WorldWideScience

Sample records for safe temperature-induced system

  1. Low-temperature thermionics in space nuclear power systems with the safe-type fast reactor

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Yarygin, V.I.; Lazarenko, G.E.; Zabudko, A.N.; Ovcharenko, M.K.; Pyshko, A.P.; Mironov, V.S.; Kuznetsov, R.V.

    2007-01-01

    The potentialities of the use of the low-temperature thermionic converters (TIC) with the emitter temperature ≤ 1500 K in the space nuclear power system (SNPS) with the SAFE-type (Safe Affordable Fission Engine) fast reactor proposed and developed by common efforts of American experts have been considered. The main directions of the 'SAFE-300-TEG' SNPS (300 kW(thermal)) design update by replacing the thermoelectric converters with the low-temperature high-performance thermionic converters (with the barrier index V B ≤ 1.9 eV and efficiency ≥ 10%) meant for a long-term operation (5 years at least) as the components of the SAFE-300-TIC SNPS for a Lunar base have been discussed. The concept of the SNPS with the SAFE-type fast reactor and low-temperature TICs with specific electric power of about 1.45 W/cm 2 as the components of the SAFE-300-TIC system meeting the Nasa's initial requirements to a Lunar base with the electric power demand of about 30 kW(electrical) for robotic mission has been considered. The results, involving optimization and mass-and-size estimation, show that the SAFE-300-TIC system meets the initial requirements by Nasa to the lunar base power supply. The main directions of the system update aimed at the output electric power increase up to 100 kW(electrical) have also been presented. (authors)

  2. Safe Minimum Internal Temperature Chart

    Science.gov (United States)

    ... Internal Temperature Chart Safe steps in food handling, cooking, and storage are essential in preventing foodborne illness. You can't see, smell, or taste harmful bacteria that may cause illness. In every step of food preparation, follow the four guidelines to keep food safe: ...

  3. An all optical system for studying temperature induced changes in diamond

    CSIR Research Space (South Africa)

    Masina, B

    2010-01-01

    Full Text Available .csir.co.za An all optical system for studying temperature induced changes in diamond Bathusile Masina and Andrew Forbes 1 September 2010 © CSIR 2010 Slide 2 It is acknowledged that temperature induces damage in the diamond bits due to friction during the drilling...

  4. Inherently safe high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yamada, Masao; Hayakawa, Hitoshi

    1987-01-01

    It is recognized in general that High Temperature Gas-cooled Reactors have remarkable characteristics in inherent safety and it is well known that credits of the time margin have been admitted for accident evaluation in the licensing of the currently operating prototype HTGRs (300 MWe class). Recently, more inherently safe HTGRs are being developed in various countries and drawing attention on their possibility for urban siting. The inherent safety characteristics of these HTRs differ each other depending on their design philosophy and on the features of the components/structures which constitute the plant. At first, the specific features/characteristics of the elemental components/structures of the HTRs are explained one by one and then the overall safety features/characteristics of these HTR plants are explained in connection with their design philosophy and combination of the elemental features. Taking the KWU/Interatom Modular Reactor System as an example, the particular design philosophy and safety characteristics of the inherently safe HTR are explained with a result of preliminary evaluation on the possibility of siting close to densely populated area. (author)

  5. Operationalizing safe operating space for regional social-ecological systems.

    Science.gov (United States)

    Hossain, Md Sarwar; Dearing, John A; Eigenbrod, Felix; Johnson, Fiifi Amoako

    2017-04-15

    This study makes a first attempt to operationalize the safe operating space concept at a regional scale by considering the complex dynamics (e.g. non-linearity, feedbacks, and interactions) within a systems dynamic model (SD). We employ the model to explore eight 'what if' scenarios based on well-known challenges (e.g. climate change) and current policy debates (e.g. subsidy withdrawal). The findings show that the social-ecological system in the Bangladesh delta may move beyond a safe operating space when a withdrawal of a 50% subsidy for agriculture is combined with the effects of a 2°C temperature increase and sea level rise. Further reductions in upstream river discharge in the Ganges would push the system towards a dangerous zone once a 3.5°C temperature increase was reached. The social-ecological system in Bangladesh delta may be operated within a safe space by: 1) managing feedback (e.g. by reducing production costs) and the slow biophysical variables (e.g. temperature, rainfall) to increase the long-term resilience, 2) negotiating for transboundary water resources, and 3) revising global policies (e.g. withdrawal of subsidy) that negatively impact at regional scales. This study demonstrates how the concepts of tipping points, limits to adaptations, and boundaries for sustainable development may be defined in real world social-ecological systems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Self-induced temperature gradients in Brownian dynamics

    Science.gov (United States)

    Devine, Jack; Jack, M. W.

    2017-12-01

    Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

  7. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  8. Safe and efficient operation of multistage cold compressor systems

    International Nuclear Information System (INIS)

    Kauschke, M.; Haberstroh, C.; Quack, H.

    1996-01-01

    Large refrigeration rates in the temperature range of super fluid helium can only be obtained with the help of centrifugal cold compressors. For the large 2 K systems, four compression stages are necessary to reach atmospheric pressure. Centrifugal cold compressors are quite sensitive to mass flow and suction temperature variations; but these have to be expected in a real system. The first step in the systems design is to find safe and efficient quasi-stationary modes of operation. The system which is being proposed for the TESLA refrigerators relies on two features. The first is to allow the room temperature screw compressor, downstream of the cold compressors to work occasionally with a subatmospheric suction pressure. The second is to stabilize the suction temperature of the third stage of compression at about 10 K. With these features it is possible, that in all modes of operation all four compressor stages operate exactly at their design point

  9. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  10. Concept of an inherently-safe high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-01-01

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  11. Towards Safe Robotic Surgical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    a controller for motion compensation in beating-heart surgery, and prove that it is safe, i.e., the surgical tool is kept within an allowable distance and orientation of the heart. We solve the problem by simultaneously finding a control law and a barrier function. The motion compensation system is simulated...... from several initial conditions to demonstrate that the designed control system is safe for every admissible initial condition....

  12. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    Science.gov (United States)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  13. Safe Cooperating Cyber-Physical Systems using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Sljivo, Irfan

    2017-01-01

    This paper presents an overview of the ECSEL project entitled ―Safe Cooperating Cyber-Physical Systems using Wireless Communication‖ (SafeCOP), which runs during the period 2016–2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  14. Elaboration of Safe Community Assessment System

    Directory of Open Access Journals (Sweden)

    Birutė Mikulskienė

    2013-08-01

    Full Text Available The paper aims to design an assessment system to monitor and evaluate safety parameters and administrative efforts with the purpose to increase safety in municipalities. The safety monitoring system considered is to be the most important tool for creation and development of safe communities in Lithuania. Several methods were applied to achieve this purpose. In order to determine the role of local government in ensuring the safety of people, property and environment at the local level of a meta-analysis of research reports, the Lithuanian national legislation, strategic planning documents of the state and local government were carried out. Analysis of statistical data, structural analysis, comparative analysis and synthesis methods were used while investigating the areas of safety uncertainty, risk groups, identifying safety risk factors, determining their relationship, and creating a safe community assessment system. A safe community assessment system, which consists of two types of criteria, has been elaborated. The assessment system is based on the multi-level criteria for safety monitoring and the multi-level criteria for the evaluation of municipal activities in the field of building safety. Links between the criteria, peculiarities of their application and advantages in the process of safe community creation and development are analyzed. Design and implementation of the safe community assessment system is one of the most important stages to implement the idea of safe communities. The proposed system integrates a variety of risk areas, the safety achievement criteria are linked to the criteria used in the strategic planning. Periodic assessment of the safety situation using the proposed system ensures possibility to monitor current local safety conditions and assess the changes and the trends. A safe community assessment system is proposed to be used as a tool to unified municipalities safety comprehensiveness and compare safety level in

  15. Elaboration of Safe Community Assessment System

    Directory of Open Access Journals (Sweden)

    Algirdas Astrauskas

    2011-12-01

    Full Text Available The paper aims to design an assessment system to monitor and evaluate safety parameters and administrative efforts with the purpose to increase safety in municipalities. The safety monitoring system considered is to be the most important tool for creation anddevelopment of safe communities in Lithuania. Several methods were applied to achieve this purpose. In order to determine the role of local government in ensuring the safety of people, property and environment at the local level of a meta-analysis of research reports,the Lithuanian national legislation, strategic planning documents of the state and local government were carried out. Analysis of statistical data, structural analysis, comparative analysis and synthesis methods were used while investigating the areas of safety uncertainty, risk groups, identifying safety risk factors, determining their relationship, and creating a safe community assessment system.A safe community assessment system, which consists of two types of criteria, has been elaborated. The assessment system is based on the multi-level criteria for safety monitoring and the multi-level criteria for the evaluation of municipal activities in the field of building safety. Links between the criteria, peculiarities of their application and advantages in the process of safe community creation and development are analyzed.Design and implementation of the safe community assessment system is one of the most important stages to implement the idea of safe communities. The proposed system integrates a variety of risk areas, the safety achievement criteria are linked to the criteria used in thestrategic planning. Periodic assessment of the safety situation using the proposed system ensures possibility to monitor current local safety conditions and assess the changes and the trends. A safe community assessment system is proposed to be used as a tool to unified municipalities safety comprehensiveness and compare safety level in

  16. From Safe Systems to Patient Safety

    DEFF Research Database (Denmark)

    Aarts, J.; Nøhr, C.

    2010-01-01

    for the third conference with the theme: The ability to design, implement and evaluate safe, useable and effective systems within complex health care organizations. The theme for this conference was "Designing and Implementing Health IT: from safe systems to patient safety". The contributions have reflected...... and implementation of safe systems and thus contribute to the agenda of patient safety? The contributions demonstrate how the health informatics community has contributed to the performance of significant research and to translating research findings to develop health care delivery and improve patient safety......This volume presents the papers from the fourth International Conference on Information Technology in Health Care: Socio-technical Approaches held in Aalborg, Denmark in June 2010. In 2001 the first conference was held in Rotterdam, The Netherlands with the theme: Sociotechnical' approaches...

  17. A fail-safe microprocessor-based protection system utilising low-level multiplexed sensor signals

    International Nuclear Information System (INIS)

    Orme, S.; Evans, N.J.; Wey, B.O.

    1985-01-01

    The paper describes a fail-safe reactor protection system, called the individual sub-assembly temperature monitoring system (ISAT). It is being developed for the commercial demonstration fast reactor. The system incorporates recent advances in solid-state electronics and in particular microprocessors to implement time-shared data acquisition techniques to obtain and process data from around 1400 fast response thermocouples whilst meeting the required levels for reliability and availability. (author)

  18. Fail-safe computer-based plant protection systems

    International Nuclear Information System (INIS)

    Keats, A.B.

    1983-01-01

    A fail-safe mode of operation for computers used in nuclear reactor protection systems was first evolved in the UK for application to a sodium cooled fast reactor. The fail-safe properties of both the hardware and the software were achieved by permanently connecting test signals to some of the multiplexed inputs. This results in an unambiguous data pattern, each time the inputs are sequentially scanned by the multiplexer. The ''test inputs'' simulate transient excursions beyond defined safe limits. The alternating response of the trip algorithms to the ''out-of-limits'' test signals and the normal plant measurements is recognised by hardwired pattern recognition logic external to the computer system. For more general application to plant protection systems, a ''Test Signal Generator'' (TSG) is used to compute and generate test signals derived from prevailing operational conditions. The TSG, from its knowledge of the sensitivity of the trip algorithm to each of the input variables, generates a ''test disturbance'' which is superimposed upon each variable in turn, to simulate a transient excursion beyond the safe limits. The ''tripped'' status yielded by the trip algorithm when using data from a ''disturbed'' input forms part of a pattern determined by the order in which the disturbances are applied to the multiplexer inputs. The data pattern formed by the interleaved test disturbances is again recognised by logic external to the protection system's computers. This fail-safe mode of operation of computer-based protection systems provides a powerful defence against common-mode failure. It also reduces the importance of software verification in the licensing procedure. (author)

  19. Implications of inherent safe nuclear power system

    International Nuclear Information System (INIS)

    Song, Yo-Taik

    1987-01-01

    The safety of present day nuclear power reactors and research reactors depends on a combination of design features of passive and active systems, and the alert judgement of their operators. A few inherently safe designs of nuclear reactors for power plants are currently under development. In these designs, the passive systems are emphasized, and the active systems are minimized. Also efforts are made to eliminate the potential for human failures that initiate the series of accidents. If a major system fails in these designs, the core is flooded automatically with coolants that flow by gravity, not by mechanical pumps or electromagnetic actuators. Depending on the choice of the coolants--water, liquid metal and helium gas--there are three principal types of inherently safe reactors. In this paper, these inherently safe reactor designs are reviewed and their implications are discussed. Further, future perspectives of their acceptance by nuclear industries are discussed. (author)

  20. Quantum Zeno subspaces induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Militello, B.; Scala, M.; Messina, A. [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2011-08-15

    We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.

  1. USING THE SAFE SYSTEM APPROACH TO KEEP OLDER DRIVERS SAFELY MOBILE

    Directory of Open Access Journals (Sweden)

    Jim LANGFORD

    2006-01-01

    Full Text Available In 2003, Australian road transport jurisdictions collectively accepted that the greatest road safety gains would be achieved through adopting a Safe System approach, derived from Sweden's Vision Zero and the Netherlands' Sustainable Safety strategies. A key objective of all three approaches is to manage vehicles, the road infrastructure, speeds, road users and the interactions between these components, to ensure that in the event of crashes, crash energies will remain at levels that minimize the probability of death and serious injury. Older drivers pose a particular challenge to the Safe System approach, given particularly their greater physical frailty, their driving patterns and for some at least, their reduced fitness to drive. This paper has analyzed the so-called ‘older driver problem’ and identified a number of key factors underpinning their crash levels, for which countermeasures can be identified and implemented within a Safe System framework. The recommended countermeasures consist of: (1 safer roads, through a series of design improvements particularly governing urban intersections; (2 safer vehicles, through both the promotion of crashworthiness as a critical consideration when purchasing a vehicle and the wide use of developed and developing ITS technologies; (3 safer speeds especially at intersections; and (4 safer road users, through both improved assessment procedures to identify the minority of older drivers with reduced fitness to drive and educational efforts to encourage safer driving habits particularly but not only through self-regulation.

  2. Assessing the 'system' in safe systems-based road designs: using cognitive work analysis to evaluate intersection designs.

    Science.gov (United States)

    Cornelissen, M; Salmon, P M; Stanton, N A; McClure, R

    2015-01-01

    While a safe systems approach has long been acknowledged as the underlying philosophy of contemporary road safety strategies, systemic applications are sparse. This article argues that systems-based methods from the discipline of Ergonomics have a key role to play in road transport design and evaluation. To demonstrate, the Cognitive Work Analysis framework was used to evaluate two road designs - a traditional Melbourne intersection and a cut-through design for future intersections based on road safety safe systems principles. The results demonstrate that, although the cut-through intersection appears different in layout from the traditional intersection, system constraints are not markedly different. Furthermore, the analyses demonstrated that redistribution of constraints in the cut-through intersection resulted in emergent behaviour, which was not anticipated and could prove problematic. Further, based on the lack of understanding of emergent behaviour, similar design induced problems are apparent across both intersections. Specifically, incompatibilities between infrastructure, vehicles and different road users were not dealt with by the proposed design changes. The importance of applying systems methods in the design and evaluation of road transport systems is discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Beam interlock system and safe machine parameters system 2010 and beyond

    CERN Document Server

    Todd, B

    2010-01-01

    The Beam Interlock System (BIS) and Safe Machine Parameters (SMP) system are central to the protection of the Large Hadron Collider (LHC) machine. The BIS has been critical for the safe operation of LHC from the first day of operation. It has been installed and commissioned, only minor enhancements are required in order to accommodate all future LHC machine protection requirements. At reduced intensity, the SMP system is less critical for LHC operation. As such, the current system satisfies the 2010 operational requirements. Further developments are required, both at the SMP Controller level, and at the system level, in order to accommodate the requirements of the LHC beyond 2010.

  4. Anticipating Terrorist Safe Havens from Instability Induced Conflict

    Science.gov (United States)

    Shearer, Robert; Marvin, Brett

    This chapter presents recent methods developed at the Center for Army Analysis to classify patterns of nation-state instability that lead to conflict. The ungoverned areas endemic to failed nation-states provide terrorist organizations with safe havens from which to plan and execute terrorist attacks. Identification of those states at risk for instability induced conflict should help to facilitate effective counter terrorism policy planning efforts. Nation-states that experience instability induced conflict are similar in that they share common instability factors that make them susceptible to experiencing conflict. We utilize standard pattern classification algorithms to identify these patterns. First, we identify features (political, military, economic and social) that capture the instability of a nation-state. Second, we forecast the future levels of these features for each nation-state. Third, we classify each future state’s conflict potential based upon the conflict level of those states in the past most similar to the future state.

  5. Safe affordable fission engine (SAFE 30) module conductivity test thermal model correlation

    International Nuclear Information System (INIS)

    Roman, Jose

    2001-01-01

    The SAFE 30 is a simple, robust space fission power system that is comprised of several independent modules. Each module contains 4 fuel tubes bonded to a central heatpipe. Fission energy is conducted from the fuel tubes to the heatpipe, which in turn transfers the energy to a power conversion system. This paper benchmarks a thermal model of the SAFE 30 with actual test data from simulated SAFE 30 module tests. Two 'dummy' SAFE 30 modules were fabricated - each consisted of 4 1-inch dia. tubes (simulating the fuel tubes) bonded to a central '1' dia. tube (simulating the heatpipe). In the first module the fuel tubes were simply brazed to the heatpipe along the line of contact (leaving void space in the interstices), and in the second module the tubes and heatpipe were brazed via tri-cusps that completely fill the interstices between the tubes. In these tests, fission energy is simulated by placing resistance heaters within each of the 4 fuel tubes. The tests were conducted in a vacuum chamber in 4 configurations: tri-cusps filled with and without an outer insulation wrap, and no tri-cusps with and without an outer insulation wrap. The baseline SAFE 30 configuration uses the brazed tri-cusps. During the tests, the power applied to the heaters was varied in a stepwise fashion, until a steady-state temperature profile was reached. These temperature levels varied between 773 K and 1073 K. To benchmark the thermal model, the input energy and chamber surface temperature were used as boundary conditions for the model. The analytical results from the nodes at the same location as the test thermocouples were plotted again test data to determinate the accuracy of the analysis. The unknown variables on the analysis are the radiation emissivity of the pipe and chamber and the radiation view factor between the module and the chamber. A correlation was determined using a parametric analysis by varying the surface emissivity and view factor until a good match was reached. This

  6. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.

    Science.gov (United States)

    Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo

    2014-09-01

    Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Decomposing climate-induced temperature and water effects on the expansion and operation of the US electricity system

    Science.gov (United States)

    Sun, Y.; Eurek, K.; Macknick, J.; Steinberg, D. C.; Averyt, K.; Badger, A.; Livneh, B.

    2017-12-01

    Climate change has the potential to affect the supply and demands of the U.S. power sector. Rising air temperatures can affect the seasonal and total demand for electricity, alter the thermal efficiency of power plants, and lower the maximum capacity of electric transmission lines. Changes in hydrology can affect seasonal and total availability of water used for power plant operations. Prior studies have examined some climate impacts on the electricity sector, but there has been no systematic study quantifying and comparing the importance of these climate-induced effects in isolation and in combination. Here, we perform a systematic assessment using the Regional Energy Deployment System (ReEDS) electricity sector model in combination with downscaled climate results from four models in the CMIP5 archive that provide contrasting temperature and precipitation trends for key regions in the U.S. The ReEDS model captures dynamic climate and hydrological resource data .when choosing the cost optimal mix of generation resources necessary to balance supply and demand for electricity. We examine how different climate-induced changes in air temperature and water availability, considered in isolation and in combination, may affect energy and economic outcomes at a regional and national level from the present through 2050. Results indicate that temperature-induced impacts on electricity consumption show consistent trends nationwide across all climate scenarios. Hydrological impacts and variability differ by model and tend to have a minor effect on national electricity trends, but can be important determinants regionally. Taken together, this suggests that isolated climate change impacts on the electricity system depend on the geographic scale of interest - the effect of rising temperatures on demand, which is qualitatively robust to the choice of climate model, largely determines impacts on generation, capacity and cost at the national level, whereas other impact pathways may

  8. Women's attitudes to safe-induced abortion in Iran: Findings from a pilot survey.

    Science.gov (United States)

    Aghakhani, Nader; Cleary, Michelle; Zarei, Abbas; Lopez, Violeta

    2018-01-01

    To explore attitudes to safe-induced abortion among pregnant women in Iran. In Islamic teachings, abortion is generally forbidden. However in specific circumstances, abortion may be permitted and currently, in Iran, the law allows termination of pregnancy only if three specialist physicians confirm that the pregnancy outcome may be harmful for the mother during pregnancy or after birth. Pilot, descriptive survey. A 15-item structured questionnaire focusing on attitudes to safe-induced abortion was developed and pilot tested. Participants were pregnant women who were referred to the Legal Medical Centre (July-December 2015) to obtain permission for abortion. On obtaining their informed consent, the women were asked to respond to each item if they agreed (Yes) or disagreed (No). Only their age, education, employment, marital status and religion were obtained. Of the 80 survey participants referred for a safe-induced abortion, 90% were carrying foetuses with a diagnosed congenital malformation and 10% were experiencing complications of pregnancy that endangered their health. The majority of women (85%) perceived abortion to be dangerous to health; 86% indicated that partners should be involved in decision-making about abortion, while 83% believed that public health officials should have complete control of abortion law. There is a need to improve women's and couples' awareness and practice of effective contraceptive methods. Further research is needed to better understand the complex issues that lead to unintended pregnancies and abortions considering religious beliefs and cultural and legal contexts. © 2017 John Wiley & Sons Ltd.

  9. TRENDS AND ISSUES IN SAFE DRIVER ASSISTANCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sadayuki TSUGAWA

    2006-01-01

    Full Text Available In recent years, ITS projects in Japan, Europe and the US have been characterized by a strong emphasis on safe driver assistance systems designed to prevent traffic accidents. As it has become clear that eradicating accidents will be impossible by means of vehicle passive safety and single-vehicle active safety efforts alone, research and development of systems for preventing accidents through road-vehicle cooperation and vehicle-vehicle cooperation have been promoted in Japan (ASV, AHS, Europe (PReVENT, SAFESPOT and the US (VII. The key to such technology is road-to-vehicle communications and inter-vehicle communications. On the other hand, a number of driver assistance systems have been brought to market, including lidar-based forward collision warnings, ACC, lane keeping support and drowsiness warnings, but their penetration rates in Japan are extremely low. Furthermore, one major challenge is that safe driver assistance systems based on road-vehicle and vehicle-vehicle cooperation are premised upon a high penetration rate. Finally, we introduce a system for improving driver acceptance of safe driver assistance systems based on driver monitoring and forward monitoring as well as cooperative driver assistance systems for elderly drivers, an issue now receiving attention in Japan.

  10. Towards eye-safe standoff Raman imaging systems

    Science.gov (United States)

    Glimtoft, Martin; Bââth, Petra; Saari, Heikki; Mäkynen, Jussi; Näsilä, Antti; Östmark, Henric

    2014-05-01

    Standoff Raman imaging systems have shown the ability to detect single explosives particles. However, in many cases, the laser intensities needed restrict the applications where they can be safely used. A new generation imaging Raman system has been developed based on a 355 nm UV laser that, in addition to eye safety, allows discrete and invisible measurements. Non-dangerous exposure levels for the eye are several orders of magnitude higher in UVA than in the visible range that previously has been used. The UV Raman system has been built based on an UV Fabry-Perot Interferometer (UV-FPI) developed by VTT. The design allows for precise selection of Raman shifts in combination with high out-of-band blocking. The stable operation of the UV-FPI module under varying environmental conditions is arranged by controlling the temperature of the module and using a closed loop control of the FPI air gap based on capacitive measurement. The system presented consists of a 3rd harmonics Nd:YAG laser with 1.5 W average output at 1000 Hz, a 200 mm Schmidt-Cassegrain telescope, UV-FPI filter and an ICCD camera for signal gating and detection. The design principal leads to a Raman spectrum in each image pixel. The system is designed for field use and easy manoeuvring. Preliminary results show that in measurements of <60 s on 10 m distance, single AN particles of <300 μm diameter can be identified.

  11. Safe Exploration for Identifying Linear Systems via Robust Optimization

    OpenAIRE

    Lu, Tyler; Zinkevich, Martin; Boutilier, Craig; Roy, Binz; Schuurmans, Dale

    2017-01-01

    Safely exploring an unknown dynamical system is critical to the deployment of reinforcement learning (RL) in physical systems where failures may have catastrophic consequences. In scenarios where one knows little about the dynamics, diverse transition data covering relevant regions of state-action space is needed to apply either model-based or model-free RL. Motivated by the cooling of Google's data centers, we study how one can safely identify the parameters of a system model with a desired ...

  12. Power control of SAFE reactor using fuzzy logic

    International Nuclear Information System (INIS)

    Irvine, Claude

    2002-01-01

    Controlling the 100 kW SAFE (Safe Affordable Fission Engine) reactor consists of design and implementation of a fuzzy logic process control system to regulate dynamic variables related to nuclear system power. The first phase of development concentrates primarily on system power startup and regulation, maintaining core temperature equilibrium, and power profile matching. This paper discusses the experimental work performed in those areas. Nuclear core power from the fuel elements is simulated using resistive heating elements while heat rejection is processed by a series of heat pipes. Both axial and radial nuclear power distributions are determined from neuronic modeling codes. The axial temperature profile of the simulated core is matched to the nuclear power profile by varying the resistance of the heating elements. The SAFE model establishes radial temperature profile equivalence by establishing 32 control zones as the nodal coordinates. Control features also allow for slow warm up, since complete shutoff can occur in the heat pipes if heat-source temperatures drop/rise below a certain minimum value, depending on the specific fluid and gas combination in the heat pipe. The entire system is expected to be self-adaptive, i.e., capable of responding to long-range changes in the space environment. Particular attention in the development of the fuzzy logic algorithm shall ensure that the system process remains at set point, virtually eliminating overshoot on start-up and during in-process disturbances. The controller design will withstand harsh environments and applications where it might come in contact with water, corrosive chemicals, radiation fields, etc

  13. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    Science.gov (United States)

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  14. Managing Temperature Effects in Nanoscale Adaptive Systems

    CERN Document Server

    Wolpert, David

    2012-01-01

    This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems.  It provides a holistic discussion of temperature management, including physical phenomena (reversal of the MOSFET temperature dependence) that have recently become problematic, along with circuit techniques for detecting, controlling, and adapting to these phenomena. A detailed discussion is also included of the general aspects of thermal-aware system design and management of temperature-induced faults. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability.  A new method is presented to control a circuit’s temperature dependence by individually tuning pull-up and pull-down networks to their temperature-insensitive operating points. This method extends the range of supply voltages that can be made temperature-insensitive, achieving insensitivity at nominal voltage fo...

  15. Fiber Bragg Grating Based System for Temperature Measurements

    Science.gov (United States)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  16. Simulation for temperature changing investigation at RSG-GAS cooling system

    International Nuclear Information System (INIS)

    Utaja

    2002-01-01

    The RSG-GAS cooling system considers of primary and secondary system, is used for heat rejection from reactor core to the atmosphere. For temperature changing investigation cause by atmospherics condition changing or coolant flow rate changing, is more safe done by simulation. This paper describes the simulation for determine the RSG-GAS coolant temperature changing base on heat exchange and cooling tower characteristic. The simulation is done by computer programme running under WINDOWS 95 or higher. The temperature changing is based on heat transfer process on heat exchanger and cooling tower. The simulation will show the water tank temperature changing caused by the temperature and humidity of the atmosphere or by coolant flow rate changing. For example the humidity changing from 60% to 80% atmospherics temperature 30 oC and 32400 k Watt power will change the tank temperature from 37,97 oC to 40,03 oC

  17. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS

    Directory of Open Access Journals (Sweden)

    Anthony DeMario

    2017-02-01

    Full Text Available We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS, for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  18. Research of management information system of radiation protection for low temperature nuclear heating reactor

    International Nuclear Information System (INIS)

    Bai Hongtao; Wang Jiaying; Wu Manxue

    2001-01-01

    Management information system of radiation protection for low temperature reactor uses computer to manage the data of the low temperature nuclear heating reactor radiation monitoring, it saves the data from the front real-time radiation monitoring system, comparing these data with historical data to give the consequence. Also, the system provides some picture in order to show space information at need. The system, based on Microsoft Access 97, consists of nine parts, including radiation dose, environmental data, meteorological data and so on. The system will have value in safely operation of the low temperature nuclear heating reactor

  19. Photoirradiation system with temperature control

    International Nuclear Information System (INIS)

    Yonadab Lopez, F.; Stolik, S.; La Rosa, J. M. de; Moreno, E.

    2012-01-01

    During application of phototherapy is possible to induce a significant increase in tissue temperature and generate a localized hyperthermia state if the power density of incident light is high enough. We present a controlled temperature phototherapy system, this allows the application of optical radiation at a wavelength of 630nm using a light emitting diode (LED) of high power. The system automatically controls the irradiation time and power which allows irradiating the tissue with an appropriate energy density. A thermocouple is placed in the irradiated tissue to measure and control the temperature by varying the parameters of power density and time. From results of irradiations made in nu / nu mice using doses of 150 J/cm 2 energy and 250 J/cm 2 shows that the temperature control allows the study of photodynamic therapy in synergy with thermo therapy in different diseases external tissues. (Author)

  20. Design of high precision temperature control system for TO packaged LD

    Science.gov (United States)

    Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan

    2017-10-01

    Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.

  1. Reduction in fluoride-induced genotoxicity in mouse bone marrow cells after substituting high fluoride-containing water with safe drinking water.

    Science.gov (United States)

    Podder, Santosh; Chattopadhyay, Ansuman; Bhattacharya, Shelley

    2011-10-01

    Treatment of mice with 15 mg l(-1) sodium fluoride (NaF) for 30 days increased the number of cell death, chromosomal aberrations (CAs) and 'cells with chromatid breaks' (aberrant cells) compared with control. The present study was intended to determine whether the fluoride (F)-induced genotoxicity could be reduced by substituting high F-containing water after 30 days with safe drinking water, containing 0.1 mg F ions l(-1). A significant fall in percentage of CAs and aberrant cells after withdrawal of F-treatment following 30 days of safe water treatment in mice was observed which was highest after 90 days, although their levels still remained significantly high compared with the control group. This observation suggests that F-induced genotoxicity could be reduced by substituting high F-containing water with safe drinking water. Further study is warranted with different doses and extended treatment of safe water to determine whether the induced damages could be completely reduced or not. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Compensation systems for low temperature applications

    CERN Document Server

    Skoczen, Balzej T

    2004-01-01

    The book is dedicated to the behaviour of ductile materials at cryogenic temperatures, structural stability issues and reliability oriented parametric optimisation of compensation systems containing the corrugated bellows. The problems of local and global stability of systems containing bellows, coupling between the low-cycle fatigue and stability as well as evolution of plastic strain fields, micro-damage and strain induced phase transformation in the corrugated shells at cryogenic temperatures are presented. As a special feature reliability oriented optimum design of compensation systems under strength, stability, fatigue and geometrical constraints is discussed. The relevant applications in the particle accelerators and cryogenic transfer lines are shown.

  3. Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).

    Science.gov (United States)

    Kendrick, B Jacob; DiTullio, Giacomo R; Cyronak, Tyler J; Fulton, James M; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-01-01

    Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.

  4. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  5. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  6. Premiering SAFE for Safety Added Fuel Element - 15020

    International Nuclear Information System (INIS)

    Bhowmik, P.K.; Shamim, J.A.; Suh, K.Y.; Suh, K.S.

    2015-01-01

    The impact of the Fukushima accident has been the willingness to implement passive safety measures in reactor design and to simplify reactor design itself. Within this framework, a new fuel element, named SAFE (Safety Added Fuel Element) based on the concept of accident tolerant fuel, is presented. SAFE is a new type of fuel element cooled internally and externally by light water and with stainless steel as the cladding material. The removal of boron may trigger a series of changes which may simplify the system greatly. A simplified thermal analysis of SAFE shows that the fuel centerline temperature is well below the maximal limit during the normal operation of the plant

  7. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  8. Ultra Safe And Secure Blasting System

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M M

    2009-07-27

    The Ultra is a blasting system that is designed for special applications where the risk and consequences of unauthorized demolition or blasting are so great that the use of an extraordinarily safe and secure blasting system is justified. Such a blasting system would be connected and logically welded together through digital code-linking as part of the blasting system set-up and initialization process. The Ultra's security is so robust that it will defeat the people who designed and built the components in any attempt at unauthorized detonation. Anyone attempting to gain unauthorized control of the system by substituting components or tapping into communications lines will be thwarted in their inability to provide encrypted authentication. Authentication occurs through the use of codes that are generated by the system during initialization code-linking and the codes remain unknown to anyone, including the authorized operator. Once code-linked, a closed system has been created. The system requires all components connected as they were during initialization as well as a unique code entered by the operator for function and blasting.

  9. Radiation-induced conductivity and high-temperature Q changes in quartz resonators

    International Nuclear Information System (INIS)

    Koehler, D.R.

    1981-01-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques have been investigated - one involves measurement of the radiation induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in ionic conduction and in the second case resulting in increased acoustic losses. Radiation induced conductivity measurements have been carried out with a 200 kV, 14 mA x-ray machine producing 5 rads/s. With electric fields of the order of 10 4 V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature ( 300 to 800 0 K) Q -1 measurement technique will be determined. A number of resonators constructed of quartz material of different impurity contents have been tested and both the radiation induced conductivity and the high temperature Q -1 results compared with earlier radiation induced frequency and resonator resistance changes. 10 figures

  10. Hysteresis and Power-Law Statistics during temperature induced martensitic transformation

    International Nuclear Information System (INIS)

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2011-01-01

    We study hysteresis in temperature induced martensitic transformation using a 2D model solid exhibiting a square to rhombic structural transition. We find that upon quenching, the high temperature square phase, martensites are nucleated at sites having large non-affineness and ultimately invades the whole of the high temperature square phase. On heating the martensite, the high temperature square phase is restored. The transformation proceeds through avalanches. The amplitude and the time-duration of these avalanches exhibit power-law statistics both during heating and cooling of the system. The exponents corresponding to heating and cooling are different thereby indicating that the nucleation and dissolution of the product phase follows different transformation mechanism.

  11. Theory of laser-induced demagnetization at high temperatures

    KAUST Repository

    Manchon, Aurelien

    2012-02-17

    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins, and lattice. Assuming that the demagnetization processes take place during the thermalization of the subsystems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnon and electron-phonon interactions, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat-assisted magnetic recording.

  12. Theory of laser-induced demagnetization at high temperatures

    KAUST Repository

    Manchon, Aurelien; Li, Q.; Xu, L.; Zhang, S.

    2012-01-01

    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins, and lattice. Assuming that the demagnetization processes take place during the thermalization of the subsystems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnon and electron-phonon interactions, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat-assisted magnetic recording.

  13. Computer based systems for fast reactor core temperature monitoring and protection

    International Nuclear Information System (INIS)

    Wall, D.N.

    1991-01-01

    Self testing fail safe trip systems and guardlines have been developed using dynamic logic as a basis for temperature monitoring and temperature protection in the UK. The guardline and trip system have been tested in passive operation on a number of reactors and a pulse coded logic guardline is currently in use on the DIDO test reactor. Acoustic boiling noise and ultrasonic systems have been developed in the UK as diverse alternatives to using thermocouples for temperature monitoring and measurement. These systems have the advantage that they make remote monitoring possible but they rely on complex signal processing to achieve their output. The means of incorporating such systems within the self testing trip system architecture are explored and it is apparent that such systems, particularly that based on ultrasonics has great potential for development. There remain a number of problems requiring detailed investigation in particular the verification of the signal processing electronics and trip software. It is considered that these problems while difficult are far from insurmountable and this work should result in the production of protection and monitoring systems suitable for deployment on the fast reactor. 6 figs

  14. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  15. Experimental evaluation of the pressure and temperature dependence of ion-induced nucleation.

    Science.gov (United States)

    Munir, Muhammad Miftahul; Suhendi, Asep; Ogi, Takashi; Iskandar, Ferry; Okuyama, Kikuo

    2010-09-28

    An experimental system for the study of ion-induced nucleation in a SO(2)/H(2)O/N(2) gas mixture was developed, employing a soft x-ray at different pressure and temperature levels. The difficulties associated with these experiments included the changes in physical properties of the gas mixture when temperature and pressure were varied. Changes in the relative humidity (RH) as a function of pressure and temperature also had a significant effect on the different behaviors of the mobility distributions of particles. In order to accomplish reliable measurement and minimize uncertainties, an integrated on-line control system was utilized. As the pressure decreased in a range of 500-980 hPa, the peak concentration of both ions and nanometer-sized particles decreased, which suggests that higher pressure tended to enhance the growth of particles nucleated by ion-induced nucleation. Moreover, the modal diameters of the measured particle size distributions showed a systematic shift to larger sizes with increasing pressure. However, in the temperature range of 5-20 °C, temperature increases had no significant effects on the mobility distribution of particles. The effects of residence time, RH (7%-70%), and SO(2) concentration (0.08-6.7 ppm) on ion-induced nucleation were also systematically investigated. The results show that the nucleation and growth were significantly dependent on the residence time, RH, and SO(2) concentration, which is in agreement with both a previous model and previous observations. This research will be inevitable for a better understanding of the role of ions in an atmospheric nucleation mechanism.

  16. Systems for the safe operation of the JET tokamak with tritium

    International Nuclear Information System (INIS)

    Stork, D.; Ageladarakis, P.; Bell, A.C.

    1999-01-01

    In 1997, the JET device was operated for an extensive campaign with deuterium-tritium (D-T) plasmas (the DTE1 campaign). A comprehensive network of machine protection systems was necessary so that this experimental campaign could be executed safely without damage to the machine or release of activated material. This network had been developed over many years of JET deuterium plasma operation and therefore the modifications for D-T operation was not a significant problem. The DTE1 campaign was executed successfully and safely and the machine protection systems proved reliable and robust and, in the limited cases where they were required to act, functioned correctly. The machine protection systems at JET are described and their categorisation and development over time are summarised. The management, commissioning and operational experience during DTE1 are discussed and some examples of fault scenarios are described. The experience with protection systems at JET highlights the importance of correct design and philosophy decisions being taken at an early stage. It is shown that this experience will be invaluable data input to the safe operation of future large fusion machines. (orig.)

  17. ETHEL's systems and facilities for safe management of tritiated wastes

    International Nuclear Information System (INIS)

    Mannone, F.; Dworschak, H.; Vassallo, G.

    1992-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) is a new tritium facility at the Commission of the European Community's Joint Research Centre, Ispra Site. The laboratory, destined to handle multigram amounts of tritium for safety related R and D purposes, is foreseen to start radioactive operations in late 1992. The general operation and maintenance of laboratory systems and future experiments will generate tritiated wastes in gaseous, liquid and solid forms. The management of such wastes under safe working conditions is a stringent laboratory requirement aimed at minimizing the risk of unacceptable tritium exposures to workers and the general public. This paper describes the main systems and facilities installed in ETHEL for the safe management of tritiated wastes

  18. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1987-01-01

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  19. Engineering safe and secure cyber-physical systems the specification PEARL approach

    CERN Document Server

    Gumzej, Roman

    2016-01-01

    This book introduces the concept of holistic design and development of cyber physical systems to achieve their safe and secure operation. It shows that by following the standards for embedded system’s safety and using appropriate hardware and software components inherently safe system’s architectures can be devised and certified. While the standards already enable testing and certification of inherently safe and sound hardware, this is still not the case with software. The book demonstrates that Specification PEARL(SPEARL) addresses this issue and proposes appropriate solutions from the viewpoints of software engineering as well as concrete program components. By doing so it reduces the complexity of cyber physical systems design in an innovative way. Three ultimate goals are being followed in the course of defining this new PEARL standard, namely: 1. simplicity over complexity, 2. inherent real-time ability, and 3. conformity to safety integrity and security capability levels.

