WorldWideScience

Sample records for safe skin dose

  1. Association Between Maximal Skin Dose and Breast Brachytherapy Outcome: A Proposal for More Rigorous Dosimetric Constraints

    International Nuclear Information System (INIS)

    Cuttino, Laurie W.; Heffernan, Jill; Vera, Robyn; Rosu, Mihaela; Ramakrishnan, V. Ramesh; Arthur, Douglas W.

    2011-01-01

    Purpose: Multiple investigations have used the skin distance as a surrogate for the skin dose and have shown that distances 4.05 Gy/fraction. Conclusion: The initial skin dose recommendations have been based on safe use and the avoidance of significant toxicity. The results from the present study have suggested that patients might further benefit if more rigorous constraints were applied and if the skin dose were limited to 120% of the prescription dose.

  2. Correlation of patient maximum skin doses in cardiac procedures with various dose indicators

    International Nuclear Information System (INIS)

    Domienik, J.; Papierz, S.; Jankowski, J.; Peruga, J.Z.; Werduch, A.; Religa, W.

    2008-01-01

    In most countries of European Union, legislation requires the determination of the total skin dose received by patients during interventional procedures in order to prevent deterministic damages. Various dose indicators like dose-area product (DAP), cumulative dose (CD) and entrance dose at the patient plane (EFD) are used for patient dosimetry purposes in clinical practice. This study aimed at relating those dose indicators with doses ascribed to the most irradiated areas of the patient skin usually expressed in terms of local maximal skin dose (MSD). The study was performed in two different facilities for two most common cardiac procedures coronary angiography (CA) and percutaneous coronary interventions (PCI). For CA procedures, the registered values of fluoroscopy time, total DAP and MSD were in the range (0.7-27.3) min, (16-317) Gy cm 2 and (43-1507) mGy, respectively, and for interventions, accordingly (2.1-43.6) min, (17-425) Gy cm 2 , (71-1555) mGy. Moreover, for CA procedures, CD and EFD were in the ranges (295-4689) mGy and (121-1768) mGy and for PCI (267-6524) mGy and (68-2279) mGy, respectively. No general and satisfactory correlation was found for safe estimation of MSD. However, results show that the best dose indicator which might serve for rough, preliminary estimation is DAP value. In the study, the appropriate trigger levels were proposed for both facilities. (authors)

  3. External contamination and skin dose. From ICRP and regulations to skin dose evaluation in practice

    International Nuclear Information System (INIS)

    Le Coulteulx, I.; Apretna, D.; Beaugerie, M.; Fenolland, J.; Frey, R.; Gonin, M.; Landry, B.; Laporte, E.; Le Guen, B.; Leval, D.

    2006-01-01

    Dose limitation to the skin is an objective of radiation protection. Our aim is to propose in case of skin contamination in EDF NPPs a simply, quickly and reproducible procedure for evaluating skin dose. French regulation admit an annual limit for skin dose over one square centimeter equal to 500 mSv. ICRP Publication 26 and 60 recommend that dose assessment be performed only if skin dose might be equal to or more than 50 mSv at basal cells. To respect this recommendation, an alert value (A) must be determined. This value is the lowest value of measurement from which dose assessment has to be made, based on the hypothesis that uninterrupted work time in controlled area is no more than four hours. This alert value (A) has been established for three external detection equipments, and for the ten radionuclides commonly detected. In case of external contamination, a first measurement is performed. If the value exceeds value (A), other measurements are instituted because skin dose evaluation needs to know other parameters as: - the radioactivity of the most contaminated square centimeter of the skin, - the identity of the radionuclides and their relative proportion. At the same time, we have to evaluate the length of the exposure. At last, we use different compiled results in a program developed from excel software which allow to calculate automatically the skin dose. This work has allowed us to publish an occupational health guideline about the assessment of skin dose in case of external contamination in EDF NPPs and to create an information booklet for workers. The authors propose to examine used methodology and to demonstrate the software. (authors)

  4. Determination of Entrance Skin Doses and Organ Doses for Medical X Ray Examinations

    International Nuclear Information System (INIS)

    Tung, C.J.; Cheng, C.Y.; Chao, T.C.; Tsai, H.Y.

    1999-01-01

    A national survey of patient doses for diagnostic X ray radiographs is planned in Taiwan. Entrance skin doses and organ doses for all installed X ray machines will be investigated. A pilot study has been carried out for the national survey to develop a protocol for the dose assessment. Entrance skin doses and organ doses were measured by thermoluminescence dosemeters and calculated by Monte Carlo simulations for several X ray examinations. The conversion factor from free air entrance absorbed dose to entrance skin dose was derived. A formula for the computation of entrance skin doses from inputs of kV p , mA.s, source to skin distance, aluminium filtration, and generator rectifying was constructed. Organ doses were measured using a RANDO phantom and calculated using a mathematical phantom. All data will be passed to the Atomic Energy Council for developing a programme of national survey and regulatory controls for diagnostic X ray examinations. (author)

  5. Selection of skin dose calculation methodologies

    International Nuclear Information System (INIS)

    Farrell, W.E.

    1987-01-01

    This paper reports that good health physics practice dictates that a dose assessment be performed for any significant skin contamination incident. There are, however, several methodologies that could be used, and while there is probably o single methodology that is proper for all cases of skin contamination, some are clearly more appropriate than others. This can be demonstrated by examining two of the more distinctly different options available for estimating skin dose the calculational methods. The methods compiled by Healy require separate beta and gamma calculations. The beta calculational method is the derived by Loevinger, while the gamma dose is calculated from the equation for dose rate from an infinite plane source with an absorber between the source and the detector. Healy has provided these formulas in graphical form to facilitate rapid dose rate determinations at density thicknesses of 7 and 20 mg/cm 2 . These density thicknesses equate to the regulatory definition of the sensitive layer of the skin and a more arbitrary value to account of beta absorption in contaminated clothing

  6. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Webster, C.M.; Horrocks, J.; Hayes, D.

    2001-01-01

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm 2 and 22.5 mSv for RFCA, and 32 Gycm 2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  7. Skin dose measurement with MICROSPEC-2 trademark

    International Nuclear Information System (INIS)

    Hsu, H.H.

    1997-01-01

    For many years, the Eberline HP-260 trademark beta detectors were used for skin dose measurements at Los Alamos National Laboratory. This detector does not measure the beta spectrum and the skin dose can only be determined if the contaminating radioactive isotope is known. A new product MICROSPEC-2 trademark, has been developed which consists of a small portable computer with a multichannel analyzer and a beta probe consisting of a phoswich detector. The system measures the beta spectrum and automatically folds in the beta fluence-to-dose conversion function to yield the skin dose

  8. Skin dose mapping for fluoroscopically guided interventions.

    Science.gov (United States)

    Johnson, Perry B; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E

    2011-10-01

    To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional

  9. Fast skin dose estimation system for interventional radiology.

    Science.gov (United States)

    Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-03-01

    To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.

  10. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  11. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  12. The effect of repeated laser stimuli to ink-marked skin on skin temperature—recommendations for a safe experimental protocol in humans

    Directory of Open Access Journals (Sweden)

    Victoria J. Madden

    2016-01-01

    Full Text Available Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing.Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back.Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure.Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it.

  13. Comparing the level of dexterity offered by latex and nitrile SafeSkin gloves.

    Science.gov (United States)

    Sawyer, Jo; Bennett, Allan

    2006-04-01

    An increase in the occurrence of latex allergy has been concurrent with the increasing use of latex gloves by laboratory and healthcare workers. In recent years nitrile gloves have been used to replace latex gloves to prevent latex allergy. Nitrile gloves offer a comparable level of protection against chemical and biological agents and are more puncture resistant. However, if manual dexterity is compromised by nitrile gloves to a greater degree than latex then this may increase the risk of sharps injuries. The Purdue pegboard test, which measures both gross and fine finger dexterity, was used to test the dexterity levels of two glove types used at HPA CEPR; Kimberly-Clark SafeSkin nitrile and latex laboratory gloves. There was a statistically significant 8.6% increase in fine finger dexterity provided by latex compared with nitrile SafeSkin laboratory gloves but no difference in gross dexterity between the glove types. There was no significant relationship between glove dexterity and age or gender. The selection of glove size was influenced by the digit length of participants. Moreover, those with longer, thinner fingers appeared to have an advantage when using nitrile SafeSkin gloves. The level of dexterity provided by latex and nitrile SafeSkin gloves for tasks on a gross dexterity level are comparable and health workers will benefit from the non-allergenic properties of nitrile. For tasks requiring fine finger dexterity nitrile SafeSkin gloves may impede dexterity. Despite this, the degree of restriction appears to have a negligible impact on safety in this study when compared with the risk of latex sensitization and subsequent allergy. In addition to glove material, working practices must also take into account glove size, fit, grip and thickness, as these factors can all influence dexterity.

  14. Radon dose to the skin and the possible induction of skin cancers

    International Nuclear Information System (INIS)

    Eatough, J.P.; Henshaw, D.L.

    1991-01-01

    The radon related alpha particle dose equivalent to the basal layer of the epidermis has been calculated and found to be at least 2 mSv.y -1 , for exposed skin at the UK average radon exposure of 20 Bq.m -3 . A considerably greater dose equivalent may be received at this same radon concentration depending on the plateout conditions. Using standard risk factors 13% of skin cancers would theoretically be attributed to radon at the UK average exposure of 20 Bq.m -3 . Direct studies of skin cancer and radon in the home are needed before the validity of this prediction can be established. There is little evidence from high dose studies suggesting the induction of malignant melanoma by ionising radiation, although some circumstantial evidence exists, and the possibility that radon may be a co-factor with UV light in the induction of malignant melanoma, should not be dismissed. Due to the nature of the radiation risk factors the majority of any skin cancers linked to radon will simultaneously be linked to ultraviolet light exposure. (author)

  15. Dose factors for contamination of skin and clothing

    International Nuclear Information System (INIS)

    Henrichs, K.; Eiberweiser, C.; Paretzke, H.G.

    1985-11-01

    Methods are described for quantifying the radiation dose administered through radioactive contamination of the skin (and of clothing, in an approximative manner). The calculated results are presented in tables. The dose values established are of significance with regard to radiological assessment of contamination for the definition of dose limits, and for use as a criterion to select appropriate decontamination activities. Alpha, beta and monoenergetic electrons are of importance for estimating the absorbed dose in various skin depths, whereas for other body regions (as e.g. body organs) photon radiation has to be considered. The calculations are based on the assumption of homogeneous exposure of the skin, with the linear extension being large compared to the range of the emitted particle radiation. In order to be able to take into account potential penetration of radioactivity into deeper skin layers by diffusion or solution processes, the calculations have been made for contamination into various depths of the horny layers of the epidermis. The scheme of specific absorbed fraction (SAF) served as a basis for the uniform treatment of different radiation types for the calculation of dose values. (orig./HP) [de

  16. The biological basis for dose limitation to the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1992-01-01

    Ionizing radiation may cause deterministic effects and cancer. It has been the policy to base dose limits for radiation protection of the skin on the prevention of deterministic effects (1). In the case of cancer in general, dose limitation for radiation protection is based on limiting excess cancer mortality to low levels of radiation. Since skin cancers are seldom lethal, the general radiation protection standards will protect against an increase in excess mortality from skin cancer. However, with the dose limits selected to prevent deterministic effects, there is a significant probability of an excess incidence of skin cancer occurring as a result of exposure during a working lifetime. The induction of skin cancer by radiation is influenced significantly by subsequent exposure to ultraviolet radiation (UVR) from sunlight. This finding raises not only interesting questions about the mechanisms involved, but also about the differences in risk of skin cancer in different populations. The amount and distribution of melanin in the skin determines the degree of the effect of UVR. This paper discusses the mechanisms of the induction of both deterministic and stochastic effects in skin exposed to radiation in relation to radiation protection. (author)

  17. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    The International Commission on Radiological Protection (Publication 26) has recommended a tissue depth of 5 to 10 mg.cm -2 for skin dose assessments. This requirement is generally not fulfilled by routine monitoring procedures because of practical difficulties in using very thin dosemeters with low sensitivity and therefore a high minimum detectable dose. Especially for low-energy beta-ray exposures underestimations of the skin dose by a factor of more than ten may occur. Low-transparent graphite-mixed sintered LiF and Li 2 B 4 0 7 : Mn dosemeters were produced which show a skin-equivalent response to beta and gamma exposures over a wide range of energies. These have found wide-spread application for extremity dosimetry but have not yet been generally introduced in routine personnel beta/gamma monitoring. The following adaptations of existing routine monitoring systems for improved skin dose assessments have been investigated: 1) Placement of a supplementary, thin, skin-dose equivalent dosemeter in the TLD badge to give additional information on low-energy exposures. 2) Introduction of a second photomultiplier in the read-out chamber which enables a simultaneous determination of emitted TL from both sides of the dosemeter separately. This method makes use of the selfshielding of the dosemeter to give information on the low-energy dose contribution. 3) By diffusion of Li 2 B 4 0 7 into solid LiF-dosemeters it was possible to produce a surface layer with a new distinct glow-peak at about 340 deg C which is not present in the undiffused part of the LiF chip, and which can be utilized for the assessment of the skin-dose. Data on energy response and accuracy of dose measurement for beta/gamma exposures are given for the three methods and advantages and disadvantages are discussed (H.K.)

  18. Measurement of off-axis and peripheral skin dose using radiochromic film

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, P.K.N.; Metcalfe, P.E.

    1998-01-01

    A radiotherapy skin dose profile can be obtained with radiochromic film. The central axis skin dose relative to D max for a 10x10cm 2 field size was found to be 22%, 17% and 15.5% for 6 MV, 10 MV and 18 MV photon beams. Peripheral dose increased with increasing field size. At 10 MV the skin dose 2 cm outside the geometric field edge was measured as 6%, 10% and 17% for 10x10cm 2 , 20x20cm 2 and 30x30cm 2 field sizes respectively. Off-axis skin dose decreased as distance increased from central axis for fields with Perspex block trays. For a 20x20cm 2 field, an approximately 5-8% drop in percentage skin dose was observed from central axis to the beam edge. (author)

  19. Verification of skin dose according to the location of tumor in Tomotherapy

    International Nuclear Information System (INIS)

    Yoon, Bo Reum; Park, Su Yeon; Park, Byoung Suk; KIm, Jong Sik; Song, Ki Won

    2014-01-01

    To verify the skin dose in Tomotherapy-based radiation treatment according to the change in tumor locations, skin dose was measured by using Gafchromic EBT3 film and compared with the planned doses to find out the gap between them. In this study, to measure the skin dose, I'm RT Phantom(IBA Dosimetry, Germany) was utilized. After obtaining the 2.5 mm CT images, tumor locations and skin dose measuring points were set by using Pinnacle(ver 9.2, Philips Medical System, USA). The tumor location was decided to be 5 mm and 10 mm away from surface of the phantom and center. Considering the attenuation of a Tomo-couch, we ensured a symmetric placement between the ceiling and floor directions of the phantom. The measuring point of skin doses was set to have 3 mm and 5 mm thickness from the surface. Measurement was done 3 times. By employing TomoHD(TomoHD treatment system, Tomotherapy Inc., Madison, Wisconsin, USA), we devised Tomotherapy plans, measured 3 times by inserting Gafchromic EBT3 film into the phantom and compared the measurement with the skin dose treatment plans. The skin doses in the upper part of the phantom, when the tumor was located in the center, were found to be 7.53 cGy and 7.25 cGy in 5 mm and 3 mm respectively. If placed 5 mm away from the skin in the ceiling direction, doses were 18.06 cGy and 16.89 cGy; if 10 mm away, 20.37 cGy and 18.27 cGy, respectively. The skin doses in the lower part of the phantom, when the tumor was located in the center, recorded 8.82 cGy and 8.29 cGy in 5 mm and 3 mm, each; if located 5mm away from the lower part skin, 21.69 cGy and 19.78 cGy were respectively recorded; and if 10 mm away, 20.48 cGy and 19.57 cGy were recorded. If the tumor was placed in the center, skin doses were found to increase by 3.2-17.1% whereas if the tumor is 5 mm away from the ceiling part, the figure decreased to 2.8-9.0%. To the Tomo-couch direction, skin doses showed an average increase of 11% or over, compared to the planned treatment

  20. Skin dose variation: influence of energy

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: This research aimed to quantitatively evaluate the differences in percentage dose of maximum for 6MV and 18MV x-ray beams within the first lcm of interactions. Thus provide quantitative information regarding the basal, dermal and subcutaneous dose differences achievable with these two types of high-energy x-ray beams. Percentage dose of maximum build up curves are measured for most clinical field sizes using 6MV and 18MV x-ray beams. Calculations are performed to produce quantitative results highlighting the percentage dose of maximum differences delivered to various depths within the skin and subcutaneous tissue region by these two beams Results have shown that basal cell layer doses are not significantly different for 6MV and 18Mv x-ray beams At depths beyond the surface and basal cell layer there is a measurable and significant difference in delivered dose. This variation increases to 20% of maximum and 22% of maximum at Imm and 1cm depths respectively. The percentage variations are larger for smaller field sizes where the photon in phantom component of the delivered dose is the most significant contributor to dose By producing graphs or tables of % dose differences in the build up region we can provide quantitative information to the oncologist for consideration (if skin and subcutaneous tissue doses are of importance) during the beam energy selection process for treatment. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  1. Kodak EDR2 film for patient skin dose assessment in cardiac catheterization procedures.

    Science.gov (United States)

    Morrell, R E; Rogers, A T

    2006-07-01

    Patient skin doses were measured using Kodak EDR2 film for 20 coronary angiography (CA) and 32 percutaneous transluminal coronary angioplasty (PTCA) procedures. For CA, all skin doses were well below 1 Gy. However, 23% of PTCA patients received skin doses of 1 Gy or more. Dose-area product (DAP) was also recorded and was found to be an inadequate indicator of maximum skin dose. Practical compliance with ICRP recommendations requires a robust method for skin dosimetry that is more accurate than DAP and is applicable over a wider dose range than EDR2 film.

  2. Technical background for shallow (skin) dose equivalent evaluations

    International Nuclear Information System (INIS)

    Ashley, J.C.; Turner, J.E.; Crawford, O.H.; Hamm, R.N.; Reaves, K.L.; McMahan, K.L.

    1991-01-01

    Department of Energy Order 5480.11 describes procedures for radiation protection for occupational workers. The revisions dealing with non-uniform exposure to the skin are the subject of this report. We describe measurements and analysis required to assess shallow (skin) dose equivalent from skin contamination. 6 refs., 4 tabs

  3. A biosafety evaluation of synchrotron radiation X-ray to skin and bone marrow: single dose irradiation study of rats and macaques.

    Science.gov (United States)

    Lu, Yifan; Tang, Guanghui; Lin, Hui; Lin, Xiaojie; Jiang, Lu; Yang, Guo-Yuan; Wang, Yongting

    2017-06-01

    Very limited experimental data is available regarding the safe dosages related to synchrotron radiation (SR) procedures. We used young rats and macaques to address bone marrow and skin tolerance to various doses of synchrotron radiation. Rats were subjected to 0, 0.5, 2.5, 5, 25 or 100 Gy local SR X-ray irradiation at left hind limb. Rat blood samples were analyzed at 2-90 days after irradiation. The SR X-ray irradiated skin and tibia were sectioned for morphological examination. For non-human primate study, three male macaques were subjected to 0.5 or 2.5 Gy SR X-ray on crus. Skin responses of macaques were observed. All rats that received SR X-ray irradiation doses greater than 2.5 Gy experienced hair loss and bone-growth inhibition, which were accompanied by decreased number of follicles, thickened epidermal layer, and decreased density of bone marrow cells (p X-ray but showed significant hair loss when the dose was raised above 2.5 Gy. The safety threshold doses of SR X-ray for rat skin, bone marrow and macaque skin are between 0.5 and 2.5 Gy. Our study provided essential information regarding the biosafety of SR X-ray irradiation.

  4. Characteristics of dosemeter types for skin dose measurements in practice

    International Nuclear Information System (INIS)

    Van, D. J.; Bosmans, H.; Marchal, G.; Wambersie, A.

    2005-01-01

    A growing number of papers report deterministic effects in the skin of patients who have undergone interventional radiological procedures. Dose measurements, and especially skin dose measurements, are therefore increasingly important. Methods and acceptable dosemeters are, however, not clearly defined. This paper is the result of a literature overview with regard to assessing the entrance skin dose during radiological examinations by putting a dosemeter on the patient's skin. The relevant intrinsic characteristics, as well as some examples of clinical use of the different detector types, are presented. In this respect, thermoluminescence, scintillation, semiconductor and film dosemeters are discussed and compared with respect to their practical use. (authors)

  5. Jasmine rice panicle: A safe and efficient natural ingredient for skin aging treatments.

    Science.gov (United States)

    Kanlayavattanakul, Mayuree; Lourith, Nattaya; Chaikul, Puxvadee

    2016-12-04

    While rice is one of the most important global staple food sources its extracts have found many uses as the bases of herbal remedies. Rice extracts contain high levels of phenolic compounds which are known to be bioactive, some of which show cutaneous benefits and activity towards skin disorders. This study highlights an assessment of the cellular activity and clinical efficacy of rice panicle extract, providing necessary information relevant to the development of new cosmetic products. Jasmine rice panicle extract was standardized, and the level of phenolics present was determined. In vitro anti-aging, and extract activity towards melanogenesis was conducted in B16F10 melanoma cells, and antioxidant activity was assessed in human skin fibroblast cell cultures. Topical product creams containing the extract were developed, and skin irritation testing using a single application closed patch test method was done using 20 Thai volunteers. Randomized double-blind, placebo-controlled efficacy evaluation was undertaken in 24 volunteers over an 84d period, with the results monitored by Corneometer ® CM 825, Cutometer ® MPA 580, Mexameter ® MX 18 and Visioscan ® VC 98. Jasmine rice panicle extract was shown to have a high content of p-coumaric, ferulic and caffeic acids, and was not cytotoxic to the cell lines used in this study. Cells treated with extract suppressed melanogenesis via tyrosinase and TRP-2 inhibitory effects, which protect the cell from oxidative stress at doses of 0.1mg/ml or lower. The jasmine rice panicle preparations (0.1-0.2%) were safe (MII=0), and significantly (p0.05). Jasmine rice panicle extract having high levels of phenolics shows cutaneous benefits as the basis for skin aging treatments, as indicated through in vitro cytotoxicity assessments and skin testing in human subjects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Technical basis for beta skin dose calculations at the Y-12 Plant

    International Nuclear Information System (INIS)

    Thomas, J.M.; Bogard, R.S.

    1994-03-01

    This report describes the methods for determining shallow dose equivalent to workers at the Oak Ridge Y-12 Plant from skin contamination detected by survey instrumentation. Included is a discussion of how the computer code VARSKIN is used to calculate beta skin dose and how the code input parameters affect skin dose calculation results. A summary of Y-12 Plant specific assumptions used in performing VARSKIN calculations is presented. Derivations of contamination levels that trigger the need for skin dose assessment are given for both enriched and depleted uranium with the use of Y-12 Plant site-specific survey instruments. Department of Energy recording requirements for nonuniform exposure of the skin are illustrated with sample calculations

  7. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  8. Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia.

    Science.gov (United States)

    Mattar, Essam H; Hammad, Lina F; Al-Mohammed, Huda I

    2011-07-01

    Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to bone marrow transplant. It is involved in the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore measuring and monitoring the skin dose during the treatment is important. Two kinds of metal oxide semiconductor field effect transistor (OneDose MOSFET and mobile MOSEFT) dosimeter are used during the treatment delivery to measure the skin dose to specific points and compare it with the target prescribed dose. The objective of this study was to compare the variation of skin dose in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using OneDose MOSFET detectors and Mobile MOSFET, and then compare both results with the target prescribed dose. The measurements involved 32 patient's (16 males, 16 females), aged between 14-30 years, with an average age of 22.41 years. One-Dose MOSFET and Mobile MOSFET dosimetry were performed at 10 different anatomical sites on every patient. The results showed there was no variation between skin dose measured with OneDose MOSFET and Mobile MOSFET in all patients. Furthermore, the results showed for every anatomical site selected there was no significant difference in the dose delivered using either OneDose MOSFET detector or Mobile MOSFET as compared to the prescribed dose. The study concludes that One-Dose MOSFET detectors and Mobile MOSFET both give a direct read-out immediately after the treatment; therefore both detectors are suitable options when measuring skin dose for total body irradiation treatment.

  9. A simplified model for predicting skin dose received by patients from ...

    African Journals Online (AJOL)

    Use of ionising radiation in any sector requires doses to be kept as low as reasonable achievable (ARALA). Thus, in keeping radiation dose to skin from diagnostic X-rays, as low as is required by this philosophy, it is useful to obtain an estimate of skin dose before the actual dose is administered. The aim of this paper is to ...

  10. Method of estimating patient skin dose from dose displayed on medical X-ray equipment with flat panel detector

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Koshida, Kichiro; Togashi, Atsuhiko; Matsubara, Kousuke

    2004-01-01

    The International Electrotechnical Commission (IEC) has stipulated that medical X-ray equipment for interventional procedures must display radiation doses such as air kerma in free air at the interventional reference point and dose area product to establish radiation safety for patients (IEC 60601-2-43). However, it is necessary to estimate entrance skin dose for the patient from air kerma for an accurate risk assessment of radiation skin injury. To estimate entrance skin dose from displayed air kerma in free air at the interventional reference point, it is necessary to consider effective energy, the ratio of the mass-energy absorption coefficient for skin and air, and the backscatter factor. In addition, since automatic exposure control is installed in medical X-ray equipment with flat panel detectors, it is necessary to know the characteristics of control to estimate exposure dose. In order to calculate entrance skin dose under various conditions, we investigated clinical parameters such as tube voltage, tube current, pulse width, additional filter, and focal spot size, as functions of patient body size. We also measured the effective energy of X-ray exposure for the patient as a function of clinical parameter settings. We found that the conversion factor from air kerma in free air to entrance skin dose is about 1.4 for protection. (author)

  11. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators

    Science.gov (United States)

    Moradi, F.; Ung, N. M.; Khandaker, M. U.; Mahdiraji, G. A.; Saad, M.; Malik, R. Abdul; Bustam, A. Z.; Zaili, Z.; Bradley, D. A.

    2017-08-01

    The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. Highlights: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin

  12. Report of task group on the biological basis for dose limitation in the skin

    International Nuclear Information System (INIS)

    1989-08-01

    Researchers have drawn attention to what they consider inconsistencies in the manner in which ICRP have considered skin in relation to the effective dose equivalent. They urge that the dose to the skin should be considered routinely for inclusion in the effective dose equivalent in the context of protection of individuals and population groups. They note that even with a weighting factor of only 0.01 that the dose to the skin can be a significant contributor to the effective dose equivalent including skin for practical exposure conditions. In the case of many exposures the risk to the skin can be ignored but exposure in an uniformly contaminated cloud that might occur with 85 Kr the dose to the skin could contribute 60% of the stochastic risk if included in the effective dose equivalent with a W T of 0.01. Through the years and even today the same questions about radiation effects in the skin and dosimetry keep being asked. This report collates the available data and current understanding of radiation effects on the skin, and may make it possible to estimate risks more accurately and to improve the approach to characterizing skin irradiations. 294 refs., 29 figs

  13. Guideline values for skin decontamination measures based on nuclidspecific dose equivalent rate factors

    International Nuclear Information System (INIS)

    Pfob, H.; Heinemann, G.

    1992-01-01

    Corresponding dose equivalent rate factors for various radionuclides are now available for determining the skin dose caused by skin contamination. These dose equivalent rate factors take into account all contributions from the types of radiation emitted. Any limits for skin decontamination measures are nowhere contained or determined yet. However, radiological protection does in practice require at least guideline values in order to prevent unsuitable or detrimental measures that can be noticed quite often. New calculations of dose equivalent rate factors for the skin now make the recommendation of guideline values possible. (author)

  14. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma: an open clinical study and pooled data analysis.

    Science.gov (United States)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars; Skov, Lone; Petersen, Peter Meidahl; Loft, Annika; Specht, Lena

    2015-05-01

    Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments is limited to 2 to 3 courses in a lifetime due to skin toxicity. This study aimed to determine the clinical effect of low-dose TSEBT in patients with MF and SS. In an open clinical study, 21 patients with MF/SS stages IB to IV were treated with low-dose TSEBT over dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. The overall response rate was 95% with a complete cutaneous response or a very good partial response rate (dose (10-Gy) TSEBT offers a high overall response rate and is relatively safe. With this approach, reirradiation at times of relapse or progression is likely to be less toxic than standard dose TSEBT. It remains to be established whether adjuvant and combination treatments can prolong the beneficial effects of low-dose TSEBT. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. MO-D-213-04: The Proximity to the Skin of PTV Affects PTV Coverage and Skin Dose for TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T; Higgins, P; Watanabe, Y [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: The proximity to the skin surface of the PTV for the patients with skin disease could be a concern in terms of the PTV coverage and actual surface dose (SD). IMRT optimization algorithms increase the beam intensity close to the skin in order to compensate for lack of scattering material, leading to enhanced SD but potential hot spots. This study aims to investigate the effect of PTV proximity to the skin on planning and measured SD Methods: All measurements were done for 6 MV X-ray beam of Helical TomoTherapy. An anthropomorphic phantom was scanned in a CT simulator in a routine manner with thermoplastic mask immobilization. PTVs were created with varying distances to the skin of 0 mm -(PTV1), 1 mm- (PTV2), 2 mm-(PTV3) and 3 mm-(PTV4). Also, a 5 mm bolus was used with PTV1 (PTV5). All planning constraints were kept the same in all studies (hard constraint: 95% of the prescription dose covered 95% of the PTV). Gafchromic film (EBT3) was placed under the mask on the phantom surface, and the resulting dose was estimated using RIT software. Results: Optimizing the dose using different PTVs lead to average planned target doses of 10.8, 10.3, 10.2, 10.3 and 10.0 Gy, with maximum doses 12.2, 11.2, 11.1, 11.1 and 10.0 Gy for PTV1, PTV2, PTV3, PTV4 and PTV5, respectively. EBT3 measurements indicated a significant decrease of SD with skin distance by 12.7% (PTV1), 21.9% (PTV2), 24.8% (PTV3) and 28.4% (PTV4) comparing to prescription dose. Placement of a 5 mm bolus on the phantom surface resulted in a SD close to prescribed (+0.5%). Conclusion: This work provides a clear demonstration of the relationship between the skin dose and the PTV to the skin distance. The results indicate the necessity of a bolus even for TomoTherapy when high skin dose is required.

  16. MO-D-213-04: The Proximity to the Skin of PTV Affects PTV Coverage and Skin Dose for TomoTherapy

    International Nuclear Information System (INIS)

    Reynolds, T; Higgins, P; Watanabe, Y

    2015-01-01

    Purpose: The proximity to the skin surface of the PTV for the patients with skin disease could be a concern in terms of the PTV coverage and actual surface dose (SD). IMRT optimization algorithms increase the beam intensity close to the skin in order to compensate for lack of scattering material, leading to enhanced SD but potential hot spots. This study aims to investigate the effect of PTV proximity to the skin on planning and measured SD Methods: All measurements were done for 6 MV X-ray beam of Helical TomoTherapy. An anthropomorphic phantom was scanned in a CT simulator in a routine manner with thermoplastic mask immobilization. PTVs were created with varying distances to the skin of 0 mm -(PTV1), 1 mm- (PTV2), 2 mm-(PTV3) and 3 mm-(PTV4). Also, a 5 mm bolus was used with PTV1 (PTV5). All planning constraints were kept the same in all studies (hard constraint: 95% of the prescription dose covered 95% of the PTV). Gafchromic film (EBT3) was placed under the mask on the phantom surface, and the resulting dose was estimated using RIT software. Results: Optimizing the dose using different PTVs lead to average planned target doses of 10.8, 10.3, 10.2, 10.3 and 10.0 Gy, with maximum doses 12.2, 11.2, 11.1, 11.1 and 10.0 Gy for PTV1, PTV2, PTV3, PTV4 and PTV5, respectively. EBT3 measurements indicated a significant decrease of SD with skin distance by 12.7% (PTV1), 21.9% (PTV2), 24.8% (PTV3) and 28.4% (PTV4) comparing to prescription dose. Placement of a 5 mm bolus on the phantom surface resulted in a SD close to prescribed (+0.5%). Conclusion: This work provides a clear demonstration of the relationship between the skin dose and the PTV to the skin distance. The results indicate the necessity of a bolus even for TomoTherapy when high skin dose is required

  17. Changing Default Fluoroscopy Equipment Settings Decreases Entrance Skin Dose in Patients.

    Science.gov (United States)

    Canales, Benjamin K; Sinclair, Lindsay; Kang, Diana; Mench, Anna M; Arreola, Manuel; Bird, Vincent G

    2016-04-01

    Proper fluoroscopic education and protocols may reduce the patient radiation dose but few prospective studies in urology have been performed. Using optically stimulated luminescent dosimeters we tested whether fluoroscopy time and/or entrance skin dose would decrease after educational and radiation reduction protocols. At default manufacturer settings fluoroscopy time and entrance skin dose were prospectively measured using optically stimulated luminescent dosimeters in patients undergoing ureteroscopy, retrograde pyelogram/stent or percutaneous nephrolithotomy with access for stone disease. A validated radiation safety competency test was administered to urology faculty and residents before and after web based, hands-on fluoroscopy training. Default fluoroscopy settings were changed from continuous to intermittent pulse rate and from standard to half-dose output. Fluoroscopy time and entrance skin dose were then measured again. The cohorts of 44 pre-protocol and 50 post-protocol patients with stones were similarly matched. The change in mean fluoroscopy time and entrance skin dose from pre-protocol to post-protocol was -0.6 minutes and -11.6 mGy (33%) for percutaneous nephrolithotomy (p = 0.62 and default settings to intermittent pulse rate (12 frames per second) and half-dose lowered the entrance skin dose by 30% across all endourology patients but most significantly during percutaneous nephrolithotomy. To limit patient radiation exposure fluoroscopy default settings should be decreased before all endourology procedures and image equipment manufacturers should consider lowering standard default renal settings. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Skin and gonadal dose reduction during hip radiography of the bull

    International Nuclear Information System (INIS)

    Wood, A.K.W.; Blockey, deB.; Reynolds, K.M.; Leith, I.S.; Burns, P.A.

    1979-01-01

    Radiology is being used to an increasing extent in the clinical diagnosis of hip lameness in bulls. Consequent gonadal doses may have important implications in later breeding programmes. Skin and gonadal doses were recorded during hip radiography of 18 bulls. An additional 0.13 mm copper filtration reduced skin dose by more than one third, but had no effect on gonadal dose. The average radiation dose to the gonads was approximately halved by completely surrounding the scrotum with lead sheeting 0.95 mm in thickness. (author)

  19. Evaluation of skin entrance dose imparted on pediatric patients by thorax exams

    International Nuclear Information System (INIS)

    Oliveira, Mercia L.; Khoury, Helen; Drexler, Guenter; GSF-National Research Center for Environment and Health, Neuherberg; Barros, Edison

    2001-01-01

    In this work the results of a survey of skin entrance dose imparted on pediatric patients are present. Positioning the thermo luminescence dosimeters in contact with the patient's skin, in the center of the incident X-ray beam, collected the skin entrance dose data. The patients were grouped in five age groups: infants, 1,1 to 4 years, 4,1 to 6 years, 6,1 to 10 years and older than 10 years. The results show that the average of skin entrance doses is very higher as compared to the European Community Commission reference levels and to other values found in literature. (author)

  20. Response of pig skin to fractionated radiation doses

    International Nuclear Information System (INIS)

    Wiernik, G.; Hopewell, J.W.; Patterson, T.J.S.; Young, C.M.A.; Foster, J.L.

    1977-01-01

    The individual components of a fractionated course of irradiation treatment have been considered separately. Methods of accurate measurement of individual parameters has brought to light different interpretations of the observations. Reasons are given for the necessity of having a radiobiological model which has a direct relevance to the clinical situation. Results are reported for fractionated regimes of irradiation in which the dose has been varied above and below normal tissue tolerance which has been equated with clinical skin necrosis. The components of the acute skin reaction, erythema, pigmentation and desquamation have been analysed separately and their contribution as a method of measurement assessed. Initially, the range of numerical scores attributed to erythema did not reach the scores attributed to necrosis but we now believe that radiation damage expressed as erythema can move directly into necrosis without passing through desquamation. Desquamation, on the other hand, only became a useful parameter at higher dose levels; it has also been shown to be a component associated with skin breakdown. Pigmentation showed no dose response at the dose levels employed in our experiments and it is our belief that this is due to this system being fully saturated under these circumstances. Measurement of the late radiation reaction in the skin has been considered in detail and our results have been expressed by comparing the relative lengths of irradiated and control fields in the same pig. From these findings iso-effect graphs have been constructed and time and fractionation factors have been derived. (author)

  1. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  2. Dose-response relationships and threshold levels in skin and respiratory allergy

    NARCIS (Netherlands)

    Arts, J.H.E.; Mommers, C.; Heer, C.de

    2006-01-01

    A literature study was performed to evaluate dose-response relationships and no-effect levels for sensitization and elicitation in skin- and respiratory allergy. With respect to the skin, dose-response relationships and no-effect levels were found for both intradermal and topical induction, as well

  3. Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds

    International Nuclear Information System (INIS)

    Guix, Benjamin; Finestres, Fernando; Tello, Jose-Ignacio; Palma, Cesar; Martinez, Antonio; Guix, Jose-Ramon; Guix, Ricardo

    2000-01-01

    Purpose: To analyze the results obtained in a prospective group of patients with basal or squamous cell skin carcinomas of the face treated by high-dose-rate (HDR) brachytherapy via custom-made surface molds. Methods and Materials: A total of 136 patients with basal or squamous cell carcinomas of the face were treated between March 1992 and March 1997 by surface molds and HDR brachytherapy with iridium-192. Nineteen patients were treated with standard Brock applicators and 117 patients with custom-made polymethyl methacrylate applicators, built over a plaster mold obtained of the patient's face. Minimum dose administered to the tumor was 6000 to 6500 cGy in 33 to 36 fractions at 180 cGy/fraction in lesions of up to 4 cm. Lesions greater than 4 cm were boosted up to 7500-8000 cGy after a 3-week pause. Results: With the custom-made surface molds, the dose distribution was uniform in the surface of the skin and at 5 mm depth in the whole area of the applicator. Differences between the areas of maximum and minimum dose at this depth never reached values higher than 5% of the prescribed dose. At the edges of the custom-made molds dose gradient was sharp, with the detected dose at 5 mm from the applicator being negligible. All the patients were complete responders. There were 3 local recurrences, 1/73 patients treated for primary tumor and 2/63 patients treated for recurrent tumor. Actuarial local control at 5 years for all patients was 98%, for those patients with primary tumors 99%, and for recurrent patients 87%. The treatment tolerance was excellent in all cases. No severe, early, or late, complications were detected. Conclusions: Radiotherapy is a highly effective treatment of skin carcinomas of the face. Custom-made molds, to be used in conjunction with HDR brachytherapy equipment, make possible a uniform dose distribution, with a sharp dose gradient in the limits of applicators. Custom-made surface molds are easy and safe to use, and they fit very accurately for

  4. Dose-modifying factors for skin ulceration in mouse legs exposed to gamma rays

    International Nuclear Information System (INIS)

    Masuda, Kouji; Miyoshi, Makoto; Uehara, Satoru; Omagari, Junichi; Withers, H.R.

    1996-01-01

    To assess the dose-modifying factors for skin ulceration, the hind legs of mice were irradiated using gamma-rays of various doses in single exposures. The skin ulceration began to occur 2 months after irradiation, after early skin reactions such as wet desquamation, had healed completely. No new skin ulceration was observed more than 8 months after irradiation even though the observations were continued until 12 months post-irradiation. The ulceration dose 50 (UD50), a dose required to produce skin ulceration in from 2 to 8 months in 50% of the tested animals, was calculated for each treatment schedule. The preliminary shaving procedure reduced the UD50 dose to 0.85 that of the untreated controls. The ventral aspect of the hind leg was more radioresistant to single-dose irradiation than was to the dorsal aspect. The UD50 for the ventral aspect was 1.29 times that for the dorsal aspect when the skin had been previously shaved, and 1.46 times that for the unshaved control legs. The UD50 was 7 and 14% larger when mice were kept in the dorsal rather than the abdominal position during irradiation, for the preliminarily shaved and unshaved skin, respectively. (author)

  5. Dose characteristics of total-skin electron-beam irradiation with six-dual electron fields

    International Nuclear Information System (INIS)

    Choi, Tae Jin; Kim, Jin Hee; Kim, Ok Bae

    1998-01-01

    To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated. The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of Target-Skin Distance (TSD) and full collimator size (35x35 cm 2 on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cmx105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. The Full Width at Half Maximum(FWHM) of dose profile was 130 cm in large field of 105x105 cm 2 . The width of 100±10% of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose uniformity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80% depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within±10% difference excepts the protruding area of skin which needs a

  6. Late occurring lesions in the skin of rats after repeated doses of X-rays

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    Late radiation damage, characterized by atrophy and necrosis in the skin and subcutaneous tissues, has been demonstrated in both the tail and feet of rats. The incidence of necrosis increased with total dose. These total doses, in the range 72-144 Gy, were given as 4-8 treatment of 18 Gy, each dose separated from the next by an interval of 28 days. This treatment protocol minimized acute epithelial skin reactions. The same regime applied to the skin on the back of rats resulted in a very severe acute reaction occurring after the second to fifth dose of 18 Gy. This was surprising since back skin, like tail skin, is less sensitive to large single doses of radiation than that of the foot. The late radiation reaction in the foot and tail of rats are compared and contrasted with other attempts to assess late effects in rodent skin and with late changes seen in pig skin. (author)

  7. Implications of the quadratic cell survival curve and human skin radiation ''tolerance doses'' on fractionation and superfractionation dose selection

    International Nuclear Information System (INIS)

    Douglas, B.G.

    1982-01-01

    An analysis of early published multifraction orthovoltage human acute skin irradiation tolerance isoeffect doses is presented. It indicates that human acute skin radiation reactions may result from the repetition, with each dose fraction, of a cell survival curve of the form: S = e/sup -(αD + βD 2 )/). The analysis also shows no need for an independent proliferation related time factor for skin, for daily treatments of six weeks or less in duration. The value obtained for the constant β/α for orthovoltage irradiation from these data is 2.9 x 10 -3 rad -1 for the cell line determining acute skin tolerance. A radiation isoeffect relationship, based on the quadratic cell survival curve, is introduced for human skin. This relationship has some advantages over the nominal standard dose (NSD). First, its use is not restricted to tolerance level reactions. Second, a modification of the relationship, which is also introduced, may be employed in the selection of doses per treatment when irradiation dose fractions are administered at short intervals where repair of sublethal injury is incomplete

  8. Objective method to report planner-independent skin/rib maximal dose in balloon-based high dose rate (HDR) brachytherapy for breast cancer

    International Nuclear Information System (INIS)

    Kim, Yongbok; Trombetta, Mark G.

    2011-01-01

    Purpose: An objective method was proposed and compared with a manual selection method to determine planner-independent skin and rib maximal dose in balloon-based high dose rate (HDR) brachytherapy planning. Methods: The maximal dose to skin and rib was objectively extracted from a dose volume histogram (DVH) of skin and rib volumes. A virtual skin volume was produced by expanding the skin surface in three dimensions (3D) external to the breast with a certain thickness in the planning computed tomography (CT) images. Therefore, the maximal dose to this volume occurs on the skin surface the same with a conventional manual selection method. The rib was also delineated in the planning CT images and its maximal dose was extracted from its DVH. The absolute (Abdiff=|D max Man -D max DVH |) and relative (Rediff[%]=100x(|D max Man -D max DVH |)/D max DVH ) maximal skin and rib dose differences between the manual selection method (D max Man ) and the objective method (D max DVH ) were measured for 50 balloon-based HDR (25 MammoSite and 25 Contura) patients. Results: The average±standard deviation of maximal dose difference was 1.67%±1.69% of the prescribed dose (PD). No statistical difference was observed between MammoSite and Contura patients for both Abdiff and Rediff[%] values. However, a statistically significant difference (p value max >90%) compared with lower dose range (D max <90%): 2.16%±1.93% vs 1.19%±1.25% with p value of 0.0049. However, the Rediff[%] analysis eliminated the inverse square factor and there was no statistically significant difference (p value=0.8931) between high and low dose ranges. Conclusions: The objective method using volumetric information of skin and rib can determine the planner-independent maximal dose compared with the manual selection method. However, the difference was <2% of PD, on average, if appropriate attention is paid to selecting a manual dose point in 3D planning CT images.

  9. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment

  10. A beta skin dose monitor using an Eberline RO-2 ion chamber

    International Nuclear Information System (INIS)

    Jester, W.A.; Levine, S.H.; Lin, T.J.; Hock, R.

    1994-01-01

    The authors have developed a portable beta skin dose monitor that uses an Eberline RO-2trademark ion chamber. The development was based, in part, upon the previous development of a beta skin dose monitor employing silicon detectors. In this current work, the two entrance windows of the RO-2 were replaced by windows having a total mass thickness of 1.74 mg/cm 2 . A two section source-detector holder was constructed. One section fastens to the RO-2 and holds the detector at the right position to determine the contact skin dose from beta emitters located on surfaces. A second section attaches to the first, and provides fixed counting geometry for radioactive samples such as hot particles. The first section also contains a slide mechanism that allows the placement of absorbers of zero (0), 8.38, and 1000 mg/cm 2 between the detector window and the beta source. The detector response to these absorbers allows for the determination of beta skin dose. The system was modeled using a Monte Carlo beta attenuation code computing the beta skin dose to RO-2 detector response as a function of absorber thickness, average beta energy, source diameter and source position. Using the RO-2 reading from each of the three absorber configurations allows the calculation of beta skin dose and the average beta energy. The results of these calculations were confirmed through the use of three massless radioactive beta sources, traceable to the National Institute of Standards and Technology, and several utility-supplied hot particles having well-established contact skin doses. An extrapolation chamber was also used to confirm the results obtained from this monitor. This system is now use at the Pennsylvania Power and Light (PP and L) Company, the project sponsor. ((orig.))

  11. Clinical use of carbon-loaded thermoluminescent dosimeters for skin dose determination

    International Nuclear Information System (INIS)

    Ostwald, Patricia M.; Kron, Tomas; Hamilton, Christopher S.; Denham, James W.

    1995-01-01

    Purpose: Carbon-loaded thermoluminescent dosimeters (TLDs) are designed for surface/skin dose measurements. Following 4 years in clinical use at the Mater Hospital, the accuracy and clinical usefulness of the carbon-loaded TLDs was assessed. Methods and Materials: Teflon-based carbon-loaded lithium fluoride (LiF) disks with a diameter of 13 mm were used in the present study. The TLDs were compared with ion chamber readings and TLD extrapolation to determine the effective depth of the TLD measurement. In vivo measurements were made on patients receiving open-field treatments to the chest, abdomen, and groin. Skin entry dose or entry and exit dose were assessed in comparison with doses estimated from phantom measurements. Results: The effective depth of measurement in a 6 MV therapeutic x-ray beam was found to be about 0.10 mm using TLD extrapolation as a comparison. Entrance surface dose measurements made on a solid water phantom agreed well with ion chamber and TLD extrapolation measurements, and black TLDs provide a more accurate exit dose than the other methods. Under clinical conditions, the black TLDs have an accuracy of ± 5% (± 2 SD). The dose predicted from black TLD readings correlate with observed skin reactions as assessed with reflectance spectroscopy. Conclusion: In vivo dosimetry with carbon-loaded TLDs proved to be a useful tool in assessing the dose delivered to the basal cell layer in the skin of patients undergoing radiotherapy

  12. Low-Dose (10-Gy) Total Skin Electron Beam Therapy for Cutaneous T-Cell Lymphoma: An Open Clinical Study and Pooled Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kamstrup, Maria R., E-mail: mkam0004@bbh.regionh.dk [Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Gniadecki, Robert [Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen (Denmark); Iversen, Lars [Department of Dermatology, Aarhus University Hospital, Aarhus (Denmark); Skov, Lone [Department of Dermatology, Gentofte Hospital, University of Copenhagen, Copenhagen (Denmark); Petersen, Peter Meidahl [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Loft, Annika [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Specht, Lena [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark)

    2015-05-01

    Purpose: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments is limited to 2 to 3 courses in a lifetime due to skin toxicity. This study aimed to determine the clinical effect of low-dose TSEBT in patients with MF and SS. Methods and Materials: In an open clinical study, 21 patients with MF/SS stages IB to IV were treated with low-dose TSEBT over <2.5 weeks, receiving a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. Results: The overall response rate was 95% with a complete cutaneous response or a very good partial response rate (<1% skin involvement with patches or plaques) documented in 57% of the patients. Median duration of overall cutaneous response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. Conclusions: Low-dose (10-Gy) TSEBT offers a high overall response rate and is relatively safe. With this approach, reirradiation at times of relapse or progression is likely to be less toxic than standard dose TSEBT. It remains to be established whether adjuvant and combination treatments can prolong the beneficial effects of low-dose TSEBT.

  13. Skin Dose Equivalent Measurement from Neutron-Deficient Isotopes

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hua; Costigan, Steve A.; Romero, Leonard L.; Whicker, Jeffrey J.

    1997-12-01

    Neutron-deficient-isotopes decay via positron emission and/or electron capture often followed by x-ray, gamma-ray, and 0.511 MeV photons from positron annihilation. For cases of significant area and/or personnel contamination with these isotopes, determination of skin dose equivalent (SDE) is required by 10CFR835. For assessment of SDE, we evaluated the MICROSPEC-2(TM) system manufactured by Bubble Technology Industries of Canada which uses three different probes for dose measurement. We used two probes: (1) the X-probe which measures lower energy (4 - 120 keV) photon energy distributions and determines deep dose equivalent, SDE and dose equivalent to eyes, and (2) the B-probe which measures electron (positron) energy distributions, and determines skin dose equivalent. Also, the measured photon and beta spectra can be used to identify radioactive isotopes in the contaminated area. Measurements with several neutron-deficient sources showed that this system provided reasonably accurate SDE rate measurements when compared with calculated benchmark SDE rates with an average percent difference of 40%. Variations were expected because of differences between the assumed geometries used by MlCROSPEC-2 and the calculations when compared to the measurement conditions

  14. Skin dose assessment in routine personnel beta/gamma dosimetry

    International Nuclear Information System (INIS)

    Christensen, P.

    1980-01-01

    Three alternative methods are outlined by which substantial improvements of the capabilities of existing routine monitoring systems for skin dose assessment can be obtained. The introduction of a supplementary skin dosemeter may be an attractive method for systems with badges that have a capability for an additional dosemeter already built-in. The two-side reading method has limited possibilities because of reduced accuracy for mixed radiation and technical difficulties in using it for TLD systems with planchet heating. The use of a boron diffused LiF layer for skin dose assessment seems to be most attractive method since the only modification needed here is replacement of a dosemeter. However the study of this method is so far only in a preliminary stage and further investigations are needed. (U.K.)

  15. Skin entrance dose for digital and film radiography in Korean dental schools

    International Nuclear Information System (INIS)

    Cho, Eun Sang; Choi, Kun Ho; Kim, Min Gyu; Lim, Hoi Jeong; Yoon, Suk Ja; Kang, Byung Cheol

    2005-01-01

    This study was aimed to compare skin entrance dose of digital radiography with that of film radiography and to show the dose reduction achievement with digital systems at 11 dental schools in Korea. Forty six intraoral radiographic systems in 11 dental schools were included in this study. Digital sensors were used in 33 systems and film was used in 13 systems. Researchers and the volunteer visited 11 dental schools in Korea. Researchers asked the radiologic technician at each school to set the exposure parameters and aiming the x-ray tube for the peri apical view of the mandibular molar of the volunteer. The skin entrance doses were measured at the same exposure parameters and distance by the technician for each system with a dosimeter (Multi-O-Meter; Unifors instruments, Billdal, Sweden). The median dose was 491.2 μGy for digital radiography and 1,205.0 μGy for film radiography. The skin entrance dose in digital radiography was significantly lower than that of film radiography (p<0.05). Fifty-nine percent skin entrance dose reduction with digital peri apical radiography was achieved over the film radiography in Korean dental schools.

  16. Skin entrance dose for digital and film radiography in Korean dental schools

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sang; Choi, Kun Ho; Kim, Min Gyu; Lim, Hoi Jeong; Yoon, Suk Ja; Kang, Byung Cheol [Chonnam National University College of Medicine, Gwangju (Korea, Republic of)

    2005-12-15

    This study was aimed to compare skin entrance dose of digital radiography with that of film radiography and to show the dose reduction achievement with digital systems at 11 dental schools in Korea. Forty six intraoral radiographic systems in 11 dental schools were included in this study. Digital sensors were used in 33 systems and film was used in 13 systems. Researchers and the volunteer visited 11 dental schools in Korea. Researchers asked the radiologic technician at each school to set the exposure parameters and aiming the x-ray tube for the peri apical view of the mandibular molar of the volunteer. The skin entrance doses were measured at the same exposure parameters and distance by the technician for each system with a dosimeter (Multi-O-Meter; Unifors instruments, Billdal, Sweden). The median dose was 491.2 {mu}Gy for digital radiography and 1,205.0 {mu}Gy for film radiography. The skin entrance dose in digital radiography was significantly lower than that of film radiography (p<0.05). Fifty-nine percent skin entrance dose reduction with digital peri apical radiography was achieved over the film radiography in Korean dental schools.

  17. In vitro modeling of skin dose and monitoring of DCA following therapeutic intervention

    International Nuclear Information System (INIS)

    Balajee, Adayabalam S.; Dainiak, Nicholas

    2016-01-01

    Human skin is the largest organ of the body accounting for approximately 16% of the total bodyweight. Skin is readily exposed to ionizing radiation during either accidental or intentional exposure such as radiotherapy or other medical procedures because it constitutes the interface between environment and internal organs. Estimation of accurate entrance skin dose and maximum absorbed dose (MAD) is crucial to prevent serious skin injuries. Cutaneous Radiation Syndrome (CRS) is defined by a number of pathological changes manifested in the skin and severity of these changes depend on Liner Energy Transfer (LET), dose, dose-rate, geometry of exposure and volume of body part exposed. In most of the radiological accident scenarios, reconstructive dosimetry in the skin has been performed using physical (thermoluminescence and optical stimulated luminescence), biological (cytogenetics) and computational methods/models to manage radiation exposed victims.Results of the cytogenetic testing performed at the CBL on a few patients will be discussed to illustrate the potential use of DCA and other cytogenetic techniques such as micronuclei and multicolor FISH in monitoring the health of radiotherapy patients

  18. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy

    International Nuclear Information System (INIS)

    Kinhikar, Rajesh A.; Murthy, Vedang; Goel, Vineeta; Tambe, Chandrashekar M.; Dhote, Dipak S.; Deshpande, Deepak D.

    2009-01-01

    The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate.

  19. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy.

    Science.gov (United States)

    Kinhikar, Rajesh A; Murthy, Vedang; Goel, Vineeta; Tambe, Chandrashekar M; Dhote, Dipak S; Deshpande, Deepak D

    2009-09-01

    The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate.

  20. Dosimetric Aspects of Personnel Skin Contamination by Radionuclides - Estimate of a Skin Dose, Monitoring and Interpretation of Results

    International Nuclear Information System (INIS)

    Husak, V.; Kleinbauer, K.

