Dr. Julie Gilchrist, a pediatrician and medical epidemiologist from CDC’s Injury Center, talks about staying safe in the water. Tips are for all audiences, with a focus on preventing drownings and keeping children safe in and around the pool, lake, or ocean.  Created: 5/15/2008 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 5/19/2008.

  20. INEEL Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, Gerald

    2003-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will

  1. Power source with spark-safe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Tsesarenko, N P; Alekhin, A V

    1982-01-01

    The invention refers to the technique of electrical monitoring and control in systems operating in a spark-safe medium (for example, in coal mines). A more accurate area of application is mobile objects with autonomous source of electricity (mine diesel locomotives, battery electric locomotives etc.). The purpose of the invention is to simplify and to improve the reliability of the planned device, and also to expand the area of application for conditions when it is powered from an autonomous generator of direct voltage. This goal is achieved because the power source with spark-safe outlet (the source contains a thyristor of advance disconnection, connected by anode to the delimiting throttle, one outlet of which is connected to the capacitor included between the controlling electrode and the anode of the thyristor, and the capacitor is connected through the resistor parallel to the outlet clamps of the source, while the thyristor of emergency protection connected parallel to the inlet clamps of the power source) is additionally equipped with a current sensor, hercon, transistor key (included in series in the power circuit) and optron, whose emitter is connected parallel to the current sensor connected in series to the inlet of the power source, while the receiver of the optron is connected in a circuit for controlling the thyristor of emergency protection. Hercon is built into the core of the delimiting throttle and is connected to the circuit for controlling the transistor key.

  2. [Comparative study of some clinical and laboratory indicators in a group of patients using wells as source of drinking water and a control group using safe water].

    Science.gov (United States)

    Vasilescu, L; Ciochină, D A

    2011-01-01

    In time, well water, as a source of drinking and coking water, with physical-chemical, bacteriological, and biological indicators suggestive of alteration in water potability, determines complex, sometimes irreversible, metabolic disorders. Sixty individuals residing in a rural community were divided into 2 groups: study group -30 subjects using well water, and control group--30 subjects using safe water. For the study group the selection criteria were: age, sex, use of well water as drinking and cooking water, history suggestive of chronic poisoning (pregnancy course, birth weight, susceptibility to infectious agents, and current chronic diseases). In the study group, gestosis, prematurity, and altered body mass index are more frequent as compared to the subjects in the control group. The identified laboratory changes indicate moderate anemia, hepatic cytolysis, dyslipidemia, presence of nitrites in urine, and positive urine cultures. Long-term use of water with mineral constituents in excess, absent, or inadequate, the direct biological and chemical water pollution, or most frequently the indirect pollution through the soil determine, in time, complex, sometimes irreversible, metabolic disorders.

  3. Does improved access to water supply by rural households enhance the concept of safe water at the point of use? A case study from deep rural South Africa.

    Science.gov (United States)

    Jagals, P

    2006-01-01

    The concept of safe water is defined by three principles: the health-related quality must be suitable, the supply/source must be accessible and the water must constantly be available in quantities sufficient for the intended use. If any one (or more) of these three elements is missing from a water services improvement programme, providing safe water is not successfully achieved. A study in a deep rural area in South Africa showed that providing small communities, using untreated river water as their only water source, with good quality water through a piped distribution system and accessible at communal taps did not fall within our parameters of safe water. The parameters for measuring the three principles were: absence of Escherichia coli in drinking water samples; accessibility by improving tap distances to within 200 m from each household; availability by assessing whether households have at least 25 L per person per day. Results show that although E. coli levels were reduced significantly, households were still consuming water with E. coli numbers at non-compliant levels. Access (distance) was improved from an average of 750 m from households to river source to an average of 120 m to new on-tap source points. This did not result in significant increases in household quantities, which on average remained around 18 L per person per day.

  4. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  5. Microbial quality of improved drinking water sources: evidence from western Kenya and southern Vietnam.

    Science.gov (United States)

    Grady, Caitlin A; Kipkorir, Emmanuel C; Nguyen, Kien; Blatchley, E R

    2015-06-01

    In recent decades, more than 2 billion people have gained access to improved drinking water sources thanks to extensive effort from governments, and public and private sector entities. Despite this progress, many water sector development interventions do not provide access to safe water or fail to be sustained for long-term use. The authors examined drinking water quality of previously implemented water improvement projects in three communities in western Kenya and three communities in southern Vietnam. The cross-sectional study of 219 households included measurements of viable Escherichia coli. High rates of E. coli prevalence in these improved water sources were found in many of the samples. These findings suggest that measures above and beyond the traditional 'improved source' definition may be necessary to ensure truly safe water throughout these regions.

  6. Providing safe drinking water to 1.2 billion unserved people

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Ashok J.; Derby, Elisabeth A.

    2003-06-01

    Despite substantial advances in the past 100 years in public health, technology and medicine, 20% of the world population, mostly comprised of the poor population segments in developing countries (DCs), still does not have access to safe drinking water. To reach the United Nations (UN) Millennium Goal of halving the number of people without access to safe water by 2015, the global community will need to provide an additional one billion urban residents and 600 million rural residents with safe water within the next twelve years. This paper examines current water treatment measures and implementation methods for delivery of safe drinking water, and offers suggestions for making progress towards the goal of providing a timely and equitable solution for safe water provision. For water treatment, based on the serious limitations of boiling water and chlorination, we suggest an approach based on filtration coupled with ultraviolet (UV) disinfection, combined with public education. Additionally, owing to the capacity limitations for non-governmental organizations (NGOs) to take on this task primarily on their own, we suggest a strategy based on financially sustainable models that include the private sector as well as NGOs.

  7. Evaluation of the CDC safe water-storage intervention to improve ...

    African Journals Online (AJOL)

    Evaluation of the CDC safe water-storage intervention to improve the microbiological quality of point-of-use drinking water in rural communities in South Africa. ... use of safe household water-storage devices and water treatment processes and improvement of hygiene and sanitation practices in these rural households.

  8. Keeping Sealed Radioactive Sources Safe and Secure

    International Nuclear Information System (INIS)

    Potterton, Louise

    2013-01-01

    Radioactive sources are used in a wide variety of devices in medical, industrial, agricultural and research facilities worldwide. These sources, such as cobalt-60 and caesium-137, emit high levels of ionizing radiation, which can treat cancer, measure materials used in industry and sterilize food and medical appliances. Problems may arise when these sources are no longer needed, or if they are damaged or decayed. If these sources are not properly stored they can be a threat to human health and the environment and pose a security risk. Procedures to secure these spent or 'disused' sources are often highly expensive and need specialized assistance. The IAEA helps its States find long term solutions for the safe and secure storage of disused sealed radioactive sources (DSRSs)

  9. Safe drinking water act: Amendments, regulations and standards

    International Nuclear Information System (INIS)

    Calabrese, E.J.; Gilbert, C.E.; Pastides, H.

    1989-01-01

    This book approaches the topic of safe drinking water by communicating how the EPA has responded to the mandates of Congress. Chapter 1 summarizes what is and will be involved in achieving safe drinking water. Chapter 2 describes the historical development of drinking water regulations. Chapter 3 summarizes the directives of the Safe Drinking Water Act Amendments of 1986. Chapters 4 through 9 discuss each phase of the regulatory program in turn. Specific problems associated with volatile organic chemicals, synthetic organics, inorganic chemicals, and microbiological contaminants are assessed in Chapter 4 and 5. The unique characteristics of radionuclides and their regulation are treated in Chapter 6. The disinfection process and its resultant disinfection by-products are presented in Chapter 7. The contaminant selection process and the additional contaminants to be regulated by 1989 and 1991 and in future years are discussed in Chapters 8 and 9. EPA's Office of Drinking Water's Health Advisory Program is explained in Chapter 10. The record of public water system compliance with the primary drinking water regulations is detailed in Chapter 11. Chapter 12 offers a nongovernmental perspective on the general quality of drinking water and how this is affected by a wide range of drinking water treatment technologies. Separate abstracts are processed for 5 chapters in this book for inclusion in the appropriate data bases

  10. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  11. Drinking water regulations under the Safe Drinking Water Act. Fact sheet

    International Nuclear Information System (INIS)

    1990-12-01

    The fact sheet describes the requirements covered under the 1986 amendments to the Safe Drinking Water Act. Levels of various contaminants (including radio nuclides) are explained. Also discussed are the Surface Water Treatment Rule and the Total Coliforms Rule

  12. Risk management for assuring safe drinking water.

    Science.gov (United States)

    Hrudey, Steve E; Hrudey, Elizabeth J; Pollard, Simon J T

    2006-12-01

    Millions of people die every year around the world from diarrheal diseases much of which is caused by contaminated drinking water. By contrast, drinking water safety is largely taken for granted by many citizens of affluent nations. The ability to drink water that is delivered into households without fear of becoming ill may be one of the key defining characteristics of developed nations in relation to the majority of the world. Yet there is well-documented evidence that disease outbreaks remain a risk that could be better managed and prevented even in affluent nations. A detailed retrospective analysis of more than 70 case studies of disease outbreaks in 15 affluent nations over the past 30 years provides the basis for much of our discussion [Hrudey, S.E. and Hrudey, E.J. Safe Drinking Water--Lessons from Recent Outbreaks in Affluent Nations. London, UK: IWA Publishing; 2004.]. The insights provided can assist in developing a better understanding within the water industry of the causes of drinking water disease outbreaks, so that more effective preventive measures can be adopted by water systems that are vulnerable. This preventive feature lies at the core of risk management for the provision of safe drinking water.

  13. Safe management of spent radiation source

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Valdezco, E.M.; Choi, Kwang-Sub

    2003-01-01

    Presented are 8 investigation reports concerning the safe management of spent radiation source (SRS) during the current 2 years. Four reports from Japan are: Scheme for SRS management (approach and present status of the SRS management and consideration toward solving problems); Current International Atomic Energy Agency (IAEA) activities related to safety of radiation sources (Chronology of action plan development, Outline of revised action plan, and Asian regional activities); Current status of SRS management in Japan (Regulation system, Obligations of licensed users, Regulatory system on sealed sources, Status in the incidents on sources occurred, Incident of source loss, and Incidents of orphan sources); and SRS management system in Japan (Current status of using of sealed sources, collection system of SRS-Japan Radioisotope Association (JRIA) services, and Disposal of SRS). Four reports from the Asian countries also concern the current statuses of SRS management in the Philippine (Radioactive waste sources, Waste management strategies, Conditioning of Ra sources, Ra project action plan, as low as reasonably achievable (ALARA) program, Dose assessment, Regulations on radioactive waste, Action plan on the safety and security of sources, IAEA Regional Demonstration Centers, and sitting studies for a near surface disposal facility); Thailand (Current status of using sealed sources, Inventory of SRS, and Current topics of SRS management); Indonesia (Principles of management of radiation sources, Legislative framework of SRS management practices, Regulatory on SRS, management of sealed SRS, management hurdles, and reported incidents); and Korea (Regulatory frame work, Collection systems of SRS, Radioisotope waste generation, Radiation exposure incident, and Scrap monitoring system). (N.I.)

  14. Challenges and Opportunities for Tribal Waters: Addressing Disparities in Safe Public Drinking Water on the Crow Reservation in Montana, USA.

    Science.gov (United States)

    Doyle, John T; Kindness, Larry; Realbird, James; Eggers, Margaret J; Camper, Anne K

    2018-03-21

    Disparities in access to safe public drinking water are increasingly being recognized as contributing to health disparities and environmental injustice for vulnerable communities in the United States. As the Co-Directors of the Apsaálooke Water and Wastewater Authority (AWWWA) for the Crow Tribe, with our academic partners, we present here the multiple and complex challenges we have addressed in improving and maintaining tribal water and wastewater infrastructure, including the identification of diverse funding sources for infrastructure construction, the need for many kinds of specialized expertise and long-term stability of project personnel, ratepayer difficulty in paying for services, an ongoing legacy of inadequate infrastructure planning, and lack of water quality research capacity. As a tribal entity, the AWWWA faces additional challenges, including the complex jurisdictional issues affecting all phases of our work, lack of authority to create water districts, and additional legal and regulatory gaps-especially with regards to environmental protection. Despite these obstacles, the AWWWA and Crow Tribe have successfully upgraded much of the local water and wastewater infrastructure. We find that ensuring safe public drinking water for tribal and other disadvantaged U.S. communities will require comprehensive, community-engaged approaches across a broad range of stakeholders to successfully address these complex legal, regulatory, policy, community capacity, and financial challenges.

  15. Access to Safe Water and Personal Hygiene Practices in the Kulandia Refugee Camp (Jerusalem).

    Science.gov (United States)

    Issa, Mohamad; McHenry, Michael; Issa, Abdul Aziz; Blackwood, R Alexander

    2015-12-22

    Diarrheal illness, frequently associated with fecal-oral transmission, is one of the leading causes of death worldwide. It is commonly preventable through the implementation of safe water practices. This experiment concerns how to best implement safe water practices in a quasi-permanent refugee camp setting with limited ability for structural changes. Specifically, we explore how health promotion activities that help identify target groups for hygiene interventions can play a role in disease prevention. An anonymous survey was conducted at the United Nations Relief and Works Agency Health Clinic in the Kulandia refugee camp to assess the safe water and personal hygiene practices. Demographic and social characteristics, accessible water and personal hygiene characteristics, and gastrointestinal (GI) burden for individuals and their households were assessed. A total of 96 individuals were enrolled; 62 females and 34 males. Approximately 58% of the sample had soap available and washed hands before and after eating and when preparing food. Piped water was the main source of drinking water (62%), while 31% of our sample utilized tanker-trucks. 93% of participants had access to toilet facilities, with 86% of these facilities being private households. 55% practice extra water hygiene measures on their household drinking water source. 51.3% considered vendor cleanliness when they were buying food. 51% had received formal health education. 68.8% had been taught by their parents, but only 55.2% were teaching their children and 15.6% had consistent access to a health professional for hygiene inquiries. Individual variables and hygiene practices associated with lower rates of diarrheal illnesses included having water piped into the home, proper hand washing, adequate soap availability, proper consideration of vendor cleanliness, higher income, levels of education, health hygiene education, and having access to healthcare professions to discuss hygiene related matters. This is

  16. Source-water susceptibility assessment in Texas—Approach and methodology

    Science.gov (United States)

    Ulery, Randy L.; Meyer, John E.; Andren, Robert W.; Newson, Jeremy K.

    2011-01-01

    Public water systems provide potable water for the public's use. The Safe Drinking Water Act amendments of 1996 required States to prepare a source-water susceptibility assessment (SWSA) for each public water system (PWS). States were required to determine the source of water for each PWS, the origin of any contaminant of concern (COC) monitored or to be monitored, and the susceptibility of the public water system to COC exposure, to protect public water supplies from contamination. In Texas, the Texas Commission on Environmental Quality (TCEQ) was responsible for preparing SWSAs for the more than 6,000 public water systems, representing more than 18,000 surface-water intakes or groundwater wells. The U.S. Geological Survey (USGS) worked in cooperation with TCEQ to develop the Source Water Assessment Program (SWAP) approach and methodology. Texas' SWAP meets all requirements of the Safe Drinking Water Act and ultimately provides the TCEQ with a comprehensive tool for protection of public water systems from contamination by up to 247 individual COCs. TCEQ staff identified both the list of contaminants to be assessed and contaminant threshold values (THR) to be applied. COCs were chosen because they were regulated contaminants, were expected to become regulated contaminants in the near future, or were unregulated but thought to represent long-term health concerns. THRs were based on maximum contaminant levels from U.S. Environmental Protection Agency (EPA)'s National Primary Drinking Water Regulations. For reporting purposes, COCs were grouped into seven contaminant groups: inorganic compounds, volatile organic compounds, synthetic organic compounds, radiochemicals, disinfection byproducts, microbial organisms, and physical properties. Expanding on the TCEQ's definition of susceptibility, subject-matter expert working groups formulated the SWSA approach based on assumptions that natural processes and human activities contribute COCs in quantities that vary in space

  17. Is drinking water from 'improved sources' really safe? A case study in the Logone valley (Chad-Cameroon).

    Science.gov (United States)

    Sorlini, S; Palazzini, D; Mbawala, A; Ngassoum, M B; Collivignarelli, M C

    2013-12-01

    Within a cooperation project coordinated by the Association for Rural Cooperation in Africa and Latin America (ACRA) Foundation, water supplies were sampled across the villages of the Logone valley (Chad-Cameroon) mostly from boreholes, open wells, rivers and lakes as well as from some piped water. Microbiological analyses and sanitary inspections were carried out at each source. The microbiological quality was determined by analysis of indicators of faecal contamination, Escherichia coli, Enterococci and Salmonellae, using the membrane filtration method. Sanitary inspections were done using WHO query forms. The assessment confirmed that there are several parameters of health concern in the studied area; bacteria of faecal origins are the most significant. Furthermore, this study demonstrated that Joint Monitoring Programme (JMP) classification and E. coli measurement are not sufficient to state water safety. In fact, in the studied area, JMP defined 'improved sources' may provide unsafe water depending on their structure and sources without E. coli may have Enterococci and Salmonellae. Sanitary inspections also revealed high health risks for some boreholes. In other cases, sources with low sanitary risk and no E. coli were contaminated by Enterococci and Salmonellae. Better management and protection of the sources, hygiene improvement and domestic water treatment before consumption are possible solutions to reduce health risks in the Logone valley.

  18. Household's willingness to pay for arsenic safe drinking water in Bangladesh

    NARCIS (Netherlands)

    Khan, N.A.; Brouwer, R.; Yang, H.

    2014-01-01

    This study examines willingness to pay (WTP) in Bangladesh for arsenic (As) safe drinking water across different As-risk zones, applying a double bound discrete choice value elicitation approach. The study aims to provide a robust estimate of the benefits of As safe drinking water supply, which is

  19. Drinking water quality and source reliability in rural Ashanti region, Ghana.

    Science.gov (United States)

    Arnold, Meghan; VanDerslice, James A; Taylor, Brooke; Benson, Scott; Allen, Sam; Johnson, Mark; Kiefer, Joe; Boakye, Isaac; Arhinn, Bernard; Crookston, Benjamin T; Ansong, Daniel

    2013-03-01

    Site-specific information about local water sources is an important part of a community-driven effort to improve environmental conditions. The purpose of this assessment was to gather this information for residents of rural villages in Ghana. Sanitary surveys and bacteriological testing for total coliforms and Escherichia coli (EC) using Colilert(®) were conducted at nearly 80 water sources serving eight villages. A focus group was carried out to assess the desirability and perceived quality of water sources. Standpipes accounted for almost half of the available water sources; however, a third of them were not functioning at the time of the survey. EC bacteria were found in the majority of shallow wells (80%), rivers (67%), and standpipes (61%), as well as 28% of dug wells. Boreholes were free of EC. Residents felt that the standpipes and boreholes produced safe drinking water. Intermittent service and poor water quality from the piped supply has led to limited access to drinking water. The perception of residents, that the water from standpipes is clean and does not need to be treated at home, is particularly troubling in light of the poor bacteriological quality of water from the standpipes.

  20. Assessment of bacteriological quality of drinking water from various sources in Amritsar district of northern India.

    Science.gov (United States)

    Malhotra, Sita; Sidhu, Shailpreet K; Devi, Pushpa

    2015-08-29

    Safe water is a precondition for health and development and is a basic human right, yet it is still denied to hundreds of millions of people throughout the developing world. Water-related diseases caused by insufficient safe water supplies, coupled with poor sanitation and hygiene, cause 3.4 million deaths a year, mostly in children. The present study was conducted on 1,317 drinking water samples from various water sources in Amritsar district in northern India. All the samples were analyzed to assess bacteriological quality of water for presumptive coliform count by the multiple tube test. A total of 42.9% (565/1,317) samples from various sources were found to be unfit for human consumption. Of the total 565 unsatisfactory samples, 253 were from submersible pumps, 197 were from taps of piped supply (domestic/public), 79 were from hand pumps, and 36 were from various other sources A significantly high level of contamination was observed in samples collected from submersible pumps (47.6%) and water tanks (47.3%), as these sources of water are more exposed and liable to contamination. Despite continuous efforts by the government, civil society, and the international community, over a billion people still do not have access to improved water resources. Bacteriological assessment of all sources of drinking should be planned and conducted on regular basis to prevent waterborne dissemination of diseases.

  1. Safe management of discussed sealed sources in Peru

    International Nuclear Information System (INIS)

    Mallaupoma, M.

    2000-01-01

    The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Peru, in the past years have determined the necessity to formulate and apply an Institutional policy to assure harmless and ecologically rational management of disused sealed sources in Peru. Some results of the studies, which served as a basis for design and construction of a facility for treatment, conditioning and storage of conditioned sealed sources are presented in this paper. The waste management system in Peru comprises operational and regulatory capabilities. Both of these activities are performed under a legislation. The Nuclear Research Center RACSO has a radioactive waste management department which is in charge of the management of disused sealed sources produced in the country. It is considered as a centralized waste processing and storage facility (WPSF). (author)

  2. Willingness to pay for safe drinking water: Evidence from Parral, Mexico.

    Science.gov (United States)

    Vásquez, William F; Mozumder, Pallab; Hernández-Arce, Jesús; Berrens, Robert P

    2009-08-01

    A referendum-format contingent valuation (CV) survey is used to elicit household willingness to pay responses for safe and reliable drinking water in Parral, Mexico. Households currently adopt a variety of averting and private investment choices (e.g., bottled water consumption, home-based water treatment, and installation of water storage facilities) to adapt to the existing water supply system. These revealed behaviors indicate the latent demand for safer and more reliable water services, which is corroborated by the CV survey evidence. Validity findings include significant scope sensitivity in WTP for water services. Further, results indicate that households are willing to pay from 1.8% to 7.55% of reported household income above their current water bill for safe and reliable drinking water services, depending upon the assumptions about response uncertainty.

  3. Irrigation water as a source of drinking water: is safe use possible?

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Konradsen, F; Ensink, J H

    2001-01-01

    BACKGROUND: In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water...... households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. RESULTS: Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained....... The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water...

  4. 76 FR 72973 - Notice of Lodging of Consent Decree Under the Clean Water Act and Safe Drinking Water Act

    Science.gov (United States)

    2011-11-28

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water Act and Safe Drinking Water Act Notice is hereby given that on November 21, 2011, a proposed Consent Decree (``proposed... penalties under the Clean Water Act, 33 U.S.C. 1251-387; the Safe Drinking Water Act, 42 U.S.C. 300f-300j-26...

  5. Light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.

    1989-01-01

    Since the accident at Three Mile Island (TMI), Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During 1987 and 1988, the Department of Energy provided funds to the Nuclear Engineering Department at Penn State to investigate a plant reconfiguration originated by M.A. Schultz called ''The Light Water Ultra-Safe Plant Concept''. This report presents a final summary of the project with references to several masters' theses and addendum reports for further detail. The two year research effort included design verification with detailed computer simulation of: (a) normal operation characteristics of the unique pressurizing concept, (b) severe transients without loss of coolant, (c) combined primary and secondary system modeling, and (d) small break and large break loss of coolant accidents. Other studies included safety analysis, low power density core design, and control system design to greatly simplify the control room and required operator responses to plant upset conditions. The overall conclusion is that a reconfigured pressurized water reactor can achieve real and perceived safety improvements. Additionally, control system research to produce greatly simplified control rooms and operator requirements should be continued in future projects

  6. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  7. Keep Food, Water, and Medications Safe PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2017-10-25

    This 60 second public service announcement is about the need to keep food, water and medications safe after a disaster.  Created: 10/25/2017 by Centers for Disease Control and Prevention (CDC).   Date Released: 10/25/2017.

  8. Source water assessment and nonpoint sources of acutely toxic contaminants: A review of research related to survival and transport of Cryptosporidium parvum

    Science.gov (United States)

    Walker, Mark J.; Montemagno, Carlo D.; Jenkins, Michael B.

    1998-12-01

    Amendments to the Safe Drinking Water Act (PL-930123) in 1996 required that public water supply managers identify potential sources of contamination within contributing areas. Nonpoint sources of acutely toxic microbial contaminants, such as Cryptosporidium parvum, challenge current approaches to source identification and management as a first step toward developing management plans for public water supply protection. Little may be known about survival and transport in the field environment, prescribed practices may not be designed to manage such substances, and infective stages may be present in vast numbers and may resist water treatment and disinfection processes. This review summarizes research related to survival and transport of C. parvum oocysts, as an example of an acutely toxic contaminant with nonpoint sources in animal agriculture. It discusses ∥1) significance of infected domesticated animals as potential sources of C. parvum, (2) laboratory and field studies of survival and transport, and (3) approaches to source control in the context of public health protection.

  9. Water chemistry - one of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, S.; Otoha, K.; Ishigure, K.

    2006-01-01

    Full text: Full text: Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry, a) better reliability of reactor structures and fuels, b) lower occupational exposure, and c) fewer radwaste sources, should be simultaneously satisfied. The research committee related to water chemistry of the Atomic Energy Society of Japan has played important roles to enhance improvement in water chemistry control, to share knowledge and experience with water chemistry among plant operators and manufacturers, to establish common technological bases for plant water chemistry and then to transfer them to the next generation related to water chemistry. Furthermore, the committee has tried to contribute to arranging R and D proposals for further improvement in water chemistry control through road map planning

  10. Understanding handpump sustainability: Determinants of rural water source functionality in the Greater Afram Plains region of Ghana.

    Science.gov (United States)

    Fisher, Michael B; Shields, Katherine F; Chan, Terence U; Christenson, Elizabeth; Cronk, Ryan D; Leker, Hannah; Samani, Destina; Apoya, Patrick; Lutz, Alexandra; Bartram, Jamie

    2015-10-01

    Safe drinking water is critical to human health and development. In rural sub-Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross-sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access.

  11. Alternative Options for Safe Drinking Water in Arsenic and Salinity Affected Bornal-Iliasabad Union of Kalia Upazila, Narail District, Bangladesh

    Science.gov (United States)

    Rahman, M. M.; Hasan, M. A.; Ahmed, K. M.; Nawrin, N.

    2016-12-01

    The study area, Bornal-Ilisabad union, Kalia, Narail is one of the most vulnerable areas of Bangladesh in terms of access to safe drinking water. Shallow groundwater of this area is highly arsenic contaminated (mostly >500 μg/L) and deep groundwater is saline (EC ranges 1 to 8 mS/cm). Local communities rely on rainwater for drinking and cooking purposes during the monsoon and rest of the year they use surface water from pond which are mostly polluted. In areas where surface water is not available people are compelled to use arsenic contaminated groundwater and thus exposing themselves to serious health hazard. Principal objective of the research is to evaluate the effectiveness of managed aquifer recharge (MAR) and subsurface arsenic removal (SAR) technology in mitigating groundwater salinity and arsenic, to provide alternative sources of safe water. Surface water (pond water) and rainwater collected from roof top are used as source water to be recharged into the target aquifer for the MAR system. Source water is filtered through a sand filtration unit to remove turbidity and microorganisms before recharging through infiltration wells. For SAR system, on the other hand, a certain volume (2000L) of groundwater is abstracted from the target aquifer and then aerated for about half an hour to saturate with oxygen. The oxygenated water is injected into the aquifer and kept there for 6-8 hours and then abstracted for use. The MAR system constructed in the study area is found very effective in reducing groundwater salinity. The electrical conductivity (EC) of the groundwater of MAR system has been reduced 72-81% from the initial EC value of 3.4 mS/cm. A significant improvement in groundwater arsenic and iron concentration is also observed. The system is yielding groundwater with arsenic within permissible limit of Bangladesh drinking water standard (50 μg/L) which was 100 μg/L before introduction of MAR system. The SAR system is also found effective in reducing

  12. Lower Colorado River GRP Public Water System Intakes, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Safe Drinking Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells, springs an intake locations are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). The data is kept in the Safe...

  13. Lower Colorado River GRP Public Water System Springs, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Safe Drinking Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells, springs an intake locations are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). The data is kept in the Safe...

  14. Lower Colorado River GRP Public Water System Wells, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Safe Drinking Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells, springs an intake locations are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). The data is kept in the Safe...

  15. User preferences and willingness to pay for safe drinking water: Experimental evidence from rural Tanzania.

    Science.gov (United States)

    Burt, Zachary; Njee, Robert M; Mbatia, Yolanda; Msimbe, Veritas; Brown, Joe; Clasen, Thomas F; Malebo, Hamisi M; Ray, Isha

    2017-01-01

    Almost half of all deaths from drinking microbiologically unsafe water occur in Sub-Saharan Africa. Household water treatment and safe storage (HWTS) systems, when consistently used, can provide safer drinking water and improve health. Social marketing to increase adoption and use of HWTS depends both on the prices of and preferences for these systems. This study included 556 households from rural Tanzania across two low-income districts with low-quality water sources. Over 9 months in 2012 and 2013, we experimentally evaluated consumer preferences for six "low-cost" HWTS options, including boiling, through an ordinal ranking protocol. We estimated consumers' willingness to pay (WTP) for these options, using a modified auction. We allowed respondents to pay for the durable HWTS systems with cash, chickens or mobile money; a significant minority chose chickens as payment. Overall, our participants favored boiling, the ceramic pot filter and, where water was turbid, PuR™ (a combined flocculant-disinfectant). The revealed WTP for all products was far below retail prices, indicating that significant scale-up may need significant subsidies. Our work will inform programs and policies aimed at scaling up HWTS to improve the health of resource-constrained communities that must rely on poor-quality, and sometimes turbid, drinking water sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Source to point of use drinking water changes and knowledge, attitude and practices in Katsina State, Northern Nigeria

    Science.gov (United States)

    Onabolu, B.; Jimoh, O. D.; Igboro, S. B.; Sridhar, M. K. C.; Onyilo, G.; Gege, A.; Ilya, R.

    In many Sub-Saharan countries such as Nigeria, inadequate access to safe drinking water is a serious problem with 37% in the region and 58% of rural Nigeria using unimproved sources. The global challenge to measuring household water quality as a determinant of safety is further compounded in Nigeria by the possibility of deterioration from source to point of use. This is associated with the use of decentralised water supply systems in rural areas which are not fully reticulated to the household taps, creating a need for an integrated water quality monitoring system. As an initial step towards establishing the system in the north west and north central zones of Nigeria, The Katsina State Rural Water and Sanitation Agency, responsible for ensuring access to safe water and adequate sanitation to about 6 million people carried out a three pronged study with the support of UNICEF Nigeria. Part 1 was an assessment of the legislative and policy framework, institutional arrangements and capacity for drinking water quality monitoring through desk top reviews and Key Informant Interviews (KII) to ascertain the institutional capacity requirements for developing the water quality monitoring system. Part II was a water quality study in 700 households of 23 communities in four local government areas. The objectives were to assess the safety of drinking water, compare the safety at source and household level and assess the possible contributory role of end users’ Knowledge Attitudes and Practices. These were achieved through water analysis, household water quality tracking, KII and questionnaires. Part III was the production of a visual documentary as an advocacy tool to increase awareness of the policy makers of the linkages between source management, treatment and end user water quality. The results indicate that except for pH, conductivity and manganese, the improved water sources were safe at source. However there was a deterioration in water quality between source and

  17. Coliform Sources and Mechanisms for Regrowth in Household Drinking Water in Limpopo, South Africa.

    Science.gov (United States)

    Mellor, Jonathan E; Smith, James A; Samie, Amidou; Dillingham, Rebecca A

    2013-09-01

    Resource-limited communities throughout the developing world face significant environmental health problems related to the myriad of coliform sources within those communities. This study comprehensively investigated contamination sources and the biological and chemical mechanisms sustaining them in two adjacent communities in rural Limpopo, South Africa. An 8-month study was conducted of household ( n = 14) and source water quality, measurements of biofilm layers on the inside of household water storage containers and water transfer devices, and also hand-based coliforms and hand-washing effectiveness. A 7-day water container incubation experiment was also performed to determine the biological and chemical changes that occur in a household water storage container independent of human interference. Results indicate that household drinking water frequently becomes contaminated after collection but before consumption (197 versus 1,046 colony-forming units/100 mL; n = 266; p water treatment and other interventions aimed at maintaining the safe water chain and preventing biological regrowth.

  18. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis.

    Science.gov (United States)

    Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie

    2015-12-01

    Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.

  19. Reduction in fluoride-induced genotoxicity in mouse bone marrow cells after substituting high fluoride-containing water with safe drinking water.

    Science.gov (United States)

    Podder, Santosh; Chattopadhyay, Ansuman; Bhattacharya, Shelley

    2011-10-01

    Treatment of mice with 15 mg l(-1) sodium fluoride (NaF) for 30 days increased the number of cell death, chromosomal aberrations (CAs) and 'cells with chromatid breaks' (aberrant cells) compared with control. The present study was intended to determine whether the fluoride (F)-induced genotoxicity could be reduced by substituting high F-containing water after 30 days with safe drinking water, containing 0.1 mg F ions l(-1). A significant fall in percentage of CAs and aberrant cells after withdrawal of F-treatment following 30 days of safe water treatment in mice was observed which was highest after 90 days, although their levels still remained significantly high compared with the control group. This observation suggests that F-induced genotoxicity could be reduced by substituting high F-containing water with safe drinking water. Further study is warranted with different doses and extended treatment of safe water to determine whether the induced damages could be completely reduced or not. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Microbial water quality of treated water and raw water sources in the ...

    African Journals Online (AJOL)

    Microbial water quality is an essential aspect in the provision of potable water for domestic use. The provision of adequate amounts of safe water for domestic purposes has become difficult for most municipalities mandated to do so in Zimbabwe. Morton-Jaffray Treatment Plant supplies potable water to Harare City and ...

  1. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, G.

    2003-03-17

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead

  2. Multi-criteria analysis applied to the selection of drinking water sources in developing countries : A case study of Cali, Colombia

    NARCIS (Netherlands)

    Gutiérrez, Juan Pablo; Delgado, Luis Germán; van Halem, D.; Wessels, Peter; Rietveld, L.C.

    2016-01-01

    Guaranteeing a safe and continuous drinking water supply for the city of Cali, Colombia, has become a concern for the water company of Cali, the environmental authorities, universities, and entities involved in the water resource. The progressive deterioration of the city’s water sources has led

  3. A collection of publications and articles for a light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1988-01-01

    This collection contains reports titled: ''The Penn State Ultra-Safe Reactor Concept; '' ''Ultra Safe Nuclear Power; '' ''Use of the Modular Modeling System, in the Design of the Penn State Advanced Light Water Reactor; '' ''Use of the Modular Modeling System in Severe Transient Analysis of Penn State Advanced Light Water Reactor; '' ''PSU Engineers' Reactor Design May Stop a Future TMI; '' and ''The Penn State Advanced Light Water reactor Concept.''

  4. Regulatory control for safe usage of radiation sources in India

    International Nuclear Information System (INIS)

    Ghosh, P.K.; Sonawane, A.U.

    1998-01-01

    The widespread applications of radioactive materials and radiation generating equipment in the field of industry, medicine agriculture and research in India necessitated the establishment of an efficient regulatory framework and consequently the Atomic Energy Regulatory Board (AERB) was constituted to exercise regulatory control over the safe usage of the radioactive materials and the radiation generating equipment. The Atomic Energy Act, 1962 and the Radiation Protection Rules, 1971 promulgated under the Act forms the basis of radiation safety in India and Chairman, AERB is the Competent Authority to enforce the regulatory provisions of the Radiation Protection Rules, 1971, for safe use of radiation source in the country. AERB has published a number of documents such as Radiation Surveillance Procedures, Standards, Codes, Guides and Manuals for safe use and handling of radioactive materials and radiation generating equipment. Apart from nuclear fuel cycle documents, these publications pertain to industrial radiography, medical application of radiation, transport of radioactive material, industrial gamma irradiators, X-ray units etc. AERB safety related publications are based on international standards e.g. BSS, IAEA, ICRP, ISO etc. This paper outlines the methodology of regulatory control exercised by AERB for safe use of the radioactive materials and the radiation generating equipment in the country. (author)

  5. Health impact of supplying safe drinking water containing fluoride below permissible level on flourosis patients in a fluoride-endemic rural area of West Bengal.

    Science.gov (United States)

    Majumdar, Kunal Kanti

    2011-01-01

    The problem of high fluoride concentration in groundwater resources has become one of the most important toxicological and geo-environmental issues in India. Excessive fluoride in drinking water causes dental and skeletal fluorosis, which is encountered in endemic proportions in several parts of the world. World Health Organization (WHO) guideline value and the permissible limit of fluoride as per Bureau of Indian Standard (BIS) is 1.5 mg/L. About 20 states of India, including 43 blocks of seven districts of West Bengal, were identified as endemic for fluorosis and about 66 million people in these regions are at risk of fluoride contamination. Studies showed that withdrawal of sources identified for fluoride often leads reduction of fluoride in the body fluids (re-testing urine and serum after a week or 10 days) and results in the disappearance of non-skeletal fluorosis within a short duration of 10-15 days. To determine the prevalence of signs and symptoms of suspected dental, skeletal, and non-skeletal fluorosis, along with food habits, addictions, and use of fluoride containing toothpaste among participants taking water with fluoride concentration above the permissible limit, and to assess the changes in clinical manifestations of the above participants after they started consuming safe drinking water. A longitudinal intervention study was conducted in three villages in Rampurhat Block I of Birbhum district of West Bengal to assess the occurrence of various dental, skeletal, and non-skeletal manifestations of fluorosis, along with food habits, addictions, and use of fluoride containing toothpaste among the study population and the impact of taking safe water from the supplied domestic and community filters on these clinical manifestations. The impact was studied by follow-up examination of the participants for 5 months to determine the changes in clinical manifestations of the above participants after they started consuming safe drinking water from supplied

  6. Sunshine and saris equals safe drinking water | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    9 juin 2016 ... Researchers from Canada and India funded by IDRC have found that filtering water through sari-cloth before purifying it in the sun's heat makes polluted water safe to drink. ... Avec plus de 1,2 milliard d'habitants, la population de l'Inde ne cesse de croître et, par le fait même, de transformer le pays.

  7. Safe management of smoke detectors containing radioactive sources

    International Nuclear Information System (INIS)

    Salgado, M.; Benitez, J.C.; Castillo, R.A.; Berdellans, A.; Hernandez, J.M.; Pirez, C.J.; Soto, P.G.

    2013-01-01

    Ionic smoke detectors contain radioactive sources that could be Am-241, Pu-238, Pu-239, Kr-85, etc. According to Cuban regulations (Resolution 96 /2003 of the Minister of Science Technology and Environment), smoke detectors, once become disused, should be managed as radioactive waste. For this reason, disused smoke detectors should be transferred to the Centre for Radiation Protection and Hygiene, the organization responsible for radioactive waste management in the country. More than 20 000 smoke detectors have been collected by the CPHR and stored at the Centralized Waste Management Facility. There are 28 different models of smoke detectors of different origin. They contain between 18 - 37 kBq of Am-241 or between 0.37 - 37 MBq of Plutonium or around 37 MBq of Kr-85. The safe management of ionic smoke detectors consists in dismantling the devices, recovering the radioactive sources and conditioning them for long term storage and disposal. The rest of non-radioactive materials should be segregated (plastic, metal and electronic components) for recycling. A technical manual was developed with specific instructions for dismantling each model of smoke detector and recovering the radioactive sources. Instructions for segregation of non-radioactive components are also included in the manual. Most of smoke detectors contain long lived radioactive sources (Am-241, Pu-238, Pu-239), so especial attention was given to the management of these sources. A methodology was developed for conditioning of radioactive sources, consisting in encapsulating them for long term storage. The retrievability of the sources (sealed capsules with radioactive sources) for future disposal was also considered. A documented procedure was elaborated for these operations. (author)

  8. Analysis of application of different approaches to secure safe drinking water

    Directory of Open Access Journals (Sweden)

    Pendić Zoran

    2017-01-01

    Full Text Available In this analysis, the risk systems include the systems within which services sensitive to risk are executed. The complex service of population supply with safe drinking water is considered to be risky. Guidelines for drinking water quality of the World Health Organization (WHO recommends the use of effective preventive approaches to risk-based management of the safety and quality of drinking water. For example, Food Safety Law of the Republic of Serbia stipulates mandatory application of HACCP system in order to obtain safe drinking water. Different approaches to preventive risk-based management for the sake of the safety and quality of drinking water are applied nowadays. In this paper we consider the following approaches: Original Codex Alimentarius HACCP system and some of its modified versions; International standard ISO 22000: 2005 Food safety management systems - Requirements for any organization in the food chain; Water Safety Plan (WSP of the World Health Organization (WHO; Generalized HACCP system. All of these approaches are based, to a greater or lesser extent, on the original Codex Alimentarius HACCP system. The paper gives a situation analysis (SWOT analysis of considered approaches.

  9. General problems associated with the control and safe use of radiation sources (199)

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1993-01-01

    There are problems at various levels in ensuring safety in the use of radiation sources. A relatively new problem that warrants international action is the smuggling of radioactive material across international borders. An international convention on the control and safe use of radiation sources is essential to provide a universally harmonized mechanism for ensuring safety

  10. Choosing and Using Safe Water Technologies: Evidence from a Field Experiment in Kenya

    OpenAIRE

    Luoto, Jill Emily

    2010-01-01

    This dissertation examines the decision-making of poor rural Kenyan households with respect to the adoption of point-of-use (POU) safe water technologies designed to expand access to safe drinking water in the developing world. Low-cost POU products such as chlorine and filters substantially reduce diarrhea, which kills two million children in poor countries each year. Nevertheless, POU products remain little used in many parts of the developing world, even when they are widely available at s...