  20. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System

    Directory of Open Access Journals (Sweden)

    Duygu Çelik

    2015-01-01

    Full Text Available An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient’s life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki.

  1. Modified hydraulic braking system limits angular deceleration to safe values

    Science.gov (United States)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  2. "SAFE" LEVEL OF SOMATIC HEALTH IN INDICATORS REGULATION OF CARDIORESPIRATORY SYSTEM AT YOUNG MEN

    Directory of Open Access Journals (Sweden)

    Alexander P Romanchuk

    2015-12-01

    2Lviv State University Physical Culture The aim of this study was to determine the functional state cardiorespiratory system in males younger with "safe" level of somatic health (LSH. Were examined 104 males aged 20,6 ± 0,9 years, engaged in various sports, and had no existing acute and chronic diseases. The survey was conducted using spiroarteriocardiorhythmography (SACR. It is shown that in all studied systems of regulation, regulation except SBP probably marked differences between persons with "safe" and "low" LSH. At the same time, the comparison of "safe" and "medium" LSH differences relate only to the predominance of sympathetic influences on heart rate, decrease suprasegmental effects on DBP, reducing regulatory influences on spontaneous breath and their high-frequency components, reducing of baroreflex sensitivity and cardiac output. Key words: "safe" level of somatic health, regulation of the cardiorespiratory system.

  3. On the problem of safe usage of 12MKh steel at elevated temperatures and high hydrogen pressures

    International Nuclear Information System (INIS)

    Archakov, Yu.I.; Teslya, B.M.

    1982-01-01

    The behaviour of the 12MKh steel in hydrogen at pressures of 4-100 MPa and temperatures of 450-600 deg C has been investigated to study the regularities of hydrogen corrosion process. The samples are held in hydrogen under all-round compression in autoclaves with subsequent determination of mechanical properties, carbon content and microstructure. Dependencies of time to begining of intensive embrittlement under given conditions are found. The empiric equation for the calculation of time to beginning of hydrogen corrosion is derived, the safe usage of the 12MKh steel at different temperatures and pressures are determined

  4. Safe Handover : Safe Patients - The Electronic Handover System.

    Science.gov (United States)

    Till, Alex; Sall, Hanish; Wilkinson, Jonathan

    2014-01-01

    Failure of effective handover is a major preventable cause of patient harm. We aimed to promote accurate recording of high-quality clinical information using an Electronic Handover System (EHS) that would contribute to a sustainable improvement in effective patient care and safety. Within our hospital the human factors associated with poor communication were compromising patient care and unnecessarily increasing the workload of staff due to the poor quality of handovers. Only half of handovers were understood by the doctors expected to complete them, and more than half of our medical staff felt it posed a risk to patient safety. We created a standardised proforma for handovers that contained specific sub-headings, re-classified patient risk assessments, and aided escalation of care by adding prompts for verbal handover. Sources of miscommunication were removed, accountability for handovers provided, and tasks were re-organised to reduce the workload of staff. Long-term, three-month data showed that each sub-heading achieved at least 80% compliance (an average improvement of approximately 40% for the overall quality of handovers). This translated into 91% of handovers being subjectively clear to junior doctors. 87% of medical staff felt we had reduced a risk to patient safety and 80% felt it increased continuity of care. Without guidance, doctors omit key information required for effective handover. All organisations should consider implementing an electronic handover system as a viable, sustainable and safe solution to handover of care that allows patient safety to remain at the heart of the NHS.

  5. Biocontrol Potential of Lariophagus distinguendus (Hymenoptera: Pteromalidae) Against Sitophilus granarius (Coleoptera: Curculionidae) at Low Temperatures: Reproduction and Parasitoid-Induced Mortality

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård

    2007-01-01

    Lariophagus distinguendus Förster (Hymenoptera: Pteromalidae) has been suggested as a biological control agent against the granary weevil, Sitophilus granarius (L.), in grain stores. Information on the effect of low temperatures prevailing in grain stores is necessary to be able to predict...... the potential of this parasitoid against S. granarius in temperate regions, where grain is cooled with ambient air to achieve safe storage conditions. The influence of constant temperatures of 16, 18, and 20°C on life table parameters and parasitoid-induced mortality (PIM) was investigated in the laboratory. L...... is quicker than that of its host, estimated from the literature; and it kills many hosts in addition to those used for reproduction....

  6. Flexible and Safe Control of Mobile Surface Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary innovation of this work is a novel approach for flexible and safe control of highly capable mobile surface systems, such as long-duration science rovers,...

  7. Hard x-ray photoemission study of the temperature-induced valence transition system EuNi2(Si1-xGex) 2

    Science.gov (United States)

    Ichiki, Katsuya; Mimura, Kojiro; Anzai, Hiroaki; Uozumi, Takayuki; Sato, Hitoshi; Utsumi, Yuki; Ueda, Shigenori; Mitsuda, Akihiro; Wada, Hirofumi; Taguchi, Yukihiro; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    2017-07-01

    We investigated the bulk-derived electronic structure of the temperature-induced valence transition system EuNi2(Si1 -xGex )2 (x =0.70 , 0.79, and 0.82) by means of hard x-ray photoemission spectroscopy (HAXPES). The HAXPES spectra clearly show distinct temperature dependencies in the spectral intensities of the Eu2 + and Eu3 +3 d components. For x =0.70 , the changes in the Eu2 + and Eu3 +3 d spectral components with temperature reflect a continuous valence transition, whereas the sudden changes for x =0.79 and 0.82 reflect first-order valence transitions. The Eu 3 d spectral shapes for all x and particularly the drastic changes in the Eu3 +3 d feature with temperature are validated by a theoretical calculation based on the single-impurity Anderson model (SIAM). SIAM analysis reveals that the valence transition for each x is controlled by the c -f hybridization strength and the charge-transfer energy. Furthermore, the c -f hybridization strength governs the valence transition of this system, which is either first order or continuous, consistent with Kondo volume collapse.

  8. Beam-induced temperature changes in HVEM irradiations

    International Nuclear Information System (INIS)

    Garner, F.A.; Thomas, L.E.; Gelles, D.S.

    1975-01-01

    The peak value of the temperature distribution induced by energy loss of 1.0 MeV electrons in traversing a typical HVEM irradiation specimen can be very substantial. The origin and various features of this distribution were analyzed for a variety of specimen geometries. The major parametric dependencies are shown to be relatively independent of specimen geometry, however, and allow the definition of a scaling relationship that can be employed to predict temperature rises in materials that cannot be measured directly. The use of this scaling relationship requires that the experimenter minimize perturbations of the heat flow due to proximity of the central hole in the specimen. An experimental method of determining directly the magnitude and distribution of beam-induced temperature profiles was developed which utilizes the order-disorder transformation in Fe 3 Al and Cu 3 Au. Scaling of experimentally determined temperature changes leads to more realistic estimates of the total temperature rise than are currently available in various literature tabulations. The factors which determine the optimum selection of irradiation parameters for a given experiment are also discussed

  9. Flexible and Safe Control of Mobile Surface Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary innovation of this work is a novel Petri net based approach for safe and flexible control of highly capable mobile surface systems, such as long-duration...

  10. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity.

    Directory of Open Access Journals (Sweden)

    Eun-Do Kim

    Full Text Available The eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice. Among the adjuvants, poly (I:C showed as much enhancement in antigen-specific serum IgG and mucosal IgA antibody production as cholera toxin (CT after vaccinations with trivalent hemagglutinin-subunits or split H1N1 vaccine antigen in mice. Vaccination with split H1N1 eyedrop vaccine antigen plus poly(I:C showed a similar or slightly lower efficacy in inducing antibody production than intranasal vaccination; the eyedrop vaccine-induced immunity was enough to protect mice from lethal homologous influenza A/California/04/09 (H1N1 virus challenge. Additionally, ocular inoculation with poly(I:C plus vaccine antigen generated no signs of inflammation within 24 hours: no increases in the mRNA expression levels of inflammatory cytokines nor in the infiltration of mononuclear cells to administration sites. In contrast, CT administration induced increased expression of IL-6 cytokine mRNA and mononuclear cell infiltration in the conjunctiva within 24 hours of vaccination. Moreover, inoculated visualizing materials by eyedrop did not contaminate the surface of the olfactory bulb in mice; meanwhile, intranasally administered materials defiled the surface of the brain. On the basis of these findings, we propose that the use of eyedrop inactivated influenza vaccine plus poly(I:C is a safe and effective mucosal vaccine strategy for inducing protective anti-influenza immunity.

  11. Inherently safe passive gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  12. Design of an integrated information management system for safe management of radioactive waste

    International Nuclear Information System (INIS)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il

    2003-05-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as: the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal

  13. Design of an integrated information management system for safe management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)] (and others)

    2003-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as: the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal.

  14. Modal analysis of temperature feedback in oscillations induced by xenon

    International Nuclear Information System (INIS)

    Passos, E.M. dos.

    1976-01-01

    The flux oscillations induced by Xenon distribution in homogeneous thermal reactors are studied treating the space dependence through the modal expansion technique and the stability limits against power oscillations and spatial oscillations are determined. The effect of the feedbacks due to Xenon and temperature coefficient on the linear stability of the free system is investigated employing several number of terms in the transient expansion, considering the various sizes of the reactor. The heat transfer model considered includes one term due to cooling proportional to the temperature. A PWR model reactor is utilized for numerical calculations. It is found that a slightly higher temperature feedback coefficient is necessary for stability against power oscillations when larger number of terms in the transient modal expansion is maintained. (author)

  15. Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Directory of Open Access Journals (Sweden)

    Allen L. Garner

    2016-03-01

    Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.

  16. Intrinsically safe moisture blending system

    Science.gov (United States)

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  17. TRLFS Study of U(VI) at Variable Temperatures

    International Nuclear Information System (INIS)

    Lee, J. Y.; Yun, J. I.

    2010-01-01

    Uranium is one of the most important radionuclides in a nuclear waste repository. Transport phenomena for radioactive elements are of crucial importance for a safe geological disposal of nuclear waste. Chemical speciation and solubility are used for understanding and predicting radionuclides migration in aquifer system. Decay heat released from high level waste and geothermal temperature gradient cause higher temperature above room temperature in deep geologic formation. However, most chemical thermodynamic data are obtained at room temperature until recently. There are few studies at temperatures above 25 .deg. C. Therefore, a better understanding of thermodynamic properties at high temperatures is necessary for reliable safety assessment of high level waste repositories. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) has been applied as a sensitive and selective method for chemical speciation. The fluorescence spectrum is unique for each chemical species. The duration time of fluorescence emission is used as another indicator for decomposition of overlapped fluorescence spectrum. The objective of this study is to investigate fluorescence properties of uranium hydrolysis species at elevated temperature using TRLFS

  18. The safe road transport system approach

    Directory of Open Access Journals (Sweden)

    Vollpracht Hans-Joachim

    2016-07-01

    Full Text Available More than 1,24 million people die each year on the worlds roads and between 20 to 50 million suffer from nonfatal injuries. The UN Road Safety Collaboration Meetings under the leadership of WHO developed the Programme for the Decade of Actions for road safety taking nations into the responsibility of improving their accident figures by the five pillars of a national Road Safety Policy, safer Roads, safer Vehicles, safer Road Users and Post Crash Care. It is this Safe System Approach that takes into consideration the land use, infrastructure and transport planning, road user’s abilities and limitations and the close cooperation of all governmental and none governmental stakeholders involved.

  19. Safe electrical design of mine elevator control systems

    Energy Technology Data Exchange (ETDEWEB)

    Barkand, T.D. [Mine Safety and Health Administration, Pittsburgh, PA (United States)

    1995-12-31

    A mine elevator recently experienced an ascending car overspeed accident resulting in serious injuries to four passengers. Although the four miners laid down on the floor prior to impact, the miners struck the ceiling of the elevator car as it collided into the overhead structure at an estimated speed four times faster than normal. Several electrical design precautions can be implemented to prevent elevator control system failures. This paper examines safe electrical design of elevator control systems. Supplemental circuits and devices which improve the safety integrity and maintenance of the elevator control system are presented. These circuits and devices provide protection that eliminates the potential hazard and significantly reduces the possibility of a mine elevator accident.

  20. Safe electrical design of mine elevator control systems

    Energy Technology Data Exchange (ETDEWEB)

    Barkand, T.D. [Mine Safety and Health Administration, Pittsburgh, PA (United States)

    1997-03-01

    A mine elevator recently experienced an ascending-car overspeed accident, resulting in serious injuries to four passengers. Although the four miners laid down on the floor prior to impact, the miners struck the ceiling of the elevator car as it collided into the overhead structure at an estimated speed four times faster than normal. Several electrical design precautions can be implemented to prevent elevator control system failures. This paper examines safe electrical design of elevator control systems. Supplemental circuits and devices which improve the safety integrity and maintenance of the elevator control system are presented. These circuits and devices provide protection that eliminates the potential hazard and significantly reduces the possibility of a mine elevator accident.

  1. Laser induced fluorescence thermometry (LIF-T) as a non-invasive temperature measurement technique for thermal hydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Strack, J.; Leung, K.; Walker, A., E-mail: strackj@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Laser induced fluorescence (LIF) is an experimental technique whereby a scalar field in a fluid system is measured optically from the fluorescence intensity of a tracer dye following excitation by laser light. For laser induced fluorescence thermometry (LIF-T), a temperature sensitive dye is used. Through the use of a temperature sensitive tracer dye, sheet laser optics, optical filters, and photography, a 2D temperature field can be measured non-invasively. An experiment to test the viability of using LIF-T for macroscopic thermal hydraulic experiments was developed and tested. A reference calibration curve to relate fluorescence measurements to temperature is presented. (author)

  2. 30 CFR 75.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Science.gov (United States)

    2010-07-01

    ... High-Voltage Distribution § 75.803 Fail safe ground check circuits on high-voltage resistance grounded systems. [Statutory Provisions] On and after September 30, 1970, high-voltage, resistance grounded systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage...

  3. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  4. A dynamic fail-safe approach to the design of computer-based safety systems

    International Nuclear Information System (INIS)

    Smith, I.C.; Miller, M.

    1994-01-01

    For over 30 years AEA Technology has carried out research and development in the field of nuclear instrumentation and protection systems. Throughout the course of this extensive period of research and development the dominant theme has been the achievement of fully fail-safe designs. These are defined as designs in which the failure of any single component will result in the unit output reverting to a demand for trip action status. At an early stage it was recognized that the use of dynamic rather than static logic could ease the difficulties inherent in achieving a fail-safe design. The first dynamic logic systems coupled logic elements magnetically. The paper outlines the evolution from these early concepts of a dynamic fail-safe approach to the design of computer-based safety systems. Details are given of collaboration between AEA Technology and Duke Power Co. to mount an ISAT TM demonstration at Duke's Oconee Nuclear Power Station

  5. Temperature-insensitive fiber Bragg grating dynamic pressure sensing system.

    Science.gov (United States)

    Guo, Tuan; Zhao, Qida; Zhang, Hao; Zhang, Chunshu; Huang, Guiling; Xue, Lifang; Dong, Xiaoyi

    2006-08-01

    Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.

  6. Noise-induced chaos in a quadratically nonlinear oscillator

    International Nuclear Information System (INIS)

    Gan Chunbiao

    2006-01-01

    The present paper focuses on the noise-induced chaos in a quadratically nonlinear oscillator. Simple zero points of the stochastic Melnikov integral theoretically mean the necessary rising of noise-induced chaotic response in the system based on the stochastic Melnikov method. To quantify the noise-induced chaos, the boundary of the system's safe basin is firstly studied and it is shown to be incursively fractal when chaos arises. Three cases are considered in simulating the safe basin of the system, i.e., the system is excited only by the harmonic excitation, by both the harmonic and the Gaussian white noise excitations, and only by the Gaussian white noise excitation. Secondly, the leading Lyapunov exponent by Rosenstein's algorithm is shown to quantify the chaotic nature of the sample time series of the system. The results show that the boundary of the safe basin can also be fractal even if the system is excited only by the external Gaussian white noise. Most importantly, the almost-harmonic, the noise-induced chaotic and the thoroughly random responses can be found in the system

  7. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco

    2017-12-25

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap and simple fabrication process. The temperature sensor is a negative temperature coefficient thermistor with non-linear response typical of semi-metals. The thermistor shows a 4% decrease of the resistance in a temperature range of 20–60 °C. The flow sensor exploits the piezoresistive properties of laser-induced graphene and can be used both in gaseous and liquid media thanks to a protective polydimethylsiloxane coating. Main characteristics are ultra-fast response and versatility in design offered by the laser technology.

  8. Safe Handover : Safe Patients – The Electronic Handover System

    Science.gov (United States)

    Till, Alex; Sall, Hanish; Wilkinson, Jonathan

    2014-01-01

    Failure of effective handover is a major preventable cause of patient harm. We aimed to promote accurate recording of high-quality clinical information using an Electronic Handover System (EHS) that would contribute to a sustainable improvement in effective patient care and safety. Within our hospital the human factors associated with poor communication were compromising patient care and unnecessarily increasing the workload of staff due to the poor quality of handovers. Only half of handovers were understood by the doctors expected to complete them, and more than half of our medical staff felt it posed a risk to patient safety. We created a standardised proforma for handovers that contained specific sub-headings, re-classified patient risk assessments, and aided escalation of care by adding prompts for verbal handover. Sources of miscommunication were removed, accountability for handovers provided, and tasks were re-organised to reduce the workload of staff. Long-term, three-month data showed that each sub-heading achieved at least 80% compliance (an average improvement of approximately 40% for the overall quality of handovers). This translated into 91% of handovers being subjectively clear to junior doctors. 87% of medical staff felt we had reduced a risk to patient safety and 80% felt it increased continuity of care. Without guidance, doctors omit key information required for effective handover. All organisations should consider implementing an electronic handover system as a viable, sustainable and safe solution to handover of care that allows patient safety to remain at the heart of the NHS. PMID:26734244

  9. Inherently safe technologies-chemical and nuclear

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1984-01-01

    Probabilistic risk assessments show an inverse relationship between the likelihood and the consequences of nuclear and chemical plant accidents, but the Bhopal accident has change public complacency about the safety of chemical plants to such an extent that public confidence is now at the same low level as with nuclear plants. The nuclear industry's response was to strengthen its institutions and improve its technologies, but the public may not be convinced. One solution is to develop reactors which do not depend upon the active intervention of humans of electromechanical devices to deal with emergencies, but which have physical properties that limit the possible temperature and power of a reactor. The Process Inherent Ultimately Safe and the modular High-Temperature Gas-Cooled reactors are two possibilities. the chemical industry needs to develop its own inherently safe design precepts that incorporate smallness, safe processes, and hardening against sabotage. 5 references

  10. Carbon dioxide angiography: a simple and safe system of delivery

    International Nuclear Information System (INIS)

    Cronin, P.; Patel, J.V.; Kessel, D.O.; Robertson, I.; McPherson, S.J.

    2005-01-01

    Carbon dioxide (CO 2 ) is an established alternate angiographic contrast agent, which can be delivered by pump or hand injection. We describe a simple, safe and inexpensive hand injection system that delivers a known volume of CO 2 at atmospheric pressure and prevents contamination with room air

  11. Increased Risk of Drug-Induced Hyponatremia during High Temperatures

    Directory of Open Access Journals (Sweden)

    Anna K Jönsson

    2017-07-01

    Full Text Available Purpose: To investigate the relationship between outdoor temperature in Sweden and the reporting of drug-induced hyponatremia to the Medical Products Agency (MPA. Methods: All individual adverse drug reactions (ADR reported to MPA from 1 January 2010 to 31 October 2013 of suspected drug-induced hyponatremia and random controls were identified. Reports where the ADR had been assessed as having at least a possible relation to the suspected drug were included. Information on administered drugs, onset date, causality assessment, sodium levels, and the geographical origin of the reports was extracted. A case-crossover design was used to ascertain the association between heat exposure and drug-induced hyponatremia at the individual level, while linear regression was used to study its relationship to sodium concentration in blood. Temperature exposure data were obtained from the nearest observation station to the reported cases. Results: During the study period, 280 reports of hyponatremia were identified. More cases of drug-induced hyponatremia were reported in the warmer season, with a peak in June, while other ADRs showed an opposite annual pattern. The distributed lag non-linear model indicated an increasing odds ratio (OR with increasing temperature in the warm season with a highest odds ratio, with delays of 1–5 days after heat exposure. A cumulative OR for a lag time of 1 to 3 days was estimated at 2.21 at an average daily temperature of 20 °C. The change in sodium per 1 °C increase in temperature was estimated to be −0.37 mmol/L (95% CI: −0.02, −0.72. Conclusions: Warm weather appears to increase the risk of drug-induced hyponatremia

  12. FAST and SAFE Passive Safety Devices for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chihyung; Kim, In-Hyung; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The major factor is the impact of the neutron spectral hardening. The second factor that affects the CVR is reduced capture by the coolant when the coolant voiding occurs. To improve the CVR, many ideas and concepts have been proposed, which include introduction of an internal blanket, spectrum softening, or increasing the neutron leakage. These ideas may reduce the CVR, but they deteriorate the neutron economy. Another potential solution is to adopt a passive safety injection device such as the ARC (autonomous reactivity control) system, which is still under development. In this paper, two new concepts of passive safety devices are proposed. The devices are called FAST (Floating Absorber for Safety at Transient) and SAFE (Static Absorber Feedback Equipment). Their purpose is to enhance the negative reactivity feedback originating from the coolant in fast reactors. SAFE is derived to balance the positive reactivity feedback due to sodium coolant temperature increases. It has been demonstrated that SAFE allows a low-leakage SFR to achieve a self-shutdown and self-controllability even though the generic coolant temperature coefficient is quite positive and the coolant void reactivity can be largely managed by the new FAST device. It is concluded that both FAST and SAFE devices will improve substantially the fast reactor safety and they deserve more detailed investigations.

  13. Temperature-induced transitions between domain structures of ultrathin magnetic films

    International Nuclear Information System (INIS)

    Polyakova, T.; Zablotskii, V.

    2005-01-01

    Full text: Understanding of the influence of temperature on behavior of domain patterns of ultrathin magnetic films is of high significance for the fundamental physics of nanomagnetism as well as for technological applications. A thickness-dependent Curie temperature of ultrathin films may cause many interesting phenomena in the thermal evolution of domain structures (DS): i) nontrivial changes of the anisotropy constants as a function of the film thickness; ii) so-called inverse melting of DSs (processes where a more symmetric domain phase is found at lower temperatures than at higher temperatures - the inverse phase sequence) [1]; iii) temperature-induced transitions between domain structures. The possibility of such transitions is determined by lowering of the potential barriers separating different magnetization states as the film temperature approaches the Curie point. In this case with an increase of temperature, due to a significant decrease of the anisotropy constant, the domain wall energy is low enough and allows the system to reach equilibrium by a change of the domain wall number in the sample. This manifests itself in a transition from a metastable DS to a more stable DS which corresponds to new values of the anisotropy constant and magnetizations saturation. Thus, the temperature-induced transitions are driven by temperature changes of the magnetic parameters of the film. The key parameters controlling the DS geometry and period are the characteristic length, l c =σ/4πM S 2 (the ratio between the domain wall and demagnetization energies), and the quality factor Q =K/2πM S 2 (K is the first anisotropy constant). We show that for films with a pronounced nonmonotonic temperature dependence of l c one can expect a counter thermodynamic behavior: the inverse phase sequence and cooling-induced disordering. On changing temperature the existing domain structure should accommodate itself under new magnitudes of l c and Q. There are the two possible

  14. Esterification of jatropha oil via ultrasonic irradiation with auto-induced temperature-rise effect

    International Nuclear Information System (INIS)

    Andrade-Tacca, Cesar Augusto; Chang, Chia-Chi; Chen, Yi-Hung; Manh, Do-Van; Chang, Ching-Yuan; Ji, Dar-Ren; Tseng, Jyi-Yeong; Shie, Je-Lueng

    2014-01-01

    Auto-induced temperature-rise effects of ultrasonic irradiation (UI) on the esterification performance of jatropha oil (JO) were studied. Comparisons with other methods of mechanical mixing (MM) and hand shaking mixing were made. Major system parameters examined include: esterification time (t E ), settling time (t S ) after esterification and temperature. Properties of acid value (AV), iodine value (IV), kinematic viscosity (KV) and density of JO and ester product were measured. The esterification conversion efficiencies (η) were determined and assessed. Sulfuric acid was used to catalyze the esterification using methyl alcohol. For esterification without temperature control, η at t E  = 10 and 30 min for UI of 56.73 and 83.23% are much higher than those for MM of 36.76 and 42.48%, respectively. At t E  = 10 min, the jatropha oil esters produced via UI and MM respectively possess AV of 15.82 and 23.12 mg KOH/g, IV of 111.49 and 113.22 g I 2 /100 g, KV of 22.41 and 22.51 mm 2 /s and density of 913.8 and 913.58 kg/m 3 , showing that UI is much better than MM in enhancing the reduction of AV. The t E exhibits more vigorous effect on AV for UI than MM. The UI offers auto-induced temperature-rise, improving the mixing and esterification extents. - Highlights: • Esterification of jatropha oil is pronounced under ultrasonic irradiation (UI). • UI can auto-induce temperature rise. • The induced temperature rise assists the mixing of UI in enhancing esterification. • UI offers better esterification than mechanical mixing with external heating. • An 83.23% reduction of FFA in jatropha-ester is achievable via UI in 30 min

  15. Effect of the Gamma Radiation and Temperature on Histamine Production, Lipid Peroxidation and Antioxidant Parameters in Sardine (Sardina Pilchardus)

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Aladrovic, J.; Dzaja, P.; Ljubic-Beer, B.; Laskaj, R.

    2013-01-01

    Radiation processing of fish is recognized as a safe and effective method for reducing microorganisms and viruses as well for inactivating pathogens among the existing technologies for preservation. Safety and hygienic quality is directly related to the duration between when the fish is caught and when it reaches the end consumer and depends upon conditions how the sardine is handled and upon which conditions. As sardine (Sardina pilchardus Walbaum, 1792) is pelagric fish widely distributed in the Adriatic Sea and one of the most commercially important fish species in the fisheries of all countries located along the coast of the Adriatic Sea in the present study, the effects of gamma irradiation on the histamine production, lipid peroxidation and antioxidant parameters in sardine during the storage at two different temperatures (4 and 30 degrees of Celsius) were investigated. The results indicate that histamine concentration was reduced by gamma irradiation and that the safe consumption can be prolonged for both temperatures of storage. However, irradiation treatment induced oxidative damage, as evidenced by changes in levels of lipid peroxidation and radical kinetic rate detected by EPR (electron paramagnetic resonance) spectroscopy. These results suggest that gamma radiation undoubtedly induces antioxidant defence system in sardine fish. However, further research is necessary to elucidate the precise role that the antioxidant system plays under the influence of gamma radiation and temperature.(author)

  16. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems

    KAUST Repository

    Oubei, Hassan M.

    2017-06-16

    In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

  17. Topological terms induced by finite temperature and density fluctuations

    International Nuclear Information System (INIS)

    Niemi, A.J.; Department of Physics, The Ohio State University, Columbus, Ohio 43210)

    1986-01-01

    In (3+1)-dimensional finite-temperature and -density SU(2) gauge theories with left-handed fermions, the three-dimensional Chern-Simons term (topological mass) can be induced by radiative corrections. This result is derived by use of a family's index theorem which also implies that in many other quantum field theories various additional lower-dimensional topological terms can be induced. In the high-temperature limit these terms dominate the partition function, which suggests applications to early-Universe cosmology

  18. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  19. A Micropulse eye-safe all-fiber molecular backscatter coherent temperature lidar

    Directory of Open Access Journals (Sweden)

    Abari Cyrus F.

    2016-01-01

    Full Text Available In this paper, we analyze the performance of an all-fiber, micropulse, 1.5 μm coherent lidar for remote sensing of atmospheric temperature. The proposed system benefits from the recent advances in optics/electronics technology, especially an all-fiber image-reject homodyne receiver, where a high resolution spectrum in the baseband can be acquired. Due to the presence of a structured spectra resulting from the spontaneous Rayleigh-Brillouine scattering, associated with the relevant operating regimes, an accurate estimation of the temperature can be carried out. One of the main advantages of this system is the removal of the contaminating Mie backscatter signal by electronic filters at the baseband (before signal conditioning and amplification. The paper presents the basic concepts as well as a Monte-Carlo system simulation as the proof of concept.

  20. Technical and safe development features of modern research reactor

    International Nuclear Information System (INIS)

    Wang Jiaying; Dong Duo

    1998-01-01

    The development trend of research reactor in the world, and development situation in China are introduced. Up to now, some research reactors have serviced for long time and equipment have aged, not to be satisfied for requirement of science and technology development. New research reactors must been developed. The technical features and safe features of new type research reactor in China, for example: multi-pile utilization, compact core of high flux, high automation level of control, reactor two independent shutdown systems, great coefficient of negative temperature, passive safety systems, reliable residual heat removal system are studied

  1. Environmentally safe system for treatment of bio corrosion of ETICS

    Directory of Open Access Journals (Sweden)

    Minarovičová Katarína

    2018-01-01

    Full Text Available Effects of microorganisms on building facades are responsible for aesthetic, bio-geophysical and biogeochemical deterioration. The process of cleaning of contaminated facades involves the removal and eradication of micro flora on the surface of insulation using chemical products, killing cells and eliminating all living mass, including organic ingredients. The removal of bio corrosion coating from ETICS structure by means of chemical and preservative substances (biocides is currently the only effective and most used technology. Uncontrolled leaching of the used biocides is unacceptable. Meantime, new technology for environmentally safe maintenance of ETICS is needed. Scientists have been working on replacement the biocides currently used in facades treatment with eco-friendly biocides that have no negative effects on the environment or human beings. While the eco- treatment will be available, safe dewatering of chemicals being leached from the surface of the facade could be provided by e.g. special drain systems adjusted to the building type, use and age. The paper gives an overview of the problem in context of Slovakia and examples of leaching systems designed for new and renovated buildings.

  2. SUNRAYCE 1993: Working safely with lead-acid batteries and photovoltaic power systems

    Science.gov (United States)

    Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-11-01

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have 'hands-on' contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  3. Development and design of an integrated information management system for safe management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2004-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as; the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections In safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal.

  4. Development and design of an integrated information management system for safe management of radioactive waste

    International Nuclear Information System (INIS)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il

    2004-05-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as; the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections In safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal

  5. Study on the Performance of a Proposed Fire Safe Elevator System used for Evacuation in Supertall Buildings

    Directory of Open Access Journals (Sweden)

    Cai Na

    2016-01-01

    Full Text Available Long evacuation time is a key fire safety concern when a supertall building is on fire. The elevator system can be an effective alternative. The performance of a design of fire safe elevator system combining the refuge place with fire safe elevator is studied. An example building based on this proposed design is considered. Smoke spread to the system is studied by the Computational Fluid Dynamics (CFD code Fire Dynamics Simulator (FDS. Different arrangements of smoke extraction with pressurization systems are evaluated by analysing the smoke dispersion and pressure distributions in this fire safe elevator system. Numerical results were compared with that by theoretical equations. The results show that a smoke extraction system with a four-floor approach pressurization system can be an efficient method for smoke control in elevator system for supertall buildings.

  6. Sociotechnical attributes of safe and unsafe work systems.

    Science.gov (United States)

    Kleiner, Brian M; Hettinger, Lawrence J; DeJoy, David M; Huang, Yuang-Hsiang; Love, Peter E D

    2015-01-01

    Theoretical and practical approaches to safety based on sociotechnical systems principles place heavy emphasis on the intersections between social-organisational and technical-work process factors. Within this perspective, work system design emphasises factors such as the joint optimisation of social and technical processes, a focus on reliable human-system performance and safety metrics as design and analysis criteria, the maintenance of a realistic and consistent set of safety objectives and policies, and regular access to the expertise and input of workers. We discuss three current approaches to the analysis and design of complex sociotechnical systems: human-systems integration, macroergonomics and safety climate. Each approach emphasises key sociotechnical systems themes, and each prescribes a more holistic perspective on work systems than do traditional theories and methods. We contrast these perspectives with historical precedents such as system safety and traditional human factors and ergonomics, and describe potential future directions for their application in research and practice. The identification of factors that can reliably distinguish between safe and unsafe work systems is an important concern for ergonomists and other safety professionals. This paper presents a variety of sociotechnical systems perspectives on intersections between social--organisational and technology--work process factors as they impact work system analysis, design and operation.

  7. Sociotechnical attributes of safe and unsafe work systems

    Science.gov (United States)

    Kleiner, Brian M.; Hettinger, Lawrence J.; DeJoy, David M.; Huang, Yuang-Hsiang; Love, Peter E.D.

    2015-01-01

    Theoretical and practical approaches to safety based on sociotechnical systems principles place heavy emphasis on the intersections between social–organisational and technical–work process factors. Within this perspective, work system design emphasises factors such as the joint optimisation of social and technical processes, a focus on reliable human–system performance and safety metrics as design and analysis criteria, the maintenance of a realistic and consistent set of safety objectives and policies, and regular access to the expertise and input of workers. We discuss three current approaches to the analysis and design of complex sociotechnical systems: human–systems integration, macroergonomics and safety climate. Each approach emphasises key sociotechnical systems themes, and each prescribes a more holistic perspective on work systems than do traditional theories and methods. We contrast these perspectives with historical precedents such as system safety and traditional human factors and ergonomics, and describe potential future directions for their application in research and practice. Practitioner Summary: The identification of factors that can reliably distinguish between safe and unsafe work systems is an important concern for ergonomists and other safety professionals. This paper presents a variety of sociotechnical systems perspectives on intersections between social–organisational and technology–work process factors as they impact work system analysis, design and operation. PMID:25909756

  8. Dynamic simulation for scram of high temperature gas-cooled reactor with indirect helium turbine cycle system

    International Nuclear Information System (INIS)

    Li Wenlong; Xie Heng

    2011-01-01

    A dynamic analysis code for this system was developed after the mathematical modeling and programming of important equipment of 10 MW High Temperature Gas Cooled Reactor Helium Turbine Power Generation (HTR-10GT), such as reactor core, heat exchanger and turbine-compressor system. A scram accident caused by a 0.1 $ reactivity injection at 5 second was simulated. The results show that the design emergency shutdown plan for this system is safe and reasonable and that the design of bypass valve has a large safety margin. (authors)

  9. SUNRAYCE 93: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-11-03

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems, and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have {open_quotes}hands-on{close_quotes} contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use, and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  10. Advanced microsystems for automotive applications 2013 smart systems for safe and green vehicles

    CERN Document Server

    Meyer, Gereon

    2013-01-01

    The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be “Smart Systems for Safe and Green Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de.

  11. Temperature-induced plasticity in egg size and resistance of eggs to temperature stress in a soil arthropod.

    NARCIS (Netherlands)

    Liefting, M.; Weerenbeck, M.; van Dooremalen, J.A.; Ellers, J.

    2010-01-01

    Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms, resulting in predictable changes in egg size. However, the fitness consequences of temperature-induced plasticity in egg size are not well understood and are often assessed at mild temperatures,

  12. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.

    Science.gov (United States)

    Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun

    2017-09-07

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

  13. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  14. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    Science.gov (United States)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  15. Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility

    International Nuclear Information System (INIS)

    Zhang, Xuan-Hui; Zheng, Xiang; Cheng, Yuan; Li, Guo-Hua; Chen, Xiao-Ping; Zheng, Jian-Hui

    2013-01-01

    The fasciculate zone of phase pure rutile was fabricated under sunlight irradiation at room temperature, using titanium tetrachloride as a sole precursor. The crystal phase, morphology and microstructure, and optical absorption behavior of the samples were characterized by X-ray Diffraction, High-Resolution Transmission Electron Microscope (HRTEM) and UV–vis Diffuse Reflectance Spectra (DRS), respectively. XRD results show that the crystal phase of the sample is composed of rutile only, and a lattice distortion displays in the crystallite of the sample. HRTEM results show that the morphology of rutile particle is fasciculate zone constituted of nanoparticles with a diameter of 4–7 nm, and these particles grow one by one and step by step. The pattern of the selected area electron diffraction of the sample is Kikuchi type, which can be attributed to the predominant orientation growth of rutile nanoparticles along [001] induced by sunlight irradiation. DRS results show that the absorption threshold of the sample is 415 nm, corresponding to the band gap energy of 2.99 eV, which is lower than the band gap energy of rutile, 3.03 eV. Blood compatibility measurement shows that the sample has no remarkable effect on hemolytic and coagulation activity. The percent hemolysis of red blood cells is less than 5% even treated with a big dosage of the fasciculate rutile and under UV irradiation, and there are no obvious changes of plasma recalcification time after the rutile treatment. Thus, the novel structure of rutile fasciculate has low potential toxicity for blood and is hemocompatibility safe. Highlights: • A novel approach to fabricate the fasciculate zone of phase pure rutile • The fasciculate grows from a particle to nanorod and to fasciculate, step by step. • A preferred orientation growth induced by sunlight irradiation in the fasciculate • The rutile fasciculate is low toxicity for blood and is hemocompatibility safe

  16. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  17. On the safeness of examinees and the reliability of system

    International Nuclear Information System (INIS)

    Kudo, Kazumi; Kanda, Kosuke; Saito, Kazuhiko; Maesawa, Tsuneharu; Idekami, Tomio

    1979-01-01

    The control technique of the reliability of examination system was investigated from the viewpoint of patient safety and image information, based on the prevention of microshock owing to circulatory organ checking system. As for the equipments in hospitals, the size of rooms, air conditioning system, power source installation, earth and piping arrangements should be fully discussed at the planning stage. EPR system must be introduced for the prevention for microshock. Intensive education and training are required for operators to secure safeness in operation. Thorough care should be taken to prevent bacilli infection. Further examinations were made on the control technique of the reliability of photographing system from viewpoint of image information, and it is necessary to study the factors for obtaining the reliability of compound machinery components and the devices of generating radiation. (Kobatake, H.)

  18. Noise-induced chaos and basin erosion in softening Duffing oscillator

    International Nuclear Information System (INIS)

    Gan Chunbiao

    2005-01-01

    It is common for many dynamical systems to have two or more attractors coexist and in such cases the basin boundary is fractal. The purpose of this paper is to study the noise-induced chaos and discuss the effect of noises on erosion of safe basin in the softening Duffing oscillator. The Melnikov approach is used to obtain the necessary condition for the rising of chaos, and the largest Lyapunov exponent is computed to identify the chaotic nature of the sample time series from the system. According to the Melnikov condition, the safe basins are simulated for both the deterministic and the stochastic cases of the system. It is shown that the external Gaussian white noise excitation is robust for inducing the chaos, while the external bounded noise is weak. Moreover, the erosion of the safe basin can be aggravated by both the Gaussian white and the bounded noise excitations, and fractal boundary can appear when the system is only excited by the random processes, which means noise-induced chaotic response is induced

  19. Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.

    Science.gov (United States)

    Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A

    2015-10-01

    Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.

  20. A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy

    Directory of Open Access Journals (Sweden)

    Miki Ando

    2015-10-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs has created promising new avenues for therapies in regenerative medicine. However, the tumorigenic potential of undifferentiated iPSCs is a major safety concern for clinical translation. To address this issue, we demonstrated the efficacy of suicide gene therapy by introducing inducible caspase-9 (iC9 into iPSCs. Activation of iC9 with a specific chemical inducer of dimerization (CID initiates a caspase cascade that eliminates iPSCs and tumors originated from iPSCs. We introduced this iC9/CID safeguard system into a previously reported iPSC-derived, rejuvenated cytotoxic T lymphocyte (rejCTL therapy model and confirmed that we can generate rejCTLs from iPSCs expressing high levels of iC9 without disturbing antigen-specific killing activity. iC9-expressing rejCTLs exert antitumor effects in vivo. The system efficiently and safely induces apoptosis in these rejCTLs. These results unite to suggest that the iC9/CID safeguard system is a promising tool for future iPSC-mediated approaches to clinical therapy.