    2001-01-01

    Full text: On the basis of a critical comparison of literary data, tables are compiled of beta and gamma dose rate in mSvh -1 (kBqcm -1 ) to the basal layer of the skin at 0.07 mm depth from contamination by 75 radionuclides unsealed sources; radioactive substances are assumed to reside on the skin surface. The residence time needed for the estimate of the skin dose is calculated assuming that a residual activity per unit area of any radionuclide on the skin, which could not be removed by the repeated careful decontamination, is supposed to be eliminated with the biological half-life of 116 h as a consequence of the natural sloughing off of the skin. Radionuclides are divided into five groups according to the dose estimate in mSv (kBqcm -2 ): ≥250 (e.g. 32 P, 89 Sr, 137 Cs/ 137m Ba), 100-250 (e.g. 90 Y, 131 I, 186 Re), 10-100 (e.g. 35 S, 67 Ga, 200 Tl), 1-10 (e.g. 18 F, 51 Cr, 99m Tc), ≤1 (e.g. 63 Ni, 144 Pr, 238 U). If it is possible, doses can be determined more precisely by measuring the effective half-life of the residual activity on the contaminated area. Our dose estimates are approximately valid on the condition that, after decontamination, residual activity of radionuclides persists predominantly in the superficial layers of epidermis. This and further uncertainties connected with the dose assessment are discussed. Our tables can help to determine easily rough values of doses to personnel in contamination incidents and to interpret them in relation to regulatory derived limits. This work was supported by State Office for Nuclear Safety in Prague. (author)

  1. Measurement and estimation of maximum skin dose to the patient for different interventional procedures

    International Nuclear Information System (INIS)

    Cheng Yuxi; Liu Lantao; Wei Kedao; Yu Peng; Yan Shulin; Li Tianchang

    2005-01-01

    Objective: To determine the dose distribution and maximum skin dose to the patient for four interventional procedures: coronary angiography (CA), hepatic angiography (HA), radiofrequency ablation (RF) and cerebral angiography (CAG), and to estimate the definitive effect of radiation on skin. Methods: Skin dose was measured using LiF: Mg, Cu, P TLD chips. A total of 9 measuring points were chosen on the back of the patient with two TLDs placed at each point, for CA, HA and RF interventional procedures, whereas two TLDs were placed on one point each at the postero-anterior (PA) and lateral side (LAT) respectively, during the CAG procedure. Results: The results revealed that the maximum skin dose to the patient was 1683.91 mGy for the HA procedure with a mean value of 607.29 mGy. The maximum skin dose at the PA point was 959.3 mGy for the CAG with a mean value of 418.79 mGy; While the maximum and the mean doses at the LAT point were 704 mGy and 191.52 mGy, respectively. For the RF procedure the maximum dose was 853.82 mGy and the mean was 219.67 mGy. For the CA procedure the maximum dose was 456.1 mGy and the mean was 227.63 mGy. Conclusion: All the measured dose values in this study are estimated ones which could not provide the accurate maximum value because it is difficult to measure using a great deal of TLDs. On the other hand, the small area of skin exposed to high dose could be missed as the distribution of the dose is successive. (authors)

  2. Validation of radiosterilization dose of human skin dressings for burnt treatment: preliminary study

    International Nuclear Information System (INIS)

    Castro, E.

    2008-01-01

    Full text: Due to the need for better materials to treat burnt patients, the Peruvian Institute of Nuclear Energy (IPEN) and the Rosa Guerzoni Chambergo Tissue Bank are collaborating for developing human skin dressings. Skin was procured from living donors, who surgically were performed a dermolipectomy. Exclusion criteria, stated by the Peruvian Organization for Transplant and Donation were observed. Glycerolized human skin dressings were processed at the tissue bank and sent to IPEN, where the gamma irradiation sterilizing dose was determined. The purpose of this work is to validate the radiation sterilization dose delivered to human skin dressings using the IAEA Code of Practice for the Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control. A batch of human skin dressings was tested. Average values of bioburden present in ten samples was 30 UFC/item, obtaining a sub-sterilization dose of 4 kGy. Irradiations were performed in the GammacellExcel 220. Sterility tests performed fulfilled the requirements established by the Code, achieving a validated dose value of 19.7 kGy. This preliminary study, that should be repeated in two other batches of processed human skin, allows to diminish 25 kGy the sterilizing dose to the stated above dose value, in a frame of a quality assurance system that also comprises the processes held at tissue banks previous irradiation. It also permit the availability of these materials in Peruvian hospitals. (Author)

  3. Maximum skin dose assessment in interventional cardiology: large area detectors and calculation methods

    International Nuclear Information System (INIS)

    Quail, E.; Petersol, A.

    2002-01-01

    Advances in imaging technology have facilitated the development of increasingly complex radiological procedures for interventional radiology. Such interventional procedures can involve significant patient exposure, although often represent alternatives to more hazardous surgery or are the sole method for treatment. Interventional radiology is already an established part of mainstream medicine and is likely to expand further with the continuing development and adoption of new procedures. Between all medical exposures, interventional radiology is first of the list of the more expansive radiological practice in terms of effective dose per examination with a mean value of 20 mSv. Currently interventional radiology contribute 4% to the annual collective dose, in spite of contributing to total annual frequency only 0.3% but considering the perspectives of this method can be expected a large expansion of this value. In IR procedures the potential for deterministic effects on the skin is a risk to be taken into account together with stochastic long term risk. Indeed, the International Commission on Radiological Protection (ICRP) in its publication No 85, affirms that the patient dose of priority concern is the absorbed dose in the area of skin that receives the maximum dose during an interventional procedure. For the mentioned reasons, in IR it is important to give to practitioners information on the dose received by the skin of the patient during the procedure. In this paper maximum local skin dose (MSD) is called the absorbed dose in the area of skin receiving the maximum dose during an interventional procedure

  4. Oral Challenge without Skin Testing Safely Excludes Clinically Significant Delayed-Onset Penicillin Hypersensitivity.

    Science.gov (United States)

    Confino-Cohen, Ronit; Rosman, Yossi; Meir-Shafrir, Keren; Stauber, Tali; Lachover-Roth, Idit; Hershko, Alon; Goldberg, Arnon

    Penicillins are the drug family most commonly associated with hypersensitivity reactions. Current guidelines recommend negative skin tests (ST) before re-administering penicillins to patients with previous nonimmediate reactions (NIR). The objective of this study was to examine whether ST are necessary before re-administering penicillin to patients with NIR. Patients with NIR to penicillins starting longer than 1 hour after last dose administration or starting any time after the first treatment day or patients with vague recollection of their reaction underwent penicillin ST. Disregarding ST results, patients were challenged with the relevant penicillins. One-tenth of the therapeutic dose followed by the full dose was administered at 1-hour interval and patients continued taking the full dose for 5 days. A total of 710 patients with alleged BL allergy were evaluated. Patients with a history of immediate reaction (52, 7.3%) or cephalosporin allergy (16, 2.2%) were excluded. Of the remaining 642 patients, 62.3% had negative ST, 5.3% positive ST, and 32.4% equivocal ST. A total of 617 (96.1%) patients were challenged. Immediate reaction was observed in 9 patients (1.5%): 1-positive ST, 7-negative ST, and 1-equivocal ST (P = .7). Late reaction to the first-day challenge occurred in 24 patients (4%). An at-home challenge was continued by 491 patients. Complete 5-day and partial challenges were well tolerated by 417 (85%) and 44 patients (8.9%), respectively, disregarding ST results. Thirty patients (6.1%) developed mild reactions to the home challenge regardless of their ST results. A 5-day oral challenge without preceding ST is safe and sufficient to exclude penicillin allergy after NIR developing during penicillin treatment. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. The minimal melanogenesis dose/minimal erythema dose ratio declines with increasing skin pigmentation using solar simulator and narrowband ultraviolet B exposure

    DEFF Research Database (Denmark)

    Ravnbak, Mette H; Philipsen, Peter A; Wulf, Hans Christian

    2010-01-01

    To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure.......To investigate the relation between pre-exposure skin pigmentation and the minimal melanogenesis dose (MMD)/minimal erythema dose (MED) ratio after a single narrowband ultraviolet B (nUVB) and solar simulator (Solar) exposure....

  6. Technical specification of the NRPB thermoluminescent dosemeter used for the measurement of body dose and skin dose

    CERN Document Server

    Shaw, K B

    1977-01-01

    This report specifies the NRPB thermoluminescent dosemeter used for the measurement of radiation dose in tissue at a depth of 700 mg cm sup - sup 2 (body dose) and at a depth of 5-10 mg cm sup - sup 2 (skin dose).

  7. Calculation of skin dose due to beta contamination using the new quantity of the ICRP 116: the local skin dose

    International Nuclear Information System (INIS)

    Bourgois, L.; Menard, S.; Comte, N.

    2017-01-01

    Values of the new protection quantity Local Skin Dose 'LSD', introduced by the International Commission on Radiological Protection (ICRP) Publication 116, were calculated for 134 β - or β + emitting radionuclides, using the Monte Carlo code MCNP6. Two types of source geometry are considered: a point source and disc-type surface contamination (the source is placed in contact with the skin). This new protection quantity is compared with the operational quantity H2 (0.07, 0 deg.), leading us to conclude that, in accordance with the rules of the ICRP, the operational quantity over-estimates the protection quantity to a reasonable extent, except in very rare cases for very low average beta energies. Thus, with the new skin model described in ICRP 116, there are no longer any major differences between the operational quantities and protection quantities estimated with the skin model described in ICRP 74. (authors)

  8. Dosimetry studies with 32P source and correlation of skin and eye lens doses

    International Nuclear Information System (INIS)

    Kumar, Munish; Gaonkar, U.P.; Koul, D.K.; Datta, D.; Saxena, S.K.; Kumar, Yogendra; Dash, A.

    2018-01-01

    Beta particles are one of the major contributors toward skin and eye lens doses at facilities handling beta sources. These sources find applications in industry, pharmaceuticals as well as in brachytherapy applications. The beta particles having maximum (E max ) energy > 0.07 MeV are capable of delivering skin dose whereas beta particles having maximum (E max ) energy > 0.7 MeV may also contribute towards dose to eye lens. Studies are performed using 32 P beta source as its maximum beta energy (E max ) is such that for sources having (E max ) of 1.71 MeV or beyond, there can be substantial contribution towards dose to eye lens even the dose limit recommended for skin is followed

  9. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Huang, Chih-Jen [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Hsiao-Yun [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chang, Gia-Hsin [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Tsao, Min-Jen [Department of General Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China)

    2016-10-01

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skin dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT.

  10. Skin dose estimation due to a contamination by a radionuclide β emitter: are doses equivalent good estimator of protection quantities?

    International Nuclear Information System (INIS)

    Bourgois, L.

    2011-01-01

    When handling radioactive β emitters, measurements in terms of personal dose equivalents H p (0.07) are used to estimate the equivalent dose limit to skin or extremities given by regulations. First of all, analytical expressions for individual dose equivalents H p (0.07) and equivalent doses to the extremities H skin are given for a point source and for contamination with a radionuclide β emitter. Second of all, operational quantities and protection quantities are compared. It is shown that in this case the operational quantities significantly overstate the protection quantities. For a skin contamination the ratio between operational quantities and protection quantities is 2 for a maximum β energy of 3 MeV and 90 for a maximum β energy of 150 keV. (author)

  11. Evaluation of the breast plan using the TLD and MOSFET for the skin dose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Myeong; Kim, Young Bum; Bak, Sang Yun; Lee, Sang Rok; Jeong, Se Young [Dept. of Radiation Oncology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-12-15

    The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% - 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner' was highest in the MOSFET. Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay

  12. Evaluation of the breast plan using the TLD and MOSFET for the skin dose

    International Nuclear Information System (INIS)

    Kim, Seon Myeong; Kim, Young Bum; Bak, Sang Yun; Lee, Sang Rok; Jeong, Se Young

    2015-01-01

    The measurement of skin dose is very important that treatment of breast cancer. On account of the cold or hot dose as compared with prescription dose, it is necessary to analyse the skin dose occurring during the various plan of the breast cancer treatment. At our hospital, we want to apply various analyses using a diversity of dosimeters to the breast cancer treatment. In the study, the anthropomorphic phantom is used to find out the dose difference of the skin(draining site), scar and others occurring from the tangential treatment plan of breast cancer. We took computed tomography scan of the anthropomorphic phantom and made plans for the treatment planing using open and wedge, Field-in-Field, Dose fluence. Using these, we made a comparative analysis of the dose date points by using the Eclipse. For the dose comparison, we place the anthropomorphic phantom in the treatment room and compared the measurement results by using the TLD and MOSFET on the dose data points. On the central point of treatment planing basis, the upward and downward skin dose measured by the MOSFET was the highest when the fluence was used. The skin dose of inner and outer was distinguished from the figure(5.7% - 10.3%) when the measurements were fulfilled by using TLD and MOSFET. The other side of breast dose was the lowest in the open beam, on the other hand, is highest in the Dose fluence plan. In the different kinds of treatment, the dose deviation of inner and outer was the highest, and so this was the same with the TLD and MOSFET measurement case. The outer deviation was highest in the TLD, and the Inner' was highest in the MOSFET. Skin dose in relation to the treatment plan was the highest in the planing using the fluence technique in general and it was supposed that the high dose had been caused by the movement of the MLC. There's some differences among the all the treatment planning, but the sites such as IM node occurring the lack of dose, scar, drain site are needed pay

  13. Skin dose from radiotherapy X-ray beams: the influence of energy

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; University of Wollongong, Wollongong, NSW; Mathur, J.N.

    1997-01-01

    Skin-sparing properties of megavoltage photon beams are compromised by electron contamination. Higher energy beams do not necessarily produce lower surface and basal cell layer doses due to this electron contamination. For a 5x5 cm field size the surface doses for 6 MVp and 18 M)p X-ray beams are 10% and 7% of their respective maxima. However, at a field size of 40 x 40cm the percentage surface dose is 42% for both 6 MVp and 18 MVp beams. The introduction of beam modifying devices such as block trays can further reduce the skin-sparing advantages of high energy photon beams. Using a 10 mm perspex block tray, the surface doses for 6 MVp and 18 MVp beams with a 5 x 5 cm field size are 10% and 8%, respectively. At 40 x 40cm, surface doses are 61% and 63% for 6 MVp and 18 MVp beams, respectively. This trend is followed at the basal cell layer depth. At a depth of 1 mm, 18 MVp beam doses are always at least 5% smaller than 6 MVp doses for the same depth at all field sizes when normalized to their respective Dmax values. Results have shown that higher energy photon beams produce a negligible reduction of the delivered dose to the basal cell layer (0.1 mm). Only a small increase in skin sparing is seen at the dermal layer (1 mm), which can be negated by the increased exit dose from an opposing field. (authors)

  14. VARSKIN MOD 2 and SADDE MOD2: Computer codes for assessing skin dose from skin contamination

    International Nuclear Information System (INIS)

    Durham, J.S.

    1992-12-01

    The computer code VARSKIN has been modified to calculate dose to skin from three-dimensional sources, sources separated from the skin by layers of protective clothing, and gamma dose from certain radionuclides correction for backscatter has also been incorporated for certain geometries. This document describes the new code, VARSKIN Mod 2, including installation and operation instructions, provides detailed descriptions of the models used, and suggests methods for avoiding misuse of the code. The input data file for VARSKIN Mod 2 has been modified to reflect current physical data, to include the contribution to dose from internal conversion and Auger electrons, and to reflect a correction for low-energy electrons. In addition, the computer code SADDE: Scaled Absorbed Dose Distribution Evaluator has been modified to allow the generation of scaled absorbed dose distributions for mixtures of radionuclides and intereat conversion and Auger electrons. This new code, SADDE Mod 2, is also described in this document. Instructions for installation and operation of the code and detailed descriptions of the models used in the code are provided

  15. A Computer Program Method for Estimation of Entrance Skin Dose for some Individuals Undergoing X-ray Imaging

    International Nuclear Information System (INIS)

    Taha, T.M.; Allehyani, S.

    2012-01-01

    A computer program depends on practical measurements of entrance skin dose patients undergoing radiological examinations. Physical parameters such as field size, half value layer, backscatter factor, dose output, focal film distance, focal skin distance, normal operating conditions were taken into consideration for calculation entrance skin dose. It was measured by many techniques such as Thermo-luminescence dosimeters, ionization chambers. TLD technique characterized by high precision and reproducibility of dose measurement is checked by addressing pre-readout annealing, group sorting, dose evaluation, Fifty TLD chips were annealed for 1 hour at 400 degree C followed by 2 h at 100 degree C. After exposure to constant dose from X-ray generator. 0.6 cc Ionization chamber was located at surface of water chest phantom that has dimensions of 40 cm x 40 cm x 20 cm and connected with farmer dose master. Entrance Skin Dose was calculated using the generated software by changing the physical parameters and using the measured output doses. The obtained results were compared with the reference levels of International Atomic Energy Authority. The constructed computer program provides an easy and more practical mean of estimating skin dose even before exposure. They also provide the easiest and cheapest technique can be employed in any entrance skin dose measurement

  16. Entrances skin dose distribution maps for interventional neuroradiological procedures: A preliminary study

    International Nuclear Information System (INIS)

    Rampado, O.; Ropolo, R.

    2005-01-01

    Does estimation in interventional neuroradiology can be useful to limit skin radiation injuries. The purpose of this study was to evaluate the role of entrance skin dose (ESD) maps in planning exposure condition optimisation. Thirteen cerebral angiography and five embolisation procedures were monitored, measuring ESD, dose-area product (DAP) and other operational parameters. A transmission ionisation chamber, simultaneously measuring air kerma and DAP, measured dose-related quantities. Data acquisition software collected dosimetric and geometrical data during the interventional procedure and provided a distribution map of ESD on a standard phantom digital image, with maximum value estimation. Values of 88-1710 mGy for maximum skin dose and 16.7-343 Gy cm 2 for DAP were found. These data confirm the possibility of deterministic effects during therapeutic interventional neuroradiological procedures like cerebral embolisation. ESD maps are useful to retrospectively study the exposure characteristics of a procedure and plan patient exposure optimisation. (authors)

  17. Skin dose estimation for various beam modifiers and source-to-surface distances for 6MV photons

    Directory of Open Access Journals (Sweden)

    Yadav Girigesh

    2009-01-01

    Full Text Available The purpose of this study was to learn the skin dose estimation for various beam modifiers at various source-to-surface distances (SSDs for a 6 MV photon. Surface and buildup region doses were measured with an acrylic slab phantom and Markus 0.055 cc parallel plate (PP ionization chamber. Measurements were carried out for open fields, motorized wedge fields, acrylic block tray fields ranging from 3 x 3 cm 2 to 30 x 30 cm 2 . Twenty-five percent of the field was blocked with a cerrobend block and a Multileaf collimator (MLC. The effect of the blocks on the skin dose was measured for a 20 x 20 cm 2 field size, at 80 cm, 100 cm and 120 cm SSD. During the use of isocentric treatments, whereby the tumor is positioned at 100 cm from the source, depending on the depth of the tumor and size of the patient, the SSD can vary from 80 cm to 100 cm. To achieve a larger field size, the SSD can also be extended up to 120 cm at times. The skin dose increased as field size increased. The skin dose for the open 10 x10 cm 2 field was 15.5%, 14.8% and 15.5% at 80 cm, 100 cm and 120 cm SSDs, respectively. The skin dose due to a motorized 60 0 wedge for the 10 x 10 cm 2 field was 9.9%, 9.5%, and 9.5% at 80 cm, 100 cm and 120 cm SSDs. The skin dose due to acrylic block tray, of thickness 1.0 cm for a 10 x 10 cm 2 field was 27.0%, 17.2% and 16.1% at 80, 100 and 120 cm SSD respectively. Due to the use of an acrylic block tray, the surface dose was increased for all field sizes at the above three SSDs and the percentage skin dose was more dominant at the lower SSD and larger field size. The skin dose for a 30 x 30 cm 2 field size at 80 cm SSD was 38.3% and it was 70.4% for the open and acrylic block tray fields, respectively. The skin doses for motorized wedge fields were lower than for open fields. The effect of SSDs on the surface dose for motorized 60° wedge fields was not significant for a small field size (difference was less than 1% up to a 15 x 15 cm 2 field size

  18. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    International Nuclear Information System (INIS)

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-01-01

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  19. Proposal of a dosemeter for skin beta radiation dose assessment

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.

    1987-08-01

    Beta radiation is, undoubtedly, less penetrating than X or gamma radiation. Thus, beta radiation sources external to the human body do not cause a significant irradiation of its deeper tissues. However, in some cases, they may contribute in a very important way to the irradiation of the lens of the eyes and, mainly, of the skin. Specially, the hands and finger tips may receive a high dose. In this work some relevant aspects of the individual monitoring in beta radiation fields are discussed and the importance of monitoring this kind of radiation in some activities where the skin absorbed dose may be a limiting factor is evidenced. The main characteristics of the thermoluminescent (TL) response of ultra-thin CaSO 4 : Dy detectors (UT-CaSO 4 : Dy) in the detection of this kind of radiation are also studied. The irradiation are performed with 90 Sr 90 Y, 204 TI and 147 Pm sources. The reproducibility, linearity, dependence on the absorbed dose rate, optical fading, energy and angular dependences of the detector TL responce are investigated. Transmission factors for different thicknesses of tissue equivalent material are obtained for the TL detectors using the three available beta sources. Based on the results obtained, a dosemeter for skin beta radiation absorbed dose assessment with an energy dependence better than 12% is proposed. (Author) [pt

  20. Time and dose-related changes in the thickness of pig skin after irradiation with single doses of 90Sr/90Y β-rays

    International Nuclear Information System (INIS)

    Rezvani, M.; Hamlet, R.; Hopewell, J.W.; Sieber, V.K.

    1994-01-01

    Time-related changes in pig skin thickness have been evaluated using a non-invasive ultrasound technique after exposure to a range of single doses of 90 Sr/ 90 Yr β-rays. The reduction in relative skin thickness developed in two distinct phases: the first was between 12 and 20 weeks postirradiation. No further changes were then seen until 52 weeks postirradiation when a second phase of skin thinning was observed. This was complete after 76 weeks and no further changes in relative skin thickness were seen in the maximum follow up period of 129 weeks. The timings of these phases of damage were independent of the radiation dose, however, the severity of both phases of radiation-induced skin thinning were dose related. (Author)

  1. Low-dose total skin electron beam therapy for cutaneous lymphoma : Minimal risk of acute toxicities.

    Science.gov (United States)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor

    2017-12-01

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T‑cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses.

  2. Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT)

    Science.gov (United States)

    Fu, Hsiao-Ju; Li, Chi-Wei; Tsai, Wei-Ta; Chang, Chih-Chia; Tsang, Yuk-Wah

    2017-11-01

    The reliability of thermoluminescent dosimeters (ultrathin TLD) and ISP Gafchromic EBT2 film to measure the surface dose in phantom and the skin dose in head-and-neck patients treated with intensity-modulated radiation therapy technique(IMRT) is the research focus. Seven-field treatment plans with prescribed dose of 180 cGy were performed on Eclipse treatment planning system which utilized pencil beam calculation algorithm(PBC). In calibration tests, the variance coefficient of the ultrathin TLDs were within 3%. The points on the calibration curve of the Gafchromic film was within 1% variation. Five measurements were taken on phantom using ultrathin TLD and EBT2 film respectively. The measured mean surface doses between ultrathin TLD or EBT2 film were within 5% deviation. Skin doses of 6 patients were measured for initial 5 fractions and the mean dose per-fraction was calculated. If the extrapolated doses for 30 fractions were below 4000 cGy, the skin reaction grading observed according to Radiation Therapy Oncology Group (RTOG) was either grade 1 or grade 2. If surface dose exceeded 5000 cGy in 32 fractions, then grade 3 skin reactions were observed.

  3. Measurement of Skin Dose from Using the Treatment Immobilization Devices

    International Nuclear Information System (INIS)

    Je, Jae Yong; Park, Chul Woo; Noh, Kyung Suk

    2009-01-01

    The research was about the relation between the dorsal side dose measured by using the phantom body (Alderson Rando Phantom) and factors like contacted material of the patients, the size of the field, angle of incidence. Compared with mylar (tennis racket), the dose on 10 x 10 cm 2 field size of cotton was increased by 2% and by 8% in the case of breast board. In the case of 15 x 15 cm 2 field size, the dose was increased by 6% compared with 10 x 10 cm 2 size. The field size of 20 x 20 cm 2 resulted in 10% increase of dose, while 5 x 5 cm 2 produced 13% decrease. Compared with incident angle 0 degree, the cases for the incident angle 5 degrees had 0.4% less dose for breast board, 0.5% for tennis racket, 1.1% for cotton. The cases for the incident angle 10 degrees had 1.5% less dose for breast board, 1.9% for tennis racket, 2.6% for cotton. For the incident angle 15 degrees, breast board, tennis racket, cotton caused decrease of dose by 3.9%, 2.6%, 3.86% respectively. Resultantly carbon material can cause more skin dose in treatment field. By the results of this study, we recommend that one should avoid the contact between the carbon material and skin.

  4. Characterization of a team intraoperative Radiation therapy and measurement of dose in skin with film radiochromic

    International Nuclear Information System (INIS)

    Onses Segarra, A.; Sancho Kolster, I.; Eraso Urien, A.; Pla Farnos, M. J.; Picon Olmos, C.

    2015-01-01

    This paper presents the results of the initial reference state of intraoperative radiotherapy equipment lntraBeam, for performing breast treatments are analyzed. To the initial reference team was established for the following dosimetric and geometric beam parameters: percentage depth dose, beam quality, isotropy, linearity and mechanical and geometric integrity for both the source RX as for different spherical applicators of the team. Based on these checks, a program of periodic quality control was established. One of the exclusion criteria for this treatment is that the tumor is less than l cm of the skin, yaque give doses received in this organ can be high. For this reason it is important to know exactly the absorbed dose in skin during these treatments. In this regard we have implemented a system for measuring the skin dose during treatment with Radiochromic film, placing 4 film segments in fixed positions of the skin around the surgical incision. It .ha obtained calibration curve of sterilized films and compared the results with a calibration beam megavoltage. The results of the skin dose measurements are compared with theoretical estimates given by the planning system equipment. The results indicate the need to measure individually the skin dose for these treatments. (Author)

  5. Evaluation of patients skin dose undergoing interventional cardiology procedure using radiochromic films

    International Nuclear Information System (INIS)

    Silva, Mauro W. Oliveira da; Canevaro, Lucia V.; Rodrigues, Barbara B. Dias

    2011-01-01

    In interventional cardiology (IC), coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) procedures are the most frequent ones. Since the 1990s, the number of IC procedures has increased rapidly. It is also known that these procedures are associated with high radiation doses due to long fluoroscopy time (FT) and large number of cine-frames (CF) acquired to document the procedure. Mapping skin doses in IC is useful to find the probability of skin injuries, to detect areas of overlapping field, and to get a permanent record of the most exposed areas of skin. The purpose of this study was to estimate the maximum skin dose (MSD) in patients undergoing CA and PTCA, and to compare these values with the reference levels proposed in the literature. Patients' dose measurements were carried out on a sample of 38 patients at the hemodynamic department, in four local hospitals in Rio de Janeiro, Brazil, using Gafchromic XR-RV2 films. In PTCA procedures, the median and third quartile values of MSD were estimated at 2.5 and 5.3 Gy, respectively. For the CA procedures, the median and third quartile values of MSD were estimated at 0.5 and 0.7 Gy, respectively. In this paper, we used the Pearson's correlation coefficient (r), and we found a fairly strong correlation between FT and MSD (r=0.8334, p<0.0001), for CA procedures. The 1 Gy threshold for deterministic effects was exceeded in nine patients. The use of Gafchromic XR-RV2 films was shown to be an effective method to measure MSD and the dose distribution map. The method is effective to identify the distribution of radiation fields, thus allowing the follow-up of the patient to investigate the appearance of skin injuries. (author)

  6. Skin dose reduction by a clinically viable magnetic deflector

    International Nuclear Information System (INIS)

    Butson, M.J.; Carolan, M.; Metcalfe, J.N.; University of Wollongong, NSW; Mathur, J.N.; Yu, P.; Young, E.; Kan, M.; City University of Hong Kong, Kowloon

    1997-01-01

    A variable magnetic deflector which attaches onto the treatment head of a linear accelerator has reduced skin dose by as much as 65% for 6MV x-rays. The magnetic deflector is constructed from Neodymium Iron Boron (NdFeB) rare earth magnets. It weighs approximately 15 kg and is designed to easily fit onto the accessory mount of a clinical linear accelerator. All field sizes are attainable up to 35 cm x 35 cm at 100 cm SSD. The gap between the magnetic poles can be adjusted, providing the highest field strength for each field size. Magnetic field strengths up to 0.55 Tesla are attainable. For a 6MV x-ray beam with a 10 mm perspex block tray, surface dose is reduced from 29% to 14% and from 59% to 37% for a 20 cm x 20 cm and 35 cm x 35 cm field size, respectively. Results at varying SSD's have shown at least 10 cm of space must be allowed between the magnets and patient for adequate reduction of skin dose through removal of electron contaminants. (authors)

  7. A comparison of skin and chest wall dose delivered with multicatheter, Contura multilumen balloon, and MammoSite breast brachytherapy.

    Science.gov (United States)

    Cuttino, Laurie W; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W

    2011-01-01

    Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. A Comparison of Skin and Chest Wall Dose Delivered With Multicatheter, Contura Multilumen Balloon, and MammoSite Breast Brachytherapy

    International Nuclear Information System (INIS)

    Cuttino, Laurie W.; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W.

    2011-01-01

    Purpose: Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. Methods and Materials: 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. Results: The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). Conclusion: The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.

  9. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    International Nuclear Information System (INIS)

    Poellaenen, R.

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has been higher

  10. Research and development of a beta skin-dose monitor using silicon detectors

    International Nuclear Information System (INIS)

    Chung Manho.

    1991-01-01

    The purpose of the research is to develop improved ways to computer and measure the beta skin dose. Beta spectra for the various sources were calculated based on the Fermi beta decay theory. The calculated average energies of the spectra agreed with the literature values within 6%. Monte Carlo electron transport codes have been developed for use on microcomputers. The one-dimensional code ZEBRA has been converted to a microcomputer version called Eltran2 which runs on the Macintosh or any IBM compatible microcomputers. Eltran2 has then been modified into a two-dimensional program called Eltran3. Using Eltran2 and Eltran3, different source distributions and the hot particle dose have been studied. It has been found that the VARSKIN code overestimates the skin dose from hot particles by about 10 to 40% in comparison with Eltran3 calculations, because the VARSKIN code is based on the data tables for an unbounded medium. An ion-implanted silicon detector was selected because of its small size, high sensitivity, and low leakage current. To cover a wide range of dose rate, both the pulse and current mode operations of the silicon detector were used, with an overlap of one order of magnitude in the measurable dose rate ranges. By using a gradient shield of about 7 mg/cm 2 on the detector, dose gradient measurements have been performed. Five 60 Co hot particles received from GPU Nuclear Corporation have been measured by the silicon detector and the measurements agreed well with Eltran3 calculations. In the pulse mode, variation of the depletion depth of the silicon detector due to the changes of bias voltage was confirmed. Based on this research, a prototype beta skin dose monitor has been constructed. The device includes an 8-bit analogue-to-digital converter and a Z-80 microprocessor with a machine-coded program, to calculate the skin dose

  11. Clinical application of a OneDose MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast.

    Science.gov (United States)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-07-21

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.

  12. Comparative study on skin dose measurement using MOSFET and TLD for pediatric patients with acute lymphatic leukemia.

    Science.gov (United States)

    Al-Mohammed, Huda I; Mahyoub, Fareed H; Moftah, Belal A

    2010-07-01

    The object of this study was to compare the difference of skin dose measured in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using metal oxide semiconductor field-effect transistors (mobile MOSFET dose verification system (TN-RD-70-W) and thermoluminescent dosimeters (TLD-100 chips, Harshaw/ Bicron, OH, USA). Because TLD has been the most-commonly used technique in the skin dose measurement of TBI, the aim of the present study is to prove the benefit of using the mobile MOSFET (metal oxide semiconductor field effect transistor) dosimeter, for entrance dose measurements during the total body irradiation (TBI) over thermoluminescent dosimeters (TLD). The measurements involved 10 pediatric patients ages between 3 and 14 years. Thermoluminescent dosimeters and MOSFET dosimetry were performed at 9 different anatomic sites on each patient. The present results show there is a variation between skin dose measured with MOSFET and TLD in all patients, and for every anatomic site selected, there is no significant difference in the dose delivered using MOSFET as compared to the prescribed dose. However, there is a significant difference for every anatomic site using TLD compared with either the prescribed dose or MOSFET. The results indicate that the dosimeter measurements using the MOSFET gave precise measurements of prescribed dose. However, TLD measurement showed significant increased skin dose of cGy as compared to either prescribed dose or MOSFET group. MOSFET dosimeters provide superior dose accuracy for skin dose measurement in TBI as compared with TLD.

  13. Survey on patient doses in cardiology in Latin America. Criteria for high skin doses follow up

    International Nuclear Information System (INIS)

    Duran, Ariel; Duro, Ivanna; Lopez, Leonardo; Ramirez, Alfredo; Herrera, Carlos; Navarro, Joaquin; Rivarola, Carlos; Lopez, Jose A.

    2008-01-01

    Full text: As part of the International Action Plan for Protection of Patients and supporting by the IAEA, a survey on patient doses in fluoroscopy guided procedures in cardiology in Latin America has been conducted since 2006. One of the objectives of the survey was to set criteria for the identification and evaluation of high skin doses in a certain number of patients to recommend a clinical follow up for potential radiation injuries (more than 3 Gy at the skin). The used methodology for the survey was initiated with two dedicated workshops held in Santiago de Chile (2005) and San Jose de Costa Rica (2007) involving relevant cardiologists from 15 different Latin American Countries. Some sessions were also attended by experts from the Regulatory and Health Authorities. Standardized forms to collect demographic and patient dosimetric data were agreed. Considering that most of the involved centres had still not dosimeters installed in the cardiology x-ray systems, it was agreed to collect data on fluoroscopy time and total number of cine frames per procedure. Relevant factors influencing radio sensitivity of the skin were also collected. Data from 10 countries representing a sample of 709 patients were received during the first year. Procedures included were diagnostic (DG) (coronary angiography and electrophysiology studies), therapeutic (TH) (percutaneous transluminal coronary angioplasties, cardiac ablations and valvuloplasties) or including both DG and TH. A total of 26 patients (3.7%) were selected for potential high skin doses. Initial considered criteria for selection were more than 30 minutes of fluoroscopy, more than 3,000 cine frames per procedure or patients with more than 100 kg of weight. Maximum reported values were 72 minutes and 8,100 frames. In addition, 5 of these patients were diabetic, 6 have previous fluoroscopy procedures and 5 were over 95 kg. The percentage of selected cases for clinical follow up derived from potential skin injuries seem

  14. A prospective, open-label study of low-dose total skin electron beam therapy in mycosis fungoides

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Specht, Lena; Skovgaard, Gunhild L

    2008-01-01

    causes and did not complete treatment. Acute side effects included desquamation, xerosis, and erythema of the skin. No severe side effects were observed. CONCLUSION: Low-dose total skin electron beam therapy can induce complete and partial responses in Stage IB-II mycosis fungoides; however, the duration......PURPOSE: To determine the effect of low-dose (4 Gy) total skin electron beam therapy as a second-line treatment of Stage IB-II mycosis fungoides in a prospective, open-label study. METHODS AND MATERIALS: Ten patients (6 men, 4 women, average age 68.7 years [range, 55-82 years......]) with histopathologically confirmed mycosis fungoides T2-T4 N0-N1 M0 who did not achieve complete remission or relapsed within 4 months after treatment with psoralen plus ultraviolet-A were included. Treatment consisted of low-dose total skin electron beam therapy administered at a total skin dose of 4 Gy given in 4...

  15. Combination of MALDI-MSI and cassette dosing for evaluation of drug distribution in human skin explant

    DEFF Research Database (Denmark)

    Sørensen, Isabella S; Janfelt, Christian; Nielsen, Mette Marie B

    2017-01-01

    Study of skin penetration and distribution of the drug compounds in the skin is a major challenge in the development of topical drug products for treatment of skin diseases. It is crucial to have fast and efficacious screening methods which can provide information concerning the skin penetration ...... that combination of MALDI-MSI and cassette dosing can be used as a medium throughput screening tool at an early stage in the drug discovery/development process. Graphical abstract Investigation of drug distribution in human skin explant by MALDI-MSI after cassette dosing....

  16. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin.

    Directory of Open Access Journals (Sweden)

    Emad A Ahmed

    Full Text Available Exposure to high doses of ionizing radiation (IR can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.IR-induced DNA damage, repair and cellular survival were studied in 15 cm(2 of minipig skin exposed in vivo to ~50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of 3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+ were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios.

  17. Increased dose near the skin due to electromagnetic surface beacon transponder.

    Science.gov (United States)

    Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent

    2015-05-08

    The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.

  18. Skin-safe photothermal therapy enabled by responsive release of acid-activated membrane-disruptive polymer from polydopamine nanoparticle upon very low laser irradiation.

    Science.gov (United States)

    Zhu, Rui; Gao, Feng; Piao, Ji-Gang; Yang, Lihua

    2017-07-25

    How to ablate tumor without damaging skin is a challenge for photothermal therapy. We, herein, report skin-safe photothermal cancer therapy provided by the responsive release of acid-activated hemolytic polymer (aHLP) from the photothermal polydopamine (PDA) nanoparticle upon irradiation at very low dosage. Upon skin-permissible irradiation (via an 850 nm laser irradiation at the power density of 0.4 W cm -2 ), the nanoparticle aHLP-PDA generates sufficient localized-heat to bring about mild hyperthermia treatment and consequently, responsively sheds off the aHLP polymer from its PDA nanocore; this leads to selective cytotoxicity to cancer cells under the acidic conditions of the extracellular microenvironment of tumor. As a result, our aHLP-PDA nanoparticle upon irradiation at a low dosage effectively inhibits tumor growth without damaging skin, as demonstrated using animal models. Effective in mitigating the otherwise inevitable skin damage in tumor photothermal therapy, the nanosystem reported herein offers an efficient pathway towards skin-safe photothermal therapy.

  19. Time and dose-related changes in the thickness of pig skin after irradiation with single doses of [sup 90]Sr/[sup 90]Y [beta]-rays

    Energy Technology Data Exchange (ETDEWEB)

    Rezvani, M.; Hamlet, R.; Hopewell, J.W.; Sieber, V.K. (Churchill Hospital, Oxford (United Kingdom))

    1994-04-01

    Time-related changes in pig skin thickness have been evaluated using a non-invasive ultrasound technique after exposure to a range of single doses of [sup 90]Sr/[sup 90]Yr [beta]-rays. The reduction in relative skin thickness developed in two distinct phases: the first was between 12 and 20 weeks postirradiation. No further changes were then seen until 52 weeks postirradiation when a second phase of skin thinning was observed. This was complete after 76 weeks and no further changes in relative skin thickness were seen in the maximum follow up period of 129 weeks. The timings of these phases of damage were independent of the radiation dose, however, the severity of both phases of radiation-induced skin thinning were dose related. (Author).

  20. Skin dose reduction by a clinically viable magnetic deflector

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M.J.; Carolan, M.; Metcalfe, J.N. [Illawarra Cancer Centre, NSW (Australia). Department of Radiotherapy]|[University of Wollongong, NSW (Australia). Department of Physics; Mathur, J.N. [University of Wollongong, NSW (Australia). Department of Physics; Yu, P.; Young, E. [City University of Hong Kong, Kowloon (Hong Kong). Department of Physics; Kan, M. [Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Optometry and Radiography]|[City University of Hong Kong, Kowloon (Hong Kong). Department of Physics

    1997-06-01

    A variable magnetic deflector which attaches onto the treatment head of a linear accelerator has reduced skin dose by as much as 65% for 6MV x-rays. The magnetic deflector is constructed from Neodymium Iron Boron (NdFeB) rare earth magnets. It weighs approximately 15 kg and is designed to easily fit onto the accessory mount of a clinical linear accelerator. All field sizes are attainable up to 35 cm x 35 cm at 100 cm SSD. The gap between the magnetic poles can be adjusted, providing the highest field strength for each field size. Magnetic field strengths up to 0.55 Tesla are attainable. For a 6MV x-ray beam with a 10 mm perspex block tray, surface dose is reduced from 29% to 14% and from 59% to 37% for a 20 cm x 20 cm and 35 cm x 35 cm field size, respectively. Results at varying SSD`s have shown at least 10 cm of space must be allowed between the magnets and patient for adequate reduction of skin dose through removal of electron contaminants. (authors). 14 refs., 6 figs.

  1. Clinical application of a OneDose(TM) MOSFET for skin dose measurements during internal mammary chain irradiation with high dose rate brachytherapy in carcinoma of the breast

    International Nuclear Information System (INIS)

    Kinhikar, Rajesh A; Sharma, Pramod K; Tambe, Chandrashekhar M; Mahantshetty, Umesh M; Sarin, Rajiv; Deshpande, Deepak D; Shrivastava, Shyam K

    2006-01-01

    In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose(TM) in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs. (note)

  2. Fractional sunburn threshold UVR doses generate equivalent vitamin D and DNA damage in skin types I-VI, but with epidermal DNA damage gradient correlated to skin darkness.

    Science.gov (United States)

    Shih, Barbara B; Farrar, Mark D; Cooke, Marcus S; Osman, Joanne; Langton, Abigail K; Kift, Richard; Webb, Ann R; Berry, Jacqueline L; Watson, Rachel E B; Vail, Andy; de Gruijl, Frank R; Rhodes, Lesley E

    2018-05-03

    Public health guidance recommends limiting sun-exposure to sub-sunburn levels, but it's unknown whether these can gain vitamin D (for musculoskeletal health) whilst avoiding epidermal DNA damage (initiates skin cancer). Well-characterised healthy humans of all skin types (I-VI; lightest to darkest skin) were exposed to a low dose-series of solar simulated UVR of 20-80% their individual sunburn threshold dose (minimal erythemal dose, MED). Significant UVR dose-responses were seen for serum 25(OH)D and whole epidermal CPD, with as little as 0.2 MED concurrently producing 25(OH)D and CPD. Notably, fractional MEDs generated equivalent levels of whole epidermal CPD and 25(OH)D across all skin types. Crucially, we demonstrated an epidermal gradient of CPD formation strongly correlated with skin darkness (r=0.74; Pskin types, ranging from darkest skin, where high CPD levels occurred superficially with none in the germinative basal layer, through to lightest skin where CPD were induced evenly across the epidermal depth. Darker skin people can be encouraged to utilise sub-sunburn UVR-exposure to enhance their vitamin D. In lighter skin people, basal cell damage occurs concurrent with vitamin D synthesis at exquisitely low UVR levels, providing an explanation for their high skin cancer incidence; greater caution is required. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Skin dose from distributed radioactive sources and hot particles - Regulations and recommendations

    International Nuclear Information System (INIS)

    Porter, S.W.

    1991-01-01

    The issues concerning Beta Dosimetry, Hot Particle Dosimetry, and associated dose to skin have been highlighted since the 1979 TMI-2 accident report of the Presidential Commission. The conclusions drawn from the DOE/EML International Beta Dosimetry Symposium of 1983 are still valid. The questions of location(s) of the radiosensitive layer of human skin, the most valid method of skin dose measurement and interpretation of associated radiobiological data are still lingering. The need for improving beta calculation standards and procedures are more evident now than in 1983. This paper will discuss the newest ICRP and NCRP recommendations, as well as the regulations and guidelines from the NRC. I would expect that the draft recommendations published in this paper will be considerably changed by the time of the January, 1991 presentation of this paper

  4. Dosimetric effects of thermoplastic immobilizing devices on skin dose

    International Nuclear Information System (INIS)

    Adu-Poku Olivia

    2017-07-01

    This work shows the increase in surface dose caused by thermoplastic immobilizing masks used for positioning and immobilization of patients. Thermoplastics are organic materials which soften when they are heated. They can be formed after softening and retain their final shape when cooled. The use of these thermoplastic masks are relevant during patient treatment. However, it can lead to an increased skin dose. Measurements were done at source-to-surface distance of 80 cm for external radiation beams produced by cobalt 60 using the Farmer type ionization chamber and the Unidos electrometer. Measurements were carried out using various mask thicknesses and no mask material on a solid water phantom. The thermoplastic percentage depth dose (PDD), equivalent thickness of water of the various thicknesses of the mask and surface doses were determined. The increase in the surface dose caused by the thermoplastic mask was compared by looking at the PDD at depth 0 with and without the mask present and was found to increase between 0.76 and 0.79% with no mask for a field size of 5 x 5 cm 2 . It was found that, the presence of the mask shifted the percentage depth dose curve to lower values. The physical thermoplastic thickness was measured to be between 2.30 and 1.80 mm, and the equivalent thicknesses of water, d e , were determined to be 1.2, 1.15, 1.10 and 1.09 and 1.00 mm for the unstretched, 5 cm stretched, 10 cm stretched, 15 cm stretched and 20 cm stretched masks, respectively. This meant that, as the mask thickness decreased, its water equivalent thickness also decreased. The presence of the mask material did not increase the skin dose significantly ( less than 1%). (au)

  5. Assessment of patients' skin dose during interventional cardiology procedures

    International Nuclear Information System (INIS)

    Tsapaki, V.; Vardalaki, E.; Kottou, S.; Molfetas, M.; Neofotistou, V.

    2002-01-01

    During the last 30 years the use of Interventional Cardiology (IC) procedures has increased significantly, mainly due to the benefits and advantages of the method that offers more accurate diagnosis and treatment along with less complications and hospitalization. However, IC procedures are based on the use of x-ray radiation, mostly localized at certain areas of patient's body and for extended periods of time. Consequently, patient may receive high radiation dose and deterministic effects, such as erythema, epilation or even dermal necrosis may be observed. Therefore, the need for reducing radiation dose is highly important. In order to achieve this, good knowledge of the dose levels delivered to the patient during IC procedures is essential since radiation effects are known to increase with dose. It is of great interest to know the point where the maximum skin dose (MSD) is noted since individual sensitivity may vary. MSDs greater than 1 Gy should be recorded. Patient dosimetry during IC procedures is a complex task since these type of procedures depend on various factors, such as complexity and severity of case, different specifications of x-ray equipment and patient's physical characteristics. Moreover, cardiologist's experience plays an important role. For these reasons, Food and Drug Administration (FDA), the International Commission on Radiological Protection (ICRP) as well as the World Health Organization (WHO), have published documents on radiation safety and ways to reduce skin injuries during IC procedures. Various methods have been proposed for measuring MSD such as the use of slow radiotherapy films, thermoluminescent detectors (TLD), scintillation detectors, Dose-Area Product (DAP) meter, as well as a combination of DAP and air kerma. A literature review on MSDs measured during IC procedures showed that doses ranged from 300 to 43000 mGy

  6. Assessment of skin dose modification caused by application of immobilizing cast in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Soleymanifard, Shokouhozaman; Toossi, Mohammad T.B.; Khosroabadi, Mohsen; Noghreiyan, Atefeh Vejdani; Shahidsales, Soodabeh; Tabrizi, Fatemeh Varshoee

    2014-01-01

    Skin dose assessment for radiotherapy patients is important to ensure that the dose received by skin is not excessive and does not cause skin reactions. Immobilizing casts may have a buildup effect, and can enhance the skin dose. This study has quantified changes to the surface dose as a result of head and neck immobilizing casts. Medtech and Renfu casts were stretched on the head of an Alderson Rando-Phantom. Irradiation was performed using 6 and 15 MV X-rays, and surface dose was measured by thermoluminescence dosimeters. In the case of 15MV photons, immobilizing casts had no effect on the surface dose. However, the mean surface dose increase reached up to 20 % when 6MV X-rays were applied. Radiation incidence angle, thickness, and meshed pattern of the casts affected the quantity of dose enhancement. For vertical beams, the surface dose increase was more than tangential beams, and when doses of the points under different areas of the casts were analysed separately, results showed that only doses of the points under the thick area had been changed. Doses of the points under the thin area and those within the holes were identical to the same points without immobilizing casts. Higher dose which was incurred due to application of immobilizing casts (20 %) would not affect the quality of life and treatment of patients whose head and neck are treated. Therefore, the benefits of head and neck thermoplastic casts are more than their detriments. However, producing thinner casts with larger holes may reduce the dose enhancement effect.

  7. Skin Dose Assessment by Hot Particles in Domestic Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, Bo Yeol; Cho, Woon Kap; Lee, Jai Ki

    2009-01-01

    Since a contamination event by hot particles happened due to damaged nuclear fuel at a nuclear power plant (NPP) in the 1980's, skin exposure resulted from hot particles has gotten considerable attention from all the radiation workers in the nuclear industry. In particular, contamination incident caused by hot particles which happened at a NPP in Susquehanna proved that there existed hot particles with the radioactivity of 0.7 GBq, 0.78 GBq, and even 2.78 GBq at maximum. One of these particles was found on a worker's shoe and gave out a dose of 170 mSv. Although there has been no contamination event reported in domestic NPPs which are caused by hot particles, it is hard to conclude that there is no possibility of such contamination for radiation workers. The contaminated samples employed in this study were taken from local NPPs and supposes a case of a worker's skin contaminated by hot particles to evaluate the dose provided to the worker's skin

  8. The response of mouse skin to multiple small doses of radiation

    International Nuclear Information System (INIS)

    Denekamp, J.; Harris, S.R.

    1975-01-01

    The response of mouse skin has been tested by irradiating the foot of albino mice and scoring erythema and desquamation during the following month. Multiple small doses of 150, 250 and 350 rad have been given 'daily', and the test dose necessary to achieve a given reaction has been determined one day after the last small fraction. This test dose has been compared with the single dose necessary to produce the same reaction level in previously untreated mice, in order to determine the ratio of the slopes of the dose-response curve at low and high doses: Slope ratio = (single dose - test dose)/total fractionated priming dose. In three separate experiments the slope ratio decreased as the dose per fraction was reduced from 350 to 150 rad. This conflicts with the data of Dutreix et al, who found a constant slope ratio over this dose range. The present data are compared with those obtained by Denekamp using 4, 9 and 14 fractions of 300 rad and by Douglas et al, using the same experimental technique, over the dose range 45 to 200 rad/fraction. In addition, the results from multifraction experiments in which equal dose increments were administered until the requisite skin reaction was achieved are also analysed in terms of their slope ratio (Fowler et al. Douglas et al). When all these results are plotted it is impossible to be sure whether the slope ratio is decreasing over the range 300 to 45 rad per fraction, although it seems likely. Most of the values at low doses lie in the range 0.15 to 0.25, indicating that at low doses the radiation is only 15 to 25% as effective per rad in causing cell death as at higher doses. (author)

  9. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has

  10. Proposed derivation of skin contamination and skin decontamination limits

    International Nuclear Information System (INIS)

    Schieferdecker, H.; Koelzer, W.; Henrichs, K.

    1986-01-01

    From the primary dose limits for the skin, secondary dose limits were derived for skin contamination which can be used in practical radiation protection work. Analogous to the secondary dose limit for the maximum permissible body burden in the case of incorporation, dose limits for the 'maximum permissible skin burden' were calculated, with the help of dose factors, for application in the case of skin contamination. They can be derived from the skin dose limit values. For conditions in which the skin is exposed to temporary contamination, a limit of skin contamination was derived for immediately removable contamination and for one day of exposure. For non-removable contamination a dose limit of annual skin contamination was defined, taking into account the renewal of the skin. An investigation level for skin contamination was assumed, as a threshold, above which certain measures must be taken; these to include appropriate washing not more than three times, with the subsequent procedure determined by the level of residual contamination. The dose limits are indicated for selected radionuclides. (author)

  11. Evaluation of skin surface dose for head and neck cancer patients treated with intensity-modulated radiation therapy using in vivo dosimetry

    International Nuclear Information System (INIS)

    Kim, Yeon Sil; Lee, Dong Soo; Yoo, Mi Na; Hong, Joo Young; Yoon, Se Chul; Jang, Hong Suk

    2011-01-01

    Use of intensity-modulated radiation therapy (IMRT) for head and neck cancer is gradually increasing, because it could facilitate more sophsticated treatment of target volumes and reduction of acute and late sequelae. However, theoretically, there is a potential risk of increased skin surface dose resulting from multiple obliquity effects caused by multiple tangential beams. Moreover, we sometimes confronted with more skin reactions in the patients treated with IMRT than conventional techniques. In this study, we evaluated skin surface dose adjacent to the target volumes to verify whether the use of IMRT would increase the skin dose more than we predicted. This study had shown that the use of IMRT did not increase the skin surface hot point dose. The measured skin surface dose was 20 to 40 percent of the adjacent target prescription dose, and was within acceptable dose range. Our study had some limitations with small number of experimental patients and methodological problems. Potential risk of increasing skin dose with bolus effect of aquaplaster should be examined in the future trials. In addition, the accurate set-up verification should be maintained because of steep dose gradient between skin surface and target volumes within a short distance in the head and neck cancer patients.

  12. Multiple methods for assessing the dose to skin exposed to radioactive contamination

    International Nuclear Information System (INIS)

    Dubeau, J.; Heinmiller, B.E.; Corrigan, M.

    2017-01-01

    There is the possibility for a worker at a nuclear installation, such as a nuclear power reactor, a fuel production facility or a medical facility, to come in contact with radioactive contaminants. When such an event occurs, the first order of business is to care for the worker by promptly initiating a decontamination process. Usually, the radiation protection personnel performs a G-M pancake probe measurement of the contamination in situ and collects part or all of the radioactive contamination for further laboratory analysis. The health physicist on duty must then perform, using the available information, a skin dose assessment that will go into the worker's permanent dose record. The contamination situations are often complex and the dose assessment can be laborious. This article compares five dose assessment methods that involve analysis, new technologies and new software. The five methods are applied to 13 actual contamination incidents consisting of direct skin contact, contamination on clothing and contamination on clothing in the presence of an air gap between the clothing and the skin. This work shows that, for the cases studied, the methods provided dose estimates that were usually within 12% (1σ) of each other, for those cases where absolute activity information for every radionuclide was available. One method, which relies simply on a G-M pancake probe measurement, appeared to be particularly useful in situations where a contamination sample could not be recovered for laboratory analysis. (authors)

  13. Evaluation of radiological protection and dose of skin entrance in paediatric dentistry examinations

    International Nuclear Information System (INIS)

    Khoury, Helen Jamil; Silveira, Marcia Maria Fonseca da; Couto, Geraldo Bosco Lindoso; Brasileiro, Izabela Vanderley

    2005-01-01

    In this work the radiological protection conditions and dose at the entrance of pediatric patients undergoing dental intraoral radiographs were evaluated. The study was conducted in two clinics of the dentistry course at the Federal University of Pernambuco, Recife, PB, Brazil, equipped with conventional X-ray apparatus, with 60 and 70 kV. 254 exams of 113 patients between the ages of 3 to 12 years were evaluated. The skin entrance dose was estimated using TLD-100 thermoluminescent dosemeters. During the examination were also recorded information regarding the time of exposure, radiographic technique used, use of thyroid protectors and lead apron, angle and distance of the cone Locator to the patient's skin. The results showed that the input skin doses ranged from 0.3 mGy to 10mGy. The lead apron was used in 71% of exams while the thyroid shield was only used in 58% of the exams. The exposure times ranged from 0,5s to 1,5s. From the results it can be concluded that the radiological procedures are not optimized and that in some cases the patient dose is high.

  14. Using a thermoluminescent dosimeter to evaluate the location reliability of the highest–skin dose area detected by treatment planning in radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Huang, Chih-Jen [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan (China); Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan (China); College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan (China); Chen, Hsiao-Yun [Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan (China); Meng, Fan-Yun [Department of General Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Lu, Tsung-Hsien [Department of Radiation Oncology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China); Tsao, Min-Jen [Department of General Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan (China)

    2014-01-01

    Acute skin reaction during adjuvant radiotherapy for breast cancer is an inevitable process, and its severity is related to the skin dose. A high–skin dose area can be speculated based on the isodose distribution shown on a treatment planning. To determine whether treatment planning can reflect high–skin dose location, 80 patients were collected and their skin doses in different areas were measured using a thermoluminescent dosimeter to locate the highest–skin dose area in each patient. We determined whether the skin dose is consistent with the highest-dose area estimated by the treatment planning of the same patient. The χ{sup 2} and Fisher exact tests revealed that these 2 methods yielded more consistent results when the highest-dose spots were located in the axillary and breast areas but not in the inframammary area. We suggest that skin doses shown on the treatment planning might be a reliable and simple alternative method for estimating the highest skin doses in some areas.