  11. Source Water Protection Contaminant Sources

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Simplified aggregation of potential contaminant sources used for Source Water Assessment and Protection. The data is derived from IDNR, IDALS, and US EPA program...

  12. Pennsylvania Village to Get Safe, Reliable Water Supply

    Science.gov (United States)

    A Pennsylvania village whose unfiltered, contaminated water source made it the top violator of federal and state drinking water laws will be connected to a public water system in 2015 with $2.2 million from EPA’s Drinking Water State Revolving Fund

  13. Light water ultra-safe plant concept: First annual report

    International Nuclear Information System (INIS)

    Klevans, E.

    1987-01-01

    Since the accident at Three Mile Island (TMI) Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During the last year, the Department of Energy funded the study of a plant reconfiguration originally proposed by M.A. Shultz. This report presents the status of the project at the end of the first year. A broad set of specifications to improve safety and public perception were set forth and the realization of these goals is achieved in a plant design named, ''The Light Water Ultra-Safe Plant Concept.'' The most significant goals of the concept address the station black-out problem and simplification of required operator actions during abnormal situations. These goals are achieved in the Ultra-Safe Concept by addition of an in-containment atmospheric tank containing a large quantity of cool water, replacement of the conventional PWR pressurizer system with a pressurizing pump, internal emergency power generation, and arrangement of components to utilize natural circulation at shut-down. The first year effort included an evaluation of the normal operation characteristics of the primary system pressurizing concept, evaluating parameters and modeling for analysis of the shutdown scenario, design of a low power density core, design of a low-pressure waste handling system, arrangement of a drainage system for pipe break considerations, and failure modes and effects analysis

  14. Ensuring safe water in post-chemical, biological, radiological and nuclear emergencies

    Science.gov (United States)

    Amar, Praveen Kumar

    2010-01-01

    Disaster scenarios are dismal and often result in mass displacement and migration of people. In eventuality of emergency situations, people need to be rehabilitated and provided with an adequate supply of drinking water, the most essential natural resource needed for survival, which is often not easily available even during non-disaster periods. In the aftermath of a natural or human-made disaster affecting mankind and livestock, the prime aim is to ensure supply of safe water to reduce the occurrence and spread of water borne disease due to interrupted, poor and polluted water supply. Chemical, biological, radiological and nuclear (CBRN) emergencies augment the dilemma as an additional risk of “contamination” is added. The associated risks posed to health and life should be reduced to as low as reasonably achievable. Maintaining a high level of preparedness is the crux of quick relief and efficient response to ensure continuous supply of safe water, enabling survival and sustenance. The underlying objective would be to educate and train the persons concerned to lay down the procedures for the detection, cleaning, and treatment, purification including desalination, disinfection, and decontamination of water. The basic information to influence the organization of preparedness and execution of relief measures at all levels while maintaining minimum standards in water management at the place of disaster, are discussed in this article. PMID:21829321

  15. Ensuring safe water in post-chemical, biological, radiological and nuclear emergencies

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Amar

    2010-01-01

    Full Text Available Disaster scenarios are dismal and often result in mass displacement and migration of people. In eventuality of emergency situations, people need to be rehabilitated and provided with an adequate supply of drinking water, the most essential natural resource needed for survival, which is often not easily available even during non-disaster periods. In the aftermath of a natural or human-made disaster affecting mankind and livestock, the prime aim is to ensure supply of safe water to reduce the occurrence and spread of water borne disease due to interrupted, poor and polluted water supply. Chemical, biological, radiological and nuclear (CBRN emergencies augment the dilemma as an additional risk of "contamination" is added. The associated risks posed to health and life should be reduced to as low as reasonably achievable. Maintaining a high level of preparedness is the crux of quick relief and efficient response to ensure continuous supply of safe water, enabling survival and sustenance. The underlying objective would be to educate and train the persons concerned to lay down the procedures for the detection, cleaning, and treatment, purification including desalination, disinfection, and decontamination of water. The basic information to influence the organization of preparedness and execution of relief measures at all levels while maintaining minimum standards in water management at the place of disaster, are discussed in this article.

  16. Training in radiation protection and the safe use of radiation sources

    International Nuclear Information System (INIS)

    2001-01-01

    The need for education and training in the various disciplines of radiation protection has long been recognized by the IAEA, the International Labour Organization (ILO), the United Nations Educational, Scientific and Cultural Organization, the World Health Organization and the Pan American Health Organization (PAHO). This need has been partially met through the many training courses undertaken by these organizations, either individually or in collaboration. The IAEA has assisted developing Member States in the training of specialists in radiation protection and safety through its organized educational and specialized training courses, workshops, seminars, fellowships and scientific visits. Training is an important means of promoting safety culture and enhancing the level of competence of personnel involved in radiation protection activities, and has acquired a place in the IAEA's programme accordingly. For example, the IAEA Post-graduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is regularly offered in countries around the world, and has been provided in Arabic, English, French, Spanish and Russian. The training provided by the IAEA is primarily aimed at regulators, professionals working in radiation protection and those responsible for the development of training programmes in their own countries. The importance of adequate and appropriate training for all those working with ionizing radiation has been highlighted by the results of the IAEA's investigations of radiological accidents. A significant contributory factor in a number of the accidents has been a lack of adequate training, which gave rise to errors with serious consequences. This report provides assistance in organizing training and complying with the requirements on training of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The previous version of this report. Technical Reports

  17. Temporary Operational Protocol for making safe and managing Orphaned or Seized Radioactive Sources

    International Nuclear Information System (INIS)

    2013-01-01

    This protocol outlines the arrangements to manage the safe interim storage of an orphaned radioactive source or of a source identified for seizure, pending its ultimate disposal. Such sources may be sources found outside of regulatory control, detected at a frontier or seized in the public interest. This includes a radioactive source arising from a CBRN, chemical, biological, radiological, nuclear, incident, following neutralisation of any associated dispersal device and confirmation of the suspect object as radioactive. The arrangements in this protocol are meant to be consistent with and used in conjunction with relevant protocols to the Major Emergency Framework Document and may be revisited as necessary as those protocols are further developed

  18. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    Science.gov (United States)

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1987-01-01

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  20. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  1. The challenge of improving boiling: lessons learned from a randomized controlled trial of water pasteurization and safe storage in Peru.

    Science.gov (United States)

    Heitzinger, K; Rocha, C A; Quick, R E; Montano, S M; Tilley, D H; Mock, C N; Carrasco, A J; Cabrera, R M; Hawes, S E

    2016-07-01

    Boiling is the most common method of household water treatment in developing countries; however, it is not always effectively practised. We conducted a randomized controlled trial among 210 households to assess the effectiveness of water pasteurization and safe-storage interventions in reducing Escherichia coli contamination of household drinking water in a water-boiling population in rural Peru. Households were randomized to receive either a safe-storage container or a safe-storage container plus water pasteurization indicator or to a control group. During a 13-week follow-up period, households that received a safe-storage container and water pasteurization indicator did not have a significantly different prevalence of stored drinking-water contamination relative to the control group [prevalence ratio (PR) 1·18, 95% confidence interval (CI) 0·92-1·52]. Similarly, receipt of a safe-storage container alone had no effect on prevalence of contamination (PR 1·02, 95% CI 0·79-1·31). Although use of water pasteurization indicators and locally available storage containers did not increase the safety of household drinking water in this study, future research could illuminate factors that facilitate the effective use of these interventions to improve water quality and reduce the risk of waterborne disease in populations that boil drinking water.

  2. Bacteriological assessment of urban water sources in Khamis Mushait Governorate, southwestern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sh AlOtaibi Eed L

    2009-03-01

    it is satisfactory for human drinking purposes. Contamination of desalinated water that is the main urban water source may occur during transportation from the desalination plant or in the house reservoir of the consumer. Improving and expanding the existing water treatment and sanitation systems is more likely to provide safe and sustainable sources of water over the long term. Strict hygienic measures should be applied to improve water quality and to avoid deleterious effects on public health, by using periodical monitoring programmes to detect sewage pollution running over local hydrological networks and valleys.

  3. Burning Phosphorus under Water Safely

    Science.gov (United States)

    Taylor, Larry C.

    1997-09-01

    A safer method for demonstrating the burning of white phosphorous under water is described. This demonstration uses 3% hydrogen peroxide solution and manganese dioxide as the oxygen source, eliminating the use of potentially explosive potassium chlorate. The oxygen generation is manually controlled by means of a stopcock on the dropping funnel. The apparatus has been designed to provide a most spectacular display, especially in the dark, lasting an hour or longer if desired, and eliminates the noxious phosphorous odor.

  4. From safe yield to sustainable development of water resources - The Kansas experience

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better

  5. Modeling water demand when households have multiple sources of water

    Science.gov (United States)

    Coulibaly, Lassina; Jakus, Paul M.; Keith, John E.

    2014-07-01

    A significant portion of the world's population lives in areas where public water delivery systems are unreliable and/or deliver poor quality water. In response, people have developed important alternatives to publicly supplied water. To date, most water demand research has been based on single-equation models for a single source of water, with very few studies that have examined water demand from two sources of water (where all nonpublic system water sources have been aggregated into a single demand). This modeling approach leads to two outcomes. First, the demand models do not capture the full range of alternatives, so the true economic relationship among the alternatives is obscured. Second, and more seriously, economic theory predicts that demand for a good becomes more price-elastic as the number of close substitutes increases. If researchers artificially limit the number of alternatives studied to something less than the true number, the price elasticity estimate may be biased downward. This paper examines water demand in a region with near universal access to piped water, but where system reliability and quality is such that many alternative sources of water exist. In extending the demand analysis to four sources of water, we are able to (i) demonstrate why households choose the water sources they do, (ii) provide a richer description of the demand relationships among sources, and (iii) calculate own-price elasticity estimates that are more elastic than those generally found in the literature.

  6. Assessment of variable drinking water sources used in Egypt on broiler health and welfare.

    Science.gov (United States)

    ELSaidy, N; Mohamed, R A; Abouelenien, F

    2015-07-01

    This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens' health and welfare. Draw attention to the importance of maintaining the hygienic quality

  7. Assessment of variable drinking water sources used in Egypt on broiler health and welfare

    Directory of Open Access Journals (Sweden)

    N. ELSaidy

    2015-07-01

    Full Text Available Aim: This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. Materials and Methods: A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1 received farm tap water; (T2 received filtered tap water (T3 received farm stored water at rooftop tanks, (T4 received underground (well water. Results: All water sources showed no significant differences among treated groups at (p>0.05 for most of the performance parameters and carcass characteristics. However (T2 group showed higher records for body weight (BWT, BWT gain (BWG, feed conversion ratio, bursa weight, serum total protein, globulin (G, albumin (A and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI, WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS, electrical conductivity (EC and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Conclusion: Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens’ health and welfare. Draw

  8. Assessment of variable drinking water sources used in Egypt on broiler health and welfare

    Science.gov (United States)

    ELSaidy, N.; Mohamed, R. A.; Abouelenien, F.

    2015-01-01

    Aim: This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. Materials and Methods: A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. Results: All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Conclusion: Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens’ health and welfare. Draw attention to

  9. Health impact of supplying safe drinking water on patients having various clinical manifestations of fluorosis in an endemic village of West Bengal

    Directory of Open Access Journals (Sweden)

    Kunal K Majumdar

    2013-01-01

    Full Text Available Background: Excessive fluoride in drinking water causes dental, skeletal and non-skeletal fluorosis which is encountered in endemic proportions in several parts of the world. The World Health Organization (WHO guideline value and the permissible limit of fluoride as per the Bureau of Indian Standards (BIS is 1.5 mg/L. Studies showed that withdrawal of sources identified for fluoride, often leads to reduction of fluoride in the body fluids (re-testing urine and serum after a week or ten days and results in the disappearance of non-skeletal fluorosis within a short duration of 10-15 days. Objective: To determine the prevalence of signs and symptoms of suspected dental, skeletal and non-skeletal fluorosis along with food habits, addictions and use of fluoride-containing toothpaste among participants taking water with fluoride concentration above permissible limit and to assess the changes in clinical manifestations of the above participants after consumption of safe drinking water with fluoride concentration below permissible limit. Materials and Methods: A longitudinal intervention study was conducted from October 2010 to December 2011 in a village selected randomly in Purulia District of West Bengal which is endemic for fluorosis. Thirty-six families with 104 family members in the above village having history of taking unsafe water containing high level of fluoride were selected for the study. The occurrence of various dental, skeletal and non-skeletal manifestations of fluorosis along with food habits, addictions and use of fluoride-containing toothpaste among the study population was assessed; the impact of taking safe water with fluoride concentration below permissible limit from a supplied community filter on these clinical manifestations was studied by follow-up examination of the above participants for six months. The data obtained is compared with the collected data from the baseline survey. Results: The prevalence of signs and symptoms of

  10. Health impact of supplying safe drinking water on patients having various clinical manifestations of fluorosis in an endemic village of west bengal.

    Science.gov (United States)

    Majumdar, Kunal K; Sundarraj, Shunmuga N

    2013-01-01

    Excessive fluoride in drinking water causes dental, skeletal and non-skeletal fluorosis which is encountered in endemic proportions in several parts of the world. The World Health Organization (WHO) guideline value and the permissible limit of fluoride as per the Bureau of Indian Standards (BIS) is 1.5 mg/L. Studies showed that withdrawal of sources identified for fluoride, often leads to reduction of fluoride in the body fluids (re-testing urine and serum after a week or ten days) and results in the disappearance of non-skeletal fluorosis within a short duration of 10-15 days. To determine the prevalence of signs and symptoms of suspected dental, skeletal and non-skeletal fluorosis along with food habits, addictions and use of fluoride-containing toothpaste among participants taking water with fluoride concentration above permissible limit and to assess the changes in clinical manifestations of the above participants after consumption of safe drinking water with fluoride concentration below permissible limit. A longitudinal intervention study was conducted from October 2010 to December 2011 in a village selected randomly in Purulia District of West Bengal which is endemic for fluorosis. Thirty-six families with 104 family members in the above village having history of taking unsafe water containing high level of fluoride were selected for the study. The occurrence of various dental, skeletal and non-skeletal manifestations of fluorosis along with food habits, addictions and use of fluoride-containing toothpaste among the study population was assessed; the impact of taking safe water with fluoride concentration below permissible limit from a supplied community filter on these clinical manifestations was studied by follow-up examination of the above participants for six months. The data obtained is compared with the collected data from the baseline survey. The prevalence of signs and symptoms of dental, skeletal and non-skeletal fluorosis was (18.26%), (18

  11. InaSAFE applications in disaster preparedness

    Science.gov (United States)

    Pranantyo, Ignatius Ryan; Fadmastuti, Mahardika; Chandra, Fredy

    2015-04-01

    Disaster preparedness activities aim to reduce the impact of disasters by being better prepared to respond when a disaster occurs. In order to better anticipate requirements during a disaster, contingency planning activities can be undertaken prior to a disaster based on a realistic disaster scenario. InaSAFE is a tool that can inform this process. InaSAFE is a free and open source software that estimates the impact to people and infrastructure from potential hazard scenarios. By using InaSAFE, disaster managers can develop scenarios of disaster impacts (people and infrastructures affected) to inform their contingency plan and emergency response operation plan. While InaSAFE provides the software framework exposure data and hazard data are needed as inputs to run this software. Then InaSAFE can be used to forecast the impact of the hazard scenario to the exposure data. InaSAFE outputs include estimates of the number of people, buildings and roads are affected, list of minimum needs (rice and clean water), and response checklist. InaSAFE is developed by Indonesia's National Disaster Management Agency (BNPB) and the Australian Government, through the Australia-Indonesia Facility for Disaster Reduction (AIFDR), in partnership with the World Bank - Global Facility for Disaster Reduction and Recovery (GFDRR). This software has been used in many parts of Indonesia, including Padang, Maumere, Jakarta, and Slamet Mountain for emergency response and contingency planning.

  12. Map of Water Infrastructure and Homes Without Access to Safe Drinking Water and Basic Sanitation on the Navajo Nation - October 2010

    Science.gov (United States)

    This document presents the results of completed work using existing geographic information system (GIS) data to map existing water and sewer infrastructure and homes without access to safe drinking water and basic sanitation on the Navajo Nation.

  13. Code of practice for the control and safe handling of radioactive sources used for therapeutic purposes (1988)

    International Nuclear Information System (INIS)

    1988-01-01

    This Code is intended as a guide to safe practices in the use of sealed and unsealed radioactive sources and in the management of patients being treated with them. It covers the procedures for the handling, preparation and use of radioactive sources, precautions to be taken for patients undergoing treatment, storage and transport of radioactive sources within a hospital or clinic, and routine testing of sealed sources [fr

  14. Safe management of sealed radioactive sources at Karachi nuclear power complex

    International Nuclear Information System (INIS)

    Tahir, T.B.; Qamar, A.

    2000-01-01

    This paper describes the conditioning of sealed radioactive sources, carried out at the Karachi Nuclear Power Complex (KNPC) in co-operation with the IAEA. The radioactive sources were radium needles of various size, used by various radiotherapy units in different hospitals throughout the country. For some time the use of radium needles had been abandoned and they were stored in hospitals awaiting proper disposal. Since their storage conditions were not ideal and there was a potential of leakage of radioactive material into the environment, it was decided to condition and store them safely. A significant logistic effort was required to identify these sources, bring them to a central facility and condition them according to current international standards. Various steps were involved in conditioning the sources: place it in a stainless steel capsule, weld the capsule, test it for a leak, place the capsule in a lead shielded package, put and seal the shielded package in a concrete-lined steel drum and finally store it at the waste storage facility. A total amount of about 1500 mg of Radium needles were conditioned. Radiation exposure during the entire operation was within acceptable limits. (author)

  15. Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of Southern Africa

    Science.gov (United States)

    Mwabi, J. K.; Adeyemo, F. E.; Mahlangu, T. O.; Mamba, B. B.; Brouckaert, B. M.; Swartz, C. D.; Offringa, G.; Mpenyana-Monyatsi, L.; Momba, M. N. B.

    One of the United Nations Millennium Development Goals is to reduce to half by 2015 the number of people, worldwide, who lack access to safe water. Due to the numerous deaths and illnesses caused by waterborne pathogens, various household water treatment devices and safe storage technologies have been developed to treat and manage water at the household level. The new approaches that are continually being examined need to be durable, lower in overall cost and more effective in the removal of the contaminants. In this study, an extensive literature survey was conducted to regroup various household treatment devices that are suitable for the inexpensive treatment of water on a household basis. The survey has resulted in the selection of four household treatment devices: the biosand filter (BSF), bucket filter (BF), ceramic candle filter (CCF) and the silver-impregnated porous pot filter (SIPP). The first three filters were manufactured in a Tshwane University of Technology workshop, using modified designs reported in literature. The SIPP filter is a product of the Tshwane University of Technology. The performance of the four filters was evaluated in terms of flow rate, physicochemical contaminant (turbidity, fluorides, phosphates, chlorophyll a, magnesium, calcium and nitrates) and microbial contaminant ( Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Shigella dysenteriae) removals. The flow rates obtained during the study period were within the recommended limits (171 l/h, 167 l/h, 6.4 l/h and 3.5 l/h for the BSF, BF, CCF and SIPP, respectively). Using standard methods, the results of the preliminary laboratory and field studies with spiked and environmental water samples indicated that all filters decreased the concentrations of contaminants in test water sources. The most efficiently removed chemical contaminant in spiked water was fluoride (99.9%) and the poorest removal efficiency was noted for magnesium (26-56%). A higher performance in chemical

  16. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    Bennett, D.B.; Paquette, D.E.; Klaus, K.; Dorsch, W.R.

    2000-01-01

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  17. Water safety and inequality in access to drinking-water between rich and poor households.

    Science.gov (United States)

    Yang, Hong; Bain, Robert; Bartram, Jamie; Gundry, Stephen; Pedley, Steve; Wright, James

    2013-02-05

    While water and sanitation are now recognized as a human right by the United Nations, monitoring inequality in safe water access poses challenges. This study uses survey data to calculate household socio-economic-status (SES) indices in seven countries where national drinking-water quality surveys are available. These are used to assess inequalities in access as indicated by type of improved water source, use of safe water, and a combination of these. In Bangladesh, arsenic exposure through drinking-water is not significantly related to SES (p = 0.06) among households using tubewells, whereas in Peru, chlorine residual in piped systems varies significantly with SES (p access nonpiped improved sources, which may provide unsafe water, resulting in greater inequality of access to "safe" water compared to "improved" water sources. Concentration indices increased from 0.08 to 0.15, 0.10 to 0.14, and 0.24 to 0.26, respectively, in these countries. There was minimal difference in Jordan and Tajikistan. Although the results are likely to be underestimates as they exclude individual-level inequalities, they show that use of a binary "improved"/"unimproved" categorization masks substantial inequalities. Future international monitoring programmes should take account of inequality in access and safety.

  18. 78 FR 28242 - Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act

    Science.gov (United States)

    2013-05-14

    ... Drinking Water Act (SDWA) and the Surface Water Treatment Rule, promulgated under the SDWA. Under the terms... public water system and to pay $8,000 into an escrow account to be used by the association for future... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water...

  19. [Spatial and seasonal characterization of the drinking water from various sources in a peri-urban town of Salta].

    Science.gov (United States)

    Rodriguez-Alvarez, María S; Moraña, Liliana B; Salusso, María M; Seghezzo, Lucas

    Drinking water monitoring plans are important to characterize both treated and untreated water used for drinking purposes. Access to drinking water increased in recent years as a response to the Millennium Development Goals set for 2015. The new Sustainable Development Goals aim to ensure universal access to safe drinking water by 2030. Within the framework of these global goals, it is crucial to monitor local drinking water systems. In this paper, treated and untreated water from different sources currently consumed in a specific town in Salta, northern Argentina, was thoroughly assessed. Monitoring extended along several seasons and included the physical, chemical and microbiological variables recommended by the Argentine Food Code. On the one hand, treated water mostly complies with these standards, with some non-compliances detected during the rainy season. Untreated water, on the other hand, never meets microbiological standards and is unfit for human consumption. Monitoring seems essential to detect anomalies and help guarantee a constant provision of safe drinking water. New treatment plants are urgently needed to expand the water grid to the entire population. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Safely Intake Number of Macridiscus sp. (Kerang Ceplos) from Tambak Lorok Waters, Semarang, Central Java, Indonesia

    Science.gov (United States)

    Meirenno Tielman, Eduard; Suprijanto, Jusup; Widowati, Ita

    2018-02-01

    The dynamics pollution that supposed to be derived from industrial activities around Tambak Lorok waters will affect the quality of waters, and also biota such as Macridiscus sp. mussels (Kerang Ceplos) that live and accumulate pollutants such as heavy metals (Pb, Cu, Al, Mn and Fe). However, Macridiscus sp. mussels which have been contaminated by heavy metals is usually sold for consumption by the people and if they consume it in excess, it will be toxic in the people’s body. So that, this study was to analyze Safely Intake Number of Macridiscus sp. from Tambak Lorok waters. This study used AAS (Atomic Absorption Spectrophotometry) method to analyze the accumulation number of the pollutant (Pb, Cu, Al, Mn and Fe). Safely Intake Number calculation is used MWI (Maximal Weekly Intake) and MTI (Maximal Tolerable Intake) calculation method. The results of AAS showed that the highest numbers of pollutant was Al (reached 534,51 mg/kg in the body of Macridiscus sp. that taken in February, 2016) and has exceeded the safely intake number (MWI Al = 1 mg/kg, based on WHO/FAO) so that it’s MTI values was low (0,08 kg/week/person). It means that Macridiscus sp. was not safe to be consumed excessively at that time.

  1. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress

    Directory of Open Access Journals (Sweden)

    Joe LoBuglio

    2012-03-01

    Full Text Available Monitoring of progress towards the Millennium Development Goal (MDG drinking water target relies on classification of water sources as “improved” or “unimproved” as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF “Rapid Assessment of Drinking Water Quality”. A principal components analysis (PCA of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11% use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator “use of an improved source” suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18% use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety.

  2. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress

    Science.gov (United States)

    Onda, Kyle; LoBuglio, Joe; Bartram, Jamie

    2012-01-01

    Monitoring of progress towards the Millennium Development Goal (MDG) drinking water target relies on classification of water sources as “improved” or “unimproved” as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP) estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF “Rapid Assessment of Drinking Water Quality”. A principal components analysis (PCA) of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population) used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11%) use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator “use of an improved source” suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18%) use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety. PMID:22690170

  3. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Science.gov (United States)

    2010-07-01

    ... responsible for the Underground Injection Control Program. You may call the Safe Drinking Water Hotline at 1... INJECTION CONTROL PROGRAM Requirements for Owners and Operators of Class V Injection Wells § 144.87 How does... Water Source Assessment and Protection Program in your area. You may call the Safe Drinking Water...

  4. Water hydraulic manipulator for fail safe and fault tolerant remote handling operations at ITER

    International Nuclear Information System (INIS)

    Nieminen, Peetu; Esque, Salvador; Muhammad, Ali; Mattila, Jouni; Vaeyrynen, Jukka; Siuko, Mikko; Vilenius, Matti

    2009-01-01

    Department of Intelligent Hydraulics and Automation (IHA) of Tampere University of Technology has been involved in the European Fusion program since 1994 within the ITER reactor maintenance activities. In this paper we discuss the design and development of a six degrees of freedom water hydraulic manipulator with a force feedback for teleoperation tasks. The manipulator is planned to be delivered to Divertor Test Platform 2 (DTP2) during year 2008. The paper also discusses the possibility to improve the fail safe and redundant operation of the manipulator. During the design of the water hydraulic manipulator, special provisions have been made in order to meet the safety requirements such as servo valve block for redundant operation and safety vane brakes for fail safe operation.

  5. Supplementary household water sources to augment potable ...

    African Journals Online (AJOL)

    This paper addresses on-site supplementary household water sources with a focus on groundwater abstraction, rainwater harvesting and greywater reuse as available non-potable water sources to residential consumers. An end-use model is presented and used to assess the theoretical impact of household water sources ...

  6. The role of commitment strength in enhancing safe water consumption: mediation analysis of a cluster-randomized trial.

    Science.gov (United States)

    Inauen, Jennifer; Tobias, Robert; Mosler, Hans-Joachim

    2014-11-01

    The objectives of this study were to investigate the importance of commitment strength in the theory of planned behaviour (TPB) and to test whether behaviour change techniques (BCTs) aimed at increasing commitment strength indeed promote switching to arsenic-safe wells by changing commitment strength. A cluster-randomized controlled trial with four arms was conducted to compare an information-only intervention to information plus one, two, or three commitment-enhancing BCTs. Randomly selected households (N = 340) of Monoharganj, Bangladesh, in seven geographically separate areas, whose members were drinking arsenic-contaminated water at baseline and had access to arsenic-safe wells, participated in this trial. The areas were randomly allocated to the four intervention arms. Water consumption behaviour, variables of the TPB, commitment strength, and socio-demographic characteristics were assessed at baseline and at 3-month follow-up by structured face-to-face interviews. Mediation analysis was used to investigate the mechanisms of behaviour change. Changes in commitment strength significantly increased the explanatory power of the TPB to predict well-switching. Commitment-enhancing BCTs - public self-commitment, implementation intentions, and reminders - increased the behaviour change effects of information by up to 50%. Mediation analyses confirmed that the BCTs indeed increased well-switching by increasing commitment strength. Unexpectedly, however, mediation via changes in behavioural intentions was the strongest mechanism of the intervention effects. Commitment is an important construct to consider in water- and health-related behaviour change and may be for other health behaviours as well. BCTs that alter behavioural intentions and commitment strength proved highly effective at enhancing the behaviour change effects of information alone. Statement of contribution What is already known on this subject? Millions of people drink contaminated water even if they

  7. Impact of the 1986 amendments to the Safe Drinking Water Act on the State of Mississippi. Technical completion report

    International Nuclear Information System (INIS)

    Sherrard, J.H.; Gibson, P.W.

    1991-10-01

    As a result of the U.S. Congress passing the 1986 Amendments to the Safe Drinking Water Act, the number of regulated contaminants that must be monitored in public water systems has increased from 24 to 85. The economic impact of the new legislation is greater on small systems than large systems because of economies of scale. In addition, more highly trained water treatment plant operators will be needed to deal with the complex legislation and to ensure the continuous supply of safe drinking water to their communities. Because of the complexity and increased scope of the 1986 Amendments to the Safe Drinking Water Act, a detailed discussion of the requirements that must be met by each public water supply is presented as background information. The objectives of the research were to: (1) determine the economic impacts of the 1986 Amendments on water systems throughout the State of Mississippi, (2) determine the number of systems that will need new and/or upgraded treatments technology to comply with the regulations, and (3) provide an assessment of the needs of the State DWS

  8. Personnel selection and training for radiation protection and safe use of radiation sources

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2000-01-01

    For proper implementation of the radiation protection programs in the work place, several persons with different qualifications and training are involved. Among these persons are regulatory personnel managers, operators, workers, health professional, health physics technicians, health physicists, qualified experts, and emergency personnel. The current status of education and training of these persons is discussed in order to build competence in radiation protection and the safe use of radiation sources

  9. Methods and apparatus for safely handling radioactive sources in measuring-while-drilling tools

    International Nuclear Information System (INIS)

    Wraight, P.D.

    1989-01-01

    This patent describes a method for removing a chemical radioactive source from a MWD tool which is coupled in a drill string supported by a drilling rig while a borehole is drilled and includes logging means for measuring formation characteristics in response to irradiation of the adjacent formations by the radioactive source during the drilling operation. The steps of the method are: halting the drilling operation and then removing the drill string from the borehole for moving the MWD tool to a work station at the surface where the source is at a safe working distance from the drilling rig and will be accessible by way of one end of the MWD tool; positioning a radiation shield at a location adjacent to the one end of the MWD tool where the shield is ready for receiving the source as it is moved away from the other end of the MWD tool and then moving the source away from the other end of the MWD tool for enclosing the source within the shield; and once the source is enclosed within the shield; removing the shield together with the enclosed source from the MWD tool for transferring the enclosed source to another work station

  10. Determination of Key Risk Supervision Areas around River-Type Water Sources Affected by Multiple Risk Sources: A Case Study of Water Sources along the Yangtze’s Nanjing Section

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2017-02-01

    Full Text Available To provide a reference for risk management of water sources, this study screens the key risk supervision areas around river-type water sources (hereinafter referred to as the water sources threatened by multiple fixed risk sources (the risk sources, and establishes a comprehensive methodological system. Specifically, it comprises: (1 method of partitioning risk source concentrated sub-regions for screening water source perimeter key risk supervision areas; (2 approach of determining sub-regional risk indexes (SrRI, which characterizes the scale of sub-regional risks considering factors like risk distribution intensity within sub-regions, risk indexes of risk sources (RIRS, characterizing the risk scale of risk sources and the number of risk sources; and (3 method of calculating sub-region’s risk threats to the water sources (SrTWS which considers the positional relationship between water sources and sub-regions as well as SrRI, and the criteria for determining key supervision sub-regions. Favorable effects are achieved by applying this methodological system in determining water source perimeter sub-regions distributed along the Yangtze’s Nanjing section. Results revealed that for water sources, the key sub-regions needing supervision were SD16, SD06, SD21, SD26, SD15, SD03, SD02, SD32, SD10, SD11, SD14, SD05, SD27, etc., in the order of criticality. The sub-region with the greatest risk threats on the water sources was SD16, which was located in the middle reaches of Yangtze River. In general, sub-regions along the upper Yangtze reaches had greater threats to water sources than the lower reach sub-regions other than SD26 and SD21. Upstream water sources were less subject to the threats of sub-regions than the downstream sources other than NJ09B and NJ03.

  11. Azolla pinnata growth performance in different water sources.

    Science.gov (United States)

    Nordiah, B; Harah, Z Muta; Sidik, B Japar; Hazma, W N Wan

    2012-07-01

    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.

  12. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  13. Human Health Risk Assessment Applied to Rural Populations Dependent on Unregulated Drinking Water Sources: A Scoping Review.

    Science.gov (United States)

    Ford, Lorelei; Bharadwaj, Lalita; McLeod, Lianne; Waldner, Cheryl

    2017-07-28

    Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural.

  14. What's Wrong with Bribery? An Example Utilizing Access to Safe Drinking Water

    Science.gov (United States)

    Dhooge, Lucien J.

    2013-01-01

    This case study examines the role of bribery in the global marketplace through an example involving access to safe drinking water in the developing world. Parts II and III set out the objectives and methods of classroom delivery for the case study. Part IV is the background reading relating to bribery with particular emphasis on the Foreign…

  15. In the way of clean and safe drinking water : exploring limitations to improvement of the water supply in Bagamoyo District, Tanzania

    OpenAIRE

    Bemspång, Josefina; Segerström, Rebecka

    2009-01-01

    Bagamoyo District, in the Pwani region in Tanzania, supplies a large part of Tanzania'sbiggest city, Dar es Salaam, with water. At the same time many people in rural villages in thedistrict do not have access to clean and safe water. This thesis aims to explore what limitationsthere are to improvement of the rural water supply in Bagamoyo District. Specific attention ispaid to the organizational structure of the water sector and how roles and responsibilities aredivided, defined and communica...

  16. Metallic iron for safe drinking water provision: Considering a lost knowledge.

    Science.gov (United States)

    Mwakabona, Hezron T; Ndé-Tchoupé, Arnaud Igor; Njau, Karoli N; Noubactep, Chicgoua; Wydra, Kerstin D

    2017-06-15

    Around year 1890, the technology of using metallic iron (Fe 0 ) for safe drinking water provision was already established in Europe. The science and technology to manufacture suitable Fe 0 materials were known and further developed in this period. Scientists had then developed skills to (i) explore the suitability of individual Fe 0 materials (e.g. iron filling, sponge iron) for selected applications, and (ii) establish treatment processes for households and water treatment plants. The recent (1990) discovery of Fe 0 as reactive agent for environmental remediation and water treatment has not yet considered this ancient knowledge. In the present work, some key aspects of the ancient knowledge are presented together with some contemporised interpretations, in an attempt to demonstrate the scientific truth contained therein. It appears that the ancient knowledge is an independent validation of the scientific concept that in water treatment (Fe 0 /H 2 O system) Fe 0 materials are generators of contaminant collectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management, EU Project

    DEFF Research Database (Denmark)

    Plauborg, Finn; Jensen, Christian Richardt; Dalsgaard, Anders

    2009-01-01

    : the safety and quality of food products, and the increasing competition for clean freshwater. SAFIR is funded for the period 2005-2009 under the Food Quality and Safety thematic area of the EU 6th Framework Research Programme. The challenge for the next years will be to produce safe and high quality foods...... a multi-disciplinary team, with food safety and quality experts, engineers, agronomists and economists from17 research institutes and private companies in Europe, Israel and China working together. The project assesses potential risks to farmers. Coupled with farm management and economic models, a new...... intelligent tool for efficient and safe use and re-use of low-quality water are being developed. Already published results indicate water saving in the order of 25-30% in agricultural crops as potatoes and tomatoes are possible without yield reduction. Slightly treated waste water can be used safely when...

  18. 40 CFR 141.701 - Source water monitoring.

    Science.gov (United States)

    2010-07-01

    ... (a)(4) of this section based on the E. coli level that applies to the nearest surface water body. If no surface water body is nearby, the system must comply based on the requirements that apply to... Monitoring Requirements § 141.701 Source water monitoring. (a) Initial round of source water monitoring...

  19. A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE

    Directory of Open Access Journals (Sweden)

    Giuliana Zanchi

    2016-03-01

    Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.

  20. EPA Office of Water (OW): SDWIS - HUC12 Densities for Public Surface Water and Groundwater Sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System location points, based on information from the Safe Drinking Water Act Information System (SDWIS/Federal) for a 2010 third quarter (SDWIS_2010Q3)...

  1. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  2. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  3. Staying Safe on the Water

    Centers for Disease Control (CDC) Podcasts

    2008-06-05

    In this podcast for all audiences, Dr. Julie Gilchrist from CDC's Injury Center outlines tips for safe boating.  Created: 6/5/2008 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 6/8/2008.

  4. Drinking water-a pipe dream

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    Every third person deprived of clean drinking water in the world is an Indian, according to a report based on studies conducted by the National Environmental Engineering Research Institute (NEERI), Nagpur. The study further states that almost 70 per cent of our available water is polluted. This causes deaths of about 15 Iakh Indian children every year. A WHO report says that 80 per cent of the illnesses in India could be prevented if safe potable water was available to our entire population. The Union Ministry of Rural Development aims at providing at least one source of safe drinking water supply to each of 5.75 Iakh villages. Each source is expected to be about 0.5 km away from the village and will supply 70 liters of water per person everyday.

  5. Water quality assessment of selected domestic water sources in ...

    African Journals Online (AJOL)

    However, lead ion appears higher than the approved WHO and SON standard for water quality in all the sources except that of water vendors which is 0.04mg/l. It is therefore recommended that periodic monitoring of water quality, effective waste management system to improve the general water quality in the town, and ...

  6. Validation of radioactivity measurements under the Safe Drinking Water Act

    International Nuclear Information System (INIS)

    Goldin, Abraham S.

    1978-01-01

    Radioactivity measurements are made under the Safe Drinking Water Act to obtain information on the potential radiological hazard of water and to institute regulatory action when water quality does not meet requirements. Measurements must be both precise and accurate if these goals are to be met. Regulations issued under the act require that analyses be performed by approved (certified) laboratories, which must carry out quality assurance programs. This paper briefly describes the certification requirements and discusses the components of an effective quality assurance program. The Environmental Protection Agency has established procedures for the certification of laboratories making radioactivity measurements of drinking water. These procedures recommend minimum laboratory qualifications for personnel, facilities, equipment, and procedures; proficiency testing by analysis of samples provided by the Agency; and operation of a quality assurance program. A major function of a quality assurance program is to provide the Laboratory Director an ongoing flow of information on laboratory analytical performance. A properly designed and conducted program provides this information in a timely manner, indicates areas where discrepancies exist, and often suggests ways of correcting the discrepancies. Pertinent aspects of radioactivity measurements for drinking water are discussed, including how analyses of blanks, blind duplicates, and reference samples contribute needed information, and evaluations by control charts and statistical analyses. Examples of the usefulness of quality control in correcting both procedural and background problems are given. (author)

  7. Meeting water needs for sustainable development: an overview of approaches, measures and data sources

    Science.gov (United States)

    Lissner, Tabea; Reusser, Dominik E.; Sullivan, Caroline A.; Kropp, Jürgen P.

    2013-04-01

    An essential part of a global transition towards sustainability is the Millennium Development Goals (MDG), providing a blueprint of goals to meet human needs. Water is an essential resource in itself, but also a vital factor of production for food, energy and other industrial products. Access to sufficient water has only recently been recognized as a human right. One central MDG is halving the population without access to safe drinking water and sanitation. To adequately assess the state of development and the potential for a transition towards sustainability, consistent and meaningful measures of water availability and adequate access are thus fundamental. Much work has been done to identify thresholds and definitions to measure water scarcity. This includes some work on defining basic water needs of different sectors. A range of data and approaches has been made available from a variety of sources, but all of these approaches differ in their underlying assumptions, the nature of the data used, and consequently in the final results. We review and compare approaches, methods and data sources on human water use and human water needs. This data review enables identifying levels of consumption in different countries and different sectors. Further comparison is made between actual water needs (based on human and ecological requirements), and recognised levels of water abstraction. The results of our review highlight the differences between different accounts of water use and needs, and reflect the importance of standardised approaches to data definitions and measurements, making studies more comparable across space and time. The comparison of different use and allocation patterns in countries enables levels of water use to be identified which allow for an adequate level of human wellbeing to be maintained within sustainable water abstraction limits. Recommendations are provided of how data can be defined more clearly to make comparisons of water use more meaningful and

  8. Assessing Drinking Water Quality and Water Safety Management in Sub-Saharan Africa Using Regulated Monitoring Data.

    Science.gov (United States)

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Khush, Ranjiv

    2016-10-18

    Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.

  9. The 21st century nuclear park: A source of energy, water, food, and jobs

    International Nuclear Information System (INIS)

    Madia, W.J.