  1. Influence of Energy and Temperature in Cluster Coalescence Induced by Deposition

    Directory of Open Access Journals (Sweden)

    J. C. Jiménez-Sáez

    2012-01-01

    Full Text Available Coalescence induced by deposition of different Cu clusters on an epitaxial Co cluster supported on a Cu(001 substrate is studied by constant-temperature molecular dynamics simulations. The degree of epitaxy of the final system increases with increasing separation between the centres of mass of the projectile and target clusters during the collision. Structure, roughness, and epitaxial order of the supported cluster also influence the degree of epitaxy. The effect of energy and temperature is determinant on the epitaxial condition of the coalesced cluster, especially both factors modify the generation, growth and interaction among grains. A higher temperature favours the epitaxial growth for low impact parameters. A higher energy contributes to the epitaxial coalescence for any initial separation between the projectile and target clusters. The influence of projectile energy is notably greater than the influence of temperature since higher energies allow greater and instantaneous atomic reorganizations, so that the number of arisen grains just after the collision becomes smaller. The appearance of grain boundary dislocations is, therefore, a decisive factor in the epitaxial growth of the coalesced cluster.

  2. Effect of 7-nitroindazole on body temperature and methamphetamine-induced dopamine toxicity.

    Science.gov (United States)

    Callahan, B T; Ricaurte, G A

    1998-08-24

    The present study was undertaken to examine the role of temperature on the ability of 7-nitroindazole (7-NI) to prevent methamphetamine-induced dopamine (DA) neurotoxicity. Male Swiss-Webster mice received methamphetamine alone or in combination with 7-NI at either room temperature (20+/-1 degrees C) or at 28+/-1 degrees C. At 20+/-1 degrees C, 7-NI produced hypothermic effects and afforded total protection against methamphetamine-induced DA depletions in the striatum. At 28+/-1 degrees C, 7-NI produced minimal effects on body temperature and failed to prevent methamphetamine-induced DA reductions. These findings indicate that the neuroprotection afforded by 7-NI is likely related to its ability to produce hypothermia because agents that produce hypothermia and/or prevent hyperthermia are known to attenuate methamphetamine-induced neurotoxicity.

  3. A new temperature collection system

    International Nuclear Information System (INIS)

    Kong Wenchuang; Wang Daihua; Zhang Zhijie

    2011-01-01

    According to the characteristics of explosion field temperature testing, a new temperature collection system based on complex programmable logic device (CPLD), single chip microcontroller (SCM) and static ram (SRAM) is proposed. The system adopts the NANMAC E12 type of thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation, with rapid synchronous collection, trigger and working parameters adjustable characteristics. The system used SCM combined with USB communication interface, easy operation and reliable. (authors)

  4. Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Nichols, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-27

    This report describes the preliminary validation of a high-temperature microfluidic chip system for sampling of electrochemical process salt. Electroanalytical and spectroscopic techniques are attractive candidates for improvement through high-throughput sample analysis via miniaturization. Further, microfluidic chip systems are amenable to micro-scale chemical processing such as rapid, automated sample purification to improve sensor performance. The microfluidic chip was tested to determine the feasibility of the system for high temperature applications and conditions under which microfluidic systems can be used to generate salt droplets at process temperature to support development of material balance and control systems in a used fuel treatment facility. In FY13, the project focused on testing a quartz microchip device with molten salts at near process temperatures. The equipment was installed in glove box and tested up to 400°C using commercial thermal transfer fluids as the carrier phase. Preliminary tests were carried out with a low-melting halide salt to initially characterize the properties of this novel liquid-liquid system and to investigate the operating regimes for inducing droplet flow within candidate carrier fluids. Initial results show that the concept is viable for high temperature sampling but further development is required to optimize the system to operate with process relevant molten salts.

  5. Anticipatory research for the design of a sustainable and safe road traffic system.

    NARCIS (Netherlands)

    Oppe, S.

    1993-01-01

    The new policy in the Netherlands is attempting to build a traffic system, based on clear design concepts and rules about how to use it. Such a system should be sustainable and safe. The design characteristics of the roads should be relevant to their functions. It should be clear which vehicles are

  6. An eight pushbutton control system for the PSU ultra-safe nuclear plant: Addendum to annual report

    International Nuclear Information System (INIS)

    Schultz, M.A.

    1988-10-01

    The control system described in this report was developed for a ''Light Water Ultra-Safe Plant Concept'' studied at Penn State during a 2 year program funded by the Department of Energy. A reconfigured pressurized water reactor was designed which eliminated the conventional PWR pressurizer and added an active pumping system with a large dedicated water storage tank to control pressure. The thermal hydraulics aspects of the design were studied and reported in several master's theses and other addendum reports and first annual report. In addition to improving the inherent safety of an advanced plant by changes in the thermal hydraulic aspects of the design, a new approach to control system organization and design should also be included in an advanced plant. The study presented in this report modifies a conventional PWR plant control system to the needs of the Ultra-Safe Plant Concept and then describes implementation of the control system in a distributed network of control computers. The end result is a control system that is much simpler at the operator level. This simplicity should eliminate the possibility of operator error in the Ultra-Safe plant

  7. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices

    Directory of Open Access Journals (Sweden)

    Schnorr Jörg

    2005-04-01

    Full Text Available Abstract Background Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. Methods This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. Results The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality

  8. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices.

    Science.gov (United States)

    Busch, Martin H J; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich H W

    2005-04-08

    Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI

  9. 'SIP', as a tool of 'Ukrytie' shelter transformation into an ecologically safe system

    International Nuclear Information System (INIS)

    Dzhadd, K.; Shmidt, D.

    1999-01-01

    The Shelter implementation plan (SIP) was used for realisation of 'Ukrytie' stabilization and for its transformation into an ecologically safe system SIP includes logic of needed actions and process of solution adaption during 'Ukrytie' transformation

  10. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    Science.gov (United States)

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fluctuations in Brain Temperature Induced by Lypopolysaccharides: Central and Peripheral Contributions

    Directory of Open Access Journals (Sweden)

    Jeremy S. Tang

    2010-01-01

    Full Text Available In this study, we examined changes in central (anterior-preoptic hypothalamus and peripheral (temporal muscle and facial skin temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS at low doses (1 and 10 μg/kg at thermoneutral conditions (28˚C. Recordings were made with high temporal resolution (5-s bin and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/ body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  12. Fluctuations in brain temperature induced by lipopolysaccharides: central and peripheral contributions.

    Science.gov (United States)

    Tang, Jeremy S; Kiyatkin, Eugene A

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle, and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose, and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  13. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  14. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    Science.gov (United States)

    Kelly, Jesse C.

    -off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.

  15. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  16. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  17. STRRAP system-A software for hazardous materials risk assessment and safe distances calculation

    International Nuclear Information System (INIS)

    Godoy, S.M.; Santa Cruz, A.S.M.; Scenna, N.J.

    2007-01-01

    This work presents a powerful computational tool (Stochastic Toxic Release Risk Assessment Package, STRRAP) useful in risk assessment and emergency planning (safe distance calculation), which allows to handle the stochastic uncertainty of atmospheric parameters, critical for risk calculation when diffusion of hazardous gases or particulate matter occur as a consequence of an emission or accidental release. In fact, the random behaviour of wind intensity, wind direction, atmospheric stability and temperature, given a time horizon, (a season or a complete year), is taken into account considering also the day or night condition. STRRAP can be used for releases or emissions from static sources (for example a stack or a fixed tank in a facility) or from transportation accidents (road, rail, maritime and pipeline transport) involving different scenarios. After a stochastic simulation based on well-known diffusion models (dense and light gases, particulate matter) is carried out, the downwind pollutant concentrations are obtained, in order to compute safe distances and/or individual and societal risks. Some study cases are analyzed to show STRRAP capabilities

  18. A description of phases with induced hybridisation at finite temperatures

    Science.gov (United States)

    Golosov, D. I.

    2018-05-01

    In an extended Falicov-Kimball model, an excitonic insulator phase can be stabilised at zero temperature. With increasing temperature, the excitonic order parameter (interaction-induced hybridisation on-site, characterised by the absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at higher T) its absolute value. In order to build an adequate mean field description, it is important to clarify the nature of degrees of freedom associated with the phase and absolute value of the induced hybridisation, and the corresponding phase space volume. We show that a possible description is provided by the SU(4) parametrisation on-site. In principle, this allows to describe both the lower-temperature regime where phase fluctuations destroy the long-range order, and the higher temperature crossover corresponding to a decrease of absolute value of the hybridisation relative to the fluctuations level. This picture is also expected to be relevant in other contexts, including the Kondo lattice model.

  19. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  20. Temperature rise and stress induced by microcracks in accelerating structures

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2010-12-01

    Full Text Available The temperature rise and induced stress due to Ohmic heating in the vicinity of microcracks on the walls of high-gradient accelerating structures are considered. The temperature rise and induced stress depend on the orientation of the crack with respect to the rf magnetic field, the shape of the crack, and the power and duration of the rf pulse. Under certain conditions the presence of cracks can double the temperature rise over that of a smooth surface. Stress at the bottom of the cracks can be several times larger than that of the case when there are no cracks. We study these effects both analytically and by computer simulation. It is shown that the stress in cracks is maximal when the crack depth is on the order of the thermal penetration depth.

  1. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  2. Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study.

    Science.gov (United States)

    Brearley, Amanda L; Sherburn, Margaret; Galea, Mary P; Clarke, Sandy J

    2015-10-01

    What is the body temperature response of healthy pregnant women exercising at moderate intensity in an aqua-aerobics class where the water temperature is in the range of 28 to 33 degrees Celsius, as typically found in community swimming pools? An observational study. One hundred and nine women in the second and third trimester of pregnancy who were enrolled in a standardised aqua-aerobics class. Tympanic temperature was measured at rest pre-immersion (T1), after 35minutes of moderate-intensity aqua-aerobic exercise (T2), after a further 10minutes of light exercise while still in the water (T3) and finally on departure from the facility (T4). The range of water temperatures in seven indoor community pools was 28.8 to 33.4 degrees Celsius. Body temperature increased by a mean of 0.16 degrees Celsius (SD 0.35, ptemperature response was not related to the water temperature (T2 r = -0.01, p = 0.9; T3 r = -0.02, p=0.9; T4 r=0.03, p=0.8). Analysis of variance demonstrated no difference in body temperature response between participants when grouped in the cooler, medium and warmer water temperatures (T2 F=0.94, p=0.40; T3 F=0.93, p=0.40; T4 F=0.70, p=0.50). Healthy pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic exercise conducted in pools heated up to 33 degrees Celsius. The study provides evidence to inform guidelines for safe water temperatures for aqua-aerobic exercise during pregnancy. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  3. Seismic design margin evaluation of systems and equipment required for safe shutdown of North Anna, Units 1 and 2, following an SSE (safe-shutdown earthquake) event. Technical report

    International Nuclear Information System (INIS)

    Desai, K.D.

    1981-06-01

    The Advisory Committee on Reactor Safeguards recommended that the NRC staff review in detail the capability and available seismic design margin of fluid systems and equipment used in North Anna, Units 1 and 2 to achieve safe shutdown following a site-design safe-shutdown earthquake (SSE). The staff conducted a series of plant visits and meetings with the licensee to view and discuss the seismic design methodology used for systems, equipment and their supports. The report is a description and evaluation of the seismic design criteria, design conservatisms and seismic design margin for North Anna, Units 1 and 2

  4. Feedback control of a primary pump for safe and stable operation of a PIUS-type reactor

    International Nuclear Information System (INIS)

    Tasaka, K.; Imai, S.; Masaoka, H.; Tamaki, M.; Kukita, Y.

    1993-01-01

    A new automatic pump speed control system by using a measurement of the temperature distribution in the lower density lock is proposed for the PIUS-type reactor. This control system maintains the fluid temperature at the axial center of the lower density lock at the average of the fluid temperatures below and above the density lock in order to prevent the poison water from penetrating into the core during normal operation. The effectiveness of this control system was successfully confirmed by a series of experiments such as start-up and power ramping tests for the stable normal operation and a loss-of-feedwater test for the safe shutdown in an accident condition, using a small scale atmospheric pressure test loop which simulated the PIUS principle. (orig.)

  5. Gamma-sterilization-induced radicals in biodegradable drug delivery systems

    International Nuclear Information System (INIS)

    Maeder, K.; Swartz, H.M.; Domb, A.

    1996-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (1.2 and 9.25 GHz, 25 o C) was used to characterize free radicals in gamma-ray sterilized biodegradable polymers of the type which are in clinical use. Free radicals were detected in all irradiated polymer samples. The temperature of irradiation (25 o vs dry ice temperature) had only a minor influence on the yield of radicals and the shape of the EPR spectra. In contrast, the composition of the polymers and the drugs incorporated in them did strongly influence the amount of radiation-induced free radicals and their reactivity. In general, polymers with high melting points and crystallinity had the highest yields of radicals observable at room temperature. We were able to use the free radicals induced by the usual sterilization procedures to follow the penetration of water and the degradation of the polymers in vitro and in vivo. The ability of in vivo EPR to follow drug delivery noninvasively and continuously in vivo, using the free radicals induced in the usual sterilization process indicates that this approach could be applied immediately for the characterization of these drug delivery systems in experimental animals and in the near future should be able to be used in human subjects. (author)

  6. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  7. Safe sex

    Science.gov (United States)

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  8. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    Science.gov (United States)

    Ku, Jentung; Garrison, Matt; Patel, Deepak; Robinson, Frank; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  9. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  10. Curiosity's Autonomous Surface Safing Behavior Design

    Science.gov (United States)

    Neilson, Tracy A.; Manning, Robert M.

    2013-01-01

    The safing routines on all robotic deep-space vehicles are designed to put the vehicle in a power and thermally safe configuration, enabling communication with the mission operators on Earth. Achieving this goal is made a little more difficult on Curiosity because the power requirements for the core avionics and the telecommunication equipment exceed the capability of the single power source, the Multi-Mission Radioisotope Thermoelectric Generator. This drove the system design to create an operational mode, called "sleep mode", where the vehicle turns off most of the loads in order to charge the two Li-ion batteries. The system must keep the vehicle safe from over-heat and under-heat conditions, battery cell failures, under-voltage conditions, and clock failures, both while the computer is running and while the system is sleeping. The other goal of a safing routine is to communicate. On most spacecraft, this simply involves turning on the receiver and transmitter continuously. For Curiosity, Earth is above the horizon only a part of the day for direct communication to the Earth, and the orbiter overpass opportunities only occur a few times a day. The design must robustly place the Rover in a communicable condition at the correct time. This paper discusses Curiosity's autonomous safing behavior and describes how the vehicle remains power and thermally safe while sleeping, as well as a description of how the Rover communicates with the orbiters and Earth at specific times.

  11. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    Science.gov (United States)

    Kopardekar, Parimal H.

    2016-01-01

    Unmanned Aircraft System (UAS) Traffic Management (UTM) Enabling Civilian Low-Altitude Airspace and Unmanned Aircraft System Operations What is the problem? Many beneficial civilian applications of UAS have been proposed, from goods delivery and infrastructure surveillance, to search and rescue, and agricultural monitoring. Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS operations, regardless of the type of UAS. A UAS traffic management (UTM) system for low-altitude airspace may be needed, perhaps leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today, whether the vehicles are driven by humans or are automated. What system technologies is NASA exploring? Building on its legacy of work in air traffic management for crewed aircraft, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that could develop airspace integration requirements for enabling safe, efficient low-altitude operations. While incorporating lessons learned from the today's well-established air traffic management system, which was a response that grew out of a mid-air collision over the Grand Canyon in the early days of commercial aviation, the UTM system would enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning and re-routing, separation management, sequencing and spacing, and contingency management. One of the attributes of the UTM system is that it would not require human operators to monitor every vehicle continuously. The system could provide to human managers the data to make strategic decisions related to initiation, continuation, and termination of airspace operations. This approach would ensure that only authenticated UAS could operate

  12. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco; Marinaro, Giovanni; Kosel, Jü rgen

    2017-01-01

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap

  13. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  14. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    Science.gov (United States)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  15. Fermilab linac upgrade side coupled cavity temperature control system

    International Nuclear Information System (INIS)

    Crisp, J.; Satti, J.

    1991-05-01

    Each cavity section has a temperature control system which maintains the resonant frequency by exploiting the 17.8 ppm/degree C frequency sensitivity of the copper cavities. Each accelerating cell has a cooling tube brazed azimuthally to the outside surface. Alternate supply and return connection to the water manifolds reduce temperature gradients and maintain physical alignment of the cavity string. Special tubing with spiral inner fins and large flow rate are used to reduce the film coefficient. Temperature is controlled by mixing chilled water with the water circulating between the cavity and the cooling skid located outside the radiation enclosure. Chilled water flow is regulated with a valve controlled by a local microcomputer. The temperature loop set point will be obtained from a slower loop which corrects the phase error between the cavity section and the rf drive during normal beam loaded conditions. Time constants associated with thermal gradients induced in the cavity with the rf power require programming it to the nominal 7.1 MW level over a 1 minute interval to limit the reverse power. 4 refs., 4 figs

  16. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  17. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    constitutive promoter). We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.

  18. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  19. SAFE/SNAP application to shipboard security

    International Nuclear Information System (INIS)

    Grady, L.M.; Walker, J.L.; Polito, J.

    1981-11-01

    An application of the combined Safeguards Automated Facility Evaluation/Safeguards Network Analysis Procedure (SAFE/SNAP) modeling technique to a physical protection system (PPS) aboard a generic ship is described. This application was performed as an example of how the SAFE and SNAP techniques could be used. Estimates of probability of interruption and neutralization for the example shipboard PPS are provided by SAFE as well as an adversary scenario, which serves as input to SNAP. This adversary scenario is analyzed by SNAP through four cases which incorporate increasingly detailed security force tactics. Comparisons between the results of the SAFE and SNAP analyses are made and conclusions drawn on the validity of each technique. Feedback from SNAP to SAFE is described, and recommendations for upgrading the ship based on the results of the SAFE/SNAP application are also discussed

  20. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  1. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  2. Safely Enabling Civilian Unmanned Aerial System (UAS) Operations in Low-Altitude Airspace by Unmanned Aerial System Traffic Management (UTM)

    Science.gov (United States)

    Kopardekar, Parimal Hemchandra

    2015-01-01

    Many UAS will operate at lower altitude (Class G, below 2000 feet). There is an urgent need for a system for civilian low-altitude airspace and UAS operations. Stakeholders want to work with NASA to enable safe operations.

  3. Thermoluminescent system for low temperatures

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.; Leite, N.G.

    1988-09-01

    A system for measurements of the thermoluminescent glow curve, the thermoluminescent emission spectrum and the optical absorption spectrum of solid samples, from liquid nitrogen temperature up to 473 K, is reported. A specially designed temperature programmer provides a linear heating of the sample at a wide range of selectable heating rates, as also long term steady-state temperatures for annealing and isothermal decay studies. The system operates at a pressure of 1.33 x 10 -3 Pa. Presently it is being used for lithium fluoride low temperature thermoluminescent studies. (author) [pt

  4. 30 CFR 77.803 - Fail safe ground check circuits on high-voltage resistance grounded systems.

    Science.gov (United States)

    2010-07-01

    ... circuits on high-voltage resistance grounded systems. On and after September 30, 1971, all high-voltage... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fail safe ground check circuits on high-voltage resistance grounded systems. 77.803 Section 77.803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION...

  5. Fail-safe logic elements for use with reactor safety systems

    International Nuclear Information System (INIS)

    Bobis, J.P.; McDowell, W.P.

    1976-01-01

    A complete fail-safe trip circuit is described which utilizes fail-safe logic elements. The logic elements used are analog multipliers and active bandpass filter networks. These elements perform Boolean operations on a set of AC signals from the output of a reactor safety-channel trip comparator

  6. Lower Colorado River GRP Public Water System Intakes, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Safe Drinking Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells, springs an intake locations are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). The data is kept in the Safe...

  7. Lower Colorado River GRP Public Water System Springs, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Safe Drinking Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells, springs an intake locations are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). The data is kept in the Safe...

  8. Lower Colorado River GRP Public Water System Wells, Nevada, 2012, Nevada Division of Environmental Protection Bureau of Safe Drinking Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Public Water System wells, springs an intake locations are collected and maintained by NDEP Bureau of Safe Drinking Water (BSDW). The data is kept in the Safe...

  9. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    Science.gov (United States)

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  10. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    Science.gov (United States)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated

  11. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.

    Science.gov (United States)

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel

    2011-06-01

    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  12. Influence of the Sampling Rate and Noise Characteristics on Prediction of the Maximal Safe Laser Exposure in Human Skin Using Pulsed Photothermal Radiometry

    Science.gov (United States)

    Vidovič, L.; Milanič, M.; Majaron, B.

    2013-09-01

    Pulsed photothermal radiometry (PPTR) allows for noninvasive determination of the laser-induced temperature depth profile in strongly scattering samples, including human skin. In a recent experimental study, we have demonstrated that such information can be used to derive rather accurate predictions of the maximal safe radiant exposure on an individual patient basis. This has important implications for efficacy and safety of several laser applications in dermatology and aesthetic surgery, which are often compromised by risk of adverse side effects (e.g., scarring, and dyspigmentation) resulting from nonselective absorption of strong laser light in epidermal melanin. In this study, the differences between the individual maximal safe radiant exposure values as predicted from PPTR temperature depth profiling performed using a commercial mid-IR thermal camera (as used to acquire the original patient data) and our customized PPTR setup are analyzed. To this end, the latter has been used to acquire 17 PPTR records from three healthy volunteers, using 1 ms laser irradiation at 532 nm and a signal sampling rate of 20 000 . The laser-induced temperature profiles are reconstructed first from the intact PPTR signals, and then by binning the data to imitate the lower sampling rate of the IR camera (1000 fps). Using either the initial temperature profile in a dedicated numerical model of heat transfer or protein denaturation dynamics, the predicted levels of epidermal thermal damage and the corresponding are compared. A similar analysis is performed also with regard to the differences between noise characteristics of the two PPTR setups.

  13. A New Multichelating Acid System for High-Temperature Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-01-01

    Full Text Available Sandstone reservoir acidizing is a complex and heterogeneous acid-rock reaction process. If improper acid treatment is implemented, further damage can be induced instead of removing the initial plug, particularly in high-temperature sandstone reservoirs. An efficient acid system is the key to successful acid treatment. High-temperature sandstone treatment with conventional mud acid system faces problems including high acid-rock reaction rate, short acid effective distance, susceptibility to secondary damage, and serious corrosion to pipelines. In this paper, a new multichelating acid system has been developed to overcome these shortcomings. The acid system is composed of ternary weak acid, organic phosphonic chelating agent, anionic polycarboxylic acid chelating dispersant, fluoride, and other assisted additives. Hydrogen ion slowly released by multistage ionization in ternary weak acid and organic phosphonic within the system decreases the concentration of HF to achieve retardation. Chelating agent and chelating dispersant within the system inhibited anodic and cathodic reaction, respectively, to protect the metal from corrosion, while chelating dispersant has great chelating ability on iron ions, restricting the depolarization reaction of ferric ion and metal. The synergic effect of chelating agent and chelating dispersant removes sulfate scale precipitation and inhibits or decreases potential precipitation such as CaF2, silica gel, and fluosilicate. Mechanisms of retardation, corrosion-inhibition, and scale-removing features have been discussed and evaluated with laboratory tests. Test results indicate that this novel acid system has good overall performance, addressing the technical problems and improving the acidizing effect as well for high-temperature sandstone.

  14. Hydrogen production system coupled with high-temperature gas-cooled reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku

    2003-01-01

    On the HTTR program, R and D on nuclear reactor technology and R and D on thermal application technology such as hydrogen production and so on, are advanced. When carrying out power generation and thermal application such as hydrogen production and so on, it is, at first, necessary to supply nuclear heat safely, stably and in low cost, JAERI carries out some R and Ds on nuclear reactor technology using HTTR. In parallel to this, JAERI also carries out R and D for jointing nuclear reactor system with thermal application systems because of no experience in the world on high temperature heat of about 1,000 centigrade supplied by nuclear reactor except power generation, and R and D on thermochemical decomposition method IS process for producing hydrogen from water without exhaust of carbon dioxide. Here were described summaries on R and D on nuclear reactor technology, R and D on jointing technology using HTTR hydrogen production system, R and D on IS process hydrogen production, and comparison hydrogen production with other processes. (G.K.)

  15. Temperature Control System for Mushroom Dryer

    Science.gov (United States)

    Wibowo, I. A.; Indah, Nur; Sebayang, D.; Adam, N. H.

    2018-03-01

    The main problem in mushroom cultivation is the handling after the harvest. Drying is one technique to preserve the mushrooms. Traditionally, mushrooms are dried by sunshine which depends on the weather. This affects the quality of the dried mushrooms. Therefore, this paper proposes a system to provide an artificial drying for mushrooms in order to maintain their quality. The objective of the system is to control the mushroom drying process to be faster compared to the natural drying at an accurate and right temperature. A model of the mushroom dryer has been designed, built, and tested. The system comprises a chamber, heater, blower, temperature sensor and electronic control circuit. A microcontroller is used as the controller which is programmed to implement a bang-bang control that regulates the temperature of the chamber. A desired temperature is inputted as a set point of the control system. Temperature of 45 °C is chosen as the operational drying temperature. Several tests have been carried out to examine the performance of the system including drying speed, the effects of ambient conditions, and the effects of mushroom size. The results show that the system can satisfy the objective.

  16. Selectivity of radiation-induced processes in hydrocarbons, related polymers and organized polymer systems

    International Nuclear Information System (INIS)

    Feldman, V.I.; Sukhov, F.F.; Zezin, A.A.; Orlov, A.Yu.

    1999-01-01

    Fundamental aspects of the selectivity of radiation-induced events in polymers and polymeric systems were considered: (1) The grounds of selectivity of the primary events were analyzed on the basis of the results of studies of model compounds (molecular aspect). Basic results were obtained for hydrocarbon molecules irradiated in low-temperature matrices. The effects of selective localization of the primary events on the radical formation were examined for several polymers irradiated at low and superlow temperatures (77 and 15 K). A remarkable correlation between the properties of prototype ionized molecules (radical cations) and selectivity of the primary bond rupture in the corresponding polymers were found for polyethylene, polystyrene and some other hydrocarbon polymers. The first direct indication of selective localization of primary events at conformational defects was obtained for oriented high-crystalline polyethylene irradiated at 15 K. The significance of dimeric ring association was proved for the radiation chemistry of polystyrene. Specific mechanisms of low-temperature radiation-induced degradation were also analyzed for polycarbonate and poly(alkylene terephthalates). (2) Specific features of the localization of primary radiation-induced events in microheterogeneous polymeric systems were investigated (microstructural aspect). It was found that the interphase processes played an important role in the radiation chemistry of such systems. The interphase electron migration may result in both positive and negative non-additive effects in the formation of radiolysis products. The effects of component diffusion and chemical reactions on the radiation-induced processes in microheterogeneous polymeric systems were studied with the example of polycarbonate - poly(alkylene terephthalate) blends. (3) The effects of restricted molecular motion on the development of the radiation-chemical processes in polymers were investigated (dynamic aspect). In particular, it

  17. Measurement system for ultrahigh temperature thermophysical properties

    International Nuclear Information System (INIS)

    Fukuyama, Hiroyuki

    2015-01-01

    Properties and Simulations Probed with Electromagnetic Containerless Technique (PROSPECT) is a measurement system for ultrahigh temperature thermophysical properties to be able to measure thermophysical properties with high precision by combining AC magnetic field (electromagnetic levitation device) and DC magnetic field (superconducting magnet) to realize the static floating state of metallic melt, in other words, the state of suppressing the surface vibration of droplets, translational motion, and internal convection. The electromagnetic levitation method is a method to obtain a floating force due to the Lorentz force generated by the interaction between high-frequency current flowing in the coil and the induced current generated in a sample, and to heat/melt the sample with the Joule heat generated by its induced current. This paper roughly explains the element technologies of PROSPECT with a focus on the laser modulation calorimetry (laser periodic heating method), normal spectral emissivity measurement method, density measurement, and surface tension measurement method. Furthermore, as the application of PROSPECT to new research deployment, it introduces the observation of phase separation structure in the supercooled solidification structure of Cu-Co alloy. (A.O.)

  18. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  19. Temperature Control System for Chromel-Alumel Thermocouple

    International Nuclear Information System (INIS)

    Piping Supriatna; Nurhanan; Riswan DJ; Heru K, B.; Edi Karyanta

    2003-01-01

    Nuclear Power Plan Operation Safety needs serious handling on temperature measurement and control. In this report has been done manufacturing Temperature Control System for Chromel-Alumel Thermocouple, accordance to material, equipment and human resource ability in the laboratory. Basic component for the Temperature Control System is LM-741 type of Operation Amplifier, which is functionalized as summer for voltage comparator. Function test for this Control System shown its ability for damping on temperature reference. The Temperature Control System will be implemented on PCB Processing Machine. (author)

  20. Charge imbalance induced by a temperature gradient in superconducting aluminum

    International Nuclear Information System (INIS)

    Mamin, H.J.; Clarke, J.; Van Harlingen, D.J.

    1984-01-01

    The quasiparticle transport current induced in a superconducting aluminum film by a temperature gradient has been measured by means of the spatially decaying charge imbalance generated near the end of the sample where the current is divergent. The magnitude and decay length of the charge imbalance are in good agreement with the predictions of a simple model that takes into account the nonuniformity of the temperature gradient. The inferred value of the thermopower in the superconducting state agrees reasonably well with the value measured in the normal state. Measurements of the decay length of charge imbalance induced by current injection yield a value of the inelastic relaxation time tau/sub E/ of about 2 ns. This value is substantially smaller than that obtained from other measurements for reasons that are not known

  1. LEADIR-PS: the path to a safe and economic SMR

    Energy Technology Data Exchange (ETDEWEB)

    Hart, R.S. [Nothern Nuclear Industries Inc., Cambridge, Ontario (Canada)

    2014-07-01

    Northern Nuclear Industries Incorporated (N{sup 2} I{sup 2}) is developing a family of Small Modular Reactors (SMRs) called LEADIR-PS, an acronym for LEAD-cooled Integral Reactor-Passively Safe. LEADIR-PS plants under development, focused on process heat applications and the energy demands of Canada, are the LEADIR-PS100 with an output of 100 MWth and LEADIR-PS300 with an output of 300 MWth. A plant consisting of six LEADIR-PS300 reactor modules serving a common turbine-generator, called the LEADIR-PS Six-Pack, is focused on serving areas with higher energy demands. LEADIR-PS integrates the inherent safety features of the Modular High Temperature Gas Reactor and molten lead coolant in an integral pool type reactor configuration. Molten lead coolant, which boils at 1750 {sup o}C,avoids the cost of a reactor pressure vessel and high pressure/high temperature reactor coolant systems, and the safety concerns regarding pressure vessel and large capacity reactor coolant system piping rupture and precludes evaporation of the coolant. Molten lead does not chemically react with air, water, or graphite. The Gen IV+ LEADIR-PS plants are inherently/passively safe. There are no active systems required for safe shutdown and decay heat removal. Safety is assured without active or stored energy power supply, without a requirement to reposition valves or other devices and operator intervention or action. The unprecedented safety achieved by LEADIR-PS reactors avoids requirements for a large exclusion radius and demanding evacuation plan requirements. LEADIR-PS, with steam conditions of 370 {sup o}C and 12 MPa (more than twice that of water cooled reactors), can serve over 85% of the world's non-transportation process heat demands and is ideally suited to serving Combined Heat and Electricity demands and industrial parks. Energy utilization of over 95% is feasible in process heat and Combined Heat and Electricity applications. The simple robust design of LEADIR-PS plants in

  2. Hypoxial death inferred from thermally induced injuries at upper lethal temperatures, in the banded killifish, Fundulus diaphanus (LeSueur)

    Energy Technology Data Exchange (ETDEWEB)

    Rombough, P J; Garside, E T

    1977-10-01

    Banded killifish, Fundulus diaphanus (LeSueur), acclimated to 25/sup 0/C were subjected to upper lethal temperatures using a 10,000 min bioassay procedure. The incipient upper lethal temperature (LT/sub 50/) was about 34.5/sup 0/C. Histologic examination of heat-treated fish revealed no obvious injury to the heart, spleen, trunk musculature, eye, naris, integument, or digestive tract. Thermal stress induced progressive injury to the gills characterized by subepithelial edema, congestion of lamellar capillaries, and delamination of the respiratory epithelium from the pillar cell system. Areas of necrosis were observed in the lobus inferior of the hypothalamus and in the medulla oblongata. The pseudobranch epithelium was necrotic. Fatty change occurred in the liver. Acinar cells of the pancreas appeared autolytic and adjacent blood vessels damaged. Degenerative tubular changes and contracted glomerular tufts were noted in the kidney. The ovary was extremely temperature sensitive and displayed severe injury to oocytes and follicular cells after relatively short exposure to temperatures near the LT/sub 50/. It is proposed that primary thermally induced injury is to the gills. This results in abnormal gas exchange and osmoregulation and leads to pathologic changes in other tissues. Hypoxia of the central nervous system appears to be the ultimate cause of death.

  3. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  4. Quantitative assessment of probability of failing safely for the safety instrumented system using reliability block diagram method

    International Nuclear Information System (INIS)

    Jin, Jianghong; Pang, Lei; Zhao, Shoutang; Hu, Bin

    2015-01-01

    Highlights: • Models of PFS for SIS were established by using the reliability block diagram. • The more accurate calculation of PFS for SIS can be acquired by using SL. • Degraded operation of complex SIS does not affect the availability of SIS. • The safe undetected failure is the largest contribution to the PFS of SIS. - Abstract: The spurious trip of safety instrumented system (SIS) brings great economic losses to production. How to ensure the safety instrumented system is reliable and available has been put on the schedule. But the existing models on spurious trip rate (STR) or probability of failing safely (PFS) are too simplified and not accurate, in-depth studies of availability to obtain more accurate PFS for SIS are required. Based on the analysis of factors that influence the PFS for the SIS, using reliability block diagram method (RBD), the quantitative study of PFS for the SIS is carried out, and gives some application examples. The results show that, the common cause failure will increase the PFS; degraded operation does not affect the availability of the SIS; if the equipment was tested and repaired one by one, the unavailability of the SIS can be ignored; the corresponding occurrence time of independent safe undetected failure should be the system lifecycle (SL) rather than the proof test interval and the independent safe undetected failure is the largest contribution to the PFS for the SIS

  5. Temperature induced effects on the durability of MR fluids

    International Nuclear Information System (INIS)

    Wiehe, A; Maas, J; Kieburg, C

    2013-01-01

    Although commercial MR fluids exist for quite some time now and the feasibility as well as the advantages of the MR technology have been demonstrated for several applications by a variety of MR actuator prototypes, a sustainable market break-through of brake and clutch applications utilizing the shear mode is still missing. Essential impediments are the marginal knowledge about the durability of the MR technology. To overcome this situation, a long-term measurement system was developed for the durability analysis of MR fluid formulations within a technical relevant scale with respect to the volume of MR fluid and the transmitted torque. The focus of the presented series of measurements is given to the analysis of temperature induced effects on the durability. In this context four different failure indicators can be distinguished, namely an apparent negative viscosity, deviations in torque data obtained from different measurements as well as a pressure increase and a drop in the on-state torque. The measurement data of the present durability experiments indicate a significant dependency of the attainable energy intake density on the temperature. The aim of such durability tests is to establish a reliable data base for the industry to estimate the life-time of MR devices.

  6. Structural Materials for Efficient Energy Production Systems

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    2009-01-01

    Increasing the efficiency of electric power production systems implies increasing the operating temperature above those of systems currently in operation. The viability of new systems depends completely on the availability of structural materials that withstand the operating conditions specified in the design: adequate features under mechanical stress at high temperatures and compatibility with the medium. In the case of nuclear systems (fission, fusion), an important requirement is their response to irradiation induced damage. In spite of the significant differences that exist in the design of nuclear power plants, fusion reactors, innovative fission systems, supercritical fossil plants, biomass plants, solar concentration thermal plants, etc., all of them have as a common characteristic the use of resistant materials at high temperatures. The qualification of existing materials for the new and more demanding operating conditions and the development of new materials is one of the challenges faced by the electric power production industry. The science of materials and the understanding of the basic processes that take place in structural materials on exposure to the operating conditions of energy production systems are the tools that are available to obtain safe and economically viable solutions. (Authors) 4 refs.

  7. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  8. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  9. Materials for passively safe reactors

    International Nuclear Information System (INIS)

    Simnad, T.

    1993-01-01

    Future nuclear power capacity will be based on reactor designs that include passive safety features if recent progress in advanced nuclear power developments is realized. There is a high potential for nuclear systems that are smaller and easier to operate than the current generation of reactors, especially when passive or intrinsic characteristics are applied to provide inherent stability of the chain reaction and to minimize the burden on equipment and operating personnel. Taylor, has listed the following common generic technical features as the most important goals for the principal reactor development systems: passive stability, simplification, ruggedness, case of operation, and modularity. Economic competitiveness also depends on standardization and assurance of licensing. The performance of passively safe reactors will be greatly influenced by the successful development of advanced fuels and materials that will provide lower fuel-cycle costs. A dozen new designs of advanced power reactors have been described recently, covering a wide spectrum of reactor types, including pressurized water reactors, boiling water reactors, heavy-water reactors, modular high-temperature gas-cooled reactors (MHTGRs), and fast breeder reactors. These new designs address the need for passive safety features as well as the requirement of economic competitiveness

  10. Radio frequency-induced temperature elevations in the human head considering small anatomical structures

    International Nuclear Information System (INIS)

    Schmid, G.; Ueberbacher, R.; Samaras, T.

    2007-01-01

    In order to enable a detailed numerical radio frequency (RF) dosimetry and the computations of RF-induced temperature elevations, high-resolution (0.1 mm) numerical models of the human eye, the inner ear organs and the pineal gland were developed and inserted into a commercially available head model. As radiation sources, generic models of handsets at 400, 900 and 1850 MHz operating in close proximity to the head were considered. The results, obtained by finite-difference time domain-based computations, showed a highly heterogeneous specific absorption rate (SAR) distribution and SAR-peaks inside the inner ear structures; however, the corresponding RF-induced temperature elevations were well below 0.1 deg. C, when considering typical output power values of hand-held devices. In case of frontal exposure, with the radiation sources ∼2.5 cm in front of the closed eye, maximum temperature elevations in the eye in the range of ∼0.2-0.6 deg. C were found for typical device output powers. A reduction in tissue perfusion mainly affected the maximum RF-induced temperature elevation of tissues deep inside the head. Similarly, worst-case considerations regarding pulsed irradiation affected temperature elevations in deep tissue significantly more than in superficial tissues. (authors)

  11. The role of inelastic processes in the temperature dependence of hall induced resistance oscillations

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2013-01-01

    We develop a model of magnetoresistance oscillations induced by the Hall field in order to study the temperature dependence observed in recent experiments in two dimensional electron systems. The model is based on the solution of the von Neumann equation incorporating the exact dynamics of two-dimensional damped electrons in the presence of arbitrarily strong magnetic and dc electric fields, while the effects of randomly distributed neutral and charged impurities are perturbatively added. Both the effects of elastic impurity scattering as well as those related to inelastic processes play an important role. The theoretical predictions correctly reproduce the experimentally observed oscillations amplitude, provided that the quantum inelastic scattering rate obeys a T 2 temperature dependence, consistent with electron–electron interaction effects

  12. Temperature induced alternative splicing is affected in sdg8 and sdg26

    OpenAIRE

    Pajoro, A.; Severing, E.I.; Immink, G.H.

    2017-01-01

    Plants developed a plasticity to environmental conditions, such as temperature, that allows their adaptation. A change in ambient temperature leads to changes in the transcriptome in plants, such as the production of different splicing isoforms. Here we study temperature induced alternative splicing events in Arabidopsis thaliana wild-type and two epigenetic mutants, sdg8-2 and sdg26-1 using an RNA-seq approach.

  13. Five-band microwave radiometer system for noninvasive brain temperature measurement in newborn babies: Phantom experiment and confidence interval

    Science.gov (United States)

    Sugiura, T.; Hirata, H.; Hand, J. W.; van Leeuwen, J. M. J.; Mizushina, S.