  15. Using a thermoluminescent dosimeter to evaluate the location reliability of the highest–skin dose area detected by treatment planning in radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Sun, Li-Min; Huang, Chih-Jen; Chen, Hsiao-Yun; Meng, Fan-Yun; Lu, Tsung-Hsien; Tsao, Min-Jen

    2014-01-01

    Acute skin reaction during adjuvant radiotherapy for breast cancer is an inevitable process, and its severity is related to the skin dose. A high–skin dose area can be speculated based on the isodose distribution shown on a treatment planning. To determine whether treatment planning can reflect high–skin dose location, 80 patients were collected and their skin doses in different areas were measured using a thermoluminescent dosimeter to locate the highest–skin dose area in each patient. We determined whether the skin dose is consistent with the highest-dose area estimated by the treatment planning of the same patient. The χ 2 and Fisher exact tests revealed that these 2 methods yielded more consistent results when the highest-dose spots were located in the axillary and breast areas but not in the inframammary area. We suggest that skin doses shown on the treatment planning might be a reliable and simple alternative method for estimating the highest skin doses in some areas

  16. The study on clinical conditions and skin dose of upper-gastrointestinal x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Kim, Sung Chul; Ahn, Sung Min; Jang, Sang Sup

    2007-01-01

    This study examined present conditions of upper-gastrointestinal X-ray fluoroscopy and patient skin dose. The authors elected 21 equipment to check the X-ray equipment and exposure factor of fluoroscopy and spot exposure in university hospitals, hospitals, and clinics where perform upper-gastrointestinal X-ray fluoroscopy more than five times every day in Incheon areas. The amount of patient's skin dose during upper-gastrointestinal X-ray fluoroscopy was measured by ionization chamber

  17. The radiation dose from a proposed measurement of arsenic and selenium in human skin

    Energy Technology Data Exchange (ETDEWEB)

    Gherase, Mihai R; Mader, Joanna E; Fleming, David E B, E-mail: mgherase@mta.c [Department of Physics, Mount Allison University, 67 York Street, Sackville, NB E4L 1E6 (Canada)

    2010-09-21

    Dose measurements following 10 min irradiations with a portable x-ray fluorescence spectrometer composed of a miniature x-ray tube and a silicon PiN diode detector were performed using thermoluminescent dosimeters consisting of LiF:Mg,Ti chips of 3 mm diameter and 0.4 mm thickness. The table-top setup of the spectrometer was used for all measurements. The setup included a stainless steel lid which served as a radiation shield. Two rectangular polyethylene skin/soft tissue phantoms with two cylindrical plaster of Paris bone phantoms were used to study the effect of x-ray beam attenuation and backscatter on the measured dose. Eight different irradiation experiments were performed. The average dose rate values measured with TLD chips within a 1 x 1 cm{sup 2} area were between 4.8 and 12.8 mGy min{sup -1}. The equivalent dose for a 1 x 1 cm{sup 2} skin area was estimated to be 13.2 mSv. The maximum measured dose rate values with a single TLD chip were between 7.5 and 25.1 mGy min{sup -1}. The effective dose corresponding to a proposed arsenic/selenium skin measurement was estimated to be 0.13 {mu}Sv for a 2 min irradiation.

  18. An effective dose assessment technique with NORM added consumer products using skin-point source on computational human phantom

    International Nuclear Information System (INIS)

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Hyun Cheol; Choi, Hyun Joon; Testa, Mauro; Lee, Jae Kook; Yeom, Yeon Soo; Kim, Chan Hyeong; Min, Chul Hee

    2016-01-01

    The aim of this study is to develop the assessment technique of the effective dose by calculating the organ equivalent dose with a Monte Carlo (MC) simulation and a computational human phantom for the naturally occurring radioactive material (NORM) added consumer products. In this study, we suggests the method determining the MC source term based on the skin-point source enabling the convenient and conservative modeling of the various type of the products. To validate the skin-point source method, the organ equivalent doses were compared with that by the product modeling source of the realistic shape for the pillow, waist supporter, sleeping mattress etc. Our results show that according to the source location, the organ equivalent doses were observed as the similar tendency for both source determining methods, however, it was observed that the annual effective dose with the skin-point source was conservative than that with the modeling source with the maximum 3.3 times higher dose. With the assumption of the gamma energy of 1 MeV and product activity of 1 Bq g"−"1, the annual effective doses of the pillow, waist supporter and sleeping mattress with skin-point source was 3.09E-16 Sv Bq"−"1 year"−"1, 1.45E-15 Sv Bq"−"1 year"−"1, and 2,82E-16 Sv Bq"−"1 year"−"1, respectively, while the product modeling source showed 9.22E-17 Sv Bq"−"1 year"−"1, 9.29E-16 Sv Bq"−"1 year"−"1, and 8.83E-17 Sv Bq"−"1 year"−"1, respectively. In conclusion, it was demonstrated in this study that the skin-point source method could be employed to efficiently evaluate the annual effective dose due to the usage of the NORM added consumer products. - Highlights: • We evaluate the exposure dose from the usage of NORM added consumer products. • We suggest the method determining the MC source term based on the skin-point source. • To validate the skin-point source, the organ equivalent doses were compared with that the modeling source. • The skin-point source could

  19. Penicillin skin testing is a safe and effective tool for evaluating penicillin allergy in the pediatric population.

    Science.gov (United States)

    Fox, Stephanie J; Park, Miguel A

    2014-01-01

    Penicillin skin testing has been validated in the evaluation of adult patients with penicillin allergy. However, the commercially available benzylpenicilloyl polylysine (Pre-Pen) is not indicated in the pediatric population. Moreover, the safety and validity of penicillin skin testing in the pediatric population has not been well studied. We describe the safety and validity of penicillin skin testing in the evaluation of children with a history of penicillin allergy. Children (penicillin allergy were evaluated with penicillin skin tests and were reviewed for basic demographics, penicillin skin test results, adverse drug reaction to penicillin after penicillin skin test, and adverse reaction to penicillin skin test. By using the χ(2) test, we compared the differences in the proportion of children and adults with a positive penicillin skin test. P value (penicillin skin testing; 703 of 778 patients had a negative penicillin skin test (90.4%), 66 had a positive test (8.5%), and 9 had an equivocal test (1.1%). Children were more likely to have a positive penicillin skin test (P penicillin skin test (52%) were challenged with penicillin, and 14 of 369 patients (3.8%) had an adverse drug reaction. No adverse reactions to penicillin skin testing were observed. Penicillin skin testing was safe and effective in the evaluation of children with a history of penicillin allergy. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Skin dose rate conversion factors after contamination with radiopharmaceuticals: influence of contamination area, epidermal thickness and percutaneous absorption

    International Nuclear Information System (INIS)

    Covens, P; Berus, D; Caveliers, V; Struelens, L; Vanhavere, F; Verellen, D

    2013-01-01

    Skin contamination with radiopharmaceuticals can occur during biomedical research and daily nuclear medicine practice as a result of accidental spills, after contact with bodily fluids of patients or by inattentively touching contaminated materials. Skin dose assessment should be carried out by repeated quantification to map the course of the contamination together with the use of appropriate skin dose rate conversion factors. Contamination is generally characterised by local spots on the palmar surface of the hand and complete decontamination is difficult as a result of percutaneous absorption. This specific issue requires special consideration as to the skin dose rate conversion factors as a measure for the absorbed dose rate to the basal layer of the epidermis. In this work we used Monte Carlo simulations to study the influence of the contamination area, the epidermal thickness and the percutaneous absorption on the absorbed skin dose rate conversion factors for a set of 39 medical radionuclides. The results show that the absorbed dose to the basal layer of the epidermis can differ by up to two orders of magnitude from the operational quantity H p (0.07) when using an appropriate epidermal thickness in combination with the effect of percutaneous absorption. (paper)

  1. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  2. Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    Ahn, Jong Ho; Hong, Chae Seon; Kim, Jin Man; Jang, Jun Young

    2008-01-01

    Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. But imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in separately H and N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. The results of the measured skin dose are described in here. The skin dose of Head and Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low m

  3. Increased Skin Dose With the Use of a Custom Mattress for Prone Breast Radiotherapy

    International Nuclear Information System (INIS)

    Becker, Stewart J.; Patel, Rakesh R.; Mackie, Thomas R.

    2007-01-01

    The purpose of this study was to measure and compare the loss of buildup to the skin of the breast in the prone position due to 2 different positioning systems during tangential external beam irradiation. Two experiments were performed; one with a standard nylon-covered foam support and another with a novel helium-filled Mylar bag support. The choice of helium-filled Mylar was to reduce the contamination to as low as possible. The experiments were designed to allow a surface dose measurement and a depth dose profile with the pads placed in the path of the beam in front of the detector. All measurements were taken using a Capintec PS-033 thin-window parallel plate ionization chamber. The standard nylon-covered foam pad caused the surface dose to rise as it got closer to the skin. When the pad was directly touching the surface, the surface dose increased by 300% compared to the result when no pad was present. This loss of buildup to the surface was similar to that of a custom bolus material. The opposite effect occurred with the use of the helium-filled Mylar bag, namely the surface dose gradually decreased as the pad got closer to the phantom. When the Mylar pad was directly touching the phantom, the surface dose was decreased by 7% compared to when no pad was present. The use of a foam pad could potentially result in a significant higher dose to the skin, resulting in an enhanced acute skin reaction. Therefore, special care should be taken in this clinical scenario and further investigation of an air- or helium-based mylar support pad should be investigated in the context of definitive breast radiation treatment

  4. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.

    Science.gov (United States)

    Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G

    2012-10-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are

  5. Underprediction of human skin erythema at low doses per fraction by the linear quadratic model

    International Nuclear Information System (INIS)

    Hamilton, Christopher S.; Denham, James W.; O'Brien, Maree; Ostwald, Patricia; Kron, Tomas; Wright, Suzanne; Doerr, Wolfgang

    1996-01-01

    Background and purpose. The erythematous response of human skin to radiotherapy has proven useful for testing the predictions of the linear quadratic (LQ) model in terms of fractionation sensitivity and repair half time. No formal investigation of the response of human skin to doses less than 2 Gy per fraction has occurred. This study aims to test the validity of the LQ model for human skin at doses ranging from 0.4 to 5.2 Gy per fraction. Materials and methods. Complete erythema reaction profiles were obtained using reflectance spectrophotometry in two patient populations: 65 patients treated palliatively with 5, 10, 12 and 20 daily treatment fractions (varying thicknesses of bolus, various body sites) and 52 patients undergoing prostatic irradiation for localised carcinoma of the prostate (no bolus, 30-32 fractions). Results and conclusions. Gender, age, site and prior sun exposure influence pre- and post-treatment erythema values independently of dose administered. Out-of-field effects were also noted. The linear quadratic model significantly underpredicted peak erythema values at doses less than 1.5 Gy per fraction. This suggests that either the conventional linear quadratic model does not apply for low doses per fraction in human skin or that erythema is not exclusively initiated by radiation damage to the basal layer. The data are potentially explained by an induced repair model

  6. Implementation of Ray Safe i2 System for staff dose measuring in interventional radiology

    International Nuclear Information System (INIS)

    Gershan, Vesna; Atsovska, Violeta

    2013-01-01

    Interventional radiology procedures usually delivered the highest radiation dose to the patients as well as to medical personal. Beside another factors like patient size, fluoroscopy time, machine calibration etc., a good clinical practice has strong effects to staff and patient’s radiation dose. Materials and methods: In August 2012, a Ray Safe i2 system was installed in a private hospital in Skopje. The main purpose of this dosimetry system is to provide real time indication for the current exposure level of the medical personal. Knowing that, the staff has prerequisites to adjust their behavior to minimize unnecessary exposure like changing distance from exposed volume, C-ram angulations, field of view etc. and on this way to develop a good clinical practice. The Ray Safe i2 system is consisted by ten digital dosimeters, two dock stations, real time display, dose viewer and dose manager software. During interventional procedures, each involved staff wears dosimeter which measures and records X-Ray exposure every second and transfer the data wirelessly to the real time display. Color indication bars (green, yellow, red) represents the intensity of the currently received exposure, whereas green zone indicates < 0.2 mSv/h, yellow zone from 0.2 to 2 mSv/h and red zone indications from 2 to 20 mSv/h. Additionally, accumulated dose per individual is displayed next to the color indication bars. By using the software, information about personal dose history, such as annual dose, dose per particular session, hour, day or week, can be viewed and analyzed. Results: In this work it was found that staff accumulated doses were constantly increased over time, but reported number of procedures does not correspond to this tendency. Our assumption is that there is a misleading between reported number and actual performed procedures. Doctor1 received 55 times more dose than Doctor2 and Nurse1 received 11 to 3 times more dose than another Nurses. It was found a correlation of R2

  7. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    International Nuclear Information System (INIS)

    Lucero, J. F.; Rojas, J. I.

    2016-01-01

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  8. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, J. F., E-mail: fernando.lucero@hoperadiotherapy.com.gt [Universidad Nacional de Costa Rica, Heredia (Costa Rica); Hope International, Guatemala (Guatemala); Rojas, J. I., E-mail: isaac.rojas@siglo21.cr [Centro Médico Radioterapia Siglo XXI, San José (Costa Rica)

    2016-07-07

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient’s entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  9. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    Energy Technology Data Exchange (ETDEWEB)

    Neubeck, Claere von [German Cancer Consortium DKTK partner site Dresden, OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Geniza, Matthew J. [Molecular and Cellular Biology Program, Oregon State University, Corvallis OR 97331 (United States); Kauer, Paula M.; Robinson, R. Joe; Chrisler, William B. [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland WA 99352 (United States); Sowa, Marianne B., E-mail: marianne.sowa@pnnl.gov [Health Impacts and Exposure Science, Pacific Northwest National Laboratory, Richland WA 99352 (United States)

    2015-05-15

    Highlights: • Low doses of high LET radiation influence skin homeostasis. • Effects on proliferation and differentiation profiles are LET dependent. • Skin barrier function is not compromised following low dose exposure. - Abstract: Outside the protection of Earth's atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin's barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  10. Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma

    International Nuclear Information System (INIS)

    Lee, Jong-Jin; Chung, June-Key; Kim, Sung-Eun; Kang, Won-Jun; Park, Do-Joon; Lee, Dong-Soo; Cho, Bo-Youn; Lee, Myung-Chul

    2008-01-01

    The maximal safe dose (MSD) on the basis of bone marrow irradiation levels allows the delivery of a large amount of I-131 to thyroid cancer tissue. The efficacy of MSD therapy in differentiated metastatic thyroid cancers that persisted after conventional fixed dose therapy is investigated. Forty-seven differentiated thyroid carcinoma patients with non-responsive residual disease despite repetitive fixed dose I-131 therapy were enrolled in this study. Their postoperative pathologies were 43 papillary carcinomas and 4 follicular carcinomas. The MSD was calculated with the Memorial Sloan-Kettering Cancer Center protocol using serial blood samples. The MSDs were administered at intervals of 6 months. Treatment responses were evaluated using I-131 whole-body scans and serum thyroglobulin measurements. The mean calculated MSD was 12.5±2.1 GBq (339.6±57.5 mCi). Of the 46 patients, 7 (14.9%) showed complete remission, 15 (31.9%) partial remission, 19 (40.4%) stable disease, and 6 (12.8%) disease progression. Of the patients who showed complete or partial remission, 15 (65%) showed response after the first MSD session and 6 (26%) showed response after the second session. Twenty-nine patients (62%) experienced transient cytopenia after therapy, but three did not recover to the baseline level. The maximal safe dose provides an effective means of treatment in patients who failed to respond adequately to conventional fixed dose therapy. I-131 MSD therapy can be considered in patients who fail fixed dose therapy. (author)

  11. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 gamma-ray beams. Either the Klein-Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source-surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  12. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 γ-ray beams. Either the Klein--Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source--surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  13. Estimate of ovarian dose and entrance skin dose in uterine artery embolization procedures

    International Nuclear Information System (INIS)

    Silva, Marcia C.; Nasser, Felipe; Affonso, Breno B.; Araujo Junior, Raimundo T.; Zlotnik, Eduardo; Messina, Marcos L.; Baracat, Edmund C.

    2010-01-01

    The goal of this study was to estimate the ovarian dose and entrance skin dose (ESD) of patients who underwent uterine artery embolization (UAE) procedure. To achieve this, 49 UAE procedures were accompanied where the parameters of image acquisition were recorded for the calculation of the DEP from the output of the X-ray tube. The estimation of the ovarian dose was carried out by the insertion of a vaginal probe containing 3 TLD's. The obtained values were compared with the results of other authors and a higher value of ovarian dose (28,97 cGy) and ESD (403,57 cGy) was found in this work. Analysis of the results allowed to observe that this result was obtained mainly as a result of the high number of arteriography series and the frames/second rates employed. Following on from these observations, the protocol of EMUT was altered reducing the frames/seg rate from 2 to 1. Efforts with a view to reducing the number of arteriography series also became part of the next proceedings. (author)

  14. Entrance skin dose on patients undergoing X-ray examinations at ...

    African Journals Online (AJOL)

    survey was conducted on the Entrance Skin Dose (ESD) in patients undergoing X-ray examinations [Skull Postero-Anterior (PA), Skull Lateral (LAT), Chest Postero-Anterior (PA), Chest Lateral (LAT), Abdomen Antero-Posterior (AP) and Pelvis Antero-Posterior (AP)] in five hospitals/Xray centres in Yaba, Lagos State, Nigeria ...

  15. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.; Lien, Katie A.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Sacksteder, Colette A.

    2012-12-01

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, were significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.

  16. Your Skin

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Skin KidsHealth / For Kids / Your Skin What's in this ... body) are really dead skin cells. Bye-Bye Skin Cells These old cells are tough and strong, ...

  17. Tourniquet application and epinephrine injection to penile skin: is it safe?

    Science.gov (United States)

    Cakmak, M; Caglayan, F; Kisa, U; Bozdogan, O; Saray, A; Caglayan, O

    2002-09-01

    Although a tourniquet is frequently used in penile surgery there is still no consensus on safe application time. The aim of the present study is to investigate the effect of malondialdehyde (MDA) levels and histological changes in skin flaps after penile tourniquet application and epinephrine injection. A total of 36 male white New Zealand rabbits were randomly divided into six groups each containing six animals. A Mathieu-like flap was raised in all of the groups and a tourniquet was applied and the penis was subjected to ischemia for 10, 20 and 40 min in groups 1, 2 and 3, respectively. The flaps were then allowed to reperfuse for 5 min. Biopsies for MDA measurement were harvested in these groups. Subcutaneous 1/200,000 epinephrine was injected into penile skin in group 4 and 5 rabbits and biopsies for MDA measurement were harvested 10 and 40 min after injection. The control group was anesthetized without tourniquet usage or epinephrine injection. Specimens taken from the harvested flaps of all groups were submitted for histological evaluation. The mean MDA levels in all experimental groups were higher than in the control group and the difference was statistically significant. Edema, congestion and extravasation were observed in groups 1, 2 and 3. Minimal congestion and edema were observed in group 4 and severe edema and extravasation in group 5. Tourniquet usage for a duration of less than 10 min is clearly safer than prolonged usage. Epinephrine injection to penile skin may show a deleterious effect on wound healing.

  18. Skin dosimetry - radiological protection aspects of skin dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1991-01-01

    Following a Workshop in Skin Dosimetry, a summary of the radiological protection aspects is given. Aspects discussed include routine skin monitoring and dose limits, the need for careful skin dosimetry in high accidental exposures, techniques for assessing skin dose at all relevant depths and the specification of dose quantities to be measured by personal dosemeters and the appropriate methods to be used in their calibration. (UK)

  19. Effects of low or high doses of short wavelength ultraviolet light (UVB) on Langerhans cells and skin allograft survival

    International Nuclear Information System (INIS)

    Odling, K.A.; Halliday, G.M.; Muller, H.K.

    1987-01-01

    Donor C57BL mouse shaved dorsal trunk or tail skin was exposed to high (200 mJ/cm 2 ) or low (40 mJ/cm 2 ) doses of short wavelength ultraviolet light (UVB) before grafting on to the thorax of BALB/c mouse recipients of the same sex. Skin grafted 1-14 days following a single high dose of UVB irradiation was ultrastructurally depleted of LC and survived significantly longer than unirradiated skin before being rejected. After a 21-day interval between exposure and grafting when LC were again present in the epidermis there was no significant difference between treated and control graft survival. Exposure to low dose UVB irradiation only significantly increased graft survival for skin transplanted 1-3 days after irradiation; skin grafted 4 days following irradiation survived for a similar period to unirradiated control skin grafts. Electronmicroscopy showed that the low UVB dose did not deplete LC from the epidermis. We conclude that after low dose UVB treatment the class II MHC antigens on the LC Plasma membrane were lost temporarily, thus prolonging graft survival, but when the plasma membrane antigens were re-expressed graft survival returned to normal. In contrast, high-dose UVB irradiation prolonged graft survival by depleting LC from the epidermis, with graft survival only returning to control values as LC repopulated the epidermis

  20. Evaluation of F/E·DOI method as an approximate estimate of skin dose during percutaneous coronary intervention procedure

    International Nuclear Information System (INIS)

    Nakahara, Makoto; Yoshino, Akira; Kitano, K.; Yamaguchi, M.; Morone, Takayuki; Tani, K.

    2005-01-01

    The purpose of this study was to evaluate the efficacy of fluoroscopy time/total exposure times exposure times · in direction of interest (F/E·DOI) method as an approximate estimate of skin dose during percutaneous coronary intervention (PCI) procedure. Up to March 10, 2004, fifty-seven patients (male: 46 cases, female: 11 cases, age range 38-85 years; mean age 67±11 years) had undergone PCI and 157 directions of exposure was measured using X-ray films (KONICA MINOLTA SR-DUP) placed under the back of each patient during the procedure. The fluoroscopy time (minutes), the times of exposure in each direction during the procedure, and the thickness of chest (cm) was recorded. The relation of the skin dose to fluoroscopic time, exposure times in direction of interest, and F/E·DOI was assessed. The relationship between fluoroscopy time and skin dose was shown as y=0.02x+0.22 (r=0.54, p<0.0001, m.e=0.00±0.71 Gy, e.a=-2.19∼l.53 Gy). In addition, the relation of skin dose to exposure times in the direction of interest was y=0.07x+0.27 (r=0.77, p<0.0001, m.e=-0.00±0.53 Gy, e.a=-2.45∼1.76 Gy). The relationship between skin dose and F/E·DOI was y=0.06x+0.30 (r=0.85, p<0.0001, m.e=-0.00±0.44 Gy, e.a=-1.28∼1.06 Gy). Moreover, the relationship between skin dose and (F/E·DOI x 0.06+0.30) x coefficient of direction x coefficient in thickness of chest was y=0.99x-0.02 (r=0.89, p<0.0001, m.e=0.00±0.38 Gy, e.a=-1.12∼l.27 Gy). The calculated results corresponded to the skin dose during the procedure. F/E·DOI method was simple and effective, moreover, that enabled us to inform the skin dose during the PCI procedure to the interventionalist easily. (authors)

  1. Accelerated partial-breast irradiation with interstitial implants. The clinical relevance of the calculation of skin doses

    International Nuclear Information System (INIS)

    Ott, O.J.; Lotter, M.; Sauer, R.; Strnad, V.

    2007-01-01

    Purpose: To describe relative skin dose estimations and their impact on cosmetic outcome in interstitial multicatheter accelerated partial-breast irradiation (APBI). Patients and Methods: Between April 2001 and January 2005, 105 consecutive patients with early breast cancer were recruited in Erlangen, Germany, for this substudy of the German-Austrian APBI phase II trial. 51% (54/105) received pulsed-dose-rate (PDR), and 49% (51/105) high-dose-rate (HDR) brachytherapy. Prescribed reference dose for HDR brachytherapy was 32 Gy in eight fractions of 4 Gy, twice daily. Prescribed reference dose in PDR brachytherapy was 49.8 Gy in 83 consecutive fractions of 0.6 Gy every hour. Total treatment time was 3-4 days. With a wire cross on the skin surface during the brachytherapy-planning procedure the minimal, mean and maximal relative skin doses (SD min% , SD max% , SD mean% ) were recorded. Endpoint of this evaluation was the cosmetic outcome in relation to the relative skin doses. Results: Median follow-up time was 38 months (range, 19-65 months). Cosmetic results for all patients were excellent in 57% (60/105), good in 36% (38/105), and fair in 7% (7/105). The SD min% (27.0% vs. 31.7%; p = 0.032), SD mean% (34.2% vs. 38.1%; p 0.008), and SD max% (38.2% vs. 46.4%; p 0.003) were significantly lower for patients with excellent cosmetic outcome compared to patients with a suboptimal outcome. SD mean% (37.6% vs. 34.2%; p = 0.026) and SD max% (45.4% vs. 38.2%; p = 0.008) were significantly higher for patients with good cosmetic outcome compared with the patients with excellent results. Conclusion: The appraisal of skin doses has been shown to be relevant to the achievement of excellent cosmetic outcome. Further investigations are necessary, especially on the basis of CT-based brachytherapy planning, to further improve the treatment results of multicatheter APBI. (orig.)

  2. SU-F-P-47: Estimation of Skin Dose by Performing the Measurements On Cylindrical Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bosma, S; Sanders, M; Aryal, P [University Kentucky - Chandler Medical Ctr, Lexington, KY (United States)

    2016-06-15

    Purpose: To evaluate the skin dose by performing the measurements on cylindrical phantom with 6X beam. Methods: A cylindrical phantom was used to best model a patient surface. The source to surface distance (SSD) was 100 cm at phantom surface along central axis (CAX). The EBT2 films were cut into 2×2 cm2 pieces. Each piece of film was placed at CAX on phantom surface for each measurement at 0°, 15°, 30°, 45°, 60°, 75°, and 90° gantry angles for field sizes of 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. One hundred monitor units (MU) with 6X beam were delivered for each set up. Similarly, the measurements were repeated using lithium fluoride (LiF) thermoluminescent dosimeter (TLD) chips (1X1X1 mm{sup 3}). Two TLD chips were placed for each gantry angle and field size. The calibration curves were produced for both film and TLD. The computed tomography (CT) was also performed on the same cylindrical phantom and dose was evaluated at the phantom surface using Eclipse treatment planning system ( AAA algorithm) for skin dose comparison. Results: Data showed small differences at smaller angles among EBT2, TLD and Eclipse treatment planning system. But Eclipse treatment planning system under estimated the skin dose between 20% and 50% at larger gantry angles (between 40° and 80°) at all field sizes before dose differences began to converge. Conclusion: Given this data, we can conclude that Eclipse treatment planning system under estimated the dose especially between 40 and 80 degrees of obliquity compared to the measurements results. Ideally, this study can be applied largely to head and neck patients where contours differ drastically and where skin dose is paramount.

  3. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jerri [Duke Energy, York, SC (United States); Colorado State University, Fort Collins, CO (United States); Ryan, Stewart [Animal Cancer Center, Colorado State University, Fort Collins, CO (United States); Harmon, Joseph F., E-mail: joseph_harmon@bshsi.org [Bon Secours Cancer Institute, Henrico, VA (United States)

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  4. The dose penumbra of a custom-made shield used in hemibody skin electron irradiation.

    Science.gov (United States)

    Rivers, Charlotte I; AlDahlawi, Ismail; Wang, Iris Z; Singh, Anurag K; Podgorsak, Matthew B

    2016-11-08

    We report our technique for hemibody skin electron irradiation with a custom-made plywood shield. The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed at 50 cm from the patient. The shield is made of three layers of stan-dard 5/8'' thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield's transmission factor and the extent of the dose penumbra region for two different shield-phantom gaps. The shield transmission factor was found to be about 10%. The width of the penumbra (80%-to-20% dose falloff) was measured to be 12 cm for a 50 cm shield-phantom gap, and reduced slightly to 10 cm for a 35 cm shield-phantom gap. In vivo dosimetry of a real case confirmed the expected shielded area dose. © 2016 The Authors.

  5. Improvement of the equivalent sphere model for better estimates of skin or eye dose in space radiation environments

    International Nuclear Information System (INIS)

    Lin, Z.W.

    2011-01-01

    It is often useful to get a quick estimate of the dose or dose equivalent of an organ, such as blood-forming organs, the eye or the skin, in a radiation field. Sometimes an equivalent sphere is used to represent the organ for this purpose. For space radiation environments, recently it has been shown that the equivalent sphere model does not work for the eye or the skin in solar particle event environments. In this study, we improve the representation of the eye and the skin using a two-component equivalent sphere model. Motivated by the two-peak structure of the body organ shielding distribution for the eye and the skin, we use an equivalent sphere with two radius parameters, for example a partial spherical shell of a smaller thickness over a proper fraction of the full solid angle combined with a concentric partial spherical shell of a larger thickness over the rest of the full solid angle, to represent the eye or the skin. We find that using an equivalent sphere with two radius parameters instead of one drastically improves the accuracy of the estimates of dose and dose equivalent in space radiation environments. For example, in solar particle event environments the average error in the estimate of the skin dose equivalent using an equivalent sphere with two radius parameters is about 8%, while the average error of the conventional equivalent sphere model using one radius parameter is around 100%.

  6. SU-G-201-14: Is Maximum Skin Dose a Reliable Metric for Accelerated Partial Breast Irradiation with Brachytherapy?

    International Nuclear Information System (INIS)

    Park, S; Ragab, O; Patel, S; Demanes, J; Kamrava, M; Kim, Y

    2016-01-01

    Purpose: To evaluate the reliability of the maximum point dose (Dmax) to the skin surface as a dosimetric constraint, we investigated the correlation between Dmax at the skin surface and dose metrics at various definitions of skin thickness. Methods: 42 patients treated with APBI using a Strut Adjusted Volume Implant (SAVI) applicator between 2010 and 2014 were retrospectively reviewed. Target (PTV-EVAL) and organs at risk (OARs: skin, lung, and ribs) were delineated on a CT following NSABP B-39 guidelines. Six skin structures were contoured: a rind 3cm external to the body surface and 1, 2, 3, 4, and 5mm thick rinds deep to the body surface. Inverse planning simulated annealing optimization was used to deliver 32–34Gy in 8-10 fractions to the target while minimizing OAR doses. Dmax, D0.1cc, D1.0cc, and D2.0cc to the various skin structures were calculated. Linear regressions between the metrics were evaluated using the coefficient of determination (R"2). Results: The average±SD PTV-EVAL volume and cavity-to-skin distances were 71.1±28.5cc and 6.9±5.0mm. The target V90 and V95 were 97.3±2.3% and 95.1±3.2%. The Dmax to the skin structures were 78.7±10.2% (skin surface), 82.2±10.7% (skin-1mm), 89.4±12.6% (skin-2mm), 97.9±15.4% (skin-3mm), 114.1±32.5% (skin-4mm), and 157.0±85.3% (skin-5mm). Linear regression analysis showed D1.0cc and D2.0cc to the skin 1mm and Dmax to the skin-4mm and 5mm were poorly correlated with other metrics (R"2=0.413±0.204). Dmax to the skin surface was well correlated (R"2=0.910±0.047) and D1.0cc to the skin-3mm was strongly correlated with all subsurface skin layers (R"2=0.935±0.050). Conclusion: Dmax to the skin surface is a relevant metric for breast skin dose. Contouring discontinuities in the skin with a 1mm subsurface rind and the active dwells in the skin 4 and 5mm introduced significant variations in skin DVH. D0.1cc, D1.0cc, and D2.0cc to a 3mm skin rind are more robust metrics in breast brachytherapy.

  7. Immediate hypersensitivity to iodinated contrast media: diagnostic accuracy of skin tests and intravenous provocation test with low dose.

    Science.gov (United States)

    Sesé, L; Gaouar, H; Autegarden, J-E; Alari, A; Amsler, E; Vial-Dupuy, A; Pecquet, C; Francès, C; Soria, A

    2016-03-01

    The diagnosis of HSR to iodinated contrast media (ICM) is challenging based on clinical history and skin tests. This study evaluates the negative predictive value (NPV) of skin tests and intravenous provocation test (IPT) with low-dose ICM in patients with suspected immediate hypersensitivity reaction (HSR) to ICM. Thirty-seven patients with suspected immediate hypersensitivity reaction to ICM were included retrospectively. Skin tests and a single-blind placebo-controlled intravenous provocation test (IPT) with low-dose iodinated contrast media (ICM) were performed. Skin tests with ICM were positive in five cases (one skin prick test and five intradermal test). Thirty-six patients were challenged successfully by IPT, and only one patient had a positive challenge result, with a grade I reaction by the Ring and Messmer classification. Ten of 23 patients followed up by telephone were re-exposed to a negative tested ICM during radiologic examination; two experienced a grade I immediate reaction. For immediate hypersensitivity reaction to ICM, the NPV for skin tests and IPT with low dose was 80% (95% CI 44-97%). © 2016 John Wiley & Sons Ltd.

  8. Assessment of peak skin dose in interventional cardiology: A comparison between Gafchromic film and dosimetric software em.dose.

    Science.gov (United States)

    Greffier, J; Van Ngoc Ty, C; Bonniaud, G; Moliner, G; Ledermann, B; Schmutz, L; Cornillet, L; Cayla, G; Beregi, J P; Pereira, F

    2017-06-01

    To compare the use of a dose mapping software to Gafchromic film measurement for a simplified peak skin dose (PSD) estimation in interventional cardiology procedure. The study was conducted on a total of 40 cardiac procedures (20 complex coronary angioplasty of chronic total occlusion (CTO) and 20 coronary angiography and coronary angioplasty (CA-PTCA)) conducted between January 2014 to December 2015. PSD measurement (PSD Film ) was obtained by placing XR-RV3 Gafchromic under the patient's back for each procedure. PSD (PSD em.dose ) was computed with the software em.dose©. The calculation was performed on the dose metrics collected from the private dose report of each procedure. Two calculation methods (method A: fluoroscopic kerma equally spread on cine acquisition and B: fluoroscopic kerma is added to one air Kerma cine acquisition that contributes to the PSD) were used to calculate the fluoroscopic dose contribution as fluoroscopic data were not recorded in our interventional room. Statistical analyses were carried out to compare PSD Film and PSD em.dose . The PSD Film median (1st quartile; 3rd quartile) was 0.251(0.190;0.336)Gy for CA-PTCA and 1.453(0.767;2.011)Gy for CTO. For method-A, the PSD em.dose was 0.248(0.182;0.369)Gy for CA-PTCA and 1.601(0.892;2.178)Gy for CTO, and 0.267(0.223;0.446)Gy and 1.75 (0.912;2.584)Gy for method-B, respectively. For the two methods, the correlation between PSD Film and PSD em.dose was strong. For all cardiology procedures investigated, the mean deviation between PSD Film and PSD em.dose was 3.4±21.1% for method-A and 17.3%±23.9% for method-B. The dose mapping software is convenient to calculate peak skin dose in interventional cardiology. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. A model for predicting skin dose received by patients from an x-ray ...

    African Journals Online (AJOL)

    Patient dosimetry has raised concern on quality assurance in hospitals. Several organisations and research groups have been advocating ways of minimising radiation dose received by patients in hospitals. In this paper we have shown that it is possible to obtain in a simple way a reasonable estimate of skin dose received ...

  10. Successfully Managing Impending Skin Necrosis following Hyaluronic Acid Filler Injection, using High-Dose Pulsed Hyaluronidase

    Directory of Open Access Journals (Sweden)

    Kwok Thye David Loh, MBBS

    2018-02-01

    Full Text Available Summary:. Facial fillers are becoming increasingly popular as aesthetic procedures to temporarily reduce the depth of wrinkles or to contour faces. However, even in the hands of very experienced injectors, there is always a small possibility of vascular complications like intra-arterial injection of filler substance. We present a case report of a patient who developed features of vascular obstruction in right infraorbital artery and tell-tale signs of impending skin necrosis, after hyaluronic acid filler injection by an experienced injector. The diagnosis of a vascular complication was made quickly with the help of clinical features like blanching, livedo reticularis, and poor capillary refill. Patient was treated promptly with “high-dose pulsed hyaluronidase protocol” comprising three 1,000-unit pulses of hyaluronidase, administered hourly. There was no further increase in size of the involved area after the first dose of hyaluronidase. All of the involved area, along with 1 cm overlapping in uninvolved skin area, was injected during each injection pulse, using a combination of cannula and needle. Complete reperfusion and good capillary filling were achieved after completion of 3 pulses, and these were taken as the end-point of high-dose pulsed hyaluronidase treatment. Immediate skin changes after filler injections, as well as after hyaluronidase injections and during the 3-week recovery period, were documented with photographs and clinical notes. Involved skin was found to have been fully recovered from this vascular episode, thus indicating that complete recovery of the ischemic skin changes secondary to possible intra-arterial injection could be achieved using high-dose pulsed hyaluronidase protocol.

  11. What is the effect of different skin types on the required dose for photodynamic therapy?

    CSIR Research Space (South Africa)

    Karsten, AE

    2008-11-01

    Full Text Available For effective laser treatment it is very important to provide the correct dose at the required treatment depth. In South Africa we have a richness of ethnic groups contributing to a large variety in skin tones. Effective laser treatment of skin...

  12. Split-dose recovery in epithelial and vascular-connective tissue of pig skin

    International Nuclear Information System (INIS)

    Peel, D.M.; Hopewell, J.W.; Simmonds, R.H.; Dodd, P.; Meistrich, M.L.

    1984-01-01

    In the first 16 weeks after irradiation, two distinct waves of reaction can be observed in pig skin; the first wave (3-9 weeks) represents the expression of damage to the epithelium while the second is indicative of primary damage to the dermis, mediated through vascular injury. Following β-irradiation with a strontium-90 applicator, a severe epithelial reaction was seen with little subsequent dermal effects. X-rays (250 kV) on the other hand, produced a minimal epithelial response at doses which led to the development of dermal necrosis after 10-16 weeks. Comparison of single doses with two equal doses separated by 24 h produced a D 2 -D 1 value of 7.0 Gy at the doses which produced moist desquamation in 50% of fields (ED 50 ) after strontium-90 irradiation. After X-irradiation comparison of ED 50 doses for the later dermal reaction suggested a D 2 -D 1 value of 4.5 Gy. Over this same dose range of X-rays the D 2 -D 1 value for the first wave epithelial reaction was 3.5 Gy. These values of D 2 -D 1 for epithelial and dermal reactions in pig skin were compared with published data and were examined in relation to the theoretical predictions of a linear quadratic model for tissue target cell survival. The results were broadly in keeping with the productions of such a model. (Auth.)

  13. SU-F-T-509: Investigation into the Impact of the Linear Accelerator Treatment Table On Skin Dose to Prone Breast Patients

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K; Irwin, J; Sansourekidou, P; Kriminski, S; Pavord, D [Health Quest, Poughkeepsie, NY (United States)

    2016-06-15

    Purpose: To investigate the impact of the treatment table on skin dose for prone breast patients for which the breast contacts the table and to develop a method to decrease skin dose. Methods: We used 12cm stack of 15cmx15cm solid water slabs to imitate breast. Calibrated EBT3 radiochromic film was affixed to the bottom of the phantom. Treatments for 32 patients were analyzed to determine typical prone breast beam parameters. Based on the analysis, a field size and a range of gantry angles were chosen for the test beams. Three experimental setups were used. The first represented the patient setup currently used in our clinics with the phantom directly on the table. The second was the skin sparing setup, with a 1.5cm Styrofoam slab between the phantom and the table. The third used a 7.5cm Styrofoam slab to examine the extent of skin sparing potential. The calibration curve was applied to each film to determine dose. Percent difference in dose between the current and skin sparing setups was calculated for each gantry angle and gantry angle pair. Results: Data showed that beams entering through the table showed a skin dose decrease ranging from 13%–30% with the addition of 7.5cm Styrofoam, while beams exiting through the table showed no significant difference. The addition of 1.5cm Styrofoam resulted in differences ranging from 0.5%–13% with the skin sparing setup. Conclusion: The results demonstrate that skin in contact with the table receives increased dose from beams entering through the table. By creating separation between the breast and the table with Styrofoam the skin dose can be lowered, but 1.5 cm did not fully mitigate the effect. Further investigation will be performed to identify a clinically practical thickness that maximizes this mitigation.

  14. Measurement of dose to skin using TLD of several radiodiagnostic studies in San Jose, Costa Rica

    International Nuclear Information System (INIS)

    Mora, P.

    1998-01-01

    It is quantified the radiation doses on skin for several radiodiagnostic studies in patients of the Calderon Guardia Hospital in San Jose, Costa Rica at the period October 1997-September 1998 using thermoluminescent dosemeters TLD 100. The crystals receive the decoction standard procedures and they are arranged at the middle of the irradiation field. For a total of 973 radiodiagnostic studies it was found that the dose on skin in mGy are: 2.09 for thorax AP/AP, 5.33 for thorax LAT, 5.35 for skull AP/PA, 2.98 for skull LAT, 10.74 for abdomen, hips and pelvis, 6.20 for spines AP, 9.35 for spines LAT, 11.48 for lumbar columns AP, 29.99 for lumbar columns LAT and 6.87 for intravenous skin diagrams (first plate ap). It is produced thus the first reference bank for the national hospitals, which is compared with the orientation levels of doses for IAEA. Recommendations to diminish the collective doses through quality control programs are discussed, taking as goal to have got radiographs of excellent diagnostic quality, but with the less possible doses. (Author)

  15. Valorization of the GAFCHROMIC XR-R film for radiation dose estimation in the skin

    International Nuclear Information System (INIS)

    Sanchez Garcia, M.; Otero Martinez, C.; Camino, X. M.; Sendon del Rio, J. R.; Luna Vega, V.; Lobato Busto, R.; Mosquera Sueiro, J.; Pombar Camean, M.

    2006-01-01

    The adequacy of the couple formed by the GAFCHROMIC XR-R film and the MICROTEK Scan Maker 8700 for skin dose determination has been evaluated. The main advantages are the ease of use the films, since it can be manipulated without special care and the ability to archive it in the dosimetric history of the patient. The main limiting factors coming from the scanner are the reproducibility over time and noise in the digitization; it is shown that this last component can be minimized at the cost of resolution. From the film itself, the limiting factors are the inter and intra film uniformity. Contributing an 6,5% to the overall uncertainty in dose determination. Overall, it has been shown that skin dose determination is possible with this film with an uncertainty below 10%. (Author)

  16. Painless, safe, and efficacious noninvasive skin tightening, body contouring, and cellulite reduction using multisource 3DEEP radiofrequency.

    Science.gov (United States)

    Harth, Yoram

    2015-03-01

    In the last decade, Radiofrequency (RF) energy has proven to be safe and highly efficacious for face and neck skin tightening, body contouring, and cellulite reduction. In contrast to first-generation Monopolar/Bipolar and "X -Polar" RF systems which use one RF generator connected to one or more skin electrodes, multisource radiofrequency devices use six independent RF generators allowing efficient dermal heating to 52-55°C, with no pain or risk of other side effects. In this review, the basic science and clinical results of body contouring and cellulite treatment using multisource radiofrequency system (Endymed PRO, Endymed, Cesarea, Israel) will be discussed and analyzed. © 2015 Wiley Periodicals, Inc.

  17. Radiation doses measured by TLD (thermoluminescent dosimeter) in x-ray examination, especially on the skin area beneath of which female gonads situate

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Hiraki, M; Murakami, S; Nishikawa, N; Yagi, T [Nissei Hospital, Osaka (Japan)

    1977-03-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field.

  18. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jong, W. L. [Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Cutajar, D. L.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  19. Preliminary study of using imaging plates to map skin dose of patients in interventional radiology procedures

    International Nuclear Information System (INIS)

    Ohuchi, H.; Satoh, T.; Eguchi, Y.; Mori, K.

    2005-01-01

    A method using europium-doped BaFBr imaging plates (IPs) has been studied for mapping entrance skin doses during interventional radiology (IR); the mapping is useful for detecting overlap between irradiation fields and determining the most exposed skin areas. IPs, which are two-dimensional radiation sensors made of photostimulated luminescence materials, have a linear dose response up to ∼100 Gy, can accurately measure doses from 1 μGy to 10 Gy and can be used repeatedly. Because the energy dependence of IPs is rather high, the IPs were characterised in this study and a sensitivity variation of ∼13% was observed for effective energies of 32.7 to 44.7 keV, which are used in IR procedures. Simulation of actual interventional cardiology procedures showed that the variation of sensitivity was within 5%, meaning that IPs are practical for measuring skin doses during IR. Moreover, the patient data can be stored online and easily called up when IR procedures must be repeated, helping to prevent radiation injuries. (authors)

  20. The physiological and phenotypic determinants of human tanning measured as change in skin colour following a single dose of ultraviolet B radiation.

    Science.gov (United States)

    Wong, Terence H; Jackson, Ian J; Rees, Jonathan L

    2010-07-01

    Experimental study of the in vivo kinetics of tanning in human skin has been limited by the difficulties in measuring changes in melanin pigmentation independent of the ultravioletinduced changes in erythema. The present study attempted to experimentally circumvent this issue. We have studied erythemal and tanning responses following a single exposure to a range of doses of ultraviolet B irradiation on the buttock and the lower back in 98 subjects. Erythema was assessed using reflectance techniques at 24 h and tanning measured as the L* spectrophotometric score at 7 days following noradrenaline iontophoresis. We show that dose (P skin colour (P skin colour (P = 0.0365) or, as an alternative to skin colour, skin type (P = 0.0193) predict tanning, with those with lighter skin tanning slightly more to a defined UVB dose. If erythema is factored into the regression, then only dose and body site remain significant predictors of tanning: therefore neither phototype nor pigmentary factors, such as baseline skin colour, or eye or hair colour, predict change in skin colour to a unit erythemal response.

  1. Total skin high-dose-rate electron therapy dosimetry using TG-51

    International Nuclear Information System (INIS)

    Gossman, Michael S.; Sharma, Subhash C.

    2004-01-01

    An approach to dosimetry for total skin electron therapy (TSET) is discussed using the currently accepted TG-51 high-energy calibration protocol. The methodology incorporates water phantom data for absolute calibration and plastic phantom data for efficient reference dosimetry. The scheme is simplified to include the high-dose-rate mode conversion and provides support for its use, as it becomes more available on newer linear accelerators. Using a 6-field, modified Stanford technique, one may follow the process for accurate determination of absorbed dose

  2. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    International Nuclear Information System (INIS)

    Rana, V. K.; Rudin, S.; Bednarek, D. R.

    2016-01-01

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be

  3. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Rana, V. K., E-mail: vkrana@buffalo.edu [Toshiba Stroke and Vascular Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14203 (United States); Rudin, S., E-mail: srudin@buffalo.edu; Bednarek, D. R., E-mail: bednarek@buffalo.edu [Toshiba Stroke and Vascular Research Center, Departments of Radiology, Neurosurgery, Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14203 (United States)

    2016-09-15

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be

  4. Estimation of deep, eye lens and skin doses for high energy electron beams for dosimetry and protection purpose

    International Nuclear Information System (INIS)

    Reena Kumari; Rakesh, R.B.

    2018-01-01

    In the radiological protection especially for individual as well as area monitoring, it is generally considered that beta sources deposit skin and eye lens doses only as they do not have enough energy for depositing doses at 10 mm depth. Also, the skin and eye lens doses differ substantially due to attenuation of beta particles at 0.07 mm (skin) and 3 mm (eye lens) depths and the surface doses are always greater than eye lens doses even for the highest energy beta source used in brachytherapy applications. However, worldwide increase in the use of high energy electron accelerators, new challenges are being posed for radiological protection and the operational quantities defined previously by ICRU are being reviewed. In view of these developments, studies have been performed for different electron beams in the energy range from (4 - 20) MeV generated using a medical linear accelerator. The aim of the study is to measure doses deposited at various depths as defined by ICRU 39 for individual and area monitoring purposes

  5. The dependence of percentage depth dose on the source-to-skin ...

    African Journals Online (AJOL)

    The variation of percentage depth dose (PDD) with source-to-skin distance (SSD) for kilovoltage X-rays used in radiotherapy has been investigated. Based on physical parameters of photon fluence, absorption and scatter during interaction of radiation with tissue, a mathematical model was developed to predict the PDDs at ...

  6. Assessment of eye, hand and male gonadal skin dose in radiotherapy

    International Nuclear Information System (INIS)

    Pushap, M.P.S.

    1979-01-01

    An attempt has been made to gauge the dose to (1) the eye, (2) the skin of the hands and (3) the gonads from radiotherapy of other parts of the body. The study has been done on actual male patients at the Jorjani Medical Centre, Tehran. The study, indicated high dose to the eye lid i.e. about 3% of the tumour dose in the case of head irradiation. The eyes and gonads lie at unequal distances from thorax, so are their doses. It is further emphasised that a minimum dose of 400 rad in three weeks to one month has been reported to be cataractogenic in man. A 50% incidence of progressive loss of vision with a dose of 750 rad to 1000 rad in three weeks to three months time has been observed. If appropriate techniques are not employed to shield the eye, even from stray radiation, such limits may easily be reached. (K.B.)

  7. Hard beta and gamma emissions of 124I. Impact on occupational dose in PET/CT.

    Science.gov (United States)

    Kemerink, G J; Franssen, R; Visser, M G W; Urbach, C J A; Halders, S G E A; Frantzen, M J; Brans, B; Teule, G J J; Mottaghy, F M

    2011-01-01

    The hard beta and gamma radiation of 124I can cause high doses to PET/CT workers. In this study we tried to quantify this occupational exposure and to optimize radioprotection. Thin MCP-Ns thermoluminescent dosimeters suitable for measuring beta and gamma radiation were used for extremity dosimetry, active personal dosimeters for whole-body dosimetry. Extremity doses were determined during dispensing of 124I and oral administration of the activity to the patient, the body dose during all phases of the PET/CT procedure. In addition, dose rates of vials and syringes as used in clinical practice were measured. The procedure for dispensing 124I was optimized using newly developed shielding. Skin dose rates up to 100 mSv/min were measured when in contact with the manufacturer's vial containing 370 MBq of 124I. For an unshielded 5 ml syringe the positron skin dose was about seven times the gamma dose. Before optimization of the preparation of 124I, using an already reasonably safe technique, the highest mean skin dose caused by handling 370 MBq was 1.9 mSv (max. 4.4 mSv). After optimization the skin dose was below 0.2 mSv. The highly energetic positrons emitted by 124I can cause high skin doses if radioprotection is poor. Under optimized conditions occupational doses are acceptable. Education of workers is of paramount importance.

  8. Normal tissue tolerance to external beam radiation therapy: Skin; Dose de tolerance des tissus sains: la peau et les phaneres

    Energy Technology Data Exchange (ETDEWEB)

    Ginot, A.; Doyen, J.; Hannoun-Levi, J.M.; Courdi, A. [Service d' oncologie-radiotherapie, centre Antoine-Lacassagne, 06 - Nice (France)

    2010-07-15

    Acute skin toxicity is frequent during radiation therapy and can lead to temporary arrest of the treatment. Chronic toxicity can occur and conduct to cosmetic problems. Alopecia is the most frequent toxicity concerning hair and is most of the time reversible. Several factors linked to patients influence skin toxicity, such as under-nutrition, old age, obesity, smoking, skin diseases, autoimmune diseases, failure of DNA reparation. Skin, hair and nail toxicities depend also on radiation schedule. Acute toxicity is greater when dose per fraction increases. Chronic and acute toxicities are more often when total dose increases. Under 45 Gy, the risk of severe skin toxicity is low, and begins above 50 Gy. Skin toxicity depends also on the duration of radiotherapy and split course schedules are associated with less toxicities. Irradiation surface seems to influence skin toxicity but interaction is more complex. Reirradiation is often feasible in case of cancer recurrence but with a risk of grade 3-4 toxicity above all in head and neck cancer. The benefit/risk ratio has to be always precisely evaluated. Permanent alopecia is correlated with the follicle dose. Modern techniques of radiation therapy allow to spare skin. (authors)

  9. SU-E-CAMPUS-I-04: Automatic Skin-Dose Mapping for An Angiographic System with a Region-Of-Interest, High-Resolution Detector

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, S; Rana, V [Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center (United States); Setlur Nagesh, S [Toshiba Stroke and Vascular Research Center (United States); Ionita, C [Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY (United States); Rudin, S [Department of Radiology, Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center, Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY (United States); Bednarek, D [Department of Radiology, Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center (United States)

    2014-06-15

    Purpose: Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. Methods: The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during neuro-interventional procedures when high resolution is needed in a region-of-interest. To monitor patient skin dose when using the MAF, our DTS has been modified to automatically account for the change in scatter for the very small MAF FOV and to provide separated dose distributions for each detector. The DTS is able to provide a color-coded mapping of the cumulative skin dose on a 3D graphic model of the patient. To determine the correct entrance skin exposure to be applied by the DTS, a correction factor was determined by measuring the exposure at the entrance surface of a skull phantom with an ionization chamber as a function of entrance beam size for various beam filters and kVps. Entrance exposure measurements included primary radiation, patient backscatter and table forward scatter. To allow separation of the dose from each detector, a parameter log is kept that allows a replay of the procedure exposure events and recalculation of the dose components.The graphic display can then be constructed showing the dose distribution from the MAF and FPD separately or together. Results: The DTS is able to provide separate displays of dose for the MAF and FPD with field-size specific scatter corrections. These measured corrections change from about 49% down to 10% when changing from the FPD to the MAF. Conclusion: The upgraded DTS allows identification of the patient skin dose delivered when using each detector in order to achieve improved dose management as well as to facilitate peak skin-dose reduction through dose spreading. Research supported in part by Toshiba Medical Systems Corporation and NIH Grants R43FD0158401, R44FD

  10. Determination of entrance skin dose from diagnostic X-ray of human ...

    African Journals Online (AJOL)

    patient during x-ray examination in Federal Medical Centre, Keffi in Nasarawa state, Nigeria. Entrance skin doses (ESDs) for a common type of x-ray procedures, namely chest AP/PA (anterior/posterior) were measured. A total of 200 data were collected from patients who were exposed to diagnostic X-ray during their routine ...

  11. Association between cumulative radiation dose, adverse skin reactions, and changes in surface hemoglobin among women undergoing breast conserving therapy

    Directory of Open Access Journals (Sweden)

    Michael S. Chin

    2017-06-01

    Conclusion: HSI demonstrates promise in the assessment of skin dose as well as an objective measure of skin reaction. The ability to easily identify adverse skin reactions and to modify the treatment plan may circumvent the need for detrimental treatment breaks.

  12. Oral desensitization to milk: how to choose the starting dose!

    Science.gov (United States)

    Mori, Francesca; Pucci, Neri; Rossi, Maria Elisabetta; de Martino, Maurizio; Azzari, Chiara; Novembre, Elio

    2010-01-01

    Mori F, Pucci N, Rossi ME, de Martino M, Azzari C, Novembre E. Oral desensitization to milk: how to choose the starting dose! Pediatr Allergy Immunol 2010: 21: e450–e453. © 2009 John Wiley & Sons A/S A renewed interest in oral desensitization as treatment for food allergy has been observed in the last few years. We studied a novel method based on the end point skin prick test procedure to establish the starting dose for oral desensitization in a group of 30 children higly allergic to milk. The results (in terms of reactions to the first dose administered) were compared with a group of 20 children allergic to milk as well. Such control group started to swallow the same dose of 0.015 mg/ml of milk. None reacted to the first dose when administered according to the end point skin prick test. On the other side, ten out of 20 children (50%) from the control group showed mild allergic reactions to the first dose of milk. In conclusion the end point skin prick test procedure results safe and easy to be performed in each single child in order to find out the starting dose for oral desensitization to milk, also by taking into account the individual variability. PMID:19624618

  13. The dependence of skin lesions on the depth-dose distribution from β-irradiation of people in the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Barabanova, A.