    2004-01-01

    The concept of a nuclear-powered agro-industrial complex, or 'nuplex', first advanced 40 years ago, provides an increasingly attractive means of addressing critical challenges in developing nations. The nuplex concept, updated for the 21st century, can serve as the basis for a nuclear park that provides a safe, environmentally friendly, and reliable source of energy at a cost comparable to other means of generation. This 21st century nuclear park can meet burgeoning demands for new sources of power and water, support the development of highly efficient agriculture to supply food to a growing world population, and offer employment at levels ranging from unskilled to highly skilled, thus creating opportunities for economic development and improving the quality of life in regions where it is deployed. (author)

  10. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  11. Drinking Water Quality Status and Contamination in Pakistan

    Directory of Open Access Journals (Sweden)

    M. K. Daud

    2017-01-01

    Full Text Available Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  12. Drinking Water Quality Status and Contamination in Pakistan

    Science.gov (United States)

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  13. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  14. Household attitudes and knowledge on drinking water enhance water hazards in peri-urban communities in Western Kenya

    Directory of Open Access Journals (Sweden)

    Kimongu J. Kioko

    2012-12-01

    Full Text Available Ensuring safe drinking water remains a big challenge in developing countries where waterborne diseases cause havoc in many communities. A major challenge is limited knowledge, misinformation and attitudes that work against ensuring that drinking water is safe. This study investigated the knowledge, attitudes and practices of peri-urban households in Kakamega Town of Western Kenya, concerning the collection, treatment and storage of drinking water. Alongside this we examined the role of solid waste disposal in water safety. Three hundred and seventy eight households from four residential regions of varying economic levels were randomly sampled in Kakamega Town. Data was collected via questionnaire interviews that incorporated attitude questions based on a Likert scale of 1−5, and administered to the households and key informants. The results showed most respondents were knowledgeable about ideal methods of water collection, treatment and storage. However, they did not practise them appropriately. Some attitudes among the respondents worked against the ideals of achieving safe drinking water. For instance, many households perceived their drinking water source as safe and did not treat it, even when obtained from open sources like rivers. Further, they preferred to store drinking water in clay pots, because the pots kept the water cold, rather than use the narrow-necked containers that limit exposure to contaminants. Also, hand washing with soap was not practised enough in their daily lives to avoid contact with waterborne hazards. We recommend that the government undertake training programmes on drinking water safety that advocate appropriate water use, hygiene and sanitation strategies.

  15. Management of source and drinking-water quality in Pakistan.

    Science.gov (United States)

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  16. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  17. "From safe source to safe sink" development of colorimetric assay for gabapentin in bulk drug and capsules using naturally derived genipin.

    Science.gov (United States)

    Winotapun, Weerapath; Kongpakwattana, Khachen; Dejpittayanunt, Sirirat; Pathomcharoensukchai, Suwaparp; Suksaran, Udomluck; Nuntharatanapong, Nopparat; Rojanarata, Theerasak

    2012-09-15

    A novel colorimetric assay for gabapentin in bulk drug and capsules has been developed via a safety-and-sustainability concerning concept. The method relied on the reaction of primary amino group of drug with non-toxic and eco-friendly genipin in totally aqueous medium to form the blue product which was subsequently measured by visible spectrophotometry at 590 nm. Under the optimized conditions, Beer's law was obeyed in the concentration range of 0.15-0.50 mM (r(2)=0.9998). It was accurate, precise and insensitive to the interferences from all related compounds specified in the United States Pharmacopeia as well as commonly used excipients. Furthermore, it gave the assay results in agreement with the pharmacopeial chromatographic method. Owing to the environmental concern and responsibility, a fast and facile method was also proposed for the treatment of waste generated from the assay based on the decoloration by using gypsum as a cheap and commonly available adsorbent. After the treatment, more than 95% of the initial blue product was removed from the waste solution and the treated waste was proven to be safe for aquatic organisms, as studied in brine shrimp and guppy fishes. Therefore, this work not only reports for the first time the application of naturally derived genipin to drug analysis, but also presents a new and contemporary paradigm that illustrates the fully benign-by-design development of the analytical methodologies in the era of Green Chemistry, starting from the safe source of reagents toward the safe sink when waste is released into the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China.

    Science.gov (United States)

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-11-12

    This study aimed to describe the households' choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10(-9)~3.62 × 10(-5). The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water's highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals.

  19. Concept of safe tank-type water cooled and moderated reactor with HTGR microparticle fuel compacts

    International Nuclear Information System (INIS)

    Gol'tsev, A.O.; Kukharkin, N.E.; Mosevitskij, I.S.; Ponomarev-Stepnoj, N.N.; Popov, S.V.; Udyanskij, Yu.N.; Tsibul'skij, V.F.

    1993-01-01

    Concept of safe tank-type water-cooled and moderated reactor on the basis of HTGR fuel microparticles which enable to avoid environment contamination with radioactive products under severe accidents, is proposed. Results of neutron-physical and thermal-physical studies of water cooled and moderated reactor with HTGR microparticle compacts are presented. Characteristics of two reactors with thermal power of 500 and 1500 MW are indicated within the concept frames. The reactor behaviour under severe accident connected with complete loss of water coolant is considered. It is shown that under such an accident the fission products release from fuel microparticles does not occur

  20. Regulatory control for safe usage of ionizing radiation sources in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2008-01-01

    duly authorized by the competent authority are permitted to procure and handle radiation sources. Nuclear Safety and Radiation Control Division of BAEC undertakes radiological protection surveys of radiation installations or ensuring radiation safety and suggests suitable recommendations for the use, transport and disposal of radioactive materials, which are to be implemented by the authorized user institutions. This paper outlines the methodology of regulatory control exercised by BAEC for safe use of the radioactive materials and the radiation generating equipment in the country. (author)

  1. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  2. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    Science.gov (United States)

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs.

  3. Assessed Clean Water Act 305(b) Water Sources of Impairment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Identifies the sources of impairment for assessed waters under the Clean Water Act 305(b) program. This view can be used for viewing the details at the assessment...

  4. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  5. Quality of Source Water from Public-Supply Wells in the United States, 1993-2007

    Science.gov (United States)

    Toccalino, Patricia L.; Norman, Julia E.; Hitt, Kerie J.

    2010-01-01

    More than one-third of the Nation's population receives their drinking water from public water systems that use groundwater as their source. The U.S. Geological Survey (USGS) sampled untreated source water from 932 public-supply wells, hereafter referred to as public wells, as part of multiple groundwater assessments conducted across the Nation during 1993-2007. The objectives of this study were to evaluate (1) contaminant occurrence in source water from public wells and the potential significance of contaminant concentrations to human health, (2) national and regional distributions of groundwater quality, and (3) the occurrence and characteristics of contaminant mixtures. Treated finished water was not sampled. The 932 public wells are widely distributed nationally and include wells in selected parts of 41 states and withdraw water from parts of 30 regionally extensive aquifers used for public water supply. These wells are distributed among 629 unique public water systems-less than 1 percent of all groundwater-supplied public water systems in the United States-but the wells were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. Samples from the 629 systems represent source water used by one-quarter of the U.S. population served by groundwater-supplied public water systems, or about 9 percent of the entire U.S. population in 2008. One groundwater sample was collected prior to treatment or blending from each of the 932 public wells and analyzed for as many as six water-quality properties and 215 contaminants. Consistent with the terminology used in the Safe Drinking Water Act (SDWA), all constituents analyzed in water samples in this study are referred to as 'contaminants'. More contaminant groups were assessed in this study than in any previous national study of public wells and included major ions, nutrients, radionuclides, trace elements, pesticide compounds, volatile organic compounds (VOCs), and fecal

  6. Household trends in access to improved water sources and sanitation facilities in Vietnam and associated factors: findings from the Multiple Indicator Cluster Surveys, 2000-2011.

    Science.gov (United States)

    Tuyet-Hanh, Tran Thi; Lee, Jong-Koo; Oh, Juhwan; Van Minh, Hoang; Ou Lee, Chul; Hoan, Le Thi; Nam, You-Seon; Long, Tran Khanh

    2016-01-01

    Despite progress made by the Millennium Development Goal (MDG) number 7.C, Vietnam still faces challenges with regard to the provision of access to safe drinking water and basic sanitation. This paper describes household trends in access to improved water sources and sanitation facilities separately, and analyses factors associated with access to improved water sources and sanitation facilities in combination. Secondary data from the Vietnam Multiple Indicator Cluster Survey in 2000, 2006, and 2011 were analyzed. Descriptive statistics and tests of significance describe trends over time in access to water and sanitation by location, demographic and socio-economic factors. Binary logistic regressions (2000, 2006, and 2011) describe associations between access to water and sanitation, and geographic, demographic, and socio-economic factors. There have been some outstanding developments in access to improved water sources and sanitation facilities from 2000 to 2011. In 2011, the proportion of households with access to improved water sources and sanitation facilities reached 90% and 77%, respectively, meeting the 2015 MDG targets for safe drinking water and basic sanitation set at 88% and 75%, respectively. However, despite these achievements, in 2011, only 74% of households overall had access to combined improved drinking water and sanitation facilities. There were also stark differences between regions. In 2011, only 47% of households had access to both improved water and sanitation facilities in the Mekong River Delta compared with 94% in the Red River Delta. In 2011, households in urban compared to rural areas were more than twice as likely (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.9-2.5) to have access to improved water and sanitation facilities in combination, and households in the highest compared with the lowest wealth quintile were over 40 times more likely (OR: 42.3; 95% CI: 29.8-60.0). More efforts are required to increase household access to

  7. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  8. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    Science.gov (United States)

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  9. Measuring User Compliance and Cost Effectiveness of Safe Drinking Water Programs: A Cluster-Randomized Study of Household Ultraviolet Disinfection in Rural Mexico.

    Science.gov (United States)

    Reygadas, Fermín; Gruber, Joshua S; Dreizler, Lindsay; Nelson, Kara L; Ray, Isha

    2018-03-01

    Low adoption and compliance levels for household water treatment and safe storage (HWTS) technologies have made it challenging for these systems to achieve measurable health benefits in the developing world. User compliance remains an inconsistently defined and poorly understood feature of HWTS programs. In this article, we develop a comprehensive approach to understanding HWTS compliance. First, our Safe Drinking Water Compliance Framework disaggregates and measures the components of compliance from initial adoption of the HWTS to exclusive consumption of treated water. We apply this framework to an ultraviolet (UV)-based safe water system in a cluster-randomized controlled trial in rural Mexico. Second, we evaluate a no-frills (or "Basic") variant of the program as well as an improved (or "Enhanced") variant, to test if subtle changes in the user interface of HWTS programs could improve compliance. Finally, we perform a full-cost analysis of both variants to assess their cost effectiveness (CE) in achieving compliance. We define "compliance" strictly as the habit of consuming safe water. We find that compliance was significantly higher in the groups where the UV program variants were rolled out than in the control groups. The Enhanced variant performed better immediately postintervention than the Basic, but compliance (and thus CE) degraded with time such that no effective difference remained between the two versions of the program.

  10. Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab, Pakistan.

    Science.gov (United States)

    Arshad, Nasima; Imran, Saiqa

    2017-01-01

    High levels of arsenic contamination in drinking water of two villages, Badarpur and Ibrahimabad of district Kasur, central Punjab, Pakistan is reported first time in present studies. Groundwater quality situation was found to be impaired when samples of different rural areas of district Kasur were monitored according to Pakistan Standards and Quality Control Authority (PSQCA) for all significant water quality constituents and analyzed for trace elements, physico-chemical, and microbiological parameters. Out of 35water sources, 97 % were found unsafe and only 3 % of the sources were within safe limits. High concentrations of arsenic, fluoride, and bacteria were found in 91, 74, and 77 % sources of drinking water, respectively. Very high concentrations of arsenic ranging 58-3800 μg/L were found in the water samples obtained from Badarpur and Ibrahimabad. A decrease in water contamination was observed with increase in source depth. The health issues like arsenicosis and skeletal/dental flourosis were observed in the residents of the monitored areas. Drinking water quality conditions of some rural areas of northen and southern districts of Punjab was also analyzed and compared with Kasur district. High levels of nitrates were found in the samples of Islamabad and Rawalpindi, while high levels of arsenic, iron, fluoride, and TDS were found in Bahawalpur district. Graphical abstract ᅟ.

  11. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  12. World Water Day 2002: Water for development

    International Nuclear Information System (INIS)

    2002-01-01

    Agriculture consumes about 70 per cent of the world's available water but experts say that where there are competing demands for water use, and groundwater sources have been depleted, small farmers are the first to lose their supply. As a consequence farmers are displaced from their land and the landless, who help them, are made jobless. Environmental damage to wetlands and estuaries from upstream depletion, as well as an increase of water-borne disease, also occurs.There must be more emphasis towards increasing the efficiency of water management systems and increasing water productivity, getting more crops per drop, says the Food and Agriculture Organization (FAO). Water stress leaves women the most vulnerable. Without a ready source of water they may have to walk for several hours every day to find it, or send their children to fetch it. Child nurturing and education suffer and the water available maybe unfit for human use. The U.N. estimates that 1.2 billion people lack access to safe water and about 2.5 billion are without access to proper sanitation. The absence of safe water translates into a tremendous burden of disease, linked to gastro-intestinal infection, making it a key water associated development issue, the World Health Organization (WHO) says. 'Access to sanitation facilities is a basic human right that safeguards health and human dignity,' said Sir Richard Jolly, Chair of the Geneva-based Water Supply and Sanitation Collaborative Council (WSCC). 'We know from experience that clean water alone leads only to minor health improvements. Sound hygiene behaviour must be recognized as a separate issue in its own right, with adequate sanitation and clean water as supporting components.' This year, water pollution, poor sanitation and water shortages will kill over 12 million people, said Klaus Toepfer, Executive Director of the United Nations Environment Programme (UNEP). Millions more are in bad health and trapped in poverty, said Mr. Toepfer, much of

  13. NONPOINT SOURCES AND WATER QUALITY TRADING

    Science.gov (United States)

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  14. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  15. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    water sources (31.96 - 47.31) falls within the classification “Bad” despite the slight increase during the dry season. The quality of water in the study area is poor and portends health risk; ... tributary that originates from the New Calabar River.

  16. Household trends in access to improved water sources and sanitation facilities in Vietnam and associated factors: findings from the Multiple Indicator Cluster Surveys, 2000–2011

    Science.gov (United States)

    Tuyet-Hanh, Tran Thi; Lee, Jong-Koo; Oh, Juhwan; Van Minh, Hoang; Ou Lee, Chul; Hoan, Le Thi; Nam, You-Seon; Long, Tran Khanh

    2016-01-01

    Background Despite progress made by the Millennium Development Goal (MDG) number 7.C, Vietnam still faces challenges with regard to the provision of access to safe drinking water and basic sanitation. Objective This paper describes household trends in access to improved water sources and sanitation facilities separately, and analyses factors associated with access to improved water sources and sanitation facilities in combination. Design Secondary data from the Vietnam Multiple Indicator Cluster Survey in 2000, 2006, and 2011 were analyzed. Descriptive statistics and tests of significance describe trends over time in access to water and sanitation by location, demographic and socio-economic factors. Binary logistic regressions (2000, 2006, and 2011) describe associations between access to water and sanitation, and geographic, demographic, and socio-economic factors. Results There have been some outstanding developments in access to improved water sources and sanitation facilities from 2000 to 2011. In 2011, the proportion of households with access to improved water sources and sanitation facilities reached 90% and 77%, respectively, meeting the 2015 MDG targets for safe drinking water and basic sanitation set at 88% and 75%, respectively. However, despite these achievements, in 2011, only 74% of households overall had access to combined improved drinking water and sanitation facilities. There were also stark differences between regions. In 2011, only 47% of households had access to both improved water and sanitation facilities in the Mekong River Delta compared with 94% in the Red River Delta. In 2011, households in urban compared to rural areas were more than twice as likely (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.9–2.5) to have access to improved water and sanitation facilities in combination, and households in the highest compared with the lowest wealth quintile were over 40 times more likely (OR: 42.3; 95% CI: 29.8–60.0). Conclusions More

  17. Household trends in access to improved water sources and sanitation facilities in Vietnam and associated factors: findings from the Multiple Indicator Cluster Surveys, 2000–2011

    Directory of Open Access Journals (Sweden)

    Tran Thi Tuyet-Hanh

    2016-02-01

    Full Text Available Background: Despite progress made by the Millennium Development Goal (MDG number 7.C, Vietnam still faces challenges with regard to the provision of access to safe drinking water and basic sanitation. Objective: This paper describes household trends in access to improved water sources and sanitation facilities separately, and analyses factors associated with access to improved water sources and sanitation facilities in combination. Design: Secondary data from the Vietnam Multiple Indicator Cluster Survey in 2000, 2006, and 2011 were analyzed. Descriptive statistics and tests of significance describe trends over time in access to water and sanitation by location, demographic and socio-economic factors. Binary logistic regressions (2000, 2006, and 2011 describe associations between access to water and sanitation, and geographic, demographic, and socio-economic factors. Results: There have been some outstanding developments in access to improved water sources and sanitation facilities from 2000 to 2011. In 2011, the proportion of households with access to improved water sources and sanitation facilities reached 90% and 77%, respectively, meeting the 2015 MDG targets for safe drinking water and basic sanitation set at 88% and 75%, respectively. However, despite these achievements, in 2011, only 74% of households overall had access to combined improved drinking water and sanitation facilities. There were also stark differences between regions. In 2011, only 47% of households had access to both improved water and sanitation facilities in the Mekong River Delta compared with 94% in the Red River Delta. In 2011, households in urban compared to rural areas were more than twice as likely (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.9–2.5 to have access to improved water and sanitation facilities in combination, and households in the highest compared with the lowest wealth quintile were over 40 times more likely (OR: 42.3; 95% CI: 29.8–60

  18. Propagation of Exploration Seismic Sources in Shallow Water

    Science.gov (United States)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  19. The development of the Czech Republic electric industry - Reliable, safe and responsible source mix

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Miroslav; Jez, Jiri; Ptacek, Jiri

    2010-09-15

    The paper focuses on the development of the Czech Republic electric industry in close perspective and the prediction of its expected future in period up to 2030. The goal of the paper is to specify methods and procedures applied within periodic assessment of Czech electric power sector balance outlook for the State authorities. A necessity to respect economic recession and politicization of the issue of power sector development has invoked that these items are added to commonly used procedures. A key criterion is the reliable and safe electricity supply by adequate source mix for acceptable prices and environmental aspects.

  20. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  1. Hydrogeological investigation for assessment of the sustainability of low-arsenic aquifers as a safe drinking water source in regions with high-arsenic groundwater in Matlab, southeastern Bangladesh

    Science.gov (United States)

    von Brömssen, Mattias; Markussen, Lars; Bhattacharya, Prosun; Ahmed, Kazi Matin; Hossain, Mohammed; Jacks, Gunnar; Sracek, Ondra; Thunvik, Roger; Hasan, M. Aziz; Islam, M. Mainul; Rahman, M. Mokhlesur

    2014-10-01

    Exploitation of groundwater from shallow, high prolific Holocene sedimentary aquifers has been a main element for achieving safe drinking water and food security in Bangladesh. However, the presence of elevated levels of geogenic arsenic (As) in these aquifers has undermined this success. Except for targeting safe aquifers through installations of tubewells to greater depth, no mitigation option has been successfully implemented on a larger scale. The objective of this study has been to characterise the hydrostratigraphy, groundwater flow patterns, the hydraulic properties to assess the vulnerability of low-arsenic aquifers at Matlab, in south-eastern Bangladesh, one of the worst arsenic-affected areas of the country. Groundwater modelling, conventional pumping test using multilevel piezometers, hydraulic head monitoring in piezometer nests, 14C dating of groundwater and assessment of groundwater abstraction were used. A model comprising of three aquifers covering the top 250 m of the model domain showed the best fit for the calibration evaluation criteria. Irrigation wells in the Matlab area are mostly installed in clusters and account for most of the groundwater abstraction. Even though the hydraulic heads are affected locally by seasonal pumping, the aquifer system is fully recharged from the monsoonal replenishment. Groundwater simulations demonstrated the presence of deep regional flow systems with recharge areas in the eastern, hilly part of Bangladesh and shallow small local flow systems driven by local topography. Based on modelling results and 14C groundwater data, it can be concluded that the natural local flow systems reach a depth of 30 m b.g.l. in the study area. A downward vertical gradient of roughly 0.01 down to 200 m b.g.l. was observed and reproduced by calibrated models. The vertical gradient is mainly the result of the aquifer system and properties rather than abstraction rate, which is too limited at depth to make an imprint. Although

  2. Sustainability of arsenic mitigation interventions – an evaluation of different alternative safe drinking water options provided in Matlab, an arsenic hot spot in Bangladesh

    Directory of Open Access Journals (Sweden)

    MOHAMMED eHOSSAIN

    2015-05-01

    Full Text Available The wide spread occurrence of geogenic arsenic (As in Bangladesh groundwater drastically reduced the safe water access across the country. Since its discovery in 1993, different mitigation options tested at household and community scale have resulted in limited success. In an arsenic hotspot of southeastern Bangladesh, 841 arsenic removal filter (ARF, 190 surface water filter membrane, 23 pond sand filter (PSF, 147 rain water harvester (RWH and 59 As-safe tubewell were distributed among the severely exposed population by AsMat, a Sida supported project. After three-four years of providing these safe water options, this study was carried out during 2010-2011 for performance analysis of these options, in terms of technical viability and effectiveness and thus to evaluate the preference of different options to the end users. Household and community based surveys were done to make an assessment of the current water use pattern as impact of the distributed options, overall condition of the options provided and to identify the reasons why these options are in use and/or abandoned. In total, 284 households were surveyed and information was collected for 23 PSF, 147 RWH and 59 tubewells. None of the filters was found in use. Among other options distributed, 13% of PSF, 40% RWH and 93% of tubewell were found functioning. In all cases, tubewells were found As-safe. About 89% of households are currently using tubewell water which was 58% before. Filter was abandoned for high cost and complicated maintenance. The use of RWH and PSF was not found user friendly and ensuring year round water quality is a big challenge. Arsenic-safe tubewell was found as a widely accepted option mainly because of its easy operation and availability of water, good water quality and negligible maintenance. This study validated tubewell as the most feasible option and holds significance for planning water supply projects, improving mitigation policy as well as developing awareness

  3. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Memmott, Matthew; Boy, Guy; Charit, Indrajit; Manera, Annalisa; Downar, Thomas; Lee, John; Muldrow, Lycurgus; Upadhyaya, Belle; Hines, Wesley; Haghighat, Alierza

    2017-01-01

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project ''Integral Inherently Safe Light Water Reactors (I 2 S-LWR)''. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  4. Sources of Phthalates and Nonylphenoles in Municipal Waste Water

    DEFF Research Database (Denmark)

    Vikelsøe, J.; Thomsen, M.; Johansen, E.

    The overall aim of the present study is to identify and evaluate the importance of sources of nonylphenoles and phthalates in waste water in a local environment. The investigations were carried out in a Danish local community, Roskilde city and surroundings. Nonylphenoles and phthalates were...... analysed in the waste water from different institutions and industries thought to be potential sources. These were: car wash centers, a hospital, a kindergarten, an adhesive industry and a industrial laundry. Furthermore, analysis of the deposition in the area were carried out. This made it possible...... to estimate the contribution from all of these sources to the waste water as well as the role of long-range air transport. Two local rivers were analysed for comparison. Finally, waste water inlet from the local water treatment plant, where the sources converge at a single point, were analysed. A mass balance...

  5. Evaluation of Microbiological and Physicochemical Parameters of Alternative Source of Drinking Water: A Case Study of Nzhelele River, South Africa.

    Science.gov (United States)

    Edokpayi, Joshua N; Odiyo, John O; Popoola, Elizabeth O; Msagati, Titus A M

    2018-01-01

    Access to clean and safe drinking water is still a problem in developing countries and more pronounced in rural areas. Due to erratic supply of potable, rural dwellers often seek for an alternative source of water to meet their basic water needs. The objective of this study is to monitor the microbiological and physicochemical water quality parameters of Nzhelele River which is a major alternative source of drinking water to villages along its course in Limpopo province of South Africa. Membrane filtration method was employed in evaluating the levels of E. coli and Enterococci in the river water from January-June, 2014. Specialized multimeter was used to measure the pH, electrical conductivity and turbidity of the river water. Ion Chromatograph was used to measure major anions such as fluoride, chloride, nitrate and sulphate in the water. High levels of E. coli (1 x 10 2 - 8 x 10 4 cfu/100 mL) and enterococci (1 x 10 2 - 5.7 x 10 3 cfu/100 mL) were found in the river water and exceeded their permissible limits of 0 cfu/100 mL for drinking water. Turbidity values ranged from 1.12-739.9 NTU. The pH, electrical conductivity, chloride, fluoride, nitrate and sulphate levels were below their permissible limits for drinking water. The river water is contaminated with faecal organisms and is unfit for drinking purposes. However, the levels of the major anions accessed were within the permissible limits of drinking water.

  6. CarbonSAFE Illinois - Macon County

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Steve [University of Illinois; Illinois State Geological Survey

    2017-08-03

    CarbonSAFE Illinois is a a Feasibility study to develop an established geologic storage complex in Macon County, Illinois, for commercial-scale storage of industrially sourced CO2. Feasibility activities are focused on the Mt. Simon Storage Complex; a step-out well will be drilled near existing storage sites (i.e., the Midwest Geological Sequestration Consortium’s Illinois Basin – Decatur Project and the Illinois Industrial Carbon Capture and Storage Project) to further establish commercial viability of this complex and to evaluate EOR potential in a co-located oil-field trend. The Archer Daniels Midland facility (ethanol plant), City Water, Light, and Power in Springfield, Illinois (coal-fired power station), and other regional industries are potential sources of anthropogenic CO2 for storage at this complex. Site feasibility will be evaluated through drilling results, static and dynamic modeling, and quantitative risk assessment. Both studies will entail stakeholder engagement, consideration of infrastructure requirements, existing policy, and business models. Project data will help calibrate the National Risk Assessment Partnership (NRAP) Toolkit to better understand the risks of commercial-scale carbon storage.

  7. Preparation of water-equivalent radioactive solid sources

    International Nuclear Information System (INIS)

    Yamazaki, Ione M.; Koskinas, Marina F.; Dias, Mauro S.

    2011-01-01

    The development of water-equivalent solid sources in two geometries, cylindrical and flat without the need of irradiation in a strong gamma radiation source to obtain polymerization is described. These sources should have density similar to water and good uniformity. Therefore, the density and uniformity of the distribution of radioactive material in the resins were measured. The variation of these parameters in the cylindrical geometry was better than 2.0% for the density and 2.3% for the uniformity and for the flat geometry the values obtained were better than 2.0 % and better than 1.3%, respectively. These values are in good agreement with the literature. (author)

  8. Nationwide assessment of nonpoint source threats to water quality

    Science.gov (United States)

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  9. Anthropogenic organic compounds in source water of select community water systems in the United States, 2002-10

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.; Price, Curtis V.; Bender, David A.

    2014-01-01

    Drinking water delivered by community water systems (CWSs) comes from one or both of two sources: surface water and groundwater. Source water is raw, untreated water used by CWSs and is usually treated before distribution to consumers. Beginning in 2002, the U.S. Geological Survey’s (USGS) National Water-Quality Assessment Program initiated Source Water-Quality Assessments (SWQAs) at select CWSs across the United States, primarily to characterize the occurrence of a large number of anthropogenic organic compounds that are predominantly unregulated by the U.S. Environmental Protection Agency. Source-water samples from CWSs were collected during 2002–10 from 20 surface-water sites (river intakes) and during 2002–09 from 448 groundwater sites (supply wells). River intakes were sampled approximately 16 times during a 1-year sampling period, and supply wells were sampled once. Samples were monitored for 265 anthropogenic organic compounds. An additional 3 herbicides and 16 herbicide degradates were monitored in samples collected from 8 river intakes and 118 supply wells in areas where these compounds likely have been used. Thirty-seven compounds have an established U.S. Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) for drinking water, 123 have USGS Health-Based Screening Levels (HBSLs), and 29 are included on the EPA Contaminant Candidate List 3. All compounds detected in source water were evaluated both with and without an assessment level and were grouped into 13 categories (hereafter termed as “use groups”) based on their primary use or source. The CWS sites were characterized in a national context using an extract of the EPA Safe Drinking Water Information System to develop spatially derived and system-specific ancillary data. Community water system information is contained in the EPA Public Supply Database, which includes 2,016 active river intakes and 112,099 active supply wells. Ancillary variables including population served

  10. Longitudinal Household Trends in Access to Improved Water Sources and Sanitation in Chi Linh Town, Hai Duong Province, Viet Nam and Associated Factors.

    Science.gov (United States)

    Tuyet-Hanh, Tran Thi; Long, Tran Khanh; Van Minh, Hoang; Huong, Le Thi Thanh

    2016-01-01

    This study aims to characterize household trends in access to improved water sources and sanitaton in Chi Linh Town, Hai Duong Province, Vietnam, and to identify factors affecting those trends. Data were extracted from the Chi Linh Health and Demographic Surveillance System (CHILILAB HDSS) database from 2004-2014, which included household access to improved water sources, household access to improved sanitation, and household demographic data. Descriptive statistical analysis and multinominal logistic regression were used. The results showed that over a 10-year period (2004-2014), the proportion of households with access to improved water and improved sanitation increased by 3.7% and 28.3%, respectively. As such, the 2015 Millennium Development Goal targets for safe drinking water and basic sanitation were met. However, 13.5% of households still had unimproved water and sanitation. People who are retired, work in trade or services, or other occupations were 1.49, 1.97, and 1.34 times more likely to have access to improved water and sanitation facilities than farming households, respectively ( p < 0.001). Households living in urban areas were 1.84 times more likely than those living in rural areas to have access to improved water sources and improved sanitation facilities (OR =1.84; 95% CI = 1.73-1.96). Non-poor households were 2.12 times more likely to have access to improved water sources and improved sanitation facilities compared to the poor group (OR = 2.12; 95% CI = 2.00-2.25). More efforts are required to increase household access to both improved water and sanitation in Chi Linh Town, focusing on the 13.5% of households currently without access. Similar to situations observed elsewhere in Vietnam and other low- and middle- income countries, there is a need to address socio-economic factors that are associated with inadequate access to improved water sources and sanitation facilities.

  11. Notification: Evaluation of Benefits and Use of Office of Research and Development's Safe and Sustainable Water Resources Research

    Science.gov (United States)

    Project #OPE-FY17-0021, August 1, 2017. The EPA OIG plans to begin preliminary research to assess the benefits and use of the Office of Research and Development’s (ORD) Safe and Sustainable Water Resources research.

  12. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Safe Drinking Water

    Centers for Disease Control (CDC) Podcasts

    2008-04-23

    Listen to this podcast to learn more about the steps that are taken to bring you clean tap water.  Created: 4/23/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 5/1/2008.

  14. Drinking water: a major source of lead exposure in Karachi, Pakistan.

    Science.gov (United States)

    Ul-Haq, N; Arain, M A; Badar, N; Rasheed, M; Haque, Z

    2011-11-01

    Excess lead in drinking water is a neglected source of lead toxicity in Pakistan. A cross-sectional survey in 2007/08 was made of water samples from drinking water sources in Karachi, a large industrial city. This study aimed to compare lead levels between untreated ground water and treated surface (tap) water in 18 different districts. Of 216 ground and surface water samples collected, 86% had lead levels higher than the World Health Organization maximum acceptable concentration of l0 ppb. Mean lead concentration in ground water [146 (SD 119) ppb] was significantly higher than in surface water [77.1 (SD 54) ppb]. None of the 18 districts had a mean lead level of ground or surface water below the WHO cut-off and ground water sources in 9 districts had a severe level of contamination (>150 ppb). Urgent action is needed to eliminate sources of contamination.

  15. Drinking Water Quality and Child Health in South Asia: The Role of Secondary Contamination

    OpenAIRE

    Ercumen, Ayse

    2013-01-01

    Ensuring access to safe drinking water is a key strategy for reducing waterborne illness. The WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation (JMP) differentiates between unimproved and improved sources to universally classify water access. This classification, however, is based on the type and location of the water source and does not take into account water quality; even sources classified as improved can have compromised water quality and pose a health risk from water...

  16. Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression.

    Science.gov (United States)

    Samson, Carleigh C; Rajagopalan, Balaji; Summers, R Scott

    2016-04-19

    To control disinfection byproduct (DBP) formation in drinking water, an understanding of the source water total organic carbon (TOC) concentration variability can be critical. Previously, TOC concentrations in water treatment plant source waters have been modeled using streamflow data. However, the lack of streamflow data or unimpaired flow scenarios makes it difficult to model TOC. In addition, TOC variability under climate change further exacerbates the problem. Here we proposed a modeling approach based on local polynomial regression that uses climate, e.g. temperature, and land surface, e.g., soil moisture, variables as predictors of TOC concentration, obviating the need for streamflow. The local polynomial approach has the ability to capture non-Gaussian and nonlinear features that might be present in the relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation compliance under future climate scenarios.

  17. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply

    Science.gov (United States)

    Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  18. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply.

    Science.gov (United States)

    Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  19. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns

    OpenAIRE

    Kulinkina, Alexandra V.; Kosinski, Karen C.; Liss, Alexander; Adjei, Michael N.; Ayamgah, Gilbert A.; Webb, Patrick; Gute, David M.; Plummer, Jeanine D.; Naumova, Elena N.

    2016-01-01

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. Despite providing the highest and most flexible level of service with better microbiological water quality to their users, these systems remain vulnerable to rural water sustainability challenges. We assessed temporal and spatial patterns in water consumption from public stan...

  20. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  1. Role of water source in the growth of kale

    Science.gov (United States)

    Coates, M.

    2017-12-01

    Over the course of 2 months we watered Kale with tap water, water from turtle bayou, rain water, water from university lake, and deionized water. We found little difference between height and number of seedlings with different water treatments even though nutrient levels were different between these water sources.

  2. Consumer Perception and Preference of Drinking Water Sources.

    Science.gov (United States)

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  3. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  4. Field Application of the Micro Biological Survey Method for a Simple and Effective Assessment of the Microbiological Quality of Water Sources in Developing Countries.

    Science.gov (United States)

    Arienzo, Alyexandra; Sobze, Martin Sanou; Wadoum, Raoul Emeric Guetiya; Losito, Francesca; Colizzi, Vittorio; Antonini, Giovanni

    2015-08-25

    According to the World Health Organization (WHO) guidelines, "safe drinking-water must not represent any significant risk to health over a lifetime of consumption, including different sensitivities that may occur between life stages". Traditional methods of water analysis are usually complex, time consuming and require an appropriately equipped laboratory, specialized personnel and expensive instrumentation. The aim of this work was to apply an alternative method, the Micro Biological Survey (MBS), to analyse for contaminants in drinking water. Preliminary experiments were carried out to demonstrate the linearity and accuracy of the MBS method and to verify the possibility of using the evaluation of total coliforms in 1 mL of water as a sufficient parameter to roughly though accurately determine water microbiological quality. The MBS method was then tested "on field" to assess the microbiological quality of water sources in the city of Douala (Cameroon, Central Africa). Analyses were performed on both dug and drilled wells in different periods of the year. Results confirm that the MBS method appears to be a valid and accurate method to evaluate the microbiological quality of many water sources and it can be of valuable aid in developing countries.

  5. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  6. Evaluation of bank filtration as a pretreatment method for the provision of hygienically safe drinking water in Norway: results from monitoring at two full-scale sites

    Science.gov (United States)

    Kvitsand, Hanne M. L.; Myrmel, Mette; Fiksdal, Liv; Østerhus, Stein W.

    2017-08-01

    Two case studies were carried out in central Norway in order to assess the performance of bank filtration systems in cold-climate fluvial aquifers relying on recharge from humic-rich surface waters with moderate microbial contamination. Three municipal wells and two surface-water sources at operative bank filtration systems were monitored for naturally occurring bacteriophages, fecal indicators, natural organic matter (NOM) and physico-chemical water quality parameters during a 4-month period. Aquifer passage effectively reduced the microorganism and NOM concentrations at both study sites. Bacteriophages were detected in 13 of 16 (81%) surface-water samples and in 4 of 24 (17%) well-water samples, and underwent 3 ± 0.3 log10 reduction after 50-80-m filtration and 20-30 days of subsurface passage. NOM reductions (color: 74-97%; dissolved organic carbon: 54-80%; very hydrophobic acids: 70%) were similar to those achieved by conventional water-treatment processes and no further treatment was needed. Both groundwater dilution and sediment filtration contributed to the hygienic water quality improvements, but sediment filtration appeared to be the most important process with regard to microbial and NOM reductions. A strengths-weaknesses-opportunities-threats analysis showed that bank filtration technology has a high potential as a pretreatment method for the provision of hygienically safe drinking water in Norway.

  7. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  8. Aerosol behavior and light water reactor source terms

    International Nuclear Information System (INIS)

    Abbey, F.; Schikarski, W.O.

    1988-01-01

    The major developments in nuclear aerosol modeling following the accident to pressurized water reactor Unit 2 at Three Mile Island are briefly reviewed and the state of the art summarized. The importance and implications of these developments for severe accident source terms for light water reactors are then discussed in general terms. The treatment is not aimed at identifying specific source term values but is intended rather to illustrate trends, to assess the adequacy of the understanding of major aspects of aerosol behavior for source term prediction, and demonstrate in qualitative terms the effect of various aspects of reactor design. Areas where improved understanding of aerosol behavior might lead to further reductions in current source terms predictions are also considered

  9. Using Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-08-01

    Full Text Available A high concentration of nitrate (NO3− in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3− and δ18O-NO3− were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, China. Nitrate-nitrogen concentrations (ranging from 0.02 to 8.57 mg/L were spatially heterogeneous that were influenced by hydrogeological and land use conditions. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage, M & S; soil nitrogen, NS; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall were estimated by using a Bayesian isotope mixing model. The results showed that nitrate sources contributions varied significantly among different rainfall conditions and land use types. As for the whole watershed, M & S (manure and sewage and NS (soil nitrogen were major nitrate sources in both wet and dry seasons (from 28% to 36% for manure and sewage and from 24% to 27% for soil nitrogen, respectively. Overall, combining a dual isotopes method with a Bayesian isotope mixing model offered a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in drinking water source watersheds, Jianghuai hilly region, eastern China.

  10. Public water supply sources - the practical problems

    International Nuclear Information System (INIS)

    Chambers, E.G.W.

    1990-01-01

    A complex system of reservoirs, streams, treatment works and pipe networks is used to provide the public water supply to consumers in Strathclyde. The manner in which a nuclear event would affect the quality of water available from this supply would depend on a wide variety of factors. The extent to which the quality from each source could be maintained or improved if found to be unsatisfactory would depend on the extent of contamination and the particular characteristics of each source. Development of contingency plans will incorporate monitoring of supplies and development of effective communications both internally and externally. (author)

  11. Rainwater Harvesting-based Safe Water Access in Diarrhea-endemic Coastal Communities of Bangladesh under Threats of Climate Change

    Science.gov (United States)

    Akanda, A. S.; Redwan, A. M.; Ali, M. A.; Alam, M.; Jutla, A.; Colwell, R. R.

    2014-12-01

    The highly populated coastal floodplains of the Bengal Delta have a long history of water-related natural calamities such as droughts, floods, and cyclones. Population centers along the floodplain corridors of the GBM (Ganges-Brahmaputra-Meghna) river system remain vulnerable to such natural hazards and waterborne epidemic outbreaks due to increasing intensity and changing frequency of extreme events over many areas in the delta region. Such changes in hydrologic extremes and resulting environmental conditions would likely lengthen the transmission seasons of prevalent waterborne diseases and alter their geographic range as well as seasonality. In addition, the combination of changing upstream precipitation and temperature, and coastal sea-level rise are exposing a vast area in Southwestern Bangladesh to increased diarrheal disease outbreaks due to higher salinity and water scarcity in the dry season as well as coastal flooding and water resources contamination in the wet season. It is thus essential to establish sustainable safe water access practices in these regions for the rural communities of low-income people. The impact of climate change in the recent past on the people of coastal rural areas of Bangladesh has been severe, and the water sector is one of its biggest victims. Previously, pond and groundwater sources were considered dependable, but salinity intrusion in both water resources have left the vulnerable people with only a few scarce ponds and forced them to depend more on rainwater than before. The poorest group is suffering the most for this crisis even though paying more of the percentage of their income especially in the dry season (December-March). As rainwater is their most preferred and dependable option during this part of the year, outbreaks of waterborne diseases can be minimized by installing rainwater harvesting systems with effective disinfection system at both household and community levels. In this study, we explore the technical

  12. Urinary fluoride as a monitoring tool for assessing successful intervention in the provision of safe drinking water supply in five fluoride-affected villages in Dhar district, Madhya Pradesh, India.

    Science.gov (United States)

    Srikanth, R; Gautam, Anil; Jaiswal, Suresh Chandra; Singh, Pavitra

    2013-03-01

    Endemic fluorosis was detected in 31 villages in the Dhar district of Madhya Pradesh, Central India. Out of the 109 drinking water sources that were analyzed, about 67 % were found to contain high concentration of fluoride above the permissible level of 1.0 mg/l. Dental fluorosis among the primary school children in the age between 8 and 15 served as primary indicator for fluoride intoxication among the children. Urinary fluoride levels among the adults were found to be correlated with drinking water fluoride in 10 villages affected by fluoride. Intervention in the form of alternate safe water supply in five villages showed significant reduction in the urinary fluoride concentration when compared to the control village. Urinary fluoride serves as an excellent marker for assessing the effectiveness of intervention program in the fluoride-affected villages.

  13. “Is it Safe?” Risk Perception and Drinking Water in a Vulnerable Population

    Directory of Open Access Journals (Sweden)

    Nicholas Spence

    2012-11-01

    Full Text Available Access to safe drinking water is a pressing social policy issue globally. Despite the milestones reached in this area of Canadian public health, marginalized and vulnerable populations, including those founded on racialized identity, such as First Nations, continue to be plagued by accessibility issues. This work sheds new perspective on the issue, arguing for a research and policy focus that is inclusive of risk perception. A model of risk perception of drinking water is developed and tested for First Nations on reserve in Canada using the 2001 Aboriginal Peoples Survey. It is shown that the analytical use of racialized identity advances understanding of risk perception and the environment (water. Moreover, a large degree of heterogeneity within the First Nation population across a number of social determinants of risk perception illustrates the shortcomings of framing the issue in a simplistic manner (First Nation population versus general population. Implications for risk research, including risk communication & management, and policy are provided.