    2011-10-01

    Clinical trials of hypothermic brain treatment for newborn babies are currently hindered by the difficulty in measuring deep brain temperatures. As one of the possible methods for noninvasive and continuous temperature monitoring that is completely passive and inherently safe is passive microwave radiometry (MWR). We have developed a five-band microwave radiometer system with a single dual-polarized, rectangular waveguide antenna operating within the 1-4 GHz range and a method for retrieving the temperature profile from five radiometric brightness temperatures. This paper addresses (1) the temperature calibration for five microwave receivers, (2) the measurement experiment using a phantom model that mimics the temperature profile in a newborn baby, and (3) the feasibility for noninvasive monitoring of deep brain temperatures. Temperature resolutions were 0.103, 0.129, 0.138, 0.105 and 0.111 K for 1.2, 1.65, 2.3, 3.0 and 3.6 GHz receivers, respectively. The precision of temperature estimation (2σ confidence interval) was about 0.7°C at a 5-cm depth from the phantom surface. Accuracy, which is the difference between the estimated temperature using this system and the measured temperature by a thermocouple at a depth of 5 cm, was about 2°C. The current result is not satisfactory for clinical application because the clinical requirement for accuracy must be better than 1°C for both precision and accuracy at a depth of 5 cm. Since a couple of possible causes for this inaccuracy have been identified, we believe that the system can take a step closer to the clinical application of MWR for hypothermic rescue treatment.

  14. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  15. Irradiation with x-rays of the energy 18 MV induces radioactivity in transfusion blood: Proposal of a safe method using 6 MV.

    Science.gov (United States)

    Frentzel, Katharina; Badakhshi, Harun

    2016-12-01

    To prevent a fatal transfusion-associated graft-versus-host disease, it is recommended to irradiate transfusion blood and blood components with ionizing radiation. Using x-rays from a linear accelerator of the radiotherapy department is an accepted alternative to gamma irradiation devices of the blood bank and to the orthovoltage units that are replacing the gamma irradiators today. However, the use of high energy x-rays may carry a potential risk of induced radioactivity. The objective of this study was to investigate the effect of two different energy levels, 6 and 18 MV, which are executed in routine clinical settings. The research question was if induced radioactivity occurs at one of these standard energy levels. The authors aimed to give a proposal for a blood irradiation procedure that certainly avoids induced radioactivity. For this study, the authors developed a blood bag phantom, irradiated it with x-ray energies of 6 and 18 MV, and measured the induced radioactivity in a well counter. Thereafter, the same irradiation and measuring procedure was performed with a unit of packed red blood cells. A feasible clinical procedure was developed using 6 MV and an acrylic box. With the irradiation planning system XiO, the authors generated an irradiation protocol for the linear accelerator Siemens ONCOR Anvant-Garde. Both measurement setups showed that there was induced radioactivity for 18 MV but not for 6 MV. The induced radioactivity for 18 MV was up to 190 times the background. This is significant and of clinical relevance especially since there are newborn and fetal blood recipients for whom every radiation exposure has to be strictly avoided. The irradiation of blood with x-rays from a linear accelerator of the radiotherapy department is safe and feasible, but by the current state of scientific knowledge, the authors recommend to use an x-ray energy of 6 MV or less to avoid induced radioactivity in transfusion blood.

  16. Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies

    OpenAIRE

    Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

    2011-01-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comp...

  17. Fluid Temperature of Aero Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  18. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Onukwufor, John O.; Kibenge, Fred; Stevens, Don; Kamunde, Collins

    2015-01-01

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q 10 values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying

  19. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  20. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  1. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    Science.gov (United States)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  2. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  3. Improvement of performance of vibration pump for molten salt at high temperature

    International Nuclear Information System (INIS)

    Watanabe, Hideo; Hashimoto, Hiroyuki; Katagiri, Kazunari; Tang Bomin.

    1996-01-01

    An experimental study was conducted to improve the performance of a vibration pump using a vibrating pipe for conveying the molten salt at 784 K. A new system to measure the pump performance safely at such a high temperature was developed, which was characterized by simplicity in construction and ease of operation. All parts of the system, including a pump, valves and a volume tank to measure the volumetric flow rate, were placed in a cylindrical tank. The pump was driven by an air actuator. Experimental results indicated that the measuring system fulfilled the intended function: the pump worked effectively and its performance was safely evaluated at a high temperature. A few possible improvements related to the construction of the pump were suggested based on the results. (author)

  4. The transformation sequence of cement-asbestos slates up to 1200 deg. C and safe recycling of the reaction product in stoneware tile mixtures

    International Nuclear Information System (INIS)

    Gualtieri, A.F.; Cavenati, C.; Zanatto, I.; Meloni, M.; Elmi, G.; Gualtieri, M. Lassinantti

    2008-01-01

    Cement-asbestos is the main asbestos containing material still found in most of the European countries such as Italy. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. This concern is the main prompt for the actual policy of abatement and disposal of asbestos containing materials in controlled wastes. An alternative solution to the disposal in dumping sites is the direct temperature-induced transformation of the cement-asbestos slates into non-hazardous mineral phases. This patented process avoids the stage of mechanical milling of the material before the treatment, which improves the reactivity of the materials but may be critical for the dispersion of asbestos fibres in working and life environment. For the first time, this paper reports the description of the reaction path taking place during the firing of cement-asbestos slates up to the complete transformation temperature, 1200 deg. C. The reaction sequence was investigated using different experimental techniques such as optical and electron microscopy, in situ and ex situ quali-quantitative X-ray powder diffraction. The understanding of the complex reaction path is of basic importance for the optimization of industrial heating processes leading to a safe recycling of the transformed product. For the recycling of asbestos containing materials, the Italian laws require that the product of the crystal chemical transformation of asbestos containing materials must be entirely asbestos-free, and should not contain more than 0.1 wt% fraction of the carcinogenic substances such as cristobalite. Moreover, if fibrous phases other than asbestos (with length to diameter ratio >3) are found, they must have a geometrical diameter larger than 3 μm. We have demonstrated that using an interplay of different experimental techniques, it is possible to safely verify the complete transformation of asbestos

  5. [Emission spectrum temperature sensitivity of Mg4FGeO6 : mn induced by laser].

    Science.gov (United States)

    Wang, Sheng; Liu, Jing-Ru; Shao, Jun; Hu, Zhi-Yun; Tao, Bo; Huang, Mei-Sheng

    2013-08-01

    In order to develop a new sort of thermally sensitive phosphor coating, the emission spectrum thermally sensitivity of Mg4FGeO6 : Mn induced by laser was studied. The spectrum measurement system with heating function was set up, and the emission spectrum of Mg4FGeO6 : Mn at various temperatures were measured. Absorption spectrum was measured, and the mechanism of formation of the structure of double peak was analyzed with the perturbation theory of crystal lattice. The group of peaks around 630 nm is represented by the transitions 4F"2 to 4A2, whereas the group of peaks around 660 nm is due to the transitions 4F'2 to 4A2. The occupancy of both excited states 4F'2 and 4F"2 is in thermal equilibrium. Thus increasing temperature causes the intensity of the emission in the group around 630 nm to increase at the expense of the emission intensity of the group around 660 nm. The various spectral regions in emission differ with temperature, which could be used to support the intensity-ratio measurement method. The intensity-ratio change curve as a function of temperature was fitted, which shows that the range of temperature measurement is between room temperature and 800 K.

  6. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H; Blackstone, R [Stichting Energieonderzoek Centrum Nederland, Petten; Loelgen, R

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10/sup 21/ n cm/sup -2/ DNE in the temperature range 600 to 1200/sup 0/C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material.

  7. Irradiation-induced creep in fuel compacts for high-temperature reactor applications

    International Nuclear Information System (INIS)

    Veringa, H.; Blackstone, R.; Loelgen, R.

    1977-01-01

    Restrained shrinkage experiments at neutron fluences up to 3 x 10 21 n cm -2 DNE in the temperature range 600 to 1200 0 C were performed on three different dummy coated-particle fuel compacts in the high-flux reactor at Petten. The data were evaluated to obtain the steady-state radiation creep coefficient of the compacts. It was found that, for the materials investigated, the creep coefficient is temperature dependent, but no clear relationship with Young's modulus could be established. Under certain conditions this irradiation-induced plasticity influences the elastic properties, with the concomitant increase of the creep coefficient. This effect coincides with the formation and further opening up of cracks due to stresses caused by irradiation-induced shrinkage of matrix material. (author)

  8. Generation and characterization of a human iPSC cell line expressing inducible Cas9 in the “safe harbor” AAVS1 locus

    Directory of Open Access Journals (Sweden)

    Julio Castaño

    2017-05-01

    Full Text Available We report the generation-characterization of a fetal liver (FL B-cell progenitor (BCP-derived human induced pluripotent stem cell (hiPSC line CRISPR/Cas9-edited to carry/express a single copy of doxycycline-inducible Cas9 gene in the “safe locus” AAVS1 (iCas9-FL-BCP-hiPSC. Gene-edited iPSCs remained pluripotent after CRISPR/Cas9 genome-edition. Correct genomic integration of a unique copy of Cas9 was confirmed by PCR and Southern blot. Cas9 was robustly and specifically expressed on doxycycline exposure. T7-endonuclease assay demonstrated that iCas9 induces robust gene-edition when gRNAs against hematopoietic transcription factors were tested. This iCas9-FL-BCP-hiPSC will facilitate gene-editing approaches for studies on developmental biology, drug screening and disease modeling.

  9. Study of structure of marine specialist activity in an ergative system on monitoring and managing automatic control parameters of safe navigation process

    Directory of Open Access Journals (Sweden)

    Kholichev S. N.

    2016-12-01

    Full Text Available The study of structures' common features and dynamics of the technical object tuning circuit performing automatic adjustment of safe navigation options has been conducted for the first time in the theory of ergative systems. The research of the structure and process of ergative system functioning including an automatic control system with the option of safe navigation conditions has been fulfilled. The function of signals' selection performing optimal control law reconfiguration of the mentioned system has been given, and some sequence of marine specialist activities allowing solve the problem of navigation safety has been composed. The ergative system retargeted by the ship specialist has a two-tier hierarchy. The first level is an automatic control of the safe navigation parameter, and the second is the level of reconfiguration where the ship specialist changes the parameters of regulation act. The two-level hierarchical representation of the ergative navigation security settings management system makes it possible to introduce the concept of reconfiguration of regulation level as ship specialist activity which is to reduce the uncertainty in the environment in the operation of this layer. Such a reduction can be achieved as a result of exposure to the upper level associated with ideas of the ship specialist on the regulation of safe navigation parameters of the vessel on the lower level – the level of direct control automatic safe navigation option. As a result of studying the activities of the ship specialist in the ergative system on monitoring and managing automatic control parameters of safe navigation process it has been found that the main task of the ship specialist in the operation within the ergative system ensuring the navigation safety is to monitor the input and output of the automatic control system, decisions on the choice of reconfiguration laws regulating signal on the basis of information about deviations and the

  10. Reliability of a Test Battery Designed for Quickly and Safely Assessing Diverse Indices of Neuromuscular Function

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason, R.; Buxton, Roxanne E.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    Spaceflight affects nearly every physiological system. Spaceflight-induced alterations in physiological function translate to decrements in functional performance. Purpose: To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance. I. Quickly: Battery of tests can be completed in approx.30-40 min. II. Safely: a) No eccentric muscle actions or impact forces. b) Tests present little challenge to postural stability. III. Diverse indices: a) Strength: Excellent reliability (ICC = 0.99) b) Central activation: Very good reliability (ICC = 0.87) c) Power: Excellent reliability (ICC = 0.99) d) Endurance: Total work has excellent reliability (ICC = 0.99) e) Force steadiness: Poor reliability (ICC = 0.20 - 0.60) National

  11. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Shing [Department of Safety Health and Environmental Engineering, Chung tai Institute of Health Sciences and Technology, Taichung (China); Lin, Ping-Jei [Department of Chemical Engineering, Feng Chia University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China)

    2006-03-15

    Temperature effects on H{sub 2} production performance of a novel carrier-induced granular sludge bed (CIGSB) reactor were investigated. Using sucrose-based synthetic wastewater as the feed, the CIGSB system was operated at 30-45 {sup 0}C to identify the optimal working temperature. It was found that H{sub 2} production was the most efficient at 40 {sup 0}C, especially when it was operated at a low hydraulic retention time (HRT) of 0.5h. The overall maximal hydrogen production rate and yield were 7.66l/h/l and 3.88mol H{sub 2}/mol sucrose, respectively, both of them occurred at 40 {sup 0}C. The biomass content tended to decrease as the temperature was increased, suggesting that granular sludge formation may be inhibited at high temperatures. However, increasing temperature gave better specific H{sub 2} production rate, signifying that the average cellular activity for H{sub 2} production may be enhanced as the temperature was increased. The H{sub 2} yield and gas phase H{sub 2} content did not vary considerably regardless of changes in temperature and HRT. This reflects that the CIGSB was a relatively stable H{sub 2}-producing system. The major soluble products from hydrogen fermentation were butyric acid and acetic acid, accounting for 46+-3% and 28+-2% of total soluble microbial products (SMP), respectively. Thus, the dominant H{sub 2} producers in the mixed culture belonged to acidogenic bacteria that underwent butyrate-type fermentation. (author)

  12. Safeguards Automated Facility Evaluation (SAFE) methodology

    International Nuclear Information System (INIS)

    Chapman, L.D.; Grady, L.M.; Bennett, H.A.; Sasser, D.W.; Engi, D.

    1978-01-01

    The SAFE procedure is an efficient method of evaluating the physical protection system of a nuclear facility. Since the algorithms used in SAFE for path generation and evaluation are analytical, many paths can be evaluated with a modest investment in computer time. SAFE is easy to use because the information required is well-defined and the interactive nature of this procedure lends itself to straightforward operation. The modular approach that has been taken allows other functionally equivalent modules to be substituted as they become available. The SAFE procedure has broad applications in the nuclear facility safeguards field as well as in the security field in general. Any fixed facility containing valuable materials or components to be protected from theft or sabotage could be analyzed using this same automated evaluation technique

  13. Analysis of an innovative solar water desalination system using gravity induced vacuum

    International Nuclear Information System (INIS)

    Ayhan, T.; Al-Madani, H.

    2007-01-01

    This study presents the theoretical analysis, design and appropriate models of a new desalination system using gravity induced vacuum. The system utilizes natural means (gravity and atmospheric pressure) to create a vacuum under which water can be rapidly evaporated at much lower temperatures with less energy than conventional techniques. This technique is developed to overcome water storage, in the areas where good solar radiation (or waste heat sources) and sea water (or waste water sources). The developed system consists of an evaporator connected to condenser by means of a vacuum tank. The vapour produced in the evaporator is driven to condenser through the vacuum tank, where it condenses and collected as a product. Vacuum equivalent to 7 kPa (abs) or less can be created depending on ambient temperature of Bahrain climatic conditions. The effect of various operating conditions, namely water levels in condensation and evaporating columns on the system performance were studied. The theoretical analysis and preliminary experimental results show that the performance of this system depends on the condensation temperature

  14. Sodium heat pipe module test for the SAFE-30 reactor prototype

    International Nuclear Information System (INIS)

    Reid, Robert S.; Sena, J. Tom; Martinez, Adam L.

    2001-01-01

    Reliable, long-life, low-cost heat pipes can enable safe, affordable space fission power and propulsion systems. Advanced versions of these systems can in turn allow rapid access to any point in the solar system. Twelve stainless steel-sodium heat pipe modules were built and tested at Los Alamos for use in a non-nuclear thermohydraulic simulation of the SAFE-30 reactor (Poston et al., 2000). SAFE-30 is a near-term, low-cost space fission system demonstration. The heat pipes were designed to remove thermal power from the SAFE-30 core, and transfer this power to an electrical power conversion system. These heat pipe modules were delivered to NASA Marshall Space Flight Center in August 2000 and were assembled and tested in a prototypical configuration during September and October 2000. The construction and test of one of the SAFE-30 modules is described

  15. The inherently-safe power reactor DYONISOS (Dynamic Nuclear Inherently-Safe Reactor Operating with Spheres)

    International Nuclear Information System (INIS)

    Taube, M.; Lanfranchi, M.; Weissenfluh, Th. von; Ligou, J.; Yadigaroglu, G.; Taube, P.

    1986-01-01

    A philosophy of inherent safety is formulated and an inherently-safe thermal power reactor is presented. Solid fuel in the form of spheres a few centimetres in diameter is suspended under the hydro-dynamic pressure of molten lead coolant in vertical channels within the graphite moderator. Loss of main pump pressure, or a loss-of-coolant accident (LOCA), results in immediate removal of the fuel to rigid sieves below the core, with consequent subcriticality. Residual and decay heat are carried away by thermal conduction through the coolant or, in the case of a LOCA, by a combination of radiation and natural convection of cover gas or incoming air from the fuel to the reactor vessel and convection of air between the vessel and steel containment wall. All decay heat removal systems are passive, though actively initiated external spray cooling of the containment can be used to reduce wall temperature. This, however, is only necessary in the case of a LOCA and after a period of 24 h. (author)

  16. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  17. 76 FR 12719 - Safe Schools/Healthy Students Program; Office of Safe and Drug-Free Schools; Safe Schools/Healthy...

    Science.gov (United States)

    2011-03-08

    ... DEPARTMENT OF EDUCATION Safe Schools/Healthy Students Program; Office of Safe and Drug- Free Schools; Safe Schools/Healthy Students Program; Catalog of Federal Domestic Assistance (CFDA) Numbers: 84... priorities, requirements, and definitions under the Safe Schools/Healthy Students (SS/HS) program. Since...

  18. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  19. Field testing hot water temperature reduction as an energy-saving measure--does the Legionella presence change in a clinic's plumbing system?

    Science.gov (United States)

    Völker, Sebastian; Kistemann, Thomas

    2015-01-01

    Legionella spp. represent a significant health risk for humans. To ensure hygienically safe drinking water, technical guidelines recommend a central potable water hot (PWH) supply temperature of at least 60°C at the calorifier. In a clinic building we monitored whether slightly lowered temperatures in the PWH system led to a systemic change in the growth of these pathogens. In four separate phases we tested different scenarios concerning PWH supply temperatures and disinfection with chlorine dioxide (ClO2). In each phase, we took 5 sets of samples at 17 representative sampling points in the building's drinking water plumbing system. In total we collected 476 samples from the PWH system. All samples were tested (culture-based) for Legionella spp. and serogroups. Additionally, quantitative parameters at each sampling point were collected, which could possibly be associated with the presence of Legionella spp. (Pseudomonas aeruginsoa, heterotrophic plate count at 20°C and 36°C, temperatures, time until constant temperatures were reached, and chlorine dioxide concentration). The presence of Legionella spp. showed no significant reactions after reducing the PWH supply temperature from 63°C to 60°C and 57°C, as long as disinfection with ClO2 was maintained. After omitting the disinfectant, the PWH system showed statistically significant growth rates at 57°C. PWH temperatures which are permanently lowered to less than recommended values should be carefully accompanied by frequent testing, a thorough evaluation of the building's drinking water plumbing system, and hygiene expertise.

  20. Undulator Hall Air Temperature Fault Scenarios

    International Nuclear Information System (INIS)

    Sevilla, J.

    2010-01-01

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about ±2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  1. 836: Developing a Cooperative Communication System for Safe, Effective, and Efficient Patient Care

    Science.gov (United States)

    2014-01-01

    cally ill patients (pts) for hemodynamic monitoring using novel VPS’s can be performed efficiently and safely. Methods: In an adult academic medical...for hemodynamic monitoring was selected. Open ended PICCs were inserted using a novel Dop- pler and intravascular EKG positioning system and CXR was...unclear responsibility for task comple- tion; time spent tracking down in-process items like meds and labs; reliance on nurses to track and fix

  2. Parquet theory of finite temperature boson systems

    International Nuclear Information System (INIS)

    He, H.W.

    1992-01-01

    In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed

  3. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.

    Science.gov (United States)

    Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana

    2009-01-01

    Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.

  4. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  5. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  6. On the safe use of verify-and-record systems in external beam radiation therapy

    International Nuclear Information System (INIS)

    Seelantag, W.W.; Davis, J.B.

    1997-01-01

    Verify-and-record (V and R) systems are being used increasingly, not only for verification, but also for computer aided setup and chart printing. The close intercorrelation between V and R system and treatment routine requires new ideas for quality assurance (QA): pure ''machine checking'' as with treatment units is not sufficient anymore. The level of QA obviously depends on the tasks of the V and R system: the most advanced case of the system being used for computer aided setup and for chart printing is discussed -both are indispensable for an efficient use of V and R systems. Seven propositions are defined to make this not only efficient but safe. (author)

  7. A Compact Safe Cold-Start (CS2) System for Scramjets using Dilute Triethylaluminum Fuel Mixtures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the cold-start requirements of scramjet engines by developing a safe, energy-dense, and low volume hydrocarbon fuel conditioning system based...

  8. Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography.

    Science.gov (United States)

    Maswadi, Saher M; Dodd, Stephen J; Gao, Jia-Hong; Glickman, Randolph D

    2004-01-01

    Laser-induced heating in an ocular phantom is measured with magnetic resonance thermography (MRT) using temperature-dependent phase changes in proton resonance frequency. The ocular phantom contains a layer of melanosomes isolated from bovine retinal pigment epithelium. The phantom is heated by the 806-nm output of a continuous wave diode laser with an irradiance of 2.4 to 21.6 W/cm2 in a beam radius of 0.8 or 2.4 mm, depending on the experiment. MRT is performed with a 2 T magnet, and a two-turn, 6-cm-diam, circular radio frequency coil. Two-dimensional temperature gradients are measured within the plane of the melanin layer, as well as normal to it, with a temperature resolution of 1 degrees C or better. The temperature gradients extending within the melanin layer are broader than those orthogonal to the layer, consistent with the higher optical absorption and consequent heating in the melanin. The temperature gradients in the phantom measured by MRT closely approximate the predictions of a classical heat diffusion model. Three-dimensional temperature maps with a spatial resolution of 0.25 mm in all directions are also made. Although the temporal resolution is limited in the prototype system (22.9 s for a single image "slice"), improvements in future implementations are likely. These results indicate that MRT has sufficient spatial and temperature resolution to monitor target tissue temperature during transpupillary thermotherapy in the human eye.

  9. Study on the immobilization of alpha-amylase by radiation-induced polymerization at low-temperature, (3)

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1975-07-01

    The immobilization of α-amylase in high concentration (50-200 mg) by radiation induced polymerization at low temperature, with HEMA has been studied. A feature of the high concentration α-amylase system is phase separation of the mixed solution prior to polymerization, markedly at HEMA concentrations above 50%. Useful immobilization is possible, however, by irradiation of the suspended composition at -196 0 C, which is obtained by shaking the phase-separated system. At temperatures below 0 0 C, the immobilization is possible, but not above this because of the phase separation. The polymerizability of HEMA changes abruptly at 0 0 C. The largest polymerization rate is obtained at -24 0 C, possibly due to phase change by crystallization of water of the buffer solution at 0 0 C. Activity of the immobilized high-concentration α-amylase is as high as 80-85% being somewhat higher than that in the low-concentration case. (auth.)

  10. Dynamic temperature estimation and real time emergency rating of transmission cables

    DEFF Research Database (Denmark)

    Olsen, R. S.; Holboll, J.; Gudmundsdottir, Unnur Stella

    2012-01-01

    enables real time emergency ratings, such that the transmission system operator can make well-founded decisions during faults. Hereunder is included the capability of producing high resolution loadability vs. time schedules within few minutes, such that the TSO can safely control the system.......). It is found that the calculated temperature estimations are fairly accurate — within 1.5oC of the finite element method (FEM) simulation to which it is compared — both when looking at the temperature profile (time dependent) and the temperature distribution (geometric dependent). The methodology moreover...

  11. Temperature effects on vaccine induced immunity to viruses in fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Rasmussen, Jesper Skou

    a problem in terms of inducing a protective immune response by vaccination in aquaculture, since it is often desirable to vaccinate fish during autumn, winter, or spring. In experimental vaccination trials with rainbow trout (Oncorhynchus mykiss) using a DNA-vaccine encoding the viral glycoprotein of viral...... haemorrhagic septicaemia virus (VHSV), non-specific as well as specific immune mechanisms seemed to be delayed at low temperature. At five weeks post vaccination fish kept at 5C had no detectable response of neutralising antibodies while two thirds of the fish kept at 15C had sero-converted. While protective...... immunity was still established at both temperatures, specificity analysis suggested that protection at the lower temperature was mainly due to non-specific innate antiviral mechanisms, which appeared to last longer at low temperature. This was presumably related to a prolonged persistence of the vaccine...

  12. Temperature distribution induced by electron beam in a closed cavity

    International Nuclear Information System (INIS)

    Molhem, A.G.; Soulayman, S.Sh.

    2004-01-01

    In order to investigate heat transfer phenomena induced by EB in a closed cavity an experimental arrangement, which allows generating and focusing an electron beam in to closed cavity within 1 mm in diameter and measuring temperature all over any perpendicular section to the EB, is used for this purpose. Experimental data show that the radial distribution of current density and temperature is normal with pressure and location dependent parameters. Moreover, there is two distinguishable regions in the EB: one is central while the other surrounds the first one. (orig.)

  13. H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures.

    Science.gov (United States)

    Liu, Tao; Hu, Xiaohui; Zhang, Jiao; Zhang, Junheng; Du, Qingjie; Li, Jianming

    2018-02-15

    Low temperature is a crucial factor influencing plant growth and development. The chlorophyll precursor, 5-aminolevulinic acid (ALA) is widely used to improve plant cold tolerance. However, the interaction between H 2 O 2 and cellular redox signaling involved in ALA-induced resistance to low temperature stress in plants remains largely unknown. Here, the roles of ALA in perceiving and regulating low temperature-induced oxidative stress in tomato plants, together with the roles of H 2 O 2 and cellular redox states, were characterized. Low concentrations (10-25 mg·L - 1 ) of ALA enhanced low temperature-induced oxidative stress tolerance of tomato seedlings. The most effective concentration was 25 mg·L - 1 , which markedly increased the ratio of reduced glutathione and ascorbate (GSH and AsA), and enhanced the activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Furthermore, gene expression of respiratory burst oxidase homolog1 and H 2 O 2 content were upregulated with ALA treatment under normal conditions. Treatment with exogenous H 2 O 2 , GSH, and AsA also induced plant tolerance to oxidative stress at low temperatures, while inhibition of GSH and AsA syntheses significantly decreased H 2 O 2 -induced oxidative stress tolerance. Meanwhile, scavenging or inhibition of H 2 O 2 production weakened, but did not eliminate, GSH- or AsA- induced tomato plant tolerance to oxidative stress at low temperatures. Appropriate concentrations of ALA alleviated the low temperature-induced oxidative stress in tomato plants via an antioxidant system. The most effective concentration was 25 mg·L - 1 . The results showed that H 2 O 2 induced by exogenous ALA under normal conditions is crucial and may be the initial step for perception and signaling transmission, which then improves the ratio of GSH and AsA. GSH and AsA may then interact with H 2 O 2 signaling, resulting in enhanced antioxidant capacity

  14. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  15. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    Science.gov (United States)

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  16. Zinc Vacancy-Induced Room-Temperature Ferromagnetism in Undoped ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Hongtao Ren

    2012-01-01

    Full Text Available Undoped ZnO thin films are prepared by polymer-assisted deposition (PAD and treated by postannealing at different temperatures in oxygen or forming gases (95%  Ar+5% H2. All the samples exhibit ferromagnetism at room temperature (RT. SQUID and positron annihilation measurements show that post-annealing treatments greatly enhance the magnetizations in undoped ZnO samples, and there is a positive correlation between the magnetization and zinc vacancies in the ZnO thin films. XPS measurements indicate that annealing also induces oxygen vacancies that have no direct relationship with ferromagnetism. Further analysis of the results suggests that the ferromagnetism in undoped ZnO is induced by Zn vacancies.

  17. Temperature sensitivity of the penicillin-induced autolysis mechanism in nongrowing cultures of Escherichia coli.

    OpenAIRE

    Kusser, W; Ishiguro, E E

    1987-01-01

    The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.

  18. In-vitro and clinical evaluation of transurethral laser-induced prostatectomy (TULIP)

    Science.gov (United States)

    van Swol, Christiaan F. P.; Verdaasdonck, Rudolf M.; Mooibroek, Jaap; Boon, Tom A.

    1993-05-01

    Transurethral ultrasound-guided laser induced prostatectomy (TULIP) is a recent development in the treatment of benign prostatic hyperplasia. The system is based upon Nd:YAG laser irradiation delivered by a right angled fiber. The dosimetry used in a clinical situation is mostly based upon animal studies. In this study, the light and temperature distribution in the prostate during Nd:YAG laser irradiation were modeled using Monte Carlo and finite differences theory. The results of this model were compared with in vitro experiments. The influence of the different parameters involved, e.g., the scanning speed and the power of the laser beam, were evaluated. Initial results show the temperature distribution and thus the therapeutic effect of the TULIP procedure. Until now 36 patients have been treated successfully. The mean in-hospital time was somewhat shorter than for a TURP treatment while the results were comparable. These treatments, however, show the need for a better understanding of the mechanisms involved. Modeling and subsequent in vitro and in vivo measurements might improve the understanding and safe and successful application of prostate treatment using laser based systems.

  19. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine

  20. Safe Detection System for Hydrogen Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Robert A. [Intelligent Optical Systems, Inc., Torrance, CA (United States); Beshay, Manal [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  1. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  2. Temperature-induced changes in lecithin model membranes detected by novel covalent spin-labelled phospholipids.

    Science.gov (United States)

    Stuhne-Sekalec, L; Stanacev, N Z

    1977-02-01

    Several spin-labelled phospholipids carrying covalently bound 5-doxylstearic acid (2-(3-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl) were intercalated in liposomes of saturated and unsaturated lecithins. Temperature-induced changes of these liposomes, detected by the spin-labelled phospholipids, were found to be in agreement with the previously described transitions of hydrocarbon chains of host lecithins detected by different probes and different techniques, establishing that spin-labelled phosopholipids are sensitive probes for the detection of temperature-induced changes in lecithin model membranes. In addition to the detection of already-known transitions in lecithin liposomes, the coexistence of two distinctly different enviroments was observed above the characteristic transition temperature. This phenomenon was tentatively attributed to the influence of the lecithin polar group on the fluidity of fatty acyl chains near the polar group. Combined with other results from the literature, the coexistence of two environments could be associated with the coexistence of two conformational isomers of lecithin, differing in the orientation of the polar head group with respect to the plane of bilayer. These findings have been discussed in view of the present state of knowledge regarding temperature-induced changes in model membranes.

  3. Kalman filtered MR temperature imaging for laser induced thermal therapies.

    Science.gov (United States)

    Fuentes, D; Yung, J; Hazle, J D; Weinberg, J S; Stafford, R J

    2012-04-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3-D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comparing predictions in these regions to the original measurements. Performance was quantitatively evaluated in terms of a dimensionless L(2) (RMS) norm of the temperature error weighted by acquisition uncertainty. During periods of no data corruption, observed error histories demonstrate that the Kalman algorithm does not alter the high quality temperature measurement provided by MR thermal imaging. The KF-MRTI implementation considered is seen to predict the bioheat transfer with RMS error 10 sec.

  4. Structural Design of Systems with Safe Behavior under Single and Multiple Faults

    DEFF Research Database (Denmark)

    Blanke, Mogens; Staroswiecki, Marcel

    2006-01-01

    Handling of multiple simultaneous faults is a complex issue in fault-tolerant control. The design task is particularly made difficult by to the numerous different cases that need be analyzed. Aiming at safe fault-handling, this paper shows how structural analysis can be applied to find...... to structural analysis to disclose which faults could be isolated from a structural point of view using active fault isolation. Results from application on a marine control system illustrate the concepts....... the analytical redundancy relations for all relevant combinations of faults, and can cope with the complexity and size of a real system. Being essential for fault-tolerant control schemes that shall handle particular cases of faults/failures, fault isolation is addressed. The paper introduces an extension...

  5. Clinical evaluation of semiautonomous smart wheelchair architecture (Drive-Safe System) with visually impaired individuals.

    Science.gov (United States)

    Sharma, Vinod; Simpson, Richard C; LoPresti, Edmund F; Schmeler, Mark

    2012-01-01

    Nonambulatory, visually impaired individuals mostly rely on caregivers for their day-to-day mobility needs. The Drive-Safe System (DSS) is a modular, semiautonomous smart wheelchair system aimed at providing independent mobility to people with visual and mobility impairments. In this project, clinical evaluation of the DSS was performed in a controlled laboratory setting with individuals who have visual impairment but no mobility impairment. Their performance using DSS was compared with their performance using a standard cane for navigation assistance. Participants rated their subjective appraisal of the DSS by using the National Aeronautics and Space Administration-Task Load Index inventory. DSS significantly reduced the number and severity of collisions compared with using a cane alone and without increasing the time required to complete the task. Users rated DSS favorably; they experienced less physical demand when using the DSS, but did not feel any difference in perceived effort, mental demand, and level of frustration when using the DSS alone or along with a cane in comparison with using a cane alone. These findings suggest that the DSS can be a safe, reliable, and easy-to-learn and operate independent mobility solution for visually impaired wheelchair users.

  6. System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages

    Science.gov (United States)

    Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)

    1993-01-01

    A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.

  7. CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.

    2017-12-01

    CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water

  8. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space

    Science.gov (United States)

    Griko, Yuri; Regan, Matthew D.

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  9. Comparison of Different Energy Levels of Er:YAG Laser Regarding Intrapulpal Temperature Change During Safe Ceramic Bracket Removal.

    Science.gov (United States)

    Nalbantgil, Didem; Tozlu, Murat; Oztoprak, Mehmet Oguz

    2018-04-01

    This study was done to compare the intrapulpal temperature change generated by different energy levels of Er:YAG laser used during debonding of ceramic brackets and find the most suitable level for clinical use. Eighty polycrystalline alumina brackets were bonded on bovine incisor teeth, which were randomly divided into 4 groups of 20. One group was assigned as control. In the study groups, after laser exposure with 2, 4, or 6 Watt energy levels, brackets were debonded using an Instron Universal Testing machine. Adhesive remnant index (ARI) scores were recorded to evaluate the site of debonding. To assess intrapulpal thermal increase, 60 human premolar teeth that were prepared in the same way, at the same energy levels, by a thermocouple were used. When the debonding forces, intrapulpal temperature increases, and ARI of the groups were examined, statistically significant difference was observed between the groups. Mean temperature increases of 0.67°C ± 0.12°C, 1.25°C ± 0.16°C, and 2.36°C ± 0.23°C were recorded for the 2, 4, and 6 Watt laser groups. The mean shear bond strength was 21.35 ± 3.43 megapascals (MPa) for the control group, whereas they were 8.79 ± 2.47, 3.28 ± 0.73, and 2.46 ± 0.54 MPa for the 2, 4, and 6 Watt laser groups, respectively. Four watts is the most efficient and safe energy level to be used, utilizing Er:YAG laser with water cooling spray for 6 sec by scanning method during debonding of polycrystalline alumina brackets without any carbonization effects and detrimental temperature changes at debond sites.

  10. Closed-system drug-transfer devices plus safe handling of hazardous drugs versus safe handling alone for reducing exposure to infusional hazardous drugs in healthcare staff.

    Science.gov (United States)

    Gurusamy, Kurinchi Selvan; Best, Lawrence Mj; Tanguay, Cynthia; Lennan, Elaine; Korva, Mika; Bussières, Jean-François

    2018-03-27

    Occupational exposure to hazardous drugs can decrease fertility and result in miscarriages, stillbirths, and cancers in healthcare staff. Several recommended practices aim to reduce this exposure, including protective clothing, gloves, and biological safety cabinets ('safe handling'). There is significant uncertainty as to whether using closed-system drug-transfer devices (CSTD) in addition to safe handling decreases the contamination and risk of staff exposure to infusional hazardous drugs compared to safe handling alone. To assess the effects of closed-system drug-transfer of infusional hazardous drugs plus safe handling versus safe handling alone for reducing staff exposure to infusional hazardous drugs and risk of staff contamination. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, OSH-UPDATE, CINAHL, Science Citation Index Expanded, economic evaluation databases, the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov to October 2017. We included comparative studies of any study design (irrespective of language, blinding, or publication status) that compared CSTD plus safe handling versus safe handling alone for infusional hazardous drugs. Two review authors independently identified trials and extracted data. We calculated the risk ratio (RR) and mean difference (MD) with 95% confidence intervals (CI) using both fixed-effect and random-effects models. We assessed risk of bias according to the risk of bias in non-randomised studies of interventions (ROBINS-I) tool, used an intracluster correlation coefficient of 0.10, and we assessed the quality of the evidence using GRADE. We included 23 observational cluster studies (358 hospitals) in this review. We did not find any randomised controlled trials or formal economic evaluations. In 21 studies, the people who used the intervention (CSTD plus safe handling) and control (safe handling alone) were pharmacists or pharmacy

  11. Development of a Laser Induced Fluorescence (LIF) System with a Tunable Diode Laser

    International Nuclear Information System (INIS)

    Woo, Hyun Jong; Do, Jeong Jun; You, Hyun Jong; Choi, Geun Sik; Lee, Myoung Jae; Chung, Kyu Sun

    2005-01-01

    The Laser Induced Fluorescence (LIF) is known as one of the most powerful techniques for measurements of ion velocity distribution function (IVDF) and ion temperature by means of Doppler broadening and Doppler shift. The dye lasers are generally used for LIF system with 611.66 nm (in vac.) for Ar ion, the low power diode laser was also proposed by Severn et al with the wavelength of 664.55 nm and 668.61 nm (in vac.) for Ar ion. Although the diode laser has the disadvantages of low power and small tuning range, it can be used for LIF system at the low temperature plasmas. A tunable diode laser with 668.614 nm of center wavelength and 10 GHz mode hop free tuning region has been used for our LIF system and it can be measured the ion temperature is up to 1 eV. The ion temperature and velocity distribution function have been measured with LaB6 plasma source, which is about 0.23 eV with Ar gas and 2.2 mTorr working pressure

  12. Profound and Rapid Reduction in Body Temperature Induced by the Melanocortin Receptor Agonists

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-01-01

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. PMID:25065745

  13. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change

    International Nuclear Information System (INIS)

    Teunissen, L P J; Daanen, H A M; De Haan, A; De Koning, J J

    2012-01-01

    Core temperature measurement with an ingestible telemetry pill has been scarcely investigated during extreme rates of temperature change, induced by short high-intensity exercise in the heat. Therefore, nine participants performed a protocol of rest, (sub)maximal cycling and recovery at 30 °C. The pill temperature (T pill ) was compared with the rectal temperature (T re ) and esophageal temperature (T es ). T pill corresponded well to T re during the entire trial, but deviated considerably from T es during the exercise and recovery periods. During maximal exercise, the average ΔT pill −T re and ΔT pill −T es were 0.13 ± 0.26 and −0.57 ± 0.53 °C, respectively. The response time from the start of exercise, the rate of change during exercise and the peak temperature were similar for T pill and T re. T es responded 5 min earlier, increased more than twice as fast and its peak value was 0.42 ± 0.46 °C higher than T pill . In conclusion, also during considerable temperature changes at a very high rate, T pill is still a representative of T re . The extent of the deviation in the pattern and peak values between T pill and T es (up to >1 °C) strengthens the assumption that T pill is unsuited to evaluate central blood temperature when body temperatures change rapidly. (paper)

  15. Heat Transfer and Failure Mode Analyses of Ultrahigh-Temperature Ceramic Thermal Protection System of Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Tianbao Cheng

    2014-01-01

    Full Text Available The transient temperature distribution of the ultrahigh-temperature ceramic (UHTC thermal protection system (TPS of hypersonic vehicles is calculated using finite volume method. Convective cooling enables a balance of heat increment and loss to be achieved. The temperature in the UHTC plate at the balance is approximately proportional to the surface heat flux and is approximately inversely proportional to the convective heat transfer coefficient. The failure modes of the UHTCs are presented by investigating the thermal stress field of the UHTC TPS under different thermal environments. The UHTCs which act as the thermal protection materials of hypersonic vehicles can fail because of the tensile stress at the lower surface, an area above the middle plane, and the upper surface as well as because of the compressive stress at the upper surface. However, the area between the lower surface and the middle plane and a small area near the upper surface are relatively safe. Neither the compressive stress nor the tensile stress will cause failure of these areas.