    1990-01-01

    A detailed study was made of conditions of exposure of 56 Chernobyl victims who suffered skin radiation lesions. The most typical conditions were experimentally reconstructed to investigate specific characteristics of dose distribution to the skin according to depth for different exposure conditions. Absorbed doses at depths of 7 mg cm -2 and 150 mg cm -2 were calculated on the basis of measurements with multilayer skin dosemeters. Patients were classified into four groups. Dosimetric characteristics for each group were compared with clinical pictures to establish critical factors in the occurrence of lesions. It was demonstrated that depth-dose distribution of β-radiation to the skin is of great influence not only for early effects of radiation but also for later effects. Radiation lesions in the skin led to death if the area of the lesions exceeded about 50% total body surface, and if doses to the skin were about 200-300 Gy at 7 mg cm -2 and more than about 30 Gy at 150 mg cm -2 . (author)

  14. SU-G-JeP2-09: Minimal Skin Dose Increase in Longitudinal Rotating Biplanar Linac-MR Systems: Examination of Radiation Energy and Flattening Filter Design

    Energy Technology Data Exchange (ETDEWEB)

    Fallone, B; Keyvanloo, A; Burke, B; St Aubin, J; Baillie, D; Wachowicz, K; Warkentin, B; Steciw, S [Cross Cancer Institute, Edmonton, AB (Canada)

    2016-06-15

    Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth of 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)

  15. 8-MOP PUVA for psoriasis: a comparison of a minimal phototoxic dose-based regimen with a skin-type approach

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P.; Wainwright, N.J.; Amorim, I.; Lakshmipathi, T.; Ferguson, J. [Ninewells Hospital and Medical School, Dundee (United Kingdom)

    1996-08-01

    Two ultraviolet A (UVA) regimens for oral 8-methoxypsoralen (8-MOP) photochemotherapy (PUVA) for moderate/severe chronic plaque psoriasis using a half-body study technique were compared. Each patient received both regimens. A higher-dose regimen based on minimal phototoxic dose (MPD) with percentage incremental increases was given to one-half of the body. The other half received a lower dose regimen based on skin type with fixed incremental UVA increases. Patients were treated twice weekly. Symmetrical plaques were scored to determine the rate of resolution with each regimen. In addition, the number of treatments, cumulative UVA dose and number of days in treatment to achieve overall clearance were recorded. Patients were reviewed monthly for one year to record remission data. Thirty-three patients completed the study. Both regimens were effective and well tolerated. With the MPD-based approach, number of exposures was significantly less for patients with skin types I and II but not III. Although the cumulative UVA dose was higher with the MPD regimen for all skin types studied, the reduced number of exposures required for clearance for skin types I and II but not III, combined with the security of individualized MPD testing, has practical attractions. MPD testing also identified five patients who required an increased psoralen dose and six patients who required a reduction of the initial UVA dose with the skin type regimen. Forty-two percent were still clear 1 year after treatment and there was no significant difference in the number of days in remission between the regimens for those whose psoriasis had recurred. The reduction in the number of exposures required for clearance with the MPD-based regimen may be safer and more cost effective in the long term. (author).

  16. Comparison of skin doses to large fields using tangential beams from cobalt-60 gamma rays and 4-MV x rays

    International Nuclear Information System (INIS)

    Gagnon, W.F.; Peterson, M.D.

    1978-01-01

    Excess radiation to the skin during external beam megavoltage radiation therapy has reportedly caused excessive erythema in patients treated with the Clinac 4 linear accelerator on sloping surfaces, but not for similar treatments with cobalt-60. Doses at the epidermal level were measured under geometries simulating sloping surfaces for a Clinac 4 and an Eldorado 8 cobalt-60 teletherapy machine. For equal doses to the axilla, doses to the epidermal layer were similar. When the tumor dose was calculated for the mediastinum, the dose to the skin in the axillary region was 12% higher for the Clinac 4

  17. Skin, Hair, and Nails

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Skin, Hair, and Nails KidsHealth / For Parents / Skin, Hair, and ... piel, el cabello y las uñas About Skin, Hair and Nails Skin is our largest organ. If ...

  18. Indoor Tanning Is Not Safe

    Science.gov (United States)

    ... the sun is by using these tips for skin cancer prevention. Indoor tanning is not a safe way to get vitamin ... to previous findings on the association between indoor tanning and skin cancer. Only a small number of people reported ...

  19. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    International Nuclear Information System (INIS)

    Nawfel, RD; Young, G

    2016-01-01

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dose metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.

  20. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    Energy Technology Data Exchange (ETDEWEB)

    Nawfel, RD; Young, G [Brigham & Women’s Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dose metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.

  1. WE-E-18A-03: How Accurately Can the Peak Skin Dose in Fluoroscopy Be Determined Using Indirect Dose Metrics?

    International Nuclear Information System (INIS)

    Jones, A; Pasciak, A

    2014-01-01

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that Result in skin reactions can be reached during these procedures. The purpose of this study was to assess the accuracy of different indirect dose estimates and to determine if PSD can be calculated within ±50% for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures. Indirect dose metrics from procedures were collected, including reference air kerma (RAK). Four different estimates of PSD were calculated and compared along with RAK to the measured PSD. The indirect estimates included a standard method, use of detailed information from the RDSR, and two simplified calculation methods. Indirect dosimetry was compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the indirect estimates were examined. Results: PSD calculated with the standard calculation method were within ±50% for all 41 procedures. This was also true for a simplified method using a single source-to-patient distance (SPD) for all calculations. RAK was within ±50% for all but one procedure. Cases for which RAK or calculated PSD exhibited large differences from the measured PSD were analyzed, and two causative factors were identified: ‘extreme’ SPD and large contributions to RAK from rotational angiography or runs acquired at large gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±50% for embolization procedures, and usually to within ±35%. RAK can be used without modification to set notification limits and substantial radiation dose levels. These results can be extended to similar procedures, including vascular and interventional oncology

  2. Skin autofluorescence reflects individual seasonal UV exposure, skin photodamage and skin cancer development in organ transplant recipients.

    Science.gov (United States)

    Togsverd-Bo, Katrine; Philipsen, Peter Alshede; Hædersdal, Merete; Wulf, Hans Christian Olsen

    2018-01-01

    Ultraviolet radiation (UVR)-induced skin cancers varies among organ transplant recipients (OTRs). To improve individual risk assessment of skin cancer, objectively quantified skin photodamage is needed. We measured personal UVR-exposure dose in OTRs and assessed the relation between individual UVR exposure, skin cancer and objectively measured photodamage in terms of skin autofluorescence, pigmentation, and black light-evaluated solar lentigines. Danish OTRs with (n=15) and without a history of skin cancer (n=15) kept sun diaries from May to September and wore personal dosimeters recording time-stamped UVR doses in standard erythema doses (SED). Photodamage was quantified as skin autofluorescence with excitation at 370nm (F370) and 430nm (F430), skin pigmentation (pigment protection factor, PPF), and black light-evaluated solar lentigines. OTRs with skin cancer received a higher UVR dose than OTRs without skin cancer (median 116 SED vs. 67 SED, p=0.07) and UVR exposure doses were correlated with increased PPF (p=0.052) and F370 on the shoulder (F370 shoulder ) (p=0.04). We found that skin cancer was associated with F370 shoulder (OR 10.53, CI 3.3-31,938; p=0.018) and time since transplantation (OR 1.34, CI 0.95-1.91, p=0.097). A cut-off at 7.2 arbitrary units, 89% of OTRs with skin cancer had F370 shoulder values above 7.2 arbitrary units and F370 shoulder was additionally related to patient age (p=0.09) and black light-evaluated solar lentigines (p=0.04). F370 autofluorescence indicates objectively measured photodamage and may be used for individual risk assessment of skin cancer development in OTRs. Copyright © 2017. Published by Elsevier B.V.

  3. Dose-response models for the radiation-induction of skin tumours in mice

    International Nuclear Information System (INIS)

    Papworth, D.G.; Hulse, E.V.

    1983-01-01

    Extensive data on radiation-induced skin tumours in mice were examined using 8 models, all based on the concept that incidences of radiation-induced tumours depend on a combination of two radiation effects: a tumour induction process and the loss of reproductive integrity by the potential tumour cells. Models with and without a threshold were used, in spite of theoretical objections to threshold models. No model fitted well both the epidermal and the dermal tumour data and models which proved to be statistically satisfactory for some of the data were rejected for biological reasons. It is concluded that, for skin tumours, dose-response curves depending on a combination of cancer induction and loss of cellular reproductive integrity are distorted by some special, relatively radio-resistant, factor which we have previously postulated as being involved in radiation skin carcinogenesis. (author)

  4. Multicenter study on evaluation of the entrance skin dose by a direct measurement method in cardiac interventional procedures

    International Nuclear Information System (INIS)

    Kato, Mamoru; Chida, Koichi; Moritake, Takashi

    2016-01-01

    Deterministic effects have been reported in cardiac interventional procedures. To prevent radiation skin injuries in percutaneous coronary intervention (PCI), it is necessary to measure accurate patient entrance skin dose (ESD) and maximum skin absorbed dose (MSD). We measured the MSD on 62 patients in four facilities by using the Chest-RADIREC system. The correlation between MSD and fluoroscopic time, dose area product (DAP), and cumulative air kerma (AK) showed good results, with the correlation between MSD and AK being the strongest. The regression lines using MSD as an outcome value (y) and AK as predictor variables (x) was y=1.18x (R 2 =0.787). From the linear regression equation, MSD is estimated to be about 1.18 times that of AK in real time. The Japan diagnostic reference levels (DRLs) 2015 for IVR was established by the use of dose rates using acrylic plates (20 cm thick) at the interventional reference point. Preliminary reference levels proposed by International Atomic Energy Agency (IAEA) were provided using DAP. In this study, AK showed good correlation most of all. Hence we think that Japanese DRLs for IVR should reconsider by clinical patients' exposure dose such as AK. (author)

  5. Estimation of dose in skin through the use of radiochromic and radiographic films in patients subjected to interventional procedures

    International Nuclear Information System (INIS)

    Campos Garcia, Juan Pablo

    2014-01-01

    Radiation doses in skin of patients subjected to interventional procedures is estimated from the utilization and analysis of GAFCHROMIC® XR-RV2 radiochromic films and KODAK® X-Omat films with aid of the ImageJ software. The distribution of the radiation fields in the films is generated to obtain the distribution of dose in skin and to find peaks of dose by isodose curves using ImageJ software. The calibration curves are realized from GAFCHROMIC® XR-RV2 radiochromic films, through the use of a densitometer and two types of scanners (reflection scanner and transmission scanner). The reflection scanner has digitalized color images of 48 bit in TIFF format. The scanner transmission has digitalized in grayscale images to 16 bit in TIFF format. Each method has determined the points with maximum dose in skin. The images of the areas of regions with maximum doses are obtained of the scanner. The quantified doses are compared in the radiochromic films with the band of doses supplied by the manufacturer. The methodologies for the estimation of the doses obtained are compared of the radiochromic films with those obtained with the KODAK® X-Omat films. The procedure of obtaining of the doses is validated in patients with KODAK® X-Omat films. The doses obtained have covered a range from the 0,1Gy to 9 Gy. Radiographic films have allowed an assessment of the doses to 900 cGy due to the saturation thereof, the doses found in that range have been consistent with the doses in radiochromic films [es

  6. Evaluation of entrance skin dose to the skull in diagnostic radiology

    International Nuclear Information System (INIS)

    Mohamed, Anas Ali Elbushari

    2015-12-01

    Diagnostic x-ray radiology is a common diagnostic practice.Despite of its increasing hazard to human beings, imaging procedures should be achieved with less radiation dose and sufficient image quality. The aim of this study was to estimate the entrance skin dose(ESD) for patients undergoing selected diagnostic x-ray examinations in four hospitals.The study included the examinations of the skull; posterior- anterior(PA) and lateral projections. Fifty patients were enrolled in this study. ESDs were estimated from patients specific exposure parameters using established relation between output (μGy/mAs) and tube voltage(kVp). The estimated ESDs ranged from 0.0097-0.1846 mGy for skull (PA), 0.0097-0.1399 mGy for skull (LAT). These values were acceptable as compared with the international reference dose levels. This study provides additional data that can help the regulatory authority to establish reference dose levels for diagnostic radiology in Sudan.(Author)

  7. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Jin, L; Eldib, A; Li, J; Price, R; Ma, C

    2015-01-01

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin

  8. Use of an electron reflector to improve dose uniformity at the vertex during total skin electron therapy

    International Nuclear Information System (INIS)

    Peters, V.G.

    2000-01-01

    Purpose: The vertex of the scalp is always tangentially irradiated during total skin electron therapy (TSET). This study was conducted to determine the dose distribution at the vertex for a commonly used irradiation technique and to evaluate the use of an electron reflector, positioned above the head, as a means of improving the dose uniformity. Methods and Materials: Phantoms, simulating the head of a patient, were irradiated using our standard procedure for TSET. The technique is a six-field irradiation using dual angled electron beams at a treatment distance of 3.6 meters. Vertex dosimetry was performed using ionization methods and film. Measurements were made for an unmodified 6 MeV electron beam and for a 4 MeV beam obtained by placing an acrylic scattering plate in the beam line. Studies were performed to examine the effect of electron scattering on vertex dose when a lead reflector, 50 x 50 cm in area, was positioned above the phantom. Results: The surface dose at the vertex, in the absence of the reflector, was found to be less than 40% of the prescribed skin dose. Use of the lead reflector increased this value to 73% for the 6 MeV beam and 99% for the degraded 4 MeV beam. Significant improvements in depth dose were also observed. The dose enhancement is not strongly dependent on reflector distance or angulation since the reflector acts as a large source of broadly scattered electrons. Conclusion: The vertex may be significantly underdosed using standard techniques for total skin electron therapy. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation

  9. Absorbed dose to the skin in radiological examinations of upper and lower gastrointestinal tract

    International Nuclear Information System (INIS)

    Zonca, G.; Brusa, A.; Somigliana, A.; Pasqualotto, C.; Sichirollo, A.E.; Bellomi, M.; Cozzi, G.; Severini, A.

    1995-01-01

    Absorbed doses to the skin in radiological examinations of the upper and lower gastronintestinal tract in conventional and digital radiology are evaluated and compared. Absorbed doses were measured with LiF thermoluminescence dosemeters placed on the lower pelvis, umbilicus and forehead of the patient to evaluate the absorbed dose in and outside the primary beam. On 10 patients a reduction in absorbed dose of about 34% for double contrast barium enema and of 66% for upper gastrointestinal tract examinations was revealed with digital radiography equipment. In our working conditions the lower dose requirement for digital radiography is mainly due to image intensifiers and television chains and also, due to our equipment settings, to the dose reduction with digital spot fluorography compared with conventional spot film radiography. (Author)

  10. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    International Nuclear Information System (INIS)

    Lee, Eun-Jung; Kim, Jun Won; Yoo, Hyun; Kwak, Woori; Choi, Won Hoon; Cho, Seoae; Choi, Yu Jeong; Lee, Yoon-Jin; Cho, Jaeho

    2015-01-01

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm 2 fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL-33

  11. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Jun Won, E-mail: JUNWON@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoo, Hyun, E-mail: gochunghee@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kwak, Woori, E-mail: asleo02@snu.ac.kr [Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Won Hoon, E-mail: wonhoon@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Cho, Seoae, E-mail: seoae@cnkgenomics.com [C& K Genomics, Seoul National University Mt.4-2, Main Bldg. #514, SNU Research Park, NakSeoungDae, Gwanakgu, Seoul 151-919 (Korea, Republic of); Choi, Yu Jeong, E-mail: yunk9275@daum.net [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Lee, Yoon-Jin, E-mail: yjlee8@kirams.re.kr [Division of Radiation Effects, Research Center for Radiotherapy, Korea Institute of Radiological & Medical Sciences, Seoul 139-760 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2015-08-14

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in a co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion. • IL

  12. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, L; Fan, J; Eldib, A; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.

  13. Main clinical, therapeutic and technical factors related to patient's maximum skin dose in interventional cardiology procedures

    Science.gov (United States)

    Journy, N; Sinno-Tellier, S; Maccia, C; Le Tertre, A; Pirard, P; Pagès, P; Eilstein, D; Donadieu, J; Bar, O

    2012-01-01

    Objective The study aimed to characterise the factors related to the X-ray dose delivered to the patient's skin during interventional cardiology procedures. Methods We studied 177 coronary angiographies (CAs) and/or percutaneous transluminal coronary angioplasties (PTCAs) carried out in a French clinic on the same radiography table. The clinical and therapeutic characteristics, and the technical parameters of the procedures, were collected. The dose area product (DAP) and the maximum skin dose (MSD) were measured by an ionisation chamber (Diamentor; Philips, Amsterdam, The Netherlands) and radiosensitive film (Gafchromic; International Specialty Products Advanced Materials Group, Wayne, NJ). Multivariate analyses were used to assess the effects of the factors of interest on dose. Results The mean MSD and DAP were respectively 389 mGy and 65 Gy cm−2 for CAs, and 916 mGy and 69 Gy cm−2 for PTCAs. For 8% of the procedures, the MSD exceeded 2 Gy. Although a linear relationship between the MSD and the DAP was observed for CAs (r=0.93), a simple extrapolation of such a model to PTCAs would lead to an inadequate assessment of the risk, especially for the highest dose values. For PTCAs, the body mass index, the therapeutic complexity, the fluoroscopy time and the number of cine frames were independent explanatory factors of the MSD, whoever the practitioner was. Moreover, the effect of technical factors such as collimation, cinematography settings and X-ray tube orientations on the DAP was shown. Conclusion Optimising the technical options for interventional procedures and training staff on radiation protection might notably reduce the dose and ultimately avoid patient skin lesions. PMID:22457404

  14. ICRP-26 and skin contamination

    International Nuclear Information System (INIS)

    Finnigan, T.; Huda, W.; Newbery, G.R.

    1979-01-01

    The experience of dealing with skin contamination incidents at The Radiochemical Centre over a 3-year period is presented. Data are given for the primary isotopes involved, the duration of skin contamination, and the skin doses that arise from these incidents. The methods employed in performing dosimetry for skin contamination are discussed and examples involving the isotopes carbon-14 and indium-111 are described. For skin contamination incidents, the mode of penetration of the activity into skin is normally not known and this can be of major significance for the final skin dose estimate. The operational health physics difficulties encountered in complying with both ICRP-26 and UK legislation for skin contamination are considered. In the event of multiple exposure (i.e. skin doses calculated from whole body film badges, extremity TLD dose meters and skin contamination) there is ambiguity in the precise meaning of the skin dose. The usefulness of Derived Working Levels is also discussed. Experience at The Radiochemical Centre has shown that good plant design, proper training and prompt action in dealing with contamination incidents ensures that overexposures to skin from accidental contamination are rare occurrences. (author)

  15. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    Science.gov (United States)

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  16. Influence of a Commercial Lead Apron on Patient Skin Dose Delivered During Oral and Maxillofacial Examinations under Cone Beam Computed Tomography (CBCT).

    Science.gov (United States)

    Schulze, Ralf Kurt Willy; Sazgar, Mahssa; Karle, Heiko; de Las Heras Gala, Hugo

    2017-08-01

    The purpose of this paper is to investigate the impact of a commercial lead apron on patient skin dose delivered during maxillofacial CBCT in five critical regions by means of solid-state-dosimetry. Five anatomical regions (thyroid gland, left and right breast, gonads, back of the phantom torso) in an adult female anthropomorphic phantom were selected for dose measurement by means of the highly sensitive solid-state dosimeter QUART didoSVM. Ten repeated single exposures were assessed for each patient body region for a total of five commercial CBCT devices with and without a lead apron present. Shielded and non-shielded exposures were compared under the paired Wilcoxon test, with absolute and relative differences computed. Reproducibility was expressed as the coefficient of variation (CV) between the 10 repeated assessments. The highest doses observed at skin level were found at the thyroid (mean shielded ± SD: 450.5 ± 346.7 μGy; non-shielded: 339.2 ± 348.8 μGy, p = 0.4922). Shielding resulted in a highly significant (p < 0.001) 93% dose reduction in skin dose in the female breast region with a mean non-shielded dose of approximately 35 μGy. Dose reduction was also significantly lower for the back-region (mean: -65%, p < 0.0001) as well as for the gonad-region (mean: -98%, p < 0.0001) in the shielded situation. Reproducibility was inversely correlated to skin dose (Rspearman = -0.748, p < 0.0001) with a mean CV of 10.45% (SD: 24.53 %). Skin dose in the thyroid region of the simulated patient was relatively high and not influenced by the lead apron, which did not shield this region. Dose reduction by means of a commercial lead apron was significant in all other regions, particularly in the region of the female breast.

  17. Radiologic exposure conditions and resultant skin doses in application of xeroradiography to the orthodontic diagnosis

    International Nuclear Information System (INIS)

    Nakasima, A.; Nakata, S.; Shimizu, K.; Takahama, Y.

    1980-01-01

    Xeroradiography is the recording of radiologic image by a photoelectric process rather than the photochemical one used in conventional radiography. In order to investigate the advantages and disadvantages of xeroradiography in the orthodontic field, minimum xeroradiologic exposure conditions for skull projections, joint projections, and hand projections were established by thirteen examiners and the relationship between the image production and x-ray radiation was compared with conventional film techniques. The advantages of xeroradiograph were finer and clear images caused by the edge effect and wide latitude of xeroradiography; the main hazard was the unavoidable larger skin dose required by the projection procedures. The skin doses with xeroradiography were 2.4 to 16.2 times larger than those with conventional film techniques

  18. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Syh, J; Patel, B; Wu, H; Durci, M [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists of multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.

  19. A safe potential juice clarifying pectinase from Trichoderma viride EF-8 utilizing Egyptian onion skins

    Directory of Open Access Journals (Sweden)

    Abdel-Mohsen S. Ismail

    2016-06-01

    Full Text Available The production of a notable, safe and highly active pectinase by the local fungal strain Trichoderma viride EF-8 utilizing the abundant pigmented Egyptian onion (Allium cepa L. skins (6.5%, w/v was achieved in 4 days submerged fermentation (SMF cultures, at temperature and pH of 30 °C and 4.0, respectively. The indigenously produced pectinase was partially purified by 50% batch ethanol precipitation and its general properties were studied following the standard procedures. The lyophilized enzyme preparation was free of any ochra or aflatoxins. The optimum conditions for the partially purified enzyme form were 2 mg/mL and 1% (w/v enzyme protein and substrate (citrus pectin concentrations, reaction pH and temperature of 7.0 and 40 °C, respectively. The results presented the low cost onion skins waste as the major substrate for the fungal pectinase production and its subsequent use in perfect fruit (apple, lemon and orange juices clarification with remarkable stability during and after this process, which certainly enhance fruit juices processing in the tropics.

  20. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  1. Experimental study on skin irritation of bone spur powder on rabbit

    Science.gov (United States)

    Ma, Zhenzhen; Zhang, Xuhui; Hao, Shaojun; Shen, Huiling; Wang, Huamin; Ji, Xianghui; Zhang, Zhengchen; Huang, Youling

    2018-04-01

    To observe the effect of bone powder of rabbit skin, provide the basis for the safety of clinical use of bone powder, 24 rabbits were randomly divided into 6 groups, complete skin test and damaged skin test each divided into 3 groups (n=4), high, low, 3 doses tested daily administered 1 times, continuous administration for 7 days, in 24 hours after the last administration of drug residues, wash with warm water, the removal of L hours after drug for 24 hours, 48 hours, 72 hours and seventh days, observed and recorded to apply position before administration and administration during the skin no erythema and edema, and observe the smear Parts of any pigmentation, bleeding, rough skin or thin skin etc., record the occurrence time and duration time. Through comparative observation, intact skin group before administration and dosing period, there were no erythema and edema, pigmentation, bleeding, rough skin or thin skin etc., there is no difference with the control group; the damaged skin group after administration of 1 to 5 days, each rabbit skin there are different degrees of erythema and edema, especially to skin injury after 24-48 hours is obvious, 2 days (48 hours) after 4 days gradually reduced, significantly subsided after 6 days, erythema and edema phenomenon subsided completely, not out of blood, pigmentation, rough skin or thin skin and so on. The bone spur powder has no irritation on the intact skin of rabbits. The bone spur powder has moderate irritation on the damaged skin of rabbits, but after 48 hours, the stimulation reaction subsided spontaneously, which is caused by the inflammatory reaction caused by skin injury, rather than the medication. The bone spur powder is safe for clinical use.

  2. Development of a fibre-optic dosemeter to measure the skin dose and percentage depth dose in the build-up region of therapeutic photon beams

    International Nuclear Information System (INIS)

    Kim, K. A.; Yoo, W. J.; Jang, K. W.; Moon, J.; Han, K. T.; Jeon, D.; Park, J. Y.; Cha, E. J.; Lee, B.

    2013-01-01

    In this study, a fibre-optic dosemeter (FOD) using an organic scintillator with a diameter of 0.5 mm for photon-beam therapy dosimetry was fabricated. The fabricated dosemeter has many advantages, including water equivalence, high spatial resolution, remote sensing and real-time measurement. The scintillating light generated from an organic-dosemeter probe embedded in a solid-water stack phantom is guided to a photomultiplier tube and an electrometer via 20 m of plastic optical fibre. Using this FOD, the skin dose and the percentage depth dose in the build-up region according to the depths of a solid-water stack phantom are measured with 6- and 15-MV photon-beam energies with field sizes of 10310 and 20320 cm 2 , respectively. The results are compared with those measured using conventional dosimetry films. It is expected that the proposed FOD can be effectively used in radiotherapy dosimetry for accurate measurement of the skin dose and the depth dose distribution in the build-up region due to its high spatial resolution. (authors)

  3. Effect of field size on the reaction of pig skin to single doses of X rays

    Energy Technology Data Exchange (ETDEWEB)

    Hopewell, J W; Young, C M.A. [Churchill Hospital, Oxford (UK)

    1982-05-01

    The importance of the size of the treatment area for the response of the skin to radiation has been studied in the pig. The responses of skin areas of 16 cm/sup 2/ (4 x 4 cm) and 64cm/sup 2/ (16 x 4 cm) were compared after single doses of X rays. In the initial 3-9-week period after irradiation the severity of the erythema reaction, which is associated with epidermal cell death, was not influenced by the area of skin irradiated. For the later dermal response (10-16 weeks) a similar result was obtained. The dose required to produce dermal necrosis in 50% of the fields treated (ED/sub 50/) was approximately 2070 cGy for both field sizes. Additional studies have shown that the ED/sub 50/ for dermal necrosis was not influenced by the age of animals at the time of irradiation. This was despite considerable differences in the vascular density and blood flow in pig skin with increasing age. The apparent contradiction between the results of this experimental study in the pig, which shows no effect of field size, and currently accepted clinical practice is discussed.

  4. Functional and morphological changes in pig skin after single or fractionated doses in x rays

    International Nuclear Information System (INIS)

    Young, C.M.A.; Hopewell, J.W.

    1982-01-01

    The flank skin of pigs has been treated with either single or fractionated doses of x-irradiation. A single dose (2070 cGy) was compared with treatment given as 6 fractions in 18 days (6f/18 days; 3780 cGy) or 30 fractions in 39 days (30f/39 days; 8000 cGy). The doses were selected on the basis that similar levels of late tissue damage would result. Radiation induced changes in the skin were assessed by observing the skin reactions and by the measurement of isotope clearance (functional study), relative field contraction, dermal and epidermal thickness and dermal vascular density (morphological studies). In the three treatment groups the early radiation reaction varied considerably. In the first wave reaction (3 to 6 weeks after treatment) bright red erythema was recorded in many fields but moist desquamation developed only in the 30f/39 days treatment group. The second wave (10-16 weeks) was characterized by an ischemic mauve/dusky reaction. Dermal necrosis developed in 50% of the single dose fields. In the 30f/39 days regimen persistent moist desquamation progressed to dermal necrosis. Neither desquamation nor necrosis developed after 6f/18 days. Different levels of vascular damage in the dermis were assessed using an isotope clearance technique; for example in the early reaction significant changes were recorded in the papillary dermis (faster clearance) prior to the development of moist desquamation (30f/39 days) and in the reticular dermis (slower clearance) before necrosis (single dose). Changes in clearance rates have been correlated with changes in the vascular density and thickness of the dermis. Between 26 and 52 weeks (the late reaction) relative field contraction was slightly greater in the 30f/39 days group than in the other treatment groups

  5. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Demanes, D. Jeffrey; Martinez, Alvaro A.; Ghilezan, Michel; Hill, Dennis R.; Schour, Lionel; Brandt, David; Gustafson, Gary

    2011-01-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography–defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis–free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  6. Assessment of influence of OSL dosimeters in the skin dose in radiotherapy: study for Monte Carlo simulation; Avaliacao da influencia de dosimetros OSL na dose na pele em radioterapia: estudo por simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, Franciely F.; Nicolucci, Patricia, E-mail: franschuch@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeiraoo Preto, SP (Brazil)

    2017-11-01

    The interest in optically stimulated luminescence (OSL) dosimetry materials is growing due to its potential use in quality control in Radiotherapy. The use of these dosimeters for in vivo dosimetry, however, may influence the dose to the skin and deeper tissues in the patient. The goal of this study is to evaluate the influence of the OSL Al{sub 2}O{sub 3} material in dose deposited in the skin and deep in Radiotherapy. Monte Carlo simulation is used to evaluate this purpose when OSL dosimeters of Al{sub 2}O{sub 3} are positioned on the skin surface of the patient. Percentage depth dose curves for clinical beams of 6 and 10 MV were simulated with and without the presence of the dosimeter on the surface of a water phantom. The results showed a decrease of doses in regions close to the surface of the skin. In the build-up region, the maximum decreases of dose produced by the presence of the dosimeters were 52,5% and 47,5% for the 6 and 10 MV beams, respectively. After the build-up region, there are not significant changes in the doses for any of the used beams. The differences of doses found are due to the influence of the dosimetric material on the relative fluence of electrons near the end surface of the dosimeter. Thus, the results showed that the presence of the dosimetric material on the surface interferes on the skin dose. However, these dosimeters do not cause dose variations in depths of clinical interest, allowing its application in routine in vivo dosimetry in Radiotherapy. (author)

  7. Application of work load spectra for estimative of the skin entrance dose

    International Nuclear Information System (INIS)

    Pereira, P.A.A.; Furquim, T.A.C.; Costa, P.R.

    2004-01-01

    The present work refers to obtaining data for the determination of workload spectra related to the use of different radiological equipment. The obtained information was stored in a data base developed for this working program. Values of skin entrance dose were obtained bu using the results of the field research (performed in radiological clinics and hospitals of Sao Paulo). (author)

  8. A model for predicting skin dose received by patients from an x-ray ...

    African Journals Online (AJOL)

    We have done this by modifying a model for predicting skin dose derived by Edmonds for a triple-phase generator. Results for 100 patients based on the triple-phase generator output show a reasonable average agreement (»1%) between our present model and the Edmonds's model. Although our earlier estimated ...

  9. Radiation Therapy in Elderly Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2008-06-15

    To evaluate the long term results (local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma (10 patients), basal cell carcinoma (3 patients), verrucous carcinoma (1 patient) and skin adnexal origin carcinoma (1 patient). The most common tumor location was the head (13 patients). The mean tumor diameter was 4.9 cm (range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from 50{approx}80 Gy (mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. The local control rates were 100% (15/15). In addition, the five year disease free survival rate (5YDFS) was 80% and twelve patients (80%) had no recurrence and skin cancer recurrence occurred in 3 patients (20%). Three patients have lived an average of 90 months (68{approx}120 months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin

  10. Evaluation of two-dimensional bolus effect of immobilization/support devices on skin doses: A radiochromic EBT film dosimetry study in phantom

    International Nuclear Information System (INIS)

    Chiu-Tsao, Sou-Tung; Chan, Maria F.

    2010-01-01

    Purpose: In this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments. Methods: For 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions. Results: In contrast with 20% relative dose [(RD) dose relative to d max on central axis] at 0.0153 cm in the film layer for 6 MV 10x10 cm 2 open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150% (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with and without

  11. Radiofrequency catheter ablation: Relationship between fluoroscopic time and skin doses according to diagnoses. Basis to establish a quality assurance programme

    International Nuclear Information System (INIS)

    Cotelo, E.; Pouso, J.; Reyes, W.

    2001-01-01

    Radiofrequency Cardiac Catheter Ablation is an Interventional Radiology procedure of great complexity because the cardiologist needs a simultaneous evaluation of fluoroscopic images and electrophysiologic information. Therefore, the procedure typically involves extended fluoroscopic time that may cause radiation-skin injures to patients. Skin doses depend on many factors: equipment design features and its proper use, cardiologist practice, fluoroscopic time, irradiated areas, application of radiation protection recommendations, etc. We evaluate fluoroscopic time in relation to pathology and we estimate skin doses on 233 procedures at the Electrophysiology Laboratory in Casa de Galicia, Montevideo, Uruguay. Significant differences among the medians of fluoroscopic time were found in those procedures depending on diagnoses and results. Higher fluoroscopic time was found in flutter and auricular tachycardia (median was 83 minutes, p=0.0001). In successful procedures (almost 90%), median skin doses was 2.0 Grays (p=0.0001). On the basis of records information, the standard operating procedure and the clinical protocol, expanding close cooperation between the cardiologists and the experts in Radiation Protection will secure the establishment of an Assurance Quality Program. (author)

  12. Skin entrance dose with and without lead apron in digital panoramic radiography for selected sensitive body regions.

    Science.gov (United States)

    Schulze, Ralf Kurt Willy; Cremers, Catrin; Karle, Heiko; de Las Heras Gala, Hugo

    2017-05-01

    The aim of this study was to compare the dose at skin level at five significant anatomical regions for panoramic radiography devices with and without lead apron by means of a highly sensitive dosimeter. A female RANDO-phantom was exposed in five different digital panoramic radiography systems, and the dose at skin level was assessed tenfold for each measurement region by means of a highly sensitive solid-state-dosimeter. The five measurement regions selected were the thyroid, both female breasts, the gonads, and a central region in the back of the phantom. For each panoramic machine, the measurements were performed in two modes: with and without a commercial lead apron specifically designed for panoramic radiography. Reproducibility of the measurements was expressed by absolute differences and the coefficient of variation. Values between shielded and unshielded doses were pooled for each region and compared by means of the paired Wilcoxon tests (p ≤ 0.05). Reproducibility as represented by the mean CV was 22 ± 52 % (median 2.3 %) with larger variations for small dose values. Doses at skin level ranged between 0.00 μGy at the gonads and 85.39 μGy at the unshielded thyroid (mean ± SD 15 ± 24 μGy). Except for the gonads, the dose in all the other regions was significantly lower (p < 0.001) when a lead apron was applied. Unshielded doses were between 1.02-fold (thyroid) and 112-fold (at the right breast) higher than those with lead apron shielding (mean: 14-fold ± 18-fold). Although the doses were entirely very low, we observed a significant increase in dose in the radiation-sensitive female breast region when no lead apron was used. Future discussions on shielding requirements for panoramic radiography should focus on these differences in the light of the linear non-threshold (LNT) theory which is generally adopted in medical imaging.

  13. Estimating skin sensitization potency from a single dose LLNA.

    Science.gov (United States)

    Roberts, David W

    2015-04-01

    Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990 s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Method of examination of blood microcirculation in skin by multiple using of an identical dose of radioactive Xe/sup 133/ gas

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, J.; Bogdanowski, T.; Brzezinska-Wcislo, L. (Slaska Akademia Medyczna, Katowice (Poland))

    1981-01-01

    The introduced method of Xe/sup 133/ gas application on epidermis serves to the investigation of microcirculation of blood within skin. It consists in a single use a dose of radioactive gas which is injected under the plastic membrane adhering to the skin surface. Our method of gaseous Xe/sup 133/ contact with epidermis enabling the multiple utilization of once applied dose to further examination is described.

  15. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    International Nuclear Information System (INIS)

    Weir, V; Zhang, J

    2016-01-01

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surface below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.

  16. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Weir, V [Baylor Scott and White Healthcare System, Dallas, TX (United States); Zhang, J [University of Kentucky, Lexington, KY (United States)

    2016-06-15

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surface below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.

  17. Study of dose modification in skin cancers induced by the kind of bolus used - Bibliography

    International Nuclear Information System (INIS)

    Camilleri, Jeremy

    2011-01-01

    As tumour irradiation modalities differ from one pathology to another, and are even proper to each pathology (they depend on tumour nature, histology, size, location, and so on), but as therapeutic objectives remain unchanged (to deliver the prescribed dose to the target-volume with the highest possible precision while preserving as much as possible sane tissues as well as neighbouring organs at risk), this bibliographical study aims, on the one hand, at quantifying the dose variation generated by heterogeneous structures crossed by the electron beam, and on the other hand, at optimising the use of boluses during surface irradiations, notably in the case of skin cancers. The author addresses therapeutic indications of irradiation of skin cancers and of thoracic wall for which the application of a bolus is required, and then the associated irradiation techniques as well as bolus characteristics

  18. Enhancement of Skin Permeation and Skin Immunization of Ovalbumin Antigen via Microneedles.

    Science.gov (United States)

    Pamornpathomkul, Boonnada; Rojanarata, Theerasak; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2017-10-01

    The purpose of this study was to evaluate the use of different types of microneedles and doses of ovalbumin antigen for in vitro skin permeation and in vivo immunization. In vitro skin permeation experiments and confocal laser scanning microscopy revealed that hollow microneedles had a superior enhancing effect on skin permeation compared with a solid microneedle patch and untreated skin by efficiently delivering ovalbumin-fluorescein conjugate into the deep skin layers. The flux and cumulative amount of ovalbumin-fluorescein conjugate at 8 h after administering with various conditions could be ranked as follows: hollow MN; high dose > medium dose > low dose > MN patch; high dose > medium dose > low dose > untreated skin; high dose > medium dose > low dose > without ovalbumin-fluorescein conjugate. As the dose of ovalbumin-fluorescein conjugate was increased to 500 μg, the antigen accumulated in the skin to a greater extent, as evidenced by the increasing green fluorescence intensity. When the hollow microneedle was used for the delivery of ovalbumin into the skin of mice, it was capable of inducing a stronger immunoglobulin G immune response than conventional subcutaneous injection at the same antigen dose. Immunoglobulin G levels in the hollow MN group were 5.7, 11.6, and 13.3 times higher than those of the subcutaneous injection group for low, medium, and high doses, respectively. Furthermore, the mice immunized using the hollow microneedle showed no signs of skin infection or pinpoint bleeding. The results suggest that the hollow MN is an efficient device for delivering the optimal dose of antigen via the skin for successful immunization.

  19. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  20. Low-dose total skin electron beam therapy for cutaneous lymphoma. Minimal risk of acute toxicities

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Kai; Elsayad, Khaled; Moustakis, Christos; Haverkamp, Uwe; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiation Oncology, Muenster (Germany)

    2017-12-15

    Low-dose total skin electron beam therapy (TSEBT) is attracting increased interest for the effective palliative treatment of primary cutaneous T-cell lymphoma (pCTCL). In this study, we compared toxicity profiles following various radiation doses. We reviewed the records of 60 patients who underwent TSEBT for pCTCL between 2000 and 2016 at the University Hospital of Munster. The treatment characteristics of the radiotherapy (RT) regimens and adverse events (AEs) were then analyzed and compared. In total, 67 courses of TSEBT were administered to 60 patients. Of these patients, 34 (51%) received a standard dose with a median surface dose of 30 Gy and 33 patients (49%) received a low dose with the median surface dose of 12 Gy (7 salvage low-dose TSEBT courses were administered to 5 patients). After a median follow-up of 15 months, the overall AE rate was 100%, including 38 patients (57%) with grade 2 and 7 (10%) with grade 3 AEs. Patients treated with low-dose TSEBT had significantly fewer grade 2 AEs than those with conventional dose regimens (33 vs. 79%, P < 0.001). A lower grade 3 AE rate was also observed in patients who had received the low-dose regimen compared to those with the conventional dose regimens (6 vs. 15%, P = 0.78). Multiple/salvage low-dose TSEBT courses were not associated with an increased risk of acute AEs. Low-dose TSEBT regimens are associated with significantly fewer grade 2 acute toxicities compared with conventional doses of TSEBT. Repeated/Salvage low-dose TSEBT, however, appears to be tolerable and can even be applied safely in patients with cutaneous relapses. (orig.) [German] Eine niedrigdosierte Ganzhautelektronenbestrahlung (TSEBT) wird vermehrt zur effektiven palliativen Behandlung von Patienten mit primaer kutanen T-Zell-Lymphomen (pCTCL) eingesetzt. In dieser Studie vergleichen wir die Toxizitaetsprofile verschiedener Dosiskonzepte. Untersucht wurden 60 zwischen 2000 und 2016 am Universitaetsklinikum Muenster mittels TSEBT

  1. Influence of the Target Vessel on the Location and Area of Maximum Skin Dose during Percutaneous Coronary Intervention

    International Nuclear Information System (INIS)

    Chida, K.; Fuda, K.; Kagaya, Y.; Saito, H.; Takai, Y.; Kohzuki, M.; Takahash i, S.; Yamada, S.; Zuguchi, M.

    2007-01-01

    Background: A number of cases involving radiation-associated patient skin injury attributable to percutaneous coronary intervention (PCI) have been reported. Knowledge of the location and area of the patient's maximum skin dose (MSD) in PCI is necessary to reduce the risk of skin injury. Purpose: To determine the location and area of the MSD in PCI, and separately analyze the effects of different target vessels. Material and Methods: 197 consecutive PCI procedures were studied, and the location and area of the MSD were calculated by a skin-dose mapping software program: Caregraph. The target vessels of the PCI procedures were divided into four groups based on the American Heart Association (AHA) classification. Results: The sites of the MSD for AHA no.1-3, AHA no.4, and AHA no.11-15 were located mainly on the right back skin, the lower right or center back skin, and the upper back skin areas, respectively, whereas the MSD sites for the AHA no. 5-10 PCI were widely spread. The MSD area for the AHA no. 4 PCI was larger than that for the AHA no. 11-15 PCI (P<0.0001). Conclusion: Although the radiation associated with PCI can be widely spread and variable, we observed a tendency regarding the location and area of the MSD when we separately analyzed the data for different target vessels. We recommend the use of a smaller radiation field size and the elimination of overlapping fields during PCI

  2. Moist skin care can diminish acute radiation-induced skin toxicity

    International Nuclear Information System (INIS)

    Momm, F.; Weissenberger, C.; Bertelt, S.; Henke, M.

    2003-01-01

    Background: Radiation treatment may induce acute skin reactions. There are several methods of managing them. Validity of these methods, however, is not sufficiently studied. We therefore investigated, whether moist skin care with 3% urea lotion will reduce acute radiation skin toxicity. Patients and Methods: 88 patients with carcinomas of the head and neck undergoing radiotherapy with curative intent (mean total dose 60 Gy, range: 50-74 Gy) were evaluated weekly for acute skin reactions according to the RTOG-CTC score. In 63 patients, moist skin care with 3% urea lotion was performed. The control group consisted of 25 patients receiving conventional dry skin care. The incidence of grade I, II, and III reactions and the radiation dose at occurrence of a particular reaction were determined and statistically analyzed using the log-rank test. The dose-time relations of individual skin reactions are described. Results: At some point of time during radiotherapy, all patients suffered from acute skin reactions grade I, > 90% from grade II reactions. 50% of patients receiving moist skin care experienced grade I reactions at 26 Gy as compared to 22 Gy in control patients (p = 0.03). Grade II reactions occurred at 51 Gy versus 34 Gy (p = 0.006). Further, 22% of the patients treated with moist skin care suffered from acute skin toxicity grade III as compared to 56% of the controls (p = 0.0007). Conclusion: Moist skin care with 3% urea lotion delays the occurrence and reduces the grade of acute skin reactions in percutaneously irradiated patients with head and neck tumors. (orig.)

  3. Evaluation of radiological protection and dose of skin entrance in paediatric dentistry examinations; Avaliacao da protecao radiologica e da dose de entrada na pele em exames de odontologia pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Helen Jamil [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Vasconcelos, Flavia Maria Nassar de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Silveira, Marcia Maria Fonseca da [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Fac. de Odontologia; Couto, Geraldo Bosco Lindoso [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Fac. de Odontopediatria; Brasileiro, Izabela Vanderley

    2005-07-01

    In this work the radiological protection conditions and dose at the entrance of pediatric patients undergoing dental intraoral radiographs were evaluated. The study was conducted in two clinics of the dentistry course at the Federal University of Pernambuco, Recife, PB, Brazil, equipped with conventional X-ray apparatus, with 60 and 70 kV. 254 exams of 113 patients between the ages of 3 to 12 years were evaluated. The skin entrance dose was estimated using TLD-100 thermoluminescent dosemeters. During the examination were also recorded information regarding the time of exposure, radiographic technique used, use of thyroid protectors and lead apron, angle and distance of the cone Locator to the patient's skin. The results showed that the input skin doses ranged from 0.3 mGy to 10mGy. The lead apron was used in 71% of exams while the thyroid shield was only used in 58% of the exams. The exposure times ranged from 0,5s to 1,5s. From the results it can be concluded that the radiological procedures are not optimized and that in some cases the patient dose is high.

  4. Evaluation of dose to skin surface contamination in the factory Juzbado of fuel elements

    International Nuclear Information System (INIS)

    Ortiz Trujillo, D.; Agustin Perez Fonseca, A.; Alejandro Fuentes, A.

    2013-01-01

    The aim of this work is previously set a simple calculation methodology applicable to the boundary conditions surrounding the environment where skin contamination may have occurred so that you can evaluate in a simple and fast way the dose that the worker is receiving while enduring such pollution. (Author)

  5. Effect of wavelength, epidermal thickness and skin type on the required dose for photodynamic therapy

    CSIR Research Space (South Africa)

    Karsten, AE

    2008-10-01

    Full Text Available Effect of Wavelength, Epidermal Thickness and Skin Type on the Required Dose for Photodynamic Therapy A.E. Karsten1,2 1CSIR National Laser Centre, Biophotonics Group, PO Box 395, Pretoria, 0001, South Africa 2Physics Department, Faculty of Natural... a certain depth in the skin. For most laser treatments and diagnostics apllications, wavelengths ranging between 600 and 1 000 nm are used. 1.1 Photodynamic therapy (PDT) In South Africa, as in many other countries, cancer is a major health...

  6. How to Keep Your Sleeping Baby Safe

    Science.gov (United States)

    ... first hour. After that, or when the mother needs to sleep or cannot do skin-to-skin, babies should ... Back is Best New Crib Standards: What Parents Need to Know Safe Sleep for Babies (Video) The Healthy Children Show: Sleep ( ...

  7. Determination of skin dose reduction by lead equivalent gloves

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Abd Aziz Mhd Ramli

    2006-01-01

    Radiation protective gloves are always used in medical facilities to protect radiation workers from unnecessary radiation exposure. A study on radiation protection gloves which are produced by local company had been performed by the Medical Physics Group, MINT. The gloves were made of lead equivalent material, as the attenuating element. The gloves were evaluated in term of the percentage of skin dose reduction by using a newly developed procedure and facilities in MINT. Attenuation measurements of the gloves had been carried out using direct beams and scattered radiations of different qualities. TLD rings were fitted on finger phantom; and water phantom were used in the measurement. The result were obtained and analysed based on data supplied by manufacturer. (Author)

  8. Minimal erythema dose and minimal melanogenesis dose relate better to objectively measured skin type than to Fitzpatricks skin type

    DEFF Research Database (Denmark)

    Wulf, Hans Christian; Philipsen, Peter A; Ravnbak, Mette H

    2010-01-01

    Fitzpatrick skin type (FST I-IV) is a subjective expression of ultraviolet (UV) sensitivity based on erythema and tanning reactivity after a single exposure. Pigment protection factor (PPF) is an objective measurement of skin sensitivity in all skin types after a single exposure....

  9. Phase 2, Randomized, Double-Blind, Dose-Ranging Study Evaluating the Safety, Tolerability, Population Pharmacokinetics, and Efficacy of Oral Torezolid Phosphate in Patients with Complicated Skin and Skin Structure Infections▿ † ‡

    Science.gov (United States)

    Prokocimer, P.; Bien, P.; Surber, J.; Mehra, P.; DeAnda, C.; Bulitta, J. B.; Corey, G. R.

    2011-01-01

    Torezolid (TR-700) is the active moiety of the prodrug torezolid phosphate ([TP] TR-701), a second-generation oxazolidinone with 4- to 16-fold greater potency than linezolid against Gram-positive species including methicillin-resistant Staphylococcus aureus (MRSA). A double-blind phase 2 study evaluated three levels (200, 300, or 400 mg) of oral, once-daily TP over 5 to 7 days for complicated skin and skin structure infections (cSSSI). Patients 18 to 75 years old with cSSSI caused by suspected or confirmed Gram-positive pathogens were randomized 1:1:1. Of 188 treated patients, 76.6% had abscesses, 17.6% had extensive cellulitis, and 5.9% had wound infections. S. aureus, the most common pathogen, was isolated in 90.3% of patients (139/154) with a baseline pathogen; 80.6% were MRSA. Cure rates in clinically evaluable patients were 98.2% at 200 mg, 94.4% at 300 mg, and 94.4% at 400 mg. Cure rates were consistent across diagnoses, regardless of lesion size or the presence of systemic signs of infection. Clinical cure rates in patients with S. aureus isolated at baseline were 96.6% overall and 96.8% for MRSA. TP was safe and well tolerated at all dose levels. No patients discontinued treatment due to an adverse event. Three-stage hierarchical population pharmacokinetic modeling yielded a geometric mean clearance of 8.28 liters/h (between-patient variability, 32.3%), a volume of the central compartment of 71.4 liters (24.0%), and a volume of the peripheral compartment of 27.9 liters (35.7%). Results of this study show a high degree of efficacy at all three dose levels without significant differences in the safety profile and support the continued evaluation of TP for the treatment of cSSSI in phase 3 trials. PMID:21115795

  10. Skin-sparing Helical Tomotherapy vs 3D-conformal Radiotherapy for Adjuvant Breast Radiotherapy: In Vivo Skin Dosimetry Study

    International Nuclear Information System (INIS)

    Capelle, Lisa; Warkentin, Heather; MacKenzie, Marc; Joseph, Kurian; Gabos, Zsolt; Pervez, Nadeem; Tankel, Keith; Chafe, Susan; Amanie, John; Ghosh, Sunita; Parliament, Matthew; Abdulkarim, Bassam

    2012-01-01

    Purpose: We investigated whether treatment-planning system (TPS)-calculated dose accurately reflects skin dose received for patients receiving adjuvant breast radiotherapy (RT) with standard three-dimensional conformal RT (3D-CRT) or skin-sparing helical tomotherapy (HT). Methods and Materials: Fifty patients enrolled in a randomized controlled trial investigating acute skin toxicity from adjuvant breast RT with 3D-CRT compared to skin-sparing HT, where a 5-mm strip of ipsilateral breast skin was spared. Thermoluminescent dosimetry or optically stimulated luminescence measurements were made in multiple locations and were compared to TPS-calculated doses. Skin dosimetric parameters and acute skin toxicity were recorded in these patients. Results: With HT there was a significant correlation between calculated and measured dose in the medial and lateral ipsilateral breast (r = 0.67, P V50 (1.4% vs 5.9%, respectively; P=.001) but higher skin V40 and skin V30 (71.7% vs 64.0%, P=.02; and 99.0% vs 93.8%, P=.001, respectively) than 3D-CRT plans. Conclusion: The 3D-CRT TPS more accurately reflected skin dose than the HT TPS, which tended to overestimate dose received by 14% in patients receiving adjuvant breast RT.

  11. Response of pig skin to single doses of irradiation from strontium-90 sources of differing surface area

    Energy Technology Data Exchange (ETDEWEB)

    Hopewell, J.W.; Hamlet, R.; Peel, D. (Churchill Hospital, Oxford (UK). Research Inst.)

    1985-08-01

    In the present investigations the effects of irradiation of pig skin with 22.5 and 40 mm diameter /sup 90/Sr plaques are compared. In addition to comparing peak epithelial reactions, comparisons were also made as to the healing times for comparable peak skin reactions for each field size. The ED/sub 50/ values (dose to produce moist desquamation in 50% of the skin fields) 26.5 +- 1.5 Gy for the 22.5 diameter field was not significantly different from that obtained for the larger 40 mm diameter source (ED/sub 50/ 29.0 +- 1.5 Gy).

  12. Measurement of patient skin absorbed dose in ablation of paroxysmal atrial fibrillation, and examination of treatment protocol

    International Nuclear Information System (INIS)

    Shohji, Tomokazu; Hiramatsu, Masaki; Hasome, Hideki

    2005-01-01

    The ablation for atrial fibrillation minute movement done in our hospital is 250 minutes or less, within an average time of 150 minutes during a fluoroscopic time of about 7 hours, with very large average inspection times numerical values. However, the skin-absorbed dose could be understood only from the numerical value of the area dosimeter. It was considered that the total dose that reached the threshold was sufficient, although radiation injury would not be reported from the ablation currently done at our hospital. Therefore, we aimed to examine the inspection protocol in this hospital, and to request the patient be given an inspection dose that was the average skin-absorbed dose by using the acryl board. The amount of a total dose for an inspection of 150 minutes of fluoroscopic time was about 2.7 Gy. Moreover, a value of 1.5 Gy was indicated in the hot spot as a result of repetition in some exposure fields. However, it was thought that the possibility of exceeding the threshold of 2 Gy depending on the inspection situation in the future and other factors was tolerable because these measurements were done so as not to overvalue it more than the necessary. (author)

  13. Evaluation of the entrance skin dose due to paediatric chest X-rays examinations carried out at a great hospital in Rio de Janeiro city

    International Nuclear Information System (INIS)

    Mohamadain, K.E.M.; Azevedo, A.C.P.; Rosa, L.A.R. da; Mota, H.C.; Goncalves, O.D.; Guebel, M.R.N.

    2001-01-01

    A dosimetric survey in paediatric radiology is currently being carried out at the paediatric unit of a great hospital in Rio de Janeiro city, aiming the assessment of patient doses and image quality. The aim of this work was to estimate the entrance skin dose for frontal and lateral chest X-rays exposure to paediatric patients. Three examination techniques were investigated, namely PA, AP and lateral positions. For entrance skin dose evaluation, two different TL dosimeters were used, namely LiF:Mg,Ti and CaSO4:Dy. The age intervals considered were 0-1 year, 1-5 years, 5-10 years and 10-15 years. The results obtained with both dosimeters are similar and the entrance skin dose values evaluated for the different age intervals considered are compared with previous values found in Brazil and also in Europe. (author)

  14. The response of pig skin to single doses of irradiation from strontium-90 sources of differing surface area

    International Nuclear Information System (INIS)

    Hopewell, J.W.; Hamlet, R.; Peel, D.

    1985-01-01

    In the present investigations the effects of irradiation of pig skin with 22.5 and 40 mm diameter 90 Sr plaques are compared. In addition to comparing peak epithelial reactions, comparisons were also made as to the healing times for comparable peak skin reactions for each field size. The ED 50 values (dose to produce moist desquamation in 50% of the skin fields) 26.5+-1.5 Gy for the 22.5 diameter field was not significantly different from that obtained for the larger 40 mm diameter source (ED 50 29.0+-1.5 Gy). (U.K.)

  15. Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field

    International Nuclear Information System (INIS)

    Oborn, B. M.; Metcalfe, P. E.; Butson, M. J.; Rosenfeld, A. B.; Keall, P. J.

    2012-01-01

    Purpose: In recent times, longitudinal field MRI-linac systems have been proposed for 6 MV MRI-guided radiotherapy (MRIgRT). The magnetic field is parallel with the beam axis and so will alter the transport properties of any electron contamination particles. The purpose of this work is to provide a first investigation into the potential effects of the MR and fringe magnetic fields on the electron contamination as it is transported toward a phantom, in turn, providing an estimate of the expected patient skin dose changes in such a modality. Methods: Geant4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam were performed. Longitudinal magnetic fields of strengths between 0 and 3 T were applied to a 30 x 30 x 20 cm 3 phantom. Surrounding the phantom there is a region where the magnetic field is at full MRI strength, consistent with clinical MRI systems. Beyond this the fringe magnetic field entering the collimation system is also modeled. The MRI-coil thickness, fringe field properties, and isocentric distance are varied and investigated. Beam field sizes of 5 x 5, 10 x 10, 15 x 15 and 20 x 20 cm 2 were simulated. Central axis dose, 2D virtual entry skin dose films, and 70 μm skin depth doses were calculated using high resolution scoring voxels. Results: In the presence of a longitudinal magnetic field, electron contamination from the linear accelerator is encouraged to travel almost directly toward the patient surface with minimal lateral spread. This results in a concentration of electron contamination within the x-ray beam outline. This concentration is particularly encouraged if the fringe field encompasses the collimation system. Skin dose increases of up to 1000% were observed for certain configurations and increases above Dmax were common. In nonmagnetically shielded cases, electron contamination generated from the jaw faces and air column is trapped and propagated almost directly to the phantom entry region, giving rise to intense dose

  16. Implication of new CEC recommendations for individual monitoring for external radiation doses to the skin and the extremities

    International Nuclear Information System (INIS)

    Christensen, P.; Julius, H.W.; Marshall, T.O.