  14. Lead isotopes in tap water: implications for Pb sources within a municipal water supply system

    International Nuclear Information System (INIS)

    Cheng Zhongqi; Foland, Kenneth A.

    2005-01-01

    Residential tap waters were investigated to examine the feasibility of using isotopic ratios to identify dominant sources of water Pb in the Columbus (Ohio, USA) municipal supply system. Overall, both the concentrations, which are generally low (0.1-28 μg/L), and isotopic compositions of tap water Pb show wide variations. This contrasts with the situation for a limited number of available service lines, which exhibit only a limited Pb-isotope variation but contain Pb of two very different types with one significantly more radiogenic than the other. Most tap water samples in contact with Pb service lines have Pb-isotope ratios that are different from the pipe Pb. Furthermore, the Pb isotope compositions of sequentially drawn samples in the same residence generally are similar, but those from separate residences are different, implying dominant Pb sources from domestic plumbing. A separate pilot study at two residences without Pb service lines shows isotopic similarity between water and solders in each house, further suggesting that the major Pb sources are domestic in these cases and dominated by Pb from solder joints. Although complicated by the broad range of overall Pb-isotope variations observed and limited by sample availability, the results suggest that Pb isotopes can be used effectively to constrain the sources of Pb in tap waters, especially for individual houses where multiple source candidates can be identified

  15. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  16. A completely automatic operation type super-safe fast reactor, RAPID. Its application to dispersion source on lunar and earth surfaces

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Kawasaki, Akira; Iwamura, Takamichi

    2002-01-01

    At a viewpoint of flexible measures to future electric power demands, expectation onto a small-scale reactor for dispersion source is increasing gradually. This is thought to increase its importance not only for a source at proximity of its market in advanced nations but also for the one in developing nations. A study on development of the completely automatic operation type super-safe fast reactor, RAPID (refueling by all pins integrated design) has been carried out as a part of the nuclear energy basic research promoting system under three years project since 1999 by a trust of the Japan Atomic Energy Research Institute to a group of the Central Research Institute of Electric Power Industry (CRIEPI) and so on. As the reactor is a lithium cooled fast reactor with 200 Kw of electric output supposing to use at lunar surface, it can be applied to a super-small scale nuclear reactor on the earth, and has feasibility to become a new option of future nuclear power generation. On the other hand, CRIEPI has investigated on various types of fast reactors (RAPID series) for fast reactor for dispersion source on the earth. Here was introduced on such super-safe fast reactors at a center of RAPID-L. (G.K.)

  17. Legislation and water management of water source areas of São Paulo Metropolitan Region, Brazil

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gregolin Grisotto

    2010-12-01

    Full Text Available This paper presents the history of occupation in the water source areas in São Paulo Metropolitan Region (hereinafter SPMR and the evolution of the legislation related to this issue, from the point of view of the environmental and water management. A descriptive methodology was used, with searches into bibliographical and documental materials, in order to present the main laws for the protection of the water supply areas of SPMR and environmental and water management. It was possible to observe some progress in the premises of the both legislation and the format proposed for the management of the water source areas. However, such progress is limited due to the lack of a more effective mechanism for metropolitan management. The construction of the metropolitan management in SPMR would enlarge the capacity of integration between municipalities and sectors. The integration between the management of water and the land use management showed to be fundamental for the protection of the water sources. The new law for protection of the water sources, State Law nº 9.866/97, is decentralized and participative, focusing on non-structural actions and integrated management. However, the effective implementation of the law still depends on the harmonization of sectoral public policies, extensive coordination and cooperation among municipalities and the progress in the degree of the commitment of the governments.

  18. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  19. Fecal contamination of drinking-water in low- and middle-income countries: a systematic review and meta-analysis.

    Science.gov (United States)

    Bain, Robert; Cronk, Ryan; Wright, Jim; Yang, Hong; Slaymaker, Tom; Bartram, Jamie

    2014-05-01

    Access to safe drinking-water is a fundamental requirement for good health and is also a human right. Global access to safe drinking-water is monitored by WHO and UNICEF using as an indicator "use of an improved source," which does not account for water quality measurements. Our objectives were to determine whether water from "improved" sources is less likely to contain fecal contamination than "unimproved" sources and to assess the extent to which contamination varies by source type and setting. Studies in Chinese, English, French, Portuguese, and Spanish were identified from online databases, including PubMed and Web of Science, and grey literature. Studies in low- and middle-income countries published between 1990 and August 2013 that assessed drinking-water for the presence of Escherichia coli or thermotolerant coliforms (TTC) were included provided they associated results with a particular source type. In total 319 studies were included, reporting on 96,737 water samples. The odds of contamination within a given study were considerably lower for "improved" sources than "unimproved" sources (odds ratio [OR] = 0.15 [0.10-0.21], I2 = 80.3% [72.9-85.6]). However over a quarter of samples from improved sources contained fecal contamination in 38% of 191 studies. Water sources in low-income countries (OR = 2.37 [1.52-3.71]; pwater quality or sanitary risks and few achieved robust random selection. Safety may be overestimated due to infrequent water sampling and deterioration in quality prior to consumption. Access to an "improved source" provides a measure of sanitary protection but does not ensure water is free of fecal contamination nor is it consistent between source types or settings. International estimates therefore greatly overstate use of safe drinking-water and do not fully reflect disparities in access. An enhanced monitoring strategy would combine indicators of sanitary protection with measures of water quality.

  20. Quality of water and antibiotic resistance of Escherichia coli from water sources of hilly tribal villages with and without integrated watershed management-a one year prospective study.

    Science.gov (United States)

    Nerkar, Sandeep S; Tamhankar, Ashok J; Khedkar, Smita U; Lundborg, Cecilia Stålsby

    2014-06-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV) compared to integrated watershed management villages (IWMV) (95% CI 0.8–6.45, p = 0.081). The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05) was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  1. [Mineral waters from several Brazilian natural sources].

    Science.gov (United States)

    Rebelo, M A; Araujo, N C

    1999-01-01

    To divulge information on the chemical composition and physical-chemical features of some mineral waters from Brazilian natural sources that will be of useful protocol investigation and patient advice. The survey was based on bottle labels of non-gaseous mineral waters commercially available in the city of Rio de Janeiro. The íon concentration of each mineral was calculated from the salt content. 36 springs were enralled from different states of the country. The pH (25 degrees C), 4.1 to 9.3, varied on dependence of the source and it was linearey correlated with the cations calcium, magnesium and sodium and the anion bicarbonate. It was atributed to high alkalinity (about 70% of bicarbonate in the molecula-gram) of these salts. The calcium (0.3 to 42 mg/l), magnesium (0.0 to 18 mg/l) and bicarbonate (4 to 228 mg/l) contents are relatively low. The mineral content of the Brazilian springs enrolled in this survey is low; about 70% of the sources having calcium and magnesium less than 10 mg/l and 1.0 mg/l, respectively, similar to local tap water.

  2. Longitudinal Household Trends in Access to Improved Water Sources and Sanitation in Chi Linh Town, Hai Duong Province, Viet Nam and Associated Factors

    Directory of Open Access Journals (Sweden)

    Tran Thi Tuyet-Hanh

    2016-10-01

    Full Text Available Objective: This study aims to characterize household trends in access to improved water sources and sanitaton in Chi Linh Town, Hai Duong Province, Vietnam, and to identify factors affecting those trends. Method: Data were extracted from the Chi Linh Health and Demographic Surveillance System (CHILILAB HDSS database from 2004–2014, which included household access to improved water sources, household access to improved sanitation, and household demographic data. Descriptive statistical analysis and multinominal logistic regression were used. The results showed that over a 10-year period (2004–2014, the proportion of households with access to improved water and improved sanitation increased by 3.7% and 28.3%, respectively. As such, the 2015 Millennium Development Goal targets for safe drinking water and basic sanitation were met. However, 13.5% of households still had unimproved water and sanitation. People who are retired, work in trade or services, or other occupations were 1.49, 1.97, and 1.34 times more likely to have access to improved water and sanitation facilities than farming households, respectively (p < 0.001. Households living in urban areas were 1.84 times more likely than those living in rural areas to have access to improved water sources and improved sanitation facilities (OR =1.84; 95% CI = 1.73–1.96. Non-poor households were 2.12 times more likely to have access to improved water sources and improved sanitation facilities compared to the poor group (OR = 2.12; 95% CI = 2.00–2.25. More efforts are required to increase household access to both improved water and sanitation in Chi Linh Town, focusing on the 13.5% of households currently without access. Similar to situations observed elsewhere in Vietnam and other low- and middle- income countries, there is a need to address socio-economic factors that are associated with inadequate access to improved water sources and sanitation facilities.

  3. Implementations of Riga city water supply system founded on groundwater sources

    Science.gov (United States)

    Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.

    2017-10-01

    Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.

  4. [Water sources of Nitraria sibirica and response to precipitation in two desert habitats].

    Science.gov (United States)

    Zhou, Hai; Zhao, Wen Zhi; He, Zhi Bin

    2017-07-18

    Nitraria sibirica usually exists in a form of nebkhas, and has strong ecological adaptability. The plant species has distinctive function for wind prevention and sand fixation, and resistance drought and salt. However, the water condition is still a limiting factor for the plant survival and development. In order to understand the water use strategy of the plant in different desert habitats, we selected the N. sibirica growing in sandy desert habitat and gravel desert habitat to study the seaso-nal variation of plant water sources and response to precipitation at the edge of the oasis of Linze in the Hexi Corridor. We measured the oxygen stable isotope of the plant stem water and the different potential water sources (precipitation, soil water and ground water), and used the IsoSource model to calculate the proportion of water sources from the potential water. The results showed that there were significant seasonal variation characteristics of δ 18 O value and water source of stem water for the plant in the two habitats. In the sandy habitat, the plant used more ground water in the less precipitation seasons including spring and fall, and more than 50% of the water sources absorbed from ground water. However, under the condition of gravel habitat, the plant could not achieve the ground water level depth of 11.5 m, and its water source was controlled by precipitation, which had large seasonal variability. The water sources of N. sibirica had significant responses to the change of precipitation in the two desert habitats. Following the rapid decrease of soil water content after the precipitation events, the plant in the sandy habitat turned to use the abundant ground water as the main sources of water, while the plant in the gravel habitat only used the less water from precipita-tion infiltration to the deep soil. Therefore, different water use strategies of the plant in the two habitats were the main reason for the difference in growth characteristics, and it had a

  5. Bacteriological quality of sachet water produced and sold in Teshie ...

    African Journals Online (AJOL)

    Access to good quality drinking water is a challenge in most towns and cities in Ghana and households have for years depended on other sources of water to supplement their activities. The introduction of sachet water to consumers was to provide safe, hygienic and affordable instant drinking water to the public. Although ...

  6. Water privatization, water source, and pediatric diarrhea in Bolivia: epidemiologic analysis of a social experiment.

    Science.gov (United States)

    Tornheim, Jeffrey A; Morland, Kimberly B; Landrigan, Philip J; Cifuentes, Enrique

    2009-01-01

    Water and sanitation services are fundamental to the prevention of pediatric diarrhea. To enhance both access to water and investment, some argue for the privatization of municipal water networks. Water networks in multiple Bolivian cities were privatized in the 1990s, but contracts ended following popular protests citing poor access. A population-based retrospective cohort study was conducted in two Bolivian cities. Data were collected on family water utilization and sanitation practices and on the prevalence of diarrhea among 596 children. Drinking from an outdoor water source (OR, 2.08; 95%CI, 1.25-3.44) and shorter in-home water boiling times (OR, 1.99; 95%CI, 1.19-3.34) were associated with prevalence of diarrhea. Increased prevalence was also observed for children from families using private versus public water services, using off-network water from cistern trucks, or not treating their water in-home. Results suggest that water source, water provider, and in-home water treatment are important predictors of pediatric diarrhea.

  7. Radiation dose reduction by water shield

    International Nuclear Information System (INIS)

    Zeb, J.; Arshed, W.; Ahmad, S.S.

    2007-06-01

    This report is an operational manual of shielding software W-Shielder, developed at Health Physics Division (HPD), Pakistan Institute of Nuclear Science and Technology (PINSTECH), Pakistan Atomic Energy Commission. The software estimates shielding thickness for photons having their energy in the range 0.5 to 10 MeV. To compute the shield thickness, self absorption in the source has been neglected and the source has been assumed as a point source. Water is used as a shielding material in this software. The software is helpful in estimating the water thickness for safe handling, storage of gamma emitting radionuclide. (author)

  8. Method of safely operating nuclear reactor

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  9. Prospecting for safe (low fluoride groundwater in the Eastern African Rift: the Arumeru District (Northern Tanzania

    Directory of Open Access Journals (Sweden)

    G. Ghiglieri

    2010-06-01

    Full Text Available A multidisciplinary research effort, including geological, hydrogeological, hydro-chemical, geophysical and hydrological investigations, was aimed at locating a source of safe groundwater for a district of northern Tanzania, within the western branch of the East Africa Rift Valley, where water shortage is common and much of the surface water carries unacceptable levels of dissolved fluoride. The 440 km2 study area lies in the northern part of Arumeru district and is dominated by Mt. Meru (4565 m a.s.l.. The local climate is semi-arid, with distinct wet and dry seasons. Four hydrogeological complexes were identified, occurring within different volcanic formations, either alone or superimposed upon one another. The groundwater flow system was interpreted from the spatial distribution of the springs, combined with a lithology- and geometry-based reconstruction of the aquifers. The dominant pattern consists of a multi-directional flow from the higher elevations in the south towards the lower areas in the north, but this is complicated by structures such as grabens, faults, lava domes and tholoids. After the identification of the major fluoride source, an interference pattern between groundwater and high fluoride surface water was drawn. Finally, vertical electrical soundings were performed to define the location of aquifers in regions where release of fluoride was prevented. The methodological approach for the prospecting of safe water in a semi-arid, fluoride polluted region was validated by the drilling of a 60 m deep well capable of supplying at least 3.8 l/s of low fluoride, drinkable water.

  10. "It makes us really look inferior to outsiders": Coping with psychosocial experiences associated with the lack of access to safe water and sanitation.

    Science.gov (United States)

    Bisung, Elijah; Elliott, Susan J

    2017-11-09

    This paper explores daily experiences and coping resources related to the lack of access to safe water and adequate sanitation in Usoma, a lakeshore community in Western Kenya. A qualitative approach that involved 10 focus group discussions and 9 key informant interviews with community leaders, volunteers and professionals was used to explore the research objectives. Data were collected from June to August 2013. Daily practices and experiences around water and sanitation, such as water collection, open defecation and shared toilets, were a major concern to residents. In the absence of safe water, residents used social networks and support, financial resources and the nearby Lake Victoria as coping resources. Findings from this study are important for mobilizing resources in vulnerable settings as a first step towards designing community-based interventions. For public health practice, practitioners must work with - and collaborate across - sectors to enhance and strengthen social networks and cohesion, and protect the natural environment while working toward addressing water-related challenges in deprived settings.

  11. Swimming Safely (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    In the summertime, families will be flocking to pools for relaxation and relief from the heat. A few simple precautions can help ensure a safe day in the water. In this podcast, Michele Hlavsa discusses ways to stay safe at the pool.

  12. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Public Perception of the Millennium Development Goals on Access to Safe Drinking Water in Cross River State, Nigeria

    Science.gov (United States)

    Eni, David D.; Ojong, William M.

    2014-01-01

    This study evaluated the public perception of Millennium Development Goals (MDGs) of environmental sustainability with focus on the MDG target which has to do with reducing the proportion of people without access to safe drinking water in Cross River State, Nigeria. The stratified and systematic sampling techniques were adopted for the study,…

  14. Fecal Contamination in the Surface Waters of a Rural- and an Urban-Source Watershed

    DEFF Research Database (Denmark)

    Stea, Emma C.; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2015-01-01

    Surface waters are commonly used as source water for drinking water and irrigation. Knowledge of sources of fecal pollution in source watersheds benefits the design of effective source water protection plans. This study analyzed the relationships between enteric pathogens (Escherichia coli O157:H...

  15. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  16. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  17. Challenges to Sustainable Safe Drinking Water: A Case Study of Water Quality and Use across Seasons in Rural Communities in Limpopo Province, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2018-02-01

    Full Text Available Consumption of microbial-contaminated water can result in diarrheal illnesses and enteropathy with the heaviest impact upon children below the age of five. We aimed to provide a comprehensive analysis of water quality in a low-resource setting in Limpopo province, South Africa. Surveys were conducted in 405 households in rural communities of Limpopo province to determine their water-use practices, perceptions of water quality, and household water-treatment methods. Drinking water samples were tested from households for microbiological contamination. Water from potential natural sources were tested for physicochemical and microbiological quality in the dry and wet seasons. Most households had their primary water source piped into their yard or used an intermittent public tap. Approximately one third of caregivers perceived that they could get sick from drinking water. All natural water sources tested positive for fecal contamination at some point during each season. The treated municipal supply never tested positive for fecal contamination; however, the treated system does not reach all residents in the valley; furthermore, frequent shutdowns of the treatment systems and intermittent distribution make the treated water unreliable. The increased water quantity in the wet season correlates with increased treated water from municipal taps and a decrease in the average contaminant levels in household water. This research suggests that wet season increases in water quantity result in more treated water in the region and that is reflected in residents’ water-use practices.

  18. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  19. Trends in Nitrate Drinking Water Violations Across the US

    Science.gov (United States)

    Background/Question/Methods Safe drinking water is essential for the health and well-being of humans and life on Earth. Previous studies have shown that groundwater and other sources of drinking water can be contaminated with nitrate above the 10 mg nitrate-N L-1 maximum contami...

  20. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  1. Economics of Water Quality Protection from Nonpoint Sources: Theory and Practice

    OpenAIRE

    Ribaudo, Marc; Horan, Richard D.; Smith, Mark E.

    1999-01-01

    Water quality is a major environmental issue. Pollution from nonpoint sources is the single largest remaining source of water quality impairments in the United States. Agriculture is a major source of several nonpoint-source pollutants, including nutrients, sediment, pesticides, and salts. Agricultural nonpoint pollution reduction policies can be designed to induce producers to change their production practices in ways that improve the environmental and related economic consequences of produc...

  2. Nitrate Measurment in Water Source of Karaj City and Zonning it Geographic Information Systems (GIS)

    OpenAIRE

    A.R. Shakib; J. Rahimi; M. Noori Sepehr; M. Zarrabi

    2015-01-01

    Background & Objectives: Nitrate is one of drinking water pollutant which is introduced to water body from municipal wastewater. Information on nitrate concentration and its distribution in water resource is necessary in safe drinking water supply. For that reason, the present work was done for investigation of nitrate in Karaj water supply resource and its zonning with Geographic Information Systems (GIS). Materials and Methods: In this work, the nitrate concentration in 200 wells of Karaj w...

  3. Influence of climate on alpine stream chemistry and water sources

    Science.gov (United States)

    Foks, Sydney; Stets, Edward; Singha, Kamini; Clow, David W.

    2018-01-01

    The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.

  4. Characterization and source apportionment of water pollution in Jinjiang River, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Yue, Weifeng; Song, Liuting

    2013-11-01

    Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) were combined to obtain a deeper understanding of temporal-spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal-spatial variations, respectively. Rotated PCA and receptor model (APCS-MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90% sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period.

  5. Safe drinking during cancer treatment

    Science.gov (United States)

    ... ency/patientinstructions/000060.htm Drinking water safely during cancer treatment To use the sharing features on this page, please enable JavaScript. During and right after your cancer treatment, your body may not be able to protect ...

  6. OverView of Space Applications for Environment (SAFE) initiative

    Science.gov (United States)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  7. OverView of Space Applications for Environment (SAFE) initiative

    International Nuclear Information System (INIS)

    Hamamoto, Ko; Fukuda, Toru; Nukui, Tomoyuki; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi

    2014-01-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes

  8. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  9. Cryptosporidium spp. and Giardia duodenalis as pathogenic contaminants of water in Galicia, Spain: the need for safe drinking water.

    Science.gov (United States)

    Castro-Hermida, José Antonio; González-Warleta, Marta; Mezo, Mercedes

    2015-01-01

    The objectives of this cross-sectional study were to detect the presence of Cryptosporidium spp. and Giardia duodenalis in drinking water treatments plants (DWTPs) in Galicia (NW Spain) and to identify which species and genotype of these pathogenic protozoans are present in the water. Samples of untreated water (surface or ground water sources) and of treated drinking water (in total, 254 samples) were collected from 127 DWTPs and analysed by an immunofluorescence antibody test (IFAT) and by PCR. Considering the untreated water samples, Cryptosporidium spp. were detected in 69 samples (54.3%) by IFAT, and DNA of this parasite was detected in 57 samples (44.8%) by PCR, whereas G. duodenalis was detected in 76 samples (59.8%) by IFAT and in 56 samples (44.0%) by PCR. Considering the treated drinking water samples, Cryptosporidium spp. was detected in 52 samples (40.9%) by IFAT, and the parasite DNA was detected in 51 samples (40.1%) by PCR, whereas G. duodenalis was detected in 58 samples (45.6%) by IFAT and in 43 samples (33.8%) by PCR. The percentage viability of the (oo)cysts ranged between 90.0% and 95.0% in all samples analysed. Cryptosporidium andersoni, C. hominis, C. parvum and assemblages A-I, A-II, E of G. duodenalis were identified. The results indicate that Cryptosporidium spp. and G. duodenalis are widespread in the environment and that DWTPs are largely ineffective in reducing/inactivating these pathogens in drinking water destined for human and animal consumption in Galicia. In conclusion, the findings suggest the need for better monitoring of water quality and identification of sources of contamination. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Sources of trends in water-quality data for selected streams in Texas, 1975-89 water years

    Science.gov (United States)

    Schertz, T.L.; Wells, F.C.; Ohe, D.J.

    1994-01-01

    Sources of trends in water-quality data for selected streams in Texas for the 1975-89 water years were investigated in this study. The investigation of sources was confined to distinct geographic patterns in the trend indicators for one constituent or for a group of related constituents.

  11. Potential Impacts of Food Production on Freshwater Availability Considering Water Sources

    Directory of Open Access Journals (Sweden)

    Shinjiro Yano

    2016-04-01

    Full Text Available We quantify the potential impacts of global food production on freshwater availability (water scarcity footprint; WSF by applying the water unavailability factor (fwua as a characterization factor and a global water resource model based on life cycle impact assessment (LCIA. Each water source, including rainfall, surface water, and groundwater, has a distinct fwua that is estimated based on the renewability rate of each geographical water cycle. The aggregated consumptive water use level for food production (water footprint inventory; WI was found to be 4344 km3/year, and the calculated global total WSF was 18,031 km3 H2Oeq/year, when considering the difference in water sources. According to the fwua concept, which is based on the land area required to obtain a unit volume of water from each source, the calculated annual impact can also be represented as 98.5 × 106 km2. This value implies that current agricultural activities requires a land area that is over six times larger than global total cropland. We also present the net import of the WI and WSF, highlighting the importance of quantitative assessments for utilizing global water resources to achieve sustainable water use globally.

  12. Quality of Water and Antibiotic Resistance of Escherichia coli from Water Sources of Hilly Tribal Villages with and without Integrated Watershed Management—A One Year Prospective Study

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2014-06-01

    Full Text Available In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV compared to integrated watershed management villages (IWMV (95% CI 0.8–6.45, p = 0.081. The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05 was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  13. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Memmott, Matthew [Brigham Young Univ., Provo, UT (United States); Boy, Guy [Florida Inst. of Technology, Melbourne, FL (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States); Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Lee, John [Univ. of Michigan, Ann Arbor, MI (United States); Muldrow, Lycurgus [Morehouse College, Atlanta, GA (United States); Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, Wesley [Univ. of Tennessee, Knoxville, TN (United States); Haghighat, Alierza [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-10-02

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  14. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  15. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  16. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  17. WATER QUALITY INDEX FOR ASSESSMENT OF DRINKING WATER SOURCES FROM MEDIAŞ TOWN, SIBIU COUNTY

    Directory of Open Access Journals (Sweden)

    ROŞU CRISTINA

    2014-03-01

    Full Text Available The purpose of this study was to evaluate the drinking water sources quality from Mediaş Town, Sibiu County. In November 2013, 6 water samples were taken from different drinking water sources and each water sample was analysed to determinate physico-chemical parameters (using a portable multiparameter WTW 320i major ions (using DIONEX ICS1500 ion chromatograph and heavy metals (using Atomic Absorption Spectrophotometer model ZENIT 700 Analytik Jena. The investigated physico-chemical parameters were: temperature, salinity, electrical conductivity (EC, pH, total dissolved solids (TDS and redox potential (ORP. The analysed major ions were: lithium (Li+, sodium (Na+, potassium (K+, magnesium (Mg2+, calcium (Ca2+, fluoride( F-, chloride (Cl-, bromide (Br-, nitrite (NO2-, nitrate (NO3-, phosphate (PO43- and sulphate (SO42-. The investigated heavy metals were: lead (Pb, zinc (Zn, cooper (Cu, iron (Fe, cadmium (Cd, nickel (Ni, chromium (Cr and arsenic (As. The Water Quality Index (WQI was calculated using the analysed water quality parameters and it ranged from 76 (very poor water quality to 375 (unsuitable for drinking.

  18. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    Science.gov (United States)

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microbial and metal water quality in rain catchments compared with traditional drinking water sources in the East Sepik Province, Papua New Guinea.

    Science.gov (United States)

    Horak, Helena M; Chynoweth, Joshua S; Myers, Ward P; Davis, Jennifer; Fendorf, Scott; Boehm, Alexandria B

    2010-03-01

    In Papua New Guinea, a significant portion of morbidity and mortality is attributed to water-borne diseases. To reduce incidence of disease, communities and non-governmental organizations have installed rain catchments to provide drinking water of improved quality. However, little work has been done to determine whether these rain catchments provide drinking water of better quality than traditional drinking water sources, and if morbidity is decreased in villages with rain catchments. The specific aim of this study was to evaluate the quality of water produced by rain catchments in comparison with traditional drinking water sources in rural villages in the East Sepik Province. Fifty-four water sources in 22 villages were evaluated for enterococci and Escherichia coli densities as well as 14 health-relevant metals. In addition, we examined how the prevalence of diarrhoeal illness in villages relates to the type of primary drinking water source. The majority of tested metals were below World Health Organization safety limits. Catchment water sources had lower enterococci and E. coli than other water sources. Individuals in villages using Sepik River water as their primary water source had significantly higher incidence of diarrhoea than those primarily using other water sources (streams, dug wells and catchments).

  20. The quality of water served in the Orotta National Referral Hospital

    African Journals Online (AJOL)

    human rights and is enormously crucial to health. Drinking water ... there has to be continual supply of safe drinking water to its population1. ... point from the source up to the level of consumers. 3. ... 1Orotta School of Medicine, class 2009.

  1. Sources of radioiodine at pressurized water reactors. Final report

    International Nuclear Information System (INIS)

    Pelletier, C.A.; Cline, J.E.; Barefoot, E.D.; Hemphill, R.T.; Voilleque, P.G.; Emel, W.A.

    1978-11-01

    The report determines specific components and operations at operating pressurized water reactors that have a potential for being significant emission sources of radioactive iodine. The relative magnitudes of these specific sources in terms of the chemical forms of the radioiodine and the resultant annual averages from major components are established. The data are generalized for broad industry use for predictive purposes. The conclusions of this study indicate that the majority of radioiodine emanating from the primary side of pressurized water reactors comes from a few major areas; in some cases these sources are locally treatable; the interaction of radioiodine with plant interior surfaces is an important phenomenon mediating the source and affecting its release to the atmosphere; the chemical form varies depending on the circumstances of the release

  2. A Study on Water Pollution Source Localization in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-01-01

    Full Text Available The water pollution source localization is of great significance to water environment protection. In this paper, a study on water pollution source localization is presented. Firstly, the source detection is discussed. Then, the coarse localization methods and the localization methods based on diffusion models are introduced and analyzed, respectively. In addition, the localization method based on the contour is proposed. The detection and localization methods are compared in experiments finally. The results show that the detection method using hypotheses testing is more stable. The performance of the coarse localization algorithm depends on the nodes density. The localization based on the diffusion model can yield precise localization results; however, the results are not stable. The localization method based on the contour is better than the other two localization methods when the concentration contours are axisymmetric. Thus, in the water pollution source localization, the detection using hypotheses testing is more preferable in the source detection step. If concentration contours are axisymmetric, the localization method based on the contour is the first option. And, in case the nodes are dense and there is no explicit diffusion model, the coarse localization algorithm can be used, or else the localization based on diffusion models is a good choice.

  3. Tackling non-point source water pollution in British Columbia : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    British Columbia`s approach to water quality management is discussed. The BC efforts include regulating `end of pipe` point discharges from industrial and municipal outfalls. The major remaining cause of water pollution is from non-point sources (NPS). NPS water pollution is caused by the release of pollutants from different and diffuse sources, mostly unregulated and associated with urbanization, agriculture and other forms of land development. The importance of dealing with such problems on an immediate basis to avoid a decline in water quality in the province is emphasized. Major sources of water pollution in British Columbia include: land development, agriculture, storm water runoff, onsite sewage systems, forestry, atmospheric deposition, and marine activities. 3 tabs.

  4. Contamination levels of domestic water sources in Maiduguri ...

    African Journals Online (AJOL)

    The study examines the levels of contamination of domestic water sources in Maiduguri Metropolis area of Borno State based on their physicochemical and bacteriological properties. It was informed by the global concern on good drinking water quality which is an indicator of development level; hence the focus on domestic ...

  5. Reclaimed water as an alternative source of water for the city of Bulawayo, Zimbabwe

    Science.gov (United States)

    Taigbenu, Akpofure E.; Ncube, Mthokozisi

    Perennial water problems, precipitated by increased water demand in Bulawayo, the second largest city in Zimbabwe, has prompted the consideration of a wide array of strategies from demand management and water conservation measures to exploitation of alternative water sources. One of such strategies in the latter category includes recycling of blue water for both potable and non-potable purposes. This paper examines the existing reclaimed water system with a view at revamping the existing infrastructure to maximise reclaimed water use for purposes that are amenable to water of lower quality. It is a generally accepted practice to avoid the use of water of high quality for purposes that can tolerate a lower grade, unless it is in excess in amount [ Okun, D.A., 1973. Planning for water reuse. Journal of AWWA 65(10)]. The reclaimed water is assessed in terms of its quality and quantity vis-à-vis possible uses. Perceptions and expectations of both current and identified prospective consumers are examined and discussed, in addition to the feasibility of accommodating these identified prospective consumers in an expanded network. Apart from enhancement of the existing infrastructure, the paper highlights the need for social marketing and education in order to realise the optimum benefits of this alternative water source. The cost implications of implementing the proposed project are evaluated, including suggestions on suitable tariff structure and an allocation distribution that achieves equity.

  6. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  7. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  8. Urban Water Services in Fragile States: An Analysis of Drinking Water Sources and Quality in Port Harcourt, Nigeria, and Monrovia, Liberia

    Science.gov (United States)

    Kumpel, Emily; Albert, Jeff; Peletz, Rachel; de Waal, Dominick; Hirn, Maximilian; Danilenko, Alexander; Uhl, Vincent; Daw, Ashish; Khush, Ranjiv

    2016-01-01

    Establishing and maintaining public water services in fragile states is a significant development challenge. In anticipation of water infrastructure investments, this study compares drinking water sources and quality between Port Harcourt, Nigeria, and Monrovia, Liberia, two cities recovering from political and economic instability. In both cities, access to piped water is low, and residents rely on a range of other private and public water sources. In Port Harcourt, geographic points for sampling were randomly selected and stratified by population density, whereas in Monrovia, locations for sampling were selected from a current inventory of public water sources. In Port Harcourt, the sampling frame demonstrated extensive reliance on private boreholes and a preference, in both planned and unplanned settlements, for drinking bottled and sachet water. In Monrovia, sample collection focused on public sources (predominantly shallow dug wells). In Port Harcourt, fecal indicator bacteria (FIB) were detected in 25% of sources (N = 566), though concentrations were low. In Monrovia, 57% of sources contained FIB and 22% of sources had nitrate levels that exceeded standards (N = 204). In Monrovia, the convenience of piped water may promote acceptance of the associated water tariffs. However, in Port Harcourt, the high prevalence of self-supply and bottled and sachet drinking water suggests that the consumer's willingness to pay for ongoing municipal water supply improvements may be determined by service reliability and perceptions of water quality. PMID:27114291

  9. Warming combined with more extreme precipitation regimes modifies the water sources used by trees.

    Science.gov (United States)

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E; Adams, Henry D; Collins, Adam D; Dickman, Lee T; Newman, Brent D; Stockton, Elizabeth A; McDowell, Nate G

    2017-01-01

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Economics of place-based monitoring under the safe drinking water act, part I: spatial and temporal patterns of contaminants, and design of screening strategies.

    Science.gov (United States)

    Brands, Edwin; Rajagopal, R

    2008-08-01

    The goals of environmental legislation and associated regulations are to protect public health, natural resources, and ecosystems. In this context, monitoring programs should provide timely and relevant information so that the regulatory community can implement legislation in a cost-effective and efficient manner. The Safe Drinking Water Act (SDWA) of 1974 attempts to ensure that public water systems (PWSs) supply safe water to its consumers. As is the case with many other federal environmental statutes, SDWA monitoring has been implemented in relatively uniform fashion across the USA. In this three part series, spatial and temporal patterns in water quality data are utilized to develop, compare, and evaluate the economic performance of alternative place-based monitoring approaches to current monitoring practice. Under the Safe Drinking Water Act (SDWA), a common list of over 90 contaminants is analyzed nationwide using EPA-authorized laboratory procedures. National and state-level summaries of SDWA data have shown that not all contaminants occur in all places at all times. This hypothesis is confirmed and extended by showing that only a few (less than seven) contaminants are of concern in any one of 19 Iowa surface water systems studied. These systems collectively serve about 350,000 people and their sizes vary between 1,200 and 120,000. The distributions of contaminants found in these systems are positively skewed, with many non-detect measurements. A screening strategy to identify such contaminants in individual systems is presented. These findings have significant implications not only for the design of alternative monitoring programs, but also in multi-billion-dollar decisions that influence the course of future drinking water infrastructure, repair, and maintenance investments.

  11. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  12. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Directory of Open Access Journals (Sweden)

    Mugisidi Dan

    2018-01-01

    Full Text Available Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3, chloride, sodium, sulphate, and (KMnO4. In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  13. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Science.gov (United States)

    Mugisidi, Dan; Heriyani, Okatrina

    2018-02-01

    Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  14. Sources Of Incidental Events In Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-11-01

    Full Text Available The publication presents the main types of incidental events in collective water supply system. The special attention was addressed to the incidental events associated with a decrease in water quality, posing a threat to the health and life of inhabitants. The security method against incidental contamination in the water source was described.

  15. Water Quality, Mitigation Measures of Arsenic Contamination and Sustainable Rural Water Supply Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    HOSSAIN M. ANAWAR

    2012-06-01

    Full Text Available Arsenic contamination of groundwater has created a serious public health issue in Bangladesh and West Bengal (India, because groundwater is widely used for drinking, household and agriculture purposes. Given the magnitude of the problem of groundwater contamination facing Bangladesh, effective, acceptable and sustainable solutions are urgently required. Different NGOs (Non-government organizations and research organizations are using their extensive rural networks to raise awareness and conduct pilot projects. The implication of the results from the previous studies is robust, but coastly arsenic reduction technologies such as activated alumina technology, and As and Fe removal filters may find little social acceptance, unless heavily subsidized. This review paper analysed the quality of surface water and ground water, all mitigation measures and the most acceptable options to provide sustainable access to safe- water supply in the rural ares of Bangladesh. Although there are abundant and different sources of surface water, they can not be used for drinking and hosehold purposes due to lack of sanitation, high faecal coliform concentration, turibidity and deterioration of quality of surface water sources. There are a few safe surface water options; and also there are several methods available for removal of arsenic and iron from groundwater in large conventional treatments plants. This review paper presented a short description of the currently available and most sustainable technologies for arsenic and iron removal, and alternative water supply options in the rural areas.

  16. Assessment of the microbial quality of river water sources in rural ...

    African Journals Online (AJOL)

    drinie

    2002-07-03

    Jul 3, 2002 ... Assessment of the microbial quality of river water sources ... These untreated water sources are used for drinking and domestic purposes and pose a serious threat to ... These diseases cause crippling, devastating and debilitating effects ..... gastrointestinal illness, due mainly by enteric viruses in sewage.

  17. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    Science.gov (United States)

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  18. Contamination of community water sources by potentially pathogenic vibrios following sea water inundation.

    Science.gov (United States)

    Kanungo, Reba; Shashikala; Karunasagar, I; Srinivasan, S; Sheela, Devi; Venkatesh, K; Anitha, P

    2007-12-01

    Potentially pathogenic members of the Vibrionaceae family including Vibrio cholerae and Vibrio parahemolyticus were isolated from domestic sources of drinking water in coastal villages following sea water inundation during the tsunami in Southern India. Phenotypic and genotypic studies were done to confirm the identity and detection of toxins. Vibrio-gyr (gyrase B gene) was detected in all sixteen vibrio isolates. Toxin regulating genes i.e.: ctx gene, tdh gene, and trh gene, however were not detected in any of the strains, thereby ruling out presence of toxins which could endanger human life. Other potentially pathogenic bacteria Aeromonas and Plesiomonas were also isolated from hand pumps and wells, in a few localities. There was no immediate danger in the form of an outbreak or sporadic gastroenteritis at the time of the study. Timely chlorination and restoration of potable water supply to the flood affected population by governmental and nongovernmental agencies averted waterborne gastroenteritis. Assessment of quality of water and detection of potential virulent organisms is an important public health activity following natural disasters. This work highlights the importance of screening water sources for potentially pathogenic microorganisms after natural disasters to avert outbreaks of gastroenteritis and other infectious diseases.

  19. Toxicological and chemical insights into representative source and drinking water in eastern China.

    Science.gov (United States)

    Shi, Peng; Zhou, Sicong; Xiao, Hongxia; Qiu, Jingfan; Li, Aimin; Zhou, Qing; Pan, Yang; Hollert, Henner

    2018-02-01

    Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. National trends in drinking water quality violations.

    Science.gov (United States)

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  1. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources.

    Science.gov (United States)

    Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi

    2016-02-15

    The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Swimming Safely (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2014-05-22

    In the summertime, families will be flocking to pools for relaxation and relief from the heat. A few simple precautions can help ensure a safe day in the water. In this podcast, Michele Hlavsa discusses ways to stay safe at the pool.  Created: 5/22/2014 by MMWR.   Date Released: 5/22/2014.

  3. Pollutants in drinking water: their sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2004-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemical and radionuclide etc. this is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication. Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  4. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia.

    Science.gov (United States)

    Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja

    2011-09-01

    Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks

  5. Strategies for safe exploitation of fresh water through multi-strainer skimming wells in saline groundwater areas

    International Nuclear Information System (INIS)

    Alam, M.M.; Jaffery, H.M.; Hanif, M.

    2005-01-01

    Indus Basin of Pakistan to develop strategies for the safe exploitation of fresh upper groundwater layer through multi-strainer skimming wells in the areas having deeper saline groundwater. Results of detailed investigations are given in this paper. A methodology was designed for investigations and to study the movement of saline-fresh water interface. For this purpose deep observation wells were installed and water samples from various depths over a period of wells operational hours have been collected. Water quality of these samples was tested to evaluate the movement of saline-fresh water interface. Results indicated that there exists a relatively fresh water aquifer above the depth of 20m. Relatively impervious layer and clay lenses of variable thickness exists at various locations in the area. There is relatively less contribution from the lower aquifer as compared to the lateral movement of water to the well above the impervious layers. The skimming wells were operated for a different number of hours and water quality evaluated. The results show that the quality and quantity of the pumped groundwater can be improved with intermittent pumping for 4-6 hours per day under drought conditions and recovery of the water-table is quick. Moreover, the intermittent pumping maintained a minimum suction lift that helped get a relatively good discharge. Continuous long term pumping proved to be dangerous which can cause saline water intrusion. It is recommended to avoid long term pumping of skimming wells. Intermittent short hours operation can be helpful for safe exploitation of fresh water and make skimming well operation more cost effective. It is further added that 4-6 strainers make these skimming wells cost effective as compared to having a large number of strainers in a skimming well. (author)

  6. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  7. A safe and cost-effective PMMA carbon source for MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of); Jang, S. H. [Kiswire Advanced Technology Ltd, Daejeon (Korea, Republic of); Sinha, B. B. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Mumbai (India); Bhardwaj, A. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-03-15

    Carbon is proven to be very effective in pinning the magnetic vortices and improving the superconducting performance of MgB2 at high fields. In this work, we have used polymethyl methacrylate (PMMA) polymer as a safe and cost effective carbon source. The effects of molecular weight of PMMA on crystal structure, microstructure as well as on superconducting properties of MgB2 were studied. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with different molecular weights of PMMA. This indicates that carbon could be substituted in the boron honeycomb layers without affecting the interlayer interactions. As compared to undoped MgB2, substantial enhancement in Jc(H) properties was obtained for PMMA-doped MgB2 samples both at 5 K and 20 K. The enhancement could be attributed to the effective carbon substitution for boron and the refinement of crystallite size by PMMA doping.