  16. Precision cryogenic temperature data acquisition system

    International Nuclear Information System (INIS)

    Farah, Y.; Sondericker, J.H.

    1985-01-01

    A Multiplexed Temperature Data Acquisition System with an overall precision of +-25 ppM has been designed using state-of-the-art electronics to accurately read temperature between 2.4 K and 600 K from pre-calibrated transducers such as germanium, silicon diode, thermistor or platinum temperature sensors

  17. Single temperature sensor based evaporator filling control using excitation signal harmonics

    DEFF Research Database (Denmark)

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

    2012-01-01

    An important aspect of efficient and safe operation of refrigeration and air conditioning systems is superheat control for evaporators. This is conventionally controlled with a pressure sensor, a temperature sensor, an expansion valve and Proportional-Integral (PI) controllers or more advanced...

  18. A special cell morphology of saccharomyces cerevisiae induced by low-temperature plasma

    International Nuclear Information System (INIS)

    Ling Dajun; Cao Jinxiang

    2003-01-01

    A special cell morphology, cavity-like cells, was found in posterities of Saccharomyces cerevisiae treated by low-temperature air plasma with different powers. The feature of the special morphology indicates that the cavity-like cells may be formed by cellular mutation effect induced by the plasma, instead of direct cellular damage by the plasma. The results suggest that the cellular mutation effect of the low-temperature plasma is a complex process

  19. A newly developed container for safe, easy, and cost-effective overnight transportation of tissues and organs by electrically keeping tissue or organ temperature at 3 to 6°C.

    Science.gov (United States)

    Ohkawara, H; Kitagawa, T; Fukushima, N; Ito, T; Sawa, Y; Yoshimine, T

    2012-05-01

    As there is only one skin procurement organization in Japan the Japan Skin Bank Network (JSBN), all skin grafts procured in Japan are sent by a commercialized delivery system. Preliminarily, bottles containing saline were transported in a cardboard box using a so-called "cooled home delivery service" using a truck with a refrigerated cargo container. During transportation the temperature in the cardboard box increased to 18°C in summer and decreased to -5°C in winter. For these reasons, we investigated whether a newly developed container "Medi Cube" would be useful to transport skin grafts. Four bottles with a capacity of 300 mL containing 150 mL of saline in a Medi Cube container were transported from Osaka to the JSBN in Tokyo between 4 PM and 10 AM using a commercialized cooled home delivery service. Two bottles were transported in a Medi Cube container without phase change materials (PCM) in winter and summer, respectively. Another two bottles were transported in the Medi Cube with PCMs in winter. The temperatures inside saline, inside a transportation container, and outside the container, and air temperature were monitored continuously with a recordable thermometer. The temperatures inside saline and inside a Medi Cube container were maintained between 3 and 6°C, even when the temperature outside the container increased during parking. The temperature inside a Medi Cube container without PCM decreased to -3°C when the inside of the cargo container was overcooled in winter. However, the temperatures inside saline and inside a Medi Cube container with PCM were between 3 and 6°C, even when the temperature outside the container decreased to below 0°C in winter. A Medi Cube container with PCM provided a safe, easy, and cost-effective method for overnight transportation of skin grafts. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Information System Hazard Analysis: A Method for Identifying Technology-induced Latent Errors for Safety.

    Science.gov (United States)

    Weber, Jens H; Mason-Blakley, Fieran; Price, Morgan

    2015-01-01

    Many health information and communication technologies (ICT) are safety-critical; moreover, reports of technology-induced adverse events related to them are plentiful in the literature. Despite repeated criticism and calls to action, recent data collected by the Institute of Medicine (IOM) and other organization do not indicate significant improvements with respect to the safety of health ICT systems. A large part of the industry still operates on a reactive "break & patch" model; the application of pro-active, systematic hazard analysis methods for engineering ICT that produce "safe by design" products is sparse. This paper applies one such method: Information System Hazard Analysis (ISHA). ISHA adapts and combines hazard analysis techniques from other safety-critical domains and customizes them for ICT. We provide an overview of the steps involved in ISHA and describe.

  1. THE INFORMATION SYSTEM TO SUPPORT SAFE FOOD PRODUCTION IN CATTLE SECTOR

    Directory of Open Access Journals (Sweden)

    Janez JERETINA

    2011-01-01

    Full Text Available In the year 2006 we started with the development of computerized system for monitoring the veterinarian treatments to support safe food production in cattle sector. Veterinary database and web application which will be used by PC or handhelds were created. Additionally the code listing of diseases was built up with technical support of Veterinary Faculty. The idea was that all treatments should be registered into database, connected to the database of Animal Identification and Registration Service (SIR. Slaughterhouses which are connected to SIR regularly check the identity of incoming animals. According to our project they are warned if the withdrawal period is not respected or health status is not suitable. The response time of slaughterhouses, dairy or other official authorities will be reduced in these cases. The suggested model upgrades the system of traceability and helps the veterinarians at their professional work, too. All the data will be accessible to breeders and other agricultural services.

  2. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  3. Be-safe travel, a web-based geographic application to explore safe-route in an area

    Science.gov (United States)

    Utamima, Amalia; Djunaidy, Arif

    2017-08-01

    In large cities in developing countries, the various forms of criminality are often found. For instance, the most prominent crimes in Surabaya, Indonesia is 3C, that is theft with violence (curas), theft by weighting (curat), and motor vehicle theft (curanmor). 3C case most often occurs on the highway and residential areas. Therefore, new entrants in an area should be aware of these kind of crimes. Route Planners System or route planning system such as Google Maps only consider the shortest distance in the calculation of the optimal route. The selection of the optimal path in this study not only consider the shortest distance, but also involves other factors, namely the security level. This research considers at the need for an application to recommend the safest road to be passed by the vehicle passengers while drive an area. This research propose Be-Safe Travel, a web-based application using Google API that can be accessed by people who like to drive in an area, but still lack of knowledge of the pathways which are safe from crime. Be-Safe Travel is not only useful for the new entrants, but also useful for delivery courier of valuables goods to go through the safest streets.

  4. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    Science.gov (United States)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  5. Safe Kids Worldwide

    Science.gov (United States)

    ... Blog Videos Newsletter facebook twitter instagram pinterest gplus youtube Search Menu Why It Matters Who We Are What We Do Find Your Safe Kids Safe Kids Day Main menu Keeping All Kids Safe Safety Tips Get Involved 4 Star Charity Donate Text Burns and Scalds 4 tips ...

  6. Development of a National System to Regulate Safe Transport of Radioactive Materials in Ukraine

    International Nuclear Information System (INIS)

    Gashev, M.; Kutuzova, T.; Sakalo, V.

    2016-01-01

    The paper provides brief information on development of the legislative framework and regulatory requirements in transport of radioactive materials in Ukraine. The application of IAEA documents is demonstrated and their contribution to the improvement of the national regulatory control system and processes of its harmonization with international safety requirements is underlined. Proposals for coordination and interaction enhancement in order to improve safety in safe transport of radioactive materials are defined in the conclusion. (author)

  7. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  8. Ultrasound- and Temperature-Induced Gelation of Gluconosemicarbazide Gelator in DMSO and Water Mixtures

    Directory of Open Access Journals (Sweden)

    Mothukunta Himabindu

    2017-04-01

    Full Text Available We have developed amphiphilic supramolecular gelators carrying glucose moiety that could gel a mixture of dimethyl sulfoxide (DMSO and water upon heating as well as ultrasound treatment. When the suspension of gluconosemicarbazide was subjected to ultrasound treatment, gelation took place at much lower concentrations compared to thermal treatment, and the gels transformed into a solution state at higher temperatures compared to temperature-induced gels. The morphology was found to be influenced by the nature of the stimulus and presence of salts such as KCl, NaCl, CaCl2 and surfactant (sodium dodecyl sulphate at a concentration of 0.05 M. The gel exhibited impressive tolerance to these additives, revealing the stability and strength of the gels. Fourier transform infrared spectroscopy (FTIR revealed the presence of the intermolecular hydrogen bonding interactions while differential scanning calorimetry (DSC and rheological studies supported better mechanical strength of ultrasound-induced (UI gels over thermally-induced (TI gels.

  9. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  10. The effects of strain-induced martensitic transformation and temperature on impact fatigue crack propagation behavior of SUS 304 at low temperature

    International Nuclear Information System (INIS)

    Murakami, Ri-ichi; Akizono, Koichi; Kusukawa, Kazuhiro.

    1988-01-01

    The fatigue crack propagation behavior in fatigue impact at room temperature and 103 K was investigated by means of fracture mechanics, X-ray diffraction analysis and fractography for an austenitic stainless steel, SUS 304. The crack growth rate in fatigue impact decreased with decreasing temperature. The crack growth rate at room temperature was scarcely influenced by the microstructure, while at low temperature it was markedly influenced by the microstructure. The effects of microstructure and temperature on the crack growth rate were closely related to the strain-induced martensitic transformation. The martensitic transformation was influenced by the microstructure, the temperature, the fracture morphology and the stress intensity level and resulted in a decrease in crack growth rate with increasing crack opening level. (author)

  11. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  12. Changes in myosin S1 orientation and force induced by a temperature increase.

    Science.gov (United States)

    Griffiths, Peter J; Bagni, Maria A; Colombini, Barbara; Amenitsch, Heinz; Bernstorff, Sigrid; Ashley, Christopher C; Cecchi, Giovanni; Ameritsch, Heinz

    2002-04-16

    Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7 degrees, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P(0) from 4 to 22 degrees C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.

  13. Temperature-induced delocalization of charge carriers and semiconductor to metal-like phase in SrFeO{sub 3-δ}

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Venkateswaran, C. [University of Madras, Department of Nuclear Physics, Guindy Campus, Chennai (India); Murugaraj, R. [Anna University, Department of Physics, MIT Campus, Chennai (India)

    2015-04-01

    Perovskite SrFeO{sub 3-δ}, a Ruddlesden-Popper class of system exhibits interesting electronic and magnetic properties. Influence of oxygen vacancies on the electrical response of nanocrystalline SrFeO{sub 2.91} as a function of temperature is investigated using impedance spectroscopy technique. A change observed in the Nyquist plot at 383 K has been analyzed in terms of localized and delocalized e{sub g} electrons. An unusual and interesting temperature-induced semiconductor to metal-like transition is observed in the frequency-dependent real part of dielectric permittivity. Dependence of frequency on the real and imaginary parts of impedance with respect to temperature supports the presence of semiconductor to metal-like transition in SrFeO{sub 2.91}. (orig.)

  14. Eyedrop Vaccination Induced Systemic and Mucosal Immunity against Influenza Virus in Ferrets.

    Directory of Open Access Journals (Sweden)

    Sangchul Yoon

    Full Text Available We investigated eyedrop vaccination (EDV in pre-clinical development for immunological protection against influenza and for potential side effects involving ocular inflammation and the central nervous system (CNS. Live attenuated influenza EDV, CA07 (H1N1, PZ-4 (H1N2 and Uruguay (H3N2, induced both systemic and mucosal virus-specific antibody responses in ferrets. In addition, EDV resulted in a clinically significant protection against viral challenge, and suppression of viral replication in nasal secretion and lung tissue. Regarding safety, we found that administered EDV flow through the tear duct to reach the base of nasal cavity, and thus do not contact the olfactory bulb. All analyses for potential adverse effects due to EDV, including histological and functional examinations, did not reveal significant side effects. On the basis of these findings, we propose that EDV as effective, while being a safe administration route with minimum local side effects, CNS invasion, or visual function disturbance.

  15. Rapid Prototyping High-Performance MR Safe Pneumatic Stepper Motors

    NARCIS (Netherlands)

    Groenhuis, Vincent; Stramigioli, Stefano

    2018-01-01

    In this paper we show that pneumatic stepper motors for MR safe robots can be constructed using rapid prototyping techniques such as 3-D printing and laser-cutting. The designs are lightweight, completely metal-free and fully customizable. Besides MR safe robotic systems, other potential

  16. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  17. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  18. SAFE-KBS, Substantiating the safety of systems containing knowledge-based components

    International Nuclear Information System (INIS)

    Mesa, E.; Jimenez, A.

    1998-01-01

    The overall objective of the Safe-KBS project is to develop generic development and certification methodologies that allow the introduction of knowledge-based components in safety-related applications. The expert system technology presents a set of features, such as the capability to provide the rationale for its conclusions, that may significantly contribute to the new operation support systems. Nevertheless, the use of this technology in safety-related applications is limited by the lack of recognised methodologies and standards that allow a formal demonstration of the quality and reliability of these systems, as required for obtaining the approval for their use at nuclear power plants. The development methodology is structured in three hierarchical levels: life cycle model, i.e., processes and activities constituting the life cycle, life cycle plans, i.e., tasks, and support packages, i.e., set of techniques and methods to perform certain activities or tasks. The certification methodology consists of a set of certification requirements and a certification scheme for demonstrating the compliance with these requirements. This project was developed within the European framework ESPRIT, with the collaboration of Sextant, Cise, Qualience, Ilog, Computes, DNV and Uninfo. (Author)

  19. Concept of passive safe small reactor for distributed energy supply system

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Nakajima, Nobuya; Sawada, Ken-ichi; Yoritsune, Tsutomu; Shimada, Shoichiro; Nakano, Yoshihiro; Yonomoto, Taisuke; Takahashi, Hiroki

    2003-01-01

    This paper presents a concept of a Passive Safe Small Reactor for Distributed energy supply system (PSRD). The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down. To comply with a severe operation condition of PSRD, material of the ball bearing with graphite retainer has been selected by test. For improvement of economy, simplification of the reactor system and long operation of the core are achieved. Optimization of core design concerning the burnable poison ensures the burn-up of 28 GWd/t for low enriched UO 2 fuel rods. (author)

  20. Hydrogen-induced room-temperature plasticity in TC4 and TC21 alloys

    DEFF Research Database (Denmark)

    Yuan, Baoguo; Jin, Yongyue; Hong, Chuanshi

    2017-01-01

    In order to reveal the effect of hydrogen on the room-temperature plasticity of the titanium alloys TC4 and TC21, compression tests have been carried out at room temperature. Results show that an appropriate amount of hydrogen can improve the room-temperature plasticity of both the TC4 and TC21...... alloys. The ultimate compression strain of the TC4 alloy containing a hydrogen concentration of 0.5 wt.% increases by 39% compared to the untreated material. For the TC21 alloy the ultimate compression strain is increased by 33% at a hydrogen concentration of 0.6 wt.%. The main reason for the improvement...... of hydrogen-induced room-temperature plasticity of the TC4 and TC21 alloys is discussed....

  1. Heat stress-induced neuroinflammation and aberration in monoamine levels in hypothalamus are associated with temperature dysregulation.

    Science.gov (United States)

    Chauhan, Nishant Ranjan; Kapoor, Medha; Prabha Singh, Laxmi; Gupta, Rajinder Kumar; Chand Meena, Ramesh; Tulsawani, Rajkumar; Nanda, Sarita; Bala Singh, Shashi

    2017-09-01

    Heat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.5°C and Relative Humidity, RH=30±10%) with real-time measurement of core temperature (Tc) and skin temperature (Ts). Animals were divided into two subgroups: Moderate HS (MHS) (Tc=40°C) and Severe HS (SHS)/Heat stroke (Tc=42°C). Rats with MHS showed an increase in Mean Arterial Pressure (MAP) and Heart Rate (HR) while fall in MAP and rise in HR was observed in rats with SHS. In addition, oxidative stress and an increase in pyknotic neurons were observed in HTH. High levels of Adrenocorticotropic-hormone (ACTH), Epinephrine (EPI), Norepinephrine (NE) and Dopamine (DA) in the systemic circulation and progressive increase in EPI and DA levels in HTH were recorded after the thermal insult. Moreover, a substantial increase in Glutamate (Glu) level was observed in HTH as well as in systemic circulation of heat stroke rats. We found a rise in NE whereas a fall in Serotonin (5-HT) level in HTH at MHS, without perturbing inflammatory mediators. However, rats with SHS exhibited significant elevations in NF-kB, IL-1β, COX2, GFAP and Iba1 protein expression in HTH. In conclusion, the data suggest that SHS induces neuroinflammation in HTH, which is associated with monoamines and Glu imbalances, leading to thermoregulatory disruption. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Electromagnetically induced transparency in high-temperature magnetoactive plasma

    International Nuclear Information System (INIS)

    Kryachko, A.Yu.; Litvak, A.G.; Tokman, M.D.

    2002-01-01

    The classical analog of the presently popular in the quantum electronics effect of the electromagnetically induced transparency (EIT) is studied. The EIT effect is considered for the electron-cyclotron waves in the plasma with the finite temperature. The expression for the effective index of the electromagnetic wave refraction is identified and the dispersion law and this wave absorption under the EIT conditions are studied. It is shown, that accounting for the thermal motion, which radically changes the behavior of the signal wave dispersion curves in the EIT area, as compared with the cold plasma case [ru

  3. Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth System

    Science.gov (United States)

    Heitzig, Jobst; Kittel, Tim; Donges, Jonathan; Molkenthin, Nora

    2016-04-01

    To keep the Earth System in a desirable region of its state space, such as defined by the recently suggested "tolerable environment and development window", "guardrails", "planetary boundaries", or "safe (and just) operating space for humanity", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: Which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this work, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization such as of indicators of human well-being for achieving certain sustainable development goals, a sustainable and resilient management of the Earth System may require decisions of a more discrete type that come in the form of several dilemmas, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and larger flexibility. We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevolutionary Earth System modeling

  4. Induced Chern-Simons term in lattice QCD at finite temperature

    International Nuclear Information System (INIS)

    Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.

    1995-01-01

    The general conditions for the Chern-Simons action to be induced as a non-universal contribution of fermionic determinant are formulated in finite-temperature lattice QCD. The dependence of the corresponding coefficient in the action on non-universal parameters (chemical potentials, vacuum features, etc.) is explored. Special attention is paid to the role of A 0 -condensate if it is available in this theory. ((orig.))

  5. Reactive, Safe Navigation for Lunar and Planetary Robots

    Science.gov (United States)

    Utz, Hans; Ruland, Thomas

    2008-01-01

    When humans return to the moon, Astronauts will be accompanied by robotic helpers. Enabling robots to safely operate near astronauts on the lunar surface has the potential to significantly improve the efficiency of crew surface operations. Safely operating robots in close proximity to astronauts on the lunar surface requires reactive obstacle avoidance capabilities not available on existing planetary robots. In this paper we present work on safe, reactive navigation using a stereo based high-speed terrain analysis and obstacle avoidance system. Advances in the design of the algorithms allow it to run terrain analysis and obstacle avoidance algorithms at full frame rate (30Hz) on off the shelf hardware. The results of this analysis are fed into a fast, reactive path selection module, enforcing the safety of the chosen actions. The key components of the system are discussed and test results are presented.

  6. "Same Room, Safe Place".

    Science.gov (United States)

    Keene Woods, Nikki

    2017-04-01

    There are many different professional stances on safe sleep and then there is the reality of caring for a newborn. There is a debate among professionals regarding safe sleep recommendations. The continum of recommendations vary from the American Academy of Pediatrics (AAP) Safe Sleep Guidelines to the bed-sharing recommendations from the Mother-Baby Behavioral Sleep Laboratory. The lack of consistent and uniform safe sleep recommendations from health professionals has been confusing for families but has more recently raised a real professional ethical dilemma. Despite years of focused safe sleep community education and interventions, sleep-related infant deaths are on the rise in many communities. This commentary calls for a united safe sleep message from all health professionals to improve health for mothers and infants most at-risk, "Same Room, Safe Place."

  7. SaRDIn - A Safe Reconfigurable Distributed Interlocking

    DEFF Research Database (Denmark)

    Fantechi, Alessandro; Gnesi, S.; Haxthausen, Anne Elisabeth

    2016-01-01

    Current computer-based interlocking systems most often have a centralized design, with all logic residing in a single computer. Centralized interlockings are complex to design. Following the general trend in Cyber-Physical Systems, the SaRDIn (Safe Reconfigurable Distributed Interlockings) concept...

  8. In Search of a Safe Natural Sleep Aid.

    Science.gov (United States)

    Rao, Theertham P; Ozeki, Motoko; Juneja, Lekh R

    2015-01-01

    Sleep deprivation is associated with an elevated risk of various diseases and leads to a poor quality of life and negative socioeconomic consequences. Sleep inducers such as drugs and herbal medicines may often lead to dependence and other side effects. L-Theanine (γ-glutamylethylamide), an amino acid naturally found abundant in tea leaves, has anxiolytic effects via the induction of α brain waves without additive and other side effects associated with conventional sleep inducers. Anxiolysis is required for the initiation of high-quality sleep. In this study, we review the mechanism(s), safety, and efficacy of L-theanine. Collectively, sleep studies based on an actigraph, the obstructive sleep apnea (OSA) sleep inventory questionnaire, wakeup after sleep onset (WASO) and automatic nervous system (ANS) assessment, sympathetic and parasympathetic nerve activities, and a pediatric sleep questionnaire (PSQ) suggest that the administration of 200 mg of L-theanine before bed may support improved sleep quality not by sedation but through anxiolysis. Because L-theanine does not induce daytime drowsiness, it may be useful at any time of the day. The no observable adverse effect level (NOAEL) for the oral administration of L-theanine was determined to be above 2000 mg/kg bw/day. KEY TEACHING POINTS: Sleep deprivation-associated morbidity is an increasing public health concern posing a substantial socioeconomic burden. Chronic sleep disorders may seriously affect quality of life and may be etiological factors in a number of chronic diseases such as depression, obesity, diabetes, and cardiovascular diseases. Most sleep inducers are sedatives and are often associated with addiction and other side effects. L-Theanine promotes relaxation without drowsiness. Unlike conventional sleep inducers, L-theanine is not a sedative but promotes good quality of sleep through anxiolysis. This review suggests that L-theanine is a safe natural sleep aid.

  9. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    Science.gov (United States)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  10. Temperature coefficients in the Dragon low-enriched power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1972-05-15

    The temperature coefficient of the fuel and of the moderator have been evaluated for the Dragon HTR design for different stages in reactor life, initial core, end of no-refuelling period and equilibrium conditions. The investigation has shown the low-enriched HTR to have a strong, positive moderator coefficient. In some cases and for special operating conditions, even leading to a positive total temperature coefficient. This does not imply, however, that the HTR is an unsafe reactor system. By adequate design of the control system, safe and reliable operating characteristics can be achieved. This has already been proved satisfactory through many years of operation of other graphite moderated systems, such as the Magnox stations.

  11. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  12. The safe transport of radioactive materials

    International Nuclear Information System (INIS)

    Messenger, W. de L.M.

    1979-02-01

    The hazards of radioactive materials in transport are surveyed. The system whereby they are safely transported between nuclear establishments in the United Kingdom and overseas is outlined. Several popular misconceptions are dealt with. (author)

  13. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    Science.gov (United States)

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  15. The management system for the safe transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The purpose of this Safety Guide is to provide information to organizations that are developing, implementing or assessing a management system for activities relating to the transport of radioactive material. Such activities include, but are not limited to, design, fabrication, inspection and testing, maintenance, transport and disposal of radioactive material packaging. This publication is intended to assist those establishing or improving a management system to integrate safety, health, environmental, security, quality and economic elements to ensure that safety is properly taken into account in all activities of the organization. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement; Appendix: Graded approach for management systems for the safe transport of radioactive materials; Annex I: Two examples of management systems; Annex II: Examples of management system standards; Annex III: Example of a documented management system (or quality assurance programme) for an infrequent consignor; Annex IV: Example of a documented management system (or quality assurance programme) description for an infrequent carrier; Annex V: Example of a procedure for control of records; Annex VI: Example of a procedure for handling packages containing radioactive materials, including receipt and dispatch; Annex VII: Example of a packaging maintenance procedure in a complex organization; Annex VIII: Example of an internal audit procedure in a small organization; Annex IX: Example of a corrective and preventive action procedure

  16. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    Science.gov (United States)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  17. Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator

    Science.gov (United States)

    Han, Jiahao; Richardella, A.; Siddiqui, Saima A.; Finley, Joseph; Samarth, N.; Liu, Luqiao

    2017-08-01

    The strongly spin-momentum coupled electronic states in topological insulators (TI) have been extensively pursued to realize efficient magnetic switching. However, previous studies show a large discrepancy of the charge-spin conversion efficiency. Moreover, current-induced magnetic switching with TI can only be observed at cryogenic temperatures. We report spin-orbit torque switching in a TI-ferrimagnet heterostructure with perpendicular magnetic anisotropy at room temperature. The obtained effective spin Hall angle of TI is substantially larger than the previously studied heavy metals. Our results demonstrate robust charge-spin conversion in TI and provide a direct avenue towards applicable TI-based spintronic devices.

  18. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    Science.gov (United States)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  19. Influence of cycle number, temperature and manufacturing process on deformation-induced martensite in meta-stable austenitic stainless steels

    International Nuclear Information System (INIS)

    Kalkhof, D.; Niffenegger, M.; Grosse, M.; Bart, G.

    2002-01-01

    During cyclic loading of austenitic stainless steel, microstructural changes occur, which affect both the mechanical and the physical properties. Typical features are the rearrangement of dislocations and, in some cases, a deformation-induced martensitic phase transformation. In our investigation martensite formation was used as an indication for material degradation due to fatigue. Knowledge about mechanisms and influencing parameters of the martensitic transformation process is essential for the application in a lifetime monitoring system. The investigations showed that for a given meta-stable austenitic stainless steel the deformation-induced martensite depends on the applied strain amplitude, the cycle number (accumulated plastic strain) and the temperature. It was demonstrated that the volume fraction of martensite continuously increases with the cycle number. Therefore, martensite content could be used for indication of the fatigue usage. According to the Coffin-Manson relation the dependence of the martensite content on the cycle number could be described with a power law. The exponent was determined to be equal to 0.5 for the applied loading and temperature conditions. The influence of temperature on deformation-induced martensite was considered by means of a thermodynamic relation. Furthermore, the initial material state (initial defect density) played an important role for the martensite formation rate. Material properties and microstructures were characterised by metallography, neutron diffraction, and advanced magnetic non-destructive techniques. In order to investigate the correlation between the martensite content in the austenitic matrix and magnetic properties, the magnetic susceptibility was determined. Furthermore, a high sensitive Giant Magneto Resistant sensor was used to visualize the martensite distribution at the surface of the fatigue specimens. All applied techniques, neutron diffraction and advanced magnetic methods allowed the detection

  20. Secrets of safe laparoscopic surgery: Anaesthetic and surgical considerations

    Directory of Open Access Journals (Sweden)

    Srivastava Arati

    2010-01-01

    Full Text Available In recent years, laparoscopic surgery has gained popularity in clinical practice. The key element in laparoscopic surgery is creation of pneumoperitoneum and carbon dioxide is commonly used for insufflation. This pneumoperitoneum perils the normal cardiopulmonary system to a considerable extent. Every laparoscopic surgeon should understand the consequences of pneumoperitoneum; so that its untoward effects can be averted. Pneumoperitoneum increases pressure on diaphragm, leading to its cephalic displacement and thereby decreasing venous return, which can be aggravated by the position of patient during surgery. There is no absolute contraindication of laparoscopic surgery, though we can anticipate some problems in conditions like obesity, pregnancy and previous abdominal surgery. This review discusses some aspects of the pathophysiology of carbon dioxide induced pneumoperitoneum, its consequences as well as strategies to counteract them. Also, we propose certain guidelines for safe laparoscopic surgery.

  1. Safe Zones for Shock-Protection of Fragile Components during Impact-Induced Clatter

    Directory of Open Access Journals (Sweden)

    Suresh Goyal

    2002-01-01

    Full Text Available Clattering motion that occurs when flat objects strike the ground at an oblique angle is studied through a simple, tractable, model of a rigid bar with arbitrary, but symmetric, mass distribution and coefficient of restitution. The maximum velocity changes, or velocity shocks, that occur at various locations of the bar as it clatters to rest, are presented. It is shown that different parts of the bar can be subjected to sequences of velocity changes that are both higher, and lower, than those encountered in a single clatter-free impact. The implication that the drop-tolerance of an electronic product can be increased by configuring it to have ‘safe zones’ – where the velocity shocks are lower – for the placement of fragile components, is analysed. It is shown, through example, that a significant safe zone can be created in the center of the product by configuring it to have a low moment of inertia and by minimizing coefficient of restitution.

  2. System for enrichment by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    In dual temperature isotope exchange systems utilizing different fluid substances in liquid and gas phases separable from and soluble in each other (for example H 2 O and H 2 S), the phases are passed countercurrent to each other in towers maintained at relatively hot and cold temperatures. Combinations of method and means are provided by which the gas is raised to hot tower temperature and humidity conditions principally by heat derived from the cooling and dehumidification of the gas leaving the hot tower as it is being reduced in temperature and humidity to cold tower conditions. Special provisions are made in the combinations for transferring this heat and for completing the conditioning of the gas to the respective tower conditions with high efficiency, for economically controlling the temperature of the condensate to adapt it for transfer to different parts of the system, and for economically stripping dissolved gas and heat from the effluent liquid and returning it to the system in manners that aid the thermal conditioning of the main gas stream

  3. Radiation-induced emulsion copolymerization of vinyl chloride with vinyl acetate in an engineering flow system

    International Nuclear Information System (INIS)

    Tsai, J.T.; Stahel, E.P.; Stannett, V.T.

    1979-01-01

    A flow reactor system was used to study the radiation-induced emulsion copolymerization of vinyl chloride with vinyl acetate. The emulsion was recirculated from a stirred vessel through transfer lines to a tubular reactor located within a high-intensity Co-60 source. The effects of physical chemical variables such as soap concentration, phase ratio, reaction temperature and residence time distribution on the molecular weight properties were investigated. The rate of copolymerization was found to be proportional to the 0.17 power of the soap concentration. Variation of the monomer-water ratio produced no significant change in rate. The rate increased with an increase in temperature over the range 5 to 50 0 C, while the average molecular weights of the copolymer increased with decreasing polymerization temperature. The molecular weight distribution in this engineering system was found to be essentially similar to those produced in a batch system

  4. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    International Nuclear Information System (INIS)

    Ortiz, W.

    1990-01-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33 degree C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with [ 35 S]sodium sulfate were carried out with cells grown at room temperature or at 33 degree C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33 degree C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell

  5. Is phototherapy safe for HIV-infected individuals?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.L.; Houpt, K.R.; Cruz, P.D. Jr. [Texas Univ., Dallas, TX (United States). Southwestern Medical Center

    1996-08-01

    Patients infected with human immunodeficiency virus (HIV) have a high prevalence of UV radiation-responsive skin diseases including psoriasis, pruitus, eosinophillic folliculitis and eczemas. On the other hand, UV has been shown to suppress T cell-mediated immune responses and to induce activation and replication of HIV. These developments have prompted clinicians and investigators to question whether phototherapy is safe for HIV-infected individuals. We have reviewed these issues and hereby provide a summary and critique of relevant laboratory and clinical evidence. (Author).

  6. Design of temperature monitoring system based on CAN bus

    Science.gov (United States)

    Zhang, Li

    2017-10-01

    The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.

  7. Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Sung-Je Yoo

    2017-06-01

    Full Text Available Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack and abiotic stress (salt, high/low temperature, drought. Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR to biotic stress or induced systemic tolerance (IST to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses (bioticabiotic. We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

  8. A Kohn-Sham system at zero temperature

    DEFF Research Database (Denmark)

    Cornean, Horia; Hoke, K.; Neidhardt, H.

    2008-01-01

    A one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures, and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues...... by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero....

  9. Combined SAFE/SNAP approach to safeguards evaluation

    International Nuclear Information System (INIS)

    Engi, D.; Chapman, L.D.; Grant, F.H.; Polito, J.

    1980-01-01

    Generally, the scope of a safeguards evaluation model can efficiently address one of two issues, (1) global safeguards effectiveness, or (2) vulnerability analysis for individual scenarios. The Safeguards Automated Facility Evaluation (SAFE) focuses on (1) while the Safeguards Network Analysis Procedure (SNAP) is directed at (2). SAFE addresses (1) in that it considers the entire facility, i.e., the composite system of hardware and human components, in one global analysis. SNAP addresses (2) by providing a safeguards modeling symbology sufficiently flexible to represent quite complex scenarios from the standpoint of hardware interfaces while also accounting for a rich variety of human decision making. A combined SAFE/SNAP approach to the problem of safeguards evaluation is described and illustrated through an example

  10. Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)

    Science.gov (United States)

    Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.

  11. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  12. High-temperature expansion of the one-loop effective action induced by scalar and Dirac particles

    Energy Technology Data Exchange (ETDEWEB)

    Kalinichenko, Igor; Kazinski, Peter [Tomsk State University, Physics Faculty, Tomsk (Russian Federation)

    2017-12-15

    The complete nonperturbative expressions for the high-temperature expansion of the one-loop effective action induced by the charged scalar and the charged Dirac particles both at zero and finite temperatures are derived with account of possible nontrivial boundary conditions. The background electromagnetic field is assumed to be stationary and such that the corresponding Klein-Gordon operator or the Dirac Hamiltonian is self-adjoint. The contributions of particles and antiparticles are obtained separately. The explicit expressions for the C-symmetric and the non-C-symmetric vacuum energies of the Dirac fermions are derived. The leading corrections to the high-temperature expansion due to the nontrivial boundary conditions are explicitly found. The corrections to the logarithmic divergence of the effective action that come from the boundary conditions are derived. The high-temperature expansion of the naive one-loop effective action induced by charged fermions turns out to be divergent in the limit of a zero fermion mass. (orig.)

  13. Modular high-temperature reactor launched (and wallchart)

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1987-01-01

    In view of the need for a technically unsophisticated, safe and economic reactor system, the KWU group has integrated the experience gained from German light-water reactor engineering and from successful operation of the German AVR experimental high-temperature reactor into the development of the High-Temperature Reactor (HTR)-module. The main components are illustrated and explained and technical data for the HTR-module is given. Safety is also considered. This includes graphs of core heat-up temperature for pebble-bed HTR and a graph of the temperature load of the fuel elements. The operation, control and applications are considered. The latter includes use in combined heat and power generation and community heating. Feasibility studies have shown that the HTR-module is cheaper, comparatively, than coal-fired power stations. (U.K.)

  14. 105-H Reactor Interim Safe Storage Project Final Report

    International Nuclear Information System (INIS)

    Ison, E.G.

    2008-01-01

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D and D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  15. Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S.; Haslinger, M.J.; Hinterreiter, A.; Kolmhofer, P.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2013-09-01

    We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature T{sub S} ≤ 500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with T{sub S}. The size and brightness of expanding plumes increase at higher T{sub S} while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with T{sub S}. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to T{sub S} = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes. - Highlights: • Size and emission of laser-induced plasma increase with sample temperature Ts. • Mean optical intensity of plasma is independent of Ts. • Plasma temperature and electron number density do not vary with Ts. • Major oxides in steel slag are quantified up to Ts = 450 °C. • Industrial steel slags are analyzed by calibration-free LIBS method.

  16. DroidSafe

    Science.gov (United States)

    2016-12-01

    Massachusetts Avenue, Build E19-750 Cambridge , MA 02139-4307 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS...Activity objects illustrating the challenges of points-to and information flow analysis...measure how many malicious flows Droid- Safe was able to detect). As these results illustrate , DroidSafe implements an analysis of unprece- dented

  17. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  18. Nuclear power plant safe operation principles and some topics concerning systems reliability analysis

    International Nuclear Information System (INIS)

    Borsky, M.; Kreim, R.; Stanicek, J.

    1997-01-01

    General safety criteria are specified, and nuclear power plant equipment is classified into systems either important or unimportant for nuclear safety. The former class is subdivided into safety systems and safety related systems. The safety requirements concern earthquakes, storms, fires, floods, man-induced events, and equipment failures. The actual state of systems important for safety is described. (M.D.)

  19. Safe and reliable solutions for Internet application in power sector

    International Nuclear Information System (INIS)

    Eichelburg, W. K.

    2004-01-01

    The requirements for communication of various information systems (control systems, EMS, ERP) continually increase. Internet is prevailingly a Universal communication device for interconnection of the distant systems at the present. However, the communication with the outside world is important, the internal system must be protected safely and reliably. The goal of the article is to inform the experienced participants with the verified solutions of the safe and reliable Internet utilization for interconnection of control systems on the superior level, the distant management, the diagnostic and for interconnection of information systems. An added value is represented by the solutions using Internet for image and sound transmission. (author)

  20. Safe havens in Europe

    DEFF Research Database (Denmark)

    Paldam, Martin

    2013-01-01

    Eleven safe havens exist in Europe providing offshore banking and low taxes. Ten of these states are very small while Switzerland is moderately small. All 11 countries are richer than their large neighbors. It is shown that causality is from small to safe haven to wealth, and that theoretically...... equilibriums are likely to exist where a certain regulation is substantially lower in a small country than in its big neighbor. This generates a large capital inflow to the safe havens. The pool of funds that may reach the safe havens is shown to be huge. It is far in excess of the absorptive capacity...... of the safe havens, but it still explains, why they are rich. Microstates offer a veil of anonymity to funds passing through, and Switzerland offers safe storage of funds....

  1. Novel high-density packaging of solid state diode pumped eye-safe laser for LIBS

    Science.gov (United States)

    Bares, Kim; Torgerson, Justin; McNeil, Laine; Maine, Patrick; Patterson, Steve

    2018-02-01

    Laser-Induced Breakdown Spectroscopy (LIBS) has proven to be a useful research tool for material analysis for decades. However, because of the amount of energy required in a few nanosecond pulse to generate a stable and reliable LIBS signal, the lasers are often large and inefficient, relegating their implementation to research facilities, factory floors, and assembly lines. Small portable LIBS systems are now possible without having to compromise on energy needs by leveraging off of advances in high-density packaging of electronics, opto-mechanics, and highly efficient laser resonator architecture. This paper explores the integration of these techniques to achieve a mJ class eye-safe LIBS laser source, while retaining a small, light-weight package suitable for handheld systems.

  2. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2013-09-23

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. © 2013 IOP Publishing Ltd.

  3. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    International Nuclear Information System (INIS)

    Zhang, Xuming; Cha, Min Suk

    2013-01-01

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297–773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH 4 and CO 2 , while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. (paper)

  4. Traveling Safely with Medicines

    Science.gov (United States)

    ... Medications Safely My Medicine List How to Administer Traveling Safely with Medicines Planes, trains, cars – even boats ... your trip, ask your pharmacist about how to travel safely with your medicines. Make sure that you ...

  5. Safe physical human robot interaction- past, present and future

    International Nuclear Information System (INIS)

    Pervez, Aslam; Ryu, Jeha

    2008-01-01

    When a robot physically interacts with a human user, the requirements should be drastically changed. The most important requirement is the safety of the human user in the sense that robot should not harm the human in any situation. During the last few years, research has been focused on various aspects of safe physical human robot interaction. This paper provides a review of the work on safe physical interaction of robotic systems sharing their workspace with human users (especially elderly people). Three distinct areas of research are identified: interaction safety assessment, interaction safety through design, and interaction safety through planning and control. The paper then highlights the current challenges and available technologies and points out future research directions for realization of a safe and dependable robotic system for human users

  6. Development of an expert system for preheating temperatures determination. Desarrollo dse uns sistema experto para la determinacion de temperatura de precalentamiento

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, E; Silva, M; Gonalvez, P; Fernandez, A A [Oporto Univ. (Portugal) Facultad de Ingenieria

    1989-01-01

    This work describes the development of an expert system designed to control the cold fissuration phenomenon caused by H{sup 2} on welded joints of carbonated, C-Mn and light alloy steels, obtained through fusion welding (manual electric arc, MIG/MAG, TIG and submerged arc). This system, implemented in PROLOG language, allows a quick and simple calculation of preheating temperatures. The aim of this system, which does not require programming knowledge to be updated, is to help welding engineers to design welding procedures which are safe as regards to the joint resistance to cold fissuration. Being an expert system, the user has the opportunity to obtain interactive explanations about the way any conclusions are obtained, as well as information about the concepts and parameters on which the reasoning is based.(Author)

  7. Plastic Strain Induced Damage Evolution and Martensitic Transformation in Ductile Materials at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behaviour at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of thes...