    1991-01-01

    A drafting group consisting of the above authors has assisted the CEC in revising the CEC document Technical Recommendations for Monitoring the Exposure to Individuals to External Radiation, EUR 5287, published in 1975. The paper highlights sections of the revised version relating particularly to irradiation of the skin and the extremities and focusses on problems connected to exposure to weakly penetrating radiations. Concepts of individual monitoring for external radiation exposures to the skin of the whole body and to the extremities are discussed and guidance is given as regards dose quantities and dosemeter calibration procedures. A method of quantifying the overall accuracy of the dose measurements as a result of the various uncertainty components connected with the dosimetry system is suggested and requirements on the accuracy of the dose measurements complying with the ICRP requirements on overall accuracy for individual monitoring are specified. Moreover, implications of the accuracy requirements for the design and type testing of the dosemeter are discussed. (author)

  17. Maximal safe dose therapy of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma

    International Nuclear Information System (INIS)

    Lee, Jong Jin; Seok, Ju Won; Uh, Jae Sun

    2005-01-01

    In patients with recurrent or metastatic differentiated thyroid carcinoma, residual disease despite repetitive fixed dose I-131 therapy presents an awkward situation in terms of treatment decision making. Maximal safe dose (MSD) administration base on bone marrow radiation allows the delivery of a large amount I-131 to thyroid cancer tissue within the safety margin. We investigated the efficacy of MSD in differentiated thyroid cancers, which had persisted after conventional fixed dose therapy. Forty-six patients with differentiated thyroid carcinoma who had non-responsible residual disease despite repetitive fixed dose I-131 therapy were enrolled in this study. The postoperative pathology consisted of 43 papillary carcinomas and 3 follicular carcinomas. MSD was calculated according the Memorial Sloan Kettering Cancer Center protocol using blood samples. MSDs were administered at intervals of at least 6 months. Treatment responses were evaluated using I-131 whole body scan (WBS) and serum thyroglobulin measurements. Mean calculated MSD was 12.5±2.1 GBq. Of the 46 patients, 6 (13.0%) showed complete remission, 15 (32.6%) partial response, 19 (41.3%) stable disease, and 6 (13.0%) disease progression. Thus, about a half of the patients showed complete or partial remission, and of these patients, 14 (67%) showed response after a single MSD administration and 6 (29%) showed response after the second dose of MSD administrations. Twenty-nine patients (63%) experienced transient cytopenia after therapy, and recovered spontaneously with the exception of one. MSD administration is an effective method even in the patients who failed to be treated by conventional fixed dose therapy. MSD therapy of I-131 can be considered in the patients who failed by fixed dose therapy

  18. Revisiting Low-Dose Total Skin Electron Beam Therapy in Mycosis Fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cameron, E-mail: cameronh@stanford.edu [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Young, James; Navi, Daniel [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Riaz, Nadeem [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States); Lingala, Bharathi; Kim, Youn [Department of Dermatology, Stanford Cancer Center, Stanford, California (United States); Hoppe, Richard [Department of Radiation Oncology, Stanford Cancer Center, Stanford, California (United States)

    2011-11-15

    Purpose: Total skin electron beam therapy (TSEBT) is a highly effective treatment for mycosis fungoides (MF). The standard course consists of 30 to 36 Gy delivered over an 8- to 10-week period. This regimen is time intensive and associated with significant treatment-related toxicities including erythema, desquamation, anhydrosis, alopecia, and xerosis. The aim of this study was to identify a lower dose alternative while retaining a favorable efficacy profile. Methods and Materials: One hundred two MF patients were identified who had been treated with an initial course of low-dose TSEBT (5-<30 Gy) between 1958 and 1995. Patients had a T stage classification of T2 (generalized patch/plaque, n = 51), T3 (tumor, n = 29), and T4 (erythrodermic, n = 22). Those with extracutaneous disease were excluded. Results: Overall response (OR) rates (>50% improvement) were 90% among patients with T2 to T4 disease receiving 5 to <10 Gy (n = 19). In comparison, OR rates between the 10 to <20 Gy and 20 to <30 Gy subgroups were 98% and 97%, respectively. There was no significant difference in median progression free survival (PFS) in T2 and T3 patients when stratified by dose group, and PFS in each was comparable to that of the standard dose. Conclusions: OR rates associated with low-dose TSEBT in the ranges of 10 to <20 Gy and 20 to <30 Gy are comparable to that of the standard dose ({>=} 30 Gy). Efficacy measures including OS, PFS, and RFS are also favorable. Given that the efficacy profile is similar between 10 and <20 Gy and 20 and <30 Gy, the utility of TSEBT within the lower dose range of 10 to <20 Gy merits further investigation, especially in the context of combined modality treatment.

  19. Knowledge of doses from radiumtherapy for skin hemangioma in childhood

    International Nuclear Information System (INIS)

    Shamsaldin, A.; Diallo, I.; Ligot, L.; Chavaudra, J.; De-Vathaire, F.

    1997-01-01

    Before 1974 about 5000 children were irradiated at the Institut Gustave-Roussy for a skin hemangioma of whom 20% were treated with radium applicators. To evaluate the absorbed doses to these patients at any site, we have developed a software program which permits simulation of the actual patient and treatment conditions. Part of this software is devoted to constructing an Individual Computerized Tomography Anatomy (ICTA) based on real human transverse slices and auxological tables. From the generated phantom, 160 anatomical sites of epidemiological interest are defined and localized according to a Cartesian co-ordinate system. The gamma doses at all sites from Ra-226 applicators are calculated by an algorithm which permits separation of the radiation paths in air, tissue, and lungs. It includes a correction for attenuation and scatters in infinite and semi-infinite mediums. To evaluate the factor φ(r) for these corrections at any distance or position from the applicator, we have modelled the results from several Monte Carlo simulations. In the range of 1 to 10 cm, the φ(r) values obtained from our model showed good agreement with those obtained by published methods. For several cases, the absorbed doses at points in water and patients from radium applicators estimated by this software, were compared to those measured and estimated at the Karolinska Hospital. The results showed good agreement. (author)

  20. Composite depth dose measurement for total skin electron (TSE) treatments using radiochromic film

    International Nuclear Information System (INIS)

    Gamble, Lisa M; Farrell, Thomas J; Jones, Glenn W; Hayward, Joseph E

    2003-01-01

    Total skin electron (TSE) radiotherapy is routinely used to treat cutaneous T-cell lymphomas and can be implemented using a modified Stanford technique. In our centre, the composite depth dose for this technique is achieved by a combination of two patient positions per day over a three-day cycle, and two gantry angles per patient position. Due to patient morphology, underdosed regions typically occur and have historically been measured using multiple thermoluminescent dosimeters (TLDs). We show that radiochromic film can be used as a two-dimensional relative dosimeter to measure the percent depth dose in TSE radiotherapy. Composite depth dose curves were measured in a cylindrical, polystyrene phantom and compared with TLD data. Both multiple films (1 film per day) and a single film were used in order to reproduce a realistic clinical scenario. First, three individual films were used to measure the depth dose, one per treatment day, and then compared with TLD data; this comparison showed a reasonable agreement. Secondly, a single film was used to measure the dose delivered over three daily treatments and then compared with TLD data; this comparison showed good agreement throughout the depth dose, which includes doses well below 1 Gy. It will be shown that one piece of radiochromic film is sufficient to measure the composite percent depth dose for a TSE beam, hence making radiochromic film a suitable candidate for monitoring underdosed patient regions

  1. Low-dose (10-Gy) total skin electron beam therapy for cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Gniadecki, Robert; Iversen, Lars

    2015-01-01

    a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. RESULTS: The overall response rate was 95% with a complete cutaneous response......PURPOSE: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments...... or a very good partial response rate (response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. CONCLUSIONS...

  2. Skin Dose Assessment Methodology for Military Personnel at McMurdo Station, Antarctica (1962-1979)

    Science.gov (United States)

    2014-06-01

    Particle size factor (unitless) = Moisture factor (unitless) = Enrichment factor (unitless) Values used for parameters in Equation A-1...forearm (fa) IRF (IRF/IRFfa) See Table A-5 Particle Size Factor (PS) 1.0 Moisture Factor (EM) High humidity, e.g. Pacific Ocean 3.0 Low humidity to... Interception and retention fractions, and effective retention factors ......................... 22 Table B-1. Standard height external skin doses (mSv

  3. Total Skin Electron Beam Therapy in the Treatment of Mycosis Fungoides: A Review of Conventional and Low-Dose Regimens.

    Science.gov (United States)

    Chowdhary, Mudit; Chhabra, Arpit M; Kharod, Shivam; Marwaha, Gaurav

    2016-12-01

    Mycosis fungoides (MF) is the most prevalent subtype of cutaneous T-cell lymphoma, which is characterized by the proliferation of CD4 + T cells. While often an indolent disease, most patients eventually develop progression from isolated patches to tumors and finally nodal or visceral involvement. Treatment choice is largely based on disease burden, though prognostic factors such as disease stage, patient age, and extracutaneous involvement must be taken into consideration. Radiotherapy represents one of the most effective therapeutic modalities in the treatment of MF. Lymphocytes are exquisitely radiosensitive, and excellent responses are observed even with low doses of radiation. Total skin electron beam therapy (TSEBT) is a special technique that allows for the homogenous irradiation of the entire skin. There are well-documented radiation dose-response relationships for achieving a complete response. As such, TSEBT doses ≥ 30 Gy comprise the current standard of care. Although highly effective, most patients experience recurrent disease even after conventional-dose (≥ 30 Gy) TSEBT. In addition, toxicity is cumulatively dose dependent, and there is reluctance to administer multiple courses of conventional-dose TSEBT. Consequently, there has been renewed interest in determining the utility of TSEBT at lower total (≤ 30 Gy) doses. Advantages of low-total-dose (with standard dose per fraction) TSEBT include a shortened treatment course, the potential to minimize the risk of adverse events, and the opportunity to allow for retreatment in cases of disease recurrence. This comprehensive review compares the impact of different TSEBT dosing schemes on clinical outcomes of MF. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Comparison of Adsorbed Skin Dose Received by Patients in Cone Beam Computed Tomography, Spiral and Conventional Computed Tomography Scanninng

    Directory of Open Access Journals (Sweden)

    Rahimi A

    2011-12-01

    Full Text Available Background and Aims: The evaluation of absorbed dose received by patients could give useful information for radiation risk estimation. This study was performed to compare the entrance skin dose received by patients in cone beam computed tomography (CBCT, conventional and spiral computed tomography (CT.Materials and Methods: In this experimental study, 81 calibrated TLD chips were used. the TLD chips were placed on facial, thyroid and end of sternum skin surface in patients referred for CT of the paranasal sinuses(3 TLD chips for each area to estimate the absorbed dose received by central part of radiation field, thyroid and out of field areas, respectively. The data were analyzed using one-way ANOVA and Tukey tests. Results: The dose delivered to the center of irradiated field was about 0.79±0.09 mGy in CBCT technique compared with 16.31±3.71 and 18.84±4.12 mGy for spiral and conventional CT, respectively. The received dose by the out of field areas was about 54 percent of central area dose. There was statistical significant relationship between the imaging modalities and absorbed dose received by patients (P=0.016. The least absorbed dose was for CBCT and the greatest dose was for conventional CT imaging technique.Conclusion: The dose delivered to central area of irradiated field in conventional and spiral CT imaging modalities was about 24 times greater than of that in CBCT. Also, the highest received dose was for central area of radiated field and the lowest dose was for the out of field areas.

  5. Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field.

    Science.gov (United States)

    Oborn, B M; Metcalfe, P E; Butson, M J; Rosenfeld, A B; Keall, P J

    2012-02-01

    In recent times, longitudinal field MRI-linac systems have been proposed for 6 MV MRI-guided radiotherapy (MRIgRT). The magnetic field is parallel with the beam axis and so will alter the transport properties of any electron contamination particles. The purpose of this work is to provide a first investigation into the potential effects of the MR and fringe magnetic fields on the electron contamination as it is transported toward a phantom, in turn, providing an estimate of the expected patient skin dose changes in such a modality. Geant4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam were performed. Longitudinal magnetic fields of strengths between 0 and 3 T were applied to a 30 × 30 × 20 cm(3) phantom. Surrounding the phantom there is a region where the magnetic field is at full MRI strength, consistent with clinical MRI systems. Beyond this the fringe magnetic field entering the collimation system is also modeled. The MRI-coil thickness, fringe field properties, and isocentric distance are varied and investigated. Beam field sizes of 5 × 5, 10 × 10, 15 × 15 and 20 × 20 cm(2) were simulated. Central axis dose, 2D virtual entry skin dose films, and 70 μm skin depth doses were calculated using high resolution scoring voxels. In the presence of a longitudinal magnetic field, electron contamination from the linear accelerator is encouraged to travel almost directly toward the patient surface with minimal lateral spread. This results in a concentration of electron contamination within the x-ray beam outline. This concentration is particularly encouraged if the fringe field encompasses the collimation system. Skin dose increases of up to 1000% were observed for certain configurations and increases above Dmax were common. In nonmagnetically shielded cases, electron contamination generated from the jaw faces and air column is trapped and propagated almost directly to the phantom entry region, giving rise to intense

  6. Can we safely administer the recommended dose of phenobarbital in very low birth weight infants?

    Science.gov (United States)

    Oztekin, Osman; Kalay, Salih; Tezel, Gonul; Akcakus, Mustafa; Oygur, Nihal

    2013-08-01

    We investigated whether the recommended phenobarbital loading dose of 15-20 mg/kg with maintenance of 3-4 mg/kg/day can safely be administered to very low birth weight preterm newborns with seizures. Twenty-four convulsive preterms of Phenobarbital was administered intravenously with a loading dose of 15 mg/kg in approximately 10-15 min. After 24 h, the maintenance dose of 3 mg/kg/day was administered as a single injection. Blood samples were obtained 2, 24, 48, 72, and 96 h after the phenobarbital loading dose was administered, immediately before the next phenobarbital dose was injected. None of the cases had plasma phenobarbital concentrations above the therapeutic upper limit of 40 μg/mL on the 2nd hour; one case (4.7%), on the 24th; 11 cases (45.8%), on the 48th; 15 cases (62.5%), on the 72nd; and 17 cases (70.8%), on the 96th hour. A negative correlation was detected between the serum concentrations of phenobarbital and gestational age on the 72th (p, 0.036; r, -0.608) and 96th hour (p, 0.043; r, -0.769). We suggest that particular attention should be done while administering phenobarbital in preterms, as blood levels of phenobarbital are higher than the reference ranges that those are often reached with the recommended doses in these groups of babies.

  7. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients

    International Nuclear Information System (INIS)

    Penoncello, Gregory P.; Ding, George X.

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm"3 for head and neck plans and brain plans and a contiguous volume of 5 cm"3 for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.

  8. General considerations of the choice of dose limits, averaging areas and weighting factors for the skin in the light of revised skin cancer risk figures and experimental data on non-stochastic effects

    International Nuclear Information System (INIS)

    Charles, M.W.

    1990-01-01

    Recent biological data from man and pig on the non-stochastic effects following exposure with a range of β-emitters are combined with recent epidemiological analyses of skin cancer risks in man to form a basis for suggested improved protection criteria following whole- or partial-body skin exposures. Specific consideration is given to the choice of an organ weighting factor for evaluation of effective dose-equivalent. Since stochastic and non-stochastic end-points involve different cell types at different depths in the skin, the design of an ideal physical dosemeter may depend on the proportion of the body skin exposed and the radiation penetrating power. Possible choices of design parameters for skin dosemeters are discussed. Limitation of skin exposure from small radioactive sources ('hot particles') is addressed using animal data. (author)

  9. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Zanca, F., E-mail: Federica.Zanca@med.kuleuven.be [Department of Radiology, Leuven University Center of Medical Physics in Radiology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium and Imaging and Pathology Department, UZ Leuven, Herestraat 49, Box 7003 3000 Leuven (Belgium); Jacobs, A. [Department of Radiology, Leuven University Center of Medical Physics in Radiology, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium); Crijns, W. [Department of Radiotherapy, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium); De Wever, W. [Imaging and Pathology Department, UZ Leuven, Herestraat 49, Box 7003 3000 Leuven, Belgium and Department of Radiology, UZ Leuven, Herestraat 49, 3000 Leuven (Belgium)

    2014-07-15

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.

  10. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    International Nuclear Information System (INIS)

    Zanca, F.; Jacobs, A.; Crijns, W.; De Wever, W.

    2014-01-01

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure

  11. A study of the relationship between peak skin dose and cumulative air kerma in interventional neuroradiology and cardiology

    International Nuclear Information System (INIS)

    Neil, S; Padgham, C; Martin, C J

    2010-01-01

    A study of peak skin doses (PSDs) during neuroradiology and cardiology interventional procedures has been carried out using Gafchromic XR-RV2 film. Use of mosaics made from squares held in cling film has allowed doses to the head to be mapped successfully. The displayed cumulative air kerma (CAK) has been calibrated in terms of cumulative entrance surface dose (CESD) and results indicate that this can provide a reliable indicator of the PSD in neuroradiology. Results linking PSD to CESD for interventional cardiology were variable, but CAK is still considered to provide the best option for use as an indicator of potential radiation-induced effects. A CESD exceeding 3 Gy is considered a suitable action level for triggering follow-up of patients in neuroradiology and cardiology for possible skin effects. Application of dose action levels defined in this way would affect 8% of neurological embolisation procedures and 5% of cardiology ablation and multiple stent procedures at the hospitals where the investigations were carried out. A close relationship was observed between CESD and dose-area product (DAP) for particular types of procedure, and DAPs of 200-300 Gy cm 2 could be used as trigger levels where CAK readings were not available. The DAP value would depend on the mean field size and would need to be determined for each application.

  12. Dose response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite

    International Nuclear Information System (INIS)

    Ahlborn, Gene J.; Nelson, Gail M.; Ward, William O.; Knapp, Geremy; Allen, James W.; Ouyang Ming; Roop, Barbara C.; Chen Yan; O'Brien, Thomas; Kitchin, Kirk T.; Delker, Don A.

    2008-01-01

    Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, we characterized gene expression profiles from analysis of K6/ODC mice administered 0, 0.05, 0.25, 1.0 and 10 ppm sodium arsenite in their drinking water for 4 weeks. Following exposure, total RNA was isolated from mouse skin and processed to biotin-labeled cRNA for microarray analyses. Skin gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 GeneChips (registered) , and pathway analysis was conducted with DAVID (NIH), Ingenuity (registered) Systems and MetaCore's GeneGo. Differential expression of several key genes was verified through qPCR. Only the highest dose (10 ppm) resulted in significantly altered KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including MAPK, regulation of actin cytoskeleton, Wnt, Jak-Stat, Tight junction, Toll-like, phosphatidylinositol and insulin signaling pathways. Approximately 20 genes exhibited a dose response, including several genes known to be associated with carcinogenesis or tumor progression including cyclin D1, CLIC4, Ephrin A1, STAT3 and DNA methyltransferase 3a. Although transcription changes in all identified genes have not previously been linked to arsenic carcinogenesis, their association with carcinogenesis in other systems suggests that these genes may play a role in the early stages of arsenic-induced skin carcinogenesis and can be considered potential biomarkers

  13. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D [University at Buffalo (SUNY) School of Med., Buffalo, NY (United States)

    2016-06-15

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  14. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    International Nuclear Information System (INIS)

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D

    2016-01-01

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  15. Optimization of the dose versus noise in the image on protocols for computed tomography of pediatric head;Otimizacao da relacao dose versus ruido na imagem em protocolos de tomografia computadorizada de cranio pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Saint' Yves, T.L.A.; Travassos, P.C.; Goncalves, E.A.S.; Mecca, F.A.; Silveira, T.B. [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q 2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of m As and k Vp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of m As and k Vp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  16. Optimization on the dose versus noise in the image on protocols for computed tomography of pediatric head; Otimizacao da relacao dose versus ruido na imagem em protocolos de tomografia computadorizada de cranio pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Saint' Yves, Thalis L.A.; Travassos, Paulo Cesar B.; Goncalves, Elicardo A.S.; Mecca A, Fernando; Silveira, Thiago B. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)], e-mail: fmecca@inca.gov.br, e-mail: thalis09@yahoo.com.br

    2010-03-15

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of mAs and kVp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of mAs and kVp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  17. Contamination and decontamination of skin

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    In external contamination the beta radiation dose is the prevalent component of the total dose absorbed by the skin. There exist four types of radionUclide bonds to the skin: mechanical retention of solid particles or solution on the surface and in the pores, physical adsorption of nondissociated molecules or colloids, the ion exchange effect, and chemisorption. Radionuclides then penetrate the skin by transfollicular transfer. The total amount of radioactive substances absorbed into the skin depends on the condition of the skin. Skin is decontaminated by washing with lukewarm water and soap or with special decontamination solutions. The most widely used components of decontamination solutions are detergents, chelaton, sodium hexametaphosphate, oxalic acid, citric acid. The main principles of the decontamination of persons are given. (M.D.)

  18. Radiation sterilization of skin allograft

    International Nuclear Information System (INIS)

    Kairiyama, E.; Horak, C.; Spinosa, M.; Pachado, J.; Schwint, O.

    2009-01-01

    In the treatment of burns or accidental loss of skin, cadaveric skin allografts provide an alternative to temporarily cover a wounded area. The skin bank facility is indispensable for burn care. The first human skin bank was established in Argentina in 1989; later, 3 more banks were established. A careful donor selection is carried out according to the national regulation in order to prevent transmissible diseases. As cadaveric human skin is naturally highly contaminated, a final sterilization is necessary to reach a sterility assurance level (SAL) of 10 -6 . The sterilization dose for 106 batches of processed human skin was determined on the basis of the Code of Practice for the Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control (2004) and ISO 11137-2 (2006). They ranged from 17.6 to 33.4 kGy for bioburdens of >10-162.700 CFU/100 cm 2 . The presence of Gram negative bacteria was checked for each produced batch. From the analysis of the experimental results, it was observed that the bioburden range was very wide and consequently the estimated sterilization doses too. If this is the case, the determination of a tissue-specific dose per production batch is necessary to achieve a specified requirement of SAL. Otherwise if the dose of 25 kGy is preselected, a standardized method for substantiation of this dose should be done to confirm the radiation sterilization process.

  19. Radiation sterilization of skin allograft

    Science.gov (United States)

    Kairiyama, E.; Horak, C.; Spinosa, M.; Pachado, J.; Schwint, O.

    2009-07-01

    In the treatment of burns or accidental loss of skin, cadaveric skin allografts provide an alternative to temporarily cover a wounded area. The skin bank facility is indispensable for burn care. The first human skin bank was established in Argentina in 1989; later, 3 more banks were established. A careful donor selection is carried out according to the national regulation in order to prevent transmissible diseases. As cadaveric human skin is naturally highly contaminated, a final sterilization is necessary to reach a sterility assurance level (SAL) of 10 -6. The sterilization dose for 106 batches of processed human skin was determined on the basis of the Code of Practice for the Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control (2004) and ISO 11137-2 (2006). They ranged from 17.6 to 33.4 kGy for bioburdens of >10-162.700 CFU/100 cm 2. The presence of Gram negative bacteria was checked for each produced batch. From the analysis of the experimental results, it was observed that the bioburden range was very wide and consequently the estimated sterilization doses too. If this is the case, the determination of a tissue-specific dose per production batch is necessary to achieve a specified requirement of SAL. Otherwise if the dose of 25 kGy is preselected, a standardized method for substantiation of this dose should be done to confirm the radiation sterilization process.

  20. SU-F-T-654: Pacemaker Dose Estimate Using Optically Stimulated Luminescent Dosimeter for Left Breast Intraoperative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Goenka, A; Sharma, A; Wang, L; Cao, Y; Jamshidi, A [Northwell Health, Lake Success, NY (United States)

    2016-06-15

    Purpose: To assess and report the in vivo dose for a patient with a pacemaker being treated in left breast intraoperative radiation therapy (IORT). The ZEISS Intrabeam 50 kVp X-ray beam with a spherical applicator was used. Methods: The optically stimulated luminescent dosimeters (OSLDs) (Landauer nanoDots) were employed and calibrated under the conditions of the Intrabeam 50 kVp X-rays. The nanoDots were placed on the patient at approximately 15 cm away from the lumpectomy cavity both under and above a shield of lead equivalence 0.25 mm (RayShield X-Drape D-110) covering the pacemaker area during IORT with a 5 cm spherical applicator. Results: The skin surface dose near the pacemaker during the IORT with a prescription of 20 Gy was measured as 4.0±0.8 cGy. The dose behind the shield was 0.06±0.01 Gy, demonstrating more than 98% dose reduction. The in vivo skin surface doses during a typical breast IORT at a 4.5 cm spherical applicator surface were further measured at 5, 10, 15, and 20 cm away to be 159±11 cGy, 15±1 cGy, 6.6±0.5 cGy, and 1.8±0.1 cGy, respectively. A power law fit to the dose versus the distance z from the applicator surface yields the dose fall off at the skin surface following z^-2.5, which can be used to estimate skin doses in future cases. The comparison to an extrapolation of depth dose in water reveals an underestimate of far field dose using the manufactory provided data. Conclusion: The study suggests the appropriateness of OSLD as an in vivo skin dosimeter in IORT using the Intrabeam system in a wide dose range. The pacemaker dose measured during the left breast IORT was within a safe limit.

  1. Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modeling.

    Science.gov (United States)

    James, John T; Lam, Chiu-Wing; Santana, Patricia A; Scully, Robert R

    2013-04-01

    Brief exposures of Apollo astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure to lunar dust. The United States and other space faring nations intend to return to the moon for extensive exploration within a few decades. In the meantime, habitats for that exploration, whether mobile or fixed, must be designed to limit human exposure to lunar dust to safe levels. Herein we estimate safe exposure limits for lunar dust collected during the Apollo 14 mission. We instilled three respirable-sized (∼2 μ mass median diameter) lunar dusts (two ground and one unground) and two standard dusts of widely different toxicities (quartz and TiO₂) into the respiratory system of rats. Rats in groups of six were given 0, 1, 2.5 or 7.5 mg of the test dust in a saline-Survanta® vehicle, and biochemical and cellular biomarkers of toxicity in lung lavage fluid were assayed 1 week and one month after instillation. By comparing the dose--response curves of sensitive biomarkers, we estimated safe exposure levels for astronauts and concluded that unground lunar dust and dust ground by two different methods were not toxicologically distinguishable. The safe exposure estimates were 1.3 ± 0.4 mg/m³ (jet-milled dust), 1.0 ± 0.5 mg/m³ (ball-milled dust) and 0.9 ± 0.3 mg/m³ (unground, natural dust). We estimate that 0.5-1 mg/m³ of lunar dust is safe for periodic human exposures during long stays in habitats on the lunar surface.

  2. Problems associated with localised skin exposures

    International Nuclear Information System (INIS)

    Wells, J.

    1986-01-01

    The possible sources of localised skin exposure include small commercial sources (for radiotherapy, for example), radiopharmaceuticals, collimated microbeams, and both fission and activation products from nuclear reactors, neutron generators and associated facilities. Each of these sources has its own particular characteristics and associated problems. Recommendations and regulations relating to limits on skin dose for such exposures have been constrained by inadequate radiobiological data and the limitations inherent in personal dosimetric techniques. A growing body of data is now available for beta-emitters which allows a preliminary reassessment of some aspects of the currently recommended dose limits for localised skin exposures. How the skin dose is measured is particularly important for such exposures, as doses often have to be averaged over a specific area. The area chosen for dose measurement and the depth at which the measurement is made are crucial to understanding the possible biological consequences and for formulating appropriate protection criteria. (author)

  3. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients.

    Science.gov (United States)

    Penoncello, Gregory P; Ding, George X

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. Copyright © 2016 American Association of Medical Dosimetrists. Published by

  4. Risk assessment of excess drug and sunscreen absorption via skin with ablative fractional laser resurfacing : optimization of the applied dose for postoperative care.

    Science.gov (United States)

    Chen, Wei-Yu; Fang, Chia-Lang; Al-Suwayeh, Saleh A; Yang, Hung-Hsu; Li, Yi-Ching; Fang, Jia-You

    2013-09-01

    The ablative fractional laser is a new modality used for surgical resurfacing. It is expected that laser treatment can generally deliver drugs into and across the skin, which is toxicologically relevant. The aim of this study was to establish skin absorption characteristics of antibiotics, sunscreens, and macromolecules via laser-treated skin and during postoperative periods. Nude mice were employed as the animal model. The skin received a single irradiation of a fractional CO2 laser, using fluences of 4-10 mJ with spot densities of 100-400 spots/cm(2). In vitro skin permeation using Franz cells was performed. Levels of skin water loss and erythema were evaluated, and histological examinations with staining by hematoxylin and eosin, cyclooxygenase-2, and claudin-1 were carried out. Significant signs of erythema, edema, and scaling of the skin treated with the fractional laser were evident. Inflammatory infiltration and a reduction in tight junctions were also observed. Laser treatment at 6 mJ increased tetracycline and tretinoin fluxes by 70- and 9-fold, respectively. A higher fluence resulted in a greater tetracycline flux, but lower skin deposition. On the other hand, tretinoin skin deposition increased following an increase in the laser fluence. The fractional laser exhibited a negligible effect on modulating oxybenzone absorption. Dextrans with molecular weights of 4 and 10 kDa showed increased fluxes from 0.05 to 11.05 and 38.54 μg/cm(2)/h, respectively. The optimized drug dose for skin treated with the fractional laser was 1/70-1/60 of the regular dose. The skin histology and drug absorption had recovered to a normal status within 2-3 days. Our findings provide the first report on risk assessment of excessive skin absorption after fractional laser resurfacing.

  5. Implication of new CEC recommendations for individual monitoring for external radiation doses to the skin and the extremities

    DEFF Research Database (Denmark)

    Christensen, P.; Julius, H.W.; Marshall, T.O.

    1991-01-01

    A drafting group consisting of the above authors has assisted the CEC in revising the CEC document Technical Recommendations for Monitoring the Exposure to Individuals to External Radiation, EUR 5287, published in 1975. The paper highlights sections of the revised version relating particularly...... to irradiation of the skin and the extremities and focusses on problems connected to exposure to weakly penetrating radiations. Concepts of individual monitoring for external radiation exposures to the skin of the whole body and to the extremities are discussed and guidance is given as regards dose quantities...

  6. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1987-01-01

    Dose-rate conversion factors have been calculated for external exposure of the skin from electrons emitted by sources that are deposited uniformly on the body surface. The dose-rate factors are obtained from electron scaled point kernels developed by Berger. The dose-rate factors are calculated at depths of 4, 8, and 40 mg cm-2 below the body surface as recommended by Whitton, and at a depth of 7 mg cm-2 as recommended in ICRP Publication 26 (ICRP77). The dependence of the dose-rate factors at selected depths on the energy of the emitted electrons is displayed. The dose-rate factors for selected radionuclides of potential importance in radiological assessments are tabulated

  7. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    International Nuclear Information System (INIS)

    Hughes, Michael F.; Edwards, Brenda C.

    2010-01-01

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skin and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using

  8. Histologic changes associated with talaporfin sodium-mediated photodynamic therapy in rat skin.

    Science.gov (United States)

    Moy, Wesley J; Yao, Jonathan; de Feraudy, Sébastien M; White, Sean M; Salvador, Jocelynda; Kelly, Kristen M; Choi, Bernard

    2017-10-01

    Alternative treatments are needed to achieve consistent and more complete port wine stain (PWS) removal, especially in darker skin types; photodynamic therapy (PDT) is a promising alternative treatment. To this end, we previously reported on Talaporfin Sodium (TS)-mediated PDT. It is essential to understand treatment tissue effects to design a protocol that will achieve selective vascular injury without ulceration and scarring. The objective of this work is to assess skin changes associated with TS-mediated PDT with clinically relevant treatment parameters. We performed TS (0.75 mg/kg)-mediated PDT (664 nm) on Sprague Dawley rats. Radiant exposures were varied between 15 and 100 J/cm 2 . We took skin biopsies from subjects at 9 hours following PDT. We assessed the degree and depth of vascular and surrounding tissue injury using histology and immunohistochemical staining. TS-mediated PDT at 0.75 mg/kg combined with 15 and 25 J/cm 2 light doses resulted in vascular injury with minimal epidermal damage. At light dose of 50 J/cm 2 , epidermal damage was noted with vascular injury. At light doses >50 J/cm 2 , both vascular and surrounding tissue injury were observed in the forms of vasculitis, extravasated red blood cells, and coagulative necrosis. Extensive coagulative necrosis involving deeper adnexal structures was observed for 75 and 100 J/cm 2 light doses. Observed depth of injury increased with increasing radiant exposure, although this relationship was not linear. TS-mediated PDT can cause selective vascular injury; however, at higher light doses, significant extra-vascular injury was observed. This information can be used to contribute to design of safe protocols to be used for treatment of cutaneous vascular lesions. Lasers Surg. Med. 49:767-772, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) polyphenols

    Science.gov (United States)

    Nobile, Vincenzo; Michelotti, Angela; Cestone, Enza; Caturla, Nuria; Castillo, Julián; Benavente-García, Obdulio; Pérez-Sánchez, Almudena; Micol, Vicente

    2016-01-01

    Background Plant polyphenols have been found to be effective in preventing ultraviolet radiation (UVR)-induced skin alterations. A dietary approach based of these compounds could be a safe and effective method to provide a continuous adjunctive photoprotection measure. In a previous study, a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) extracts has exhibited potential photoprotective effects both in skin cell model and in a human pilot trial. Objective We investigated the efficacy of a combination of rosemary (R. officinalis) and grapefruit (C. paradisi) in decreasing the individual susceptibility to UVR exposure (redness and lipoperoxides) and in improving skin wrinkledness and elasticity. Design A randomised, parallel group study was carried out on 90 subjects. Furthermore, a pilot, randomised, crossover study was carried out on five subjects. Female subjects having skin phototype from I to III and showing mild to moderate chrono- or photoageing clinical signs were enrolled in both studies. Skin redness (a* value of CIELab colour space) after UVB exposure to 1 minimal erythemal dose (MED) was assessed in the pilot study, while MED, lipoperoxides (malondialdehyde) skin content, wrinkle depth (image analysis), and skin elasticity (suction and elongation method) were measured in the main study. Results Treated subjects showed a decrease of the UVB- and UVA-induced skin alterations (decreased skin redness and lipoperoxides) and an improvement of skin wrinkledness and elasticity. No differences were found between the 100 and 250 mg extracts doses, indicating a plateau effect starting from 100 mg extracts dose. Some of the positive effects were noted as short as 2 weeks of product consumption. Conclusions The long-term oral intake of Nutroxsun™ can be considered to be a complementary nutrition strategy to avoid the negative effects of sun exposure. The putative mechanism for these effects is most likely to take place through the

  10. Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis and grapefruit (Citrus paradisi polyphenols

    Directory of Open Access Journals (Sweden)

    Vincenzo Nobile

    2016-07-01

    Full Text Available Background: Plant polyphenols have been found to be effective in preventing ultraviolet radiation (UVR-induced skin alterations. A dietary approach based of these compounds could be a safe and effective method to provide a continuous adjunctive photoprotection measure. In a previous study, a combination of rosemary (Rosmarinus officinalis and grapefruit (Citrus paradisi extracts has exhibited potential photoprotective effects both in skin cell model and in a human pilot trial. Objective: We investigated the efficacy of a combination of rosemary (R. officinalis and grapefruit (C. paradisi in decreasing the individual susceptibility to UVR exposure (redness and lipoperoxides and in improving skin wrinkledness and elasticity. Design: A randomised, parallel group study was carried out on 90 subjects. Furthermore, a pilot, randomised, crossover study was carried out on five subjects. Female subjects having skin phototype from I to III and showing mild to moderate chrono- or photoageing clinical signs were enrolled in both studies. Skin redness (a* value of CIELab colour space after UVB exposure to 1 minimal erythemal dose (MED was assessed in the pilot study, while MED, lipoperoxides (malondialdehyde skin content, wrinkle depth (image analysis, and skin elasticity (suction and elongation method were measured in the main study. Results: Treated subjects showed a decrease of the UVB- and UVA-induced skin alterations (decreased skin redness and lipoperoxides and an improvement of skin wrinkledness and elasticity. No differences were found between the 100 and 250 mg extracts doses, indicating a plateau effect starting from 100 mg extracts dose. Some of the positive effects were noted as short as 2 weeks of product consumption. Conclusions: The long-term oral intake of Nutroxsun™ can be considered to be a complementary nutrition strategy to avoid the negative effects of sun exposure. The putative mechanism for these effects is most likely to take place

  11. Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalisation of bleomycin in patients with solid malignancies: a phase 1, dose-escalation, first-in-man trial.

    Science.gov (United States)

    Sultan, Ahmed A; Jerjes, Waseem; Berg, Kristian; Høgset, Anders; Mosse, Charles A; Hamoudi, Rifat; Hamdoon, Zaid; Simeon, Celia; Carnell, Dawn; Forster, Martin; Hopper, Colin

    2016-09-01

    Photochemical internalisation, a novel minimally invasive treatment, has shown promising preclinical results in enhancing and site-directing the effect of anticancer drugs by illumination, which initiates localised chemotherapy release. We assessed the safety and tolerability of a newly developed photosensitiser, disulfonated tetraphenyl chlorin (TPCS2a), in mediating photochemical internalisation of bleomycin in patients with advanced and recurrent solid malignancies. In this phase 1, dose-escalation, first-in-man trial, we recruited patients (aged ≥18 to internalisation were either local, resulting from the local inflammatory process, or systemic, mostly as a result of the skin-photosensitising effect of TPCS2a. The most common grade 3 or worse adverse events were unexpected higher transient pain response (grade 3) localised to the treatment site recorded in nine patients, and respiratory failure (grade 4) noted in two patients. One dose-limiting toxicity was reported in the 1·0 mg/kg cohort (skin photosensitivity [grade 2]). Dose-limiting toxicities were reported in two of three patients at a TPCS2a dose of 1·5 mg/kg (skin photosensitivity [grade 3] and wound infection [grade 3]); thus, the maximum tolerated dose of TPCS2a was 1·0 mg/kg. Administration of TPCS2a was found to be safe and tolerable by all patients. No deaths related to photochemical internalisation treatment occurred. TPCS2a-mediated photochemical internalisation of bleomycin is safe and tolerable. We identified TPCS2a 0·25 mg/kg as the recommended treatment dose for future trials. PCI Biotech. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Acute skin reactions observed in fractionated proton irradiation

    International Nuclear Information System (INIS)

    Arimoto, Takuro; Maruhashi, Noboru; Takada, Yoshihisa; Hayakawa, Yoshinori; Inada, Tetsuo; Kitagawa, Toshio

    1989-01-01

    Between May 1985 and July 1987, 49 skin reactions of 43 patients treated by proton irradiation were observed at the Particle Radiation Medical Science Center (PARMS), the University of Tsukuba. Taking the peak skin score as an endpoint, the radiobiological effects [relative biological effectiveness (RBE) and time-dose relationship] of the proton beam in multi-fractionated treatments were estimated. Factors influencing the skin dose, such as the prescribed tumor dose, tumor site, and number of applied fields, were also analyzed. The following conclusions regarding acute skin reactions to the clinical use of proton irradiation were obtained: 1) the physical skin-sparing effect of proton irradiation in single-field irradiation, especially in superficial regions, is not large compared with that of high-energy photon irradiation; 2) multidirectional proton irradiation significantly reduced the skin dose and severity of acute reasons; 3) the radiobiological effects of the proton beam, RBE and the time factor, estimated in human skin in multi-fractional treatment were slightly smaller than those of X-rays, i.e., 0.92 and -0.25±0.09, respectively. (author)

  13. Dose-Reduced Trastuzumab Emtansine: Active and Safe in Acute Hepatic Dysfunction

    Directory of Open Access Journals (Sweden)

    Adam Sharp

    2015-02-01

    Full Text Available Breast cancer is the most common cancer in women worldwide. The majority of deaths attributed to breast cancer are a result of metastatic disease, and 30% of early breast cancers (EBC will develop distant disease. The 5-year survival of patients with metastatic disease is estimated at 23%. Breast cancer subtypes continue to be stratified histologically on oestrogen, progesterone and human epidermal growth factor-2 (HER2 receptor expression. HER2-positive breast cancers represent 25% of all breast cancer diagnoses. The therapies available for metastatic breast cancer (MBC are expanding, in particular within the field of HER2-positive disease, with the approval of trastuzumab, pertuzumab, lapatinib and trastuzumab emtansine (TDM-1. Recently, TDM-1 has been shown to improve progression-free survival in HER2 MBC when compared to capecitabine and lapatinib in clinical studies. Its main toxicities are deranged liver function tests and thrombocytopenia. There have also been cases of acute liver failure. Therefore, its use in acute hepatic dysfunction, to our knowledge, has been neither studied nor reported. We report a patient with progressive HER2-positive MBC who had previously responded to multiple HER2-targeted therapies that presented with acute hepatic dysfunction. She was treated with dose-reduced TDM-1 safely, with clear evidence of rapid biochemical, clinical and radiological response. This allowed dose escalation of TDM-1, and the patient maintains an ongoing response.

  14. The efficacy of Pistacia Terebinthus soap in the treatment of cetuximab-induced skin toxicity.

    Science.gov (United States)

    Tastekin, Didem; Tambas, Makbule; Kilic, Kemal; Erturk, Kayhan; Arslan, Deniz

    2014-12-01

    This open-labeled phase II, efficacy-finding study evaluated the efficiency and safety of Pistacia terebinthus soap in metastatic colorectal cancer patients who developed cetuximab induced skin toxicity. Patients who received cetuximab plus chemotherapy and developed Grade 2 or 3 skin toxicity were treated twice daily with a soap made of oil extracted from Pistacia terebinthus. During treatment, no topical or oral antibiotics, corticosteroids or other moisturizers were used. Patients were examined 1 week later and their photographs were taken. Fifteen mCRC patients who developed skin toxicity while receiving first-line CTX in combination with chemotherapy were included into the study. Eight patients were male and the median age was 58 (25-70). Sixty percent of the patients (n:9) had Grade 3 skin toxicity. Complete response rates in patients with Grade 2 and Grade 3 skin toxicities were 100 and 33%, respectively. In the remaining patients with Grade 3 toxicity the skin toxicity regressed to Grade 1. The objective response rate was 100%, and no delay, dose reduction or discontinuation of CTX treatment due to skin toxicity was necessary. Skin toxicity reoccurred in all patients when patients stopped administering the soap and therefore they used it throughout the cetuximab treatment. Pistacia terebinthus soap seemed to be used safely and effectively in the treatment of skin toxicity induced by Cetuximab.

  15. Segmented phantoms reconstruction for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Furnari, Laura; Reis, Gabriela S.

    2009-01-01

    There are several radio-sensitive skin diseases. Skin dosimetry is a difficult task to be properly performed, not only due to skin extension and small thickness, but also because it is usually submitted to high dose gradients. High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic computational anatomical models, which after being coupled to these codes, retrieve reliable dosimetric assessments. However, present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of current medical images, once its thickness stands below image resolution, i.e. pixel characteristic sizes are larger than skin thickness. This paper proposes a methodology of voxelized phantom reconstruction and segmentation, by subdividing their basic elements - voxels. It is done in order to better discriminate the skin by assigning more adequate value for skin thickness and its actual localization. Aiming at a more realistic skin modeling one is expected to get more accurate skin dose evaluations. This task is an important issue in many radiotherapy procedures. A particular interest lays in Total Skin Electron Therapy (TSET), which highlights the treatment of the whole body irradiation, a radiotherapy procedure under implementation in the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  16. Skin sparing mastectomy: Technique and suggested methods of reconstruction

    Directory of Open Access Journals (Sweden)

    Ahmed M. Farahat

    2014-09-01

    Conclusions: Skin Sparing mastectomy through a circum-areolar incision has proven to be a safe and feasible option for the management of breast cancer in Egyptian women, offering them adequate oncologic control and optimum cosmetic outcome through preservation of the skin envelope of the breast when ever indicated. Our patients can benefit from safe surgery and have good cosmetic outcomeby applying different reconstructive techniques.

  17. Ultrasound skin tightening.

    Science.gov (United States)

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Dose measurements in the treatment of mycosis fungoides with total skin irradiation using a 4 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Poli, M.E.R. [Hospital Real e Benemerita Sociedade Portuguesa de Beneficencia (Brazil); Todo, A.S.; Campos, L.L. [Instituto de Pesquisas Energeticas e Nucleares, CNEN/SP Travessa R, Sao Paulo (Brazil)

    2000-05-01

    The total skin irradiation (TSI) is one of the most efficient techniques in the treatment administered with curative intent of the mycosis fungoides. The cure may be obtained in 10% to 40% of cases. The original Stanford University technique, created in 1960, was applied in a 4.8 MeV linear accelerator, that provided 2.5 MeV electrons in the patient, by the use of 4 couple beams with the patient placed in front of the beam, 3 meters distant from the apparatus. In this work we describe a 4 MeV electrons beam treatment method. We intend to improve the uniformity of the dose in the patient, as well, to reduce the problems with the overlapping treatment fields, that occurs in conventional treatment that uses 1 meter of focus-skin distance, and the treatment time to the patient. Only one modification was done in the apparatus: the dose rate for this treatment was doubled. The patient is placed on a rotative base and he assumes successively 6 positions: stand up and perpendicular to the beam, distant 2.83 meters from the gantry, with 60 degrees of interval between the rotations. In each position, the patient receives a couple of beams (the beam angulation is 19.5 degrees above the transversal axis in the middle of the patient and 19.5 degrees below it). The dosimetric data obtained were compared to the international protocols (AAPM). The delivered doses in the patient were measured with thermoluminescent dosimeters placed on skin surface and with Kodak XV-2 films placed between different slabs of an anthropomorphic phantom. The dose distribution in the phantom shows a good uniformity, in all thickness of interest, so it is possible to use this technique in the treatment of the mycosis fungoides as well Kaposi's sarcoma. (author)

  19. The local skin dose conversion coefficients of electrons, protons and alpha particles calculated using the Geant4 code.

    Science.gov (United States)

    Zhang, Bintuan; Dang, Bingrong; Wang, Zhuanzi; Wei, Wei; Li, Wenjian

    2013-10-01

    The skin tissue-equivalent slab reported in the International Commission on Radiological Protection (ICRP) Publication 116 to calculate the localised skin dose conversion coefficients (LSDCCs) was adopted into the Monte Carlo transport code Geant4. The Geant4 code was then utilised for computation of LSDCCs due to a circular parallel beam of monoenergetic electrons, protons and alpha particles electrons and alpha particles are found to be in good agreement with the results using the MCNPX code of ICRP 116 data. The present work thus validates the LSDCC values for both electrons and alpha particles using the Geant4 code.

  20. Physical requirements for measurement of radiation dose and their relationship to personnel dose meter design and use

    International Nuclear Information System (INIS)

    Chabot, G.E. Jr.; Jimenez, M.A.; Skrable, K.W.

    1978-01-01

    This paper stems from the concerns of the authors with both the design of current personnel dose meters and the interpretation of dose information from them in light of the actual physical requirements to measure dose. These concerns have been reinforced and extended following a comparative study of the responses of particular TLD and film systems and as the result of a recent national survey on personnel dosimetry conducted by the authors. Among the major points discussed are the systems available for penetrating and shallow dose assessment, dose meter calibration, the measurement and interpretation of skin dose, and the deficiencies of neutron albedo dose meters for routine personnel use. Calibration considerations address the questions of whether or not a phantom should be used and the difference in interpretation of responses with and without a phantom; the relationship between calculated and measured doses; and electronic equilibrium considerations in the measurement of photon doses. Matters of importance in relation to skin dose measurement include techniques in use to interpret skin dose from dose meter response; the appropriateness of evaluation of the surface dose to the live skin layer versus the average dose to the live skin layer and the limitations and requirements on dose meter design with respect to the dose being evaluated; and the significance of dose meter response in relationship to currently used beta calibration standards. Regarding the use of TLD albedo type neutron dose meters currently available, considerations are extended to the strong energy spectral dependence of the dose meter response and the possibility of making significant over or underestimations of neutron dose equivalent, depending on the calibration techniques used and the spectral quality encountered. (author)

  1. Direct measurement of a patient's entrance skin dose during pediatric cardiac catheterization

    International Nuclear Information System (INIS)

    Sun, Lue; Mizuno, Yusuke; Goto, Takahisa; Iwamoto, Mari; Koguchi, Yasuhiro; Miyamoto, Yuka; Tsuboi, Koji; Chida, Koichi; Moritake, Takashi

    2014-01-01

    Children with complex congenital heart diseases often require repeated cardiac catheterization; however, children are more radiosensitive than adults. Therefore, radiation-induced carcinogenesis is an important consideration for children who undergo those procedures. We measured entrance skin doses (ESDs) using radio-photoluminescence dosimeter (RPLD) chips during cardiac catheterization for 15 pediatric patients (median age, 1.92 years; males, n = 9; females, n = 6) with cardiac diseases. Four RPLD chips were placed on the patient's posterior and right side of the chest. Correlations between maximum ESD and dose-area products (DAP), total number of frames, total fluoroscopic time, number of cine runs, cumulative dose at the interventional reference point (IRP), body weight, chest thickness, and height were analyzed. The maximum ESD was 80 ± 59 (mean ± standard deviation) mGy. Maximum ESD closely correlated with both DAP (r = 0.78) and cumulative dose at the IRP (r = 0.82). Maximum ESD for coiling and ballooning tended to be higher than that for ablation, balloon atrial septostomy, and diagnostic procedures. In conclusion, we directly measured ESD using RPLD chips and found that maximum ESD could be estimated in real-time using angiographic parameters, such as DAP and cumulative dose at the IRP. Children requiring repeated catheterizations would be exposed to high radiation levels throughout their lives, although treatment influences radiation dose. Therefore, the radiation dose associated with individual cardiac catheterizations should be analyzed, and the effects of radiation throughout the lives of such patients should be followed. (author)

  2. Optimization on the dose versus noise in the image on protocols for computed tomography of pediatric head

    International Nuclear Information System (INIS)

    Saint'Yves, Thalis L.A.; Travassos, Paulo Cesar B.; Goncalves, Elicardo A.S.; Mecca A, Fernando; Silveira, Thiago B.

    2010-01-01

    This article aims to establish protocols optimized for computed tomography of pediatric skull, to the Picker Q2000 tomography of the Instituto Nacional de Cancer, through the analysis of dose x noise on the image with the variation of values of mAs and kVp. We used a water phantom to measure the noise, a pencil type ionization chamber to measure the dose in the air and the Alderson Randon phantom for check the quality of the image. We found values of mAs and kVp that reduce the skin dose of the original protocol used in 35.9%, maintaining the same image quality at a safe diagnosis. (author)

  3. Low-Dose Total Skin Electron Beam Therapy as a Debulking Agent for Cutaneous T-Cell Lymphoma: An open-label prospective phase II study

    DEFF Research Database (Denmark)

    Kamstrup, M R; Lindahl, Lise Maria; Gniadecki, R

    2012-01-01

    Background: Total skin electron beam therapy (TSEBT) is a powerful treatment for cutaneous T-cell lymphomas (CTCL). Based on the occurrence of relapses with low radiation doses, doses of 30-36 Gy are commonly used but most patients still eventually relapse and repeat treatment courses are limited...... due to the cumulative toxicity. Complete response rates are about 60-90% for T2-4 stages with a 5-year relapse-free survival of 10-25% for stages IB-III. Objectives: To evaluate prospectively the efficacy of low-dose TSEBT (10 Gy) in terms of complete cutaneous response rate, overall response rate...... and response duration in CTCL. Methods: Ten patients with stage IB-IV mycosis fungoides (MF) were treated in an open-label manner with 4 fractions of 1 Gy/week TSEB to a total skin dose of 10 Gy. Treatment responses were assessed at 1 and 3 months after treatment and subsequently at least every 6 months...

  4. Scan Quality and Entrance Skin Dose in Thoracic CT: A Comparison between Bismuth Breast Shield and Posteriorly Centered Partial CT Scans

    International Nuclear Information System (INIS)

    Tappouni, Rafel; Mathers, Bradley

    2012-01-01

    Objectives. To compare the effectiveness of the bismuth breast shield and partial CT scan in reducing entrance skin dose and to evaluate the effect of the breast shield on image quality (IQ). Methods. Nanodots were placed on an adult anthropomorphic phantom. Standard chest CT, CT with shield, and partial CT were performed. Nanodot readings and effective doses were recorded. 50 patients with chest CTs obtained both with and without breast shields were reviewed. IQ was evaluated by two radiologists and by measuring Hounsfield units (HUs) and standard deviation (SD) of HU in anterior subcutaneous region. Results. Breast shield and the partial CT scans reduced radiation to the anterior chest by 38% and 16%, respectively. Partial CT increased dose to the posterior chest by 37% and effective dose by 8%. Change in IQ in shield CT was observed in the anterior chest wall. Significant change in IQ was observed in 5/50 cases. The shield caused an increase of 20 HU (P = 0.021) and a 1.86 reduction in SD of HU (P = 0.027) in the anterior compared to posterior subcutaneous regions. Summary. Bismuth breast shield is more effective than the partial CT in reducing entrance skin dose while maintaining image quality

  5. In vivo percutaneous absorption of boric acid, borax, and disodium octaborate tetrahydrate in humans compared to in vitro absorption in human skin from infinite and finite doses.

    Science.gov (United States)

    Wester, R C; Hui, X; Hartway, T; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-09-01

    Literature from the first half of this century report concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10%, in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percentage dose, with flux and permeability constant (Kp) calculated at 0.009 microgram/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percentage of dose, with flux and Kp calculated at 0.009 microgram/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percentage, with flux and Kp calculated at 0.01 microgram/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. In vitro human skin percentage of doses of boric acid absorbed were 1.2 for a 0.05% solution, 0.28 for a 0.5% solution, and 0.70 for a 5.0% solution. These absorption amounts translated into flux values of, respectively, 0.25, 0.58, and 14.58 micrograms/cm2/h and permeability constants (Kp) of 5.0 x 10(-4), 1.2 x 10(-4), and 2.9 x 10(-4) cm/h for the 0.05, 0.5, and 5.0% solutions. The above in vitro doses were at infinite, 1000 microliters/cm2 volume. At 2 microliters/cm2 (the in vivo dosing volume), flux decreased some

  6. Electrocautery skin incision for neurosurgery procedures--technical note.

    Science.gov (United States)

    Nitta, Naoki; Fukami, Tadateru; Nozaki, Kazuhiko

    2011-01-01

    The reluctance to incise skin with electrocautery is partly attributable to concerns about excessive scarring and poor wound healing. However, recently no difference was reported in wound complications between the cold scalpel and electrocautery scalpel. We assessed the safety and efficacy of electrocautery skin incision in 22 scalp incisions, including 4 cases of reoperation. Electrocautery skin incisions were created using a sharp needle electrode. The generator unit was set on cutting mode, with power of 6 W and 330 kHz sinusoid waveform. Subcutaneous dissections also used the sharp needle electrode, set on coagulating mode, with power of 10 W and 1 MHz pulse-modulated waveform. Galea incisions used a standard blade tip, set on coagulating mode, with power of 20 W and 1 MHz pulse-modulated waveform. Skin incision with the sharp needle electrode caused no charring of the wound. Little bleeding or oozing were observed and skin clips were not necessary. No wound complication such as necrosis or infection occurred. Electrocautery skin incisions for re-operations were also performed safely without complications. Electrocautery skin incision is sufficiently safe procedure not only for first operation but also for re-operation. Electrocautery skin incision is efficacious, especially for extended operation times, because of little blood loss from the edges of skin incision and possible avoidance of skin edge necrosis or alopecia caused by skin clips.

  7. Radiation doses in interventional neuroradiology

    International Nuclear Information System (INIS)

    Theodorakou, C.; Butler, P.; Horrocks, J.A.

    2001-01-01

    Patient radiation doses during interventional radiology (IR) procedures may reach the thresholds for radiation-induced skin and eye lens injuries. This study investigates the radiation doses received by patients undergoing cerebral embolization. Measurements were conducted using thermoluminescent dosimeters. Radiotherapy verification films were used in order to visualise the radiation field. For each procedure the fluoroscopic and digital dose-area product, the fluoroscopic time, the total number of acquired images and entrance-skin dose calculated by the angiographic unit were recorded. In this paper, the skin, eye and thyroid glands doses on a sample of patients are presented. From a preliminary study of 13 patients having undergone cerebral embolization, it was deduced that six of them have received a dose above 1 Gy. Detailed dose data from patients undergoing IR procedures will be collected in the future with the aim of developing a model to allow estimation of the dose prior to the procedure as well as to look at techniques of dose reduction. (author)

  8. Problems related to the critical depth of skin

    International Nuclear Information System (INIS)

    Roesch, W.C.