  8. Institutional impediments to using alternative water sources in thermoelectric power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP

  9. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources

    International Nuclear Information System (INIS)

    Sanches, S.; Leitao, C.; Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Crespo, M.T. Barreto; Pereira, V.J.

    2011-01-01

    Highlights: → Low pressure UV photolysis can be used by drinking water utilities to degrade PAHs. → Real water matrices with different compositions were tested. → Photolysis kinetic parameters and by-product formation are described. → The formation of photolysis by-products is highly dependent on the source waters. - Abstract: The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm 2 , anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  10. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  11. POLLUTION SOURCES AND WATER QUALITY STATE OF THE SUPRAŚL RIVER

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-04-01

    Full Text Available The main purpose of the study was to evaluate water quality of the Supraśl river and identify its main pollution sources. On the river and its tributaries, 8 control points were selected, located near Krynica, Gródek, Nowosiółki, Zasady (mouth of the tributary Sokołda, Supraśl, Nowodworce, Dobrzyniewo (mouth of the tributary Biała and Dzikie. The control points were selected in such a way as to take into account the impact of major point sources of analyzed components located along the river and its main tributaries on water quality in the main stream catchment. Water samples were collected once a month during the period from May to November in 2014. In water samples the concentration of dissolved oxygen, Cl-, SO42-, N-NH4+, P-PO43- and the values of pH, BOD5 and electrolytic conductivity were indicated. Based on the obtained results, loads of the individual components in river waters were calculated as a product of concentration and Supraśl waters flow rate in a particular month. Supraśl waters, due to values of most analyzed parameters, should be classified as first quality class. The source of Cl-, SO42-, N-NH4+ in Supraśl waters were treated wastewater and other anthropogenic sources associated with the basin development. Reduced Supraśl water quality is caused by the inflow of organic substances expressed by BZT5 from natural and anthropogenic origin and concentration of PO43-, which were mainly delivered with treated wastewater.

  12. Between Soft Legality and Strong Legitimacy : A Political Economy Approach to the Struggle for Basic Entitlements to Safe Water and Sanitation

    NARCIS (Netherlands)

    de Gaay Fortman, B.|info:eu-repo/dai/nl/068346581; Marcatelli, M.

    2015-01-01

    This article argues that the internationally declared “human right to safe water and sanitation,” although characterized by soft legality, may yet support universal access to such basic entitlements by virtue of its strong legitimacy. From a strategic perspective, human rights do indeed provide

  13. Drinking water intake and source patterns within a US-Mexico border population.

    Science.gov (United States)

    Regnier, Adam; Gurian, Patrick; Mena, Kristina D

    2015-01-01

    This study was undertaken to identify water intake and source patterns among a population that resides in a hot, arid region on the US-Mexico border. A cross-sectional community-based survey was conducted among households in the neighbouring cities of El Paso, TX, USA and Ciudad Juárez, Chihuahua, Mexico to obtain data on the quantity and source of water consumed. The study was also designed to identify factors that impact water consumption patterns, including gender, demographics, socio-economic status, cultural characteristics, health status, types of occupations and residences, available water sources and outdoor temperature, among many others. Of all factors studied, outdoor air temperature was found to have the strongest impact upon water intake quantity. Specifically, among the survey participants, when the outdoor air temperature exceeded 90 °F, water consumption increased by 28 %. Additionally, it was found that participants in this region consumed approximately 50 % more water than the values reported in previous studies.

  14. Identification of fecal contamination sources in water using host-associated markers.

    Science.gov (United States)

    Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith

    2013-03-01

    In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.

  15. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    Science.gov (United States)

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  16. Power control of SAFE reactor using fuzzy logic

    International Nuclear Information System (INIS)

    Irvine, Claude

    2002-01-01

    Controlling the 100 kW SAFE (Safe Affordable Fission Engine) reactor consists of design and implementation of a fuzzy logic process control system to regulate dynamic variables related to nuclear system power. The first phase of development concentrates primarily on system power startup and regulation, maintaining core temperature equilibrium, and power profile matching. This paper discusses the experimental work performed in those areas. Nuclear core power from the fuel elements is simulated using resistive heating elements while heat rejection is processed by a series of heat pipes. Both axial and radial nuclear power distributions are determined from neuronic modeling codes. The axial temperature profile of the simulated core is matched to the nuclear power profile by varying the resistance of the heating elements. The SAFE model establishes radial temperature profile equivalence by establishing 32 control zones as the nodal coordinates. Control features also allow for slow warm up, since complete shutoff can occur in the heat pipes if heat-source temperatures drop/rise below a certain minimum value, depending on the specific fluid and gas combination in the heat pipe. The entire system is expected to be self-adaptive, i.e., capable of responding to long-range changes in the space environment. Particular attention in the development of the fuzzy logic algorithm shall ensure that the system process remains at set point, virtually eliminating overshoot on start-up and during in-process disturbances. The controller design will withstand harsh environments and applications where it might come in contact with water, corrosive chemicals, radiation fields, etc

  17. Feasibility study of an aeration treatment system in a raw water storage reservoir used as a potable water source

    OpenAIRE

    Fronk, Robert Charles

    1996-01-01

    The systems engineering process has been utilized to determine the feasibility of an aeration treatment system for a raw water storage reservoir used as a potable water source. This system will be used to ensure a consistently high quality of raw water by the addition of dissolved oxygen into the reservoir. A needs analysis establishes the importance and requirements for a consistently high quality of raw water used as a source for a potable water treatment facility. This s...

  18. Preliminary risk assessment of the Integral Inherently-Safe Light Water Reactor

    International Nuclear Information System (INIS)

    McCarroll, Kellen R.; Lee, John C.; Manera, Annalisa; Memmott, Matthew J.; Ferroni, Paolo

    2017-01-01

    The Integral, Inherently Safe Light Water Reactor (I 2 S-LWR) concept seeks to significantly increase nuclear power plant safety. The project implements a safety-by-design philosophy, eliminating several initiating events and providing novel, passive safety systems at the conceptual phase. Pursuit of unparalleled safety employs an integrated development process linking design with deterministic and probabilistic safety analyses. Unique aspects of the I 2 S-LWR concept and design process present challenges to the probabilistic risk assessment (PRA), particularly regarding overall flexibility, auditability and resolution of results. Useful approaches to initiating events and conditional failures are presented. To exemplify the risk-informed design process using PRA, a trade-off study of two safety system configurations is presented. Although further optimization is required, preliminary results indicate that the I 2 S-LWR can achieve a core damage frequency (CDF) from internal events less than 1.01 × 10 −8 /ry, including reactor vessel ruptures. Containment bypass frequency due to primary heat exchanger rupture is found to be comparable to non-vessel rupture CDF.

  19. Water microbiology. Bacterial pathogens and water.

    Science.gov (United States)

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  20. Identification of sources and mechanisms of salt-water pollution ground-water quality

    International Nuclear Information System (INIS)

    Richter, B.C.; Dutton, A.R.; Kreitler, C.W.

    1990-01-01

    This book reports on salinization of soils and ground water that is widespread in the Concho River watershed and other semiarid areas in Texas and the United States. Using more than 1,200 chemical analyses of water samples, the authors were able to differentiate various salinization mechanisms by mapping salinity patterns and hydrochemical facies and by analyzing isotopic compositions and ionic ratios. Results revealed that in Runnels County evaporation of irrigation water and ground water is a major salinization mechanism, whereas to the west, in Irion and Tom Green Counties, saline water appears to be a natural mixture of subsurface brine and shallowly circulating meteoric water recharged in the Concho River watershed. The authors concluded that the occurrence of poor-quality ground water is not a recent or single-source phenomenon; it has been affected by terracing of farmland, by disposal of oil-field brines into surface pits, and by upward flow of brine from the Coleman Junction Formation via insufficiently plugged abandoned boreholes

  1. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, J. N. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, R. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Patton, T. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Durham, L. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Murphy, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Clark, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  2. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  3. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  4. Quantitative bacterial examination of domestic water supplies in the Lesotho Highlands: water quality, sanitation, and village health.

    Science.gov (United States)

    Kravitz, J D; Nyaphisi, M; Mandel, R; Petersen, E

    1999-01-01

    Reported are the results of an examination of domestic water supplies for microbial contamination in the Lesotho Highlands, the site of a 20-year-old hydroelectric project, as part of a regional epidemiological survey of baseline health, nutritional and environmental parameters. The population's hygiene and health behaviour were also studied. A total of 72 village water sources were classified as unimproved (n = 23), semi-improved (n = 37), or improved (n = 12). Based on the estimation of total coliforms, which is a nonspecific bacterial indicator of water quality, all unimproved and semi-improved water sources would be considered as not potable. Escherichia coli, a more precise indicator of faecal pollution, was absent (P water sources. Among 588 queried households, only 38% had access to an "improved" water supply. Sanitation was a serious problem, e.g. fewer than 5% of villagers used latrines and 18% of under-5-year-olds had suffered a recent diarrhoeal illness. The study demonstrates that protection of water sources can improve the hygienic quality of rural water supplies, where disinfection is not feasible. Our findings support the WHO recommendation that E. coli should be the principal microbial indicator for portability of untreated water. Strategies for developing safe water and sanitation systems must include public health education in hygiene and water source protection, practical methods and standards for water quality monitoring, and a resource centre for project information to facilitate programme evaluation and planning.

  5. Biofilm in water pipelines; a potential source for off-flavours in the drinking water.

    Science.gov (United States)

    Skjevrak, I; Lund, V; Ormerod, K; Due, A; Herikstad, H

    2004-01-01

    Volatile organic compounds (VOC) are identified in natural biofilm established in plastic pipes used at the drinking water supply. Odour potent VOCs such as ectocarpene, dictyopterene A and C', geosmin, beta-ionone, 6-methyl-5-hepten-2-one, menthol and menthone were prominent compounds in biofilm in the distribution network and at raw water test sites, and are associated with algae and cyanobacteria present in the raw water source.

  6. Gas Well Top Hole Locations, LP and LNG - Marcellus Gas Well Water Sources View

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This data set contains all approved water sources within water managment plans (WMP). A WMP contains water sources utilized in the fracture stimulation of Marcellus...

  7. Water: from the source to the treatment plan

    Science.gov (United States)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in

  8. Bottled Water Everywhere: Keeping it Safe

    Science.gov (United States)

    ... that taps an aquifer—layers of porous rock, sand, and earth that contain water—which is under ... it to be labeled as “purified water.” Ensuring Quality and Safety Federal quality standards for bottled water ...

  9. Sources of water column methylmercury across multiple estuaries in the Northeast U.S.

    Science.gov (United States)

    Balcom, Prentiss H; Schartup, Amina T; Mason, Robert P; Chen, Celia Y

    2015-12-20

    Estuarine water column methylmercury (MeHg) is an important driver of mercury (Hg) bioaccumulation in pelagic organisms and thus it is necessary to understand the sources and processes affecting environmental levels of MeHg. Increases in water column MeHg concentrations can ultimately be transferred to fish consumed by humans, but despite this, the sources of MeHg to the estuarine water column are still poorly understood. Here we evaluate MeHg sources across 4 estuaries and 10 sampling sites and examine the distributions and partitioning of sediment and water column MeHg across a geographic range (Maine to New Jersey). Our study sites present a gradient in the concentrations of sediment, pore water and water column Hg species. Suspended particle MeHg ranged from below detection to 187 pmol g -1 , dissolved MeHg from 0.01 to 0.68 pM, and sediment MeHg from 0.01 to 109 pmol g -1 . Across multiple estuaries, dissolved MeHg correlated with Hg species in the water column, and sediment MeHg correlated with sediment total Hg (HgT). Water column MeHg did not correlate well with sediment Hg across estuaries, indicating that sediment concentrations were not a good predictor of water MeHg concentrations. This is an unexpected finding since it has been shown that MeHg production from inorganic Hg 2+ within sediment is the primary source of MeHg to coastal waters. Additional sources of MeHg regulate water column MeHg levels in some of the shallow estuaries included in this study.

  10. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    Science.gov (United States)

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  11. Impact of the safe drinking water act on energy development. Final issue paper

    International Nuclear Information System (INIS)

    Guymont, F.J.; Shore, R.; Goldberg, M.

    1977-11-01

    Energy development activities will be impacted by the Underground Injection Control Regulations that are formulated under Part C of the Safe Drinking Water Act. The thrust of Part C of the Act is to protect groundwater that now is or in the future might be used for drinking water. A new draft of the regulations, on which this analysis is based, is currently being considered. These regulations will be either another set of proposed regulations or will be interim final which means they can be enforced immediately but EPA will still entertain comments on them and modify them if necessary. There are four possible situations in which the Underground Control Regulations would not apply. They are: If the aquifer in question can be left unprotected despite the fact that its solids level is less than 10,000 mg/1; if the aquifer is oil or mineral producing; if the aquifer is located at a depth that would made recovery of drinking water uneconomical; and if the aquifer is already contaminated. However, the individual states have to demonstrate this to the satisfaction of the EPA administrator. If none of the conditions holds, construction, monitoring operating and reporting requirements will be necessary to receive a permit. The economic impact of these requirements is uncertain but could involve significant economic and time expenditures. Permits do not have to be renewed and one permit can serve for a whole field of wells. However, the permit application requires a significant amount of information and will take a considerable amount of time and expense to fill out. Solution mining operations also will incur extra expenses establishing initial water quality profiles and maintaining monitoring wells

  12. Does global progress on sanitation really lag behind water? An analysis of global progress on community- and household-level access to safe water and sanitation.

    Science.gov (United States)

    Cumming, Oliver; Elliott, Mark; Overbo, Alycia; Bartram, Jamie

    2014-01-01

    Safe drinking water and sanitation are important determinants of human health and wellbeing and have recently been declared human rights by the international community. Increased access to both were included in the Millennium Development Goals under a single dedicated target for 2015. This target was reached in 2010 for water but sanitation will fall short; however, there is an important difference in the benchmarks used for assessing global access. For drinking water the benchmark is community-level access whilst for sanitation it is household-level access, so a pit latrine shared between households does not count toward the Millennium Development Goal (MDG) target. We estimated global progress for water and sanitation under two scenarios: with equivalent household- and community-level benchmarks. Our results demonstrate that the "sanitation deficit" is apparent only when household-level sanitation access is contrasted with community-level water access. When equivalent benchmarks are used for water and sanitation, the global deficit is as great for water as it is for sanitation, and sanitation progress in the MDG-period (1990-2015) outstrips that in water. As both drinking water and sanitation access yield greater benefits at the household-level than at the community-level, we conclude that any post-2015 goals should consider a household-level benchmark for both.

  13. Water Microbiology. Bacterial Pathogens and Water

    Directory of Open Access Journals (Sweden)

    João P. S. Cabral

    2010-10-01

    Full Text Available Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers. Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  14. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  15. Is nuclear power safe enough

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, A F [Institutt for Atomenergi, Kjeller (Norway)

    1979-01-01

    The lecture formed a commentary on the report of the Norwegian Government's Commission on Nuclear power Safety which was published in October 1978. It was introductorily pointed out that 'safe' and 'safety' are not in themselves meaningful terms and that the probability of an occurrence is the real measure. The main items in the Commission's report have been core meltdown, releases during reprocessing, waste disposal, plutonium diversion and environmental impacts. The 21 members of the Commission were unanimous in 7 of the 8 chapters. In chapter 2, 'Summary and Conclusions', 3 members dissented from the majority opinion, that, subject to certain conditions, nuclear power was a safe and acceptable source of energy.

  16. Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak.

    Science.gov (United States)

    Murphy, J L; Kahler, A M; Nansubuga, I; Nanyunja, E M; Kaplan, B; Jothikumar, N; Routh, J; Gómez, G A; Mintz, E D; Hill, V R

    2017-12-01

    In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli , free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli While S Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking

  17. Safe sex

    Science.gov (United States)

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  18. Bacteriological investigation of ground water sources in selected ...

    African Journals Online (AJOL)

    cml

    2012-06-16

    Jun 16, 2012 ... Microbial contamination of ground water sources is a common problem in all the big cities, which endangers ... include leakage of pipes, pollution from sewerage pipes ..... and Quality Control Authority, Karachi, Pakistan.

  19. Functional groups in North Chilean desert shrub species, based on the water sources used

    International Nuclear Information System (INIS)

    Squeo, Francisco A; Olivares, Nancy; Olivares, Sandra; Jorquera, Carmen; Pollastri, Alberto; Aguirre, Evelyn; Aravena, Ramon; Ehleringer, James R

    1999-01-01

    Primary productivity and vegetation structure in arid ecosystems are determined by water availability. In studies conducted in the coastal dry land of North Central Chile (29 degrees 43'S; 71degrees 14'0, 300m), the mechanisms to use different water sources by shrubs species, in two contrasting rainfall years were compared. Information on pheno logical studies, root architecture and water sources used by shrubs through the use of stable isotopes is are discussed. Six functional groups based on water uptake and water use are recognized. The functional groups were defined based on their habits (deciduous and evergreen), their root systems, (shallow, dimorphic and deep), and their ability to use different water sources (surficial and/or deep). Because of the differential impact of the goat overgrazing on different functional groups, this would result on a lower utilization of surficial waters. A management and/or restoration plan should maximize the use of all water sources available to recover the primary productivity and the system stability

  20. Multiple Household Water Sources and Their Use in Remote Communities With Evidence From Pacific Island Countries

    Science.gov (United States)

    Elliott, Mark; MacDonald, Morgan C.; Chan, Terence; Kearton, Annika; Shields, Katherine F.; Bartram, Jamie K.; Hadwen, Wade L.

    2017-11-01

    Global water research and monitoring typically focus on the household's "main source of drinking-water." Use of multiple water sources to meet daily household needs has been noted in many developing countries but rarely quantified or reported in detail. We gathered self-reported data using a cross-sectional survey of 405 households in eight communities of the Republic of the Marshall Islands (RMI) and five Solomon Islands (SI) communities. Over 90% of households used multiple sources, with differences in sources and uses between wet and dry seasons. Most RMI households had large rainwater tanks and rationed stored rainwater for drinking throughout the dry season, whereas most SI households collected rainwater in small pots, precluding storage across seasons. Use of a source for cooking was strongly positively correlated with use for drinking, whereas use for cooking was negatively correlated or uncorrelated with nonconsumptive uses (e.g., bathing). Dry season water uses implied greater risk of water-borne disease, with fewer (frequently zero) handwashing sources reported and more unimproved sources consumed. Use of multiple sources is fundamental to household water management and feasible to monitor using electronic survey tools. We contend that recognizing multiple water sources can greatly improve understanding of household-level and community-level climate change resilience, that use of multiple sources confounds health impact studies of water interventions, and that incorporating multiple sources into water supply interventions can yield heretofore-unrealized benefits. We propose that failure to consider multiple sources undermines the design and effectiveness of global water monitoring, data interpretation, implementation, policy, and research.

  1. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  2. Rural:urban inequalities in post 2015 targets and indicators for drinking-water

    Energy Technology Data Exchange (ETDEWEB)

    Bain, R.E.S. [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States); Wright, J.A. [Geography and Environment, University of Southampton, Southampton (United Kingdom); Christenson, E. [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States); Bartram, J.K., E-mail: jbartram@unc.edu [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States)

    2014-08-15

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth – over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata)

  3. Rural:urban inequalities in post 2015 targets and indicators for drinking-water.

    Science.gov (United States)

    Bain, R E S; Wright, J A; Christenson, E; Bartram, J K

    2014-08-15

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth - over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Rural:urban inequalities in post 2015 targets and indicators for drinking-water

    International Nuclear Information System (INIS)

    Bain, R.E.S.; Wright, J.A.; Christenson, E.; Bartram, J.K.

    2014-01-01

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth – over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata)

  5. Water Under Fire: A Seven Part Video Series on Canada's Water

    Science.gov (United States)

    Mrazek, R.; Byrne, J.; Rabe, N.; Gallant, G.

    2003-12-01

    Canada's water is under escalating pressure from a host of threats. Increasingly, our water is being tainted, misused and over allocated. Experts have identified a multitude of threats to water quantity and quality. Among them, climate change impacts on water supply, and the effects of pesticides, pathogens, industrial waste, urban runoff, and rising demands. These and other threats are the roots to a serious shortage of high quality, safe water sources. In the 1990s, waterborne diseases have re-emerged as one of the primary health issues on a national and global scale. This seven-part video series brings science voices together and provides a nationwide context. The first six programs in the series explore regional concerns: Rocky Mountains, Prairie Waters, Northern Waters, Great Lakes Basin, St. Lawrence and Atlantic Canada. The final program covers the national and international perspectives.

  6. On-plot drinking water supplies and health: A systematic review.

    Science.gov (United States)

    Overbo, Alycia; Williams, Ashley R; Evans, Barbara; Hunter, Paul R; Bartram, Jamie

    2016-07-01

    Many studies have found that household access to water supplies near or within the household plot can reduce the probability of diarrhea, trachoma, and other water-related diseases, and it is generally accepted that on-plot water supplies produce health benefits for households. However, the body of research literature has not been analyzed to weigh the evidence supporting this. A systematic review was conducted to investigate the impacts of on-plot water supplies on diarrhea, trachoma, child growth, and water-related diseases, to further examine the relationship between household health and distance to water source and to assess whether on-plot water supplies generate health gains for households. Studies provide evidence that households with on-plot water supplies experience fewer diarrheal and helminth infections and greater child height. Findings suggest that water-washed (hygiene associated) diseases are more strongly impacted by on-plot water access than waterborne diseases. Few studies analyzed the effects of on-plot water access on quantity of domestic water used, hygiene behavior, and use of multiple water sources, and the lack of evidence for these relationships reveals an important gap in current literature. The review findings indicate that on-plot water access is a useful health indicator and benchmark for the progressive realization of the Sustainable Development Goal target of universal safe water access as well as the human right to safe water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. A source of ground water 222Rn around Tachikawa fault

    International Nuclear Information System (INIS)

    Saito, Masaaki; Takata, Sigeru

    1994-01-01

    Radon ( 222 Rn) concentration in ground water was characteristically high on the south-western zone divided by the Tachikawa fault, Tokyo. (1) The concentration did not increase with depth, and alluvium is thick on the zone. The source of radon was not considered as the updraft from base rock through the fault. Comparing the south-western zone with its surrounding zone, the followings were found. (2) The distribution of tritium concentration was supported that water had easily permeated into ground on the zone. (3) As the zone is located beside the Tama River and its alluvial fan center, the river water had likely affected. The source of radon on the zone would be 226 Ra in the aquifer soil. It can be presumed that the water of the Tama River had permeated into ground on the zone and had accumulated 226 Ra. (author)

  8. Drinking water sources, availability, quality, access and utilization for goats in the Karak Governorate, Jordan.

    Science.gov (United States)

    Al-Khaza'leh, Ja'far Mansur; Reiber, Christoph; Al Baqain, Raid; Valle Zárate, Anne

    2015-01-01

    Goat production is an important agricultural activity in Jordan. The country is one of the poorest countries in the world in terms of water scarcity. Provision of sufficient quantity of good quality drinking water is important for goats to maintain feed intake and production. This study aimed to evaluate the seasonal availability and quality of goats' drinking water sources, accessibility, and utilization in different zones in the Karak Governorate in southern Jordan. Data collection methods comprised interviews with purposively selected farmers and quality assessment of water sources. The provision of drinking water was considered as one of the major constraints for goat production, particularly during the dry season (DS). Long travel distances to the water sources, waiting time at watering points, and high fuel and labor costs were the key reasons associated with the problem. All the values of water quality (WQ) parameters were within acceptable limits of the guidelines for livestock drinking WQ with exception of iron, which showed slightly elevated concentration in one borehole source in the DS. These findings show that water shortage is an important problem leading to consequences for goat keepers. To alleviate the water shortage constraint and in view of the depleted groundwater sources, alternative water sources at reasonable distance have to be tapped and monitored for water quality and more efficient use of rainwater harvesting systems in the study area is recommended.

  9. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-02-01

    The reactor-safety issue is one of the principal problems threatening the future of the nuclear option, at least in participatory democracies. It has contributed to widespread public distrust and is the direct cause of the escalation in design complexity and quality assurance requirements that are rapidly eroding the competitive advantage of nuclear power. Redesign of the light-water reactor can eliminate those features that leave it open to public distrust and obstructive intervention. This redesign appears feasible within the realm of proven technology in those fields (fuels, materials, water chemistry, waste technology, etc.) in which extended operating experience is essential for confidence in system performance. A pressurized water reactor outline design developed to achieve the above goal is presented. The key feature is the design of the primary system extracting heat from the core so that the latter is protected from damage caused by any credible system failure or any destructive intervention from the outside by either violent means (up to and including nonnuclear warfare) or by mistaken or malicious use of the plant control systems. Such a design objective can be achieved by placing the entire primary circulation system in a large pressurized pool of cold water with a high boric acid content. Enough water is provided in the pool to allow core-decay-heat removal by evaporation for at least one week following any incident with no cooling systems operating. Subsequently it is assumed that a supply of further water (a few cubic meters per hour) from the outside can be arranged, even without the presence of the plant operating personnel

  10. Seasonal Variation in Drinking and Domestic Water Sources and Quality in Port Harcourt, Nigeria

    Science.gov (United States)

    Kumpel, Emily; Cock-Esteb, Alicea; Duret, Michel; de Waal, Dominick; Khush, Ranjiv

    2017-01-01

    We compared dry and rainy season water sources and their quality in the urban region of Port Harcourt, Nigeria. Representative sampling indicated that municipal water supplies represent < 1% of the water sources. Residents rely on privately constructed and maintained boreholes that are supplemented by commercially packaged bottled and sachet drinking water. Contamination by thermotolerant coliforms increased from 21% of drinking water sources in the dry season to 42% of drinking water sources in the rainy season (N = 356 and N = 397). The most significant increase was in sachet water, which showed the lowest frequencies of contamination in the dry season compared with other sources (15%, N = 186) but the highest frequencies during the rainy season (59%, N = 76). Only half as many respondents reported drinking sachet water in the rainy season as in the dry season. Respondents primarily used flush or pour-flush toilets connected to septic tanks (85%, N = 399). The remainder relied on pit latrines and hanging (pier) latrines that drained into surface waters. We found significant associations between fecal contamination in boreholes and the nearby presence of hanging latrines. Sanitary surveys of boreholes showed that more than half were well-constructed, and we did not identify associations between structural or site deficiencies and microbial water quality. The deterioration of drinking water quality during the rainy season is a serious public health risk for both untreated groundwater and commercially packaged water, highlighting a need to address gaps in monitoring and quality control. PMID:27821689

  11. Safe water: an enquiry into water entitlements and human rights

    NARCIS (Netherlands)

    Gaay Fortman, B. de

    2006-01-01

    Privatisation of water delivery is a human rights issue in two distinct ways. Firstly, it implies an institutional change that will tend to impinge on existing access to water. While basic water entitlements are supposed to be protected by human rights law, this is likely to influence

  12. Radiocarbon ages of ground water as a basis for the determination of safe limits of aquifer exploitation

    International Nuclear Information System (INIS)

    Tamers, M.A.; Stipp, J.J.; Weiner, R.

    1975-01-01

    Deep ground waters of the Biscayne aquifer of south Florida were studied with radiocarbon dating techniques. Dissolved carbonates served as the material for the age determinations. Limestone dilution corrections of the measured carbon-14 activities were made by comparison of the relative concentrations of bicarbonate and total carbonates. The deep well waters of the southern portion of the deposit have corrected radiocarbon contents indicating thermonuclear weapon testing contamination; they are, therefore, less than 20 years old. The ages of the ground waters generally increase in the northern direction. This is interpreted as due to the greater depth of the deposit of that region. A model is formulated for ground water movement in an unconfined producing hydrological unit and applied to the radiocarbon results of the most intensively exploited zone of the Biscayne aquifer. It is shown that the water which is extracted by the municipal wells in this area is limited to the bottom third of the deposit. The avoidance of pollution from the surrounding septic tanks in the shallower depths of the area is explained in this way. The model leads to an objective estimation of the safe limit for the ground water extraction rate in the zone. By application of radiocarbon dating, it is possible to obtain useful information without disturbing the water supply

  13. Multi-criteria evaluation of sources for self-help domestic water supply

    Science.gov (United States)

    Nnaji, C. C.; Banigo, A.

    2018-03-01

    Two multi-criteria decision analysis methods were employed to evaluate six water sources. The analytical hierarchical process (AHP) ranked borehole highest with a rank of 0.321 followed by water board with a rank of 0.284. The other sources ranked far below these two as follows: water tanker (0.139), rainwater harvesting (0.117), shallow well (0.114) and stream (0.130). The Technique for Order Performance by Similarity to the Ideal Solution (TOPSIS) ranked water board highest with a rank of 0.865, followed by borehole with a value of 0.778. Quality and risk of contamination were found to be the most influential criteria while seasonality was the least.

  14. Mobilization of radionuclides from sediments. Potential sources to Arctic waters

    International Nuclear Information System (INIS)

    Oughton, D.H.; Boerretzen, P.; Mathisen, B.; Salbu, B.; Tronstad, E.

    1995-01-01

    Contaminated soils and sediments can act as secondary sources of radionuclides to Arctic waters. In cases where the original source of contamination has ceased or been greatly reduced (e.g., weapons' testing, waste discharges from Mayak and Sellafield) remobilization of radionuclides from preciously contaminated sediments increases in importance. With respect to Arctic waters, potential secondary sources include sediments contaminated by weapons' testing, by discharges from nuclear installations to seawater, e.g., the Irish Sea, or by leakages from dumped waste containers. The major land-based source is run-off from soils and transport from sediments in the catchment areas of the Ob and Yenisey rivers, including those contaminated by Mayak discharges. Remobilization of radionuclides is often described as a secondary source of contamination. Whereas primary sources of man-made radionuclides tend to be point sources, secondary sources are usually more diffuse. Experiments were carried out on marine (Kara Sea, Irish Sea, Stepovogo and Abrosimov Fjords), estuarine (Ob-Yenisey) and dirty ice sediments. Total 137 Cs and 90 Sr concentrations were determined using standard radiochemical techniques. Tracer studies using 134 Cs and 85 Sr were used to investigate the kinetics of radionuclide adsorption and desorption. It is concluded that 90 Sr is much less strongly bound to marine sediments than 137 Cs, and can be chemically mobilized through ion exchange with elements is seawater. Radiocaesium is strongly and rapidly fixed to sediments. Discharges of 137 Cs to surface sediments (i.e., from dumped containers) would be expected to be retained in sediments to a greater extent than discharges to sea-waters. Physical mobilization of sediments, for example resuspension, may be of more importance for transport of 137 Cs than for 90 Sr. 7 refs., 4 figs

  15. Public education in safe use of artificial UV radiation sources by the consumer safety institute in the Netherlands

    International Nuclear Information System (INIS)

    Bruggers, J.H.A.

    1987-01-01

    The Consumer Safety Institute in the Netherlands is a national institute which operates entirely in the field of home safety. Its main aim exists in reducing the possibility and severity of accidents happening in and around the home, at school and recreational areas. To attain this aim the institute is active in research, handling consumer complaints, education, and advising. To inform and educate consumers about product safety, special leaflets and brochures are published. One of these brochures deals with safety and safe use of artificial UV radiation sources, e.g. UV lamps, UV couches etc. This brochure about suntanning equipment and safety was published recently

  16. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  17. Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders.

    Directory of Open Access Journals (Sweden)

    Kevin E McCluney

    2010-12-01

    Full Text Available Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web". Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change.

  18. Tracing water sources of terrestrial animal populations with stable isotopes: laboratory tests with crickets and spiders.

    Science.gov (United States)

    McCluney, Kevin E; Sabo, John L

    2010-12-31

    Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in tracing water sources from the ecosystem to animals and among animals (the "water web"). Naturally occurring, non-radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside areas, irrigated landscapes, and the effects of climate change.

  19. Bacterial community diversity and variation in spray water sources and the tomato fruit surface.

    Science.gov (United States)

    Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S

    2011-04-21

    Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science

  20. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  1. Phthalate esters in main source water and drinking water of Zhejiang Province (China): Distribution and health risks.

    Science.gov (United States)

    Wang, Xiaofeng; Lou, Xiaoming; Zhang, Nianhua; Ding, Gangqiang; Chen, Zhijian; Xu, Peiwei; Wu, Lizhi; Cai, Jianmin; Han, Jianlong; Qiu, Xueting

    2015-10-01

    To evaluate the distributions and health risks of phthalate esters in the main source water and corresponding drinking water of Zhejiang Province, the concentrations of 16 phthalate esters in water samples from 19 sites were measured from samples taken in the dry season and wet season. The concentration of the total phthalate ester congeners in source water ranged from 1.07 μg/L to 7.12 μg/L in the wet season, from 0.01 μg/L to 1.58 μg/L in the dry season, from 1.18 μg/L to 15.28 μg/L from drinking water in the wet season, and from 0.16 μg/L to 1.86 μg/L from drinking water in the dry season. Of the 16 phthalate esters, dimethyl phthalate, dibutyl phthalate, di-(2-ethyl-hexyl) phthalate, di-iso-butyl phthalate, bis-2-n-butoxyethyl phthalate, and dicyclohexyl phthalate were present in the samples analyzed, dominated by di-iso-butyl phthalate and di-(2-ethyl-hexyl) phthalate. The concentrations of phthalate esters in the wet season were all relatively higher than those in the dry season, and the drinking water had higher concentrations of phthalate esters than source water. The phthalate ester congeners studied pose little health risk to nearby citizens. Environ Toxicol Chem 2015;34:2205-2212. © 2015 SETAC. © 2015 SETAC.

  2. Establishment of a Practical Approach for Characterizing the Source of Particulates in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Seon-Ha Chae

    2016-02-01

    Full Text Available Water quality complaints related to particulate matter and discolored water can be troublesome for water utilities in terms of follow-up investigations and implementation of appropriate actions because particulate matter can enter from a variety of sources; moreover, physicochemical processes can affect the water quality during the purification and transportation processes. The origin of particulates can be attributed to sources such as background organic/inorganic materials from water sources, water treatment plants, water distribution pipelines that have deteriorated, and rehabilitation activities in the water distribution systems. In this study, a practical method is proposed for tracing particulate sources. The method entails collecting information related to hydraulic, water quality, and structural conditions, employing a network flow-path model, and establishing a database of physicochemical properties for tubercles and slimes. The proposed method was implemented within two city water distribution systems that were located in Korea. These applications were conducted to demonstrate the practical applicability of the method for providing solutions to customer complaints. The results of the field studies indicated that the proposed method would be feasible for investigating the sources of particulates and for preparing appropriate action plans for complaints related to particulate matter.

  3. Enhancing the water management schemes of H08 global hydrological model to attribute human water use to six major water sources

    Science.gov (United States)

    Hanasaki, N.; Yoshikawa, S.; Pokhrel, Y. N.; Kanae, S.

    2017-12-01

    Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water management, but the representation and performance of these schemes remain limited. We substantially enhanced the human water management schemes of the H08 GHM by incorporating the latest data and techniques. The model enables us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. All the interactions were simulated in a single computer program and the water balance was always strictly closed at any place and time during the simulation period. Using this model, we first conducted a historical global hydrological simulation at a spatial resolution of 0.5 x 0.5 degree to specify the sources of water for humanity. The results indicated that, in 2000, of the 3628 km3yr-1 global freshwater requirement, 2839 km3yr-1 was taken from surface water and 789 km3yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786, 199, 106, and 1.8 km3yr-1 of the surface water, respectively. The remaining 747 km3yr-1 freshwater requirement was unmet, or surface water was not available when and where it was needed in our simulation. Renewable and nonrenewable groundwater accounted for 607 and 182 km3yr-1 of the groundwater total, respectively. Second, we evaluated the water stress using our simulations and contrasted it with earlier global assessments based on empirical water scarcity indicators, namely, the Withdrawal to Availability ratio and the Falkenmark index (annual renewable water resources per capita). We found that inclusion of water infrastructures in our model diminished water stress in some parts of the world, on

  4. Curiosity's Autonomous Surface Safing Behavior Design

    Science.gov (United States)

    Neilson, Tracy A.; Manning, Robert M.

    2013-01-01

    The safing routines on all robotic deep-space vehicles are designed to put the vehicle in a power and thermally safe configuration, enabling communication with the mission operators on Earth. Achieving this goal is made a little more difficult on Curiosity because the power requirements for the core avionics and the telecommunication equipment exceed the capability of the single power source, the Multi-Mission Radioisotope Thermoelectric Generator. This drove the system design to create an operational mode, called "sleep mode", where the vehicle turns off most of the loads in order to charge the two Li-ion batteries. The system must keep the vehicle safe from over-heat and under-heat conditions, battery cell failures, under-voltage conditions, and clock failures, both while the computer is running and while the system is sleeping. The other goal of a safing routine is to communicate. On most spacecraft, this simply involves turning on the receiver and transmitter continuously. For Curiosity, Earth is above the horizon only a part of the day for direct communication to the Earth, and the orbiter overpass opportunities only occur a few times a day. The design must robustly place the Rover in a communicable condition at the correct time. This paper discusses Curiosity's autonomous safing behavior and describes how the vehicle remains power and thermally safe while sleeping, as well as a description of how the Rover communicates with the orbiters and Earth at specific times.

  5. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  6. 40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.

    Science.gov (United States)

    2010-07-01

    ... approves the use of E. coli as a fecal indicator for source water monitoring under this paragraph (a). If the repeat sample collected from the ground water source is E.coli positive, the system must comply... listed in the in paragraph (c)(2) of this section for the presence of E. coli, enterococci, or coliphage...

  7. Household pasteurization of drinking-water: the chulli water-treatment system.

    Science.gov (United States)

    Islam, Mohammad Fakhrul; Johnston, Richard B

    2006-09-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 degrees C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water.

  8. Man-made organic compounds in source water of nine community water systems that withdraw from streams, 2002-05

    Science.gov (United States)

    Kingsbury, James A.; Delzer, Gregory C.; Hamilton, Pixie A.

    2008-01-01

    Initial findings from a national study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterize the occurrence of about 250 anthropogenic organic compounds in source water (defined as water collected at a surface-water intake prior to water treatment) at nine community water systems in nine States in the Nation. The organic compounds analyzed in this study are primarily man-made and include pesticides, solvents, gasoline hydrocarbons, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. The study also describes and compares the occurrence of selected compounds detected in source water with their occurrence in finished water, which is defined as water that has passed through treatment processes but prior to distribution. This fact sheet summarizes major findings and implications of the study and serves as a companion product to two USGS reports that present more detailed and technical information for the nine systems studied during 2002-05 (Carter and others, 2007; Kingsbury and others, 2008).

  9. Premiering SAFE for Safety Added Fuel Element - 15020

    International Nuclear Information System (INIS)

    Bhowmik, P.K.; Shamim, J.A.; Suh, K.Y.; Suh, K.S.

    2015-01-01

    The impact of the Fukushima accident has been the willingness to implement passive safety measures in reactor design and to simplify reactor design itself. Within this framework, a new fuel element, named SAFE (Safety Added Fuel Element) based on the concept of accident tolerant fuel, is presented. SAFE is a new type of fuel element cooled internally and externally by light water and with stainless steel as the cladding material. The removal of boron may trigger a series of changes which may simplify the system greatly. A simplified thermal analysis of SAFE shows that the fuel centerline temperature is well below the maximal limit during the normal operation of the plant

  10. Economics of place-based monitoring under the safe drinking water act, part II: design and development of place-based monitoring strategies.

    Science.gov (United States)

    Brands, Edwin; Rajagopal, R

    2008-08-01

    The goals of environmental legislation and associated regulations are to protect public health, natural resources, and ecosystems. In this context, monitoring programs should provide timely and relevant information so that the regulatory community can implement legislation in a cost-effective and efficient manner. The Safe Drinking Water Act (SDWA) of 1974 attempts to ensure that public water systems (PWSs) supply safe water to its consumers. As is the case with many other federal environmental statutes, SDWA monitoring has been implemented in relatively uniform fashion across the United States. In this three part series, spatial and temporal patterns in water quality data are utilized to develop, compare, and evaluate the economic performance of alternative place-based monitoring approaches to current monitoring practice. Part II: Several factors affect the performance of monitoring strategies, including: measurable objectives, required precision in estimates, acceptable confidence levels of such estimates, available budget for sampling. In this paper, we develop place-based monitoring strategies based on extensive analysis of available historical water quality data (1960-1994) of 19 Iowa community water systems. These systems supply potable water to over 350,000 people. In the context of drinking water, the objective is to protect public health by utilizing monitoring resources to characterize contaminants that are detectable, and are close to exceeding health standards. A place-based monitoring strategy was developed in which contaminants were selected based on their historical occurrence, rather than their appearance on the SDWA contaminant list. In a subset of the water systems, the temporal frequency of monitoring for one ubiquitous contaminant, nitrate, was tailored to patterns in its historical occurrence and concentration. Three sampling allocation models (linear, quadratic, and cubic) based on historic patterns in peak occurrence were developed and

  11. Application of isotopic and hydro-geochemical methods in identifying sources of mine inrushing water

    Institute of Scientific and Technical Information of China (English)

    Dou Huiping; Ma Zhiyuan; Cao Haidong; Liu Feng; Hu Weiwei; Li Ting

    2011-01-01

    Isotopic and hydro-geochemical surveys were carried out to identify the source of mine inrushing water at the #73003 face in the Laohutai Mine.Based on the analysis of isotopes and hydro-chemical features of surface water,groundwater from different levels and the inrushing water,a special relationship between water at the #73003 face and cretaceous water has been found.The results show that the isotopic and hydro-chemical features of the inrushing water are completely different from those of other groundwater bodies,except for the cretaceous water.The isotopic and hydrochemical characteristics of cretaceous water are similar to the inrushing water of the #73003 face,which aided with obtaining the evidence for the possible source of the inrushing water at the #73003 face.The isotope calculations show that the inrushing water at the #73003 face is a mixture of cretaceous water and Quaternary water,water from the cretaceous conglomerate is the main source,accounting for 67% of the inrushing water,while the Quaternary water accounts for 33%.The conclusion is also supported by a study of inrushing-water channels and an active fault near the inrushing-water plot on the #73003 face.