  8. Design of PID temperature control system based on STM32

    Science.gov (United States)

    Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru

    2018-03-01

    A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.

  9. Low temperature monitoring system for subsurface barriers

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  10. Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats.

    Science.gov (United States)

    Sharma, G; Italia, J L; Sonaje, K; Tikoo, K; Ravi Kumar, M N V

    2007-03-12

    Ellagic acid (EA) is a potent antioxidant marketed as a nutritional supplement. Its pharmacological activity has been reported in wide variety of disease models; however its use has been limited owing to its poor biopharmaceutical properties, thereby poor bioavailability. The objective of the current study was to develop chitosan-glycerol phosphate (C-GP) in situ gelling system for sustained delivery of ellagic acid (EA) via subcutaneous route. EA was incorporated in the system employing propylene glycol (PG) and triethanolamine (TEA) as co-solvents; on the other hand EA loaded PLGA nanoparticles (np) were dispersed in the gelling system using water. These in situ gelling systems were thoroughly characterized for mechanical, rheological and swelling properties. These systems are liquid at room temperature and gels at 37 degrees C. The EA C-GP system showed an initial burst release in vitro with about 85% drug released in 12 h followed by a steady release till 160 h, on the other hand EA nanoparticles entrapped in the C-GP system displayed sustained release till 360 h. The histopathological analysis indicates the absence of inflammation on administration, suggesting that these formulations are safe during the studied period. Furthermore, the antioxidant potential of EA C-GP and EA np C-GP gels has been evaluated against cyclosporine induced nephrotoxicity in rats. The data indicates that formulations were effective against cyclosporine induced nephrotoxicity, where the EA C-GP gels showed activity at 10 times lower dose and the EA np C-GP gels at 150 times lower dose when compared to orally given EA. Formulating nanoparticles of EA and incorporating them in C-GP system results in 15 times lowering of dose in comparison EA C-GP gels which is quite significant. Together, these results indicate that the bioavailability of ellagic acid can be improved by subcutaneous formulations administered as simple EA or EA nps.

  11. Peltier Effect Based Temperature Controlled System for Dielectric Spectroscopy

    Science.gov (United States)

    Mukda, T.; Jantaratana, P.

    2017-09-01

    The temperature control system was designed and built for application in dielectric spectroscopy. It is based on the dual-stage Peltier element that decreases electrical power and no cryogenic fluids are required. A proportional integral derivative controller was used to keep the temperature stability of the system. A Pt100 temperature sensor was used to measure temperature of the sample mounting stage. Effect of vacuum isolation and water-cooling on accuracy and stability of the system were also studied. With the incorporation of vacuum isolation and water-cooling at 18 °C, the temperature of the sample under test can be controlled in the range of -40 °C to 150 °C with temperature stability ± 0.025 °C.

  12. Implementation of Ray Safe i2 System for staff dose measuring in interventional radiology

    International Nuclear Information System (INIS)

    Gershan, Vesna; Atsovska, Violeta

    2013-01-01

    Interventional radiology procedures usually delivered the highest radiation dose to the patients as well as to medical personal. Beside another factors like patient size, fluoroscopy time, machine calibration etc., a good clinical practice has strong effects to staff and patient’s radiation dose. Materials and methods: In August 2012, a Ray Safe i2 system was installed in a private hospital in Skopje. The main purpose of this dosimetry system is to provide real time indication for the current exposure level of the medical personal. Knowing that, the staff has prerequisites to adjust their behavior to minimize unnecessary exposure like changing distance from exposed volume, C-ram angulations, field of view etc. and on this way to develop a good clinical practice. The Ray Safe i2 system is consisted by ten digital dosimeters, two dock stations, real time display, dose viewer and dose manager software. During interventional procedures, each involved staff wears dosimeter which measures and records X-Ray exposure every second and transfer the data wirelessly to the real time display. Color indication bars (green, yellow, red) represents the intensity of the currently received exposure, whereas green zone indicates < 0.2 mSv/h, yellow zone from 0.2 to 2 mSv/h and red zone indications from 2 to 20 mSv/h. Additionally, accumulated dose per individual is displayed next to the color indication bars. By using the software, information about personal dose history, such as annual dose, dose per particular session, hour, day or week, can be viewed and analyzed. Results: In this work it was found that staff accumulated doses were constantly increased over time, but reported number of procedures does not correspond to this tendency. Our assumption is that there is a misleading between reported number and actual performed procedures. Doctor1 received 55 times more dose than Doctor2 and Nurse1 received 11 to 3 times more dose than another Nurses. It was found a correlation of R2

  13. Evaluation of thermal displacement behavior of high temperature piping system in power-up test of HTTR. No. 1 results up to 20 MW operation

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Kojima, Takao; Sumita, Junya; Tachibana, Yukio

    2002-03-01

    Temperature of the primary cooling system of the High Temperature Engineering Test Reactor, HTTR, becomes very high because the coolant temperature at the reactor outlet reaches 950degC, and 400degC at inlet of the reactor. Therefore, it is important to confirm the thermal displacement behavior of the high temperature piping system in the primary cooling system from the viewpoint of the structural integrity. Moreover, newly designed 3-dimensional floating support system is adopted to the cooling system, it is meaningful to verify the thermal displacement behavior of the piping system applied the 3-dimensional floating support system. In the power-up test (up to 20 MW operation), thermal displacement behavior of the high temperature piping system was measured. This paper describes the experimental and analytical results of thermal displacement characteristics of the high temperature piping system. The results showed that the resistance force induced from the supporting system effects to the thermal displacement behavior of cooling system, and the analytical results have a good agreement with the experimental results by optimizing the resistant force of the floating support system. Additionally, structural integrity at the 30 MW operation was confirmed by the analysis. (author)

  14. The GOCF/AWAP system - forecasting temperature extremes

    International Nuclear Information System (INIS)

    Fawcett, Robert; Hume, Timothy

    2010-01-01

    Gridded hourly temperature forecasts from the Bureau of Meteorology's Gridded Operational Consensus Forecasting (GOCF) system are combined in real time with the Australian Water Availability Project (AWAP) gridded daily temperature analyses to produce gridded daily maximum and minimum temperature forecasts with lead times from one to five days. These forecasts are compared against the historical record of AWAP daily temperature analyses (1911 to present), to identify regions where record or near-record temperatures are predicted to occur. This paper describes the GOCF/AWAP system, showing how the daily maximum and minimum temperature forecasts are prepared from the hourly forecasts, and how they are bias-corrected in real time using the AWAP analyses, against which they are subsequently verified. Using monthly climatologies of long-term daily mean, standard deviation and all-time highest and lowest on record, derived forecast products (for both maximum and minimum temperature) include ordinary and standardised anomalies, 'forecast - highest on record' and 'forecast - lowest on record'. Compensation for the climatological variation across the country is achieved in these last two products, which provide the necessary guidance as to whether or not record-breaking temperatures are expected, by expressing the forecast departure from the previous record in both 0 C and standard deviations.

  15. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    International Nuclear Information System (INIS)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Eichwald, Olivier; Merbahi, Nofel; Frongia, Céline; Ducommun, Bernard; Lobjois, Valérie

    2014-01-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy

  16. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    Science.gov (United States)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Frongia, Céline; Eichwald, Olivier; Ducommun, Bernard; Merbahi, Nofel; Lobjois, Valérie

    2014-04-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy.

  17. Anisotropic Constitutive Model of Strain-induced Phenomena in Stainless Steels at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2004-01-01

    A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...

  18. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    Science.gov (United States)

    Veltmeijer, Matthijs T W; Veeneman, Dineke; Bongers, Coen C C W; Netea, Mihai G; van der Meer, Jos W; Eijsvogels, Thijs M H; Hopman, Maria T E

    2017-05-01

    Exercise increases core body temperature (T C ) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in T C by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in T C is partly caused by an altered hypothalamic temperature set point. Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. T C , skin temperature, and heart rate were measured continuously during the submaximal exercise tests. Baseline values of T C , skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak T C was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔT C was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in T C .

  19. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  20. An Embedded System for Safe, Secure and Reliable Execution of High Consequence Software

    Energy Technology Data Exchange (ETDEWEB)

    MCCOY,JAMES A.

    2000-08-29

    As more complex and functionally diverse requirements are placed on high consequence embedded applications, ensuring safe and secure operation requires an execution environment that is ultra reliable from a system viewpoint. In many cases the safety and security of the system depends upon the reliable cooperation between the hardware and the software to meet real-time system throughput requirements. The selection of a microprocessor and its associated development environment for an embedded application has the most far-reaching effects on the development and production of the system than any other element in the design. The effects of this choice ripple through the remainder of the hardware design and profoundly affect the entire software development process. While state-of-the-art software engineering principles indicate that an object oriented (OO) methodology provides a superior development environment, traditional programming languages available for microprocessors targeted for deeply embedded applications do not directly support OO techniques. Furthermore, the microprocessors themselves do not typically support nor do they enforce an OO environment. This paper describes a system level approach for the design of a microprocessor intended for use in deeply embedded high consequence applications that both supports and enforces an OO execution environment.

  1. Brane-antibrane systems at finite temperature and phase transition near the Hagedorn temperature

    International Nuclear Information System (INIS)

    Hotta, Kenji

    2002-01-01

    In order to study the thermodynamic properties of brane-antibrane systems, we compute the finite temperature effective potential of tachyon T in this system on the basis of boundary string field theory. At low temperature, the minimum of the potential shifts towards T=0 as the temperature increases. In the D9-anti-D9 case, the sign of the coefficient of vertical bar T vertical bar 2 term of the potential changes slightly below the Hagedorn temperature. This means that a phase transition occurs near the Hagedorn temperature. On the other hand, the coefficient is kept negative in the Dp-anti-Dp case with p≤8, and thus a phase transition does not occur. This leads us to the conclusion that only a D9-anti-D9 pair and no other (lower dimensional) brane-antibrane pairs are created near the Hagedorn temperature. We also discuss a phase transition in NS9B-anti-NS9B case as a model of the Hagedorn transition of closed strings. (author)

  2. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    International Nuclear Information System (INIS)

    Shilobreeva, S.N.; Kashkarov, L.L.; Barabanenkov, M.Yu.; Pustovit, A.N.; Zinenko, V.I.; Agafonov, Yu.A.

    2007-01-01

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem

  3. Proton and temperature-induced competitive segregation of iron on surface and volume sinks of silica

    Energy Technology Data Exchange (ETDEWEB)

    Shilobreeva, S.N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Kashkarov, L.L. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow 117975 (Russian Federation); Barabanenkov, M.Yu. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)]. E-mail: barab@ipmt-hpm.ac.ru; Pustovit, A.N. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Zinenko, V.I. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Agafonov, Yu.A. [Institute of Microelectronics Technology and Superpure Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation)

    2007-03-15

    Experimental results are delivered on iron redistribution in silica for proton irradiation followed by thermal annealing. Iron ions are initially implanted into silica at room temperature. Proton irradiation is performed at different temperatures. It is demonstrated, in particular, that radiation-induced migration of iron is more efficient at low temperature. Iron surface segregation and capture of iron by sinks in silica subsurface region during thermal annealing are speculated in terms of diffusion-alternative-sinks problem.

  4. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    Science.gov (United States)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .tests, the point kinetics model was based on core thermal expansion via deflection measurements. It was found that core deflection was a strung function of how the SAFE-100 modules were fabricated and assembled (in terms of straightness, gaps, and other tolerances). To remove the added variable of how this particular core expands as compared to a different concept, it was decided to use a temperature based feedback model (based on several thermocouples placed throughout the core).

  5. Temperature-induced changes in neuromuscular function: central and peripheral mechanisms.

    Science.gov (United States)

    Goodman, D; Hancock, P A; Runnings, D W; Brown, S L

    1984-10-01

    Three series of experimental tests were conducted on subjects under both elevated and depressed thermal conditions. Tripartite series consisted of whole-body immersion excepting the head, whole-body immersion excepting the head and response limb, and immersion of the discrete-response limb. Measures of physiological and behavioural responses were made at sequential .4 degrees C changes during whole-body immersions and approximately 5 degrees C changes of water temperature during the immersion of a limb only. Results suggested that velocity of nerve conduction decreased with thermal depression. Premotor, motor, simple, and choice reaction times varied differentially as a function of the hot and cold conditions. Implications of these differential effects on neuromuscular function are examined with respect to person-machine performance in artificially induced or naturally occurring extremes of ambient temperature.

  6. Preventing Noise-Induced Extinction in Discrete Population Models

    Directory of Open Access Journals (Sweden)

    Irina Bashkirtseva

    2017-01-01

    Full Text Available A problem of the analysis and prevention of noise-induced extinction in nonlinear population models is considered. For the solution of this problem, we suggest a general approach based on the stochastic sensitivity analysis. To prevent the noise-induced extinction, we construct feedback regulators which provide a low stochastic sensitivity and keep the system close to the safe equilibrium regime. For the demonstration of this approach, we apply our mathematical technique to the conceptual but quite representative Ricker-type models. A variant of the Ricker model with delay is studied along with the classic widely used one-dimensional system.

  7. Bose–Einstein condensation temperature of finite systems

    Science.gov (United States)

    Xie, Mi

    2018-05-01

    In studies of the Bose–Einstein condensation of ideal gases in finite systems, the divergence problem usually arises in the equation of state. In this paper, we present a technique based on the heat kernel expansion and zeta function regularization to solve the divergence problem, and obtain the analytical expression of the Bose–Einstein condensation temperature for general finite systems. The result is represented by the heat kernel coefficients, where the asymptotic energy spectrum of the system is used. Besides the general case, for systems with exact spectra, e.g. ideal gases in an infinite slab or in a three-sphere, the sums of the spectra can be obtained exactly and the calculation of corrections to the critical temperatures is more direct. For a system confined in a bounded potential, the form of the heat kernel is different from the usual heat kernel expansion. We show that as long as the asymptotic form of the global heat kernel can be found, our method works. For Bose gases confined in three- and two-dimensional isotropic harmonic potentials, we obtain the higher-order corrections to the usual results of the critical temperatures. Our method can also be applied to the problem of generalized condensation, and we give the correction of the boundary on the second critical temperature in a highly anisotropic slab.

  8. A study on the boron injection initiation temperature curve of BWR

    International Nuclear Information System (INIS)

    Wang, S.-J.; Chien, C.-S.; Fann, S.-Y.; Chiang, S.-C.

    2007-01-01

    Boron injection initiation temperature (BIIT) provides important information for the safe shutdown of the reactor using boron injection system during anticipated transient without scram (ATWS). The purpose of this paper is to study BIIT curve of boiling water reactor owners' group (BWROG). The unreasonable and non-conservative parts of BIIT are pointed out and suggested modifications are made. The starting reactor power of BIIT is increased in order to meet the actual application. The lower limit of suppression pool temperature of BIIT is revised for conservative operation during ATWS conditions. Analysis of the effects of maximum temperature capacity of the suppression chamber and concentration of boron in standby liquid control tank shows that BIIT is decreased by adopting a more conservative value of maximum temperature capacity of the suppression chamber. Consequently, early boron injection is anticipated. For system with automatic boron injection system, BIIT is not required

  9. Temperature induced Spin Switching in SmFeO3 Single Crystal

    Science.gov (United States)

    Cao, Shixun; Zhao, Huazhi; Kang, Baojuan; Zhang, Jincang; Ren, Wei

    2014-08-01

    The prospect of controlling the magnetization (M) of a material is of great importance from the viewpoints of fundamental physics and future applications of emerging spintronics. A class of rare-earth orthoferrites RFeO3 (R is rare-earth element) materials exhibit striking physical properties of spin switching and magnetization reversal induced by temperature and/or applied magnetic field. Furthermore, due to the novel magnetic, magneto-optic and multiferroic properties etc., RFeO3 materials are attracting more and more interests in recent years. We have prepared and investigated a prototype of RFeO3 materials, namely SmFeO3 single-crystal. And we report magnetic measurements upon both field cooling (FC) and zero-field cooling (ZFC) of the sample, as a function of temperature and applied magnetic field. The central findings of this study include that the magnetization of single-crystal SmFeO3 can be switched by temperature, and tuning the magnitude of applied magnetic field allows us to realize such spin switching even at room temperature.

  10. Low-temperature heating systems and public administration

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, H

    1981-06-01

    The even temperature distribution and comfortable climate in rooms heated by low-temperature heating systems is mostly due to one of the preconditions of this type of heating system namely, efficient thermal insulation of the rooms. Thermal insulation is already required as part of the pertinent legal regulations but it is also in the interest of the builder-owner as it will, in the long run, greatly reduce the heating cost.

  11. Investigation of induced recirculation during planned ventilation system maintenance

    Science.gov (United States)

    Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.

    2015-01-01

    The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter

  12. Preheating in an asymptotically safe quantum field theory

    DEFF Research Database (Denmark)

    Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert

    2016-01-01

    . High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance...... fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F......We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J...

  13. The GT-MHR - clear, economic, and safe power for the Pacific Rim

    International Nuclear Information System (INIS)

    Blue, L.S.; Etzel, K.T.; Simon, W.A.; Wistrom, J.D.

    1994-01-01

    In recent decades the nations of the Pacific Rim have outpaced the rest of the world in economic growth. Beyond an abundant labor market and the region's natural resources, energy has played a pivotal role in fuelling this boom. The diverse sources of this energy largely reflect the naturally occurring fuel assets in the Rim countries. Only in the countries where these resources are less plentiful has nuclear energy become a significant sources of electric power generation. Persuasive as the argument for non-polluting power may be by itself it does not sell the nuclear energy option. In addition to being clean it must also be economically competitive and very safe. The authors claim that the Gas-Turbine Modular Helium Reactor (GT-MHR) is an advances nuclear power system that addresses the issues, and should be viewed as an attractive candidate to meet future energy needs. The GT-MHR derives from the coupling of a small, passively safe, modular reactor directly with a compact power conversion module. It uses the Brayton cycle to produce electricity directly with the primary helium coolant driving the turbine-generator. Thus, it shows promise for a quantum reduction in power generation costs by increasing plant efficiency to a remarkable 48% This paper highlights the advantages of the fact that the design is based on proven technology, and offers a clean, economic and safe energy for electricity and high temperature process heat. 2 refs., 4 figs

  14. Brain temperature and exercise performance

    DEFF Research Database (Denmark)

    Nybo, Lars

    2012-01-01

    Events arising within the central nervous system seem to play a major factor in the aetiology of hyperthermia-induced fatigue. Thus, various studies with superimposed electrical nerve stimulation or transcranial magnetic stimulation have shown that both passive and exercise-induced hyperthermia...... temperature in exercising goats indicate that excessive brain hyperthermia will directly affect motor performance. However, several homeostatic changes arise in parallel with hyperthermia including factors that may influence both peripheral and central fatigue and it is likely that these changes interact...... will impair voluntary motor activation during sustained maximal contractions. In humans the brain temperature increases in parallel with that of the body core making it very difficult to evaluate the independent effect of the cerebral temperature. Experiments with separate manipulation of the brain...

  15. A Safe Bacterial Microsyringe for In Vivo Antigen Delivery and Immunotherapy

    Science.gov (United States)

    Le Gouëllec, Audrey; Chauchet, Xavier; Laurin, David; Aspord, Caroline; Verove, Julien; Wang, Yan; Genestet, Charlotte; Trocme, Candice; Ahmadi, Mitra; Martin, Sandrine; Broisat, Alexis; Cretin, François; Ghezzi, Catherine; Polack, Benoit; Plumas, Joël; Toussaint, Bertrand

    2013-01-01

    The industrial development of active immunotherapy based on live-attenuated bacterial vectors has matured. We developed a microsyringe for antigen delivery based on the type III secretion system (T3SS) of P. aeruginosa. We applied the “killed but metabolically active” (KBMA) attenuation strategy to make this bacterial vector suitable for human use. We demonstrate that attenuated P. aeruginosa has the potential to deliver antigens to human antigen-presenting cells in vitro via T3SS with considerable attenuated cytotoxicity as compared with the wild-type vector. In a mouse model of cancer, we demonstrate that this KBMA strain, which cannot replicate in its host, efficiently disseminates into lymphoid organs and delivers its heterologous antigen. The attenuated strain effectively induces a cellular immune response to the cancerous cells while lowering the systemic inflammatory response. Hence, a KBMA P. aeruginosa microsyringe is an efficient and safe tool for in vivo antigen delivery. PMID:23531551

  16. Need for a safe vaccine against respiratory syncytial virus infection

    Directory of Open Access Journals (Sweden)

    Joo-Young Kim

    2012-09-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of severe respiratory tract illnesses in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for HRSV. Following failure of the initial trial of formalin-inactivated virus particle vaccine, continuous efforts have been made for the development of safe and efficacious vaccines against HRSV. However, several obstacles persist that delay the development of HRSV vaccine, such as the immature immune system of newborn infants and the possible Th2-biased immune responses leading to subsequent vaccine-enhanced diseases. Many HRSV vaccine strategies are currently being developed and evaluated, including live-attenuated viruses, subunit-based, and vector-based candidates. In this review, the current HRSV vaccines are overviewed and the safety issues regarding asthma and vaccine-induced pathology are discussed.

  17. The recommended Threshold Limit Values for heat exposure fail to maintain body core temperature within safe limits in older working adults.

    Science.gov (United States)

    Lamarche, Dallon T; Meade, Robert D; D'Souza, Andrew W; Flouris, Andreas D; Hardcastle, Stephen G; Sigal, Ronald J; Boulay, Pierre; Kenny, Glen P

    2017-09-01

    temperature from exceeding 38°C in older workers. Furthermore, a stable core temperature was not achieved within safe limits (i.e., ≤38°C) indicating that the TLV® guidelines may not adequately protect all individuals during work in hot conditions.

  18. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.

    Science.gov (United States)

    Fehrenbach, Elvira; Schneider, Marion E

    2006-01-01

    Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

  19. A possibility of local measurements of ion temperature in a high-temperature plasma by laser induced ionization

    International Nuclear Information System (INIS)

    Kantor, M

    2012-01-01

    A new diagnostic for local measurements of ion temperature and drift velocity in fusion plasmas is proposed in the paper. The diagnostic is based on laser induced ionization of excited hydrogen and deuterium atoms from the levels which ionization energy less than the laser photon energy. A high intensive laser beam ionizes nearly all the excited atoms in the beam region resulting in a quench of spontaneous line emission of the appropriate optical transitions. The measurements of the quenching emission have been used in the past for local measurements of hydrogen atom density in tokamak plasma. The idea of the new diagnostic is spectral resolution of the quenching emission. The measured spectrum relates directly to the velocity distribution of the excited atoms. This distribution is strongly coupled to the distribution of the hydrogen atoms at the ground state. So, the spectral resolution of quenching emission is a way of local measurements of the temperature and drift velocity of hydrogen atoms in plasma. The temperature of hydrogen atoms is well coupled to the local ion temperature as long as the mean free path of the atoms is shorter than the ion gradient length in plasma. In this case the new diagnostic can provide local measurements of ion temperature in plasma. The paper considers technical capabilities of the diagnostic, physical restrictions of its application and interpretation of the measurements.

  20. Supply of domestic hot Water at comfortable temperatures by low-temperature district heating without risk of Legionella

    DEFF Research Database (Denmark)

    Yang, Xiaochen

    disinfection efficacy for Legionella if supplied by LTDH, and inject no additives into the water. Thus, they can be considered as feasible sterilization solutions. In terms of the DHW system design methods, in addition to ensure the safe and hygiene DHW supply, the potential DHW systems should also...... temperature for space heating but lower than LTDH. Therefore, to meet the comfort and hygiene requirements for DHW supply, supplementary heating methods should be combined. However, one obstacle to realize the LTDH/ULTDH is the concern of the violation of the comfort and hygiene requirements of DHW supply....... According to the Danish standard, the supply for DHW should be able to reach 45 °C for the kitchen use and 40 °C for other uses for comfort. Regarding to the hygiene requirements, large DHW system with DHW storage tank and circulation has to use high temperature regime to get rid of Legionella. The storage...

  1. What Food is to be Kept Safe and for Whom? Food-Safety Governance in an Unsafe Food System

    Directory of Open Access Journals (Sweden)

    Martha McMahon

    2013-10-01

    Full Text Available This paper argues that discussion of new food-safety governance should be framed by the realization that the dominant food system within which food-safety governance is designed to makes food safe is itself a structural and systemic sources of food un-safety, poor health and a future of food insecurity for many. For some, an appropriate policy response lies in addressing the connections between the food system and diseases such as heart disease, obesity and diabetes. For others it means subsuming food-safety governance within food security governance. For yet others, safe food implies food sovereignty governance and the primacy of a climate change resilient food system. Conventional approaches to food-safety governance are typically framed within a liability model of responsibility that has limited usefulness for addressing institutional, structural or systemic sources of harm such as those critics increasingly attribute to the dominant food system and which are not amenable to remedy by food-safety governance as it is widely understood. One cannot identify critical hazard points where risk is to be managed. These are food-system safety challenges. Because food-safety governance is so deeply political there needs to be greater attention to issues of governance rather than the more usual focus on the technologies of food-safety. Feminist political theorists have much to contribute to re-thinking food-safety governance in the context of diversity and the complexities of power. One could usefully start with the simple questions, “what food is to be kept-safe, for whom and who is the subject of food-safety governance in a post-Westphalian political economic order?” These questions can help unpack both the narrow parochialism and the misleading universalism of food-safety talk. This paper answers that neither the citizens of a particular state (or network of states nor the falsely universalizing identity of ‘the consumer’ are adequate answers

  2. Temperature modelling and prediction for activated sludge systems.

    Science.gov (United States)

    Lippi, S; Rosso, D; Lubello, C; Canziani, R; Stenstrom, M K

    2009-01-01

    Temperature is an important factor affecting biomass activity, which is critical to maintain efficient biological wastewater treatment, and also physiochemical properties of mixed liquor as dissolved oxygen saturation and settling velocity. Controlling temperature is not normally possible for treatment systems but incorporating factors impacting temperature in the design process, such as aeration system, surface to volume ratio, and tank geometry can reduce the range of temperature extremes and improve the overall process performance. Determining how much these design or up-grade options affect the tank temperature requires a temperature model that can be used with existing design methodologies. This paper presents a new steady state temperature model developed by incorporating the best aspects of previously published models, introducing new functions for selected heat exchange paths and improving the method for predicting the effects of covering aeration tanks. Numerical improvements with embedded reference data provide simpler formulation, faster execution, easier sensitivity analyses, using an ordinary spreadsheet. The paper presents several cases to validate the model.

  3. Safe Human-Robot Cooperation in an Industrial Environment

    Directory of Open Access Journals (Sweden)

    Nicola Pedrocchi

    2013-01-01

    Full Text Available The standard EN ISO10218 is fostering the implementation of hybrid production systems, i.e., production systems characterized by a close relationship among human operators and robots in cooperative tasks. Human-robot hybrid systems could have a big economic benefit in small and medium sized production, even if this new paradigm introduces mandatory, challenging safety aspects. Among various requirements for collaborative workspaces, safety-assurance involves two different application layers; the algorithms enabling safe space-sharing between humans and robots and the enabling technologies allowing acquisition data from sensor fusion and environmental data analysing. This paper addresses both the problems: a collision avoidance strategy allowing on-line re-planning of robot motion and a safe network of unsafe devices as a suggested infrastructure for functional safety achievement.

  4. From safe yield to sustainable development of water resources - The Kansas experience

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better

  5. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    Science.gov (United States)

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  6. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  7. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  8. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    Science.gov (United States)

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  9. Wind pressure testing of tornado safe room components made from wood

    Science.gov (United States)

    Robert Falk; Deepak Shrestha

    2016-01-01

    To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...

  10. Design of online monitoring and forecasting system for electrical equipment temperature of prefabricated substation based on WSN

    Science.gov (United States)

    Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo

    2016-10-01

    In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.

  11. Safeguards Automated Facility Evaluation (SAFE) methodology

    International Nuclear Information System (INIS)

    Chapman, L.D.; Grady, L.M.; Bennett, H.A.; Sasser, D.W.; Engi, D.

    1978-08-01

    An automated approach to facility safeguards effectiveness evaluation has been developed. This automated process, called Safeguards Automated Facility Evaluation (SAFE), consists of a collection of a continuous stream of operational modules for facility characterization, the selection of critical paths, and the evaluation of safeguards effectiveness along these paths. The technique has been implemented on an interactive computer time-sharing system and makes use of computer graphics for the processing and presentation of information. Using this technique, a comprehensive evaluation of a safeguards system can be provided by systematically varying the parameters that characterize the physical protection components of a facility to reflect the perceived adversary attributes and strategy, environmental conditions, and site operational conditions. The SAFE procedure has broad applications in the nuclear facility safeguards field as well as in the security field in general. Any fixed facility containing valuable materials or components to be protected from theft or sabotage could be analyzed using this same automated evaluation technique

  12. Experimental determination of the temperature range of AlO molecular emission in laser-induced aluminum plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xueshi; Motto-Ros, Vincent [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon Villeurbanne (France); Lei, Wenqi [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon Villeurbanne (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Zheng, Lijuan [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Yu, Jin, E-mail: jin.yu@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon Villeurbanne (France); Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-09-01

    Measurements with laser-induced breakdown spectroscopy (LIBS) usually take place in the atmospheric air. For quantitative analysis of metallic elements, oxidation may represent an important issue which can significantly modify the stoichiometry of the plasma. Molecule formation in plasma should be therefore studied and taken into account in the LIBS practice. In this work, we experimentally investigated the temporal evolution and transformation of the plasma induced on an aluminum target by a nanosecond infrared (1064 nm) laser in the atmospheric air, in terms of its temperatures over a large interval of time from hundreds of nanoseconds to tens of microseconds. Such evolution was then correlated to the temporal evolution of the emission intensity from AlO molecules in the ablation plume. In particular, for a given ablation laser pulse energy, the appearance of the molecular emission while the plume cools down allows determining a minimal delay, τ{sub min}, which corresponds to a maximal value of the temperature, T{sub max}, below which the molecular emission begins to be clearly observed and to grow as a function of the delay. Such delay or such temperature indicates the longest delay or the lowest temperature for laser-induced plasma to be suitable for a correct analysis of metallic elements without significant influence of the alternation of the stoichiometry by oxidation. In our experiment, the values of τ{sub min} and T{sub max} have been determined for a range of ablation laser pulse energies from 5 mJ to 50 mJ. These values lie respectively in the range of 3 to 15 μs for τ{sub min}, and 4500 K to 6600 K in terms of the molecule temperature for T{sub max}. Beyond the practical interest for LIBS, our results provide also insights to the kinetics of the AlO molecule formation in laser-induced plasma. - Highlights: • Determination of the temperatures in laser-induced plasma up to tens of microseconds • Determination of the molecule temperature by fitting

  13. Modelling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells

    NARCIS (Netherlands)

    Conings, B.S.T.; Bertho, S.; Vandewal, K.; Senes, A.; D'Haen, J.; Manca, J.V.; Janssen, R.A.J.

    2010-01-01

    In organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of

  14. Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R

    2003-10-01

    To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.

  15. Thermal effect of TiC in the Mo/TiC/SiC system at elevated temperature

    International Nuclear Information System (INIS)

    Roger, Jerome; Audubert, Fabienne; Le Petitcorps, Yann

    2010-01-01

    In this study, we examined the effect induced by the addition of a TiC interlayer on the stability of the Mo/SiC system at high temperature. Indeed, Mo/SiC couple is unstable at high temperature with formation of Mo 2 C and Mo 5 Si 3 C x phases. In order to limit the degradation of Mo mechanical properties, a TiC film was inserted between Mo and SiC. Samples used in this work were prepared on metallic wires substrates, SiC and TiC being deposited by CVD. The protection given by TiC layer was considered in the 1473-1673 K temperature range and for TiC thicknesses up to about 60 μm. From our results, TiC is not effective enough to mitigate C and Si atoms diffusion. Nevertheless, a notable reduction of the reaction extent is obtained at any temperatures. The so-observed effect depends on the TiC thickness and the temperature. In actual fact, TiC efficiency increases when temperature and/or TiC layer thickness increases without reaching a complete protection.

  16. Plastic strain induced damage evolution and martensitic transformation in ductile materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garion, C.; Skoczen, B.T.

    2002-01-01

    The Fe-Cr-Ni stainless steels are well known for their ductile behavior at cryogenic temperatures. This implies development and evolution of plastic strain fields in the stainless steel components subjected to thermo-mechanical loads at low temperatures. The evolution of plastic strain fields is usually associated with two phenomena: ductile damage and strain induced martensitic transformation. Ductile damage is described by the kinetic law of damage evolution. Here, the assumption of isotropic distribution of damage (microcracks and microvoids) in the Representative Volume Element (RVE) is made. Formation of the plastic strain induced martensite (irreversible process) leads to the presence of quasi-rigid inclusions of martensite in the austenitic matrix. The amount of martensite platelets in the RVE depends on the intensity of the plastic strain fields and on the temperature. The evolution of the volume fraction of martensite is governed by a kinetic law based on the accumulated plastic strain. Both of these irreversible phenomena, associated with the dissipation of plastic power, are included into the constitutive model of stainless steels at cryogenic temperatures. The model is tested on the thin-walled corrugated shells (known as bellows expansion joints) used in the interconnections of the Large Hadron Collider, the new proton storage ring being constructed at present at CERN

  17. TaPT: Temperature-Aware Dynamic Cache Optimization for Embedded Systems

    Directory of Open Access Journals (Sweden)

    Tosiron Adegbija

    2017-12-01

    Full Text Available Embedded systems have stringent design constraints, which has necessitated much prior research focus on optimizing energy consumption and/or performance. Since embedded systems typically have fewer cooling options, rising temperature, and thus temperature optimization, is an emergent concern. Most embedded systems only dissipate heat by passive convection, due to the absence of dedicated thermal management hardware mechanisms. The embedded system’s temperature not only affects the system’s reliability, but can also affect the performance, power, and cost. Thus, embedded systems require efficient thermal management techniques. However, thermal management can conflict with other optimization objectives, such as execution time and energy consumption. In this paper, we focus on managing the temperature using a synergy of cache optimization and dynamic frequency scaling, while also optimizing the execution time and energy consumption. This paper provides new insights on the impact of cache parameters on efficient temperature-aware cache tuning heuristics. In addition, we present temperature-aware phase-based tuning, TaPT, which determines Pareto optimal clock frequency and cache configurations for fine-grained execution time, energy, and temperature tradeoffs. TaPT enables autonomous system optimization and also allows designers to specify temperature constraints and optimization priorities. Experiments show that TaPT can effectively reduce execution time, energy, and temperature, while imposing minimal hardware overhead.

  18. SAFE Newsletter

    OpenAIRE

    2013-01-01

    The Center of Excellence SAFE – “Sustainable Architecture for Finance in Europe” – is a cooperation of the Center for Financial Studies and Goethe University Frankfurt. It is funded by the LOEWE initiative of the State of Hessen (Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz). SAFE brings together more than 40 professors and just as many junior researchers who are all dedicated to conducting research in support of a sustainable financial architecture. The Center has...

  19. The Conceptual Design of Innovative Safe PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Gon [Centural Research Institute, Daejeon (Korea, Republic of); Heo, Sun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    Most of countries operating NPPs have been performed post-Fukushima improvements as short-term countermeasure to enhance the safety of operating NPPs. Separately, vendors have made efforts on developing passive safety systems as long-term and ultimate countermeasures. AP1000 designed by Westinghouse Electric Company has passive safety systems including the passive emergency core cooling system (PECCS), the passive residual heat removal system (PRHRS), and the passive containment cooling system (PCCS). ESBWR designed by GE-Hitachi also has passive safety systems consisting of the isolation condenser system, the gravity driven cooling system and the PCCS. Other countries including China and Russia have made efforts on developing passive safety systems for enhancing the safety of their plants. In this paper, we summarize the design goals and main design feature of innovative safe PWR, iPOWER which is standing for Innovative Passive Optimized World-wide Economical Reactor, and show the developing status and results of research projects. To mitigate an accident without electric power and enhance the safety level of PWR, the conceptual designs of passive safety system and innovative safe PWR have been performed. It includes the PECCS for core cooling and the PCCS for containment cooling. Now we are performing the small scale and separate effect tests for the PECCS and the PCCS and preparing the integral effect test for the PECCS and real scale test for the PCCS.

  20. Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air

    Science.gov (United States)

    Grinstead, Jay H.; Laufer, Gabriel; Mcdaniel, James C., Jr.

    1993-01-01

    Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.

  1. Shock-induced spall in copper: the effects of anisotropy, temperature, loading pulse and defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; An, Qi [Los Alamos National Laboratory; Han, Li - Bo [USTC

    2009-07-28

    Shock-induced spall in Cu is investigated with molecular dynamics simulations. We examine spallation in initially perfect crystals and defective solids with grain boundaries (columnar bicrystals), stacking faults or vacancies, as well as the effect of temperature and loading pulses. Spall in single crystal Cu is anisotropic, and defects and high temperature may reduce the spall strength. Taylor-wave (triangular shock-release wave) loading is explored in comparison with square wave shock loading.

  2. Dual temperature concentration system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    In a dual temperature isotope exchange system--exemplified by exchange of deuterium and protium between water and hydrogen sulfide gas in hot and cold towers, in which the feed stream (water) containing the desired isotope is passed through a pair of towers maintained at different temperatures wherein it effects isotope exchange with countercurrently circulated auxiliary fluid (H 2 S) and is impoverished in said isotope and then disposed of, e.g. discharged to waste,--the flow of isotope enriched auxiliary fluid between said towers (hot H 2 S saturated with water vapor) is divided and a part thereof is adjusted in its temperature (to cold tower conditions) and then passed to the auxiliary fluid impoverishing (cold) tower, while the remainder of the divided flow of such enriched auxiliary fluid is passed through a subsequent isotope concentration treatment to produce a product more highly enriched in the desired isotope and wherein it is also adjusted in its temperature and is impoverished in said isotope during said subsequent treatment before it is delivered to the said auxiliary fluid impoverishing (cold) tower. Certain provisions are made for returning to the hot tower liquid carried as vapor by the remainder of the divided flow to the subsequent isotope concentration treatment, for recovering sensible and latent heat, and for reducing passage of auxiliary fluid to waste

  3. Carbon redistribution and precipitation in high temperature ion-implanted strained Si/SiGe/Si multi-layered structures

    DEFF Research Database (Denmark)

    Gaiduk, Peter; Hansen, John Lundsgaard; Nylandsted Larsen, Arne

    2014-01-01

    Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects.......Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects....

  4. Distributed optical fiber temperature sensor (DOFTS) system applied to automatic temperature alarm of coal mine and tunnel

    Science.gov (United States)

    Zhang, Zaixuan; Wang, Kequan; Kim, Insoo S.; Wang, Jianfeng; Feng, Haiqi; Guo, Ning; Yu, Xiangdong; Zhou, Bangquan; Wu, Xiaobiao; Kim, Yohee

    2000-05-01

    The DOFTS system that has applied to temperature automatically alarm system of coal mine and tunnel has been researched. It is a real-time, on line and multi-point measurement system. The wavelength of LD is 1550 nm, on the 6 km optical fiber, 3000 points temperature signal is sampled and the spatial position is certain. Temperature measured region: -50 degree(s)C--100 degree(s)C; measured uncertain value: +/- 3 degree(s)C; temperature resolution: 0.1 degree(s)C; spatial resolution: test, test content and practical test results have been discussed.