    1986-01-01

    Concern over beta particle dosimetry in the United States led to a number of workshops and symposia at which the National Council on Radiation Protection and Measurements (NCRP) was encouraged to review its recommendations about beta particles. The NCRP responded by forming Scientific Committee No. 80 on Radiobiology of the Skin to start the review. It was directed to prepare recommendations concerning: (1) the depth(s) in the skin at which dose measurements shall be made, (2) the range of depths over which the dose can be averaged, (3) the area of the skin over which the dose can be averaged, and (4) what measurements are required in protecting the whole skin. The recommendations are to apply to all radiations, not just to beta particles. How the measurements are to be made will be left to a later committee. The committee is not required to recommend permissible doses for the skin. The committee has met five times so far to examine the information available on the stochastic and non-stochastic responses of the skin to both ionising and non-ionising radiations. (author)

  9. Problems related to the critical depth of skin

    International Nuclear Information System (INIS)

    Roesch, W.C.

    1985-09-01

    Concern over beta particle dosimetry in the United States led to a number of workshops and symposia at which our National Council on Radiation Protection and Measurements (NCRP) was encouraged to review its recommendations about beta particles. The NCRP responded by forming Scientific Committee No. 80 on Radiobiology of the Skin to start the review. It was directed to prepare recommendations concerning: (1) the depth(s) in the skin at which dose measurements shall be made; (2) the range of depths over which the dose can be averaged; (3) the area of the skin over which the dose can be averaged; and (4) what measurements are required in protecting the whole skin. The recommendations are to apply to all radiations, not just to beta particles. How the measurements are to be made will be left to a later committee. The committee is not required to recommend permissible doses for the skin. The committee has met five times so far to examine the information available on the stochastic and nonstochastic responses of the skin to both ionizing and non-ionizing radiations

  10. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics.

    Science.gov (United States)

    Souza-Barros, Leanna; Dhaidan, Ghaith; Maunula, Mikko; Solomon, Vaeda; Gabison, Sharon; Lilge, Lothar; Nussbaum, Ethne L

    2018-04-01

    To examine the role of skin color and tissue thickness on transmittance, reflectance, and skin heating using red and infrared laser light. Forty volunteers were measured for skin color and skin-fold thickness at a standardized site near the elbow. Transmittance, reflectance and skin temperature were recorded for energy doses of 2, 6, 9, and 12 Joules using 635 nm (36 mW) and 808 nm (40 mW) wavelength laser diodes with irradiances within American National Standards Institute safety guidelines (4.88 mm diameter, 0.192 W/cm 2 and 4.88 mm diameter, 0.214 W/cm 2 , respectively). The key factors affecting reflectance to an important degree were skin color and wavelength. However, the skin color effects were different for the two wavelengths: reflectance decreased for darker skin with a greater decrease for red light than near infrared light. Transmittance was greater using 808 nm compared with 635 nm. However, the effect was partly lost when the skin was dark rather than light, and was increasingly lost as tissue thickness increased. Dose had an increasing effect on temperature (0.7-1.6°C across the 6, 9, and 12 J doses); any effects of wavelength, skin color, and tissue thickness were insignificant compared to dose effects. Subjects themselves were not aware of the increased skin temperature. Transmittance and reflectance changes as a function of energy were very small and likely of no clinical significance. Absorption did not change with higher energy doses and increasing temperature. Skin color and skin thickness affect transmittance and reflectance of laser light and must be accounted for when selecting energy dose to ensure therapeutic effectiveness at the target tissue. Skin heating appears not to be a concern when using 635 and 808 nm lasers at energy doses of up to 12 J and irradiance within American National Standards Institute standards. Photobiomodulation therapy should never exceed the American National Standards Institute

  11. Safety of long-term subcutaneous free flap skin banking after skin-sparing mastectomy.

    Science.gov (United States)

    Verstappen, Ralph; Djedovic, Gabriel; Morandi, Evi Maria; Heiser, Dietmar; Rieger, Ulrich Michael; Bauer, Thomas

    2018-03-01

    A persistent problem in autologous breast reconstruction in skin-sparing mastectomies is skin restoration after skin necrosis or secondary oncological resection. As a solution to facilitate reconstruction, skin banking of free-flap skin has been proposed in cases where the overlying skin envelope must be resected, as this technique spares the patient an additional donor site. Herein, we present the largest series to date in which this method was used. We investigated its safety and the possibility of skin banking for prolonged periods of time. All skin-sparing mastectomies and immediate autologous breast reconstructions from December 2009 until June 2013 at our institution were analysed. We identified 31 patients who underwent 33 free flap reconstructions in which skin banking was performed. Our median skin banking period was 7 days, with a maximum duration of 171 days. In 22.5% of cases, the banked skin was used to reconstruct overlying skin defects, and in 9.6% of cases to reconstruct the nipple-areolar complex. Microbiological and histological investigations of the banked skin revealed neither clinical infections nor malignancies. In situ skin banking, even for prolonged periods of time, is a safe and cost-effective method to ensure that skin defects due to necrosis or secondary oncological resection can be easily reconstructed.

  12. Investigation of pion-treated human skin nodules for therapeutic gain

    International Nuclear Information System (INIS)

    Kligerman, M.M.; Sala, J.M.; Wilson, S.; Yuhas, J.M.

    1978-01-01

    A patient with multiple metastatic tumor nodules in the skin, from a primary breast carcinoma, was treated with graded doses of pions and x rays to establish skin tolerance. She was followed up for 346 days, permitting observation of time to regrowth of the tumor nodules. All 16 of these had disappeared after treatment, without significant correlation with type of radiation or dose, or with nodule size. However, time to regrowth depended both on the type and the dose of radiation. Earlier, relative biological effectiveness (RBE), was established at 1.42 for acute skin injury. Using this RBE to normalize doses of pions and x rays causing equivalent acute skin injury, and plotting those doses vs time to regrowth of tumor nodules, yielded a therapeutic gain (37.5%) in favor of pions. No late skin or subcutaneous tissue changes were seen, and no qualitative difference between pions and x rays in late skin effects was observed

  13. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  14. Estimating pediatric entrance skin dose from digital radiography examination using DICOM metadata: A quality assurance tool

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L., E-mail: samuel.brady@stjude.org; Kaufman, R. A., E-mail: robert.kaufman@stjude.org [Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 (United States)

    2015-05-15

    Purpose: To develop an automated methodology to estimate patient examination dose in digital radiography (DR) imaging using DICOM metadata as a quality assurance (QA) tool. Methods: Patient examination and demographical information were gathered from metadata analysis of DICOM header data. The x-ray system radiation output (i.e., air KERMA) was characterized for all filter combinations used for patient examinations. Average patient thicknesses were measured for head, chest, abdomen, knees, and hands using volumetric images from CT. Backscatter factors (BSFs) were calculated from examination kVp. Patient entrance skin air KERMA (ESAK) was calculated by (1) looking up examination technique factors taken from DICOM header metadata (i.e., kVp and mA s) to derive an air KERMA (k{sub air}) value based on an x-ray characteristic radiation output curve; (2) scaling k{sub air} with a BSF value; and (3) correcting k{sub air} for patient thickness. Finally, patient entrance skin dose (ESD) was calculated by multiplying a mass–energy attenuation coefficient ratio by ESAK. Patient ESD calculations were computed for common DR examinations at our institution: dual view chest, anteroposterior (AP) abdomen, lateral (LAT) skull, dual view knee, and bone age (left hand only) examinations. Results: ESD was calculated for a total of 3794 patients; mean age was 11 ± 8 yr (range: 2 months to 55 yr). The mean ESD range was 0.19–0.42 mGy for dual view chest, 0.28–1.2 mGy for AP abdomen, 0.18–0.65 mGy for LAT view skull, 0.15–0.63 mGy for dual view knee, and 0.10–0.12 mGy for bone age (left hand) examinations. Conclusions: A methodology combining DICOM header metadata and basic x-ray tube characterization curves was demonstrated. In a regulatory era where patient dose reporting has become increasingly in demand, this methodology will allow a knowledgeable user the means to establish an automatable dose reporting program for DR and perform patient dose related QA testing for

  15. Real significance of skin contamination is

    International Nuclear Information System (INIS)

    Sudmann, R.H.

    1983-01-01

    For five decades, health physicists have discussed the thickness, area, significance of radioactive contamination and the exposures to various portions of the skin. Concern about instances of skin contamination extend beyond the resultant organ dose simply because it is a recognizable and quantifiable event. As such, there is a tendency for management and regulatory agencies to use it as a trend indicator. The final result is a score card similar to the list of OSHA reportable accidents. In fact, the skin contamination incidence rate has a somewhat different meaning to the health physicist, to the manager, and to the regulator. The question must then be asked, What is the true significance of skin contamination, Is it the resultant skin dose, Is it an indicator of loss of control, Is it both or neither. In order to answer these questions, Rockwell Hanford Operations began analysis of the previous five years records of skin contamination cases. Since by policy each incidence of skin contamination is documented, a large percentage of the 425 records analyzed were of low level activity (less than 100 dpm/cm 2 ) on the extremeties, primarily hands and fingers. Most of these cases were readily decontaminated with soap and water. Individual elements studied included: detection/monitoring methods and limits; impact of type of operation on the incidence rate; causes of and methods for reduction of the incidence rate; reporting and documentation; and dose assessment. Results of the study indicate that skin contamination rarely presents a beta dose problem because it is normally highly localized on the extremeties. Only in unusual cases does it represent a potential for internal deposition. Thus, the real importance of skin contamination incidence is as an indicator of deteriorating conditions and should be reviewed by health physicists, managers and regulators as such

  16. Characterization of a cable-free system based on p-type MOSFET detectors for "in vivo" entrance skin dose measurements in interventional radiology.

    Science.gov (United States)

    Falco, Maria Daniela; D'Andrea, Marco; Strigari, Lidia; D'Alessio, Daniela; Quagliani, Francesco; Santoni, Riccardo; Bosco, Alessia Lo

    2012-08-01

    During radiological interventional procedures (RIP) the skin of a patient under examination may undergo a prolonged x-ray exposure, receiving a dose as high as 5 Gy in a single session. This paper describes the use of the OneDose(TM) cable-free system based on p-type MOSFET detectors to determine the entrance skin dose (ESD) at selected points during RIP. At first, some dosimetric characteristics of the detector, such as reproducibility, linearity, and fading, have been investigated using a C-arc as a source of radiation. The reference setting (RS) was: 80 kV energy, 40 cm × 40 cm field of view (FOV), current-time product of 50 mAs and source to skin distance (SSD) of 50 cm. A calibrated PMX III solid state detector was used as the reference detector and Gafchromic(®) films have been used as an independent dosimetric system to test the entire procedure. A calibration factor for the RS and correction factors as functions of tube voltage and FOV size have been determined. Reproducibility ranged from 4% at low doses (around 10 cGy as measured by the reference detector) to about 1% for high doses (around 2 Gy). The system response was found to be linear with respect to both dose measured with the PMX III and tube voltage. The fading test has shown that the maximum deviation from the optimal reading conditions (3 min after a single irradiation) was 9.1% corresponding to four irradiations in one hour read 3 min after the last exposure. The calibration factor in the RS has shown that the system response at the kV energy range is about four times larger than in the MV energy range. A fifth order and fourth order polynomial functions were found to provide correction factors for tube voltage and FOV size, respectively, in measurement settings different than the RS. ESDs measured with the system after applying the proper correction factors agreed within one standard deviation (SD) with the corresponding ESDs measured with the reference detector. The ESDs measured with

  17. Bolus effect to reduce skin dose of the caontralateral breast during breast cancer radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Won, Young Jin [Dept. of Radiation Oncology, InJe University Ilsan Paik Hospital, Goyang (Korea, Republic of); Kim, Jong Won; Kim, Jung Hoon [Dept. of Radiology, Radiation Oncology, KonYang University Hospital, Daejeon (Korea, Republic of)

    2017-06-15

    The aim of this study was to evaluate the dose comparison using Radon phantom with 5 mm and 10 mm tissue equivalent materials, FIF, Wedge(15, 30 angle) and IMRT, to reduce the skin dose of the contralateral breast during breast cancer radiation therapy(Total dose: 50.4Gy). The dose was measured for each treatment plan by attaching to the 8 point of the contralateral breast of the treated region using a optical-stimulated luminance dosimeter(OSLD) as a comparative dose evaluation method. Of the OSLD used in the study, 10 were used with reproducibility within 3%. As a result, the average reduction rates of 5 mm and 10 mm in the FIF treatment plan were 37.23 cGy and 41.77 cGy, respectively, and the average reduction rates in the treatment plan using Wedge 15 degrees were 70.69 cGy and 87.57 cGy, respectively. The IMRT showed a reduction of 67.37 cGy and 83.17 cGy, respectively. The results of using bolus showed that as the thickness of the bolus increased in all treatments, the dose reduction increased. We concluded that mastectomy as well as general radiotherapy for breast cancer would be very effective for patients who are more likely to be exposed to scattered radiation due to a more demanding or complex treatment plan.

  18. SKIN RADIATION IN PANORAMIC

    Directory of Open Access Journals (Sweden)

    Herry Irawan

    2015-06-01

    Full Text Available Dental panoramic radiograph in Indonesia has been widely used. Modern diagnostic imaging equipment with minimum radiation is still very limited. One of the conditions in nuclear safety law, UU 10/1997, is an optimization of all radiation sources with DRL through skin dose measurements. In Indonesia, the national DRL has not been established yet, and there were no reports on the study of panoramic skin dose in Indonesia. The aim of this preliminary study was to obtain a panoramic skin dose radiation as reference to establish DRL in Indonesia. Panoramic radiographs of sixteen female and fifteen male patients, aged 4 – 48 years, were taken using the standard conventional method, with TLD chips attached in location groups. The chips were then read with the detector and integrator of BATAN, in high and low temperature condition at the same time. It was revealed that behind the right and left ear were the regions with the highest radiation dose received, followed by the back of the neck, left jaw, right jaw, and chin. The result of this study has shown the importance of DRL in Indonesia since the use of modern diagnostic imaging equipement that limits radiation dose to the minimum level is still very limited.

  19. What dose of tranexamic acid is most effective and safe for adult patients undergoing cardiac surgery?

    Science.gov (United States)

    Hodgson, Sam; Larvin, Joseph T; Dearman, Charles

    2015-09-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: what dose of tranexamic acid is most effective and safe for adult patients undergoing cardiac surgery? Altogether 586 papers were found using the reported search, of which 12 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Current evidence shows clinical benefit of using high-dose tranexamic acid (>80 mg/kg total dose) as opposed to low-dose tranexamic acid (tranexamic acid lose less blood postoperatively than patients receiving low-dose tranexamic acid (590 vs 820 ml, P = 0.01). Patients receiving high-dose tranexamic acid also require fewer units of blood product transfusion (2.5 units vs 4.1 units; P = 0.02) and are less likely to undergo repeat surgery to achieve haemostasis. This effect is larger in those who are at high risk of bleeding. Several prospective studies comparing doses found no difference in clinical outcomes between high- and low-dose regimens, but excluded patients at high risk of bleeding. However, data from numerous observational studies demonstrate that tranexamic acid use is associated with an increased risk of postoperative seizure; one analysis showed tranexamic acid use to be a very strong independent predictor (odds ratio = 14.3, P tranexamic acid. We conclude that, in general, patients with a high risk of bleeding should receive high-dose tranexamic acid, while those at low risk of bleeding should receive low-dose tranexamic acid with consideration given to potential dose-related seizure risk. We recommend the regimens of high-dose (30 mg kg(-1) bolus + 16 mg kg(-1) h(-1) + 2 mg kg(-1) priming) and low-dose (10 mg kg(-1) bolus + 1 mg kg(-1) h(-1) + 1 mg kg(-1) priming) tranexamic acid, as these are well established in terms of safety profile and have the

  20. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    Science.gov (United States)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  1. SU-E-T-232: Custom High-Dose-Rate Brachytherapy Surface Mold Applicators: The Importance Source to Skin Distance

    International Nuclear Information System (INIS)

    Park, S; Demanes, J; Kamrava, M

    2015-01-01

    Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour the target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity

  2. A methodological approach to a realistic evaluation of skin absorbed doses during manipulation of radioactive sources by means of GAMOS Monte Carlo simulations

    Science.gov (United States)

    Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio

    2018-05-01

    The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.

  3. Skin Pigmentation Kinetics after Exposure to Ultraviolet A

    DEFF Research Database (Denmark)

    Ravnbak, M.H.; Philipsen, P.A.; Wiegell, S.R.

    2009-01-01

    Multiple exposures to ultraviolet radiation (UVR) are the norm in nature and phototherapy. However, studies of the kinetics of pigmentation following UVA exposure have included only fair-skinned persons. The aim of this study was to investigate steady-state pigmentation and fading in 12 Scandinav......Multiple exposures to ultraviolet radiation (UVR) are the norm in nature and phototherapy. However, studies of the kinetics of pigmentation following UVA exposure have included only fair-skinned persons. The aim of this study was to investigate steady-state pigmentation and fading in 12...... Scandinavians and 12 Indians/Pakistanis after 6 and 12 exposures on the back using broadband UVA and UVA1 with equal sub-minimal melanogenic doses (individually predetermined). Pigmentation was measured by skin reflectance at 555 and 660 urn. The UV dose to minimal pigmentation was higher in dark......-skinned persons after a single broadband UVA exposure, but independent of pigmentation/skin type after single and multiple UVA1 exposures. To elicit minimal melanogenic doses after 6 and 12 exposures, every dose is lowered by a factor of 2 and 3, respectively, but the cumulative dose increases three- and four...

  4. Safety of long-term subcutaneous free flap skin banking after skin-sparing mastectomy

    Directory of Open Access Journals (Sweden)

    Ralph Verstappen

    2018-03-01

    Full Text Available Background A persistent problem in autologous breast reconstruction in skin-sparing mastectomies is skin restoration after skin necrosis or secondary oncological resection. As a solution to facilitate reconstruction, skin banking of free-flap skin has been proposed in cases where the overlying skin envelope must be resected, as this technique spares the patient an additional donor site. Herein, we present the largest series to date in which this method was used. We investigated its safety and the possibility of skin banking for prolonged periods of time. Methods All skin-sparing mastectomies and immediate autologous breast reconstructions from December 2009 until June 2013 at our institution were analysed. Results We identified 31 patients who underwent 33 free flap reconstructions in which skin banking was performed. Our median skin banking period was 7 days, with a maximum duration of 171 days. In 22.5% of cases, the banked skin was used to reconstruct overlying skin defects, and in 9.6% of cases to reconstruct the nipple-areolar complex. Microbiological and histological investigations of the banked skin revealed neither clinical infections nor malignancies. Conclusions In situ skin banking, even for prolonged periods of time, is a safe and cost-effective method to ensure that skin defects due to necrosis or secondary oncological resection can be easily reconstructed.

  5. Skin damage probabilities using fixation materials in high-energy photon beams

    International Nuclear Information System (INIS)

    Carl, J.; Vestergaard, A.

    2000-01-01

    Patient fixation, such as thermoplastic masks, carbon-fibre support plates and polystyrene bead vacuum cradles, is used to reproduce patient positioning in radiotherapy. Consequently low-density materials may be introduced in high-energy photon beams. The aim of the this study was to measure the increase in skin dose when low-density materials are present and calculate the radiobiological consequences in terms of probabilities of early and late skin damage. An experimental thin-windowed plane-parallel ion chamber was used. Skin doses were measured using various overlaying low-density fixation materials. A fixed geometry of a 10 x 10 cm field, a SSD = 100 cm and photon energies of 4, 6 and 10 MV on Varian Clinac 2100C accelerators were used for all measurements. Radiobiological consequences of introducing these materials into the high-energy photon beams were evaluated in terms of early and late damage of the skin based on the measured surface doses and the LQ-model. The experimental ion chamber save results consistent with other studies. A relationship between skin dose and material thickness in mg/cm 2 was established and used to calculate skin doses in scenarios assuming radiotherapy treatment with opposed fields. Conventional radiotherapy may apply mid-point doses up to 60-66 Gy in daily 2-Gy fractions opposed fields. Using thermoplastic fixation and high-energy photons as low as 4 MV do increase the dose to the skin considerably. However, using thermoplastic materials with thickness less than 100 mg/cm 2 skin doses are comparable with those produced by variation in source to skin distance, field size or blocking trays within clinical treatment set-ups. The use of polystyrene cradles and carbon-fibre materials with thickness less than 100 mg/cm 2 should be avoided at 4 MV at doses above 54-60 Gy. (author)

  6. Some thoughts on tolerance, dose, and fractionation in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gahbauer, R.; Goodman, J.; Blue, T.

    1988-01-01

    Unique to boron neutron capture therapy, the tolerance very strongly depends on the boron concentration in normal brain, skin and blood. If one first considers the ideal situation of a 2 KeV beam and a compound clearing from normal tissues and blood, the tolerance dose to epithermal beams relates to the maximum tolerated capture gamma dose and capture high LET dose, H (n,gamma)D and N(n,p) 14 C. The authors can relate this gamma and high LET dose to known clinical experience. Assuming gamma and high LET dose ratios as given by Fairchild and Bond, one may first choose a clearly safe high LET whole brain dose and calculate the unavoidably resulting gamma dose. To a first approximation 500 cGy of high LET dose results in 3,000 cGy gamma dose. One can speculate that this approximates the tolerance of whole brain to the 2 KeV beam with no contributing boron dose if the radiation is fractionated. It would clearly be beyond tolerance in a single fraction where most therapists would be uncomfortable to deliver even one third of the above doses

  7. Skin cancer in patients with chronic radiation dermatitis

    International Nuclear Information System (INIS)

    Davis, M.M.; Hanke, C.W.; Zollinger, T.W.; Montebello, J.F.; Hornback, N.B.; Norins, A.L.

    1989-01-01

    The cases of 76 patients with chronic radiation dermatitis resulting from low-dose ionizing radiation for benign disease were reviewed retrospectively for risk factors leading to the development of neoplasia. The patients were studied with respect to original hair color, eye color, sun reactive skin type, benign disease treated, area treated, age at treatment, and age at development of first skin cancer. Analysis of data showed 37% of patients had sun-reactive skin type I, 27% had type II, and 36% had type III. Types IV through VI were not represented. There appeared to be an overrepresentation of types I and II. Increased melanin pigmentation may therefore be either directly or indirectly protective against the development of skin cancers in patients who have received low-dose superficial ionizing radiation for benign disease. The sun-reactive skin type of patients with chronic radiation dermatitis may be used as a predictor of skin cancer risk when the total dose of ionizing radiation is not known

  8. A New Kind of Biomaterials-Bullfrog Skin Collagen

    Institute of Scientific and Technical Information of China (English)

    He LI; Bai Ling LIU; Hua Lin CHEN; Li Zhen GAO

    2003-01-01

    Pepsin-soluble collagen was prepared from bullfrog skin and partially characterized. This study revealed interesting differences, such as molecular weight, amino acid composition, denaturation temperature (Td), in the frog skin collagen when compared to the known vertebrate collagens. This study gives hints that bullfrog skin can be a potential, safe alternative source of collagen from cattle for use in various fields.

  9. Comparison of skin responses from macroscopic and microscopic UV challenges

    Science.gov (United States)

    Seo, InSeok; Bargo, Paulo R.; Chu, Melissa; Ruvolo, Eduardo; Kollias, Nikiforos

    2011-03-01

    The minimal erythema dose induced by solar-simulated radiation is a useful measure of UV sensitivity of skin. Most skin phototests have been conducted by projecting a flat field of UV radiation onto the skin in an area greater than 15 cm × 15 cm with an increment of radiation doses. In this study, we investigated the responses of human skin to solar-simulated radiation of different field sizes. Twelve human subjects of skin phototype I-IV were exposed to solar-simulated radiation (SSR) on their upper inner arm or on their lower back with a series of doses in increments of 20% in order to determine the threshold dose to induce a minimal perceptible erythema response (MED). Each dose was delivered with a liquid light guide (8 mm diameter on the back or 6 mm on the upper inner arm) and with quartz optical fibers of 200 μm diameter. The resulting skin responses were evaluated visually and investigated with a reflectance confocal microscope and imaging. The erythema response to the microscopic challenge was always diffuse with no clear boundaries extending to several times the exposed site diameter at doses greater than 2 MED. The skin returned to normal appearance from the microscopic challenge after two weeks of exposure while change in appearance for the larger areas persisted for several weeks to months. This new modality of testing provides the possibility to study skin at the microscopic level with a rapid recovery following challenge.

  10. Quantitative assessment of changes in the dermal fibroblast population of pig skin after single doses of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, R.; Hopewell, J.W.

    1988-10-01

    Changes in the density of fibroblast nuclei in reticular dermis of pigs was studied from 6 to 104 weeks after a single dose of 15.4 Gy of X-rays. The largest decrease in fibroblasts occurred between 12 and 26 weeks after irradiation; after this there was only a slight fall in fibroblast number until 104 weeks when observations ceased. At 26 weeks and later times after irradiation reduction in the density of fibroblast nuclei in the reticular dermis was dose-dependent for single doses in the range 8.0-20.7 Gy. The dose-response curve had an initial shoulder, after which the fall in the fibroblast nuclear density was linearly related to dose. Data obtained between 26 weeks and 104 weeks after irradiation, could be fitted by the same dose-response curve. The fall in the counts of fibroblast nuclei was compared with earlier studies. The loss of fibroblasts occurred after an initial reduction in blood flow in the pig skin but was concomitant with general reduction in dermal thickness.

  11. Modeling skin collimation using the electron pencil beam redefinition algorithm

    International Nuclear Information System (INIS)

    Chi, Pai-Chun M.; Hogstrom, Kenneth R.; Starkschall, George; Antolak, John A.; Boyd, Robert A.

    2005-01-01

    Skin collimation is an important tool for electron beam therapy that is used to minimize the penumbra when treating near critical structures, at extended treatment distances, with bolus, or using arc therapy. It is usually made of lead or lead alloy material that conforms to and is placed on patient surface. Presently, commercially available treatment-planning systems lack the ability to model skin collimation and to accurately calculate dose in its presence. The purpose of the present work was to evaluate the use of the pencil beam redefinition algorithm (PBRA) in calculating dose in the presence of skin collimation. Skin collimation was incorporated into the PBRA by terminating the transport of electrons once they enter the skin collimator. Both fixed- and arced-beam dose calculations for arced-beam geometries were evaluated by comparing them with measured dose distributions for 10- and 15-MeV beams. Fixed-beam dose distributions were measured in water at 88-cm source-to-surface distance with an air gap of 32 cm. The 6x20-cm 2 field (dimensions projected to isocenter) had a 10-mm thick lead collimator placed on the surface of the water with its edge 5 cm inside the field's edge located at +10 cm. Arced-beam dose distributions were measured in a 13.5-cm radius polystyrene circular phantom. The beam was arced 90 deg. (-45 deg. to +45 deg. ), and 10-mm thick lead collimation was placed at ±30 deg. . For the fixed beam at 10 MeV, the PBRA-calculated dose agreed with measured dose to within 2.0-mm distance to agreement (DTA) in the regions of high-dose gradient and 2.0% in regions of low dose gradient. At 15 MeV, the PBRA agreed to within a 2.0-mm DTA in the regions of high-dose gradient; however, the PBRA underestimated the dose by as much as 5.3% over small regions at depths less than 2 cm because it did not model electrons scattered from the edge of the skin collimation. For arced beams at 10 MeV, the agreement was 1-mm DTA in the high-dose gradient regions, and 2

  12. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    Science.gov (United States)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  13. Individual skin care during radiation therapy

    International Nuclear Information System (INIS)

    Zimmermann, J.S.; Budach, W.; Doerr, W.

    1998-01-01

    Background: In many clinical settings, the irradiated patient feels additional discomfort by the inhibition of washing the treatment portals and interruption of his adapted skin care habits. Material and methods: An analysis of the scientific recommendations as well as an analysis of the skin dose to the irradiated portals has been performed. An individual scheme for skin care under radiation has been developed. Results: A substantial decrease of the skin dose is achieved in many modern radiation techniques. The consequent reduction of severe skin reactions allowed the use of water and mild soaps as has been approved within many radiotherapy departments. This has lead to an individualized concept for skin care under radiation treatment including the allowance of gentle washing. The skin marks may be saved by using highly tolerable adhesive plasters or small tattoo points, if they are not superfluous by using masks or single referee points instead of marks for the field borders. Conclusions: The individualized concept for skin care during radiation may offer improved life quality to the patient and may decrease the acute reactions of the skin at least in some cases. (orig.) [de

  14. Evaluating low dose ionizing radiation effects on gene expression in human skin biopsy cores

    International Nuclear Information System (INIS)

    Goldberg, Z.; Schwietert, C.; Stern, R.L.; Lehnert, B.E.

    2003-01-01

    Significant biological effects can occur in animals, animal cells, immortalized human cell lines, and primary human cells after exposure to doses of ionizing radiation (IR) in the <1-10 cGy region. However it is unclear how these observations mimic or even pertain to the actual in vivo condition in humans, though such knowledge is required for reducing the uncertainty of assessing human risks due to low dose IR (LDIR) exposures. Further, low dose effects have increasing clinical relevance in the radiotherapeutic management of cancer as the volume of tissue receiving only LDIR increases as more targeted radiotherapy (i.e. IMRT) becomes more widely used. Thus, human translational data must be obtained with which to correlate in vitro experimental findings and evaluate their 'real-life' applicability. To evaluate LDIR effects in human tissue we have obtained freshly explanted full thickness human skin samples obtained from aesthetic surgery, and subjected them to ex vivo irradiation as a translational research model system of a complex human tissue. Ionizing radiation (IR) exposures were delivered at 1, 10, or 100 cGy. The temporal response to IR was assessed by harvesting RNA at multiple time points out to 24 hours post IR. Gene expression changes were assessed by real time PCR. We have shown that RNA can be reliably extracted with fidelity from 3 mm diameter punch biopsies of human tissue and provide good quality sample for the real time PCR evaluation. Genes of interest include those reported to have altered expression following LDIR from in vitro cell culture models. These include genes associated with cell cycle regulation, DNA repair and various cytokines. These feasibility studies in human skin irradiated ex vivo, have demonstrated that gene expression can be measured accurately from very small human tissue samples, thus setting the stage for biopsy acquisition of tissue irradiated in vivo from patients-volunteers. The clinical study has begun and the data from

  15. Effect of safe water on arsenicosis: A follow-up study

    Directory of Open Access Journals (Sweden)

    Kunal K Majumdar

    2014-01-01

    Full Text Available Background: Arsenic pollution in groundwater, used for drinking purposes, has been envisaged as a problem of global concern. Treatment options for the management symptoms of chronic arsenicosis are limited. Mitigation option available for dealing with the health problem of ground water arsenic contamination rests mainly on supply of arsenic safe water in arsenic-endemic region of Indo-Bangladesh subcontinent. Limited information is available regarding the long-term effect of chronic arsenic toxicity after stoppage of consumption of arsenic-containing water. Objective: The current study was, therefore, done to assess, objectively, the effect of drinking arsenic safe water (<50 μg/L on disease manifestation of arsenicosis. Results: Manifestations of various skin lesions and systemic diseases associated with chronic arsenic exposure were ascertained initially by carrying on baseline study on 208 participants in Nadia (Cohort-I, with skin lesion and Cohort-II, without skin lesion using a scoring system, as developed by us, and compared objectively at the end of each year for 3 year follow-up period. All the participants who had arsenic contaminated drinking water source in their houses were supplied with arsenic removal filters for getting arsenic-free water during the follow-up period. In participants belonging to Cohort-I, the skin score was found to improve significantly at the end of each year, and it was found to be reduced significantly from 2.17 ± 1.09 to 1.23 ± 1.17; P < 0.001 at the end of 3 year′s intervention study indicating beneficial effect of safe water on skin lesions. The systemic disease symptom score was also found to improve, but less significantly, at the end of 3 years in both the cohorts. Most important observation during the follow-up study was persistence of severe symptoms of chronic lung disease and severe skin lesion including Bowen′s disease in spite of taking arsenic-safe water. Further, death could not be

  16. Patient skin dosimetry in interventional cardiology in the Czech Republic

    International Nuclear Information System (INIS)

    Sukupova, L.; Novak, L.; Kala, P.; Cervinka, P.; Stasek, J.

    2011-01-01

    In this study, skin dosimetry of patients undergoing interventional cardiology procedures is presented. Three hospitals were included. Two methods were used for skin dosimetry-radiochromic dosimetry films and reconstruction of skin dose distribution based on examination protocol. Maximum skin doses (MSD) obtained from both methods were compared for 175 patients. For patients for whom the film MSD was >1 Gy, the reconstruction MSD differed from the film MSD in the range of ± 50 % for 83 % of patients. For remaining patients, the difference was higher and it was caused by longer fluoroscopy time. For 59 patients for whom the cumulative dose was known, the cumulative dose was compared with the film MSD. Skin dosimetry with radiochromic films is more accurate than the reconstruction method, but films do not include X-ray fields from lateral projections whilst reconstructions do. (authors)

  17. Skin cancer

    International Nuclear Information System (INIS)

    Yamada, Michiko

    1992-01-01

    This chapter reviews the development of skin cancer associated with radiation, focusing on the knowledge of A-bomb radiation-induced skin cancer. Since the discovery of X radiation in 1895, acute and chronic radiation dermatitis has been the first matter of concern. Then, in 1902, skin cancer found among radiological personnel has posed a social problem. In earlier study determining the relationship between skin cancer and A-bomb radiation, there is no increase in the incidence of either skin cancer or precancerous condition during the first 20 years after A-bombing. More recent studies have showed that there is a significant correlation between the incidence of skin cancer and distance from the hypocenter; and the incidence of skin cancer is found to be remarkably increased since 1975 in the group exposed at ≤2,000 m. Excess relative risk is 2.2 at one Gy dose. The incidence of skin cancer is also found to be extremely increased with aging. Relative risk is high in younger A-bomb survivors at the time of exposure. Histologically, basal cell carcinoma is more senstitive to ionizing radiation than squamous cell carcinoma. (N.K.)

  18. Response studies of three different dosimeters for skin entrance dose measurements using diagnostic X-ray machines

    International Nuclear Information System (INIS)

    Sonawane, A.U.; Kulkarni, Arti; Shirva, V.K.; Butani, M.L.; Pradhan, A.S.

    2008-01-01

    A TLD method based on CaSO 4 :Dy Teflon discs developed at the Bhabha Atomic Research Centre, Mumbai has been extensively used for various applications in diagnostic radiology in India. This method was recently used for evaluation of radiation quality and measurement of skin entrance doses (SEDs) in various hospitals for different diagnostic examinations. The use of TLD discs for these applications involves the process of preparation of TLD discs with different combination of filters and then measurement of TL output under different combinations of filters. The measurement of SEDs in diagnostic radiology is also carried out instantaneously and accurately by using very user friendly and compact state-of-art instruments. These consist of kVp Test-O-Meter (ToM) (Model RADIFLU-9001) and the dose ToM (Model 6001) manufactured by M/s UNFORS, Sweden. The kVp meter automatically calculates kVp and updates it every second in the range from 55 to 145 kVp with the resolution of 0.1 kV. The dose ToM incorporates sealed silicon detector having lead shield under and around, which prevents backscattered radiation from influencing the measurement. The dose Test-O-Meter has excellent energy independence in the range from 50 to 150 kVp and inaccuracy not exceeding 5 % at 70 k Vp. The dose meter is capable of measuring doses up to 9999 μGy

  19. Effect of chemical peeling on the skin in relation to UV irradiation.

    Science.gov (United States)

    Funasaka, Yoko; Abdel-Daim, Mohamed; Kawana, Seiji; Nishigori, Chikako

    2012-07-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. However, it needs to be clarified whether the repetitive procedure of chemical peeling on photodamaged skin is safe and whether the different chemicals used for peeling results in similar outcomes or not. In this article, we reviewed the effect of peeling or peeling agents on the skin in relation to ultraviolet (UV) radiation. The pretreatment of peeling agents usually enhance UV sensitivity by inducing increased sunburn cell formation, lowering minimum erythematous dose and increasing cyclobutane pyrimidine dimers. However, this sensitivity is reversible and recovers to normal after 1-week discontinuation. Using animals, the chronic effect of peeling and peeling agents was shown to prevent photocarcinogenesis. There is also an in vitro study using culture cells to know the detailed mechanisms of peeling agents, especially on cell proliferation and apoptotic changes via activating signalling cascades and oxidative stress. It is important to understand the effect of peeling agents on photoaged skin and to know how to deal with UV irradiation during the application of peeling agents and treatment of chemical peeling in daily life. © 2012 John Wiley & Sons A/S.

  20. Reirradiation of healing murine skin

    International Nuclear Information System (INIS)

    Terry, N.H.A.; Aldana, M.W.; Travis, E.L.

    1987-01-01

    The most common way of assessing residual radiation damage in a tissue has been to retreat at a fixed time interval after a first treatment. Previous studies in skin have shown that the greatest proportion of remembered dose (20-40%) was seen if the retreatment interval was one month, shortly after the acute reaction caused by the first treatment has subsided. Moreover, the observed state of the foot at retreatment depended on the size of the first dose. After a priming dose of 22.5 Gy, the peak skin reaction of 0.8 returned to zero by Day 27. On retreatment at Day 30, the foot was indistinguishable from controls. After higher first doses, the feet still had significant reaction scores ranging from 0.5 to more than 1.0. Thus, in this present study, feet were retreated at a common level of healing rather than after a fixed time interval. Mice feet were irradiated with a range of X-ray doses (22.5-37.5 Gy) covering the threshold to full response. The feet were reirradiated when their skin reactions had fallen to a common value of 0.5. The time of this retreatment was therefore earlier (13 days) after the lowest priming dose (22.5 Gy) than after higher doses. In these latter instances retreatment times ranged from 18-40 days. These data are compared with those from schedules where the second irradiations were performed a fixed time after the first treatment

  1. Development of a external exposure computational model for studying of input dose in skin for radiographs of thorax and vertebral column

    International Nuclear Information System (INIS)

    Muniz, Bianca C.; Menezes, Claudio J.M.; Vieira, Jose W.

    2014-01-01

    The dosimetric measurements do not always happen directly in the human body. Therefore, these assessments can be performed using anthropomorphic models (phantoms) evidencing models computational exposure (MCE) using techniques of Monte Carlo Method for virtual simulations. These processing techniques coupled with more powerful and affordable computers make the Monte Carlo method one of the tools most used worldwide in radiation transport area. In this work, the Monte Carlo EGS4 program was used to develop a computer model of external exposure to study the entrance skin dose for chest and column X-radiography and, aiming to optimize these practices by reducing doses to patients, professionals involved and the general public. The results obtained experimentally with the electrometer Radcal, model 9015, associated with the ionization chamber for radiology model 10X5-6, showed that the proposed computational model can be used in quality assurance programs in radiodiagnostic, evaluating the entrance skin dose when varying parameters of the radiation beam such as kilo voltage peak (kVp), current-time product (mAs), total filtration and distance surface source (DFS), optimizing the practices in radiodiagnostic and meeting the current regulation

  2. Safety of skin care products during pregnancy

    OpenAIRE

    Bozzo, Pina; Chua-Gocheco, Angela; Einarson, Adrienne

    2011-01-01

    Question Many of my female patients complain about acne, unwanted hair growth, and other skin problems that have only developed since they became pregnant. Are products used for these types of benign skin conditions safe to use in pregnancy, as it is understandable that women want to look their best at this important time in their lives?

  3. Plants used to treat skin diseases

    Science.gov (United States)

    Tabassum, Nahida; Hamdani, Mariya

    2014-01-01

    Skin diseases are numerous and a frequently occurring health problem affecting all ages from the neonates to the elderly and cause harm in number of ways. Maintaining healthy skin is important for a healthy body. Many people may develop skin diseases that affect the skin, including cancer, herpes and cellulitis. Some wild plants and their parts are frequently used to treat these diseases. The use of plants is as old as the mankind. Natural treatment is cheap and claimed to be safe. It is also suitable raw material for production of new synthetic agents. A review of some plants for the treatment of skin diseases is provided that summarizes the recent technical advancements that have taken place in this area during the past 17 years. PMID:24600196

  4. A quantitative assessment of changes in the dermal fibroblast population of pig skin after single doses of X-rays

    International Nuclear Information System (INIS)

    Hamlet, R.; Hopewell, J.W.

    1988-01-01

    Changes in the density of fibroblast nuclei in reticular dermis of pigs was studied from 6 to 104 weeks after a single dose of 15.4 Gy of X-rays. The largest decrease in fibroblasts occurred between 12 and 26 weeks after irradiation; after this there was only a slight fall in fibroblast number until 104 weeks when observations ceased. At 26 weeks and later times after irradiation reduction in the density of fibroblast nuclei in the reticular dermis was dose-dependent for single doses in the range 8.0-20.7 Gy. The dose-response curve had an initial shoulder, after which the fall in the fibroblast nuclear density was linearly related to dose. Data obtained between 26 weeks and 104 weeks after irradiation, could be fitted by the same dose-response curve. The fall in the counts of fibroblast nuclei was compared with earlier studies. The loss of fibroblasts occurred after an initial reduction in blood flow in the pig skin but was concomitant with general reduction in dermal thickness. (author)

  5. The source-skin distance measuring bridge: A method to avoid radiation teleangiectasia in the skin after interstitial therapy for breast cancer

    International Nuclear Information System (INIS)

    Van Limbergen, E.; Briot, E.; Drijkoningen, M.

    1990-01-01

    Inappropriate positioning of interstitial iridium 192 implants, used as booster dose in the breast conserving treatment of mammary cancer, may cause disturbing teleangiectasia of the breast skin, when high radiation doses are delivered on the dermal blood vessels. Based on the localization of the vascular plexuses in human breast skin, and on the dose distribution around different types of interstitial implants, a method is described to avoid overlap between the high dose area of the implant and the blood vessels in the skin. The latter are demonstrated to run within the first 5 mm under the epiderm. For source lengths varying from 5 to 8 cm, simple mathematical relations exist between the maximal security margin (MSM) and intersource distance (E) for single plane implants (MSM = 0.4 (E + 1)), double plane square implants (MSM = 0.4 E) and double plane triangular implants (MSM = 0.4 (E - 1)). We developed a device to measure precisely the distance between the radioactive wires and the overlying skin, along the whole source trajectory. Using this method, the occurrence of teleangiectasia in the breast skin after interstitial implants with Ir 192 may be significantly reduced

  6. Proposal for derivation of limit values for skin contamination

    International Nuclear Information System (INIS)

    Schieferdecker, H.; Koelzer, W.; Henrichs, K.

    1985-04-01

    From the primary limit value for the skin dose secondary limit values are derived for skin contamination which can be used in practical radiation protection work. In analogy to the secondary limit value for the maximum permissible body burden in case of incorporation, limit values for the 'maximum permissible skin burden' are calculated with the help of dose factors for application in case of skin contamination. They can be derived from the skin dose limit values. Considering that the skin is exposed to contamination but temporarily, in analogy to the annual limit on intake in case of incorporation a 'limit value of skin contamination' is derived for immediately removable contaminations and for one day of exposure, whereas with respect to non-removable contamination and taking into account the renewal of the skin, a limit value of annual skin contamination is defined for non-removable skin contaminations. An investigation level for skin contamination is assumed as a threshold above which defined measures must be taken. Regarding these measures not more than three times appropriate washing is recommended with the subsequent procedure determined by the level of residual contamination. The respective limit values are indicated for some radionuclides selected as examples (C-14, Co-60, Sr-90, Y-90, I-131, Cs-137, Ce-141, Pu-239). (orig./HP) [de

  7. Normal tissue tolerance to external beam radiation therapy: Skin

    International Nuclear Information System (INIS)

    Ginot, A.; Doyen, J.; Hannoun-Levi, J.M.; Courdi, A.

    2010-01-01

    Acute skin toxicity is frequent during radiation therapy and can lead to temporary arrest of the treatment. Chronic toxicity can occur and conduct to cosmetic problems. Alopecia is the most frequent toxicity concerning hair and is most of the time reversible. Several factors linked to patients influence skin toxicity, such as under-nutrition, old age, obesity, smoking, skin diseases, autoimmune diseases, failure of DNA reparation. Skin, hair and nail toxicities depend also on radiation schedule. Acute toxicity is greater when dose per fraction increases. Chronic and acute toxicities are more often when total dose increases. Under 45 Gy, the risk of severe skin toxicity is low, and begins above 50 Gy. Skin toxicity depends also on the duration of radiotherapy and split course schedules are associated with less toxicities. Irradiation surface seems to influence skin toxicity but interaction is more complex. Reirradiation is often feasible in case of cancer recurrence but with a risk of grade 3-4 toxicity above all in head and neck cancer. The benefit/risk ratio has to be always precisely evaluated. Permanent alopecia is correlated with the follicle dose. Modern techniques of radiation therapy allow to spare skin. (authors)

  8. Skin entrance dose - thyroid: comparison between three kinds of dental appliances; Dose de entrada na pele - tireóide: comparativo entre três tipos de aparelhos odontológicos

    Energy Technology Data Exchange (ETDEWEB)

    Savi, M.; Viana, E.; Soares, F.A., E-mail: matheus.savi@ifsc.edu.br [Dept. Acadêmico de Saúde e Serviços/CST em Radiologia, Instituto Federal de Santa Catarina, Florianópolis (Brazil)

    2017-07-01

    Patient dosimetry is necessary to determine dosimetric quantities, establish reference levels for radio-diagnosis and assess health risks. Part of the radiation beam of the appliances that penetrates the patient's body is absorbed by tissues and part is spread and its sum is known as the Dose of Entrance into the Skin. The objective of this study is to know and compare the DEP of dental radiology devices in the thyroid gland. Two periapical, panoramic and computerized conical beam tomographs were used in this study at a private dentistry clinic and at the Federal Institute of Santa Catarina. The periapical apparatus produced the highest total dose of radiation, as well as a higher dose rate, followed by CBCT and panoramic.

  9. WE-AB-303-06: Combining DAO with MV + KV Optimization to Improve Skin Dose Sparing with Real-Time Fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grelewicz, Z; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: Real-time fluoroscopy may allow for improved patient positioning and tumor tracking, particularly in the treatment of lung tumors. In order to mitigate the effects of the imaging dose, previous studies have demonstrated the effect of including both imaging dose and imaging constraints into the inverse treatment planning object function. That method of combined MV+kV optimization may Result in plans with treatment beams chosen to allow for more gentle imaging beam-on times. Direct-aperture optimization (DAO) is also known to produce treatment plans with fluence maps more conducive to lower beam-on times. Therefore, in this work we demonstrate the feasibility of a combination of DAO and MV+kV optimization for further optimized real-time kV imaging. Methods: Therapeutic and imaging beams were modeled in the EGSnrc Monte Carlo environment, and applied to a patient model for a previously treated lung patient to provide dose influence matrices from DOSXYZnrc. An MV + kV IMRT DAO treatment planning system was developed to compare DAO treatment plans with and without MV+kV optimization. The objective function was optimized using simulated annealing. In order to allow for comparisons between different cases of the stochastically optimized plans, the optimization was repeated twenty times. Results: Across twenty optimizations, combined MV+kV IMRT resulted in an average of 12.8% reduction in peak skin dose. Both non-optimized and MV+kV optimized imaging beams delivered, on average, mean dose of approximately 1 cGy per fraction to the target, with peak doses to target of approximately 6 cGy per fraction. Conclusion: When using DAO, MV+kV optimization is shown to Result in improvements to plan quality in terms of skin dose, when compared to the case of MV optimization with non-optimized kV imaging. The combination of DAO and MV+kV optimization may allow for real-time imaging without excessive imaging dose. Financial support for the work has been provided in part by NIH

  10. Development of a safe ultraviolet camera system to enhance awareness by showing effects of UV radiation and UV protection of the skin (Conference Presentation)

    Science.gov (United States)

    Verdaasdonk, Rudolf M.; Wedzinga, Rosaline; van Montfrans, Bibi; Stok, Mirte; Klaessens, John; van der Veen, Albert

    2016-03-01

    The significant increase of skin cancer occurring in the western world is attributed to longer sun expose during leisure time. For prevention, people should become aware of the risks of UV light exposure by showing skin damage and the protective effect of sunscreen with an UV camera. An UV awareness imaging system optimized for 365 nm (UV-A) was develop using consumer components being interactive, safe and mobile. A Sony NEX5t camera was adapted to full spectral range. In addition, UV transparent lenses and filters were selected based on spectral characteristics measured (Schott S8612 and Hoya U-340 filters) to obtain the highest contrast for e.g. melanin spots and wrinkles on the skin. For uniform UV illumination, 2 facial tanner units were adapted with UV 365 nm black light fluorescent tubes. Safety of the UV illumination was determined relative to the sun and with absolute irradiance measurements at the working distance. A maximum exposure time over 15 minutes was calculate according the international safety standards. The UV camera was successfully demonstrated during the Dutch National Skin Cancer day and was well received by dermatologists and participating public. Especially, the 'black paint' effect putting sun screen on the face was dramatic and contributed to the awareness of regions on the face what are likely to be missed applying sunscreen. The UV imaging system shows to be promising for diagnostics and clinical studies in dermatology and potentially in other areas (dentistry and ophthalmology)

  11. Experimental studies of radiation carcinogenesis in the skin: a review

    International Nuclear Information System (INIS)

    Coggle, J.E.; Williams, J.P.

    1990-01-01

    Dose and time response characteristics of cancer induction following a variety of modes and qualities of radiation exposure are reviewed in relation to rat and mouse skin studies. Despite interspecies differences, it is shown that all of the experimental data for radiogenic skin cancer, when expressed per unit area of skin, fall on a relatively narrow and well defined response curve, which is approximately two orders of magnitude more sensitive than the human skin cancer dose response. (UK)

  12. SU-E-I-55: The Contribution to Skin Dose Due to Scatter From the Patient Table and the Head Holder During Fluoroscopy

    International Nuclear Information System (INIS)

    Islam, N; Xiong, Z; Vijayan, S; Rudin, S; Bednarek, D

    2015-01-01

    Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with an air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant

  13. SU-E-I-55: The Contribution to Skin Dose Due to Scatter From the Patient Table and the Head Holder During Fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N; Xiong, Z; Vijayan, S; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with an air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant.

  14. High dose rate brachytherapy using custom made superficial mould applicators and Leipzig applicators for non melanoma localized skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, A. Cassio A.; Miziara, Daniela; Lima, Flavia Pedroso de; Miziara, Miguel

    2014-07-01

    Purpose: advances in technology and the commercial production of Leipzig applicators allowed High Dose Rate after-load brachytherapy (HDR-BT) to address a number of the challenges associated with the delivery of superficial radiation to treat localized non melanoma skin cancer (NMSK). We reviewed our uni-institutional experience on the treatment of NMSK with HDR-BT. Methods: data were collected retrospectively from patients attending the Radiation Oncology Department at AV Carvalho Insitute, Sao Paulo, Brazil. HDR-BT was done using the stepping source HDR 192Ir Microselectron (Nucletron BV). The planning target volume consisted of the macroscopic lesion plus a 5mm to 10mm margin.The depth of treatment was 0.5 cm in smaller (< 2.0 cm) tumors and 10 to 15 mm for lesions bigger than that. Results: Thirteen patients were treated with HDR-BT from June, 2007 to June 2013. The median age and follow up time were 72 (38-90) years old and 36 (range, 7-73) months, respectively. There a predominance of males (61.5%) and of patients referred for adjuvant treatment due positive surgical margins or because they have had only a excision biopsy without safety margins (61.5%). Six (46.2%) patients presented with squamous cell carcinoma and 7 (53.8%) patients presented with basal cell carcinoma. The median tumor size was 20 (range, 5-42) mm. Patients were treated with a median total dose of 40 Gy (range, 20 -60), given in 10 (range, 2-15) fractions, given daily or twice a week. All patients responded very well to treatment and only one patient has failed locally so far, after 38 months of the end of the irradiation. The crude and actuarial 3-year local control rates were 100% and 80%, respectively. Moist desquamation, grade 2 RTOG, was observed in 4 (30.8%) patients. Severe late complication, radiation-induced dyspigmentation, occurred in 2 patients and 1 of the patients also showed telangiectasia in the irradiated area. The cosmetic result was considered good in 84% (11/13) patients

  15. High dose rate brachytherapy using custom made superficial mould applicators and Leipzig applicators for non melanoma localized skin cancer

    International Nuclear Information System (INIS)

    Pellizzon, A. Cassio A.; Miziara, Daniela; Lima, Flavia Pedroso de; Miziara, Miguel

    2014-01-01

    Purpose: advances in technology and the commercial production of Leipzig applicators allowed High Dose Rate after-load brachytherapy (HDR-BT) to address a number of the challenges associated with the delivery of superficial radiation to treat localized non melanoma skin cancer (NMSK). We reviewed our uni-institutional experience on the treatment of NMSK with HDR-BT. Methods: data were collected retrospectively from patients attending the Radiation Oncology Department at AV Carvalho Insitute, Sao Paulo, Brazil. HDR-BT was done using the stepping source HDR 192Ir Microselectron (Nucletron BV). The planning target volume consisted of the macroscopic lesion plus a 5mm to 10mm margin.The depth of treatment was 0.5 cm in smaller (< 2.0 cm) tumors and 10 to 15 mm for lesions bigger than that. Results: Thirteen patients were treated with HDR-BT from June, 2007 to June 2013. The median age and follow up time were 72 (38-90) years old and 36 (range, 7-73) months, respectively. There a predominance of males (61.5%) and of patients referred for adjuvant treatment due positive surgical margins or because they have had only a excision biopsy without safety margins (61.5%). Six (46.2%) patients presented with squamous cell carcinoma and 7 (53.8%) patients presented with basal cell carcinoma. The median tumor size was 20 (range, 5-42) mm. Patients were treated with a median total dose of 40 Gy (range, 20 -60), given in 10 (range, 2-15) fractions, given daily or twice a week. All patients responded very well to treatment and only one patient has failed locally so far, after 38 months of the end of the irradiation. The crude and actuarial 3-year local control rates were 100% and 80%, respectively. Moist desquamation, grade 2 RTOG, was observed in 4 (30.8%) patients. Severe late complication, radiation-induced dyspigmentation, occurred in 2 patients and 1 of the patients also showed telangiectasia in the irradiated area. The cosmetic result was considered good in 84% (11/13) patients

  16. First experiences with super fractionated skin irradiations using large afterloading molds

    International Nuclear Information System (INIS)

    Fritz, Peter; Hensley, Frank W.; Berns, Christiane; Schraube, Peter; Wannenmacher, Michael

    1996-01-01

    Purpose: Radiotherapy of cutaneous metastases of breast cancer requires large radiation fields and high doses. This report examines the effectiveness and sequelae of super fractionated irradiation of cutaneous metastases of breast cancer with afterloading molds on preirradiated and nonirradiated skin. Methods and Materials: A flexible reusable skin mold was developed for use with a pulsed (PDR) after loader. An array of 18 parallel catheters was sewn between two foam rubber slabs 5 mm in thickness to provide a defined constant distance to the skin. By selection of appropriate dwell positions, arbitrarily shaped skin areas can be irradiated up to a maximal field size of 17 x 23.5 cm 2 . Irradiations are performed with a nominal 37 GBq 192 Ir stepping source in pulses of 1 Gy/h at the skin surface. The dose distribution is geometrically optimized. The 80 and 50% dose levels lie 5 and 27 mm below the skin surface. Sixteen patients suffering from metastases at the thoracic wall were treated with 18 fields (78-798 cm 2 ) and total doses of 40-50 Gy applying two PDR split courses with a pause of 4-6 weeks. Eleven of the fields had been previously irradiated with external beam therapy to doses of 50-60 Gy at 7-22 months in advance. Results: For preirradiated fields (n = 10) the results were as follows: follow-up 4.5-28.5 months (median 17); local control (LC): 8 of 10; acute skin reactions: Grade 2 (moist desquamation) 2 of 10; intermediate/late skin reactions after minimum follow-up of 3 months: Grade 1 (atrophy/pigmentation): 2 of 10, Grade 2-3a (minimal/marked telangiectasia): 7 of 10, Grade 4 (ulcer): 1 of 10; recurrencies: 2 of 10. For newly irradiated fields (n = 7) results were: follow-up: 2-20 months (median 5); LC: 6 of 7; acute reactions: Grade 1:4 of 7, Grade 2:3 of 7; intermediate/late skin reactions after minimum follow-up of 3 months (n = 5): Grade 2-3a: 2 of 5; recurrencies: 0 of 7. Local control could be achieved in 82% of the mold fields. Geometric

  17. Single-Dose Azithromycin for the Treatment of Haemophilus ducreyi Skin Ulcers in Papua New Guinea.

    Science.gov (United States)

    González-Beiras, Camila; Kapa, August; Vall-Mayans, Marti; Paru, Raymond; Gavilán, Sergi; Houinei, Wendy; Bieb, Sibauk; Sanz, Sergi; Martins, Rosario; Mitjà, Oriol

    2017-11-29

    Haemophilus ducreyi (HD) and Treponema pallidum subspecies pertenue (TP) are major causative agents of cutaneous ulcer (CU) in the tropics. Azithromycin is recommended to treat sexually transmitted HD infections and has good in vitro activity against HD strains from both genital and skin ulcers. We investigated the efficacy of oral single-dose azithromycin on HD-CU. We conducted a community-based cohort study in Lihir Island, Papua New Guinea, from October 2014 through May 2016. Consenting patients with skin ulcers >1 cm in diameter were eligible for this study and had collected a lesional swab for polymerase chain reaction (PCR). All participants were treated with single-dose azithromycin (30 mg/kg) and were followed up for assessment of clinical resolution. We retrospectively classified patients according to PCR results into HD, TP, and PCR-negative groups. The primary endpoint was healing rates of HD-CU at 14 days after treatment. We obtained full outcome data from 246 patients; 131 (53.3%) were HD PCR positive, 37 (15.0%) were TP positive, and 78 (31.7%) were negative for all tests. Healing rates were 88.5% (95% confidence interval [CI], .82-.93) in the HD group, 78.4% [95% CI, .63-.89] in the TP group, and 74.4% (95% CI, .64-.83) in the PCR-negative group. If we included the participants with improved ulcers, the healing rates increased to 94.7%, 97.3%, and 89.7% respectively. HD cases classified as not healed all converted to HD-negative PCR. Based upon clinical resolution and PCR conversion to HD negative, a single oral dose of azithromycin is efficacious for the treatment of HD-CU. These results have implications for the treatment of individual patients and for the use of antibiotics in public health strategies to control CU in the tropics. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. Calculation of absorbed dose for skin contamination imparted by beta radiation through the VARSKIN modified code for 122 interesting isotopes for nuclear medicine, nuclear power plants and research

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1991-01-01

    In this work the implementation of a modification of the VARSKIN code for calculation of absorbed dose for contamination in skin imparted by external radiation fields generated by Beta emitting is presented. The modification consists on the inclusion of 47 isotopes of interest even Nuclear Plants for the dose evaluation in skin generated by 'hot particles'. The approach for to add these isotopes is the correlation parameter F and the average energy of the Beta particle, with relationship to those 75 isotopes of the original code. The methodology of the dose calculation of the VARSKIN code is based on the interpolation, (and integration of the interest geometries: punctual or plane sources), of the distribution functions scaled doses in water for beta and electrons punctual sources, tabulated by Berger. Finally a brief discussion of the results for their interpretation and use with purposes of radiological protection (dose insurance in relation to the considered biological effects) is presented

  19. Radiation-Induced Skin Injuries to Patients: What the Interventional Radiologist Needs to Know.

    Science.gov (United States)

    Jaschke, Werner; Schmuth, Matthias; Trianni, Annalisa; Bartal, Gabriel

    2017-08-01

    For a long time, radiation-induced skin injuries were only encountered in patients undergoing radiation therapy. In diagnostic radiology, radiation exposures of patients causing skin injuries were extremely rare. The introduction of fast multislice CT scanners and fluoroscopically guided interventions (FGI) changed the situation. Both methods carry the risk of excessive high doses to the skin of patients resulting in skin injuries. In the early nineties, several reports of epilation and skin injuries following CT brain perfusion studies were published. During the same time, several papers reported skin injuries following FGI, especially after percutaneous coronary interventions and neuroembolisations. Thus, CT and FGI are of major concern regarding radiation safety since both methods can apply doses to patients exceeding 5 Gy (National Council on Radiation Protection and Measurements threshold for substantial radiation dose level). This paper reviews the problem of skin injuries observed after FGI. Also, some practical advices are given how to effectively avoid skin injuries. In addition, guidelines are discussed how to deal with patients who were exposed to a potentially dangerous radiation skin dose during medically justified interventional procedures.