  12. Dynamic operator actions analysis for inherently safe fast reactors and light water reactors

    International Nuclear Information System (INIS)

    Ho, V.; Apostolakis, G.

    1988-01-01

    A comparative dynamic human actions analysis of inherently safe fast reactors (ISFRs) and light water reactors (LWRs) in terms of systems response and estimated human error rates is presented. Brief overviews of the ISFR and LWR systems are given to illustrate the design differences. Key operator actions required by the ISFR reactor shutdown and decay heat removal systems are identified and are compared with those of the LWR. It is observed that, because of the passive nature of the ISFR safety-related systems, a large time window is available for operator actions during transient events. Furthermore, these actions are fewer in number, are less complex, and have lower error rates and less severe consequences than those of the LWRs. We expect the ISFR operator errors' contribution to risk is smaller (at least in the context of the existing human reliability models) than that of the LWRs. (author)

  13. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  14. Loading functions for assessment of water pollution from nonpoint sources

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  15. Book Review: Taste, color, and odor in drinking water (Introduction, Detection, and Control

    Directory of Open Access Journals (Sweden)

    Sina Dobaradaran

    2013-06-01

    Full Text Available Access to safe drinking water to protect human health and also for society development is necessary. With regards to population growing, industrial and economic development, serious harms on the quality and quantity of water resources are increasing. Considering the increasing pollution of water resources and the need for access to safe drinking water, understanding and knowledge of the water components in terms of planning, design and operation of water projects seems necessary. Beside this, knowledge about drinking water quality standards and its criteria in terms of health and pleasant for all people in this region (scientists, designers, engineers, operators and consultants is absolutely important. Production of drinking water in water treatment plants with considering primary health standards is of essential concern but attention to aesthetic aspects in drinking water sources must be also considered to increase public confidence about their drinking water sources. According to secondary standards for drinking water the contents of aesthetic parameters including color, odor and taste must be low and acceptable. In the present book the sources of color, odor and taste, measurement methods and removal of each cited parameter is discussed. Finally, the step by step design for removal systems of color, odor and taste in the particular circumstances are also considered with introducing case design. This book is recommended to students and researches in the field of environmental health engineering, environmental science and related sciences. This book can also be used in the design and operation of water treatment plants by designers, operators and all those involvedpublic.

  16. Development and Validation of an Acid Mine Drainage Treatment Process for Source Water

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ann [Battelle Memorial Institute, Columbus, OH (United States)

    2016-03-01

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  17. Working safely in gamma radiography. A training manual for industrial radiographers

    International Nuclear Information System (INIS)

    McGuire, S.A.; Peabody, C.A.

    1982-09-01

    This manual is designed for classroom training in working safely in industrial radiography using gamma sources. The purpose is to train radiographers' assistants to work safely as a qualified gamma radiographer. The contents cover the essentials of radiation, radiation protection, emergency procedures, gamma cameras, and biological effects of radiation

  18. Early warning system for detection of protozoal contamination of source waters

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Mogensen, Claus; Berg, Tommy W.

    2012-01-01

    Ensuring water quality is an ever increasing important issue world-wide. Currently, detection of protozoa in drinking water is a costly and time consuming process. We have developed an online, real-time sensor for detection of Cryptosporidium and Giardia spp. in a range of source waters. The novel...

  19. Tackling non-point source water pollution in British Columbia: An action plan

    Energy Technology Data Exchange (ETDEWEB)

    1998-01-01

    Efforts to protect British Columbia water quality by regulating point discharges from municipal and industrial sources have generally been successful, and it is recognized that the major remaining cause of water pollution in the province is from non-point sources. These sources are largely unregulated and associated with urbanization, agriculture, and other forms of land development. The first part of this report reviews the provincial commitment to clean water, the effects of non-point-source (NPS) pollution, and the management of NPS in the province. Part 2 describes the main causes of NPS in British Columbia: Land development, agriculture, stormwater runoff, on-site sewage systems, forestry and range activities, atmospheric deposition, and boating/marine activities. Finally, it presents key components of the province's NPS action plan: Education and training, prevention at site, land use planning and co-ordination, assessment and reporting, economic incentives, legislation and regulation, and implementation.

  20. Storm water runoff-a source of emerging contaminants in urban streams

    Science.gov (United States)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  1. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  2. Use of oleaginous plants in phytotreatment of grey water and yellow water from source separation of sewage.

    Science.gov (United States)

    Lavagnolo, Maria Cristina; Malagoli, Mario; Alibardi, Luca; Garbo, Francesco; Pivato, Alberto; Cossu, Raffaello

    2017-05-01

    Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated. Copyright © 2016. Published by Elsevier B.V.

  3. 76 FR 30495 - National Safe Boating Week, 2011

    Science.gov (United States)

    2011-05-25

    ... precautions and sensible behavior when spending time on the water. Safe boating is responsible boating. Individuals can prepare for excursions by taking boating safety courses and filing float plans with family...

  4. Effect of peracetic acid, ultraviolet radiation, nanofiltration-chlorine in the disinfection of a non conventional source of water (Tula Valley).

    Science.gov (United States)

    Trujillo, J; Barrios, J A; Jimenez, B

    2008-01-01

    Water supply for human consumption requires certain quality that reduces health risks to consumers. In this sense, the process of disinfection plays an important role in the elimination of pathogenic microorganisms. Even though chlorination is the most applied process based on its effectiveness and cost, its application is being questioned considering the formation of disinfection by-products (DBPs). Therefore, alternative disinfectants are being evaluated and some treatment processes have been proposed to remove DBPs precursors (organic matter. This paper reports the results of disinfection of a non conventional source of water (aquifer recharged unintentionally with raw wastewater) with peracetic acid (PAA) and ultraviolet radiation (UV) as well as nanofiltration (NF) followed by chlorination to produce safe drinking water. The results showed that a dose of 2 mg/L PAA was needed to eliminate total and faecal coliforms. For UV light, a dose of 12.40 mWs/cm2 reduced total and faecal coliforms below the detection limit. On the other hand, chlorine demand of water before NF was 1.1-1.3 mg/L with a trihalomethane formation potential (THMFP) of 118.62 microg/L, in contrast with chlorination after NF where the demand was 0.5 mg/L and THMFP of 17.64 microg/L. The recommended scheme is nanofiltration + chlorination.

  5. The Economic and Social Benefits and the Barriers of Providing People with Disabilities Accessible Clean Water and Sanitation

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2012-11-01

    Full Text Available Resolution A/HRC/RES/16/2 adopted by the UN Human Rights Council on 8 April 2011 declared access to safe drinking water and sanitation a human right. However many people around the globe including people with disabilities do not have access to safe drinking water, hygiene or sanitation facilities. Inaccessibility of clean water sources, hygiene and sanitation facilities negatively impacts among others health, education, the ability to work, and the ability to partake in social activities. This paper looks at the benefits of, and access barriers to, clean water and sanitation for people with disabilities.

  6. Sources and chronology of nitrate contamination in spring waters, Suwannee River basin, Florida

    Science.gov (United States)

    Katz, Brian G.; Hornsby, H.D.; Bohlke, J.K.; Mokray, M.F.

    1999-01-01

    A multi-tracer approach, which consisted of analyzing water samples for n aturally occurring chemical and isotopic indicators, was used to better understand sources and chronology of nitrate contamination in spring wate rs discharging to the Suwannee and Santa Fe Rivers in northern Florida. Dur ing 1997 and 1998, as part of a cooperative study between the Suwannee River Water Management District and the U.S. Geological Survey, water samples were collected and analyzed from 24 springs and two wells for major ions, nutrients, dissolved organic carbon, and selected environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N]. To better understand when nitrate entered the ground-water system, water samples were analyzed for chlorofluorocarbons (CFCs; CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H); in this way, the apparent ages and residence times of spring waters and water from shallow zones in the Upper Floridan aquifer were determined. In addition to information obtained from the use of isotopic and other chemical tracers, information on changes in land-use activities in the basin during 1954-97 were used to estimate nitrogen inputs from nonpoint sources for five counties in the basin. Changes in nitrate concentrations in spring waters with time were compared with estimated nitrogen inputs for Lafayette and Suwannee Counties. Agricultural activities [cropland farming, animal farming operations (beef and dairy cows, poultry, and swine)] along with atmospheric deposition have contributed large quantities of nitrogen to ground water in the Suwannee River Basin in northern Florida. Changes in agricultural land use during the past 40 years in Alachua, Columbia, Gilchrist, Lafayette, and Suwannee Counties have contributed variable amounts of nitrogen to the ground-water system. During 1955-97, total estimated nitrogen from all nonpoint sources (fertilizers, animal wastes, atmospheric deposition, and septic tanks) increased continuously in Gilchrist and Lafayette Counties. In

  7. FREEWAT: FREE and open source software tools for WATer resource management

    OpenAIRE

    Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura

    2015-01-01

    FREEWAT is an HORIZON 2020 project financed by the EU Commission under the call WATER INNOVATION: BOOSTING ITS VALUE FOR EUROPE. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and other EU wa...

  8. Surface-water nutrient conditions and sources in the United States Pacific Northwest

    Science.gov (United States)

    Wise, D.R.; Johnson, H.M.

    2011-01-01

    The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.

  9. Water Adsorption Isotherms on Fly Ash from Several Sources.

    Science.gov (United States)

    Navea, Juan G; Richmond, Emily; Stortini, Talia; Greenspan, Jillian

    2017-10-03

    In this study, horizontal attenuated total reflection (HATR) Fourier-transform infrared (FT-IR) spectroscopy was combined with quartz crystal microbalance (QCM) gravimetry to investigate the adsorption isotherms of water on fly ash, a byproduct of coal combustion in power plants. Because of composition variability with the source region, water uptake was studied at room temperature as a function of relative humidity (RH) on fly ash from several regions: United States, India, The Netherlands, and Germany. The FT-IR spectra show water features growth as a function of RH, with water absorbing on the particle surface in both an ordered (ice-like) and a disordered (liquid-like) structure. The QCM data was modeled using the Brunauer, Emmett, and Teller (BET) adsorption isotherm model. The BET model was found to describe the data well over the entire range of RH, showing that water uptake on fly ash takes place mostly on the surface of the particle, even for poorly combusted samples. In addition, the source region and power-plant efficiency play important roles in the water uptake and ice nucleation (IN) ability of fly ash. The difference in the observed water uptake and IN behavior between the four samples and mullite (3Al 2 O 3 ·2SiO 2 ), the aluminosilicate main component of fly ash, is attributed to differences in composition and the density of OH binding sites on the surface of each sample. A discussion is presented on the RH required to reach monolayer coverage on each sample as well as a comparison between surface sites of fly ash samples and enthalpies of adsorption of water between the samples and mullite.

  10. Spatial distribution of saline water and possible sources of intrusion ...

    African Journals Online (AJOL)

    The spatial distribution of saline water and possible sources of intrusion into Lekki lagoon and transitional effects on the lacustrine ichthyofaunal characteristics were studied during March, 2006 and February, 2008. The water quality analysis indicated that, salinity has drastically increased recently in the lagoon (0.007 to ...

  11. Water for development. World Water 2002 points to mounting challenges

    International Nuclear Information System (INIS)

    Rickwood, P.

    2002-01-01

    A looming crisis that overshadows nearly two-thirds of the Earth's population is drawing closer because of continued human mismanagement of water, population growth and changing weather patterns. In a joint statement, United Nations organizations drew attention to problems on the occasion of World Water Day 22 March 2002, for which the IAEA was the lead coordinating agency. By 2025, if present consumption patterns continue, about five billion people will be living in areas where it will be difficult or impossible to meet all their needs for fresh water. Half of them will face severe shortages. The UN organizations said that the implications will be extreme for the people most affected, who are among the world's poorest, limiting their ability to grow crops, which they need to survive, heightening disease and threatening States' national security. In the UN Millennium Declaration world leaders made a commitment to halve the number of people without access to safe and affordable water. In his World Water Day address, the UN Secretary General reported that, increasingly, countries with expertise in the management of watersheds and flood-plains, or with experience in efficient irrigation, are sharing the knowledge with others. The IAEA is among UN agencies offering a wide array of responses to the crisis, providing Member States with skills to apply isotope hydrology, to better manage groundwater. The technique permits reliable and rapid mapping of underground water sources so that they can be used safely without being exhausted. The IAEA also fosters the development of desalination to turn salt water into sweet water

  12. Coliform bacteria as in indicator of sewerage water mixing with drinking water sources in Rawalpindi city

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Bibi, S.; Javed, T.; Shah, Z.; Sajjad, M.I.

    1993-12-01

    The coliform group of bacteria are consider to be one of the prominent indicators of surface/groundwater pollution as their presence in drinking water sources shows that water has been in contact with soil, plants, septic tanks or sewerage lines/drains. As a part of surface/groundwater pollution studies in various areas of Rawalpindi city coliform bacteria have been determined in the available drinking sources to evaluate their possible connection with the nearby septic tanks and sewerage lines/drains. Selective water samples were tapped from 72 domestic dug wells, and 98 municipal corporation tube-wells and associated water supply lines in some poorly drained areas of Rawalpindi. These samples were analyzed using membrane filter technique. In general, the sampled areas have indicated poor water quality w.r.t. coliform activity. 52% samples of the collected samples have indicated presence of Ecoli. Of these, 73% samples mostly collected from the poorly drained areas have shown significant counts of Ecoli. These water are rendered unfit for drinking purposes. Thirteen water samples collected indicated toxic levels of Ecoli in the municipal water supply caused due to a known leakage in the main domestic water supply line. The presence of coliform in the tube-well water supply taps are thus attributed to ruptures in the underground water supply lines. Present study reveals that general sanitary condition and water quality in the city are poor and that there is an urgent need of improvement in the water treatment and distribution systems by the concern quaters. (Orig./A.B.)

  13. Working safely in gamma radiography. A training manual for industrial radiographers

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.; Peabody, C.A.

    1982-09-01

    This manual is designed for classroom training in working safely in industrial radiography using gamma sources. The purpose is to train radiographers' assistants to work safely as a qualified gamma radiographer. The contents cover the essentials of radiation, radiation protection, emergency procedures, gamma cameras, and biological effects of radiation. (ACR)

  14. Lessons Learned From Developing a Sustainable Arsenic-Safe Water Program in West Bengal, India Over a Period of Eight Years

    Science.gov (United States)

    Smith, M. M.; Liaw, J.; Hira, A.; Guha, P.; Pal, S. S.; Hore, T.; Smith, A. H.

    2010-12-01

    Arsenic is a carcinogen, and causes many cancers and noncancer diseases. Recent findings have shown that exposure to arsenic in drinking water as a child or before birth can cause illness and death even as an adult. In the West Bengal region of India, more than six million people are drinking crystal clear but arsenic-contaminated water from tubewells. Project Well, a non-profit organization based in California, has provided safe drinking water to villages in West Bengal since 2001 through modern modified dugwells, currently numbering 163. Along the way, Project Well has faced the challenge of persuading people to stop consuming good-tasting, arsenic-laced water and instead drink chlorinated water, which is safe but may have the smell of chlorine. Additionally, West Bengal receives abundant annual rainfall, and hence it is difficult to convince people to pay for treated water. From its inception, the Project Well program was set up with a tracking system to assess the efficacy of the modern dugwells, which has helped identify where technical improvements were needed. Continuous interaction with community-based user groups has also helped overcome many constraints and make the program sustainable. Project Well monitoring records from August 2010 show that out of 163 modern dugwells, 48 percent were being used, providing water for 2948 villagers; 23 percent were closed; 6 percent were dry (11 districts of West Bengal were in a drought); 6 percent required maintenance; and 7 percent were not used. Arsenic concentrations in the modern dugwells were measured every year during peak season when the water table was low and the median arsenic concentration of operational dugwells over the eight years between 2002 and 2010 was 15 ppb (the permissible limit in India is 50 ppb). Each year, about 6 to 10 percent of the dugwells have arsenic levels above 50 ppb during the summer season, when the water level is low. Bacterial counts, i.e., total coliform and fecal coliform, are

  15. Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia.

    Science.gov (United States)

    Clasen, T; Brown, J; Suntura, O; Collin, S

    2004-01-01

    A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.

  16. WATERPROTECT: Innovative tools enabling drinking water protection in rural and urban environments

    Science.gov (United States)

    Seuntjens, Piet; Campling, Paul; Joris, Ingeborg; Wauters, Erwin; Lopez de Alda, Miren; Kuczynska, Anna; Lajer Hojberg, Anker; Capri, Ettore; Brabyn, Cristina; Boeckaert, Charlotte; Mellander, Per Erik; Pauwelyn, Ellen; Pop, Edit

    2017-04-01

    High-quality, safe, and sufficient drinking water is essential for life: we use it for drinking, food preparation and cleaning. Agriculture is the biggest source of pesticides and nitrate pollution in European fresh waters. The overarching objective of the recently approved H2020 project WATERPROTECT is to contribute to effective uptake and realisation of management practices and mitigation measures to protect drinking water resources. Therefore WATERPROTECT will create an integrative multi-actor participatory framework including innovative instruments that enable actors to monitor, to finance and to effectively implement management practices and measures for the protection of water sources. We propose seven case studies involving multiple actors in implementing good practices (land management, farming, product stewardship, point source pollution prevention) to ensure safe drinking water supply. The seven case studies cover different pedo-climatic conditions, different types of farming systems, different legal frameworks, larger and smaller water collection areas across the EU. In close cooperation with actors in the field in the case studies (farmers associations, local authorities, water producing companies, private water companies, consumer organisations) and other stakeholders (fertilizer and plant protection industry, environment agencies, nature conservation agencies, agricultural administrations) at local and EU level, WATERPROTECT will develop innovative water governance models investigating alternative pathways from focusing on the 'costs of water treatment' to 'rewarding water quality delivering farming systems'. Water governance structures will be built upon cost-efficiency analysis related to mitigation and cost-benefit analysis for society, and will be supported by spatially explicit GIS analyses and predictive models that account for temporal and spatial scaling issues. The outcome will be improved participatory methods and public policy instruments

  17. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Yuan, E-mail: zhangyuan@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhou, Changbo [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Guo, Changsheng; Wang, Dingming [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Du, Ping [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Luo, Yi [College of Environmental Sciences and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China); Wan, Jun; Meng, Wei [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2014-11-01

    The occurrence of 15 antibiotics classified as sulphonamides, fluoroquinolones, macrolides, tetracyclines and trimethoprim in sediment, overlying water, and pore water matrices in Taihu Lake, China was studied. The total concentrations were from 4.1 μg/kg to 731 μg/kg, from 127 ng/L to 1210 ng/L, and from 1.5 ng/L to 216 ng/L in sediment, overlying water and pore water, respectively. Antibiotics in different locations originated from various sources, depending on human, agricultural and aquacultural activities. Composition analysis indicated that human-derived and animal-derived drugs significantly contributed to the total contamination of antibiotics in the lake, indicating the high complexity of contamination sources in Taihu Lake Basin. The in situ sediment–pore water partitioning coefficients were generally greater than sediment–overlying water partitioning coefficients, suggesting continuous inputs into the lake water. This study shows that antibiotics are ubiquitous in all compartments in Taihu Lake, and their potential hazards to the aquatic ecosystem need further investigation. - Highlights: • Antibiotics are ubiquitous in sediment, overlying water and pore water in Taihu Lake. • Antibiotics in Taihu Lake originated from human and nonhuman activities. • Ksp is higher than Ksw, indicating the continuous antibiotics input to lake water.

  18. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China

    International Nuclear Information System (INIS)

    Xu, Jian; Zhang, Yuan; Zhou, Changbo; Guo, Changsheng; Wang, Dingming; Du, Ping; Luo, Yi; Wan, Jun; Meng, Wei

    2014-01-01

    The occurrence of 15 antibiotics classified as sulphonamides, fluoroquinolones, macrolides, tetracyclines and trimethoprim in sediment, overlying water, and pore water matrices in Taihu Lake, China was studied. The total concentrations were from 4.1 μg/kg to 731 μg/kg, from 127 ng/L to 1210 ng/L, and from 1.5 ng/L to 216 ng/L in sediment, overlying water and pore water, respectively. Antibiotics in different locations originated from various sources, depending on human, agricultural and aquacultural activities. Composition analysis indicated that human-derived and animal-derived drugs significantly contributed to the total contamination of antibiotics in the lake, indicating the high complexity of contamination sources in Taihu Lake Basin. The in situ sediment–pore water partitioning coefficients were generally greater than sediment–overlying water partitioning coefficients, suggesting continuous inputs into the lake water. This study shows that antibiotics are ubiquitous in all compartments in Taihu Lake, and their potential hazards to the aquatic ecosystem need further investigation. - Highlights: • Antibiotics are ubiquitous in sediment, overlying water and pore water in Taihu Lake. • Antibiotics in Taihu Lake originated from human and nonhuman activities. • Ksp is higher than Ksw, indicating the continuous antibiotics input to lake water

  19. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    Science.gov (United States)

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed.

  20. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine

    Science.gov (United States)

    Cromeans, Theresa L.; Metcalfe, Maureen G.; Humphrey, Charles D.; Hill, Vincent R.

    2016-01-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water. PMID:26910058

  1. Is fasting safe? A chart review of adverse events during medically supervised, water-only fasting.

    Science.gov (United States)

    Finnell, John S; Saul, Bradley C; Goldhamer, Alan C; Myers, Toshia R

    2018-02-20

    Evidence suggests that fasting, during which only water is consumed, results in potentially health promoting physiological effects. However, peer-reviewed research assessing the safety of water-only fasting is lacking. To address this, we conducted a chart review to describe adverse events (AEs) that occurred during medically supervised, water-only fasting. Electronic charts from patient visits to a residential medical facility from 2006 to 2011 were reviewed. Patients who were at least 21 years of age and water-only fasted for ≥2 consecutive days with a refeeding period equal to half of the fast length were included. Out of 2539 charts, 768 visits met our inclusion and exclusion criteria. AEs were abstracted from chart notes and classified according to CTCAE (v4.03) and MedDRA (v12.1) terminology. Descriptive analysis of AEs is reported. During the protocol period, the highest grade AE (HGAE) in 555 visits was a grade 2 event or lower, in 212 visits it was a grade 3 event, in 1 visit it was a grade 4 event, and there were no grade 5 events. There were 2 (0.002%) visits with a serious adverse event (SAE). The majority of AEs identified were mild (n = 4490, 75%) in nature and known reactions to fasting. To our knowledge, this is the most comprehensive analysis of AEs experienced during medically supervised, water-only fasting conducted to date. Overall, our data indicate that the majority of AEs experienced were mild to moderate and known reactions to fasting. This suggests that the protocol used in this study can be safely implemented in a medical setting with minimal risk of a SAE.

  2. Drivers of microbiological quality of household drinking water - a case study in rural Ethiopia.

    Science.gov (United States)

    Usman, Muhammed A; Gerber, Nicolas; Pangaribowo, Evita H

    2018-04-01

    This study aims at assessing the determinants of microbiological contamination of household drinking water under multiple-use water systems in rural areas of Ethiopia. For this analysis, a random sample of 454 households was surveyed between February and March 2014, and water samples from community sources and household storage containers were collected and tested for fecal contamination. The number of Escherichia coli (E. coli) colony-forming units per 100 mL water was used as an indicator of fecal contamination. The microbiological tests demonstrated that 58% of household stored water samples and 38% of protected community water sources were contaminated with E. coli. Moreover, most improved water sources often considered to provide safe water showed the presence of E. coli. The result shows that households' stored water collected from unprotected wells/springs had higher levels of E. coli than stored water from alternative sources. Distance to water sources and water collection containers are also strongly associated with stored water quality. To ensure the quality of stored water, the study suggests that there is a need to promote water safety from the point-of-source to point-of-use, with due considerations for the linkages between water and agriculture to advance the Sustainable Development Goal 6 of ensuring access to clean water for everyone.

  3. Seasonal Shifts in Primary Water Source Type: A Comparison of Largely Pastoral Communities in Uganda and Tanzania

    Directory of Open Access Journals (Sweden)

    Amber L. Pearson

    2016-01-01

    Full Text Available Many water-related illnesses show an increase during the wet season. This is often due to fecal contamination from runoff, yet, it is unknown whether seasonal changes in water availability may also play a role in increased illness via changes in the type of primary water source used by households. Very little is known about the dynamic aspects of access to water and changes in source type across seasons, particularly in semi-arid regions with annual water scarcity. The research questions in this study were: (1 To what degree do households in Uganda (UG and Tanzania (TZ change primary water source type between wet and dry seasons?; and (2 How might seasonal changes relate to water quality and health? Using spatial survey data from 92 households each in UG and TZ this study found that, from wet to dry season, 26% (UG and 9% (TZ of households switched from a source with higher risk of contamination to a source with lower risk. By comparison, only 20% (UG and 0% (TZ of households switched from a source with lower risk of contamination to a source with higher risk of contamination. This research suggests that one pathway through which water-related disease prevalence may differ across seasons is the use of water sources with higher risk contamination, and that households with access to sources with lower risks of contamination sometimes choose to use more contaminated sources.

  4. Development of sustainable water treatment technology using scientifically based calculated indexes of source water quality indicators

    Directory of Open Access Journals (Sweden)

    А. С. Трякина

    2017-10-01

    Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in

  5. Level of Faecal Coliform Contamination of Drinking Water Sources ...

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... ... of Drinking Water Sources and Its Associated Risk Factors in Rural Settings of North Gondar ... of Environmental & Occupational. Health & Safety, Gondar, Ethiopia. 2University of Gondar .... technicians. All sampling bottles ...

  6. Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat.

    Science.gov (United States)

    Zhou, Hai; Zhao, Wenzhi; Zheng, Xinjun; Li, Shoujuan

    2015-07-01

    In water-limited environments, the water sources used by desert shrubs are critical to understanding hydrological processes. Here we studied the oxygen stable isotope ratios (δ (18)O) of stem water of Nitraria sibirica as well as those of precipitation, groundwater and soil water from different layers to identify the possible water sources for the shrub. The results showed that the shrub used a mixture of soil water, recent precipitation and groundwater, with shallow lateral roots and deeply penetrating tap (sinker) roots, in different seasons. During the wet period (in spring), a large proportion of stem water in N. sibirica was from snow melt and recent precipitation, but use of these sources declined sharply with the decreasing summer rain at the site. At the height of summer, N. sibirica mainly utilized deep soil water from its tap roots, not only supporting the growth of shoots but also keeping the shallow lateral roots well-hydrated. This flexibility allowed the plants to maintain normal metabolic processes during prolonged periods when little precipitation occurs and upper soil layers become extremely dry. With the increase in precipitation that occurs as winter approaches, the percentage of water in the stem base of a plant derived from the tap roots (deep soil water or ground water) decreased again. These results suggested that the shrub's root distribution and morphology were the most important determinants of its ability to utilize different water sources, and that its adjustment to water availability was significant for acclimation to the desert habitat.

  7. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    International Nuclear Information System (INIS)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr 90 , Cs 137 , and Pu 239 . Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150 0 C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated

  8. Design of efficient and safe sanitary installations; Ontwerpen van zuinige en veilige sanitaire installaties

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, W.; Pieterse-Quirijns, I.; Van Bergen, R.; Van Bruggen, M.; Nuijten, O.; Van der Lugt, W.; Wilschut, M.; Van Oostwaard, T.; Van Rijn, B.; Leiting, E.

    2012-12-15

    In this issue of ThemaTech several aspects regarding the title topic are discussed in 9 articles: hygienic and efficient design of main water supply systems, the scope of sustainable design and installation, calculation rules for the design of main water supply systems, prevention of Legionella in tap water, new calculation rules in comparison with the q{open_square}n method, energy efficient and safe thermal disinfection, urine as a source of useful materials, advise on legionella prevention for public water systems, saving cost with legionella prevention in the building process [Dutch] In deze aflevering van ThemaTech worden diverse aspecten m.b.t. het titel onderwerp behandeld in 9 artikelen: beter hygienisch en zuinig ontwerp van leidingwaterinstallaties, de reikwijdte van duurzaam ontwerpen en installeren, rekenregels voor het ontwerp van leidingwaterinstallaties, legionellapreventie in leidingwater, nieuwe rekenregels in vergelijking met de q{open_square}n method, energiezuinige en veilige thermische desinfectie, urine als bron van grondstoffen, advisering over legionella preventie voor collectieve leidingwaterinstallaties, kostenbesparing van legionellapreventie in het bouwproces.

  9. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA

    OpenAIRE

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2016-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history.?Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Re...

  10. Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands: Pahranagat Valley, Nevada, USA

    Science.gov (United States)

    Paces, James B.; Wurster, Frederic C.

    2014-01-01

    Near-surface physical and chemical process can strongly affect dissolved-ion concentrations and stable isotope compositions of water in wetland settings, especially under arid climate conditions. In contrast, heavy radiogenic isotopes of strontium (87Sr/86Sr) and uranium (234U/238U) remain largely unaffected and can be used to help identify unique signatures from different sources and quantify end-member mixing that would otherwise be difficult to determine. The utility of combined Sr and U isotopes are demonstrated in this study of wetland habitats on the Pahranagat National Wildlife Refuge, which depend on supply from large-volume springs north of the Refuge, and from small-volume springs and seeps within the Refuge. Water budgets from these sources have not been quantified previously. Evaporation, transpiration, seasonally variable surface flow, and water management practices complicate the use of conventional methods for determining source contributions and mixing relations. In contrast, 87Sr/86Sr and 234U/238U remain unfractionated under these conditions, and compositions at a given site remain constant. Differences in Sr- and U-isotopic signatures between individual sites can be related by simple two- or three-component mixing models. Results indicate that surface flow constituting the Refuge’s irrigation source consists of a 65:25:10 mixture of water from two distinct regionally sourced carbonate aquifer springs, and groundwater from locally sourced volcanic aquifers. Within the Refuge, contributions from the irrigation source and local groundwater are readily determined and depend on proximity to those sources as well as water management practices.

  11. The journey from safe yield to sustainability.

    Science.gov (United States)

    Alley, William M; Leake, Stanley A

    2004-01-01

    Safe-yield concepts historically focused attention on the economic and legal aspects of ground water development. Sustainability concerns have brought environmental aspects more to the forefront and have resulted in a more integrated outlook. Water resources sustainability is not a purely scientific concept, but rather a perspective that can frame scientific analysis. The evolving concept of sustainability presents a challenge to hydrologists to translate complex, and sometimes vague, socioeconomic and political questions into technical questions that can be quantified systematically. Hydrologists can contribute to sustainable water resources management by presenting the longer-term implications of ground water development as an integral part of their analyses.

  12. Fractured Epikarst Bedrock as Water Source for Woody Plants in Savanna

    Science.gov (United States)

    Schwinning, S.; Goodsheller, K. R.; Schwartz, B. F.

    2010-12-01

    Study of the soil-vegetation-atmosphere system has been overwhelmingly dominated by systems with deep soils, yet large portions of the world are characterized by shallow soils underlain by fractured bedrock. In these systems, fractured bedrock may provide significant water storage, but we know little about the function of fractured bedrock as a water source for plants. In this study we examined the water use of three co-dominant tree species on the eastern rim of the karstic Edwards Plateau where the soil is extremely rocky, only 20 -30 cm thick, and overlies a well-developed epikarst. We used Granier sap flow sensors to estimate changes in sapflow velocity with the onset of summer drought. Simultaneously, we measured precipitation inputs and drip rates in a shallow cave below the field site. Precipitation, stem and drip water were also periodically sampled for stable isotope analysis to match stem water with potential source waters. The year of the study, 2009, was characterized by extreme drought conditions developing during summer. Sap flow rates began to decline in mid-May for all three species, but there were distinct species differences in the development of water stress: live oak (Quercus fusiformis) was the first to show significant loss of transpiration, reaching minimal sap flow values by early June. Cedar elm (Ulmus crassifolia) reached minimal sap flow values by early July, while Ashe juniper’s (Juniperus ashei) loss of transpiration was very gradual, continuing to decline until early August. The isotope ratios of hydrogen and oxygen in water were not significantly different between species, suggesting that root development and water uptake was similarly constrained for the three species. In summer, all stem water isotope ratios were enriched relative to precipitation, while all drip waters coincided with the local meteoric water line. This suggests that tree water sources were relatively shallow and water draining out of the root zone did not have a

  13. Risk management for assuring safe drinking water.

    OpenAIRE

    Hrudey, Steve E.; Hrudey, Elizabeth J.; Pollard, Simon J. T.

    2006-01-01

    Millions of people die every year around the world from diarrheal diseases much of which is caused by contaminated drinking water. By contrast, drinking water safety is largely taken for granted by many citizens of affluent nations. The ability to drink water that is delivered into households without fear of becoming ill may be one of the key defining characteristics of developed nations in relation to the majority of the world. Yet there is well-documented evidence that dis...

  14. Developing an environmentally appropriate, socially acceptable and gender-sensitive technology for safe-water supply to households in arsenic affected areas in rural Bangladesh

    NARCIS (Netherlands)

    Amin, N.

    2010-01-01

    To confront the arsenic crisis in Bangladesh, several options for a safe water supply in the rural As-affected areas are available. Most of these options have shown a minimum scope to mitigate arsenic-related risks because of their poor performance and non-acceptability by the rural households. In

  15. Spatio-Temporal Patterns and Source Identification of Water Pollution in Lake Taihu (China

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-03-01

    Full Text Available Various multivariate methods were used to analyze datasets of river water quality for 11 variables measured at 20 different sites surrounding Lake Taihu from 2006 to 2010 (13,200 observations, to determine temporal and spatial variations in river water quality and to identify potential pollution sources. Hierarchical cluster analysis (CA grouped the 12 months into two periods (May to November, December to the next April and the 20 sampling sites into two groups (A and B based on similarities in river water quality characteristics. Discriminant analysis (DA was important in data reduction because it used only three variables (water temperature, dissolved oxygen (DO and five-day biochemical oxygen demand (BOD5 to correctly assign about 94% of the cases and five variables (petroleum, volatile phenol, dissolved oxygen, ammonium nitrogen and total phosphorus to correctly assign >88.6% of the cases. In addition, principal component analysis (PCA identified four potential pollution sources for Clusters A and B: industrial source (chemical-related, petroleum-related or N-related, domestic source, combination of point and non-point sources and natural source. The Cluster A area received more industrial and domestic pollution-related agricultural runoff, whereas Cluster B was mainly influenced by the combination of point and non-point sources. The results imply that comprehensive analysis by using multiple methods could be more effective for facilitating effective management for the Lake Taihu Watershed in the future.

  16. Relationship between organic precursors and N-nitrosodimethylamine (NDMA) formation in tropical water sources.

    Science.gov (United States)

    Qi, Wang; Fang Yee, Lim; Jiangyong, Hu

    2014-12-01

    The presence of organic compounds in water sources is one of the concerns in water treatment. They are potential precursors of disinfection byproducts (DBPs) and thus induce health problems in humans. Among the emerging DBPs, carcinogenic compound N-nitrosodimethylamine (NDMA) has been receiving attention during the last decade. This study examined the characteristics of organic components in various water sources and investigated their relationships with NDMA formation. Experiments were carried out on selected water samples from both natural water and wastewater. Results showed similar NDMA formation kinetics for both water sources. However, more contribution of NDMA precursors was found to be from the wastewater due to its higher organic nitrogen content. NDMA formation potential (NDMAFP) of secondary effluent ranged from 264 to 530 ng/L. A correlation study between organic compound characteristics and NDMAFP indicated that the majority of NDMA precursors came from dissolved organic nitrogen (DON) compound with small molecular weight (smaller than 500 Da), with correlation R(2) = 0.898. Although secondary treatment removed more than 90% of NDMA precursors, the remaining precursors in secondary effluent would still pose a challenge for water quality.

  17. Mineral sources of water and their influence on the safe disposal of radioactive wastes in bedded salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Fallis, S.M.

    1973-12-01

    With the increased use of nuclear energy, there will be subsequent increases in high-level radioactive wastes such as Sr/sup 90/, Cs/sup 137/, and Pu/sup 239/. Several agencies have considered the safest possible means to store or dispose of wastes in geologic environments such as underground storage in salt deposits, shale beds, abandoned dry mines, and in clay and shale pits. Salt deposits have received the most favorable attention because they exist in dry environments and because of other desirable properties of halite (its plasticity, gamma-ray shielding, heat dissipation ability, low mining cost, and worldwide abundance). Much work has been done on bedded salt deposits, particularly the Hutchinson Salt Member of the Wellington Formation at Lyons, Kansas. Salt beds heated by the decay of the radioactive wastes may release water by dehydration of hydrous minerals commonly present in evaporite sequences or water present in other forms such as fluid inclusions. More than 80 hydrous minerals are known to occur in evaporite deposits. The occurrences, total water contents (up to 63%) and dehydration temperatures (often less that 150/sup 0/C) of these minerals are given. Since it is desirable to dispose of radioactive wastes in a dry environment, care must be taken that large quantities of water are not released through the heating of hydrous minerals. Seventy-four samples from four cores taken at Lyons, Kansas, were analyzed by x-ray diffraction. The minerals detected were halite, anhydrite, gypsum, polyhalite, dolomite, magnesite, quartz, feldspar, and the clay minerals illite, chlorite, kaolinite, vermiculite, smectite, mixed-layer clay, and corrensite (interstratified chlorite-vermiculite). Of these, gypsum, polyhalite and the clay minerals are all capable of releasing water when heated.

  18. Safe drinking water production in rural areas: a comparison between developed and less developed countries.

    Science.gov (United States)

    Cotruvo, J A; Trevant, C

    2000-01-01

    At the fundamental level, there are remarkable parallels between developed and less developed countries in problems of providing safe drinking water in rural areas, but of course, they differ greatly in degree and in the opportunities for resolution. Small water supplies frequently encounter difficulty accessing sufficient quantities of drinking water for all domestic uses. If the water must be treated for safety reasons, then treatment facilities and trained operating personnel and finances are always in short supply. Ideally, each solution should be sustainable within its own cultural, political and economic context, and preferably with local personnel and financial resources. Otherwise, the water supply will be continuously dependent on outside resources and thus will not be able to control its destiny, and its future will be questionable. The history of success in this regard has been inconsistent, particularly in less developed but also in some developed countries. The traditional and ideal solution in developing countries has been central water treatment and a piped distribution network, however, results have had a mixed history primarily due to high initial costs and operation and maintenance, inadequate access to training, management and finance sufficient to support a fairly complex system for the long term. These complete systems are also slow to be implemented so waterborne disease continues in the interim. Thus, non-traditional, creative, cost-effective practical solutions that can be more rapidly implemented are needed. Some of these options could involve: small package central treatment coupled with non piped distribution, e.g. community supplied bottled water; decentralized treatment for the home using basic filtration and/or disinfection; higher levels of technology to deal with chemical contaminants e.g. natural fluoride or arsenic. These technological options coupled with training, technical support and other essential elements like community

  19. Inherently safe in situ uranium recovery

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-01-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  20. Global opportunities in land and water use while staying within the safe (and just) operating space: quantifications of interactions and tradeoffs

    Science.gov (United States)

    Gerten, Dieter; Jägermeyr, Jonas; Heck, Vera

    2016-04-01

    Staying within the safe and just operating space as defined by multiple planetary boundaries will be a major challenge especially in view of anticipated future increases in food demand, the potential need for balancing climate change (e.g. through terrestrial carbon dioxide removal) and its impacts, and the water and land demand associated with these goals and measures. This presentation will show simulation results from a comprehensive model-based study on the global potentials of diverse crop management options considered as opportunities to stay within the planetary boundaries for human freshwater use and land-system change. The quantified on-farm options include rainwater harvesting, soil conservation and more efficient irrigation, all of which are designed to use neither more water nor more land for agriculture than is presently the case. Results show that irrigation efficiency improvements could save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ambitious scenario), and if rerouted to irrigate neighbouring rainfed systems, could at the same time boost kilocalorie production by 26% globally. Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, such ambitious yet achievable integrated water management strategies could increase global kcal production by 41% and close the water-related yield gap by 62%. Global climate change would have adverse effects on crop yields in many regions, but the improvements in water management quantified here could buffer such effects to a significant degree. Thus, a substantial amount of anticipated future needs for food production could be fulfilled without further approaching / transgressing planetary boundaries. In addition, it will be shown how large-scale biomass plantations for the purpose of terrestrial CO2 removal (climate engineering, potentially implemented should

  1. Nonpoint source water pollution abatement and the feasibility of voluntary programs

    Science.gov (United States)

    Sawicki, David S.; Judd, Lynne B.