  5. RTV Silicone Rubber Degradation Induced by Temperature Cycling

    Directory of Open Access Journals (Sweden)

    Xishan Wen

    2017-07-01

    Full Text Available Room temperature vulcanized (RTV silicone rubber is extensively used in power system due to its hydrophobicity and hydrophobicity transfer ability. Temperature has been proven to markedly affect the performance of silicone rubbers. This research investigated the degradation of RTV silicone rubber under temperature cycling treatment. Hydrophobicity and its transfer ability, hardness, functional groups, microscopic appearance, and thermal stability were analyzed using the static contact angle method, a Shore A durometer, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and thermogravimetry (TG, respectively. Some significant conclusions were drawn. After the temperature was cycled between −25 °C and 70 °C, the hydrophobicity changed modestly, but its transfer ability changed remarkably, which may result from the competition between the formation of more channels for the transfer of low molecular weight (LMW silicone fluid and the reduction of LMW silicone fluid in the bulk. A hardness analysis and FTIR analysis demonstrated that further cross-linking reactions occurred during the treatment. SEM images showed the changes in roughness of the RTV silicone rubber surfaces. TG analysis also demonstrated the degradation of RTV silicone rubber by presenting evidence that the content of organic materials decreased during the temperature cycling treatment.

  6. Efficient thermal management for multiprocessor systems

    OpenAIRE

    Coşkun, Ayşe Kıvılcım

    2009-01-01

    High temperatures and large thermal variations on the die create severe challenges in system reliability, performance, leakage power, and cooling costs. Designing for worst-case thermal conditions is highly costly and time-consuming. Therefore, dynamic thermal management methods are needed to maintain safe temperature levels during execution. Conventional management techniques sacrifice performance to control temperature and only consider the hot spots, neglecting the effects of thermal varia...

  7. Transient performance of integrated SOFC system including spatial temperature control

    OpenAIRE

    Mueller, F; Fardadi, M; Shaffer, B; Brouwer, J; Jabbari, F

    2010-01-01

    Spatial temperature feedback control has been developed for a simulated integrated non-pressurized simple cycle solid oxide fuel cell (SOFC) system. The fuel cell spatial temperature feedback controller is based on (1) feed-forward set-points that minimize temperature variation in the fuel cell electrode-electrolyte solid temperature profile for the system operating power range, and (2) decentralized proportional-integral based feedback to maintain the fuel cell spatial temperature profile du...

  8. High temperature heat recovery systems; Les recuperateurs de chaleur a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.

    2003-07-15

    A state-of-the-art of high temperature heat recovery systems has been made to highlight the advantages of recovery in different energy cycles, and to compare the different geometries, materials and fabrication processes used by the different manufacturers. This leads to define the criteria that a heat recovery system must satisfy in gas turbine cogeneration applications. The pre-dimensioning of a recovery system has been performed in order to compare different geometries and to evaluate them with respect to the criteria defined in the bibliographic study. Finally, the new configuration of the 'Claire' loop has permitted to experimentally characterize a recovery system with an innovative technology based on an helical geometry. These tests have permitted to obtain the global data of the recovery system (efficiency, pressure drop, global exchange coefficient, friction coefficient, velocity and temperature profiles) and to position it with respect to the criteria defined in the bibliographic study. (J.S.)

  9. Compliant Task Execution and Learning for Safe Mixed-Initiative Human-Robot Operations

    Science.gov (United States)

    Dong, Shuonan; Conrad, Patrick R.; Shah, Julie A.; Williams, Brian C.; Mittman, David S.; Ingham, Michel D.; Verma, Vandana

    2011-01-01

    We introduce a novel task execution capability that enhances the ability of in-situ crew members to function independently from Earth by enabling safe and efficient interaction with automated systems. This task execution capability provides the ability to (1) map goal-directed commands from humans into safe, compliant, automated actions, (2) quickly and safely respond to human commands and actions during task execution, and (3) specify complex motions through teaching by demonstration. Our results are applicable to future surface robotic systems, and we have demonstrated these capabilities on JPL's All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robot.

  10. Fuzzy Logic Temperature Control System For The Induction Furnace

    Directory of Open Access Journals (Sweden)

    Lei Lei Hnin

    2015-08-01

    Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.

  11. Induced dual EIT and EIA resonances with optical trapping phenomenon in near/far fields in the N-type four-level system

    Science.gov (United States)

    Osman, Kariman I.; Joshi, Amitabh

    2017-01-01

    The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.

  12. Inherently safe SNR shutdown system with Curie point controlled sensor/switch unit

    International Nuclear Information System (INIS)

    Mueller, K.; Norajitra, P.; Reiser, H.

    1987-02-01

    Inherent shutdown due to increase in the sodium temperature at the core outlet is triggered by interruption of the current supply to the electromagnet coupling of absorber elements via curie point controlled sensor/switch units. These switches are arranged above suitable fuel element positions and spatially independent of the shutdown elements. Compared with other similar systems very short response times are achieved. A prototype switch unit has already undergone extensive testing. These tests have confirmed that switching takes place in a very narrow temperature range. (orig./HP) [de

  13. Radioactive waste management issues related to the conversion of the Chernobyl sarcophagus into an ecologically safe system

    International Nuclear Information System (INIS)

    Rudy, C.G.; Vovk, I.F.

    1997-01-01

    The sarcophagus currently suffers from the extreme conditions in which it was hastily built, it may not last for 30 years, as was intended, and it may collapse earlier. Another cause of concern is the interaction of fuel-containing masses with water percolating into the shelter, possibly leading to migration and accumulation of fissile materials which, in turn, may result in reaching the state of criticality. The consistency of nuclear fuel debris is changing with time, and the monitoring and safety systems are deteriorating. With the increasing uncertainties of the data acquired, the confidence of any prediction is very low. The collapse of the sarcophagus would lead to a new radioactive contamination of the territory, groundwater and rivers. Thus, its conversion into an ecologically safe system is a pressing problem. The Gordian knot of the problem is to maintain safe management of a huge amount of messy radioactive waste both inside and outside the sarcophagus. The purpose of this paper is to discuss the issue in the light of the prospects for conversion of the sarcophagus and related activities currently being undertaken or planned in Ukraine

  14. How did aviation become so safe, and beyond?

    NARCIS (Netherlands)

    Stoop, J.A.A.M.

    2017-01-01

    Aviation has been recognized as one of the ultimate safe socio-technical systems. This contribution discusses the conditions and context that moulded the system safety to its present level by applying integral safety, a sectoral approach and safety as a strategic value. At present the aviation

  15. ISAT promises fail-safe computer-based reactor protection

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    AEA Technology's ISAT system is a multiplexed microprocessor-based reactor protection system which has very extensive self-monitoring capabilities and is inherently fail safe. It provides a way of addressing software reliability problems that have tended to hamper widespread introduction of computer-based reactor protection. (author)

  16. Spatial and Temporal Analysis of Bias HAST System Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furrer, III, Clint T [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Paul Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garrett, Stephen E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Nathaniel Bryant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    High-reliability components for high-consequence systems require detailed testing of operation after having undergone highly accelerated stress testing (HAST) under unusual conditions of high-temperature and humidity. This paper describes the design and operation of a system called "Wormwood" that is a highly multiplexed temperature measurement system that is designed to operate under HAST conditions to allow measurement of the temperature as a function of time and position in a HAST chamber. HAST chambers have single-point temperature measurements that can be traceable to NIST standards. The objective of these "Wormwood" measurements is to verify the uniformity and stability of the remaining volume of the HAST chamber with respect to the single traceable standard.

  17. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  18. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    NARCIS (Netherlands)

    Veltmeijer, M.T.W.; Veeneman, D.; Bongers, C.C.W.G.; Netea, M.G.; Meer, J.W.M. van der; Eijsvogels, T.M.H.; Hopman, M.T.E.

    2017-01-01

    PURPOSE: Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated

  19. Development of High Temperature Chemistry Measurement System for Establishment of On-Line Water Chemistry Surveillance Network in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, Won Ho; Song, Kyu Seok; Joo, Ki Soo; Choi, Ke Chon; Ha, Yeong Keong; Ahn, Hong Joo; Im, Hee Jung; Maeng, Wan Young

    2010-07-01

    An integrated high-temperature water chemistry sensor (pH, E redox ) was developed for the establishment of the on-line water chemistry surveillance system in nuclear power plants. The basic performance of the integrated sensor was confirmed in high-temperature (280 .deg. C, 150kg/m 2 ) lithium borate solutions by using the relationship between the concentration of lithium ion and pH-E redox values. Especially, the effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. And the relationships between each water chemistry factor (pH, redox potential, electrical conductivity) were induced for enhancing the credibility of water chemistry measurement. In addition, on the basis of the evaluation of a nuclear plant design company, we suggested potential installation positions of the measurement system in a nuclear power plant

  20. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.

    Science.gov (United States)

    Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H

    2018-01-01

    Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.

  1. Hot stuff : ultra-high temperature ESP system installed in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-10-15

    Ultra-temperature electrical submersible pumping (ESP) systems have been installed in steam-assisted gravity drainage (SAGD) wells for the first time at a thermal project in Christina Lake, Alberta. The Centrilift XP ESP production system that is being field tested can operate at fluid temperatures reaching 250 degrees C, higher than conventional systems, which is expected to result in an increase in production with a larger steam chamber and less viscous oil at higher steaming temperatures. The more robust system is expected to extend run life and lower operating costs. Years of research and development at specialized testing facilities went into creating the system. The unique testing facilities simulated the horizontal orientation and temperature cycling characteristics of SAGD wells and permitted the system to be tested at temperatures up to 300 degrees C. The new system is expected to lower infrastructure costs for SAGD wells that require high temperatures. 1 fig.

  2. Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces

    International Nuclear Information System (INIS)

    Brinckmann, Stephan A.; Frensemeier, Mareike; Laursen, Christopher M.; Maier, Hans J.; Britz, Dominik; Schneider, Andreas S.; Mücklich, Frank; Frick, Carl P.

    2016-01-01

    This study investigated the effect of temperature on indentation-induced one-way and two-way shape memory properties in Ti-50.3 at% Ni alloy. Indentation temperatures ranged from below the martensite finish temperature (M f ) to above the austenite finish temperature (A f ) with the explicit intent of varying the indented phase. Samples used in the study were characterized by differential scanning calorimetry and transmission electron microscopy (TEM). The topographical behavior of the shape memory effect was investigated through Vickers indentation and laser scanning 3D confocal measurements. The magnitudes of deformation recovery associated with the one-way and two-way shape-memory effect (OWSME, TWSME) decreased with increasing indentation temperatures, which is a reflection of the decreasing volume of material experiencing martensitic reorientation during indentation. Indented and subsequently planarized samples exhibited TWSME protrusions when thermally cycled. Laser scanning measurements were used to characterize the height of the protrusions as increasing depths of material were polished away, which provided insight into the overall affected volume beneath the indent. As indentation temperatures increased, both the height of the protrusions, and consequently the polish depth necessary to completely remove the effect, decreased. TEM investigations revealed that directly underneath a nanoindent the microstructure was very fine due to the high-strain deformation; this was contrasted with a much coarser grain size in the undeformed bulk material. Overall these results strongly imply that the deformation recovery associated with the OWSME and TWSME can be maximized by indenting at temperatures at M f or below because the volume of deformed microstructure beneath the indent is maximized. This finding has important practical value for any potential application that utilizes indentation-induced phase transformation deformation recovery in NiTi.

  3. Effect of indentation temperature on nickel-titanium indentation-induced two-way shape-memory surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brinckmann, Stephan A. [University of Wyoming, Mechanical Engineering Department, Laramie (United States); Frensemeier, Mareike [INM - Leibniz Institute for New Materials, Saarbrücken (Germany); Laursen, Christopher M. [University of Wyoming, Mechanical Engineering Department, Laramie (United States); Maier, Hans J. [Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), Garbsen (Germany); Britz, Dominik [Saarland University, Department of Materials Science and Engineering, Saarbrücken (Germany); Schneider, Andreas S. [AG der Dillinger Hüttenwerke, Department for Research, Development and Plate-Design, Dillingen (Germany); Mücklich, Frank [Saarland University, Department of Materials Science and Engineering, Saarbrücken (Germany); Frick, Carl P., E-mail: cfrick@uwyo.edu [University of Wyoming, Mechanical Engineering Department, Laramie (United States)

    2016-10-15

    This study investigated the effect of temperature on indentation-induced one-way and two-way shape memory properties in Ti-50.3 at% Ni alloy. Indentation temperatures ranged from below the martensite finish temperature (M{sub f}) to above the austenite finish temperature (A{sub f}) with the explicit intent of varying the indented phase. Samples used in the study were characterized by differential scanning calorimetry and transmission electron microscopy (TEM). The topographical behavior of the shape memory effect was investigated through Vickers indentation and laser scanning 3D confocal measurements. The magnitudes of deformation recovery associated with the one-way and two-way shape-memory effect (OWSME, TWSME) decreased with increasing indentation temperatures, which is a reflection of the decreasing volume of material experiencing martensitic reorientation during indentation. Indented and subsequently planarized samples exhibited TWSME protrusions when thermally cycled. Laser scanning measurements were used to characterize the height of the protrusions as increasing depths of material were polished away, which provided insight into the overall affected volume beneath the indent. As indentation temperatures increased, both the height of the protrusions, and consequently the polish depth necessary to completely remove the effect, decreased. TEM investigations revealed that directly underneath a nanoindent the microstructure was very fine due to the high-strain deformation; this was contrasted with a much coarser grain size in the undeformed bulk material. Overall these results strongly imply that the deformation recovery associated with the OWSME and TWSME can be maximized by indenting at temperatures at M{sub f} or below because the volume of deformed microstructure beneath the indent is maximized. This finding has important practical value for any potential application that utilizes indentation-induced phase transformation deformation recovery in NiTi.

  4. Measurement of spatially resolved gas-phase plasma temperatures by optical emission and laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Davis, G.P.; Gottscho, R.A.

    1983-01-01

    Knowledge of the energy distributions of particles in glow discharges is crucial to the understanding and modeling of plasma reactors used in microelectronic manufacturing. Reaction rates, available product channels, and transport phenomena all depend upon the partitioning of energy in the discharge. Because of the nonequilibrium nature of glow discharges, however, the distribution of energy among different species and among different degrees of freedom cannot be characterized simply by one temperature. The extent to which different temperatures are needed for each degree of freedom and for each species is not known completely. How plasma operating conditions affect these energy distributions is also an unanswered question. We have investigated the temperatures of radicals, ions, and neutrals in CCl 4 , CCl 4 /N 2 (2%), and N 2 discharges. In the CCl 4 systems, we probed the CCl rotational and vibrational energy distributions by laser-induced fluorescence spectroscopy. The rotational distribution always appeared to be thermal but under identical operating conditions was found to be roughly-equal400 K colder than the vibrational distribution. The rotational temperature at any point in the discharge was strongly dependent upon both applied power and surface temperature. Thermal gradients as large as 10 2 K mm -1 were observed near electrode surfaces but the bulk plasmas were isothermal. When 2% N 2 was added to a CCl 4 discharge, N 2 second positive emission was observed and used to estimate the N 2 rotational temperature. The results suggest that emission from molecular actinometers can be used to measure plasma temperatures, providing such measurements are not made in close proximity to surfaces

  5. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field.

    Science.gov (United States)

    Nishiyama, Yuichiro; Iwanami, Akio; Kohyama, Jun; Itakura, Go; Kawabata, Soya; Sugai, Keiko; Nishimura, Soraya; Kashiwagi, Rei; Yasutake, Kaori; Isoda, Miho; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2016-06-01

    Stem cells represent a potential cellular resource in the development of regenerative medicine approaches to the treatment of pathologies in which specific cells are degenerated or damaged by genetic abnormality, disease, or injury. Securing sufficient supplies of cells suited to the demands of cell transplantation, however, remains challenging, and the establishment of safe and efficient cell banking procedures is an important goal. Cryopreservation allows the storage of stem cells for prolonged time periods while maintaining them in adequate condition for use in clinical settings. Conventional cryopreservation systems include slow-freezing and vitrification both have advantages and disadvantages in terms of cell viability and/or scalability. In the present study, we developed an advanced slow-freezing technique using a programmed freezer with a magnetic field called Cells Alive System (CAS) and examined its effectiveness on human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). This system significantly increased cell viability after thawing and had less impact on cellular proliferation and differentiation. We further found that frozen-thawed hiPSC-NS/PCs were comparable with non-frozen ones at the transcriptome level. Given these findings, we suggest that the CAS is useful for hiPSC-NS/PCs banking for clinical uses involving neural disorders and may open new avenues for future regenerative medicine. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. On the possibility of the temperature-induced ferromagnetism in TiBe2 and other itinerant magnets

    International Nuclear Information System (INIS)

    Ioshpe, D.M.

    1991-01-01

    This paper proposes possible temperature-induced ferromagnetism (TIF) in TiBe 2 , TiBe 2-x Cu x and other itinerant magnets. The value of the critical field H cr for the existence of TIF in TiBe 2 , evaluated on the basis of the author's and others' experimental results, coincide with the value H cr congruent 610 G predicted by Enz within the spin density wave theory of itinerant antiferromagnetism (AFM). The possibilities of the existence in TiBe 2 of the TIF mechanism of spin fluctuations around the AFM mode as predicted by Moriya, and of the temperature-induced noncompensated itinerant AFM, i.e. ferromagnetism, are considered

  7. Regulatory requirements on management of radioactive material safe transport in China

    International Nuclear Information System (INIS)

    Chu, C.

    2016-01-01

    Since 1980s, the IAEA Regulation for safe transport of radioactive material was introduced into China; the regulatory system of China began with international standards, and walked towards the institutionalized. In 2003 the National People’s Congress (NPC) promulgated “the Act on the Prevention of Radioactive Pollution of the People's Republic of China”. In 2009 “Regulation for the Safe Transport of Radioactive Material” (Referred to “Regulation”) was promulgated by the State Council. Subsequently, the National Nuclear Safety Administration (NNSA) began to formulate executive detailed department rules, regulations guidelines and standards. The present system of acts, regulations and standards on management of safe transport of radioactive material in China and future planning were introduced in this paper. Meanwhile, the paper described the specific administration requirements of the Regulation on classification management of radioactive materials, license management of transport packaging including design, manufacture and use, licensing management of transport activities and the provisions of illegal behaviors arising in safe transport of radioactive material. (author)

  8. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Science.gov (United States)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  9. Safe Grid

    Science.gov (United States)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  10. Study on load temperature control system of ground laser communication

    Science.gov (United States)

    Zhai, Xunhua; Zhang, Hongtao; Liu, Wangsheng; Zhang, Chijun; Zhou, Xun

    2007-12-01

    The ground laser communication terminal as the termination of a communication system, works at the temperature which varies from -40°C to 50°C. We design a temperature control system to keep optical and electronic components working properly in the load. The load is divided into two sections to control temperature respectively. Because the space is limited, we use heater film and thermoelectric cooler to clearify and refrigerate the load. We design a hardware and a software for the temperature control system, establish mathematic model, and emulate it with Matlab.

  11. Betavoltaic performance under extreme temperatures

    Directory of Open Access Journals (Sweden)

    Adams Tom

    2016-01-01

    Full Text Available Longevity of sensors and portable devices is severely limited by temperature, chemical instability, and electrolyte leakage issues associated with conventional electrochemical batteries. Betavoltaics, which operate similar to photo voltaics, can operate in a wide temperature range safely without permanent degradation. Though not a new concept, which began in the 1950's and peaked in the mid 1970's, research has been minimal and sporadic until recent advancements in ultra-low power electronics and materialization of low power applications. The technology is rapidly maturing, generating research, and development in increasing the beta emitting source and semiconductor efficiencies. This study presents an update on betavoltaic technology, results from temperature evaluation on commercially available General Licensed betavoltaic cells, development of a hybrid system for latent and burst power, modeling and simulation techniques and results, and current and proposed research and development. Betavoltaic performance was successfully demonstrated for a wide temperature range (-30°C to 70°C. Short circuit current and open circuit voltage were used to compare electrical performance. Results indicate that the open-circuit voltage and maximum power decreased as temperature increased due to increases in the semiconductor's intrinsic carrier concentration.

  12. Pressure and temperature dependence of laser-induced fluorescence of Sm:YAG to 100 kbar and 700 degree C and an empirical model

    International Nuclear Information System (INIS)

    Hess, N.J.; Schiferl, D.

    1990-01-01

    The inability to measure pressure with accuracy at high temperature has been a hindrance to the development of simultaneous high-temperature, high-pressure experimental techniques. The results of recent laser-induced fluorescence studies at high temperature and high pressure indicate that Sm:YAG is a promising pressure calibrant with very low-temperature sensitivity. The most intense feature in the fluorescence spectrum is a doublet at 16186.5 cm -1 . The Sm:YAG doublet exhibits a pressure-induced peak shift comparable to the R 1 shift of ruby. However, the temperature-induced shift of the doublet is almost two orders of magnitude less than that observed for the R 1 peak. Simultaneous high-pressure-temperature experiments indicate that the pressure and temperature effects on the frequency and line shape can be added linearly. An empirical model based on the linear combination of pressure dependent frequency shift and temperature dependent linewidth and intensity ratio successfully predicts the doublet line shape at simultaneous pressure and temperature. Use of the model facilitates measurement of peak position at high temperature resulting in improved accuracy and repeatability of the pressure determination. Pressure measurements at 400 degree C and 40 kbar based on the Sm:YAG doublet peak position agree with the temperature-corrected ruby R 1 pressure measurement to within 3 kbar. At 15 kbar and 900 degree C the uncertainty in the Sm:YAG fluorescence peak wavelength is 5 cm -1 due to temperature-induced line broadening; this corresponds to an uncertainty in the pressure determination of ±2.5 kbar. The high thermal and chemical stability of YAG materials make Sm:YAG an ideal pressure calibrant for high-temperature applications

  13. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  14. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  15. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  16. Analysis of fluid induced vibration of cryogenic pipes in consideration of the cooling effect

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Kim, Young Ki; Choi, Jung Woon

    2008-01-01

    The purpose of system analysis using fluid induced vibration is to identify the problems of the system in advance by analyzing the vibration behavior of the system excited by fluid flow. Fluid-induced vibration analysis methods, developed so far, generally use the numerical analysis method to analyze the fluid flowing inside the pipe and the infinitesimal elements at normal temperature on the basis of the governing equation obtained by applying Newton's Second Law and the momentum equation. However, as the fluid temperature changes greatly at low temperature, fluid-induced vibration analysis methods for normal temperature cannot be applied. This study investigated methods of analyzing fluid-induced vibration in consideration of the cooling effect. In consideration of the changes in the properties of the fluid and system relative to temperature, vibration behavior was analyzed numerically by means of the equation of motion. As a result, the natural frequency of the system tends to change because of the changes of the properties of materials even when the flux is constant inside the pipe, and the vibration behavior of the system was compared to that in case of normal temperature to analyze how much influence the cooling effect has on the vibration behavior of the system

  17. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    Science.gov (United States)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  18. Strategies and challenges for safe injection practice in developing countries.

    Science.gov (United States)

    Gyawali, Sudesh; Rathore, Devendra Singh; Shankar, P Ravi; Kumar, Kc Vikash

    2013-01-01

    Injection is one of the important health care procedures used globally to administer drugs. Its unsafe use can transmit various blood borne pathogens. This article aims to review the history and status of injection practices, its importance, interventions and the challenges for safe injection practice in developing countries. The history of injections started with the discovery of syringe in the early nineteenth century. Safe injection practice in developed countries was initiated in the early twentieth century but has not received adequate attention in developing countries. The establishment of "Safe Injection Global Network (SIGN)" was an milestone towards safe injection practice globally. In developing countries, people perceive injection as a powerful healing tool and do not hesitate to pay more for injections. Unsafe disposal and reuse of contaminated syringe is common. Ensuring safe injection practice is one of the greatest challenges for healthcare system in developing countries. To address the problem, interventions with active involvement of a number of stakeholders is essential. A combination of educational, managerial and regulatory strategies is found to be effective and economically viable. Rational and safe use of injections can save many lives but unsafe practice threatens life. Safe injection practice is crucial in developing countries. Evidence based interventions, with honest commitment and participation from the service provider, recipient and community with aid of policy makers are required to ensure safe injection practice.

  19. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  20. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  1. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  2. Temperature lowering in cryogenic chemical-synthesis techniques and system

    International Nuclear Information System (INIS)

    Martinez, H.E.; Nelson, T.O.; Vikdal, L.N.

    1993-01-01

    When evaluating a chemical synthesis process for a reaction that occurs on the cryogenically cooled walls, it is sometimes necessary to reduce the wall temperatures to enhance the chemical process. To evaluate the chemical process at lower than atmospheric boiling of liquid nitrogen, we built a system and used it to reduce the temperature of the liquid nitrogen. The technique of lowering the liquid nitrogen temperature by reducing the pressure of the boil-off is established knowledge. This paper presents the engineering aspects of the system, design features, equipment requirements, methods of control, and results of the chemical synthesis. The heat input to the system was ∼400 watts, placing a relatively large demand on the pumping system. Our system is a scale-up of the small laboratory experiment, and it provides the information needed to design an effective system. The major problem encountered was the large quantity of liquid escaping the system during the processing, placing a large gas load on the vacuum system

  3. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Satomi, Junkichi; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within ±8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  4. Proof-of-Concept Testing of the Passive Cooling System (T-CLIP™) for Solar Thermal Applications at an Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Quintana, Donald L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Vigil, Gabrielle M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Perraglio, Martin Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Farley, Cory Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Tafoya, Jose I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Martinez, Adam L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology

    2015-11-30

    The Applied Engineering and Technology-1 group (AET-1) at Los Alamos National Laboratory (LANL) conducted the proof-of-concept tests of SolarSPOT LLC’s solar thermal Temperature- Clipper, or T-CLIP™ under controlled thermal conditions using a thermal conditioning unit (TCU) and a custom made environmental chamber. The passive T-CLIP™ is a plumbing apparatus that attaches to a solar thermal collector to limit working fluid temperature and to prevent overheating, since overheating may lead to various accident scenarios. The goal of the current research was to evaluate the ability of the T-CLIP™ to control the working fluid temperature by using its passive cooling mechanism (i.e. thermosiphon, or natural circulation) in a small-scale solar thermal system. The assembled environmental chamber that is thermally controlled with the TCU allows one to simulate the various possible weather conditions, which the solar system will encounter. The performance of the T-CLIP™ was tested at two different target temperatures: 1) room temperature (70 °F) and 2) an elevated temperature (130 °F). The current test campaign demonstrated that the T-CLIP™ was able to prevent overheating by thermosiphon induced cooling in a small-scale solar thermal system. This is an important safety feature in situations where the pump is turned off due to malfunction or power outages.

  5. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming; Cha, Min

    2013-01-01

    and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while

  6. Application of aluminum diffusion coatings to mitigate the KCl-induced high-temperature corrosion

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Lomholt, T. N.; Dahl, Kristian Vinter

    2017-01-01

    Pack cementation was used to produce Fe1−xAl and Fe2Al5 diffusion coatings on ferritic-martensitic steel P91 and a Ni2Al3 diffusion coating on pure nickel. The performance of diffusion coatings against high-temperature corrosion induced by potassium chloride (KCl) was evaluated by exposing...

  7. Numerical simulation of temperature's sensitivity of chamfer hole's resistance on hydraulic step cylinder

    International Nuclear Information System (INIS)

    Jinhua, Wang; Hanliang, Bo; Wenxiang, Zheng; Jinnong, Yang

    2003-01-01

    The control rod drive is a very important device for controlling nuclear reactor startup, operation, shut down, and power change. The ability of the control rod drive to move safely and reliably directly relates to reactor safety. The Hydraulic Control Rod Drive System (HCRDS) is a new type of control rod drive system developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University for Nuclear Heating Reactors. The HCRDS, designed using the hydrodynamic principle, has many advantages, including having the structure complete in the vessel, no possible ejection accident, short drive line, simple movable parts structure and safe shutdown during accidents. The hydraulic step cylinder is the key part for the HCRDS. In the process of reactor startup, the variation of temperature could make the water's density and viscosity change, and the force from the water flow would change accordingly. These factors could influence the performance of the hydraulic step cylinder. In this paper, the temperature sensitivity of the chamfer hole's resistance in the hydraulic step cylinder was studied with the Computational Fluid Dynamics (CFD) program CFX5.5. The results were satisfactory: the discipline of variation of the chamfer hole's resistance with the outer tube's position was the same at different temperatures, the discrepancy of the chamfer hole's resistance was small for the same position at different temperatures, the chamfer hole's resistance decreased gradually with the increase of temperature, and the decrease extent was relatively small

  8. Temperature Distribution and Thermal Performance of an Aquifer Thermal Energy Storage System

    Science.gov (United States)

    Ganguly, Sayantan

    2017-04-01

    Energy conservation and storage has become very crucial to make use of excess energy during times of future demand. Excess thermal energy can be captured and stored in aquifers and this technique is termed as Aquifer Thermal Energy Storage (ATES). Storing seasonal thermal energy in water by injecting it into subsurface and extracting in time of demand is the principle of an ATES system. Using ATES systems leads to energy savings, reduces the dependency on fossil fuels and thus leads to reduction in greenhouse gas emission. This study numerically models an ATES system to store seasonal thermal energy and evaluates the performance of it. A 3D thermo-hydrogeological numerical model for a confined ATES system is presented in this study. The model includes heat transport processes of advection, conduction and heat loss to confining rock media. The model also takes into account regional groundwater flow in the aquifer, geothermal gradient and anisotropy in the aquifer. Results show that thermal injection into the aquifer results in the generation of a thermal-front which grows in size with time. Premature thermal-breakthrough causes thermal interference in the system when the thermal-front reaches the production well and consequences in the fall of system performance and hence should be avoided. This study models the transient temperature distribution in the aquifer for different flow and geological conditions. This may be effectively used in designing an efficient ATES project by ensuring safety from thermal-breakthrough while catering to the energy demand. Based on the model results a safe well spacing is proposed. The thermal energy discharged by the system is determined and strategy to avoid the premature thermal-breakthrough in critical cases is discussed. The present numerical model is applied to simulate an experimental field study which is found to approximate the field results quite well.

  9. Inherent safe design of advanced high temperature reactors - concepts for future nuclear power plants

    International Nuclear Information System (INIS)

    Hodzic, A.; Kugeler, K.

    1997-01-01

    This paper discusses the applicable solutions for a commercial size High Temperature Reactor (HTR) with inherent safety features. It describes the possible realization using an advanced concept which combines newly proposed design characteristics with some well known and proven HTR inherent safety features. The use of the HTR technology offers the conceivably best solution to meet the legal criteria, recently stated in Germany, for the future reactor generation. Both systems, block and pebble bed ,reactor, could be under certain design conditions self regulating in terms of core nuclear heat, mechanical stability and the environmental transfer. 23 refs., 7 figs

  10. Magnetic-field-induced decrease of the spin Peltier effect in Pt/Y3Fe5O12 system at room temperature

    Science.gov (United States)

    Itoh, Ryuichi; Iguchi, Ryo; Daimon, Shunsuke; Oyanagi, Koichi; Uchida, Ken-ichi; Saitoh, Eiji

    2017-11-01

    We report the observation of magnetic-field-induced decrease of the spin Peltier effect (SPE) in a junction of a paramagnetic metal Pt and a ferrimagnetic insulator Y3Fe5O12 (YIG) at room temperature. For driving the SPE, spin currents are generated via the spin Hall effect from applied charge currents in the Pt layer, and injected into the adjacent thick YIG film. The resultant temperature modulation is detected by a commonly used thermocouple attached to the Pt/YIG junction. The output of the thermocouple shows sign reversal when the magnetization is reversed and linearly increases with the applied current, demonstrating the detection of the SPE signal. We found that the SPE signal decreases with the magnetic field. The observed decreasing rate was found to be comparable to that of the spin Seebeck effect (SSE), suggesting the dominant and similar contribution of the low-energy magnons in the SPE as in the SSE.

  11. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Reliability and corrosion induced degradation of electronic system

    International Nuclear Information System (INIS)

    Tapas, V.K.; Varde, P.V.

    2014-01-01

    This paper describe the corrosion induced degradation of electronic system failures due to environmental conditions such as humidity, temperature, ionic or organic contaminants, residuals; etc. which can accelerates as electrochemical reaction and causes corrosion of electronic components, Corrosive gases and water vapours from humid condition come into contact with the base metal results in buildup of various chemical reaction products. Ionic contamination responsible for electrochemical reaction, forms soluble complexes with metals, it can degrade the protective oxide film that forms on the positively biased metallization and/or lead to change in the local pH. Deterioration of metal components or electronic circuitry due to electrochemical migration needs to be controlled in order to reduce the corrosion. With explosive increase in demand and miniaturization in electronic system resulted in smaller components, closer spacing and thinner metallic path, it is expected that the corrosion and deterioration of electronic components may become cause or concern. This paper summarises the current understanding of chemistry behind possible causes of corrosion of electronic devices and its failure mechanism. (author)

  13. Safe and reliable solutions for Internet application in power sector. SAT automation

    International Nuclear Information System (INIS)

    Eichelburg, W. K.

    2004-01-01

    The requirements for communication of various information systems (control systems, EMS, ERP) continually increase. Internet is prevailingly a Universal communication device for interconnection of the distant systems at the present. However, the communication with the outside world is important, the internal system must be protected safely and reliably. The goal of the article is to inform the experienced participants with the verified solutions of the safe and reliable Internet utilization for interconnection of control systems on the superior level, the distant management, the diagnostic and for interconnection of information systems. An added value is represented by the solutions using Internet for image and sound transmission. (author)

  14. Field efficacy evaluation and post-treatment contamination risk assessment of an ultraviolet disinfection and safe storage system.

    Science.gov (United States)

    Reygadas, Fermin; Gruber, Joshua S; Ray, Isha; Nelson, Kara L

    2015-11-15

    Inconsistent use of household water treatment and safe storage (HWTS) systems reduces their potential health benefits. Ultraviolet (UV) disinfection is more convenient than some existing HWTS systems, but it does not provide post-treatment residual disinfectant, which could leave drinking water vulnerable to recontamination. In this paper, using as-treated analyses, we report on the field efficacy of a UV disinfection system at improving household drinking water quality in rural Mexico. We further assess the risk of post-treatment contamination from the UV system, and develop a process-based model to better understand household risk factors for recontamination. This study was part of a larger cluster-randomized stepped wedge trial, and the results complement previously published population-level results of the intervention on diarrheal prevalence and water quality. Based on the presence of Escherichia coli (proportion of households with ≥ 1 E. coli/100 mL), we estimated a risk difference of -28.0% (95% confidence interval (CI): -33.9%, -22.1%) when comparing intervention to control households; -38.6% (CI: -48.9%, -28.2%) when comparing post- and pre-intervention results; and -37.1% (CI: -45.2%, -28.9%) when comparing UV disinfected water to alternatives within the household. We found substantial increases in post-treatment E. coli contamination when comparing samples from the UV system effluent (5.0%) to samples taken from the storage container (21.1%) and drinking glasses (26.0%). We found that improved household infrastructure, additional extractions from the storage container, additional time from when the storage container was filled, and increased experience of the UV system operator were associated with reductions in post-treatment contamination. Our results suggest that the UV system is efficacious at improving household water quality when used as intended. Promoting safe storage habits is essential for an effective UV system dissemination. The drinking

  15. Development of laser-induced grating spectroscopy for underwater temperature measurement in shock wave focusing regions

    Science.gov (United States)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2004-02-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gas-dynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm 3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results are used to empirically establish the equation of states of water, gelatin or agar cell which will work as alternatives of human tissues.

  16. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats.

    Science.gov (United States)

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-05-10

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.

  17. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Directory of Open Access Journals (Sweden)

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  18. Polysaccharide peptide induces a tumor necrosis factor-α-dependent drop of body temperature in rats.

    Science.gov (United States)

    Jedrzejewski, Tomasz; Piotrowski, Jakub; Wrotek, Sylwia; Kozak, Wieslaw

    2014-08-01

    Polysaccharide peptide (PSP) extracted from the Coriolus versicolor mushroom is frequently suggested as an adjunct to the chemo- or radiotherapy in cancer patients. It improves quality of the patients' life by decreasing pain, fatigue, loss of appetite, nausea, and vomiting. However, the effect of PSP on body temperature has not thus far been studied, although it is well known that treatment with other polysaccharide adjuvants, such as lipopolysaccharides, may induce fever. The aim of the present study, therefore, was to investigate the influence of PSP on temperature regulation in rats. We report that intraperitoneal injection of PSP provoked a dose-dependent decrease of temperature in male Wistar rats equipped with biotelemetry devices to monitor deep body temperature (Tb). The response was rapid (i.e., with latency of 15-20min), transient (lasting up to 5h post-injection), and accompanied by a significant elevation of the blood tumor necrosis factor-α (TNF-α) level. Pretreatment of the rats with anti-TNF-α antibody prevented the PSP-induced drop in Tb. Based on these data, we conclude that rats may develop an anapyrexia-like response to the injection of peptidopolysaccharide rather than fever, and the response was TNF-α-dependent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Metal ion induced room temperature phase transformation and stimulated infrared spectroscopy on TiO2-based surfaces

    International Nuclear Information System (INIS)

    Gole, James L.; Prokes, S.M.; White, Mark G.

    2008-01-01

    Raman and infrared spectroscopy are used to demonstrate (1) the high spin metal ion induced room temperature transformation of anatase to rutile TiO 2 and (2) the phenomena of stimulated IR spectroscopy induced by simultaneous nitrogen doping and high spin metal ion seeding of a TiO 2 nanocolloid lattice

  20. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  1. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  2. Light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.

    1989-01-01

    Since the accident at Three Mile Island (TMI), Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During 1987 and 1988, the Department of Energy provided funds to the Nuclear Engineering Department at Penn State to investigate a plant reconfiguration originated by M.A. Schultz called ''The Light Water Ultra-Safe Plant Concept''. This report presents a final summary of the project with references to several masters' theses and addendum reports for further detail. The two year research effort included design verification with detailed computer simulation of: (a) normal operation characteristics of the unique pressurizing concept, (b) severe transients without loss of coolant, (c) combined primary and secondary system modeling, and (d) small break and large break loss of coolant accidents. Other studies included safety analysis, low power density core design, and control system design to greatly simplify the control room and required operator responses to plant upset conditions. The overall conclusion is that a reconfigured pressurized water reactor can achieve real and perceived safety improvements. Additionally, control system research to produce greatly simplified control rooms and operator requirements should be continued in future projects

  3. Rapid desensitization of mice with anti-FcγRIIb/FcγRIII mAb safely prevents IgG-mediated anaphylaxis.

    Science.gov (United States)

    Khodoun, Marat V; Kucuk, Zeynep Yesim; Strait, Richard T; Krishnamurthy, Durga; Janek, Kevin; Clay, Corey D; Morris, Suzanne C; Finkelman, Fred D

    2013-12-01

    Stimulatory IgG receptors (FcγRs) on bone marrow-derived cells contribute to the pathogenesis of several autoimmune and inflammatory disorders. Monoclonal antibodies that block FcγRs might suppress these diseases, but they can induce anaphylaxis. We wanted to determine whether a rapid desensitization approach can safely suppress IgG/FcγR-mediated anaphylaxis. Mice were injected with serially increasing doses of 2.4G2, a rat mAb that blocks the inhibitory FcγR, FcγRIIb, and the stimulatory receptor, FcγRIII. Rectal temperature was used to detect the development of anaphylaxis. Passive and active IgG-mediated anaphylaxis were evaluated in mice that had been rapidly desensitized with 2.4G2 or mock-desensitized in mice in which monocyte/macrophages, basophils, or neutrophils had been depleted or desensitized and in mice in which FcγRI, FcγRIII, and/or FcγRIV had been deleted or blocked. Rapid desensitization with 2.4G2 prevented 2.4G2-induced shock and completely suppressed IgG-mediated anaphylaxis. Rapid desensitization of ovalbumin-sensitized mice with 2.4G2 was safer and more effective than rapid desensitization with ovalbumin. 2.4G2 treatment completely blocked FcγRIII and removed most FcγRI and FcγRIV from nucleated peripheral blood cells. Because IgG(2a)-mediated anaphylaxis was partially FcγRI and FcγRIV dependent, the effects of 2.4G2 on FcγRI and FcγRIV were probably crucial for its complete inhibition of IgG(2a)-mediated anaphylaxis. IgG(2a)-mediated anaphylaxis was partially inhibited by depletion or desensitization of monocyte/macrophages, basophils, or neutrophils. IgG-mediated anaphylaxis can be induced by ligation of FcγRI, FcγRIII, or FcγRIV on monocycte/macrophages, basophils, or neutrophils and can be safely suppressed by rapid desensitization with anti-FcγRII/RIII mAb. A similar approach may safely suppress other FcγR-dependent immunopathology. Published by Mosby, Inc.