  20. Mouse Models of the Skin: Models to Define Mechanisms of Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Wheeler, D. L.; Verma, A. K.; Denning, M. F.

    2013-01-01

    The multistep model of mouse skin carcinogenesis has facilitated identification of irreversible genetic events of initiation and progression, and epigenetic events of tumor promotion. Mouse skin tumor initiation can be accomplished by a single exposure to a sufficiently small dose of a carcinogen, and this step is rapid and irreversible. However, promotion of skin tumor formation requires a repeated and prolonged exposure to a promoter, and that tumor promotion is reversible. Investigations focused on the mechanisms of mouse carcinogenesis have resulted in the identifications of potential molecular targets of cancer induction and progression useful in planning strategies for human cancer prevention trials. This special issue contains eight papers that focus on mouse models used to study individual proteins expressed in the mouse skin and the role they play in differentiation, tissue homeostasis, skin carcinogenesis, and chemo prevention of skin cancer.

  1. Radiation protection guidelines for the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1989-01-01

    With the exception of the function of cells in the skin associated with immunocompetence nonstochastic effects have been well characterized and threshold doses are known with a precision appropriate for setting radiation protection standards. A dose limitation of 0.5 Sv per year and a working lifetime dose limit of 20 Sv should protect the worker population adequately and therefore, the current protection standards are quite adequate. The risk estimate for skin cancer is very dependent on the selection of the projection model and on the mortality rate assumed. Based on the relative risk model, a mortality rate of 0.2% and summing risks for both UVR exposed and shielded skin the risk is about twice (1.94/10 -4 Sv -1 ) that which ICRP derived in 1977. With the absolute model the risk is considerably less, about 0.5/10 -4 Sv -1 . 47 refs., 3 figs., 1 tab

  2. A different and safe method of split thickness skin graft fixation: medical honey application.

    Science.gov (United States)

    Emsen, Ilteris Murat

    2007-09-01

    Honey has been used for medicinal purposes since ancient times. Its antibacterial effects have been established during the past few decades. Still, modern medical practitioners hesitate to apply honey for local treatment of wounds. This may be because of the expected messiness of such local application. Hence, if honey is to be used for medicinal purposes, it has to meet certain criteria. The authors evaluated its use for the split thickness skin graft fixation because of its adhesive and other beneficial effects in 11 patients. No complications such as graft loss, infection, and graft rejection were seen. Based on these results, the authors advised honey as a new agent for split thickness skin graft fixation. In recent years there has been a renewed interest in honey wound management. There are a range of regulated wound care products that contain honey available on the Drug Tariff. This article addresses key issues associated with the use of honey, outlining how it may be best used, in which methods of split thickness skin graft fixations it may be used, and what clinical outcomes may be anticipated. For this reason, 11 patients who underwent different diagnosis were included in this study. In all the patients same medical honey was used for the fixation of the skin graft. No graft loss was seen during both the first dressing and the last view of the grafted areas. As a result, it has been shown that honey is also a very effective agent for split thickness skin graft fixations. Because it is a natural agent, it can be easily used in all skin graft operation for the fixation of the split thickness skin grafts.

  3. Skin pigmentation kinetics after UVB exposure

    DEFF Research Database (Denmark)

    Ravnbak, M.H.; Philipsen, P.A.; Wiegell, S.R.

    2008-01-01

    There have been few previous studies of the kinetics of pigmentation following ultraviolet B (UVB) exposure, and these have included only fair-skinned persons. The current study investigated pigmentation increase to steady state and fading in 12 Scandinavians and 12 Indians/Pakistanis. Over...... a period of 3 weeks the subjects were UV-irradiated 6 times on the right side of the back and 12 times on the left side using a Solar Simulator and narrowband UVB with equal sub-Minimal Melanogenesis Doses (individually predetermined). Pigmentation was measured from skin remittance at 555 urn and 660 nm...... (allowing correction for erythema). The absolute pigmentation increase was independent of pre-exposure pigmentation, therefore the percentage pigmentation increase was higher in fair-skinned volunteers. The UV dose to minimal pigmentation was higher in darker-skinned persons for single and multiple UV...

  4. Reconstruction of voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula Cristina Guimaraes

    2010-01-01

    Radiotherapy is a therapeutic modality that utilizes ionizing radiation for the destruction of neoplastic human cells. One of the requirements for this treatment methodology success lays on the appropriate use of planning systems, which performs, among other information, the patient's dose distribution estimate. Nowadays, transport codes have been providing huge subsidies to these planning systems, once it enables specific and accurate patient organ and tissue dosimetry. The model utilized by these codes to describe the human anatomy in a realistic way is known as voxel phantoms, which are represented by discrete volume elements (voxels) directly associated to tomographic data. Nowadays, voxel phantoms doable of being inserted and processed by the transport code MCNP (Monte Carlo N-Particle) presents a 3-4 mm image resolution; however, such resolution limits some thin body structure discrimination, such as skin. In this context, this work proposes a calculus routine that discriminates this region with thickness and localization in the voxel phantoms similar to the real, leading to an accurate dosimetric skin dose assessment by the MCNP code. Moreover, this methodology consists in manipulating the voxel phantoms volume elements by segmenting and subdividing it in different skin thickness. In addition to validate the skin dose calculated data, a set of experimental evaluations with thermoluminescent dosimeters were performed in an anthropomorphic phantom. Due to significant differences observed on the dose distribution of several skin representations, it was found that is important to discriminate the skin thickness similar to the real. The presented methodology is useful to obtain an accurate skin dosimetric evaluation for several radiotherapy procedures, with particular interest on the electron beam radiotherapy, in which highlights the whole body irradiation therapy (TSET), a procedure under implementation at the Hospital das Clinicas da Faculdade de Medicina da

  5. [Laser-assisted lipolysis for gynecomastia: safe and effective skin retraction].

    Science.gov (United States)

    Trelles, Mario; Bonanad, Enrique; Moreno-Moraga, Javier; Alcolea, Justo; Mordon, Serge; Leclère, Franck Marie

    2013-01-01

    To evaluate efficacy of laser lipolysis in the treatment of gynecomastia to correct breast volume, flaccidity and excess skin without its excision. Prospectively, 32 patients with gynecomastia under tumescent anaesthesia and sedation underwent laser lipolysis with 980 nm diode laser, 15W continuous emission and 8 to 12 kJ energy per breast. Externally cold air was used to protect the skin. No drainages were used but a compressive bandage. Patients evaluated results on a VAS scale. Two doctors evaluated results comparing before and 6 month after photographs and also measured the areola and chest diameter. Twenty three patients considered results as Very Good, 7 Good and 2 Fair Cutaneous retraction of the areola was noticeable one month after the surgery and was maximum 6 months after. Evaluation by doctors was 26 Very Good, 5 Good and 1 Fair. There were no burns, ischemia or lesions in areolas or nipples. Laser assisted liposuction is a simple and efficacious technique, barely traumatic and permits a rapid reincorporation to normal activities.

  6. Characterization of ionizing radiation effects on human skin allografts

    International Nuclear Information System (INIS)

    Bourroul, Selma Cecilia

    2004-01-01

    The skin has a fundamental role in the viability of the human body. In the cases of extensive wounds, allograft skin provides an alternative to cover temporarily the damaged areas. After donor screening and preservation in glycerol (above 85%), the skin can be stored in the Skin Banks. The glycerol at this concentration has a bacteriostatic effect after certain time of preservation. On the other hand, skin sterilization by ionizing radiation may reduces the quarantine period for transplantation in patients and its safety is considered excellent. The objectives of this work were to establish procedures using two sources of ionizing radiation for sterilization of human skin allograft, and to evaluate the skin after gamma and electron beam irradiation. The analysis of stress-strain intended to verify possible effects of the radiation on the structure of preserved grafts. Skin samples were submitted to doses of 25 kGy and 50 kGy in an irradiator of 60 Co and in an electron beam accelerator. Morphology and ultra-structure studies were also accomplished. The samples irradiated with a dose of 25 kGy seemed to maintain the bio mechanic characteristics. The gamma irradiated samples with a dose of 50 kGy and submitted to an electron beam at doses of 25 kGy and 50 kGy presented significant differences in the values of the elasticity modulus, in relation to the control. The analysis of the ultramicrographies revealed modifications in the structure and alterations in the pattern of collagen fibrils periodicity of the irradiated samples. (author)

  7. Dose enhancement in the neighborhood of foreign bodies of the skin due to electron irradiation. A Monte-Carlo study using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Bernd [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (DE). Inst. of Radiation Research (ISF)

    2011-07-01

    Foreign bodies penetrate into the skin in the region of the hand very frequently. If they are amicrobic, they can get stuck in the skin and do no harm to the body in normal case. However, when handling with a radioactive material, like an Sr-90/Y-90 syringe for example, a stuck foreign body in a finger can lead to an enhanced absorbed dose in the neighbourhood of a few hundredths of millimetre of a foreign body, which just is in magnitude of a body cell. In the following, we shall investigate the dose enhancement effect of graphite, lead, and gold when embedded in soft tissue and irradiated with electrons. This case study focusses on the region close to the piece of metal (foreign body) without consideration for the depth in which the foreign body is located. It holds some other idealised assumptions (concerning vacuum, shape and size of foreign bodies, tissue composition, and direction of the radiation field) but still is near to real situations. Among others, this case study served to estimate the dose enhancement in the neighbourhood of a pike of lead located at the right forefinger of a member of our Institute of Radiation Research after an Sr-90/Y-90 irradiation. (orig.)

  8. A model for beta skin dose estimation due to the use of a necklace with uranium depleted bullets

    International Nuclear Information System (INIS)

    Lavalle Heibron, P.H.; Pérez Guerrero, J.S.; Oliveira, J.F. de

    2015-01-01

    Depleted uranium bullets were use as munitions during the Kuwait – Iraq war and the International Atomic Energy Agency sampling expert’s team found fragments in the environment when the war was over. Consequently, there is a possibility that members of the public, especially children, collects DU fragments and use it, for example, to make a necklace. This paper estimates the beta skin dose to a child that uses a necklace made with a depleted uranium bullet. The theoretical model for dose estimation is based on Loevinguer’s equation with a correction factor adjusted for the maximum beta energy in the range between 0.1 and 2.5 MeV calculated taking into account the International Atomic Energy Agency expected doses rates in air at one meter distance of a point source of 37 GBq, function of the maximum beta energy. The dose rate estimated by this work due to the child use of a necklace with one depleted uranium bullet of 300 g was in good agreement with other results founded in literature. (authors)

  9. Evaluations of gonad and fetal doses for diagnostic radiology.

    Science.gov (United States)

    Tung, C J; Tsai, H Y

    1999-07-01

    A national survey of patient doses for diagnostic radiology was planned in the Republic of China. We performed a pilot study for this survey to develop a protocol of the dose assessments. Entrance skin doses and organ (including ovary, testicle and uterus) doses were measured by thermoluminescent dosimeters and calculated by means of Monte Carlo simulations for several diagnostic procedures. We derived a formula and used the RadComp software for the computation of entrance skin doses. This formula involves several factors, such as kVp, mAs, the focus-to-skin-distance and aluminum filtration. RadComp software was applied to obtain free-air entrance exposures which were converted to entrance skin doses by considering the backscattering radiation from the body. Organ doses were measured using a RANDO phantom and calculated using a mathematical phantom for several diagnostic examinations. Genetically significant doses were calculated from ovary and testicle doses for the evaluation of hereditary effects. Embryo/fetal doses were determined from the uterine doses by considering the increase in uterus size with gestational age. We found that the patient doses studied in this work were all below the reference doses recommended by the National Radiological Protection Board of the U.K.

  10. SU-F-T-515: Increased Skin Dose in Supine Craniospinal Irradiation Due to Carbon Fiber Couch and Vacuum Bag Immobilization Device

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, D; Zhao, Z; Wang, X; Yang, J [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To measure the surface dose for supine craniospinal irradiation employing posterior beams, treating through an imaging couch and BlueBag immobilization device. Methods: The percentage depth dose (PDD) in the buildup region of a clinical 6 MV photon beam was measured using an Advanced Markus parallel plate ionization chamber in a solid water phantom. The PDD from a 10×10 cm{sup 2} anterior beam was measured at 100 cm SSD, simulating a traditional prone craniospinal technique. The measurements were compared to commissioning and treatment planning system data. The PDD was also measured in a posterior setup with the phantom surface laying directly on the Brainlab carbon fiber imaging couch, with the phantom surface 100 cm from the source, simulating a supine craniospinal setup. The posterior measurements were repeated with a BlueBag vacuum immobilization device between the couch and phantom, with thicknesses of 1.7 cm and 5 cm. The PDD from a 10×10 cm{sup 2} field and a typical 6×30 cm{sup 2} craniospinal field were also compared. The PDDs were normalized at 5 cm to reflect typical craniospinal prescription dose normalization. Results: The measured PDD curve from the anterior setup agreed well with commissioning and treatment planning data, with surface doses of 19.9%, 28.8% and 27.7%, respectively. The surface doses of the 10×10 cm{sup 2} and 6×30 cm{sup 2} fields delivered through the imaging couch were both 122.4%. The supine setup yielded surface doses of 122.4%, 121.6%, and 119.6% for the couch only, 1.7 cm bag, and 5 cm bag setups, respectively. Conclusion: Delivering craniospinal irradiation through a carbon fiber couch removes the majority of skin sparing. The addition of a vacuum bag immobilization device restores some skin sparing, but the magnitude of this effect is negligible.

  11. Radiation protection guidelines for the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1990-01-01

    This paper reviews the history of radiation protection standards for the skin with particular reference to past recommendations of the ICRP concerning dose limits to the skin and the work of the ICRP Task Group appointed in 1987. Data are also presented on the effect of radiation on Langerhans cells in the skin, and the effect of interaction of ultraviolet radiation and x-rays and of protraction of radiation on skin cancer induction in mice. (UK)

  12. Incidence of malignant skin tumors in 14,140 patients after grenz-ray treatment for benign skin disorders

    International Nuclear Information System (INIS)

    Lindeloef, B.E.; Eklund, G.

    1986-01-01

    During the years 1949 to 1975, 14,237 patients received therapeutic doses of grenz rays for the treatment of benign skin disorders such as chronic eczema, psoriasis, and warts. The records of 14,140 of these patients (99.3%) formed the basis for an epidemiologic study of the incidence of skin malignancies in this population. Information about the patients, diagnoses, doses, and sites of treatment was obtained from separate records. The follow-up time was 15 years on the average. We searched the Swedish Cancer Registry, Stockholm, for records reporting the incidence of malignant skin tumors in the study population (incidences of basal cell carcinoma are not registered). The expected number of malignancies was calculated on the basis of age- and sex-standardized incidence data from the Swedish Cancer Registry. In 58 patients, a malignant skin tumor was diagnosed more than five years after grenz-ray therapy had first been administered. Nineteen patients had malignant melanomas, and 39 patients had other malignant skin tumors. The expected number of melanomas was 17.8, and that of other malignant skin tumors was 26.9. None of the patients with melanomas, and only eight of the patients with other malignant skin tumors, had received grenz-ray therapy at the site of the tumor. Six of these eight patients had also been exposed to other known carcinogens. Four hundred eighty-one patients had received an accumulated high dose of grenz rays (greater than or equal to 10 000 rad [greater than or equal to 100 Gy]) on one and the same area. No malignancies were found on those areas. Although we cannot exclude grenz-ray therapy as a risk factor in the development of nonmelanoma skin malignancies, this risk, if any, is small, if recommendations for therapy are followed

  13. An experimental study of the effect of total lymphoid irradiation on the survival of skin allografts

    International Nuclear Information System (INIS)

    Park, Charn Il; Han, Man Chung

    1981-01-01

    The study was undertaken to determine the effect of fractionated high-dose total lymphoid irradiation (TLI) on the survival of skin allograft despite major histocompatibility difference. Total lymphoid irradiation is a relatively safe form of radiotherapy, has been used extensively to treat lymphoid malignancies in humans with few side effects. A total of 90 rats, Sprague-Dawley rat as recipient and Wistar rat as donor, were used for the experiment, of which 10 rats were used to determine mixed lymphocyte response (MLR) for antigenic difference and skin allografts was performed in 30 rats given total lymphoid irradiation to assess the immunosuppressive effect of total lymphoid irradiation despite major histocompatibility difference. In addition, the peripheral white blood cell counts and the proportion of lymphocytes was studied in 10 rats given total lymphoid irradiation but no skin graft to determine the effects of bone marrow suppression. The results obtained are summarized as follows. 1. The optimum dose of total lymphoid irradiation was between 1800 rads to 2400 rads. 2. The survival of skin graft on rats given total lymphoid irradiation (23.2 ± 6.0 days) was prolonged about three folds as compared to unirradiated control (8.7 ± 1.3 days). 3. Total lymphoid irradiation resulted in a severe leukopenia with marked lymphopenia, but the count was normal by the end of 3rd week. 4. The study suggests that total lymphoid irradiation is a nonlethal procedure that could be used successfully in animals to transplant allograft across major histocompatibility barriers

  14. An experimental study of the effect of total lymphoid irradiation on the survival of skin allografts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Charn Il; Han, Man Chung [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    1981-06-15

    The study was undertaken to determine the effect of fractionated high-dose total lymphoid irradiation (TLI) on the survival of skin allograft despite major histocompatibility difference. Total lymphoid irradiation is a relatively safe form of radiotherapy, has been used extensively to treat lymphoid malignancies in humans with few side effects. A total of 90 rats, Sprague-Dawley rat as recipient and Wistar rat as donor, were used for the experiment, of which 10 rats were used to determine mixed lymphocyte response (MLR) for antigenic difference and skin allografts was performed in 30 rats given total lymphoid irradiation to assess the immunosuppressive effect of total lymphoid irradiation despite major histocompatibility difference. In addition, the peripheral white blood cell counts and the proportion of lymphocytes was studied in 10 rats given total lymphoid irradiation but no skin graft to determine the effects of bone marrow suppression. The results obtained are summarized as follows. 1. The optimum dose of total lymphoid irradiation was between 1800 rads to 2400 rads. 2. The survival of skin graft on rats given total lymphoid irradiation (23.2 {+-} 6.0 days) was prolonged about three folds as compared to unirradiated control (8.7 {+-} 1.3 days). 3. Total lymphoid irradiation resulted in a severe leukopenia with marked lymphopenia, but the count was normal by the end of 3rd week. 4. The study suggests that total lymphoid irradiation is a nonlethal procedure that could be used successfully in animals to transplant allograft across major histocompatibility barriers.

  15. Skin response to X-irradiation in the guinea-pig

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R J; Mole, R H; Barnes, D W.H. [Medical Research Council, Harwell (UK). Radiobiological Research Unit

    1976-12-01

    Skin reaction to X-irradiation has been studied in the albino quinea-pig; early response in limited-field irradiations of the flank was comparable to that commonly seen in rodents, swine and man, and was dose-dependent with a dynamic range from mild erythema to moist desquamation. The peak early skin reaction was seen between 14 and 21 days after irradiation, and declined before 30 days except at the highest doses used. Fractionation of the X-ray dose at 24 hours resulted in a 'sparing' of about 340 rad. Permanent partial epilation was detectable at doses in excess of 1400 rad, and complete epilation at 1 year occurred in 50 per cent of irradiated fields at 1740 rad. Twenty-four hour two-dose fractionation resulted in a 'sparing' of about 500 rad for epilation. Palpable dermal 'fibrosis' was detectable at 3 months after irradiation in fields given more than 2070 rad, and at 1 year after irradiation in fields given more than 1800 rad; 50 per cent of fields showed palpable 'fibrosis' at 1 year at 1930 rad. Unlike domestic swine and man, skin fields in the quinea-pig showed no dimensional contraction after X-ray doses which produced gross early skin damage.

  16. Influence of fractionation of dose on 3 year results of X-ray therapy of skin cancer

    International Nuclear Information System (INIS)

    Szymczyk, W.; Radziszewska, J.; Cyplik, I.; Glinska, H.

    1985-01-01

    Three-year results of X-ray therapy of skin cancer in 345 patients are presented. The dependence of results on the size of irradiated field and the method of dose fractionation is analysed. The clinical usefulness of a cumulative radiation effect (CRE) is evaluated. 96.5% of three-year cures were obtained. Recurrences amounted to 1.6% and necroses to 1.9% of treated lesions. It has been shown that treatment of small fields with 8-fractions gave equally positive results as with 15-fractions whereas in the treatment of large lesions the selection of CRE value, a number of fractions and dose should let the value of CRE minimally exceeds the level of tolerance of healthy tissues. The regard to CRE value in the treatment of large lesions or the introduction of additional dosimetric acts seems to be useful. 10 refs., 1 fig., 5 tabs. (author)

  17. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    Science.gov (United States)

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. Copyright © 2015. Published by Elsevier B.V.

  18. Patient doses in interventional cardiology procedures

    International Nuclear Information System (INIS)

    Domienik, J.; Papierz, S.; Jankowski, J.; Peruga, J.Z.

    2008-01-01

    In most countries of European Union legislation requires the determination of the total skin dose to patient resulting from interventional procedures to assess the risk of deterministic effect. To this end, various dose indicators like dose area product (DAP), cumulative dose (CD) and entrance dose at the patient plane (EFD) are used in clinical practice. The study aims at relating those dose indicators with doses ascribe to the most irradiated areas of the patient skin usually expressed in terms of local maximal skin dose (MSD). For the study the local MSD and related to their areas are investigated and compared for coronary angiography CA and intervention (PCI). Two methods implying radiographic films Kodak EDR2 and matrixes of thermoluminescent dosimeters (TLDs) are applied for direct measurements of dose distribution for selected procedures. Both methods are compared. Additionally, for patient dosimetry the following data: MSD, CD, EFD, fluoroscopy time (FT), number of acquired images, total DAP, fluoro-DAP and record-DAP were collected for randomly selected procedure. The statistical quantities like: median, 3 rd quartile, mean and standard deviation for all dosimetric parameters are determined. Preliminary study showed that the values of data collected for coronary procedures are in the ranges 0,7 - 27,3 min for fluoroscopy time, 50 - 350 Gy cm 2 for total DAP, 300 - 2000 mGy for CD, 140 - 2000 mGy for EFD and 100 - 1500 mGy for local maximal skin dose. For interventions the ranges are, accordingly 3,0 - 43,6 min , 25 - 450 Gy cm 2 , 270 - 6600 mGy, 80 - 2600 mGy and 80 - 1500 mGy. As a result of the study the correlations between dose indicators and local MSD are analyzed. The concentration of dose on irradiated films are going to be investigated in some detail as well. (author)

  19. Radiation exposure to skin following radioactive contamination

    International Nuclear Information System (INIS)

    Baumann, H.; Beyermann, M.; Kraus, W.

    1989-01-01

    In the case of skin contamination intensive decontamination measures should not be carried out until the potential radiation exposure to the basal cell layer of the epidermis was assessed. Dose equivalent rates from alpha-, beta- or photon-emitting contaminants were calculated with reference to the surface activity for different skin regions as a function of radiation energy on the condition that the skin was healthy and uninjured and the penetration of contaminants through the epidermis negligible. The results have been presented in the form of figures and tables. In the assessment of potential skin doses, both radioactive decay and practical experience as to the decrease in the level of surface contamination by natural desquamation of the stratum corneum were taken into account. 9 figs., 5 tabs., 46 refs. (author)

  20. WE-DE-201-11: Sensitivity and Specificity of Verification Methods Based On Total Reference Air Kerma (TRAK) Or On User Provided Dose Points for Graphically Planned Skin HDR Brachytherapy

    International Nuclear Information System (INIS)

    Damato, A; Devlin, P; Bhagwat, M; Buzurovic, I; Hansen, J; O’Farrell, D; Cormack, R

    2016-01-01

    Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of the clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.

  1. WE-DE-201-11: Sensitivity and Specificity of Verification Methods Based On Total Reference Air Kerma (TRAK) Or On User Provided Dose Points for Graphically Planned Skin HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Damato, A; Devlin, P; Bhagwat, M; Buzurovic, I; Hansen, J; O’Farrell, D; Cormack, R [Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of the clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.

  2. Tumescent Anethesia : A Useful Technique For Harvesting Split- Thickness Skin Graft

    Directory of Open Access Journals (Sweden)

    Saraf Sanjay

    2004-01-01

    Full Text Available Tumescent anesthesia is a now an established technique for regional anesthesia of the skin and the subcutaneous fatty tissue. The unsurpassed simplicity and safely of this procedure have opened up the gates for newer indications. We have employed this technique for harvesting split-thickness grafts in various conditions. We have found that this technique is extremely simple in which large areas can be anesthetized for harvesting split-thickness skin grafts safely. The good passive resistance achieved facilitates easy harvesting of split-thickness grafts along with minimal bleeding and long lasting pain relief. We found this to be an inexpensive, safe and simple technique with elimination of risks and expenses of general anesthesia.

  3. FLUORESCENT DIAGNOSTICS OF MALIGNANT SKIN TUMORS WITH CHLORIN SERIES PHOTOSENSITIZERS

    Directory of Open Access Journals (Sweden)

    E. V. Yaroslavtseva-Isaeva

    2018-01-01

    Full Text Available The article shows possibilities in fluorescence imaging of malignant skin tumors with chlorin series photosensitizers (PS photolon and fotoditazin. The regularities of photosensitizer accumulation from the data of local fluorescence spectroscopy depending on the PS and its dose, the clinical picture and the histological form of the malignant skin neoplasm is investigated. It is shown that the level and selectivity of PS accumulation in the tumor focus depends on the PS dose. In studies on 10 patients with basal cell skin cancer after the introduction of fotoditazin at a dose less than 1 mg/kg, fluorescent contrast between tumor and healthy tissue varied between 1.3 and 9.5, the average was 2.8±0.3; for patients who had the administered fotoditazin dose of 1 mg/kg, fluorescent contrast was 2.9±0.4, varying from 1.4 to 5. In a study with 127 patients after the introduction of photolon in the dose of 0.7-1 mg/kg, the average value of the fluorescence intensity in relative units in the intact skin was 6.9±0.3 (min 4.6, max 12.2, at a dose of 1.1 to 1.4 mg/kg – 8.0±0.3 (min 4.6, max 12.5, at a dose of 1.5-2 mg/kg – 9.9±0.7 (min 5.7, max 20.3. It is also shown that fluorescence intensity of malignant neoplasm of the skin with the same dose of the photosensitizer depends on the neoplasm’s clinical and histological forms. So, 3 hours after the introduction of photolon at a dose of 1.3 mg/kg the average fluorescent contrast in the surface type of skin cancer was 2.7±0.5, in the nodal form – 2.3±0.2, in erosive-ulcerative form – 3.6±0.3. In patients with nodular form of squamous skin cancer after the introduction of photolon at a dose of 1.3 mg/kg fluorescent contrast was significantly higher (p<0.05 (average of 2.8±0.2 than in the nodular form of basal cell carcinoma after the introduction of photolon at the same dose (average of 2.1±0.2.

  4. Measurement of dose to skin using TLD of several radiodiagnostic studies in San Jose, Costa Rica; Medicion de dosis a piel utilizando TLD de varios estudios radiodiagnosticos en San Jose, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Mora, P. [Laboratorio de Fisica Nuclear Aplicada, Escuela de Fisica, Universidad de Costa Rica, San Jose (Costa Rica)

    1998-12-31

    It is quantified the radiation doses on skin for several radiodiagnostic studies in patients of the Calderon Guardia Hospital in San Jose, Costa Rica at the period October 1997-September 1998 using thermoluminescent dosemeters TLD 100. The crystals receive the decoction standard procedures and they are arranged at the middle of the irradiation field. For a total of 973 radiodiagnostic studies it was found that the dose on skin in mGy are: 2.09 for thorax AP/AP, 5.33 for thorax LAT, 5.35 for skull AP/PA, 2.98 for skull LAT, 10.74 for abdomen, hips and pelvis, 6.20 for spines AP, 9.35 for spines LAT, 11.48 for lumbar columns AP, 29.99 for lumbar columns LAT and 6.87 for intravenous skin diagrams (first plate ap). It is produced thus the first reference bank for the national hospitals, which is compared with the orientation levels of doses for IAEA. Recommendations to diminish the collective doses through quality control programs are discussed, taking as goal to have got radiographs of excellent diagnostic quality, but with the less possible doses. (Author)

  5. Commissioning and quality assurance procedures for the HDR Valencia skin applicators

    Directory of Open Access Journals (Sweden)

    Domingo Granero

    2016-11-01

    Full Text Available The Valencia applicators (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden are cup-shaped tungsten applicators with a flattening filter used to collimate the radiation produced by a high-dose-rate (HDR 192 Ir source, and provide a homogeneous absorbed dose at a given depth. This beam quality provides a good option for the treatment of skin lesions at shallow depth (3-4 mm. The user must perform commissioning and periodic testing of these applicators to guarantee the proper and safe delivery of the intended absorbed dose, as recommended in the standards in radiation oncology. In this study, based on AAPM and GEC-ESTRO guidelines for brachytherapy units and our experience, a set of tests for the commissioning and periodic testing of the Valencia applicators is proposed. These include general considerations, verification of the manufacturer documentation and physical integrity, evaluation of the source-to-indexer distance and reproducibility, setting the library plan in the treatment planning system, evaluation of flatness and symmetry, absolute output and percentage depth dose verification, independent calculation of the treatment time, and visual inspection of the applicator before each treatment. For each test, the proposed methodology, equipment, frequency, expected results, and tolerance levels (when applicable are provided.

  6. Patient doses in digital cardiac imaging

    International Nuclear Information System (INIS)

    Huda, W.; Ogden, K.M.; Roskopf, M.L.; Phadke, K.

    2001-01-01

    In this pilot study, we obtained estimates of entrance skin doses and the corresponding effective doses to patients undergoing digital cardiac imaging procedures on a GE Advantx LC/LP Plus system. Data were obtained for six patients undergoing diagnostic examinations and six patients who had interventional procedures. For each patient examination, radiographic techniques for fluoroscopic and digital cine imaging were recorded, together with the irradiation geometry. The projection with the highest exposure resulted in an average skin dose of 0.64 ± 0.41 Gy (maximum of 1.6 Gy). The average patient skin doses taking into account overlapping projections was 1.1 ± 0.8 Gy (maximum of 3.0 Gy). The exposure area product (EAP) incident on the patient was converted into the energy imparted to the patient and the corresponding effective dose. The average patient effective dose was 28 ± 14 mSv (maximum 62 mSv), with the resultant average fatal cancer risk estimated to be of the order of 8x10 -3 . Average doses for interventional procedures in cardiac imaging are higher than those associated with diagnostic examinations by approximately 50%. (author)

  7. Radiation-induced cancer of the skin in man

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro; Moriya, Kumiko; Kobayashi, Toshio

    1981-01-01

    Eight cases of radiation induced cancer of the skin observed at the Shinshu University during 30 years from 1951 to 1938 were reported. All of the tumors were squamous cell carcinomas; 7 out of 8 cases occurred in males. Primary conditions for which irradiation was given were 6 cases of benign disorders of various skin disease and 2 cases of spinal tuberculosis. The mean age at which these patients were first subjected to radiation therapy was 31 years. At the time when the diagnosis of skin cancer was established, the mean age was 47 years, with a range from 35 to 58 years. The latent period distributed between 9 and 28 years, with the average of 16.4 years. The estimated radiation doses sufficient to induce cancer of the skin was found to be some thousands R or more, the lowest irradiation dose being about 2,000 R. There was no close correlation between the radiation dose and the latent period, nor between the age of the patient at the time of irradiation and the latent period. The tumors usually occurred in the skin areas where extensive irradiation changes were shown, especially in ulcerative area. (author)

  8. Unscheduled DNA synthesis after β-irradiation of mouse skin in situ

    International Nuclear Information System (INIS)

    Ootsuyama, Akira; Tanooka, Hiroshi

    1986-01-01

    The skin of ICR mouse was irradiated with β-rays from 90 Sr- 90 Y with surface doses up to 30 krad. Unscheduled DNA synthesis (UDS) was measured by autoradiography after labeling the skin with radioactive thymidine using the forceps-clamping method. The level of UDS in epithelial cells of the skin was detected as an increasing function of radiation dose. Fibroblastic cells, compared with epithelial cells and hair follicle cells at the same depth of the skin, showed a lower level of UDS, indicating a lower DNA repair activity in fibroblasts. Cancer risk of the skin was discussed. (Auth.)

  9. Neither high-dose nor low-dose brachytherapy increases flap morbidity in salvage treatment of recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Peter W. Henderson

    2016-08-01

    Full Text Available Purpose: While brachytherapy is often used concurrently with flap reconstruction following surgical ablation for head and neck cancer, it remains unclear whether it increases morbidity in the particularly high risk subset of patients undergoing salvage treatment for recurrent head and neck cancer (RH&NC. Material and methods : A retrospective chart review was undertaken that evaluated patients with RH&NC who underwent flap coverage after surgical re-resection and concomitant brachytherapy. The primary endpoint was flap viability, and the secondary endpoints were flap and recipient site complications. Results : In the 23 subjects included in series, flap viability and skin graft take was 100%. Overall recipient site complication rate was 34.8%, high-dose radiation (HDR group 50%, and low-dose radiation (LDR group 29.4%. There was no statistically significant difference between these groups. Conclusions : In patients who undergo flap reconstruction and immediate postoperative radiotherapy following salvage procedures for RH&NC, flap coverage of defects in combination with brachytherapy remains a safe and effective means of providing stable soft tissue coverage.

  10. Patient Dose Considerations in Interventional Cardiology

    International Nuclear Information System (INIS)

    Ciraj-Bjelac, O.; Rafajlovic, S.; Arandjic, D.; Kosutic, D.

    2011-01-01

    Interventional cardiology procedures are classified as high-dose procedures, owing to increased risk for radiation skin injuries and stochastic effects, such as cancer. European MED Directive 97/43 requires special consideration and dose evaluation for this kind of procedures . Dose received by a patient, in general, depends on the radiological equipment, examination protocol, the way it is implemented, the patient's body weight and nature of disease. Long-term fluoroscopy of certain parts of the body, a significant body mass, high-value dose intensity, continuous rather than pulsed fluoroscopy, small focus-skin distance and repeated procedure on the same patient, are among the factors that can lead to radiation skin injuries. A particular challenge is the fact that the radiation damage of the skin is difficult to detect and connect to the previously conducted cardiologic procedures. The fact that such injuries do not have immediate manifestation is very often reason that many of them remain undetected. The purpose of this work is to assess the level of radiation dose to patients in percutaneous coronary interventions (PCI) and to investigate possibility for setting of a practical trigger value if dose quantities exceed certain levels in terms of dose descriptors available at display of interventional cardiology unit. Two dedicated interventional cardiology units in a large teaching cardiac centre (Clinical Centre of Serbia, Belgrade, Serbia) were included in the survey. Both rooms (D and F) were equipped with X-ray units of the identical model: Siemens Axiom Artis (Siemens, Erlangen, Germany) with the flat panel detector and integrated ionization chamber to measure air kerma-area product (P K A) and air kerma in international reference point (K I RP). Patient doses were assessed in terms of P K A, K I RP and maximum-skin dose (MSD). P K A and K I RP were assessed using a built-in, in situ calibrated dosimeters, while MSD was estimated using radiochromic films

  11. When hot particles are not on the skin

    International Nuclear Information System (INIS)

    Chabot, G.E.; Skrable, K.W.; French, C.S.

    1988-01-01

    In this paper a beta point source dose distribution function, cast in a form similar to that use in describing transmission of photons from point isotropic sources, is presented. The use of an apparent dose buildup factor and an effective value of the mass stopping power for beta distribution in the medium of interest allow the function to be applied in situations where the point source is in contact with the skin or separated from the skin by air or other energy absorbing materials. Example calculations are presented for a Co-60 particle on the skin (and compared to other methods) and for a Co-60 particle on protective clothing that is separated from the skin by an air gap

  12. Skin dose and response for the head and neck in patients irradiated with x-ray for tinea capitis: implications for environmental radioactivity

    International Nuclear Information System (INIS)

    Harley, N.H.; Kolber, A.B.; Shore, R.E.; Albert, R.E.; Altman, S.M.; Pasternack, B.S.

    1983-01-01

    The dose delivered to the skin of the head and neck in patients treated with x-ray irradiation for childhood tinea capitis was reconstructed. This was possible by utilizing a phantom made from the skull of a seven year old child and irradiating it with the same technique and x-ray machine used in tinea capitis therapy two to four decades ago. Seventy-eight basal cell carcinomas (BCC) have appeared so far in 40 of 1727 irradiated white children and none in 500 irradiated black children. The dose distribution over the face and scalp is used to estimate the risk of BCC per person per rad. These results must be considered preliminary due to the relatively young age of the irradiated group (<50 years) at the present time. From the decreased risk per rad for the portion of the scalp that is hair covered, it appears that environmental ultraviolet radiation may play a key role in the expression of BCC. A cumulative hazard plot is utilized to tentatively extend the data to lifetime risk of 0.003 per rad with an upper limit of 0.006 per rad. Environmental radiation dose to the skin possibly account for 20% of observed BCC if this tentative risk estimate is valid

  13. An update on the use of laser technology in skin vaccination

    Science.gov (United States)

    Chen, Xinyuan; Wang, Ji; Shah, Dilip; Wu, Mei X

    2014-01-01

    Vaccination via skin often induces stronger immune responses than via muscle. This, in line with potential needle-free, painless delivery, makes skin a very attractive site for immunization. Yet, despite decades of effort, effective skin delivery is still in its infant stage and safe and potent adjuvants for skin vaccination remain largely undefined. We have shown that laser technologies including both fractional and non-fractional lasers can greatly augment vaccine-induced immune response without incurring any significant local and systemic side effects. Laser illumination at specific settings can accelerate the motility of antigen-presenting cells or trigger release of ‘danger’ signals stimulating the immune system. Moreover, several other groups including the authors explore laser technologies for needle-free transcutaneous vaccine delivery. As these laser-mediated resurfacing technologies are convenient, safe and cost-effective, their new applications in vaccination warrant clinical studies in the very near future. PMID:24127871

  14. Dosimetry and therapy of skin contaminations

    International Nuclear Information System (INIS)

    Piechowski, J.; Menoux, B.; Chaptinel, Y.; Durand, F.

    1988-10-01

    This study has been developed to provide guidance to physicians on the handling of skin contaminations in some accidental circumstances. The first stage of diagnosis and consequently of the possible therapy in order to avoid or mitigate radiodermatitis is to appreciate the importance of the contaminations and to foresee their local consequences. Two theoretical cases have been considered: a) strictly superficial contamination; b) deep contamination with homogeneous penetration of the contaminant into the epidermis. The superficial and deep theoretical distributions correspond respectively to the lower and upper absorbed doses in the basal layer. Tables of dose equivalent rates and committed dose equivalents to the skin are supplied for a large number of radionuclides likely to be met in the nuclear industry as well as in various fields of research, medicine and pharmacology using radioactive techniques. Besides these theoretical dose factors, the practitioner will find monitoring procedures, dose calculations and practical data concerning decontamination [fr

  15. Evaluation of the Efficiency of the Foxtail Millet Vacuum Cushion in Skin Cancer Radiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin; Cheol; Lee, Kyung Jae; Jung, Sung Min; Oh, Tae Seong; Park, Jong Il; Shin, Hyun Kye [Dept. of Radiation Oncology, Ewha Womans University Mokdong Hospital, Seoul (Korea, Republic of)

    2012-09-15

    The sufficiency of skin dose and the reemergence of patient set-up position to the success of skin cancer radiation treatment is a very important element. But the conventional methods to increase the skin dose were used to vacuum cushion, bolus and water tank have several weak points. For this reason, we produced Foxtail Millet Vacuum Cushion and evaluated the efficiency of the Foxtail Millet Vacuum Cushion in skin cancer Radiation treatment. We measured absolute dose for 3 materials (Foxtail Millet Vacuum Cushion, bolus and solid water phantom) and compared each dose distribution. We irradiated 6 MV 100 MU photon radiation to every material of 1 cm, 2 cm, 3 cm thickness at three times. We measured absolute dose and compared dose distribution. Finally we inspected the CT simulation and radiation therapy planing using the Foxtail Millet Vacuum Cushion. Absolute dose of Foxtail Millet Vacuum Cushion was similar to absolute dose of bolus and solid water phantom's result in each thickness. it Showed only the difference of 0.1-0.2% between each material. Also the same result in dose distribution comparison. About 97% of the dose distribution was within the margin of error in the prescribed ranges (100{+-}3%), and achieved the enough skin dose (Gross Tumor Volume dose : 100{+-}5%) in radiation therapy planing. We evaluated important fact that Foxtail Millet Vacuum Cushion is no shortage of time to replace the soft tissue equivalent material and normal vacuum cushion at the low energy radiation transmittance. Foxtail Millet Vacuum Cushion can simultaneously achieve the enough skin dose in radiation therapy planing with maintaining normal vacuum cushion' function. Therefore as above We think that Foxtail Millet Vacuum Cushion is very useful in skin cancer radiation treatment.

  16. A rapid infusion protocol is safe for total dose iron polymaltose: time for change.

    Science.gov (United States)

    Garg, M; Morrison, G; Friedman, A; Lau, A; Lau, D; Gibson, P R

    2011-07-01

    Intravenous correction of iron deficiency by total dose iron polymaltose is inexpensive and safe, but current protocols entail prolonged administration over more than 4 h. This results in reduced patient acceptance, and hospital resource strain. We aimed to assess prospectively the safety of a rapid intravenous protocol and compare this with historical controls. Consecutive patients in whom intravenous iron replacement was indicated were invited to have up to 1.5 g iron polymaltose by a 58-min infusion protocol after an initial 15-min test dose without pre-medication. Infusion-related adverse events (AE) and delayed AE over the ensuing 5 days were also prospectively documented and graded as mild, moderate or severe. One hundred patients, 63 female, mean age 54 (range 18-85) years were studied. Thirty-four infusion-related AE to iron polymaltose occurred in a total of 24 patients--25 mild, 8 moderate and 1 severe; higher than previously reported for a slow protocol iron infusion. Thirty-one delayed AE occurred in 26 patients--26 mild, 3 moderate and 2 severe; similar to previously reported. All but five patients reported they would prefer iron replacement through the rapid protocol again. The presence of inflammatory bowel disease (IBD) predicted infusion-related reactions (54% vs 14% without IBD, P cost, resource utilization and time benefits for the patient and hospital system. © 2011 The Authors. Internal Medicine Journal © 2011 Royal Australasian College of Physicians.

  17. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  18. Third Degree Skin Burns Caused by an MRI Compatible Electrocardiographic Monitoring System

    DEFF Research Database (Denmark)

    Brix, Lau; Isaksen, Christin Rosendahl Graff; Kristensen, Birgitte Hornbæk

    of the assigned compatibility specifications of the leads due to the use of TFE sequences with high SAR values. MRI compatible monitoring systems are only safe when used with proper care. The presented burn cases may have been avoided if space had been provided between the ECG leads and the skin using a cloth....... This holds true even in cases in which the devices are MRI compatible and therefore safe in specified MRI environments. Of particular interest to this case report is skin burns caused by the ECG monitoring equipment. In this context, several cases of ECG electrode related burns have been reported, while...... burns caused by the ECG cables are less common [1]. This case report presents two unusual cases of skin burns which were caused by MRI safe ECG leads during scanning. Cases:Two patients suffered third degree burns using MRI approved ECG leads (Medrad® Veris MR Monitor system) in a Siemens Skyra 3...

  19. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  20. Fate of chemicals in skin after dermal application: does the in vitro skin reservoir affect the estimate of systemic absorption?

    International Nuclear Information System (INIS)

    Yourick, Jeffrey J.; Koenig, Michael L.; Yourick, Debra L.; Bronaugh, Robert L.

    2004-01-01

    Recent international guidelines for the conduct of in vitro skin absorption studies put forward different approaches for addressing the status of chemicals remaining in the stratum corneum and epidermis/dermis at the end of a study. The present study investigated the fate of three chemicals [dihydroxyacetone (DHA), 7-(2H-naphtho[1,2-d]triazol-2-yl)-3-phenylcoumarin (7NTPC), and disperse blue 1 (DB1)] in an in vitro absorption study. In these studies, human and fuzzy rat skin penetration and absorption were determined over 24 or 72 h in flow-through diffusion cells. Skin penetration of these chemicals resulted in relatively low receptor fluid levels but high skin levels. For DHA, penetration studies found approximately 22% of the applied dose remaining in the skin (in both the stratum corneum and viable tissue) as a reservoir after 24 h. Little of the DHA that penetrates into skin is actually available to become systemically absorbed. 7NTPC remaining in the skin after 24 h was approximately 14.7% of the applied dose absorbed. Confocal laser cytometry studies with 7NTPC showed that it is present across skin in mainly the epidermis and dermis with intense fluorescence around hair. For DB1, penetration studies found approximately 10% (ethanol vehicle) and 3% (formulation vehicle) of the applied dose localized in mainly the stratum corneum after 24 h. An extended absorption study (72 h) revealed that little additional DB1 was absorbed into the receptor fluid. Skin levels should not be considered as absorbed material for DHA or DB1, while 7NTPC requires further investigation. These studies illustrate the importance of determining the fate of chemicals remaining in skin, which could significantly affect the estimates of systemically available material to be used in exposure estimates. We recommend that a more conclusive means to determine the fate of skin levels is to perform an extended study as conducted for DB1

  1. Dosskin code for radiological evaluation of skin radioactive contaminations

    International Nuclear Information System (INIS)

    Cornejo D, N.

    1996-01-01

    The conceptual procedure and computational features of the DOSSKIN code are shown. This code calculates, in a very interactive way, skin equivalent doses and radiological risk related to skin radioactive contaminations. The evaluation takes into account the contributions of contaminant daughter nuclides and backscattering of beta particles in any skin cover. DOSSKIN also allows to estimate the maximum time needed to decontaminate the affected zone, using, as input quantity, the limit value of skin equivalent dose considered by users. The comparison of the results obtained by the DOSSKIN code with those reported by different authors are showed. The differences of results are less than 30%. (authors). 4 refs., 3 fig., 1 tab

  2. Radiation-induced malignant tumors of skin and their histogenesis

    International Nuclear Information System (INIS)

    Li Guomin; Chen Yunchi; Yang Yejing

    1987-01-01

    Seven cases of radiation-induced malignant tumors and 60 cases of chronic radiation damage of skin are reported. Severe hyperplasia, false epitheliomatoid hyperpiasia and atypical proliferation of epithelia and atypical proliferation of fibrohistocytes were the main changes found in chronic radiation damage of skin. The development of malignant tumors from chronic radiation damage of skin can be divided into 4 periods: necrotic and degenerative change period, benign proliferative period, atypical proliferative period and malignant change period. The incidence of hyperplastic changes of skin is related to the time elapse after irradiation and the integrated dose of radiation. The longer the duration after irradiation and the larger the integrated dose are, the higher will be the incidence of hyperplastic changes

  3. Interactions of skin thickness and physicochemical properties of test compounds in percutaneous penetration studies

    DEFF Research Database (Denmark)

    Wilkinson, Simon C.; Maas, Wilfred J. M.; Nielsen, Jesper Bo

    2006-01-01

    : Percutaneous penetration of caffeine (log P -0.01), testosterone (log P 3.32), propoxur (log P 1.52) (finite dose in ethanol to water vehicle ratio) and butoxyethanol (log P 0.83) (undiluted finite dose or as an infinite dose 50% [v/v] aqueous solution) through skin of varying thicknesses under occluded...... conditions was measured using flow through cells for 8-24 h. Saline (adjusted to pH 7.4) was used as receptor fluid, with BSA added for studies with testosterone and propoxur. Following exposure, the remaining surface dose was removed by swabbing and the skin digested prior to scintillation counting. Results......: The maximum flux of caffeine was increased with decreasing skin thickness, although these differences were found to be non-significant. The presence of caffeine in the skin membrane was not altered by skin thickness. Maximum flux and cumulative dose absorbed of testosterone and butoxyethanol (in both finite...

  4. Skin-Sparing Radiation Using Intensity-Modulated Radiotherapy After Conservative Surgery in Early-Stage Breast Cancer: A Planning Study

    International Nuclear Information System (INIS)

    Saibishkumar, Elantholi P.; MacKenzie, Marc A.; Severin, Diane; Mihai, Alina; Hanson, John M.Sc.; Daly, Helene; Fallone, Gino; Parliament, Matthew B.; Abdulkarim, Bassam S.

    2008-01-01

    Purpose: To evaluate the feasibility of skin-sparing by configuring it as an organ-at-risk (OAR) while delivering whole-breast intensity-modulated radiotherapy (IMRT) in early breast cancer. Methods and Materials: Archival computed tomography scan images of 14 left-sided early-breast tumor patients who had undergone lumpectomy were selected for this study. Skin was contoured as a 4- to 5-mm strip extending from the patient outline to anterior margin of the breast planning target volume (PTV). Two IMRT plans were generated by the helical tomotherapy approach to deliver 50 Gy in 25 fractions to the breast alone: one with skin dose constraints (skin-sparing plan) and the other without (non-skin-sparing plan). Comparison of the plans was done using a two-sided paired Student t test. Results: The mean skin dose and volume of skin receiving 50 Gy were significantly less with the skin-sparing plan compared with non-skin-sparing plan (42.3 Gy vs. 47.7 Gy and 12.2% vs. 57.8% respectively; p < 0.001). The reduction in skin dose was confirmed by TLD measurements in anthropomorphic phantom using the same plans. Dose-volume analyses for other OARs were similar in both plans. Conclusions: By configuring the skin as an OAR, it is possible to achieve skin dose reduction while delivering whole-breast IMRT without compromising dose profiles to PTV and OARs

  5. Radiation doses measured by TLD (thermo luminescent dosimeter) in x-ray examination

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hiraki, Motoji; Murakami, Shozo; Nishikawa, Naozo; Yagi, Takayuki

    1977-01-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field. (auth.)

  6. Dosimetry of skin-contact exposure to tritium gas contaminated surfaces

    International Nuclear Information System (INIS)

    Legare, M.

    1990-12-01

    The radiological hazards from tritium are usually associated with exposure to tritium oxide either by inhalation, ingestion or permeation through skin. However, exposure from skin contact with tritium gas contaminated surfaces represents a different radiological hazard in tritium removal facilities and future fusion power plants. Previous experiments on humans and more recent experiments on hairless rats at Chalk River Laboratories have shown that when a tritium gas-contaminated surface is brought into contact with intact skin, high concentrations of organically-bound tritium in urine and skin are observed which were not seen from single tritiated water (liquid or vapour form) contamination. The results of the rat experiments, which involved measurements of tritium activity in urine and skin, after contact with contaminated stainless steel, are described. These results are also compared to previous data from human experiments. The effect of various exposure conditions and different contaminated surfaces such as brass, aluminum and glass are analysed and related to the results from contaminated stainless steel exposure. Dosimetric models are being developed in order to improve the basis for dose assessment for this mode of tritium uptake. The presently studied model is explained along with the assumptions and methods involved in its derivation. The features of 'STELLA', the software program used to implement the model, are discussed. The methods used to estimate skin and whole body dose from a model are demonstrated. Finally, some experiments for improving the accuracy of the model are proposed. Briefly, this study compares the results from animal and human experiments as well as different exposure conditions, and determines the range of whole body and skin dose that may be involved from skin-contact intake. This information is essential for regulatory purposes particularly in the derivation of doses for skin-contact contamination. (15 figs., 7 tabs., 29 refs.)

  7. Skin test of radiosensitivity. Application to Fanconi anemia

    International Nuclear Information System (INIS)

    Dutreix, J.; Gluckman, E.