    1983-09-01

    This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements

  2. Piper-PCA-Fisher Recognition Model of Water Inrush Source: A Case Study of the Jiaozuo Mining Area

    Directory of Open Access Journals (Sweden)

    Pinghua Huang

    2018-01-01

    Full Text Available Source discrimination of mine water plays an important role in guiding mine water prevention in mine water management. To accurately determine water inrush source from a mine in the Jiaozuo mining area, a Piper trilinear diagram based on hydrochemical experimental data of stratified underground water in the area was utilized to determine typical water samples. Additionally, principal component analysis (PCA was used for dimensionality reduction of conventional hydrochemical variables, after which mutually independent variables were extracted. The Piper-PCA-Fisher water inrush source recognition model was established by combining the Piper trilinear diagram and Fisher discrimination theory. Screened typical samples were used to conduct back-discriminate verification of the model. Results showed that 28 typical water samples in different aquifers were determined through the Piper trilinear diagram as a water sample set for training. Before PCA was carried out, the first five factors covered 98.92% of the information quantity of the original data and could effectively represent the data information of the original samples. During the one-by-one rediscrimination process of 28 groups of training samples using the Piper-PCA-Fisher water inrush source model, 100% correct discrimination rate was achieved. During the prediction and discrimination process of 13 samples, one water sample was misdiscriminated; hence, the correct prediscrimination rate was 92.3%. Compared with the traditional Fisher water source recognition model, the Piper-PCA-Fisher water source recognition model established in this study had higher accuracy in both rediscrimination and prediscrimination processes. Thus it had a strong ability to discriminate water inrush sources.

  3. In vitro bioanalysis of drinking water from source to tap.

    Science.gov (United States)

    Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta

    2018-08-01

    The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic

  4. Molecular detection of Fasciola hepatica in water sources of District Nowshehra Khyber Pakhtunkhwa Pakistan

    Science.gov (United States)

    Khan, Imran; Khan, Amir Muhammad; Ayaz, Khan, Sanaullah; Anees, Muhammad; Khan, Shaukat Ali

    2012-12-01

    Fascioliasis is spread through contamination of water sources and cause morbidity throughout the world. In the current study 300 water samples were processed by PCR for detection of Fasciola hepatica. The overall prevalence in different water sources was 9.66 % (29/300). Highest prevalence was recorded in drain water16 % (16/100) followed by tube well water 10% (4/40), open well water 8 % (8/100) and the lowest was recorded in tap water 1.66 %(1/60). The significant difference P < 0.05 was recorded during data analysis. The highest prevalence was recorded in summer. It was concluded from the study that cleaning and filtration should be adopted to avoid the health hazards against water borne zoonotic parasites.

  5. Application of water quality index for the assessment of suitability of natural sources of water for drinking in rural areas of east Sikkim, India

    OpenAIRE

    Shubra Poonia; T Shantikumar Singh; Dechen C Tsering

    2015-01-01

    In Sikkim, especially in the rural areas where there is no supply of treated water for drinking and other domestic uses, natural surface water is the only source. The objective was to assess the water quality of natural sources of water in the rural areas of East Sikkim using a water quality index (WQI) for different seasons. A total of 225 samples, that is, 75 in winter, 75 in summer, and 75 in monsoon were collected from different sources for physicochemical analysis, and a WQI was calculat...

  6. Water You Engineering? An Activity to Develop Water-Quality Awareness

    Science.gov (United States)

    Riskowski, Jody; Todd, Carrie Davis

    2009-01-01

    Water is one of our most precious resources. However, for many in the United States, having fresh, safe drinking water is taken for granted, and due to this perceived lack of relevance, students may not fully appreciate the luxury of having safe running water--in the home. One approach to resolving water-quality issues in the United States may…

  7. Feasibility study of broadband efficient ''water window'' source

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-01

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  8. Current Status and Management of Hand Pump Equipped Water Facilities in Blantyre Rural District, Malawi : Case Study of Kapeni and Lundu Traditional Authorities

    OpenAIRE

    Njalam'mano, John Bright Joseph

    2007-01-01

    Although the access to adequate safe drinking water is taken for granted in developed countries and urban settlements in some developing countries at the end of 2002 it was estimated that globally, some 1.1 billion people still rely on unsafe drinking water sources particularly in the developing regions of India and Africa. Malawi is one of the developing countries located in the arid-semiarid Sub-Saharan African region with only 62% of its people having access to safe drinking water. Borehol...

  9. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities

    OpenAIRE

    Aaron B. Switalski; Heather L. Bateman

    2017-01-01

    Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert...

  10. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    Science.gov (United States)

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh -1 /NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Water quality and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma, 2003

    Science.gov (United States)

    Masoner, Jason R.; Mashburn, Shana L.

    2004-01-01

    Water from the Cimarron terrace aquifer in northwest Oklahoma commonly has nitrate concentrations that exceed the maximum contaminant level of 10 milligrams per liter of nitrite plus nitrate as nitrogen (referred to as nitrate) set by the U.S. Environmental Protection Agency for public drinking water supplies. Starting in July 2003, the U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study in the Cimarron terrace aquifer to assess the water quality and possible sources of nitrate. A qualitative and quantitative approach based on multiple lines of evidence from chemical analysis of nitrate, nitrogen isotopes in nitrate, pesticides (indicative of cropland fertilizer application), and wastewater compounds (indicative of animal or human wastewater) were used to indicate possible sources of nitrate in the Cimarron terrace aquifer. Nitrate was detected in 44 of 45 ground-water samples and had the greatest median concentration (8.03 milligrams per liter) of any nutrient analyzed. Nitrate concentrations ranged from chemicals, 3 compounds were hydrocarbons, 2 compounds were industrial chemicals, 2 compounds were pesticides, 1 compound was of animal source, and 1 compound was a detergent compound. The most frequently detected wastewater compound was phenol, which was detected in 23 wells. N,N-diethyl-meta-toluamide (DEET) was detected in water samples from 5 wells. Benzophenone, ethanol- 2-butoxy-phosphate, and tributylphosphate were detected in water samples from 3 wells. Fertilizer was determined to be the possible source of nitrate in samples from 13 of 45 wells sampled, with a15N values ranging from 0.43 to 3.46 permil. The possible source of nitrate for samples from the greatest number of wells (22 wells) was from mixed sources of nitrate from fertilizer, septic or manure, or natural sources. Mixed nitrate sources had a 15N values ranging from 0.25 to 9.83 permil. Septic or manure was determined as the possible

  12. Monitoring of Cryptosporidium and Giardia in Czech drinking water sources.

    Science.gov (United States)

    Dolejs, P; Ditrich, O; Machula, T; Kalousková, N; Puzová, G

    2000-01-01

    In Czech raw water sources for drinking water supply, Cryptosporidium was found in numbers from 0 to 7400 per 100 liters and Giardia from 0 to 485 per 100 liters. The summer floods of 1997 probably brought the highest numbers of Cryptosporidium oocysts into one of the reservoirs sampled; since then these numbers decreased steadily. A relatively high number of Cryptosporidium oocysts was found in one sample of treated water. Repeated sampling demonstrated that this was a sporadic event. The reason for the presence of Cryptosporidium in a sample of treated drinking-water is unclear and requires further study.

  13. Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern Taiwan.

    Science.gov (United States)

    Chen, Wei-Hsiang; Wang, Chung-Ya; Huang, Tsung-Hsien

    2016-10-01

    Nitrosamines are toxic and emerging disinfection byproducts. In this study, three drinking water treatment plants (DWTPs) in southern Taiwan treating the same source water in Gaoping River with comparable technologies were selected. The objective was to evaluate the formation and fates of six nitrosamines and their formation potentials (FPs) from a surface water source to drinking water. Albeit decreased further downstream in the river, four nitrosamine-FPs were observed in the source water due to anthropogenic pollution in the upstream areas. In the DWTPs, nitrosamines were formed and NDMA was the main species. While high organic carbon concentrations indicated elevated nitrosamine-FPs in the source water, NDMA formation in the DWTPs was more positively associated with reductions of water parameters that quantify organic matters with double bonded ring structures. Although precursor removal via pre-oxidation is a viable approach to limit nitrosamine formation during post-disinfection, this study clearly indicates that a great portion of NDMA in treated water has been formed in the 1st oxidation step of drinking water treatment. The pre-oxidation simulations in the lab demonstrated the impact of pre-chlorination on nitrosamine formation. Given the limited removal in conventional treatment processes, avoiding nitrosamine-FPs in sources and/or nitrosamine formation during pre-oxidation become important issues to control the threats of nitrosamines in drinking water. Under current circumstance in which pre-oxidation is widely used to optimize the treatment effectiveness in many DWTPs, its adverse effect by forming nitrosamines needs to be carefully minimized and using technologies other than pre-chlorination (e.g., pre-ozonation) may be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Ground water as the source of an outbreak of Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Ana Kovačić

    2017-09-01

    Full Text Available In September 2014, an outbreak of gastroenteritis was reported to the Public Health Institute of Šibenik and Knin County in Croatia. The outbreak occurred in the County center of Šibenik, a town with 50,000 inhabitants, and it lasted for 12 days. An epidemiological investigation suggested a nearby water spring as the source of the outbreak. Due to the temporary closure of the public water supply system, the inhabitants started to use untreated water from a nearby spring. Microbiological analysis revealed that the outbreak was caused by Salmonella enterica subsp. enterica serovar Enteritidis that was isolated from stool samples of the patients and ground water. The isolates were further analysed with pulsed-field gel electrophoresis using XbaI, which revealed an identical macrorestriction profile. Although 68 cases were reported, it was estimated that the actual number of affected persons was more than several hundred. In order to prevent further spread of disease, public advice was released immediately after the first epidemiological indication and a warning sign was placed at the incriminated water source, after microbiological confirmation. It is necessary to regularly monitor microbiological quality of ground water especially in urban areas and provide adequate education and awareness to the inhabitants regarding the risk of using untreated ground water.

  15. Estimation of The Contribution of the Water Sources in The Mixed Waters; Karisim Sularinda Koekensel Katkilarin Belirlenmesi

    Energy Technology Data Exchange (ETDEWEB)

    Kurttas, T [Hacettepe University, Ankara (Turkey)

    2002-07-01

    In many cases simple hydrogeochemical evaluations are sufficient to distinguish different source of the waters in the hydrogeological studies. In this study how hydrochemical data can be used to understand mixing mechanism is explained. Mixing ratios determined by using physically or chemically nonreactive component in hydrogeological studies. For mixing quantity calculations, quantity of the end members that cause to mixing, need to be known. Electrical conductivity is another parameter may be used when lack of hydrochemical data is present or more practical and fast solution is required. Isotope techniques are widely used to describe the hydrogeological conditions, where the conventional methods is not sufficient to understand. Since {sup 18}O ve D are conservative isotopes and do not effected by the hydrochemical processes in the aquifer, they are used to explain recharge quantities of the aquifer, determination of the recharge areas, groundwater-surface water relations, determination of mixing quantities and understanding of recharge-discharge relations in the fractured aquifers. By using stable isotope data, sources of the mixing portions, dissolution of salts, evaporation and isotopic enrichment or fresh water-salt water/fresh water- sea water mixing can be identified easily.

  16. Prevalence and antibiotic susceptibility of Salmonella spp. from water sources in Tamale, Ghana

    Directory of Open Access Journals (Sweden)

    Frederick Adzitey

    2016-09-01

    Full Text Available Aim: This study investigated the prevalence and antibiotic resistance of Salmonella species isolated from drinking water sources in Tamale Metropolis. Materials and Methods: Isolation of Salmonella species from 275 different drinking water samples (25 each from dam, well, rain, and bottle, 35 from tap, 40 from water trough, and 100 from sachet was done using a slightly modified method of the Bacteriological Analytical Manual of the Food and Drugs Administration, USA. 34 Salmonella species isolated from the water samples were examined for their susceptibility to nine different antibiotics using the disc diffusion method. The study was carried out from July 2014 to January 2015. Results: The overall prevalence of Salmonella species was 4.36% (12/275. Dam 16.00% (4/25 and well 16.00% (4/25 water samples were the most contaminated source, followed by rain water (stored 12.00% (3/25 and tap water samples 2.86% (1/35. There were no significant differences among water samples which were positive for Salmonella species (p>0.05; however, dam and well samples that were positive for Salmonella species differ significantly (p<0.05 from bottle water, sachet water, and water trough samples, which were negative for Salmonella species. The 34 Salmonella isolates were highly resistant to erythromycin (E (100% and vancomycin (VA (94.12%. Few isolates exhibited intermediate resistances to ceftriaxone (CRO (17.65%, gentamicin (CN (17.65%, tetracycline (14.71%, chloramphenicol (C (5.88%, ciprofloxacin (CIP (2.94%, and amoxicillin (AMC (2.94%. Salmonella isolates also exhibited six different antibiotic resistant patterns (VA-E, VA-E-AMC, VA-E-CRO, VA-E-C, VA-E-CRO-AMC, and VA-E-AMC-CN. The resistant pattern VA-E (with multiple antibiotic resistance index of 0.22 was the commonest. Conclusion: This study indicated that some drinking water sources for humans and animals in Tamale Metropolis are contaminated with Salmonella species which exhibited varying resistance to

  17. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    Science.gov (United States)

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, S700 Source exhibited depth dose behavior similar to low-energy photon-emitting low dose rate sources 125I and l03Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages.

  18. Safe Swimming (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2017-06-01

    Most outbreaks linked to pools and water playgrounds are caused by Cryptosporidium. This podcast discusses ways to keep you healthy and safe while swimming.  Created: 6/1/2017 by MMWR.   Date Released: 6/1/2017.

  19. Performance Improvement of Solar Water Stills by Using Reflectors

    Directory of Open Access Journals (Sweden)

    Humphrey Hamusonde Maambo

    2016-09-01

    Full Text Available The lack of safe and clean drinking water sources is one of the problems faced in most rural communities in Zambia. Water in these communities is mostly obtained from shallow wells and rivers. However, this water might be potentially contaminated with harmful substances such as pathogenic bacteria and therefore, unsafe for drinking. Solar water distillation represents an important alternative to palliate problems of fresh water shortages. Solar water stills can be used to eliminate harmful substances from contaminated water by treating it using free solar energy before it can be consumed. Therefore, there is a need to improve solar still performance to produce a greater quantity of safe drinking water. One possible method to improve performance is through adding reflectors to solar stills. Reflectors improve performance by increasing the quantity of distillate by about 22.3 % at a water depth of 15 mm and about 2 9% at a water depth of 10 mm when compared to the distillate produced from a still without reflectors. The water produced using solar stills with reflectors was tested and adhered to World Health Organization (WHO drinking water standards. This implies that solar distillation with reflectors could be adopted at a larger scale to produce safer drinking water at a reduced cost.

  20. Drinking water protection plan; a discussion document

    International Nuclear Information System (INIS)

    2001-01-01

    This draft document outlines the plan of action devised by the Government of British Columbia in an effort to safeguard the purity of the drinking water supply in the province, and invites British Columbians to participate in the elaboration of such a plan. This document concentrates on the assessment of the sources of the water supply (watersheds and aquifers) and on measures to ensure the integrity of the system of water treatment and distribution as the principal components of a comprehensive plan to protect drinking water. The proposed plan involves a multi-barrier approach that will use a combination of measures to ensure that water sources are properly managed and waterworks systems provide safe drinking water. New drinking water planning procedures, more effective local influence and authority, enforceable standards, better access to information and public education programs form the essence of the plan. A series of public meetings are scheduled to provide the public at large with opportunities to comment on the government's plan of action and to offer suggestions for additional measures

  1. Implications of inherent safe nuclear power system

    International Nuclear Information System (INIS)

    Song, Yo-Taik

    1987-01-01

    The safety of present day nuclear power reactors and research reactors depends on a combination of design features of passive and active systems, and the alert judgement of their operators. A few inherently safe designs of nuclear reactors for power plants are currently under development. In these designs, the passive systems are emphasized, and the active systems are minimized. Also efforts are made to eliminate the potential for human failures that initiate the series of accidents. If a major system fails in these designs, the core is flooded automatically with coolants that flow by gravity, not by mechanical pumps or electromagnetic actuators. Depending on the choice of the coolants--water, liquid metal and helium gas--there are three principal types of inherently safe reactors. In this paper, these inherently safe reactor designs are reviewed and their implications are discussed. Further, future perspectives of their acceptance by nuclear industries are discussed. (author)

  2. Assessment of agricultural drainage water quality for safe reuse in irrigation applications-a case study in Borg El-Arab, Alexandria

    Directory of Open Access Journals (Sweden)

    Mahmoud Nasr

    2015-03-01

    Full Text Available Objective: To demonstrate the technical feasibility of the reuse of agricultural drainage water for irrigation. Methods: The agricultural drainage water near Banjar El-Sokar, Borg El-Arab City, Alexandria, Egypt was collected. The measured heavy metals in the drainage water were compared with the permissible levels stated in environmental regulations, Law No. 48 of 1982 concerning the protection of the Nile River and waterways from pollution. Results: Heavy metals and trace elements were detected in this agricultural drainage water as following: Al (1.64 mg/L, Ca (175.00 mg/L, Cd (1.87 mg/L, Co (2.23 mg/L, Cu (1.71 mg/L, Fe (1.64 mg/L, K (20.50 mg/L, and Pb (2.81 mg/L. According to allowable limits, item such as Fe is lower than permissible level of 3.00 mg/L, while Pb and Cu are higher than 0.10 mg/L and 1.00 mg/L, respectively. Conclusions: Vegetables irrigated with such drainage water are not safe for human and animal consumption. Accordingly, the study suggests and recommeds remediation of drainage water using physical, chemical and/or biological methods.

  3. Research on wireless remote control scheme for the water source well of a uranium mine

    International Nuclear Information System (INIS)

    Wang Yun; Bao Feng

    2013-01-01

    Traditional wired electrical control method is applicable to simple control for the short-distance industrial equipment, but it is not suitable for the water source well of uranium mines requiring remote control. A kind of wireless remote control system based on high-speed radio modem communication technology was presented for the water source wells of a uranium mine, and the water source wells can be remotely controlled with the system. The component, implementation and characteristics of the control system are introduced. (authors)

  4. Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City

    Directory of Open Access Journals (Sweden)

    Zhaojun Chen

    2017-06-01

    Full Text Available This study investigated the distribution of antibiotic resistant Escherichia coli (E. coli and examined the possible relationship between water quality parameters and antibiotic resistance from two different drinking water sources (the Qiantang River and the Dongtiao Stream in Hangzhou city of China. E. coli isolates were tested for their susceptibility to 18 antibiotics. Most of the isolates were resistant to tetracycline (TE, followed by ampicillin (AM, piperacillin (PIP, trimethoprim/sulfamethoxazole (SXT, and chloramphenicol (C. The antibiotic resistance rate of E. coli isolates from two water sources was similar; For E. coli isolates from the Qiantang River, their antibiotic resistance rates decreased from up- to downstream. Seasonally, the dry and wet season had little impact on antibiotic resistance. Spearman's rank correlation revealed significant correlation between resistance to TE and phenicols or ciprofloxacin (CIP, as well as quinolones (ciprofloxacin and levofloxacin and cephalosporins or gentamicin (GM. Pearson's chi-square tests found certain water parameters such as nutrient concentration were strongly associated with resistance to some of the antibiotics. In addition, tet genes were detected from all 82 TE-resistant E. coli isolates, and most of the isolates (81.87% contained multiple tet genes, which displayed 14 different combinations. Collectively, this study provided baseline data on antibiotic resistance of drinking water sources in Hangzhou city, which indicates drinking water sources could be the reservoir of antibiotic resistance, potentially presenting a public health risk.

  5. Tapping Into an Ancient Source. Isotope Hydrology Techniques to Help Manage Water Resources

    International Nuclear Information System (INIS)

    Kidambi, Misha

    2011-01-01

    The Water Resources Program at the IAEA uses a powerful tool, isotope hydrology, that aids in coping with water scarcity. IAEA scientists are convinced that if we understand how to manage water efficiently, there will be sufficient renewable and non-renewable water sources for meet global needs

  6. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  7. BIOSENSOR TECHNOLOGY EVALUATIONS FOR REAL-TIME/SOURCE WATER PROTECTION

    Science.gov (United States)

    Recent advances in electronics and computer technology have made great strides in the field of remote sensing and biomonitoring. The quality of drinking water sources has come under closer scrutiny in recent years. Issues ranging from ecological to public health and national se...

  8. A study of fecal coliform sources at a coastal site using colored dissolved organic matter (CDOM) as a water source tracer.

    Science.gov (United States)

    Clark, Catherine D; O'Connor, Adam P; Foley, Denise M; de Bruyn, Warren J

    2007-09-01

    Optical properties of colored dissolved organic matter (CDOM) were measured as a tracer of polluted waters in a Southern California surf-zone with consistently high levels of fecal indicator bacteria. Salinity, temperature, fecal coliform, absorbance (200-700nm) and fluorescence (lambda(excitation)=350nm; lambda(emission)=360-650nm) were measured in the creek and surf-zone during a dry and rain event. Fluorescence to absorption ratios for CDOM were used to distinguish water masses, with two distinct CDOM end-members identified as creek (flu/abs=8.7+/-0.8x10(4)) and coastal (flu/abs=2.2+/-0.3x10(4)). Waters containing the same CDOM end-member had highly variable bacterial levels during the dry event, suggesting intermittent sources of bacteria added to a uniform water source, consistent with marine birds. During the rain event, increased levels of the creek end-member and bacteria indicated a second bacteria source from runoff.

  9. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  10. Strategies for low-cost water defluoridation of drinking water - a review of progress

    International Nuclear Information System (INIS)

    Malik, A.H.; Nasreen, S.; Mahmood, Q.; Khan, Z.M.; Sarwar, R.; Khan, A.

    2010-01-01

    One of the biggest challenges of 21 century is to ensure safe drinking water-supplies and environmental sanitation which are vital for protecting the environment, improving health and alleviating poverty. Natural contamination of groundwater sources by fluoride, arsenic and dissolved salts is the main health menace at present in many parts of Pakistan and other countries. Most of the fluoride in drinking water, either occurring naturally or added will be in the form of the free fluoride ion. It is a big challenge to investigate appropriate, low cost methods and technologies to be applied in developing countries to make fluoride contaminated water drinkable. In this paper low cost fluoride removal methods have been discussed and compared for application in developing countries. (author)

  11. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    Science.gov (United States)

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 76 FR 12719 - Safe Schools/Healthy Students Program; Office of Safe and Drug-Free Schools; Safe Schools/Healthy...

    Science.gov (United States)

    2011-03-08

    ... DEPARTMENT OF EDUCATION Safe Schools/Healthy Students Program; Office of Safe and Drug- Free Schools; Safe Schools/Healthy Students Program; Catalog of Federal Domestic Assistance (CFDA) Numbers: 84... priorities, requirements, and definitions under the Safe Schools/Healthy Students (SS/HS) program. Since...

  13. Investigation Of The Origin Of Various Water Sources In The Vicinity Of Ngancar Dam, Wonogiri Using Natural Isotopes

    International Nuclear Information System (INIS)

    Sidauruk, Paston; Indrojoyo; Wibagoyo; Pratikno, Bungkus; Evarista Ristin, P.I.

    2000-01-01

    The investigation of the origin of various water sources in the vicinity of Ngancar Dam, Wonogiri, using natural isotopes technique has been conducted. The study includes collecting and analyzing water samples from various sources in the vicinity of the dam such as reservoir water, water discharges, springs, local water well, rain water, water from piezometer and observation wells. For this investigation, natural isotopes composition and hydro chemical ions of the samples have been analyzed and interpreted. From the data interpretation, it is concluded that most of the water in various sources originated from water reservoir

  14. Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada.

    Science.gov (United States)

    Clark, Ian D; Raven, Kenneth G

    2004-06-01

    Recovery of gold from arsenopyrite-hosted ore in the Giant Mine camp, Yellowknife, NWT, Canada, has left a legacy of arsenic contamination that poses challenges for mine closure planning. Seepage from underground chambers storing some 237,000 tonnes of arsenic trioxide dust, has As concentrations exceeding 4000 ppm. Other potential sources and sinks of As also exist. Sources and movement of water and arsenic are traced using the isotopes of water and sulphate. Mine waters (16 ppm As; AsV/AsIII approximately 150) are a mixture of two principal water sources--locally recharged, low As groundwaters (0.5 ppm As) and Great Slave Lake (GSL; 0.004 ppm As) water, formerly used in ore processing and discharged to the northwest tailings impoundment (NWTP). Mass balance with delta18O shows that recirculation of NWTP water to the underground through faults and unsealed drillholes contributes about 60% of the mine water. Sulphate serves to trace direct infiltration to the As2O3 chambers. Sulphate in local, low As groundwaters (0.3-0.6 ppm As; delta34SSO4 approximately 4% and delta18OSO4 approximately -10%) originates from low-temperature aqueous oxidation of sulphide-rich waste rock. The high As waters gain a component of 18O-enriched sulphate derived from roaster gases (delta18OSO4) = + 3.5%), consistent with their arsenic source from the As2O3 chambers. High arsenic in NWTP water (approximately 8 ppm As; delta18OSO4 = -2%) derived from mine water, is attenuated to close to 1 ppm during infiltration back to the underground, probably by oxidation and sorption by ferrihydrite. Copyright 2004 Taylor and Francis Ltd.

  15. Safe Re-use Practices in Wastewater-Irrigated Urban Vegetable Farming in Ghana

    DEFF Research Database (Denmark)

    Keraita, Bernard; Abaidoo, R.C; Beernaerts, I.

    2012-01-01

    of stakeholders at different levels along the food chain. This paper presents an overview of safe re-use practices including farm-based water treatment methods, water application techniques, post-harvest handling practices, and washing methods. The overview is based on a comprehensive analysis of the literature......Irrigation using untreated wastewater poses health risks to farmers and consumers of crop products, especially vegetables. With hardly any wastewater treatment in Ghana, a multiple-barrier approach was adopted and safe re-use practices were developed through action research involving a number...... and our own specific studies, which used data from a broad range of research methods and approaches. Identifying, testing, and assessment of safe practices were done with the active participation of key actors using observations, extensive microbiological laboratory assessments, and field...

  16. Application of classification-tree methods to identify nitrate sources in ground water

    Science.gov (United States)

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  17. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  18. Effectiveness of Membrane Filtration to Improve Drinking Water: A Quasi-Experimental Study from Rural Southern India.

    Science.gov (United States)

    Francis, Mark Rohit; Sarkar, Rajiv; Roy, Sheela; Jaffar, Shabbar; Mohan, Venkata Raghava; Kang, Gagandeep; Balraj, Vinohar

    2016-11-02

    Since point-of-use methods of water filtration have shown limited acceptance in Vellore, southern India, this study evaluated the effectiveness of decentralized membrane filtration 1) with safe storage, 2) without safe storage, versus 3) no intervention, consisting of central chlorination as per government guidelines, in improving the microbiological quality of drinking water and preventing childhood diarrhea. Periodic testing of water sources, pre-/postfiltration samples, and household water, and a biweekly follow up of children less than 2 years of age was done for 1 year. The membrane filters achieved a log reduction of 0.86 (0.69-1.06), 1.14 (0.99-1.30), and 0.79 (0.67-0.94) for total coliforms, fecal coliforms, and Escherichia coli, respectively, in field conditions. A 24% (incidence rate ratio, IRR [95% confidence interval, CI] = 0.76 [0.51-1.13]; P = 0.178) reduction in diarrheal incidence in the intervention village with safe storage and a 14% (IRR [95% CI] = 1.14 [0.75-1.77]; P = 0.530) increase in incidence for the intervention village without safe storage versus no intervention village was observed, although not statistically significant. Microbiologically, the membrane filters decreased fecal contamination; however, provision of decentralized membrane-filtered water with or without safe storage was not protective against childhood diarrhea. © The American Society of Tropical Medicine and Hygiene.

  19. Study on Utilization of an Artesian Well as a Source of Water Supply at Raw Water Backup System (GBA01)

    International Nuclear Information System (INIS)

    Santosa Pujiarta; Yuyut Suraniyanto; Amril; Setyo Budi Utomo

    2012-01-01

    Raw water supply system (GBA01) is a unit of ponds used as a provider of raw water for secondary cooling system and free mineral water production systems. Source of raw water pond has been supplied from PAM Puspiptek with water conductivity between 126-310 μS / cm and a pH of 6 to 8, and this condition is maintained because there is no other source that is used to supply water to the reactor cooling water supply. This conductivity is always unstable, if during the dry season the conductivity is low trend, but in the rainy season the conductivity will be increase because the water contains a lot of mud. And one more problem that is important is if the PAM Puspiptek failed to supply fresh water to the reactor. So to handling and anticipate these things, necessary to optimize the deep well former Interatom legacy as a backup water supply for raw water supply system of the reactor. With a conductivity of 136 μS / cm, pH 7,4 and total hardness 37 ppm, the water from deep wells can be used as a backup supply of secondary raw water cooling system. (author)

  20. Safe new reactor for radionuclide production

    International Nuclear Information System (INIS)

    Gray, P.L.

    1995-01-01

    In late 1995, DOE is schedule to announce a new tritium production unit. Near the end of the last NPR (New Production Reactors) program, work was directed towards eliminating risks in current designs and reducing effects of accidents. In the Heavy Water Reactor Program at Savannah River, the coolant was changed from heavy to light water. An alternative, passively safe concept uses a heavy-water-filled, zircaloy reactor calandria near the bottom of a swimming pool; the calandria is supported on a light-water-coolant inlet plenum and has upflow through assemblies in the calandria tubes. The reactor concept eliminates or reduces significantly most design basis and severe accidents that plague other deigns. The proven, current SRS tritium cycle remains intact; production within the US of medical isotopes such as Mo-99 would also be possible

  1. The Variation Characteristic of Sulfides and VOSc in a Source Water Reservoir and Its Control Using a Water-Lifting Aerator

    Directory of Open Access Journals (Sweden)

    Jian-Chao Shi

    2016-04-01

    Full Text Available Sulfides and volatile organic sulfur compounds (VOSc in water are not only malodorous but also toxic to humans and aquatic organisms. They cause serious deterioration in the ecological environment and pollute drinking water sources. In the present study, a source water reservoir—Zhoucun Reservoir in East China—was selected as the study site. Through a combination of field monitoring and in situ release experiments of sulfides, the characteristics of seasonal variation and distribution of sulfides and VOSc in the reservoir were studied, and the cause of the sulfide pollution was explained. The results show that sulfide pollution was quite severe in August and September 2014 in the Zhoucun Reservoir, with up to 1.59 mg·L−1 of sulfides in the lower layer water. The main source of sulfides is endogenous pollution. VOSc concentration correlates very well with that of sulfides during the summer, with a peak VOSc concentration of 44.37 μg·L−1. An installed water-lifting aeration system was shown to directly oxygenate the lower layer water, as well as mix water from the lower and the upper layers. Finally, the principle and results of controlling sulfides and VOSc in reservoirs using water-lifting aerators are clarified. Information about sulfides and VOSc fluctuation and control gained in this study may be applicable to similar reservoirs, and useful in practical water quality improvement and pollution prevention.

  2. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  3. The source, discharge, and chemical characteristics of water from Agua Caliente Spring, Palm Springs, California

    Science.gov (United States)

    Contributors: Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle; Martin, Peter

    2011-01-01

    Agua Caliente Spring, in downtown Palm Springs, California, has been used for recreation and medicinal therapy for hundreds of years and currently (2008) is the source of hot water for the Spa Resort owned by the Agua Caliente Band of the Cahuilla Indians. The Agua Caliente Spring is located about 1,500 feet east of the eastern front of the San Jacinto Mountains on the southeast-sloping alluvial plain of the Coachella Valley. The objectives of this study were to (1) define the geologic structure associated with the Agua Caliente Spring; (2) define the source(s), and possibly the age(s), of water discharged by the spring; (3) ascertain the seasonal and longer-term variability of the natural discharge, water temperature, and chemical characteristics of the spring water; (4) evaluate whether water-level declines in the regional aquifer will influence the temperature of the spring discharge; and, (5) estimate the quantity of spring water that leaks out of the water-collector tank at the spring orifice.

  4. Quantitative Real-Time PCR Fecal Source Identification in the ...

    Science.gov (United States)

    Rivers in the Tillamook Basin play a vital role in supporting a thriving dairy and cheese-making industry, as well as providing a safe water resource for local human and wildlife populations. Historical concentrations of fecal bacteria in these waters are at times too high to allow for safe use leading to economic loss, endangerment of local wildlife, and poor conditions for recreational use. In this study, we employ host-associated qPCR methods for human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3 and DG37), and avian (GFD) fecal pollution combined with high-resolution geographic information system (GIS) land use data and general indicator bacteria measurements to elucidatewater quality spatial and temporal trends. Water samples (n=584) were collected over a 1-year period at 29 sites along the Trask, Kilchis, and Tillamook rivers and tributaries (Tillamook Basin, OR). A total of 16.6% of samples (n=97) yielded E. coli levels considered impaired based on Oregon Department of Environmental Quality bacteria criteria (406 MPN/100mL). Hostassociated genetic indicators were detected at frequencies of 39.2% (HF183/BacR287), 16.3% (HumM2), 74.6% (Rum2Bac), 13.0% (CowM2), 26.7% (CowM3), 19.8% (DG3), 3.2% (DG37), and 53.4% (GFD) across all water samples (n=584). Seasonal trends in avian, cattle, and human fecal pollution sources were evident over the study area. On a sample site basis, quantitative fecal source identification and

  5. Risk of gastric cancer by water source: evidence from the Golestan case-control study.

    Directory of Open Access Journals (Sweden)

    Laura Eichelberger

    Full Text Available Gastric cancer (GC is the world's fifth most common cancer, and the third leading cause of cancer-related death. Over 70% of incident cases and deaths occur in developing countries. We explored whether disparities in access to improved drinking water sources were associated with GC risk in the Golestan Gastric Cancer Case Control Study.306 cases and 605 controls were matched on age, gender, and place of residence. We conducted unconditional logistic regression to calculate odds ratios (ORs and 95% confidence intervals (CI, adjusted for age, gender, ethnicity, marital status, education, head of household education, place of birth and residence, homeownership, home size, wealth score, vegetable consumption, and H. pylori seropositivity. Fully-adjusted ORs were 0.23 (95% CI: 0.05-1.04 for chlorinated well water, 4.58 (95% CI: 2.07-10.16 for unchlorinated well water, 4.26 (95% CI: 1.81-10.04 for surface water, 1.11 (95% CI: 0.61-2.03 for water from cisterns, and 1.79 (95% CI: 1.20-2.69 for all unpiped sources, compared to in-home piped water. Comparing unchlorinated water to chlorinated water, we found over a two-fold increased GC risk (OR 2.37, 95% CI: 1.56-3.61.Unpiped and unchlorinated drinking water sources, particularly wells and surface water, were significantly associated with the risk of GC.

  6. Physico - chemical and microbiological analysis of drinking water quality and epidemiological study of district neelum, azad jammu and kashmir

    International Nuclear Information System (INIS)

    Khan, S.; Ali, N.

    2014-01-01

    Quality of water is vital for sustainable healthy life and associated activities. More than a billion people in the developing world including Pakistan lack safe drinking water (1). Whereas, nearly three billion people live without access to adequate sanitation systems necessary for reducing exposure to water-related diseases. In Pakistan, the calamity of the October 2005 earthquake tore apart a large area of Azad Jammu and Kashmir (AJK), including District Neelum. In this situation, not only water sources but water distribution systems were also badly damaged. In this regard, a comprehensive study was designed to investigate the condition of freshwater at sources df(springs) and reservoirs, and their management and the diseases caused by the use of these source water. (author)

  7. Anaerobic treatment as a core technology for energy, nutrients and water from source-separated domestic waste(water)

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.; Mes, de T.Z.D.; Graaff, de M.S.; Abu-Ghunmi, L.N.A.H.; Mels, A.R.; Meulman, B.; Temmink, B.G.; Buisman, C.J.N.; Lier, van J.B.; Lettinga, G.

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas

  8. Report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs

    International Nuclear Information System (INIS)

    Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

    1995-01-01

    Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in melton Hill and Watts Bar Reservoirs

  9. SafeDroid: A Distributed Malware Detection Service for Android

    DEFF Research Database (Denmark)

    Goyal, Rohit; Spognardi, Angelo; Dragoni, Nicola

    2016-01-01

    Android platform has become a primary target for malware. In this paper we present SafeDroid, an open source distributed service to detect malicious apps on Android by combining static analysis and machine learning techniques. It is composed by three micro-services, working together, combining...... static analysis and machine learning techniques. SafeDroid has been designed as a user friendly service, providing detailed feedback in case of malware detection. The detection service is optimized to be lightweight and easily updated. The feature set on which the micro-service of detection relies...

  10. Fail-safe first wall for preclusion of little leakage

    International Nuclear Information System (INIS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    Leakages although excluded by design measures would occur most probably in highly stressed areas, weldments and locations without possibility to classify the state by in-service inspection. In a water-cooled first wall, allowable leak rate of water is generally very small, and therefore, locating of the leak portion under highly activated environment will be very difficult and be time-consuming. The double-wall concept is promising for the ITER first wall, because it can be made fail-safe by the application of the leak-before-break and the multiple load path concepts, and because it has a potential capability to solve the little leak problem. When the fail safe strength is well defined, subcritical crack growth in the damaged wall can be permitted. This will enable to detect stable leakage of coolant without deteriorating plasma operation. The paper deals with the little leak problem and presents method for evaluating small leak rate of a liquid coolant from crack-like defects. The fail-safe first wall with the double-wall concept is also proposed for preclusion of little leakage and its fail-safety is discussed. (author)

  11. The occurrence and distribution of a group of organic micropollutants in Mexico City's water sources.

    Science.gov (United States)

    Félix-Cañedo, Thania E; Durán-Álvarez, Juan C; Jiménez-Cisneros, Blanca

    2013-06-01

    The occurrence and distribution of a group of 17 organic micropollutants in surface and groundwater sources from Mexico City was determined. Water samples were taken from 7 wells, 4 dams and 15 tanks where surface and groundwater are mixed and stored before distribution. Results evidenced the occurrence of seven of the target compounds in groundwater: salicylic acid, diclofenac, di-2-ethylhexylphthalate (DEHP), butylbenzylphthalate (BBP), triclosan, bisphenol A (BPA) and 4-nonylphenol (4-NP). In surface water, 11 target pollutants were detected: same found in groundwater as well as naproxen, ibuprofen, ketoprofen and gemfibrozil. In groundwater, concentration ranges of salicylic acid, 4-NP and DEHP, the most frequently found compounds, were 1-464, 1-47 and 19-232 ng/L, respectively; while in surface water, these ranges were 29-309, 89-655 and 75-2,282 ng/L, respectively. Eleven target compounds were detected in mixed water. Concentrations in mixed water were higher than those determined in groundwater but lower than the detected in surface water. Different to that found in ground and surface water, the pesticide 2,4-D was found in mixed water, indicating that some pollutants can reach areas where they are not originally present in the local water sources. Concentration of the organic micropollutants found in this study showed similar to lower to those reported in water sources from developed countries. This study provides information that enriches the state of the art on the occurrence of organic micropollutants in water sources worldwide, notably in megacities of developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  13. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  14. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls.

    Science.gov (United States)

    Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A

    2016-11-01

    Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can

  15. Occurrence and sources of bromate in chlorinated tap drinking water in Metropolitan Manila, Philippines.

    Science.gov (United States)

    Genuino, Homer C; Espino, Maria Pythias B

    2012-04-01

    Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.

  16. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    Science.gov (United States)

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  17. Water: from the source to the treatment plan

    Science.gov (United States)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  18. [Parasitic zoonoses transmitted by drinking water. Giardiasis and cryptosporidiosis].

    Science.gov (United States)

    Exner, M; Gornik, V

    2004-07-01

    Nowadays, the parasitic zoonose organisms Giardia lamblia und Cryptosporidium spp. are among the most relevant pathogens of drinking water-associated disease outbreaks. These pathogens are transmitted via a fecal-oral route; in both cases the dose of infection is low. Apart from person-to-person or animal-to-person transmissions, the consumption of contaminated food and water are further modes of transmission. The disease is mainly characterized by gastrointestinal symptoms. In industrialized countries, the prevalence rate of giardiasis is 2-5 % and of cryptosporidiosis 1-3%. Throughout the world, a large number of giardiasis and cryptosporidiosis outbreaks associated with drinking water were published; in 2001 the first case in Germany was identified. Giardia and Cryptosporidium are detected in surface water and sporadically in unprotected groundwater. Use of these waters for drinking water abstraction makes high demands on the technology of the treatment process: because of the disinfectant resistance of the parasites, safe elimination methods are needed, which even at high contamination levels of source water guarantee safe drinking water. Further measures for prevention and control are implementation of the HACCP concept, which includes the whole chain of procedures of drinking water supply from catchment via treatment to tap and a quality management system.