  4. A Kohn-Sham system at zero temperature

    International Nuclear Information System (INIS)

    Cornean, H; Hoke, K; Neidhardt, H; Racec, P N; Rehberg, J

    2008-01-01

    A one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures, and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues of the Schroedinger operator with effective Kohn-Sham potential and obtain W 1,2 -bounds of the associated particle density operator. Afterwards, compactness and continuity results allow us to apply Schauder's fixed point theorem. In the case of vanishing exchange-correlation potential uniqueness is shown by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero

  5. Ex vivo evaluation of super pulse diode laser system with smart temperature feedback for contact soft-tissue surgery

    Science.gov (United States)

    Yaroslavsky, Ilya; Boutoussov, Dmitri; Vybornov, Alexander; Perchuk, Igor; Meleshkevich, Val; Altshuler, Gregory

    2018-02-01

    Until recently, Laser Diodes (LD) have been limited in their ability to deliver high peak power levels, which, in turn, limited their clinical capabilities. New technological developments made possible advent of "super pulse" LD (SPLD). Moreover, advanced means of smart thermal feedback enable precise control of laser power, thus ensuring safe and optimally efficacious application. In this work, we have evaluated a prototype SPLD system ex vivo. The device provided up to 25 W average and up to 150 W pulse power at 940 nm wavelength. The laser was operated in the thermal feedback-controlled mode, where power of the laser was varied automatically as a function of real-time thermal feedback to maintain constant tip temperature. The system was also equipped with a fiber tip initiated with advanced TiO2 /tungsten technique. Evaluation methods were designed to assess: 1) Speed and depth of cutting; 2) Dimensions of coagulative margin. The SPLD system was compared with industry-leading conventional diode and CO2 devices. The results indicate that the SPLD system provides increase in speed of controlled cutting by a factor of >2 in comparison with the conventional diode laser and approaching that of CO2 device. The produced ratio of the depth of cut to the thermal damage margin was significantly higher than conventional diodes and close to that of the CO2 system, suggesting optimal hemostasis conditions. SPLD technology with real-time temperature control has a potential for creating a new standard of care in the field of precision soft tissue surgery.

  6. Control system for Fermilab's low temperature upgrade

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel's 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down

  7. Responsiveness to Thyroid Hormone and to Ambient Temperature Underlies Differences Between Brown Adipose Tissue and Skeletal Muscle Thermogenesis in a Mouse Model of Diet-Induced Obesity

    Science.gov (United States)

    Ueta, Cintia B.; Olivares, Emerson L.

    2011-01-01

    Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism. PMID:21771890

  8. Nonlinear Power-Level Control of the MHTGR Only with the Feedback Loop of Helium Temperature

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-02-01

    Full Text Available Power-level control is a crucial technique for the safe, stable and efficient operation of modular high temperature gas-cooled nuclear reactors (MHTGRs, which have strong inherent safety features and high outlet temperatures. The current power-level controllers of the MHTGRs need measurements of both the nuclear power and the helium temperature, which cannot provide satisfactory control performance and can even induce large oscillations when the neutron sensors are in error. In order to improve the fault tolerance of the control system, it is important to develop a power-level control strategy that only requires the helium temperature. The basis for developing this kind of control law is to give a state-observer of the MHTGR a relationship that only needs the measurement of helium temperature. With this in mind, a novel nonlinear state observer which only needs the measurement of helium temperature is proposed. This observer is globally convergent if there is no disturbance, and has the L2 disturbance attenuation performance if the disturbance is nonzero. The separation principle of this observer is also proven, which denotes that this observer can recover the performance of both globally asymptotic stabilizers and L2 disturbance attenuators. Then, a new dynamic output feedback power-level control strategy is established, which is composed of this observer and the well-built static state-feedback power-level control based upon iterative dissipation assignment (IDA-PLC. Finally, numerical simulation results show the high performance and feasibility of this newly-built dynamic output feedback power-level controller.

  9. Dizocilpine and reduced body temperature do not prevent methamphetamine-induced neurotoxicity in the vervet monkey: [11C]WIN 35,428 - positron emission tomography studies.

    Science.gov (United States)

    Melega, W P; Lacan, G; Harvey, D C; Huang, S C; Phelps, M E

    1998-12-11

    [11C]WIN 35,428 (WIN), a cocaine analog that binds to the dopamine transporter (DAT), and positron emission tomography (PET) were used to evaluate the potential neuroprotective effects of dizocilpine (MK-801) on methamphetamine (MeAmp) induced neurotoxicity in the striatal dopamine system of the vervet monkey. MK-801 (1 mg/kg, i.m.) was administered 30 min prior to a neurotoxic MeAmp dosage for this species (2 x 2 mg/kg, 4 h apart); control subjects received MeAmp. MK-801 treated subjects were anesthetized by the drug for 6-8 h; throughout that period, a 2-3 degrees C decrease in body temperature was measured. At 1-2 weeks post-MeAmp, decreases of approximately 75% in striatal WIN binding were observed for both MK-801/MeAmp and MeAmp subjects. Thus, in this non-human primate species, the combination of MK-801 pretreatment and reduced body temperature did not provide protection from the MeAmp-induced loss of DAT. Further, the absence of an elevated body temperature during the acute MeAmp exposure period indicated that hyperthermia, per se, was not a necessary concomitant of the MeAmp neurotoxicity profile as has been previously demonstrated in rodents. These results provide evidence that different regulatory factors maintain the integrity of the rodent and primate striatal dopamine systems.

  10. Type-safe pattern combinators

    DEFF Research Database (Denmark)

    Rhiger, Morten

    2009-01-01

    Macros still haven't made their way into typed higher-order programming languages such as Haskell and Standard ML. Therefore, to extend the expressiveness of Haskell or Standard ML, one must express new linguistic features in terms of functions that fit within the static type systems of these lan...... of these languages. This is particularly challenging when introducing features that span across multiple types and that bind variables. We address this challenge by developing, in a step by step manner, mechanisms for encoding patterns and pattern matching in Haskell in a type-safe way....

  11. Impacts of Low Temperature on the Teleost Immune System

    Directory of Open Access Journals (Sweden)

    Quinn H. Abram

    2017-11-01

    Full Text Available As poikilothermic vertebrates, fish can experience changes in water temperature, and hence body temperature, as a result of seasonal changes, migration, or efflux of large quantities of effluent into a body of water. Temperature shifts outside of the optimal temperature range for an individual fish species can have negative impacts on the physiology of the animal, including the immune system. As a result, acute or chronic exposure to suboptimal temperatures can impair an organisms’ ability to defend against pathogens and thus compromise the overall health of the animal. This review focuses on the advances made towards understanding the impacts of suboptimal temperature on the soluble and cellular mediators of the innate and adaptive immune systems of fishes. Although cold stress can result in varying effects in different fish species, acute and chronic suboptimal temperature exposure generally yield suppressive effects, particularly on adaptive immunity. Knowledge of the effects of environmental temperature on fish species is critical for both the optimal management of wild species and the best management practices for aquaculture species.

  12. Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the arginine deiminase system of Streptococcus pyogenes

    NARCIS (Netherlands)

    Winterhoff, N.; Goethe, R.; Gruening, P.; Rohde, M.; Kalisz, H.; Smith, H.E.; Valentin-Weigand, P.

    2002-01-01

    The present study was performed to identify stress-induced putative virulence proteins of Streptococcus suis. For this, protein expression patterns of streptococci grown at 32, 37, and 42°C were compared by one- and two-dimensional gel electrophoresis. Temperature shifts from 32 and 37 to 42°C

  13. Ensuring a Safe Technological Revolution

    Science.gov (United States)

    2016-12-01

    much lower, and the performance gained can dramatically reduce life -cycle costs. Validated cost data are scarce, and accurate AM cost models need to be...reduce costs, minimize obsolescence issues and improve both capability and readi- ness across the entire life cycle of naval systems—including both the...of naval weapon systems. The Navy is actively engaging its various communi- ties to align needs and ensure that AM can be safely acceler- ated and

  14. On subcooler design for integrated two-temperature supermarket refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, No. 4800, Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    The energy saving opportunity of supermarket refrigeration systems using subcooler between the medium-temperature (MT) refrigeration system and the low-temperature (LT) refrigeration system has been identified in the previous work. This paper presents a model-based comprehensive analysis on the subcooler design. The optimal subcooling control is discussed as well. With optimal subcooler size and subcooling control, the maximum energy savings of integrated two-temperature supermarket refrigeration system using R404A or R134a as working fluid can achieve 27% or 20%, respectively. The load ratio of MT to LT system and the operating conditions have considerable impact on the energy savings. (author)

  15. Dual temperature isotope exchange system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1976-01-01

    Improvements in the method for isotope concentration by dual temperature exchange between feed and auxiliary fluids in a multistage system are described. In a preferred embodiment the first is a vaporizable liquid and the auxiliary fluid a gas, comprising steps for improving the heating and/or cooling and/or humidifying and/or dehumidifying operations

  16. Adoption of the B2SAFE EUDAT replication service by the EPOS community

    Science.gov (United States)

    Cacciari, Claudio; Fares, Massimo; Fiameni, Giuseppe; Michelini, Alberto; Danecek, Peter; Wittenburg, Peter

    2014-05-01

    B2SAFE is the EUDAT service for moving and replicating data between sites and storage systems for different purposes. The goal of B2SAFE is to keep the data from a repository safe by replicating it across different geographical and administrative zones according to a set of well-defined policies. It is also a way to store large volumes of data permanently at those sites which are providing powerful on-demand data analysis facilities. In particular, B2SAFE operates on the domain of registered data where data objects are referable via persistent identifiers (PIDs). B2SAFE is more than just copying data because the PIDs must be carefully managed when data objects are moved or replicated. The EUDAT B2SAFE Service offers functionality to replicate datasets across different data centres in a safe and efficient way while maintaining all information required to easily find and query information about the replica locations. The information about the replica locations and other important information is stored in PID records, each managed in separate administrative domains. The B2SAFE Service is implemented as an iRODS module providing a set of iRODS rules or policies to interface with the EPIC handle API and uses the iRODS middleware to replicate datasets from a source data (or community) centre to a destination data centre. The definition of the dataset(s) to replicate is flexible and up to the communities using the B2SAFE service. While the B2SAFE is internally using the EPIC handle API, communities have the choice to use any PID system they prefer to assign PIDs to their digital objects. A reference to one or more EUDAT B2SAFE PIDs is returned by the B2SAFE service when a dataset is replicated. The presentation will introduce the problem space of B2SAFE, presents the achievements that have been made during the last year for enabling communities to make use of the B2SAFE service, demonstrates a EPOS use cases, outlines the commonalities and differences between the policies

  17. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  18. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought

    Science.gov (United States)

    Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.

    2009-01-01

    Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070

  19. A fail-safe design for X-ray safety shutters

    International Nuclear Information System (INIS)

    Cramer, W.E.; Port, E.A.

    1982-01-01

    The purpose of any safety shutter device is to help minimize radiation exposure to personnel. Many such devices for analytical X-ray work may fail in a mode with great potential for injury. The authors present a design that may be used to modify any existing mechanical or electro-mechanical system that utilizes a gate which blocks an aperture to control exposure. The system is of 'fail-safe' design, as defined in the National Bureau of Standards Handbook 111 (American National Standards Institute, 1972); One in which all reasonable anticipated failures of indicator or safety components will cause the equipment to respond in a mode ensuring that personnel are safe from exposure to radiation. The system has visible indicators that make the user aware that a particular failure has occurred; in addition, X-ray generation ceases. (Auth.)

  20. ESBWR power maneuvering via feedwater temperature control

    International Nuclear Information System (INIS)

    Saha, P.; Marquino, W.; Tucker, L. J.

    2008-01-01

    The ESBWR is a Generation III+ Boiling Water Reactor (BWR) driven by natural circulation. For a given geometry/hardware, system pressure, downcomer water level and feedwater temperature, the core flow rate in the ESBWR is only a function of reactor power, controlled through the control blade movement. In order to provide operational flexibility, another method of core-wide or global power maneuvering via feedwater temperature control has been developed. This is independent of power maneuvering via control blade movement, and it lowers the linear heat generation rate (LHGR) changes near the tip of control blades, which improves fuel reliability. All required stability, anticipated operational occurrences (AOOs), infrequent events, special events including anticipated transients without scram (ATWS), and loss-of-coolant accident (LOCA) analyses have been performed for the 4500 MWt ESBWR. Based on the results of these analyses at 'high', nominal and 'low' feedwater temperatures, a safe Power - Feedwater Temperature operating domain has been developed. This paper summarizes the results of these analyses and presents the ESBWR Power - Feedwater Temperature operating domain or map. (authors)

  1. High temperature slagging incinerator for TRU-waste treatment

    International Nuclear Information System (INIS)

    Van De Voorde, N.; Hennart, D.; Gijbels, J.; Mergan, L.

    1984-01-01

    Since 1974 the Belgian Nuclear Study Center (SCK/CEN) at Mol, with the support of the European Communities, has developed an ''integral'' system for the treatment and the conditioning of radioactive contaminated wastes. The system converts directly, at high temperature (1500 0 C), mixtures of combustibles (paper, plastics, rubber etc.) and non-combustibles (metals, soil, sludge, concrete.) contaminated with transuranium elements as well as beta-gamma emitting isotopes, into a chemically inert and physically stable slag. More than 4000 hours of successful operation, with wide variety of simulated waste composition as well as real waste, have confirmed the safe operability of the high temperature sl'Gging incinerator and the connected installations, such as sorting cells, waste shredder, off-gas purification train, slag extraction system, remoted control, and the alpha-containment building. During the fall of 1983, a final confirmation of the performance of the installation was given by the successful accomplishment of an incineration campaign of 16 to 17 tons of simulated solid plutonium contaminated wastes

  2. The dose, temperature, and projectile-mass dependence for irradiation-induced amorphization of CuTi

    International Nuclear Information System (INIS)

    Koike, J.; Okamoto, P.R.; Rehn, L.E.; Meshii, M.

    1989-01-01

    CuTi was irradiated with 1-MeV Ne + , Kr + , and Xe + in the temperature range from 150 to 563 K. The volume fraction of the amorphous phase produced during room temperature irradiation with Ne + and Kr + ions was determined as a function of ion dose from measurements of the integrated intensity of the diffuse ring in electron diffraction patterns. The results, analyzed by Gibbons' model, indicate that direct amorphization occurs along a single ion track with Kr + , but the overlapping of three ion tracks is necessary for amorphization with Ne + . The critical temperature for amorphization increases with increasing projectile mass from electron to Ne + to Kr + . However, the critical temperatures for Kr + and Xe + irradiations were found to be identical, and very close to the thermal crystallization temperature of an amorphous zone embedded in the crystalline matrix. Using the present observations, relationships between the amorphization kinetics and the displacement density along the ion track, and between the critical temperature and the stability of the irradiation-induced damage, are discussed

  3. Note: A wide temperature range MOKE system with annealing capability.

    Science.gov (United States)

    Chahil, Narpinder Singh; Mankey, G J

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  4. Designing an accurate system for temperature measurements

    Directory of Open Access Journals (Sweden)

    Kochan Orest

    2017-01-01

    Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

  5. An art report to analyze internal and external research status for the establishment of the safe supply system of the foods for military meal service using ionization energy

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Woon; Kim, Jang Ho; Jo, Cheol Hun; Kim, Dong Ho; Lee, You Seok

    2003-09-01

    Since the risk of food-borne pathogenic diseases such as E. coli O157:H7 and Salmonella always remains in the military meal service system, it is necessary to develop the method to eliminate this problem. According to the preference survey of military meals, it is shown that soldiers preferred the improvement in quality such as tastes and variety to the increase in quantity. For this reason, the supply of diverse foods, improvement of cooking methods, and the complement of meal service facilities are required. The developed countries such as the United States maintain the facilities to control the environmental factors such as temperature, moisture, and oxygen and they develop and use the rapid methods to test the storage times of each category of foods based on the theoretical studies of food storage/preservation/processing and their experimental data. Due to the ordinary sanitation methods are gradually limited all over the world, as new technology for prevention of food-borne diseases and establishment to manufacture wholesome food, a radiation technology is very effective to ensure safe food and preservation/distribution, improve the safety of processed food and its manufacturing processes. And, the military meal service including combat rations furnishes viability, energy, ability for duty, and mental rest to soldiers. Furthermore, it ensures combat capabilities, enhances mobility power of troops, improves combat efficiency, and establishes the military supply system. It is necessary to study irradiation technique in order to establish the safe food supply system for military meal service and eliminate contamination such as food-borne disease for combat crews as an essential element in military power

  6. Langevin equation in systems with also negative temperatures

    Science.gov (United States)

    Baldovin, Marco; Puglisi, Andrea; Vulpiani, Angelo

    2018-04-01

    We discuss how to derive a Langevin equation (LE) in non standard systems, i.e. when the kinetic part of the Hamiltonian is not the usual quadratic function. This generalization allows to consider also cases with negative absolute temperature. We first give some phenomenological arguments suggesting the shape of the viscous drift, replacing the usual linear viscous damping, and its relation with the diffusion coefficient modulating the white noise term. As a second step, we implement a procedure to reconstruct the drift and the diffusion term of the LE from the time-series of the momentum of a heavy particle embedded in a large Hamiltonian system. The results of our reconstruction are in good agreement with the phenomenological arguments. Applying the method to systems with negative temperature, we can observe that also in this case there is a suitable LE, obtained with a precise protocol, able to reproduce in a proper way the statistical features of the slow variables. In other words, even in this context, systems with negative temperature do not show any pathology.

  7. Guideline for the preparation of safe operating procedures

    International Nuclear Information System (INIS)

    Stinnett, L.; Armbrust, E.F.; Christy, V.W.; Doyle, J.R.; Kesinger, J.H.

    1977-03-01

    Sandia Laboratories Safe Operating Procedures (SOP) are written for activities which involve the use of explosives, dangerous chemicals, radioactive materials, hazardous systems, and certain types of operational facilities which present hazards. This guideline presents a suggested SOP format

  8. Are Detox Diets Safe?

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Are Detox Diets Safe? KidsHealth / For Teens / Are Detox Diets ... seguras las dietas de desintoxicación? What Is a Detox Diet? The name sounds reassuring — everyone knows that ...

  9. Spasm induced by protection balloon during carotid artery stenting

    International Nuclear Information System (INIS)

    Tsutsumi, Masanori; Kazekawa, Kiyoshi; Onizuka, Masanari

    2007-01-01

    The PercuSurge system is a distal balloon embolic protection device used for carotid artery stenting (CAS). We performed a retrospective study on the prognosis and clinical effects of spasms induced by the PercuSurge GuardWire system (PercuSurge-induced spasm). We performed CAS in 118 carotid stenoses using the PercuSurge system. Of the 118 procedures, 31 (26.3%) of the patients experienced PercuSurge-induced spasm, and all underwent postoperative follow-up studies by cerebral angiography and antiplatelet treatment. On follow-up angiograms obtained a mean of 5.2 months (range 3-10 months) after CAS, all 31 PercuSurge-induced spasms had disappeared, and no delayed stenosis was found at the sites where the spasms had occurred. No ischemic events due to the spasms occurred during a mean follow-up of 13 months (range 3-32 months). In the hands of physicians experienced in endovascular surgery, CAS using the PercuSurge system is a safe method with which to treat patients with carotid stenosis. Our study demonstrated that PercuSurge-induced spasms had no morphological or clinical adverse effects. (author)

  10. High Temperature 300°C Directional Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kamalesh [Baker Hughes Oilfield Operations, Houston, TX (United States); Aaron, Dick [Baker Hughes Oilfield Operations, Houston, TX (United States); Macpherson, John [Baker Hughes Oilfield Operations, Houston, TX (United States)

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  11. METHODOLOGICAL APPROACHES TO ORGANIZATION OF SAFE INFORMATION AND EDUCATIONAL ENVIRONMENT OF THE UNIVERSITY

    Directory of Open Access Journals (Sweden)

    A. N. Privalov

    2017-01-01

    Full Text Available Introduction. One of the tendencies of modern higher education is the ubiquitous use of information and communication technologies. At the same time, the functioning of the electronic information and educational environment (IEE of the university should be based on the means of IEE and the condition of its information security.The aim of the research is conceptualization of a problem of the rational organization of the safe information and education environment of higher education institution wherein reliable protection of its infrastructure, the personal and unique information of a pupil and teacher and virtual space of their educational interaction is provided.Methodology and research methods. System-based approach is a key approach to organization of safe educational environment of the university. From the point of view of authors, personal-activity and functional approaches are expedient while designing and development of a safe IEE. Socio-historical and theoretical-methodological analysis, modeling, research and synthesis of experience of effective application of the systems approach in educational professional organizations are used.Results and scientific novelty. The concept «safe information educational environment of the university» is specified wherein the first word has to express a predominant quality of the system. Creating a safe information environment in educational professional organizations provides a convenient and safe educational environment in the process of professional training of university students. The components and directions for the organization of the safe IEE are highlighted. Practical recommendations for its design and successful functioning are given.Practical significance. The materials of the present research can be demanded by managers and administrative employees of educational organizations. 

  12. Lipopolysaccharide-induced neuronal activation in the paraventricular and dorsomedial hypothalamus depends on ambient temperature.

    Directory of Open Access Journals (Sweden)

    Samuel P Wanner

    Full Text Available Systemic inflammatory response syndrome is associated with either fever or hypothermia, but the mechanisms responsible for switching from one to the other are unknown. In experimental animals, systemic inflammation is often induced by bacterial lipopolysaccharide (LPS. To identify the diencephalic and brainstem structures involved in the fever-hypothermia switch, we studied the expression of c-Fos protein, a marker of neuronal activation, in rats treated with the same high dose of LPS (0.5 mg/kg, intravenously either in a thermoneutral (30 °C or cool (24 °C environment. At 30 °C, LPS caused fever; at 24 °C, the same dose caused profound hypothermia. Both fever and hypothermia were associated with the induction of c-Fos in many brain areas, including several structures of the anterior preoptic, paraventricular, lateral, and dorsal hypothalamus, the bed nucleus of the stria terminalis, the posterior pretectal nucleus, ventrolateral periaqueductal gray, lateral parabrachial nucleus, area postrema, and nucleus of the solitary tract. Every brain area studied showed a comparable response to LPS at the two different ambient temperatures used, with the exception of two areas: the dorsomedial hypothalamic nucleus (DMH, which we studied together with the adjacent dorsal hypothalamic area (DA, and the paraventricular hypothalamic nucleus (PVH. Both structures had much stronger c-Fos expression during LPS hypothermia than during fever. We propose that PVH and DMH/DA neurons are involved in a circuit, which - depending on the ambient temperature - determines whether the thermoregulatory response to bacterial LPS will be fever or hypothermia.

  13. A direct plasma injection system into an RFQ for clean and safe ion implantation

    International Nuclear Information System (INIS)

    Takeuchi, T.; Katayama, T.; Okamura, M.; Yano, K.; Sakumi, A.; Hattori, T.; Hayashizaki, N.; Jameson, R.A.

    2002-01-01

    A new injection system, direct plasma injection system, was tested and its principle was proved successfully. We found that one of advantages of this injection system was efficient consumption of source materials. Large portions of induced ions can be injected into a first stage accelerator. This feature is quite useful for ion implantation applications, because toxic exhaust gas can be eliminated. In order to utilize this system for industrial application, the feasibility of a boron injection scheme using a Nd:YAG laser system was investigated

  14. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  15. Feedback control of primary pump using midplane temperature of lower density lock for a PIUS-type reactor

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Haga, Katsuhiro; Tamaki, Masayoshi

    1993-01-01

    A new automatic pump speed control system, using a measurement of the temperature distribution in the lower density lock, is proposed for the PIUS-type reactor. This control system maintains the fluid temperature at the axial center of the lower density lock at the average of the fluid temperatures below and above the lower density lock in order to prevent the poison water from penetrating into the core during normal operation. In a startup test, the effectiveness of this control system to bring the system quickly to the stable state from a very small initial temperature difference between top and bottom of the lower density lock has been confirmed. The effectiveness of the primary pump trip at the limit speed in the control system to shutdown the core power safely in an accident such as a loss-of-feedwater accident with and without the primary loop isolation has also been proved

  16. Hot roller embossing system equipped with a temperature margin-based controller

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung, E-mail: seyoungkim@kimm.re.kr; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin [Department of Robotics and Mechatronics, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2014-08-15

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process.

  17. Hot roller embossing system equipped with a temperature margin-based controller

    International Nuclear Information System (INIS)

    Kim, Seyoung; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin

    2014-01-01

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process

  18. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers

    International Nuclear Information System (INIS)

    Wang Bin; Zhang Hongchao; Qin Yuan; Wang Xi; Ni Xiaowu; Shen Zhonghua; Lu Jian

    2011-01-01

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO 2 film components with platinum high-absorptance inclusions was established. The temperature rises of TiO 2 films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations.

  19. Comparative technical-economic analysis of the low temperature heating systems

    International Nuclear Information System (INIS)

    Sharevski, Vasko; Sharevski, Milan

    1994-01-01

    A method for comparative technical-economic analysis between low temperature heating systems and heating systems with fossil fuel boiler plant, heat pump heating system and electrical heating systems is presented. The single and combined heating systems are analyzed. The technical-economic priority application of the heating system is determined according to the prices of the low temperature heat energy, fossil fuel heat energy, electrical energy, as well as to the coefficient of the annual use of the installed heating capacity, investment expenses, structure of the combined heating system and coefficient of performances of the heat pump. The combined heating system, composed with a low temperature heating subsystem, which is used to cover the base heat demands, and a oil boiler plant heating subsystem, for the top heat demands, have technical-economic justification and wide range of priority application, in comparison with single heating systems. (author)

  20. Stormram 4: An MR Safe Robotic System for Breast Biopsy.

    Science.gov (United States)

    Groenhuis, Vincent; Siepel, Françoise J; Veltman, Jeroen; van Zandwijk, Jordy K; Stramigioli, Stefano

    2018-05-21

    Suspicious lesions in the breast that are only visible on magnetic resonance imaging (MRI) need to be biopsied under MR guidance with high accuracy and efficiency for accurate diagnosis. The aim of this study is to present a novel robotic system, the Stormram 4, and to perform preclinical tests in an MRI environment. Excluding racks and needle, its dimensions are 72 × 51 × 40 mm. The Stormram 4 is driven by two linear and two curved pneumatic stepper motors. The linear motor is capable of exerting 63 N of force at a pressure of 0.65 MPa. In an MRI environment the maximum observed stepping frequency is 30 Hz (unloaded), or 8 Hz when full force is needed. The Stormram 4's mean positioning error is 0.73 ± 0.47 mm in free air, and 1.29 ± 0.59 mm when targeting breast phantoms in MRI. Excluding the off-the-shelf needle, the robot is inherently MR safe. The robot is able to accurately target lesions under MRI guidance, reducing tissue damage and risk of false negatives. These results are promising for clinical experiments, improving the quality of healthcare in the field of MRI-guided breast biopsies.

  1. International conference on safe decommissioning for nuclear activities: Assuring the safe termination of practices involving radioactive materials. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Thousands of operations involving the use of radioactive substances will end during the current century. While there is considerable regulatory experience in the 'front end' of the regulatory system for practices, the experience at the back end is more limited as fewer practices have actually been terminated. When a practice is terminated because the facility has reached the end of its useful life, action has to betaken to ensure the safe shutdown of the facility and allow the removal of regulatory controls. There are many issues involved in the safe termination of practices. These include setting criteria for the release of material and sites from regulatory control; determining the suitability of the various options for decommissioning nuclear facilities, managing the waste and material released from control (recycling, reuse or disposal), and the eventual remediation of the site. Some countries have put in place regulatory infrastructures and have developed programmes to manage the associated decommissioning and remediation activities. Other countries are at the stage of assessing what is involved in terminating such practices. The purpose of this Conference is to foster an information exchange on the safe an orderly termination of practices that involve the use of radioactive substances, including both decommissioning and environmental remediation, and to promote improved coherence internationally on strategies and criteria for the safe termination of practices.

  2. International conference on safe decommissioning for nuclear activities: Assuring the safe termination of practices involving radioactive materials. Contributed papers

    International Nuclear Information System (INIS)

    2002-01-01

    Thousands of operations involving the use of radioactive substances will end during the current century. While there is considerable regulatory experience in the 'front end' of the regulatory system for practices, the experience at the back end is more limited as fewer practices have actually been terminated. When a practice is terminated because the facility has reached the end of its useful life, action has to betaken to ensure the safe shutdown of the facility and allow the removal of regulatory controls. There are many issues involved in the safe termination of practices. These include setting criteria for the release of material and sites from regulatory control; determining the suitability of the various options for decommissioning nuclear facilities, managing the waste and material released from control (recycling, reuse or disposal), and the eventual remediation of the site. Some countries have put in place regulatory infrastructures and have developed programmes to manage the associated decommissioning and remediation activities. Other countries are at the stage of assessing what is involved in terminating such practices. The purpose of this Conference is to foster an information exchange on the safe an orderly termination of practices that involve the use of radioactive substances, including both decommissioning and environmental remediation, and to promote improved coherence internationally on strategies and criteria for the safe termination of practices

  3. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    Science.gov (United States)

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  4. Temperature measurement and control system for transtibial prostheses: Functional evaluation.

    Science.gov (United States)

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Lee, Tat Hing; Safari, Mohammad Reza

    2018-01-01

    The accumulation of heat inside the prosthetic socket increases skin temperature and fosters perspiration, which consequently leads to high tissue stress, friction blister, discomfort, unpleasant odor, and decreased prosthesis suspension and use. In the present study, the prototype of a temperature measurement and control (TM&C) system was designed, fabricated, and functionally evaluated in a phantom model of the transtibial prosthetic socket. The TM&C system was comprised of 12 thermistors divided equally into two groups that arranged internal and external to a prosthetic silicone liner. Its control system was programmed to select the required heating or cooling function of a thermal pump to provide thermal equilibrium based on the amount of temperature difference from a defined set temperature, or the amount of difference between the mean temperature recorded by inside and outside thermistors. A thin layer of aluminum was used for thermal conduction between the thermal pump and different sites around the silicone liner. The results showed functionality of the TM&C system for thermoregulation inside the prosthetic socket. However, enhancing the structure of this TM&C system, increasing its thermal power, and decreasing its weight and cost are main priorities before further development.

  5. Light water ultra-safe plant concept: First annual report

    International Nuclear Information System (INIS)

    Klevans, E.

    1987-01-01

    Since the accident at Three Mile Island (TMI) Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During the last year, the Department of Energy funded the study of a plant reconfiguration originally proposed by M.A. Shultz. This report presents the status of the project at the end of the first year. A broad set of specifications to improve safety and public perception were set forth and the realization of these goals is achieved in a plant design named, ''The Light Water Ultra-Safe Plant Concept.'' The most significant goals of the concept address the station black-out problem and simplification of required operator actions during abnormal situations. These goals are achieved in the Ultra-Safe Concept by addition of an in-containment atmospheric tank containing a large quantity of cool water, replacement of the conventional PWR pressurizer system with a pressurizing pump, internal emergency power generation, and arrangement of components to utilize natural circulation at shut-down. The first year effort included an evaluation of the normal operation characteristics of the primary system pressurizing concept, evaluating parameters and modeling for analysis of the shutdown scenario, design of a low power density core, design of a low-pressure waste handling system, arrangement of a drainage system for pipe break considerations, and failure modes and effects analysis

  6. Safe Anesthesia For Every Tot

    DEFF Research Database (Denmark)

    Weiss, Markus; Vutskits, Laszlo; Hansen, Tom G

    2015-01-01

    PURPOSE OF REVIEW: The term 'safe use of anesthesia in children is ill-defined and requires definition of and focus on the 'safe conduct of pediatric anesthesia'. RECENT FINDINGS: The Safe Anesthesia For Every Tot initiative (www.safetots.org) has been set up during the last year to focus...... on the safe conduct of pediatric anesthesia. This initiative aims to provide guidance on markers of quality anesthesia care. The introduction and implementation of national regulations of 'who, where, when and how' are required and will result in an improved perioperative outcome in vulnerable children....... The improvement of teaching, training, education and supervision of the safe conduct of pediatric anesthesia are the main goals of the safetots.org initiative. SUMMARY: This initiative addresses the well known perioperative risks in young children, perioperative causes for cerebral morbidity as well as gaps...

  7. Outlooks for the development of ozone-safe refrigerant production at the Minatom facilities

    International Nuclear Information System (INIS)

    Shatalov, V.V.; Orekhov, V.T.; Dedov, A.S.; Zakharov, V.Yu.; Golubev, A.N.; Tsarev, V.A.

    2001-01-01

    Results of activities undertaken at the All-Russian Research Institute of Chemical Technology since 1988, which were aimed at search of new methods of synthesis of ozone-safe refrigerants, using depleted uranium hexafluoride waste formed at gas-diffusion plants as fluorinating agent, are considered. It is pointed out that major advantages of the flowsheets making use of UF 6 versus traditional method consist in the fact that the processes are conducted in gas phase under normal pressure and moderate temperatures with UF 6 transfer into a more environmentally friendly form. Outlooks for expansion of production of ozone-safe refrigerants by the method described are discussed [ru

  8. The Effect of Temperature on the Spectral Emission of Plasma Induced in Water

    Directory of Open Access Journals (Sweden)

    B. Charfi

    2013-01-01

    Full Text Available A numerical modeling investigation of the spectral emission of laser-induced plasma in MgCl2-NaCl aqueous solution has been presented. A model based on equilibrium equations has been developed for the computation of the plasma composition and excited levels population. Physical interpretation is presented to comment on firstly the evolution of atomic species number densities, and secondly on the population of the excited species emitting MgII and NaI resonant lines for temperatures ranging from 3000 K to 20 000 K. It is shown that MgII line reach a maximum of population on the issuing level, at norm temperature of 13800 K. Whereas, NaI line presents two norm temperatures, evaluated at 3300 K and 11700 K. This splitting of the NaI norm temperature is explained by the low-ionization potential and weak concentration of the sodium atom in this aqueous solution. Thus, the proposed model can be useful to predict the optimal plasma temperature for the detection of given chemical element, which is not easy to reveal experimentally.

  9. Proper energy of an electron in a topologically massive (2 + 1) quantum electrodynamics system at finite temperature and density

    International Nuclear Information System (INIS)

    Zhukovskii, K.V.; Eminov, P.A.

    1995-01-01

    The one-loop approximation is used to calculate the effects of finite temperature and nonzero chemical potential on the electron energy shift in a (2 + 1)-quantum electrodynamic system containing a Churn-Simon term. The induced electron mass is derived with a massless (2 + 1)-quantum electrodynamic system together with the exchange correction to the thermodynamic potential for a completely degenerate electron gas. It is shown that in the last case, incorporating the Churn-Simon term leads to loss of the gap in the direction law

  10. Digital image monitoring to optimise safe port operation

    CSIR Research Space (South Africa)

    Phelp, D

    2008-11-01

    Full Text Available This paper describes a low cost video system ‘Harbour Watch’, which can be used to support safe port operations, especially in developing countries. Preset digital images are geo-referenced and then archived for later analysis to improve...

  11. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  12. Low-temperature conditioning induces chilling tolerance in stored mango fruit.

    Science.gov (United States)

    Zhang, Zhengke; Zhu, Qinggang; Hu, Meijiao; Gao, Zhaoyin; An, Feng; Li, Min; Jiang, Yueming

    2017-03-15

    In this study, mango fruit were pre-treated with low-temperature conditioning (LTC) at 12°C for 24h, followed by refrigeration at 5°C for 25days before removal to ambient temperature (25°C) to investigate the effects and possible mechanisms of LTC on chilling injury (CI). The results showed that LTC effectively suppressed the development of CI in mango fruit, accelerated softening, and increased the soluble solids and proline content. Furthermore, LTC reduced electrolyte leakage, and levels of malondialdehyde, O 2 - and H 2 O 2 , maintaining membrane integrity. To reveal the molecular regulation of LTC on chilling tolerance in mango fruit, a C-repeat/dehydration-responsive element binding factor (CBF) gene, MiCBF1, was identified and its expression in response to LTC was examined using RT-qPCR. LTC resulted in a higher MiCBF1 expression. These findings suggest that LTC enhances chilling tolerance in mango fruit by inducing a series of physiological and molecular responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Railgun system using a laser-induced plasma armature

    International Nuclear Information System (INIS)

    Onozuka, M.; Oda, Y.; Azuma, K.

    1996-01-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. copyright 1996 American Institute of Physics

  14. Railgun system using a laser-induced plasma armature

    Science.gov (United States)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun.

  15. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  16. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  17. Controlling ventilation for safe escape from coal mine fires

    Energy Technology Data Exchange (ETDEWEB)

    Wala, A M [University of Kentucky, Lexington, KY (United States). Mining Engineering Dept.

    1966-04-01

    If a fire occurs outby an underground coal mine section, the immediate safe evacuation of miners from the working section should always take precedence. Unfortunately, in many cases, the dedicated escapeway (escape routes) for the evacuation of the miners become contaminated by the byproducts of fire from the adjacent entries. The purpose of this paper is to present the ventilation-control process that would keep the escapeway free from contaminants and, thus, available for travel. A few scenarios of mine fires in longwall development panels are analysed and discussed. To perform these studies, a mine-fire simulator (MFS) was used. This (MFS) provides a dynamic representation of the fire`s progress (in real time) and gives a color-graphic visualization of the spready of oxygen, combustion products and temperature of the gases throughout the ventilation system. Also presented and discussed are ways in which the MFS can be used as a training and teaching tool for miners and particularly, for ventilation and safety specialists. 7 refs., 10 figs.

  18. Study on Temperature Control System Based on SG3525

    Science.gov (United States)

    Cheng, Cong; Zhu, Yifeng; Wu, Junfeng

    2017-12-01

    In this paper, it uses the way of dry bath temperature to heat the microfluidic chip directly by the heating plate and the liquid sample in microfluidic chip is heated through thermal conductivity, thus the liquid sample will maintain at target temperature. In order to improve the reliability of the whole machine, a temperature control system based on SG3525 is designed.SG3525 is the core of the system which uses PWM wave produced by itself to drive power tube to heat the heating plate. The bridge circuit consisted of thermistor and PID regulation ensure that the temperature can be controlled at 37 °C with a correctness of ± 0.2 °C and a fluctuation of ± 0.1 °C.

  19. Temperature dependence in interatomic potentials and an improved potential for Ti

    International Nuclear Information System (INIS)

    Ackland, G J

    2012-01-01

    The process of deriving an interatomic potentials represents an attempt to integrate out the electronic degrees of freedom from the full quantum description of a condensed matter system. In practice it is the derivatives of the interatomic potentials which are used in molecular dynamics, as a model for the forces on a system. These forces should be the derivative of the free energy of the electronic system, which includes contributions from the entropy of the electronic states. This free energy is weakly temperature dependent, and although this can be safely neglected in many cases there are some systems where the electronic entropy plays a significant role. Here a method is proposed to incorporate electronic entropy in the Sommerfeld approximation into empirical potentials. The method is applied as a correction to an existing potential for titanium. Thermal properties of the new model are calculated, and a simple method for fixing the melting point and solid-solid phase transition temperature for existing models fitted to zero temperature data is presented.

  20. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Science.gov (United States)

    Ito, Akira; Nagai, Momoko; Tajino, Junichi; Yamaguchi, Shoki; Iijima, Hirotaka; Zhang, Xiangkai; Aoyama, Tomoki; Kuroki, Hiroshi

    2015-01-01

    Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C) for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and citrate synthase (CS), which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1) and aggrecan (ACAN), was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y)-box 9 (SOX9), which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and chondrogenesis.