  19. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: An electronic brachytherapy source

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Davis, Stephen D.; DeWerd, Larry A.; Rusch, Thomas W.; Axelrod, Steve

    2006-01-01

    A new x-ray source, the model S700 Axxent trade mark sign X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, P (5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1 125 I and 103 Pd, yet with capability for variable and much higher dose rates and subsequently adjustable penetration capabilities. This paper presents the calculated and measured in-water brachytherapy dosimetry parameters for the model S700 Source at the aforementioned three operating voltages

  20. The control of potential health risks related to drinking water in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Dick, T A

    1981-04-01

    In the United Kingdom, potable water put into supply is required to be 'wholesome'. The term 'wholesome' is interpreted as clear, palatable and safe to drink. About 99% of potable supplies are provided by Regional Water Authorities and Water Companies (for England and Wales), Regional Councils and Island Councils (for Scotland) and the Department of the Environment (NI) (for Northern Ireland). These water authorities draw their raw water from upland surface waters, lowland surface waters (including lakes and rivers) and underground waters. Although each source provides approximately one-third of supply, the proportion varies considerably in different parts of the UK. Consequently the control of potential health risks related to drinking water also varies according to the source of supply. The paper describes briefly the treatment practice for the various sources, including disinfection practice. More specifically the paper describes current UK practice or developments in the control or investigation of plumbosolvency, fluoridation, nitrate, trihalomethanes, other organic micropollutants, sodium, asbestos and tar linings in pipes. The possibilities for the surveillance of the 1% of private supplies are also discussed.

  1. Water Safety (Recreational)

    Science.gov (United States)

    Playing in the water - whether swimming, boating or diving - can be fun. It can also be dangerous, especially for children. Being safe can ... injuries and drowning. To stay safe in the water Avoid alcohol when swimming or boating Wear a ...

  2. Natural environmental water sources in endemic regions of northeastern Brazil are potential reservoirs of viable Mycobacterium leprae.

    Science.gov (United States)

    Arraes, Maria Luisa Bezerra de Macedo; Holanda, Maísa Viana de; Lima, Luana Nepomuceno Gondim Costa; Sabadia, José Antônio Beltrão; Duarte, Cynthia Romariz; Almeida, Rosa Livia Freitas; Kendall, Carl; Kerr, Ligia Regina Sansigolo; Frota, Cristiane Cunha

    2017-12-01

    The detection of live Mycobacterium leprae in soil and animals other than humans suggests that the environment plays a role in the transmission of leprosy. The objective of this study was to investigate the presence of viable M. leprae in natural water sources used by the local population in five municipalities in the state of Ceará, northeastern Brazil. Samples were collected from 30 different sources. Viable bacilli were identified by reverse transcriptase polymerase chain reaction (PCR) of the M. leprae gyrA gene and sequencing of the PCR products. Physicochemical properties of each water source were also assessed. M. leprae gyrA mRNA was found in 23 (76.7%) of the water sources. No association was found between depth of the water and sample positivity, nor was there any association between the type of water used by the population and sample positivity. An association between viable M. leprae and temperature and pH was found. Georeferencing showed a relation between the residences of leprosy cases and water source containing the bacterium. The finding of viable M. leprae in natural water sources associated with human contact suggests that the environment plays an important role in maintaining endemic leprosy in the study region.

  3. A model for evaluating the three-dimensional groundwater dividing pathline between a contaminant source and a partially penetrating water-supply well

    Science.gov (United States)

    Harmsen, Eric W.; Converse, James C.; Anderson, Mary P.; Hoopes, John A.

    1991-09-01

    Effluent from septic tank-drainfields can degrade groundwater quality and contaminate nearby water-supply wells. Such groundwater contamination is a problem in the unsewered subdivisions of the sand plain of central Wisconsin, for example. To help planners minimize the risk of direct contamination of a water-supply well by a septic system, a model was developed to estimate the location of the critical dividing pathline between a rectangular contaminant source (the septic tank drainfield) and a partially penetrating pumping well. The model is capable of handling three-dimensional, transient flow in an unconfined, homogeneous, anisotropic aquifer of infinite areal extent, under a regional horizontal hydraulic gradient. Model results are in very good agreement with several other numerical and analytical models. Examples are given for which the safe, horizontal and vertical separation distances to avoid well water contamination are determined for typical central Wisconsin sand plain conditions. A companion paper (Harmsen et al., 1991) describes the application of this model, using a Monte-Carlo analysis, to study the variation of these separation distances in the Wisconsin sand plain. The model can also be applied to larger scale problems and, therefore, could be useful in implementing the U.S. Environmental Protection Agency's new well head protection program.

  4. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces.

    Science.gov (United States)

    Chau, N D G; Sebesvari, Z; Amelung, W; Renaud, F G

    2015-06-01

    Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 μg L(-1)), fenobucarb (max. 2.32 μg L(-1)), and fipronil (max. 0.41 μg L(-1)) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at

  5. Safe and secure: transportation of radioactive materials

    International Nuclear Information System (INIS)

    Howe, D.

    2015-01-01

    Western Waste Management Facility is Central Transportation Facility for Low and Intermediate waste materials. Transportation support for Stations: Reactor inspection tools and heavy water between stations and reactor components and single bundles of irradiated fuel to AECL-Chalk River for examination. Safety Track Record: 3.2 million kilometres safely travelled and no transportation accident - resulting in a radioactive release.

  6. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Jin [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Ryu, Jong-Sik [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Lee, Kwang-Sik, E-mail: kslee@kbsi.re.kr [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Lee, Sin-Woo [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-07-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO{sub 3} were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO{sub 4} were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4}) verified that the SO{sub 4} in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ{sup 15}N{sub NO3} and δ{sup 18}O{sub NO3}) indicated that NO{sub 3} in JS is attributable to nitrification of soil organic matter but that NO{sub 3} in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ{sup 34}S{sub SO4} and δ{sup 15}N{sub NO3}. This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes

  7. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    International Nuclear Information System (INIS)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Lee, Sin-Woo

    2014-01-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO 3 were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO 4 were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ 34 S SO4 and δ 18 O SO4 ) verified that the SO 4 in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ 15 N NO3 and δ 18 O NO3 ) indicated that NO 3 in JS is attributable to nitrification of soil organic matter but that NO 3 in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ 34 S SO4 and δ 15 N NO3 . This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes controlling the water chemistry of streams draining watersheds having different

  8. Quantification of proportions of different water sources in a mining operation.

    Science.gov (United States)

    Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric

    2018-04-01

    The water drained in mining operations (galleries, shafts, open pits) usually comes from different sources. Evaluating the contribution of these sources is very often necessary for water management. To determine mixing ratios, a conventional mass balance is often used. However, the presence of more than two sources creates uncertainties in mass balance applications. Moreover, the composition of the end-members is not commonly known with certainty and/or can vary in space and time. In this paper, we propose a powerful tool for solving such problems and managing groundwater in mining sites based on multivariate statistical analysis. This approach was applied to the Cobre Las Cruces mining complex, the largest copper mine in Europe. There, the open pit water is a mixture of three end-members: runoff (RO), basal Miocene (Mb) and Paleozoic (PZ) groundwater. The volume of water drained from the Miocene base aquifer must be determined and compensated via artificial recharging to comply with current regulations. Through multivariate statistical analysis of samples from a regional field campaign, the compositions of PZ and Mb end-members were firstly estimated, and then used for mixing calculations at the open pit scale. The runoff end-member was directly determined from samples collected in interception trenches inside the open pit. The application of multivariate statistical methods allowed the estimation of mixing ratios for the hydrological years 2014-2015 and 2015-2016. Open pit water proportions have changed from 15% to 7%, 41% to 36%, and 44% to 57% for runoff, Mb and PZ end-members, respectively. An independent estimation of runoff based on the curve method yielded comparable results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 40 CFR 141.706 - Reporting source water monitoring results.

    Science.gov (United States)

    2010-07-01

    ... systems serving at least 10,000 people must report the results from the initial source water monitoring... reporting monitoring results that EPA approves. (c) Systems serving fewer than 10,000 people must report.... PWS ID. 2. Facility ID. 3. Sample collection date. 4. Analytical method number. 5. Method type. 6...

  10. Studies of the contributions of nonpoint terrestrial sources to mineral water quality

    International Nuclear Information System (INIS)

    Huff, D.D.

    1977-05-01

    The contributions of nonpoint sources of water quality constituents represent a background loading rate that will not be reduced easily. Consequently, those contributions may have a dominant effect on aquatic ecosystems once point sources have been controlled. Modeling studies conducted at the Tennessee Valley Authority and Oak Ridge National Laboratory represent contrasting approaches that highlight some of the possibilities for predicting nonpoint source inputs to aquatic systems

  11. Water conservation and reuse using the Water Sources Diagram method for batch process: case studies

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Pellegrini Pessoa

    2012-04-01

    Full Text Available The water resources management has been an important factor for the sustainability of industrial processes, since there is a growing need for the development of methodologies aimed at the conservation and rational use of water. The objective of this work was to apply the heuristic-algorithmic method called Water Sources Diagram (WSD, which is used to define the target of minimum water consumption, to batch processes. Scenarios with reuse of streams were generated and evaluated with application of the method from the data of water quantity and concentration of contaminants in the operations. Two case studies aiming to show the reduction of water consumption and wastewater generation, and final treatment costs besides investment in storage tanks, were presented. The scenarios showed great promising, achieving reduction up to 45% in water consumption and wastewater generation, and a reduction of around 37% on cost of storage tanks, without the need to allocate regeneration processes. Thus, the WSD method showed to be a relevant and flexible alternative regarding to systemic tools aimed at minimizing the consumption of water in industrial processes, playing an important role within a program of water resources management.

  12. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  13. Where there is no toilet: water and sanitation environments of domestic and facility births in Tanzania.

    Directory of Open Access Journals (Sweden)

    Lenka Benova

    Full Text Available Inadequate water and sanitation during childbirth are likely to lead to poor maternal and newborn outcomes. This paper uses existing data sources to assess the water and sanitation (WATSAN environment surrounding births in Tanzania in order to interrogate whether such estimates could be useful for guiding research, policy and monitoring initiatives.We used the most recent Tanzania Demographic and Health Survey (DHS to characterise the delivery location of births occurring between 2005 and 2010. Births occurring in domestic environments were characterised as WATSAN-safe if the home fulfilled international definitions of improved water and improved sanitation access. We used the 2006 Service Provision Assessment survey to characterise the WATSAN environment of facilities that conduct deliveries. We combined estimates from both surveys to describe the proportion of all births occurring in WATSAN-safe environments and conducted an equity analysis based on DHS wealth quintiles and eight geographic zones.42.9% (95% confidence interval: 41.6%-44.2% of all births occurred in the woman's home. Among these, only 1.5% (95% confidence interval: 1.2%-2.0% were estimated to have taken place in WATSAN-safe conditions. 74% of all health facilities conducted deliveries. Among these, only 44% of facilities overall and 24% of facility delivery rooms were WATSAN-safe. Combining the estimates, we showed that 30.5% of all births in Tanzania took place in a WATSAN-safe environment (range of uncertainty 25%-42%. Large wealth-based inequalities existed in the proportion of births occurring in domestic environments based on wealth quintile and geographical zone.Existing data sources can be useful in national monitoring and prioritisation of interventions to improve poor WATSAN environments during childbirth. However, a better conceptual understanding of potentially harmful exposures and better data are needed in order to devise and apply more empirical definitions of

  14. Where there is no toilet: water and sanitation environments of domestic and facility births in Tanzania.

    Science.gov (United States)

    Benova, Lenka; Cumming, Oliver; Gordon, Bruce A; Magoma, Moke; Campbell, Oona M R

    2014-01-01

    Inadequate water and sanitation during childbirth are likely to lead to poor maternal and newborn outcomes. This paper uses existing data sources to assess the water and sanitation (WATSAN) environment surrounding births in Tanzania in order to interrogate whether such estimates could be useful for guiding research, policy and monitoring initiatives. We used the most recent Tanzania Demographic and Health Survey (DHS) to characterise the delivery location of births occurring between 2005 and 2010. Births occurring in domestic environments were characterised as WATSAN-safe if the home fulfilled international definitions of improved water and improved sanitation access. We used the 2006 Service Provision Assessment survey to characterise the WATSAN environment of facilities that conduct deliveries. We combined estimates from both surveys to describe the proportion of all births occurring in WATSAN-safe environments and conducted an equity analysis based on DHS wealth quintiles and eight geographic zones. 42.9% (95% confidence interval: 41.6%-44.2%) of all births occurred in the woman's home. Among these, only 1.5% (95% confidence interval: 1.2%-2.0%) were estimated to have taken place in WATSAN-safe conditions. 74% of all health facilities conducted deliveries. Among these, only 44% of facilities overall and 24% of facility delivery rooms were WATSAN-safe. Combining the estimates, we showed that 30.5% of all births in Tanzania took place in a WATSAN-safe environment (range of uncertainty 25%-42%). Large wealth-based inequalities existed in the proportion of births occurring in domestic environments based on wealth quintile and geographical zone. Existing data sources can be useful in national monitoring and prioritisation of interventions to improve poor WATSAN environments during childbirth. However, a better conceptual understanding of potentially harmful exposures and better data are needed in order to devise and apply more empirical definitions of WATSAN-safe

  15. Loading functions for assessment of water pollution from nonpoint sources. Final report

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  16. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    Science.gov (United States)

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  18. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.

    Science.gov (United States)

    Li, Dan; Zheng, Binghui; Liu, Yan; Chu, Zhaosheng; He, Yan; Huang, Minsheng

    2018-05-02

    Multiple free water surface flow constructed wetlands (multi-FWS CWs) are a variety of conventional water treatment plants for the interception of pollutants. This review encapsulated the characteristics and applications in the field of ecological non-point source water pollution control technology. The roles of in-series design and operation parameters (hydraulic residence time, hydraulic load rate, water depth and aspect ratio, composition of influent, and plant species) for performance intensification were also analyzed, which were crucial to achieve sustainable and effective contaminants removal, especially the retention of nutrient. The mechanism study of design and operation parameters for the removal of nitrogen and phosphorus was also highlighted. Conducive perspectives for further research on optimizing its design/operation parameters and advanced technologies of ecological restoration were illustrated to possibly interpret the functions of multi-FWS CWs.

  19. Safe Energy Source in Battery-operated Toys for Children.

    Science.gov (United States)

    Rossi, Alfredo; Vignola, Silvia; Nason, Francesca; Boschetti, Federica; Bramerio, Manuela; Bailini, Alessandro; Pinarello, Giordano

    2017-11-01

    Serious and even fatal consequences of disk batteries ingestion in children are well known. Among other applications, disk batteries are used to power small toys, from which they can be unexpectedly extracted and swallowed. We tested a new cell intended for little toys (green cell [GC]), after 6 and 12 hours of in vitro close contact with esophageal swine mucosa. The GC was compared with lithium and silver button batteries under the same experimental conditions. Tissues in contact with the GC did not show pH variations nor histological alterations after 6 and 12 hours. In such conditions, statistically significant differences were found between the GC and the lithium and silver batteries. So far, multidisciplinary medical effort has been driven to both emergency approach and subsequent operative strategies in children with ingested batteries. Our trial demonstrates the possibility to primarily prevent battery-induced damages by designing new-generation safe cells with no tissue toxicity to power little toys intended for children.

  20. Inferring the source of evaporated waters using stable H and O isotopes

    Science.gov (United States)

    Stable isotope ratios of H and O are widely used to identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporati...

  1. On the mineralization model of 'three sources--heat, water and uranium'

    International Nuclear Information System (INIS)

    Li Xueli

    1992-01-01

    In response to the relations between geological and geothermal settings, geothermal water and uranium mineralizations in the Southeastern China, the model of uranium mineralization in discharge area (depressurization area) of fossil geothermal systems in Mesozoic-Cenozoic Volcanic-magmatic active areas has been put forward and expounded in the view of mineral-formation by the 'three sources'-heat, water and uranium

  2. Safe shutdown analysis for submerged equipment inside containment

    International Nuclear Information System (INIS)

    Song, Dong Soo; Lee, Seung Chan; Yoon, Duk Joo; Ha, Sang Jun

    2017-01-01

    The purpose of the paper is to analyze internal flooding effects on the submerged safety-related components inside containment building. Safe shutdown analysis has been performed based on the criteria, assumptions and guideline provided in ANSI/ANS-56.11-1988 and ANSI/ANS-58.11-1988. Flooding can be postulated from a failure of several systems located inside the containment. Loss of coolant accident (LOCA), Feed water line break (FWLB), and other pipe breaks/cracks are assumed. The worst case flooding scenario is a large break LOCA. The maximum flood level for a large break LOCA is calculated based on the combined inventory of the reactor coolant system, the three accumulators, the boron injection tank (BIT), the chemical additive tank (CAT), and the refueling water storage tank (RWST) flooding the containment. The maximum flood level that could occur from all of the water which is available in containment is 2.3 m from the base elevation. A detailed flooding analysis for the components has been performed to demonstrate that internal flooding resulting from a postulated initiating event does not cause the loss of equipment required to achieve and maintain safe shutdown of the plant, emergency core cooling capability, or equipment whose failure could result in unacceptable offsite radiological consequences. The flood height can be calculated as h = (dh/dt) x (t-t 0 ) + h 0 , where h = time dependent flood height and subscript 0 means the initial value and height slope dh/dt. In summary, the submerged components inside containment are acceptable because they complete the mission of safety injection (SI) prior to submeregency or have no safe shutdown function including containment isolation during an accident. (author)

  3. Farm water as a possible source of fungal infections

    Directory of Open Access Journals (Sweden)

    Stojanov Igor M.

    2017-01-01

    Full Text Available The quality of drinking water depends on the water sources, but also on the quality of the water distribution system which supplies the water on to the final user. In addition, the possibility of contamination of water used for watering animals in the farm buildings depends on the hygienic conditions on farms. Microbiological quality of water on farms in Serbia has not been one of the main focuses of animal breeders, although according to the Food Safety Law water is considered as food. As feed safety for the animals, which includes microbiological analyses, is an important concern of breeder farmers, it is also important to control the water safety in order not to become a cause of the animal health problems. Change of the water quality is not important only from the sanitary epidemiological point of view, but the presence of different microorganisms, especially fungi, can cause changes in taste and smell, as organoleptic properties of water. According to legal regulations, there is no difference between the quality requirements for drinking water relative to the water supply intended for animals. For the aforementioned reasons, the subject of this study is microbiological control of water samples from the drinkers for animals at farms. The aim of the work is to examine which fungi are possibly present in the water and what their number is. In total, 35 samples of water from pig and poultry farms were tested. The method of direct seeding and filtration was used. The presence of different types of mold (Aspergillus sp., Penicillium sp., Alternaria sp., Mucor sp. and Rhizopus sp., and Candida sp. was determined. The results indicate the necessity of microbiological control of water for watering of farm animals, which implies the analysis for the presence of molds. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR31071

  4. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    Science.gov (United States)

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  5. Social.Water--Open Source Citizen Science Software for CrowdHydrology

    Science.gov (United States)

    Fienen, M. N.; Lowry, C.

    2013-12-01

    CrowdHydrology is a crowd-sourced citizen science project in which passersby near streams are encouraged to read a gage and send an SMS (text) message with the water level to a number indicated on a sign. The project was initially started using free services such as Google Voice, Gmail, and Google Maps to acquire and present the data on the internet. Social.Water is open-source software, using Python and JavaScript, that automates the acquisition, categorization, and presentation of the data. Open-source objectives pervade both the project and the software as the code is hosted at Github, only free scripting codes are used, and any person or organization can install a gage and join the CrowdHydrology network. In the first year, 10 sites were deployed in upstate New York, USA. In the second year, expansion to 44 sites throughout the upper Midwest USA was achieved. Comparison with official USGS and academic measurements have shown low error rates. Citizen participation varies greatly from site to site, so surveys or other social information is sought for insight into why some sites experience higher rates of participation than others.

  6. Pollution source control by water utilities – characterisation and implications for water management: research results from England and Wales

    NARCIS (Netherlands)

    Spiller, M.; McIntosh, B.S.; Seaton, R.A.F.; Jeffrey, P.

    2013-01-01

    The treatment of agriculturally polluted water to potable standards is costly for water companies. Changes in agricultural practice can reduce these costs while also meeting the objectives of European Union (EU) environmental legislation. In this paper, the uptake of source control interventions

  7. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis.

    Science.gov (United States)

    Voltas, Jordi; Lucabaugh, Devon; Chambel, Maria Regina; Ferrio, Juan Pedro

    2015-12-01

    The relevance of interspecific variation in the use of plant water sources has been recognized in drought-prone environments. By contrast, the characterization of intraspecific differences in water uptake patterns remains elusive, although preferential access to particular soil layers may be an important adaptive response for species along aridity gradients. Stable water isotopes were analysed in soil and xylem samples of 56 populations of the drought-avoidant conifer Pinus halepensis grown in a common garden test. We found that most populations reverted to deep soil layers as the main plant water source during seasonal summer droughts. More specifically, we detected a clear geographical differentiation among populations in water uptake patterns even under relatively mild drought conditions (early autumn), with populations originating from more arid regions taking up more water from deep soil layers. However, the preferential access to deep soil water was largely independent of aboveground growth. Our findings highlight the high plasticity and adaptive relevance of the differential access to soil water pools among Aleppo pine populations. The observed ecotypic patterns point to the adaptive relevance of resource investment in deep roots as a strategy towards securing a source of water in dry environments for P. halepensis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Efficient 'water window' soft x-ray high-Z plasma source

    International Nuclear Information System (INIS)

    Higashiguchi, T; Otsuka, T; Jiang, W; Endo, A; Li, B; Dunne, P; O'Sullivan, G

    2013-01-01

    Unresolved transition array (UTA) is scalable to shorter wavelengths, and we demonstrate a table-top broadband emission 'water window' soft x-ray source based on laser-produced plasmas. Resonance emission from multiply charged ions merges to produce intense UTAs in the 2 to 4 nm region, extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth (Bi) plasma UTA source, coupled to multilayer mirror optics

  9. A Tiered Approach to Evaluating Salinity Sources in Water at Oil and Gas Production Sites.

    Science.gov (United States)

    Paquette, Shawn M; Molofsky, Lisa J; Connor, John A; Walker, Kenneth L; Hopkins, Harley; Chakraborty, Ayan

    2017-09-01

    A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another. In order to match the complexity of the evaluation effort to the complexity of the specific site, this paper presents a strategic tiered approach that utilizes established techniques for evaluating and identifying the source(s) of salinity in an efficient step-by-step manner. The tiered approach includes: (1) a simple screening process to evaluate whether an impact has occurred and if the source is readily apparent; (2) basic geochemical characterization of the impacted water resource(s) and potential salinity sources coupled with simple visual and statistical data evaluation methods to determine the source(s); and (3) advanced laboratory analyses (e.g., isotopes) and data evaluation methods to identify the source(s) and the extent of salinity impacts where it was not otherwise conclusive. A case study from the U.S. Gulf Coast is presented to illustrate the application of this tiered approach. © 2017, National Ground Water Association.

  10. Prevalent flucocorticoid and androgen activity in US water sources

    Science.gov (United States)

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  11. Prevalent glucocorticoid and androgen activity in US water sources.

    Science.gov (United States)

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  12. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa

    International Nuclear Information System (INIS)

    Manickum, T.; John, W.; Terry, S.; Hodgson, K.

    2014-01-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050–5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018–0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024–0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is “Blue” – ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive “hot spots”. The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. - Highlights: • Radiological and physicochemical quality of raw and drinking water sources. • Suitability of kinetic phosphorescence analysis for Uranium analysis of water. • Suitability of gas flow proportional counting for determining radioactivity of water. • The Effective

  13. The sources of trace element pollution of dry depositions nearby a drinking water source.

    Science.gov (United States)

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  14. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  15. Assessment of air, water and land-based sources of pollution in the ...

    African Journals Online (AJOL)

    A quantitative assessment of air, water and land-based sources of pollution to the coastal zone of the Accra-Tema Metropolitan Area of Ghana was conducted by making an emission inventory from information on industrial, commercial and domestic activities. Three sources of air pollution were analysed, viz, emission from ...

  16. Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment.

    Science.gov (United States)

    Treydte, Kerstin; Boda, Sonja; Graf Pannatier, Elisabeth; Fonti, Patrick; Frank, David; Ullrich, Bastian; Saurer, Matthias; Siegwolf, Rolf; Battipaglia, Giovanna; Werner, Willy; Gessler, Arthur

    2014-05-01

    For accurate interpretation of oxygen isotopes in tree rings (δ(18) O), it is necessary to disentangle the mechanisms underlying the variations in the tree's internal water cycle and to understand the transfer of source versus leaf water δ(18) O to phloem sugars and stem wood. We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the Lötschental (Switzerland). Weekly resolved δ(18) O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. Week-to-week variations in needle-water (18) O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring δ(18) O. Instead, seasonal trends in tree-ring δ(18) O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. Our results suggest that climate signals in tree-ring δ(18) O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. A stepped wedge, cluster-randomized trial of a household UV-disinfection and safe storage drinking water intervention in rural Baja California Sur, Mexico.

    Science.gov (United States)

    Gruber, Joshua S; Reygadas, Fermin; Arnold, Benjamin F; Ray, Isha; Nelson, Kara; Colford, John M

    2013-08-01

    In collaboration with a local non-profit organization, this study evaluated the expansion of a program that promoted and installed Mesita Azul, an ultraviolet-disinfection system designed to treat household drinking water in rural Mexico. We conducted a 15-month, cluster-randomized stepped wedge trial by randomizing the order in which 24 communities (444 households) received the intervention. We measured primary outcomes (water contamination and diarrhea) during seven household visits. The intervention increased the percentage of households with access to treated and safely stored drinking water (23-62%), and reduced the percentage of households with Escherichia coli contaminated drinking water (risk difference (RD): -19% [95% CI: -27%, -14%]). No significant reduction in diarrhea was observed (RD: -0.1% [95% CI: -1.1%, 0.9%]). We conclude that household water quality improvements measured in this study justify future promotion of the Mesita Azul, and that future studies to measure its health impact would be valuable if conducted in populations with higher diarrhea prevalence.

  18. Nanofiltration Membranes for Removal of Color and Pathogens in Small Public Drinking Water Sources

    Science.gov (United States)

    Small public water supplies that use surface water as a source for drinking water are frequently faced with elevated levels of color and natural organic matter (NOM) that are precursors for chlorinated disinfection byproduct (DBP) formation. Nanofiltration (NF) systems can preve...

  19. Water-equivalent solid sources prepared by means of two distinct methods

    International Nuclear Information System (INIS)

    Koskinas, Marina F.; Yamazaki, Ione M.; Potiens Junior, Ademar

    2014-01-01

    The Nuclear Metrology Laboratory at IPEN is involved in developing radioactive water-equivalent solid sources prepared from an aqueous solution of acrylamide using two distinct methods for polymerization. One of them is the polymerization by high dose of 60 Co irradiation; in the other method the solid matrix-polyacrylamide is obtained from an aqueous solution composed by acrylamide, catalyzers and an aliquot of a radionuclide. The sources have been prepared in cylindrical geometry. In this paper, the study of the distribution of radioactive material in the solid sources prepared by both methods is presented. (author)

  20. Environmental evaluation of high-value agricultural produce with diverse water sources: case study from Southern California

    Science.gov (United States)

    Bell, Eric M.; Stokes-Draut, Jennifer R.; Horvath, Arpad

    2018-02-01

    Meeting agricultural demand in the face of a changing climate will be one of the major challenges of the 21st century. California is the single largest agricultural producer in the United States but is prone to extreme hydrologic events, including multi-year droughts. Ventura County is one of California’s most productive growing regions but faces water shortages and deteriorating water quality. The future of California’s agriculture is dependent on our ability to identify and implement alternative irrigation water sources and technologies. Two such alternative water sources are recycled and desalinated water. The proximity of high-value crops in Ventura County to both dense population centers and the Pacific Ocean makes it a prime candidate for alternative water sources. This study uses highly localized spatial and temporal data to assess life-cycle energy use, life-cycle greenhouse gas emissions, operational costs, applied water demand, and on-farm labor requirements for four high-value crops. A complete switch from conventional irrigation with groundwater and surface water to recycled water would increase the life-cycle greenhouse gas emissions associated with strawberry, lemon, celery, and avocado production by approximately 14%, 7%, 59%, and 9%, respectively. Switching from groundwater and surface water to desalinated water would increase life-cycle greenhouse gas emissions by 33%, 210%, 140%, and 270%, respectively. The use of recycled or desalinated water for irrigation is most financially tenable for strawberries due to their relatively high value and close proximity to water treatment facilities. However, changing strawberry packaging has a greater potential impact on life-cycle energy use and greenhouse gas emissions than switching the water source. While this analysis does not consider the impact of water quality on crop yields, previous studies suggest that switching to recycled water could result in significant yield increases due to its lower

  1. Microbial pathogens in source and treated waters from drinking water treatment plants in the United States and implications for human health

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspe...

  2. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  3. The Safe Transportation of Radioactive Materials

    International Nuclear Information System (INIS)

    Megrahi, Abdulhafeed; Abu-Ali, Giuma; Enhaba; Ahmed

    2008-01-01

    In this paper, we present the essential conditions that should be required for transporting the radioactive materials. We demonstrate the procedure for transporting the radioactive iodine-131 from the Centre of Renewable Energies and Desalination of Water in Tajoura, Libya to Tripoli Medical Center. The safe measures were taken during the process of the transportation of the isotope produced in the centre including dosimetry analysis and the thickness of the container. (author)

  4. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  5. Determination of sources and analysis of micro-pollutants in drinking water

    International Nuclear Information System (INIS)

    Md Pauzi Abdullah; Soh Shiau Chian

    2005-01-01

    The objectives of the study are to develop and validate selected analytical methods for the analysis of micro organics and metals in water; to identify, monitor and assess the levels of micro organics and metals in drinking water supplies; to evaluate the relevancy of the guidelines set in the National Standard of Drinking Water Quality 2001; and to identify the sources of pollution and to carryout risk assessment of exposure to drinking water. The presentation discussed the progress of the work include determination of VOCs (Volatile organic compounds) in drinking water using SPME (Solid phase micro-extraction) extraction techniques, analysis of heavy metals in drinking water, determination of Cr(VI) with ICPES (Inductively coupled plasma emission spectrometry) and the presence of halogenated volatile organic compounds (HVOCs), which is heavily used by agricultural sector, in trace concentrations in waters

  6. Domestic transmission routes of pathogens: the problem of in-house contamination of drinking water during storage in developing countries

    DEFF Research Database (Denmark)

    Jensen, Peter Kjaer; Ensink, Jeroen H J; Jayasinghe, Gayathri

    2002-01-01

    Even if drinking water of poor rural communities is obtained from a 'safe' source, it can become contaminated during storage in the house. To investigate the relative importance of this domestic domain contamination, a 5-week intervention study was conducted. Sixty-seven households in Punjab......, Pakistan, were provided with new water storage containers (pitchers): 33 received a traditional wide-necked pitcher normally used in the area and the remaining 34 households received a narrow-necked water storage pitcher, preventing direct hand contact with the water. Results showed that the domestic...... domain contamination with indicator bacteria is important only when the water source is relatively clean, i.e. contains less than 100 Escherichia coli per 100 ml of water. When the number of E. coli in the water source is above this value, interventions to prevent the domestic contamination would have...

  7. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  8. Water rent: essence, sources of formation and accounting reflection

    Directory of Open Access Journals (Sweden)

    T.S. Osadcha

    2016-06-01

    Full Text Available There is the urgent necessity of the transition to a higher level of economic relations in the system of environmental management in the present conditions of economy of the country. As a result, the issues like formation of information support for water rent management, determining the ways of its calculation, distribution as well as usage of water rents require urgent solutions. The study focuses on the essence of water rent and forming organizational and methodological provisions of its accounting reflection to ensure sustainable ecological and economic development of the enterprise. As a result of research the classification of water rent, that affects reflection of such rent in accounting has been formed. It is established that the amount of water rent for accounting reflection can be defined as the difference between actual and normal profit of enterprise-water users. A number of analytical accounts of first and second order as well as the typical correspondence of accounts for accounting reflection of water rent have been suggested. The information from the Report on the formation of water rent that contains data on the sources of payback of expenses incurred for the maintenance of water bodies and the impact of ecological condition of water body on the size of water rent has been suggested to be used in order to manage the size of water rent and expenses incurred to obtain it. Thus, determining the amount of water rent will allow management personnel to adjust the activity of the company in accordance with the strategic objectives of the company’s development regarding the profitability and compliance with the concept of sustainable development.

  9. A post-implementation evaluation of ceramic water filters distributed to tsunami-affected communities in Sri Lanka.

    Science.gov (United States)

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-06-01

    Sri Lanka was devastated by the 2004 Indian Ocean tsunami. During recovery, the Red Cross distributed approximately 12,000 free ceramic water filters. This cross-sectional study was an independent post-implementation assessment of 452 households that received filters, to determine the proportion still using filters, household characteristics associated with use, and quality of household drinking water. The proportion of continued users was high (76%). The most common household water sources were taps or shallow wells. The majority (82%) of users used filtered water for drinking only. Mean filter flow rate was 1.12 L/hr (0.80 L/hr for households with taps and 0.71 for those with wells). Water quality varied by source; households using tap water had source water of high microbial quality. Filters improved water quality, reducing Escherichia coli for households (largely well users) with high levels in their source water. Households were satisfied with filters and are potentially long-term users. To promote sustained use, recovery filter distribution efforts should try to identify households at greatest long-term risk, particularly those who have not moved to safer water sources during recovery. They should be joined with long-term commitment to building supply chains and local production capacity to ensure safe water access.

  10. Occurrence and Removal Characteristics of Phthalate Esters from Typical Water Sources in Northeast China

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2013-01-01

    Full Text Available The presence of phthalate esters (PAEs in the environment has gained a considerable attention due to their potential impacts on public health. This study reports the first data on the occurrence of 15 PAEs in the water near the Mopanshan Reservoir—the new and important water source of Harbin city in Northeast China. As drinking water is a major source for human exposure to PAEs, the fate of target PAEs in the two waterworks (Mopanshan Waterworks and Seven Waterworks was also analyzed. The results demonstrated that the total concentrations of 15 PAEs in the water near the Mopanshan Reservoir were relatively moderate, ranging from 355.8 to 9226.5 ng/L, with the mean value of 2943.1 ng/L. DBP and DEHP dominated the PAE concentrations, which ranged from 52.5 to 4498.2 ng/L and 128.9 to 6570.9 ng/L, respectively. The occurrence and concentrations of these compounds were heavily spatially dependent. Meanwhile, the results on the waterworks samples suggested no significant differences in PAE levels with the input of the raw waters. Without effective and stable removal of PAEs after the conventional drinking water treatment in the waterworks (25.8% to 76.5%, the risks posed by PAEs through drinking water ingestion were still existing, which should be paid special attention to the source control in the Mopanshan Reservoir and some advanced treatment processes for drinking water supplies.

  11. Water Governance in Bangladesh: An Evaluation of Institutional and Political Context

    Directory of Open Access Journals (Sweden)

    Ngai Weng Chan

    2016-09-01

    Full Text Available Water crises are often crises of governance. To address interrelated issues of securing access to sustainable sources of safe water for the world’s populations, scholar and practitioners have suggested fostering improved modes of water governance that support the implementation of integrated water resource management (IWRM. Recently, implementation of an IWRM approach was announced as a target for achieving Goal 6 of the Sustainable Development Goals (SDGs. This study employs an analytical hierarchy process with a SWOT analysis to assess the current institutional and political context of water governance in Bangladesh and evaluate IWRM as a means to achieve the SDGs.

  12. Revised accident source terms for light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  13. Dataset for Testing Contamination Source Identification Methods for Water Distribution Networks

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes the results of a simulation study using the source inversion techniques available in the Water Security Toolkit. The data was created to test...

  14. Sea water desalination using nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.

    2003-01-01

    The paper first underlines the water shortage problem today and in the years to come when, around the time horizon 2020, two-thirds of the total world population would be without access to potable water. Desalination of sea-water (and, to a limited extent, that of brackish water) is shown to be an attractive solution. In this context, sea-water desalination by nuclear energy appears to be not only technically feasible and safe but also economically very attractive and a sustainable solution. Thus, compared to conventional fossil energy based sources, desalination costs by nuclear options could be 30 to 60% lower. The nuclear options are therefore expected to satisfy the fundamental water needs and electricity demands of human beings without in any way producing large amounts of greenhouse gases which any desalination strategy, based on the employment of fossil fuels, cannot fail to avoid. (author)

  15. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  16. A preliminary nationwide survey of the presence of emerging contaminants in drinking and source waters in Brazil.

    Science.gov (United States)

    Machado, Kelly C; Grassi, Marco Tadeu; Vidal, Cristiane; Pescara, Igor C; Jardim, Wilson F; Fernandes, Andreia N; Sodré, Fernando F; Almeida, Fernanda V; Santana, Joyce S; Canela, Maria Cristina; Nunes, Camila R O; Bichinho, Kátia M; Severo, Flaviana J R

    2016-12-01

    This is the first nationwide survey of emerging contaminants in Brazilian waters. One hundred drinking water samples were investigated in 22 Brazilian state capitals. In addition, seven source water samples from two of the most populous regions of the country were evaluated. Samples were collected from June to September of 2011 and again during the same period in 2012. The study covered emerging contaminants of different classes, including hormones, plasticizers, herbicides, triclosan and caffeine. The analytical method for the determination of the compounds was based on solid-phase extraction followed by analysis via liquid chromatography electrospray triple-quadrupole mass spectrometry (LC-MS/MS). Caffeine, triclosan, atrazine, phenolphthalein and bisphenol A were found in at least one of the samples collected in the two sampling campaigns. Caffeine and atrazine were the most frequently detected substances in both drinking and source water. Caffeine concentrations in drinking water ranged from 1.8ngL -1 to values above 2.0μgL -1 while source-water concentrations varied from 40ngL -1 to about 19μgL -1 . For atrazine, concentrations were found in the range from 2.0 to 6.0ngL -1 in drinking water and at concentrations of up to 15ngL -1 in source water. The widespread presence of caffeine in samples of treated water is an indication of the presence of domestic sewage in the source water, considering that caffeine is a compound of anthropogenic origin. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Alternative high-level radiation sources for sewage and waste-water treatment

    International Nuclear Information System (INIS)

    Ballantine, D.S.

    1975-01-01

    The choice of an energy source for the radiation treatment of waste-water or sludge is between an electron accelerator or a gamma-ray source of radioactive cobalt or caesium. A number of factors will affect the ultimate choice and the potential future adoption of radiation as a treatment technique. The present and future availability of radioactive sources of cobalt and caesium is closely linked to the rate of nuclear power development and the assumption by uranium fuel reprocessors of a role as radioactive caesium suppliers. Accelerators are industrial machines which could be readily produced to meet any conceivable market demand. For energy sources in the 20-30 kW range, electron accelerators appear to have an initial capital cost advantage of about seven and an operating cost advantage of two. While radioisotope sources are inherently more reliable, accelerators at voltages to 3 MeV have achieved a reliability level adequate to meet the demands of essentially continuous operations with moderate maintenance requirements. The application of either energy source to waste-water treatment will be significantly influenced by considerations of the relative penetration capability, energy density and physical geometrical constraints of each option. The greater range of the gamma rays and the lower energy density of the isotopic sources permit irradiation of a variety of target geometrics. The low penetration of electrons and the high-energy density of accelerators limit application of the latter to targets presented as thin films of several centimetres thickness. Any potential use of radiation must proceed from a clear definition of process objectives and critical comparison of the radiation energy options for that specific objective. (Author)

  18. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    Science.gov (United States)

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Decreasing aqueous mercury concentrations to achieve safe levels in fish: examining the water-fish relationship in two point-source contaminated streams

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Teresa J [ORNL; Southworth, George R [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Ketelle, Richard H [ORNL; Valentine, Charles S [ORNL; Gregory, Scott M [ORNL

    2013-01-01

    East Fork Poplar Creek (EFPC) and White Oak Creek (WOC) are two mercury-contaminated streams located on the Department of Energy s Oak Ridge Reservation in east Tennessee. East Fork Poplar Creek is the larger and more contaminated of the two, with average aqueous mercury (Hg) concentrations exceeding those in reference streams by several hundred-fold. Remedial actions over the past 20 years have decreased aqueous Hg concentrations in EFPC by 85 %. Fish fillet concentrations, however, have not responded to this decrease in aqueous Hg and remain above the U.S. Environmental Protection Agency s ambient water quality criterion (AWQC) of 0.3 mg/kg. The lack of correlation between aqueous and fish tissue Hg concentrations in this creek has led to questions regarding the usefulness of target aqueous Hg concentrations and strategies for future remediation efforts. White Oak Creek has a similar contamination history but aqueous Hg concentrations in WOC are an order of magnitude lower than in EFPC. Despite the lower aqueous Hg concentrations, fish fillet concentrations in WOC have also been above the AWQC, making the most recent aqueous Hg target of 200 ng/L in EFPC seem unlikely to result in an effective decrease in fillet Hg concentrations. Recent monitoring efforts in WOC, however, suggest an aqueous total Hg threshold above which Hg bioaccumulation in fish may not respond. This new information could be useful in guiding remedial actions in EFPC and in other point-source contaminated streams.

  20. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame

    International Nuclear Information System (INIS)

    Mueller, Claudia E.; Gerecke, Andreas C.; Alder, Alfredo C.; Scheringer, Martin; Hungerbuehler, Konrad

    2011-01-01

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. - Highlights: → Consumer products are the most important source of PFAAs in Swiss surface waters. → Acesulfame proofs to be a good population marker in surface waters. → PFAA pattern analyses reveal specific industrial emissions. - The analysis of correlations between surface water concentrations of perfluorinated compounds (PFCs) and source parameters revealed that consumer products are the most important source for PFCs in Switzerland, whereas industry and atmospheric deposition make a minor contribution.