    1983-01-01

    A test of skin radiosensitivity is described. It is achieved by irradiating small skin fields (15 mm in diameter) with 50 kV X-rays. The radiosensitivity is evaluated from the skin reaction observed for a single acute dose of 8 and 10 Gy; it is considered increased if the reaction for 10 Gy exceeds the desquamation threshold, and scored according to the observed reaction. The test includes an evaluation of the cellular repair, assessed on the comparison of the reactions for single dose and split irradiation. The time of the reaction peak is also reported. Abnormal reactions have been observed on 4 out of 8 patients with Fanconi Anemia

  8. Skin test of radiosensitivity. Application to Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Dutreix, J. (Institut Gustave-Roussy, 94 - Villejuif (France)); Gluckman, E. (Centre Hayem, Hopital St.-Louis, 75 Paris (France))

    1983-01-01

    A test of skin radiosensitivity is described. It is achieved by irradiating small skin fields (15 mm in diameter) with 50 kV X-rays. The radiosensitivity is evaluated from the skin reaction observed for a single acute dose of 8 and 10 Gy; it is considered increased if the reaction for 10 Gy exceeds the desquamation threshold, and scored according to the observed reaction. The test includes an evaluation of the cellular repair, assessed on the comparison of the reactions for single dose and split irradiation. The time of the reaction peak is also reported. Abnormal reactions have been observed on 4 out of 8 patients with Fanconi Anemia.

  9. Monte Carlo simulations in skin radiotherapy

    International Nuclear Information System (INIS)

    Sarvari, A.; Jeraj, R.; Kron, T.

    2000-01-01

    The primary goal of this work was to develop a procedure for calculation the appropriate filter shape for a brachytherapy applicator used for skin radiotherapy. In the applicator a radioactive source is positioned close to the skin. Without a filter, the resultant dose distribution would be highly nonuniform.High uniformity is usually required however. This can be achieved using an appropriately shaped filter, which flattens the dose profile. Because of the complexity of the transport and geometry, Monte Carlo simulations had to be used. An 192 Ir high dose rate photon source was used. All necessary transport parameters were simulated with the MCNP4B Monte Carlo code. A highly efficient iterative procedure was developed, which enabled calculation of the optimal filter shape in only few iterations. The initially non-uniform dose distributions became uniform within a percent when applying the filter calculated by this procedure. (author)

  10. 'Now she has become my daughter': parents' early experiences of skin-to-skin contact with extremely preterm infants.

    Science.gov (United States)

    Maastrup, Ragnhild; Weis, Janne; Engsig, Anne B; Johannsen, Kirsten L; Zoffmann, Vibeke

    2017-08-29

    Based on the Family-Centred Care philosophy, skin-to-skin contact is a key activity in neonatal care, and use of this practice is increasing also with extremely preterm infants. Little is known about parents' immediate experiences of and readiness for skin-to-skin contact, while their fragile infant may still not be 'on safe ground'. Knowledge about parents' experiences might reduce doubt and reluctance among healthcare professionals to use skin-to-skin contact with extremely preterm infants and thus increase its dissemination in practice. To explore parents' immediate experiences of skin-to-skin contact with extremely preterm infants parents after skin-to-skin contact with their extremely preterm infants analysed using inductive thematic analysis. Parents' experiences were related to the process before, during and after skin-to-skin contact and moved from ambivalence to appreciating skin-to-skin contact as beneficial for both parents and infant. The process comprised three stages: (i) overcoming ambivalence through professional support and personal experience; (ii) proximity creating parental feelings and an inner need to provide care; (iii) feeling useful as a parent and realising the importance of skin-to-skin contact. Having repeatedly gone through stages 2 and 3, parents developed an overall confidence in the value of bonding, independent of the infant's survival. Parents progressed from ambivalence to a feeling of fundamental mutual needs for skin-to-skin contact. Parents found the bonding facilitated by skin-to-skin contact to be valuable, regardless of the infant's survival. © 2017 Nordic College of Caring Science.

  11. Evaluation of entrance surface-skin doses in animals submitted on exams of abdomen in veterinary radiology using Tl dosimetry

    International Nuclear Information System (INIS)

    Veneziani, G. R.; Matsushima, L. C.; Campos, L. L.; Filho, A. M.

    2014-08-01

    The radiation protection has recently gained considerable attention in human medicine. In veterinary medicine has been some advances in radiodiagnostic and therapy for domestic animal like dogs and cats. It is notable the increase of the costs with domestic animals that are considered, by many people in the whole world, like members of family. However, an important parameter that must be taken into account is the increasing use of computed tomography and other equipment s that uses ionizing radiation, which may lead to comparatively high exposure of critical organs. The radiation dose is determined by the balance between therapeutic benefit and possible damage to surrounding normal tissues. This study aimed the evaluation of entrance surface-skin doses in dogs submitted to radiodiagnostic procedures of abdomen using the technique of thermoluminescent dosimetry (TLD). The radiation doses were measured using thermoluminescent dosimeters of LiF:Mg,Ti (TLD 100) and a dog phantom made with a plastic container, proportional to the dog size, fulfilled with water. (Author)

  12. Evaluation of entrance surface-skin doses in animals submitted on exams of abdomen in veterinary radiology using Tl dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, G. R.; Matsushima, L. C.; Campos, L. L. [Instituto de Pesquisas Energeticas e Nucleares, Gerencia de Metrologia das Radiacoes / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Filho, A. M., E-mail: venezianigr@gmail.com [Centro Universitario de Rio Petro - UNIRP, Rodovia Br 153 (Transbrasiliana), Km. 69 Sao Jose do Rio Preto, Sao Paulo (Brazil)

    2014-08-15

    The radiation protection has recently gained considerable attention in human medicine. In veterinary medicine has been some advances in radiodiagnostic and therapy for domestic animal like dogs and cats. It is notable the increase of the costs with domestic animals that are considered, by many people in the whole world, like members of family. However, an important parameter that must be taken into account is the increasing use of computed tomography and other equipment s that uses ionizing radiation, which may lead to comparatively high exposure of critical organs. The radiation dose is determined by the balance between therapeutic benefit and possible damage to surrounding normal tissues. This study aimed the evaluation of entrance surface-skin doses in dogs submitted to radiodiagnostic procedures of abdomen using the technique of thermoluminescent dosimetry (TLD). The radiation doses were measured using thermoluminescent dosimeters of LiF:Mg,Ti (TLD 100) and a dog phantom made with a plastic container, proportional to the dog size, fulfilled with water. (Author)

  13. The injury and cumulative effects on human skin by UV exposure from artificial fluorescence emission.

    Science.gov (United States)

    Tian, Yan; Liu, Wei; Niu, TianHui; Dai, CaiHong; Li, Xiaoxin; Cui, Caijuan; Zhao, Xinyan; E, Yaping; Lu, Hui

    2014-01-01

    The injury and cumulative effects of UV emission from fluorescence lamp were studied. UV intensity from fluorescence lamp was measured, and human skin samples (hips, 10 volunteers) were exposed to low-dose UV irradiation (three times per week for 13 consecutive weeks). Three groups were examined: control group without UV radiation; low-dose group with a cumulative dose of 50 J cm(-2) which was equivalent to irradiation of the face during indoor work for 1.5 years; and high-dose group with 1000 J cm(-2) cumulative dose equivalent to irradiation of the face during outdoor activities for 1 year. Specific indicators were measured before and after UVA irradiation. The findings showed that extending the low-dose UVA exposure decreased the skin moisture content and increased the transepidermal water loss as well as induced skin color changes (decreased L* value, increased M index). Furthermore, irradiated skin showed an increased thickness of cuticle and epidermis, skin edema, light color and unclear staining collagen fibers in the dermis, and elastic fiber fragmentation. In addition, MMP-1, p53 and SIRT1 expression was also increased. Long-term exposure of low-dose UVA radiation enhanced skin photoaging. The safety of the fluorescent lamp needs our attention. © 2014 The American Society of Photobiology.

  14. Nanocarriers for skin delivery of cosmetic antioxidants

    Directory of Open Access Journals (Sweden)

    Lucia Montenegro

    2014-08-01

    Full Text Available The demand of natural skin care products is steadily growing since consumers perceive them as safe. Currently, cosmetic manufacturers are focusing their efforts on developing innovative natural products to address skin-aging signs, thus meeting consumers’ needs of healthy appearance and well-being. To prevent or treat skin aging, topical supplementation with antioxidant is regarded as one of the most promising strategies. However, most antioxidants presently used in skin care formulations show unfavorable physicochemical properties such as excessive lipophilicity or hydrophilicity, chemical instability and poor skin penetration that actively limit their effectiveness after topical application. Therefore, nanocarriers such as liposomes, niosomes, microemulsions and nanoparticles have been widely investigated as delivery systems for antioxidants to improve their beneficial effects in the treatment of skin aging. In this article, the antioxidants most commonly used in anti-aging cosmetic products will be reviewed along with the nanocarriers designed to improve their safety and effectiveness.

  15. Entrance and peripheral dose measurements during radiotherapy

    International Nuclear Information System (INIS)

    Sulieman, A.; Kappas, K.; Theodorou, K.

    2008-01-01

    In vivo dosimetry of entrance dose was performed using thermoluminescent dosimeters (TLD) in order to evaluate the clinical application of the build up caps in patient dose measurements and for different treatment techniques. Peripheral dose (thyroid and skin) was measured for patients during breast radiotherapy to evaluate the probability of secondary cancer induction. TLD-100 chips were used with different Copper build up caps (for 6 MV and 15 MV photon beams from two linear accelerators. Entrance doses were measured for patients during radiotherapy course for breast, head and neck, abdomen and pelvis malignancies. The measured entrance dose for the different patients for 6 MV beams is found to be within the ±2.6% compared to the dose derived from theoretical estimation (normalized dose at D max ). The same measurements for 15 MV beams are found to be ±3 %. The perturbation value can reach up to 20% of the D max , which acts as a limitation for entrance dose measurements. An average thyroid skin dose of 3.7% of the prescribed dose was measured per treatment session while the mean skin dose breast treatment session is estimated to be 42% of D max , for both internal and external fields. These results are comparable in those of the in vivo of reported in literature. The risk of fatality due to thyroid cancer per treatment course is 3x10 -3

  16. The abdominal skin of female Sprague-Dawley rats is more sensitive than the back skin to drug-induced phototoxicity.

    Science.gov (United States)

    Kuga, Kazuhiro; Yasuno, Hironobu; Sakai, Yumi; Harada, Yumiko; Shimizu, Fumi; Miyamoto, Yumiko; Takamatsu, Yuki; Miyamoto, Makoto; Sato, Keiichiro

    2017-11-01

    In vivo phototoxicity studies are important to predict drug-induced phototoxicity in humans; however, a standard methodology has not established. To determine differences in sensitivity to drug-induced phototoxicity among various skin sites, we evaluated phototoxic reactions in the back and abdominal skin of female Sprague-Dawley rats orally dosed with phototoxic drugs (pirfenidone, 8-methoxysoraren, doxycycline, and lomefloxacin) or a non-phototoxic drug (gatifloxacin) followed by solar-simulated light irradiation comprising 18J/cm 2 ultraviolet A. Tissue reactions were evaluated by macroscopic and microscopic examination and immunohistochemistry for γ-H2AX, and tissue concentrations of pirfenidone, doxycycline, and lomefloxacin were measured by tandem mass spectrometry. In addition, the thicknesses of the skin layers at both sites were measured in drug-naïve rats. The abdominal skin showed more severe reactions to all phototoxic drugs than the back skin, whereas the minimal erythema dose in drug-naïve rats and skin concentrations of each drug were comparable between the sites. Furthermore, histopathological lesions and γ-H2AX-positive cells in the abdominal skin were detected in deeper layers than in the back skin. The stratum corneum and dermis in the abdominal skin were significantly thinner than in the back skin, indicating a difference in the depth of light penetration and potentially contributing to the site differences observed in sensitivity to phototoxicity. Gatifloxacin did not induce any phototoxic reactions at either site. In conclusion, the abdominal skin is more sensitive to drug-induced phototoxicity than the back skin and may represent a preferable site for irradiation in this rat phototoxicity model. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Is Daily Low-Dose Aspirin Safe to Take Following Laparoscopic Roux-en-Y Gastric Bypass for Obesity Surgery?

    Science.gov (United States)

    Kang, Xian; Hong, Dennis; Anvari, Mehran; Tiboni, Maria; Amin, Nalin; Gmora, Scott

    2017-05-01

    Laparoscopic Roux-en-Y gastric bypass (LRYGB) surgery is a safe and effective procedure for patients with severe obesity. One potential complication of LRYGB is the development of marginal ulcers (MUs). Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to significantly increase the likelihood of developing marginal ulcers after surgery. However, the risk associated with low-dose aspirin consumption is not well defined. We examined the impact of daily low-dose aspirin (81 mg) on the development of marginal ulcers following LRYGB. A retrospective cohort design studied patients undergoing LRYGB surgery, between January 2009 and January 2013, at a single, high-volume bariatric center in Ontario, Canada. The marginal ulcer rate of patients taking low-dose aspirin after surgery was compared to that of the control patients who did not take any NSAID. Diagnosis of MU was confirmed by upper endoscopy in patients presenting with symptoms and a history indicative of marginal ulceration. A chi-square test of independence was performed to examine the difference in marginal ulcer rates. A total of 1016 patients underwent LRYGB. Patients taking aspirin were more likely to be male, older, and have diabetes than patients not taking NSAIDs. Of the 1016 patients, 145 (14.3%) took low-dose aspirin following LRYGB and the rest did not (n = 871, 85.7%). The incidence of marginal ulceration was not significantly different between the two treatment groups (12/145, 8.3% versus 90/871, 10.3%; p = 0.45). Patients treated with LRYGB at our institution were not at increased risk of marginal ulcer formation when taking low-dose aspirin after surgery.

  18. Radiation injury of the skin following diagnostic and interventional fluoroscopic procedures

    International Nuclear Information System (INIS)

    Koenig, T.R.; Wagner, L.K.; Mettler, F.A.

    2001-01-01

    Many radiation injuries to the skin, resulting from diagnostic and interventional fluoroscopic procedures, have been reported in recent years. In some cases skin damage was severe and debilitating. We analyzed 72 reports of skin injuries for progression and location of injury, type and number of procedures, and contributing patient and operator factors. Most cases (46) were related to coronary angiography and percutaneous transluminal coronary angioplasty (PTCA). A smaller number was documented after cardiac radiofrequency catheter ablation (12), transjugular intrahepatic portosystemic shunt (TIPS) placement (7), neuroradiological interventions (3) and other procedures (4). Important factors leading to skin injuries were long exposure times over the same skin area, use of high dose rates, irradiation through thick tissue masses, hypersensitivity to radiation, and positioning of arms or breasts into the radiation entrance beam. Physicians were frequently unaware of the high radiation doses involved and did not recognize the injuries as radiation induced. Based on these findings, recommendations to reduce dose and improve patient care are provided. (author)

  19. Personnel decontamination and preventive skin care

    International Nuclear Information System (INIS)

    Henning, Klaus; Gojowczyk, Peter

    2010-01-01

    Skin contamination arises from contact with contaminated aqueous solutions and from transmission of radioactively contaminated dirt particles. As long as the surface of the skin is neither inflamed nor showing any lesions, normally only a limited part of the top layer (epidermis), i.e. the upper layers of the stratum corneum, is contaminated. The intact horny layer has a barrier function protecting against the penetration of chemicals and dirt particles. The horny layer can be damaged by water, solvents, alkaline substances, and acids. In general, it is safe to say that the horny layer acts as a natural barrier to the penetration of liquid and particulate impurities into lower layers of the skin. As long as the horny layer is intact and free from lesions, the risk of incorporation can be considered low. When decontaminating and cleansing the skin, also in daily skin cleansing, care must be taken to prevent the acid protective layer and the horny layer from being compromised. Daily cleansing and cleansing for decontamination must be carried out with a mild, weakly acidic detergent. In addition, prevention should be achieved daily by applying a non-greasy skin lotion to protect the skin. Following a systematic regular regimen in skin cleansing and preventive skin care as well as a specific approach in skin decontamination and cleansing will avoid damage to the skin and remove any contamination incurred. This approach comprises a three-pronged concept, namely skin protection, cleansing and care. (orig.)

  20. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio

    2015-01-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm 2 each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed

  1. A novel method for real-time skin impedance measurement during radiofrequency skin tightening treatments.

    Science.gov (United States)

    Harth, Yoram; Lischinsky, Daniel

    2011-03-01

    The thermal effects of monopolar and bipolar radiofrequency (RF) have been proven to be beneficial in skin tightening. Nevertheless, these effects were frequently partial or unpredictable because of the uncontrolled nature of monopolar or unipolar RF and the superficial nature of energy flow for bipolar or tripolar configurations. One of the hypotheses for lack or predictability of efficacy of the first-generation RF therapy skin tightening systems is lack of adaptation of delivered power to differences in individual skin impedance. A novel multisource phase-controlled system was used (1 MHz, power range 0-65 W) for treatment and real-time skin impedance measurements in 24 patients (EndyMed PRO™; EndyMed, Cesarea, Israel). This system allows continuous real-time measurement of skin impedance delivering constant energy to the patient skin independent of changes in its impedance. More than 6000 unique skin impedance measurements on 22 patients showed an average session impedance range was 215-584 Ohm with an average of 369 Ohm (standard deviation of 49 Ohm). Analyzing individual pulses (total of 600 readings) showed a significant decrease in impedance during the pulse. These findings validate the expected differences in skin impedance between individual patients and in the same patients during the treatment pulse. Clinical study on 30 patients with facial skin aging using the device has shown high predictability of efficacy (86.7% of patients had good results or better at 3 months' follow-up [decrease of 2 or more grades in Fitzpatrick's wrinkle scale]). The real-time customization of energy according to skin impedance allows a significantly more accurate and safe method of nonablative skin tightening with more consistent and predictable results. © 2011 Wiley Periodicals, Inc.

  2. The problem of adequacy in skin dosimetry for the case of a nuclear reactor emergency and for occupational exposure

    International Nuclear Information System (INIS)

    Osanov, D.

    1991-01-01

    The requirement for satisfactory skin dosimetry is, briefly, that the measured dosimetric values should be applicable for further unambiguous prediction of the radiation-induced effects. To fit these requirements the dose limits and actual dose burdens should be concerned with those target skin structures that are primarily responsible for biological effects. The problem of adequate skin dosimetry is here considered for the two most important situations: (1) for normal operation of nuclear power plants, and (2) for a nuclear reactor emergency. A method for determination of the absorbed dose of beta radiation in the surface tissues of the human body from a flat source produced by radionuclides accumulated on the ground surface is presented. Skin dose estimation techniques and actual values of personnel skin doses are also presented, as well as the application of such dose data in predicting the consequences of the irradiation. The principles of emergency and conventional skin dosemeter construction fulfilling the requirements for adequacy and for the measurement of the dose limits for occupational irradiation of the skin are discussed. (author)

  3. High dose Intravenous Anti-D Immune Globulin is More Effective and Safe in Indian Paediatric Patients of Immune Thrombocytopenic Purpura.

    Science.gov (United States)

    Swain, Trupti Rekha; Jena, Rabindra Kumar; Swain, Kali Prasanna

    2016-12-01

    Immune Thrombocytopenia (ITP) is characterised by an autoimmune antibody-mediated destruction of platelets and impaired platelet production. Few controlled trials exist to guide management of patients with ITP in Indian scenario for which patients require an individualized approach. Anti-D (Rho (D) immune globulin) at a higher dose can prove to be a cost effective and safe alternative for Indian patients with ITP. To compare the safety and efficacy of higher dose (75μg/kg) intravenous Anti-D immune globulin against the standard dose of 50μg/kg for the management of ITP in Indian patients. One hundred and sixty four children with newly diagnosed ITP between 4-14 years were randomly selected for inclusion and were treated with 50μg/kg (standard dose) or 75μg /kg (higher dose) of Anti-D to compare the efficacy and safety of higher dose intravenous anti-D immune globulin. Efficacy of Anti-D was measured in terms of rate of response and median time to response for increase in platelet counts. Any adverse event was noted. A decrease in haemoglobin concentration suggested accompanying haemolysis. Seventy one out of 84 patients treated with Anti-D at 75μg/kg produced complete response (85%) with median time of response being 2.5 days. On the contrary, 45 patients (70%) patients treated with 50μg/kg had complete response. However, there was no significant increase in haemolysis with higher dose. A significant correlation was found between dose and peak increase in platelet count measured at 7 th day following administration. However, there was no relationship between the decrease in haemoglobin and the dose given, or between the increase in platelet count and fall in haemoglobin. A 75μg/kg dose of Anti-D is more effective with acceptable side effect in comparison to 50μg dose for treatment of newly diagnosed Indian patients of ITP.

  4. Patient and staff doses in interventional neuroradiology

    International Nuclear Information System (INIS)

    Bor, D.; Cekirge, S.; Tuerkay, T.; Turan, O.; Guelay, M.; Oenal, E.; Cil, B.

    2005-01-01

    Radiation doses for interventional examinations are generally high and therefore necessitate dose monitoring for patients and staff. Relating the staff dose to a patient dose index, such as dose-area product (DAP), could be quite useful for dose comparisons. In this study, DAP and skin doses of 57 patients, who underwent neuro-interventional examinations, were measured simultaneously with staff doses. Although skin doses were comparable with the literature data, higher DAP values of 215 and 188.6 Gy cm 2 were measured for the therapeutical cerebral and carotid examinations, respectively, owing to the use of biplane system and complexity of the procedure. Mean staff doses for eye, finger and thyroid were measured as 80.6, 77.6 and 28.8 μGy per procedure. The mean effective dose per procedure for the radiologists was 32 μSv. In order to allow better comparisons to be made, DAP normalised doses were also presented. (authors)

  5. Skin Barrier Restoration and Moisturization Using Horse Oil-Loaded Dissolving Microneedle Patches.

    Science.gov (United States)

    Lee, Chisong; Eom, Younghyon Andrew; Yang, Huisuk; Jang, Mingyu; Jung, Sang Uk; Park, Ye Oak; Lee, Si Eun; Jung, Hyungil

    2018-01-01

    Horse oil (HO) has skin barrier restoration and skin-moisturizing effects. Although cream formulations have been used widely and safely, their limited penetration through the stratum corneum is a major obstacle to maximizing the cosmetic efficacy of HO. Therefore, we aimed to encapsulate HO in a cosmetic dissolving microneedle (DMN) for efficient transdermal delivery. To overcome these limitations of skin permeation, HO-loaded DMN (HO-DMN) patches were developed and evaluated for their efficacy and safety using in vitro and clinical studies. Despite the lipophilic nature of HO, the HO-DMN patches had a sharp shape and uniform array, with an average length and tip diameter of 388.36 ± 16.73 and 38.54 ± 5.29 µm, respectively. The mechanical strength of the HO-DMN patches was sufficient (fracture force of 0.29 ± 0.01 N), and they could successfully penetrate pig skin. During the 4-week clinical evaluation, HO-DMN patches caused significant improvements in skin and dermal density, skin elasticity, and moisturization. Additionally, a brief safety assessment showed that the HO-DMN patches induced negligible adverse events. The HO-DMNs are efficient, safe, and convenient for wide use in cosmetic applications for skin barrier restoration and moisturization. © 2018 S. Karger AG, Basel.

  6. An assessment of the use of skin flashes in helical tomotherapy using phantom and in-vivo dosimetry

    International Nuclear Information System (INIS)

    Tournel, Koen; Verellen, Dirk; Duchateau, Michael; Fierens, Yves; Linthout, Nadine; Reynders, Truus; Voordeckers, Mia; Storme, Guy

    2007-01-01

    Background and purpose: In helical tomotherapy the nature of the optimizing and planning systems allows the delivery of dose on the skin using a build-up compensating technique (skin flash). However, positioning errors or changes in the patient's contour can influence the correct dosage in these regions. This work studies the behavior of skin-flash regions using phantom and in-vivo dosimetry. Materials and methods: The dosimetric accuracy of the tomotherapy planning system in skin-flash regions is checked using film and TLD on phantom. Positioning errors are induced and the effect on the skin dose is investigated. Further a volume decrease is simulated using bolus material and the results are compared. Results: Results show that the tomotherapy planning system calculates dose on skin regions within 2 SD using TLD measurements. Film measurements show drops of dose of 2.8% and 26% for, respectively, a 5 mm and 10 mm mispositioning of the phantom towards air and a dose increase of 9% for a 5 mm shift towards tissue. These measurements are confirmed by TLD measurements. A simulated volume reduction shows a similar behavior with a 2.6% and 19.4% drop in dose, measured with TLDs. Conclusion: The tomotherapy system allows adequate planning and delivery of dose using skin flashes. However, exact positioning is crucial to deliver the dose at the exact location

  7. The Effects of Yin, Yang and Qi in the Skin on Pain.

    Science.gov (United States)

    Adams, James David

    2016-01-29

    The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients.

  8. The Effects of Yin, Yang and Qi in the Skin on Pain

    Directory of Open Access Journals (Sweden)

    James David Adams

    2016-01-01

    Full Text Available The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang and antagonists (yin that help the body control pain. Acupuncture works through modulation of these receptor activities (qi in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients.

  9. Patient radiation doses from neuroradiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, M J; Abreu-Luis, J; Hernandez-Armas, J [Servicio de Fisica Medica, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain); Prada-Martinez, E [Servicio de Radiodiagnostico, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain)

    2001-03-01

    Following the presentation of radiation-induced deterministic effects by some patients undergoing neuroradiological procedures during successive sessions, such as temporary epilation, in the 'Hospital Universitario de Canarias', measurements were made of dose to patients. The maximum dose-area product measured by ionization chamber during these procedures was 39617 cGy.cm{sup 2} in a diagnostic of aneurysm and the maximum dose to the skin measured by thermoluminescent dosemeters (TLDs) was 462.53 mGy. This can justify certain deterministic effects but it is unlikely that the patients will suffer serious effects from this skin dose. Also, measurements were made of effective dose about two usual procedures, embolisation of tumour und embolisation of aneurysm. These procedures were reproduced with an anthropomorphic phantom Rando and doses were measured with TLDs. Effective doses obtained were 3.79 mSv and 4.11 mSv, respectively. The effective dose valued by the program EFFDOSE was less than values measured with TLDs. (author)

  10. Patient radiation doses from neuroradiology procedures

    International Nuclear Information System (INIS)

    Garcia-Roman, M.J.; Abreu-Luis, J.; Hernandez-Armas, J.; Prada-Martinez, E.

    2001-01-01

    Following the presentation of radiation-induced deterministic effects by some patients undergoing neuroradiological procedures during successive sessions, such as temporary epilation, in the 'Hospital Universitario de Canarias', measurements were made of dose to patients. The maximum dose-area product measured by ionization chamber during these procedures was 39617 cGy.cm 2 in a diagnostic of aneurysm and the maximum dose to the skin measured by thermoluminescent dosemeters (TLDs) was 462.53 mGy. This can justify certain deterministic effects but it is unlikely that the patients will suffer serious effects from this skin dose. Also, measurements were made of effective dose about two usual procedures, embolisation of tumour und embolisation of aneurysm. These procedures were reproduced with an anthropomorphic phantom Rando and doses were measured with TLDs. Effective doses obtained were 3.79 mSv and 4.11 mSv, respectively. The effective dose valued by the program EFFDOSE was less than values measured with TLDs. (author)

  11. Comparison of surface doses from spot scanning and passively scattered proton therapy beams

    International Nuclear Information System (INIS)

    Arjomandy, Bijan; Sahoo, Narayan; Gillin, Michael; Cox, James; Lee, Andrew

    2009-01-01

    Proton therapy for the treatment of cancer is delivered using either passively scattered or scanning beams. Each technique delivers a different amount of dose to the skin, because of the specific feature of their delivery system. The amount of dose delivered to the skin can play an important role in choosing the delivery technique for a specific site. To assess the differences in skin doses, we measured the surface doses associated with these two techniques. For the purpose of this investigation, the surface doses in a phantom were measured for ten prostate treatment fields planned with passively scattered proton beams and ten patients planned with spot scanning proton beams. The measured doses were compared to evaluate the differences in the amount of skin dose delivered by using these techniques. The results indicate that, on average, the patients treated with spot scanning proton beams received lower skin doses by an amount of 11.8% ± 0.3% than did the patients treated with passively scattered proton beams. That difference could amount to 4 CGE per field for a prescribed dose of 76 CGE in 38 fractions treated with two equally weighted parallel opposed fields. (note)

  12. Dose evaluation in special fluoroscopy procedures: Hysterosalpingography and Dacryocystography; Avaliacao de dose em procedimentos especiais de fluoroscopia: histerossalpingografia e dacriocistografia

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Cintya Carolina Barbosa

    2006-04-15

    The hysterosalpingography (HSG) and dacryocystography (DCG) are among the special fluoroscopy procedures. The HSG is a radiodiagnostic technique used to detect uterine and tubal pathologies and it is fundamental for the investigation of infertility. The DCG is a form of lacrimal system imaging, being important to show the level of obstruction, the presence of dilatation of the lacrimal sac, as well as alterations in nearby structures. At this research, the study of skin entrance dose was evaluated for these two special fluoroscopy procedures, besides the analyses of staff doses whose performs the exams. The exams of 22 HSG patients and 8 DCG patients were evaluated using TL-100 dosimeters attached on patient' skin at anatomical landmarks evolved on each exam. In the case of HSG, the results showed that skin entrance doses varied from 0.5 mGy to 73.4 mGy, with an average value of 22.1 mGy. The estimated uterus dose was 5.5 mGy, and 6.6 mGy was the average dose estimated to the ovaries. The patient' skin entrance dose undergoing to DCG examinations varied from 2.1 mGy to 10.6 mGy, and the average eye's dose was 6.1 mGy. The results of staff dose showed that, on HSG, the average dose on doctor's right hand was 4.3 mGy per examination. This value had to the fact that the physician introduces the contrast manually while all contrast exposures. In relation of DCG, the staff's dose values were nearby background radiation, evidencing that, inside of permitted limits, there is no risk for the physicians at this procedure. (author)

  13. Development, validation and testing of a skin sampling method for assessment of metal exposure.

    Science.gov (United States)

    Erfani, Behnaz; Midander, Klara; Lidén, Carola; Julander, Anneli

    2017-07-01

    Nickel, cobalt and chromium are frequent skin sensitizers. Skin exposure results in eczema in sensitized individuals, the risk being related to the skin dose. To develop a self-sampling method for quantification of skin exposure to metals, to validate the method, and to assess its feasibility. Defined metal doses (0.01-5 µg) were applied to the fingers of 5 participants. Skin areas (2 cm 2 ) were sampled with 1% HNO 3 , either as 0.1 ml on a swab, or as 0.5 ml on a wipe. Furthermore, 17 participants performed self-sampling by swab after 2 h of leisure activity. Samples were extracted in 1% HNO 3 and analysed by inductively coupled plasma mass spectrometry. The sampling efficiency by swab was 46%, as compared with 93% for acid wipe sampling, for all tested doses. Most metal from the skin dose was detected in the first swab (33-43%). Despite lower sampling efficiency by swab, skin doses of metals following 2 h of leisure activity without hand washing were quantified in all participants, and ranged from 0.0016 to 0.15 µg/cm 2 , from 0.00014 to -0.0020 µg/cm 2 and from 0.00048 to -0.027 µg/cm 2 for nickel, cobalt, and chromium, respectively. The results indicate a future potential of skin sampling by swab to detect and monitor metals on skin by self-sampling. This will contribute to better knowledge of metal skin exposure among dermatitis patients, workers, and the general population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Ablative skin resurfacing.

    Science.gov (United States)

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Reconstruction of segmented human voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo de Tarso D.; Yoriyaz, Helio; Fonseca, Gabriel P.; Reis, Gabriela; Furnari, Laura

    2009-01-01

    High-resolution medical images along with methods that simulate the interaction of radiation with matter, as the Monte Carlo radiation transport codes, have been widely used in medical physics procedures. These images provide the construction of realistic anatomical models, which after being coupled to these codes, may drive to better assessments of dose distributions on the patient. These anatomical models constructed from medical images are known as voxel phantoms (voxel - volume element of an image). Present day regular images are unsuitable to correctly perform skin dose distribution evaluations. This inability is due to improper skin discrimination in most of the current medical images, once its thickness stands below the resolution of the pixels that form the image. This paper proposes the voxel phantom reconstruction by subdividing and segmenting the elements that form the phantom. It is done in order to better discriminate the skin by assigning it more adequate thickness and actual location, allowing a better dosimetric evaluation of the skin. This task is an important issue in many radiotherapy procedures. Particular interest lays in Total Skin Irradiation (TSI) with electron beams, where skin dose evaluation stands as the treatment key point of the whole body irradiation. This radiotherapy procedure is under implementation at the Hospital das Clinicas da Universidade de Sao Paulo (HC-USP). (author)

  16. Microneedle-Mediated Delivery of Copper Peptide Through Skin.

    Science.gov (United States)

    Li, Hairui; Low, Yong Sheng Jason; Chong, Hui Ping; Zin, Melvin T; Lee, Chi-Ying; Li, Bo; Leolukman, Melvina; Kang, Lifeng

    2015-08-01

    Copper peptide (GHK-Cu) plays an important role in skin regeneration and wound healing. However, its skin absorption remains challenging due to its hydrophilicity. Here we use polymeric microneedle array to pre-treat skin to enhance GHK-Cu skin penetration. Two in vitro skin models were used to assess the capability of microneedles in facilitating skin delivery of GHK-Cu. Histological assay and confocal laser scanning microscopy were performed to characterize and quantify the microconduits created by the microneedles inside skin. Cellular and porcine models were used to evaluate the safety of microneedle-assisted copper peptide delivery. The depth and percentage of microneedle penetration were correlated with application forces, which in turn influenced the extent of enhancement in the skin permeability of GHK-Cu. In 9 h, 134 ± 12 nanomoles of peptide and 705 ± 84 nanomoles of copper permeated though the microneedle treated human skin, while almost no peptide or copper permeated through intact human skin. No obvious signs of skin irritation were observed with the use of GHK-Cu after microneedle pretreatment. It is effective and safe to enhance the skin permeation of GHK-Cu by using microneedles. This approach may be useful to deliver similar peptides or minerals through skin.

  17. Working safely with ionising radiation

    International Nuclear Information System (INIS)

    McDowell, D.J.

    1990-01-01

    A small leaflet provides information on working safely with ionizing radiation. Topics covered include the types of radiation, radiological units, external radiation, contamination and internal radiation, methods of protection form radiation, radiation monitors, protective clothing for contamination, personal dosemeters, radiation dose limits for classified workers and finally the Ionising Radiations Regulations 1985. (UK)

  18. Effect of Safe Water on Arsenicosis: A Follow-up Study.

    Science.gov (United States)

    Majumdar, Kunal K; Ghose, Aloke; Ghose, Nilima; Biswas, Anirban; Mazumder, D N Guha

    2014-04-01

    Arsenic pollution in groundwater, used for drinking purposes, has been envisaged as a problem of global concern. Treatment options for the management symptoms of chronic arsenicosis are limited. Mitigation option available for dealing with the health problem of ground water arsenic contamination rests mainly on supply of arsenic safe water in arsenic-endemic region of Indo-Bangladesh subcontinent. Limited information is available regarding the long-term effect of chronic arsenic toxicity after stoppage of consumption of arsenic-containing water. The current study was, therefore, done to assess, objectively, the effect of drinking arsenic safe water (water source in their houses were supplied with arsenic removal filters for getting arsenic-free water during the follow-up period. In participants belonging to Cohort-I, the skin score was found to improve significantly at the end of each year, and it was found to be reduced significantly from 2.17 ± 1.09 to 1.23 ± 1.17; P water on skin lesions. The systemic disease symptom score was also found to improve, but less significantly, at the end of 3 years in both the cohorts. Most important observation during the follow-up study was persistence of severe symptoms of chronic lung disease and severe skin lesion including Bowen's disease in spite of taking arsenic-safe water. Further, death could not be prevented to occur because of lung cancer and severe lung disease. It is, therefore, an urgent need to make arrangement for availability of safe water source among the arsenic-affected people in the district. Many of the people in the affected villages are not aware of contamination of their home tube wells with arsenic. Awareness generation and motivation of the people for testing their drinking water sources for arsenic and environmental interventions like rain water harvesting, ground water recharge, and restricting excessive use of ground water for domestic and agricultural purposes are also important to prevent further

  19. The calculation of the surface dose in examinations following cardiac catheterization

    International Nuclear Information System (INIS)

    Ewen, K.

    1995-01-01

    It is inevitable in examinations requiring patient exposure to high doses that the investigators and medical assistants receive high wholebody doses on account of fray radiation and, occasionally, also high partial body doses (hands) on account of the useful beam range. A number of different circumstances are adding up to create this extreme situation. In this connection, a mathematical method for the calculation of the surface dose (cutaneous dose rate) is described that is based on sets of parameters commonly used in diagnostic radiology: Set I of parameters: Tube voltage - current strength of tube - distance between focus and skin; - set II of parameters: Incidence dose rate of image intensifier - distance between focus and skin -distance between image intensifier and plane of ray incidence (skin). (orig./VHE) [de

  20. Skin Depigmentation Activity of Crocus sativus Extract Cream

    African Journals Online (AJOL)

    All rights reserved. ... 2Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China, ... targeting the needs of consumers with dry skin. ... The use of cosmetics can be safe if, no kind of.

  1. Studies of the in vivo radiosensitivity of human skin fibroblasts

    International Nuclear Information System (INIS)

    Hill, Richard P.; Kaspler, Pavel; Griffin, Anthony M.; O'Sullivan, Brian; Catton, Charles; Alasti, Hamideh; Abbas, Ahmar; Heydarian, Moustafa; Ferguson, Peter; Wunder, Jay S.; Bell, Robert S.

    2007-01-01

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  2. Chemical peeling in ethnic/dark skin.

    Science.gov (United States)

    Roberts, Wendy E

    2004-01-01

    Chemical peeling for skin of color arose in ancient Egypt, Mesopotamia, and other ancient cultures in and around Africa. Our current fund of medical knowledge regarding chemical peeling is a result of centuries of experience and research. The list of agents for chemical peeling is extensive. In ethnic skin, our efforts are focused on superficial and medium-depth peeling agents and techniques. Indications for chemical peeling in darker skin include acne vulgaris, postinflammatory hyperpigmentation, melasma, scarring, photodamage, and pseudofolliculitis barbae. Careful selection of patients for chemical peeling should involve not only identification of Fitzpatrick skin type, but also determining ethnicity. Different ethnicities may respond unpredictably to chemical peeling regardless of skin phenotype. Familiarity with the properties each peeling agent used is critical. New techniques discussed for chemical peeling include spot peeling for postinflammatory hyperpigmentation and combination peels for acne and photodamage. Single- or combination-agent chemical peels are shown to be efficacious and safe. In conclusion, chemical peeling is a treatment of choice for numerous pigmentary and scarring disorders arising in dark skin tones. Familiarity with new peeling agents and techniques will lead to successful outcomes.

  3. Non-invasive Oil-Based Method to Increase Topical Delivery of Nucleic Acids to Skin.

    Science.gov (United States)

    Vij, Manika; Alam, Shamshad; Gupta, Nidhi; Gotherwal, Vishvabandhu; Gautam, Hemlata; Ansari, Kausar M; Santhiya, Deenan; Natarajan, Vivek T; Ganguli, Munia

    2017-06-07

    Topical delivery of nucleic acids to skin has huge prospects in developing therapeutic interventions for cutaneous disorders. In spite of initial success, clinical translation is vastly impeded by the constraints of bioavailability as well as stability in metabolically active environment of skin. Various physical and chemical methods used to overcome these limitations involve invasive procedures or compounds that compromise skin integrity. Hence, there is an increasing demand for developing safe skin penetration enhancers for efficient nucleic acid delivery to skin. Here, we demonstrate that pretreatment of skin with silicone oil can increase the transfection efficiency of non-covalently associated peptide-plasmid DNA nanocomplexes in skin ex vivo and in vivo. The method does not compromise skin integrity, as indicated by microscopic evaluation of cellular differentiation, tissue architecture, enzyme activity assessment, dye penetration tests using Franz assay, and cytotoxicity and immunogenicity analyses. Stability of nanocomplexes is not hampered on pretreatment, thereby avoiding nuclease-mediated degradation. The mechanistic insights through Fourier transform infrared (FTIR) spectroscopy reveal some alterations in the skin hydration status owing to possible occlusion effects of the enhancer. Overall, we describe a topical, non-invasive, efficient, and safe method that can be used to increase the penetration and delivery of plasmid DNA to skin for possible therapeutic applications. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Effective dose for patient in multimode panoramic radiography

    International Nuclear Information System (INIS)

    Yasaki, Shiro; Daibo, Motoji

    1999-01-01

    In recent years, multimode panoramic radiography has had various functions, such as the auto exposure function, auto focus function (auto function), TMJ radiography and tomogram radiography functions. The purpose of this study was to estimate the effective dose for patients in each mode of the new multimode panoramic radiography (J. MORITA MFG. CORP. Dental Panorama X-ray Apparatus: Veraview Scope X 600). The absorbed doses in important organs involved in the causation of stochastic effects were measured by a thermoluminescent dosimeter using RANDO phantom. The effective doses were calculated using modified tissue weighting factors recommended by the International Commission on Radiological Protection (ICRP) in 1999. The mean field size over skin in typical panoramic and tomographic examinations was about 3% and 0.4% of the total body surface area of 15000 cm 2 . Assuming that the incidence of skin cancer is proportional to the area of skin exposed to ionizing radiation, the tissue weighting factor of skin can be estimated to be about 0.0003 and 0.00004. The estimate in effective dose was lower (5.3 μSv) in the panoramic auto function mode (an average exposure condition of 69 kV 7 mA) than that (6.5-13.8 μSv) in the linear tomogram modes. Since the linear tomogram mode requires a scout view, such as standard panoramic radiography, the dose in the linear tomogram mode becomes higher than other modes. A percentage of gonad doses in effective doses was negligible. (author)

  5. Chemical peeling in ethnic skin: an update.

    Science.gov (United States)

    Salam, A; Dadzie, O E; Galadari, H

    2013-10-01

    With the growth of cosmetic dermatology worldwide, treatments that are effective against skin diseases and augment beauty without prolonged recovery periods, or exposing patients to the risks of surgery, are increasing in popularity. Chemical peels are a commonly used, fast, safe and effective clinic room treatment that may be used for cosmetic purposes, such as for fine lines and photoageing, but also as primary or adjunct therapies for acne, pigmentary disorders and scarring. Clinicians are faced with specific challenges when using peels on ethnic skin (skin of colour). The higher risk of postinflammatory dyschromias and abnormal scarring makes peels potentially disfiguring. Clinicians should therefore have a sound knowledge of the various peels available and their safety in ethnic skin. This article aims to review the background, classification, various preparations, indications, patient assessment and complications of using chemical peels in ethnic skin. © 2013 The Authors BJD © 2013 British Association of Dermatologists.

  6. Overall skin tone and skin-lightening-improving effects with oral supplementation of lutein and zeaxanthin isomers: a double-blind, placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Juturu V

    2016-10-01

    Full Text Available Vijaya Juturu,1 James P Bowman,2 Jayant Deshpande1 1Department of Scientific and Clinical Affairs, OmniActive Health Technologies Inc., Morristown, NJ, 2James P Bowman & Associates LLC, Loveland, OH, USA Purpose: Carotenoids, especially lutein and zeaxanthin isomers (L/Zi, filter blue light and protect skin from environmental factors including high-energy sources. These carotenoids may be able to block the formation of melanin pathways, decrease cytokines, and increase antioxidants.Subjects and methods: This is a randomized, double-blind, placebo-controlled clinical trial over a 12-week supplementation period. Fifty healthy people (50 healthy subjects were recruited and 46 subjects completed the study (males and females, age: 18–45 years with mild-to-moderate dry skin were included in this study. Skin type of the subjects was classified as Fitzpatrick skin type II–IV scale. Subjects were administered with either an oral dietary supplement containing 10 mg lutein (L and 2 mg zeaxanthin isomers (Zi (L/Zi: RR-zeaxanthin and RS (meso-zeaxanthin or a placebo daily for 12 weeks. The minimal erythemal dose and skin lightening (L* were measured via the Chromameter®. The individual typological angle was calculated. Subjective assessments were also recorded.Results: Overall skin tone was significantly improved in the L/Zi group compared to placebo (P<0.0237, and luminance (L* values were significantly increased in the L/Zi group. Mean minimal erythemal dose was increased with L/Zi supplementation after 12 weeks of supplementation. L/Zi supplementation significantly increased the individual typological angle.Conclusion: L/Zi supplementation lightens and improves skin conditions. Keywords: lutein, zeaxanthin isomers, skin lightening, minimal erythemal dose, individual typological angle, overall skin tone

  7. Dose evaluation in special fluoroscopy procedures: Hysterosalpingography and Dacryocystography; Avaliacao de dose em procedimentos especiais de fluoroscopia: histerossalpingografia e dacriocistografia

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Cintya Carolina Barbosa

    2006-04-15

    The hysterosalpingography (HSG) and dacryocystography (DCG) are among the special fluoroscopy procedures. The HSG is a radiodiagnostic technique used to detect uterine and tubal pathologies and it is fundamental for the investigation of infertility. The DCG is a form of lacrimal system imaging, being important to show the level of obstruction, the presence of dilatation of the lacrimal sac, as well as alterations in nearby structures. At this research, the study of skin entrance dose was evaluated for these two special fluoroscopy procedures, besides the analyses of staff doses whose performs the exams. The exams of 22 HSG patients and 8 DCG patients were evaluated using TL-100 dosimeters attached on patient' skin at anatomical landmarks evolved on each exam. In the case of HSG, the results showed that skin entrance doses varied from 0.5 mGy to 73.4 mGy, with an average value of 22.1 mGy. The estimated uterus dose was 5.5 mGy, and 6.6 mGy was the average dose estimated to the ovaries. The patient' skin entrance dose undergoing to DCG examinations varied from 2.1 mGy to 10.6 mGy, and the average eye's dose was 6.1 mGy. The results of staff dose showed that, on HSG, the average dose on doctor's right hand was 4.3 mGy per examination. This value had to the fact that the physician introduces the contrast manually while all contrast exposures. In relation of DCG, the staff's dose values were nearby background radiation, evidencing that, inside of permitted limits, there is no risk for the physicians at this procedure. (author)

  8. Immune sensitization to methylene diphenyl diisocyanate (MDI resulting from skin exposure: albumin as a carrier protein connecting skin exposure to subsequent respiratory responses

    Directory of Open Access Journals (Sweden)

    Redlich Carrie A

    2011-03-01

    Full Text Available Abstract Background Methylene diphenyl diisocyanate (MDI, a reactive chemical used for commercial polyurethane production, is a well-recognized cause of occupational asthma. The major focus of disease prevention efforts to date has been respiratory tract exposure; however, skin exposure may also be an important route for inducing immune sensitization, which may promote subsequent airway inflammatory responses. We developed a murine model to investigate pathogenic mechanisms by which MDI skin exposure might promote subsequent immune responses, including respiratory tract inflammation. Methods Mice exposed via the skin to varying doses (0.1-10% w/v of MDI diluted in acetone/olive oil were subsequently evaluated for MDI immune sensitization. Serum levels of MDI-specific IgG and IgE were measured by enzyme-linked immunosorbant assay (ELISA, while respiratory tract inflammation, induced by intranasal delivery of MDI-mouse albumin conjugates, was evaluated based on bronchoalveolar lavage (BAL. Autologous serum IgG from "skin only" exposed mice was used to detect and guide the purification/identification of skin proteins antigenically modified by MDI exposure in vivo. Results Skin exposure to MDI resulted in specific antibody production and promoted subsequent respiratory tract inflammation in animals challenged intranasally with MDI-mouse albumin conjugates. The degree of (secondary respiratory tract inflammation and eosinophilia depended upon the (primary skin exposure dose, and was maximal in mice exposed to 1% MDI, but paradoxically limited in mice receiving 10-fold higher doses (e.g. 10% MDI. The major antigenically-modified protein at the local MDI skin exposure site was identified as albumin, and demonstrated biophysical changes consistent with MDI conjugation. Conclusions MDI skin exposure can induce MDI-specific immune sensitivity and promote subsequent respiratory tract inflammatory responses and thus, may play an important role in MDI asthma

  9. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Jagetia

    2015-01-01

    Full Text Available Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation.

  10. Safe and effective one-session fractional skin resurfacing using a carbon dioxide laser device in super-pulse mode: a clinical and histologic study.

    Science.gov (United States)

    Trelles, Mario A; Shohat, Michael; Urdiales, Fernando

    2011-02-01

    clinicians. Treatment improved wrinkle aspect and scar condition, and no patient reported adverse effects or complications, irrespective of skin type, except for plaques of erythema in areas that received extra laser passes, which were not seen at the 2-month assessment. The results evaluated by clinicians were very much in correlation with those of patients. Immediately after treatment, vaporization was produced by stacked pulses, with clear ablation and collateral heat coagulation. An increased number of random pulses removed more epidermis, and with denser pulses per area, a thermal deposit was noted histologically. At 2 months, a thicker, multicelluar epidermis and an evident increase in collagen were observed. Fractional CO(2) laser permits a variety of resurfacing settings that obtain safe, effective skin rejuvenation and correct scar tissue in a single treatment.

  11. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Batista Nogueira, Luciana [Anatomy and Imaging Department, Federal University of Minas Gerais, Belo Horizonte (Brazil); Lemos Silva, Hugo Leonardo [Santa Casa Hospital, Belo Horizonte (Brazil); Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio [Nuclear Engineering Department, Federal University of Minas Gerais, Belo Horizonte (Brazil)

    2015-07-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the

  12. Immune reactivity after high-dose irradiation

    International Nuclear Information System (INIS)

    Gassmann, W.; Wottge, H.U.; von Kolzynski, M.; Mueller-Ruchholtz, W.

    1986-01-01

    Immune reactivity after total-body irradiation was investigated in rats using skin graft rejection as the indicator system. After sublethal irradiation with 10.5 Gy (approximately 50% lethality/6 weeks) the rejection of major histocompatibility complex allogeneic skin grafts was delayed significantly compared with nonirradiated control animals (28 versus 6.5 days). In contrast, skin grafts were rejected after 7.5 days in sublethally irradiated animals and 7 days in lethally irradiated animals if additional skin donor type alloantigens--namely, irradiated bone marrow cells--were given i.v. either simultaneously or with a delay of not more than 24 hr after the above conditioning regimen. These reactions were alloantigen-specific. They were observed in six different strain combinations with varying donors and recipients. Starting on day 2 after irradiation, i.v. injection of bone marrow gradually lost its effectivity and skin grafts were no longer rejected with uniform rapidity; skin donor marrow given on days 4 or 8 did not accelerate skin graft rejection at all. These data show that for approximately 1-2 days after high-dose total-body irradiation rats are still capable of starting a vigorous immune reaction against i.v.-injected alloantigens. The phenomenon of impaired rejection of skin grafted immediately after high-dose irradiation appears to result from the poor accessibility of skin graft alloantigens during the early postirradiation phase when vascularization of the grafted skin is insufficient

  13. Non-ablative fractionated laser skin resurfacing for the treatment of aged neck skin.

    Science.gov (United States)

    Bencini, Pier Luca; Tourlaki, Athanasia; Galimberti, Michela; Pellacani, Giovanni

    2015-06-01

    Aging of the neck skin includes poikiloderma of Civatte, skin laxity and wrinkles. While the vascular alterations of poikiloderma of Civatte can be effectively treated with lasers or intense pulsed light, a successful treatment of dyschromia, skin laxity and wrinkles is still difficult to achieve. To evaluate the safety and efficacy of non-ablative fractional 1540 erbium glass laser for the treatment of aged neck skin, also by means of in vivo reflectance confocal microscopy (RCM). A prospective study for neck resurfacing in 18 women with aged neck skin. Six laser treatments were performed in 4-week intervals with a 1540-nm erbium-glass fiber laser. By using a 6-point grading scale, the mean score (±SD; range) at baseline was 3.6 (±1.5; 1-6) for skin dyschromia, 2.9 (±1.4; 1-6) for laxity and 3.3 (±1.3; 1-5) for wrinkles. Three months after the last laser session, we found a significant clinical improvement of dyschromia (p = 0.0002; Wilcoxon test), and wrinkles (p = 0.0004; Wilcoxon test), with a mean (±SD) reduction of 2.5 (±1.0) and 1.9 (±1.1) points in the 6-point grading scale, respectively. No change was observed in laxity. These results were also supported by structural changes documented by RCM. Non-ablative fractional 1540 erbium glass laser was both safe and effective for the treatment of dyschromia and wrinkles, but not effective for the laxity of the neck skin.

  14. Safe and Effective Use of the Once Weekly Dulaglutide Single-Dose Pen in Injection-Naïve Patients With Type 2 Diabetes.

    Science.gov (United States)

    Matfin, Glenn; Van Brunt, Kate; Zimmermann, Alan G; Threlkeld, Rebecca; Ignaut, Debra A

    2015-04-21

    This 4-week, phase 3b, multicenter, open-label, single-arm, outpatient study demonstrated the safe and effective use of the dulaglutide single-dose pen containing 0.5 mL of placebo for subcutaneous injection in injection-naïve adult patients with type 2 diabetes (T2D), with A1C ≤ 8.5% (69 mmol/mol), BMI ≥ 23 kg/m2 and ≤ 45 kg/m(2). Patients completed a modified self-injecting subscale of the Diabetes Fear of Injecting and Self-Testing Questionnaire (mD-FISQ) and were trained to self-inject with the single-dose pen. Patients completed the initial self-injection at the site, injected at home for 2 subsequent weeks, and returned to the site for the final injection. The initial and final self-injections were evaluated for success; the final (initial) self-injection success rate was the primary (secondary) outcome measure, and the primary (secondary) objective was to demonstrate this success rate as being significantly greater than 80%. Patients recorded their level of pain after each injection. After the final injection, patients completed the mD-FISQ and the Medication Delivery Device Assessment Battery (MDDAB) to assess their perceptions of the single-dose pen, including ease of use and experience with the device. Among 211 patients (mean age: 61 years), the primary objective was met, with a final injection success rate of 99.1% (95% CI: 96.6% to 99.7%). Among 214 patients, the initial injection success rate was 97.2% (95% CI: 94.0% to 98.7%), meeting the key secondary objective. Overall, most patients (>96%) found the device easy to use, were satisfied with the device, and would be willing to continue to use the single-dose pen after the study. There was a significant reduction (P injecting, as measured by the mD-FISQ. The dulaglutide single-dose pen was found to be a safe and effective device for use by patients with T2D who were injection-naïve. A positive injection experience is an important factor for patients and providers when initiating injectable

  15. Skin injuries from discrete radioactive particles: A summary of EPRI-sponsored experiments. Final report

    International Nuclear Information System (INIS)

    Owen, D.E.; Reece, W.D.; Poston, J.W. Sr.; McFarlane, D.L.

    1994-12-01

    In recent years there has been the debate over the risk to nuclear power plant workers from beta radiation-emitting discrete radioactive particles (or DRPs). DRPs-sometimes called open-quotes hot particlesclose quotes-are small, often microscopic, radioactive particles that can adhere to the skin and protective clothing of plant workers. They can potentially produce high radiation doses to very small areas of the skin. Concern is based on the knowledge that various types of nonstochastic skin injuries can result from sufficiently high beta radiation doses. While the effects for large-area irradiations (several square centimeters and larger) are generally well understood, the effects for doses to very small areas are less clear. However, the evidence is clear that the doses required to produce skin injuries from DRP irradiations are significantly larger than the dose limits prescribed in existing regulations for large-area skin exposures. One concern is that nuclear power plant efforts to comply with skin dose limits causes workers to receive unnecessary whole-body radiation exposure. In addition, DRP protection measures focus radiation protection resources on very low risk hazards, and may not be an optimum use of radiation protection resources. EPRI sponsored a series of irradiation experiments to address some of the DRP exposure issues. This report summarizes the results of experiments using sources covering a range of sizes and beta energies, simulating both activation product and fuel-bearing DRPS. NCRP Publication 106 states that all of these small skin injuries are minor, but that acute deep ulceration should be avoided. Accordingly, this research focused on open sores or scabs that remain unhealed for very long times. The ED 50 dose for these injuries was determined to be about 5 krad (50 Gy). A revised guideline might lower whole-body exposures associated with DRP control measures, while not significantly increasing the likelyhood of DRP injuries

  16. Evaluation of educational videos to increase skin cancer risk awareness and sun-safe behaviors among adult Hispanics.

    Science.gov (United States)

    Hernandez, Claudia; Wang, Stephanie; Abraham, Ivy; Angulo, Maria Isabel; Kim, Hajwa; Meza, Joyce R; Munoz, Anastasia; Rodriguez, Lizbeth; Uddin, Sabrina

    2014-09-01

    Although skin cancer is less common in Hispanics, they are at higher risk for presenting with more advanced stage skin cancer. We performed semi-structured interviews with Hispanic women that found high concern for photoaging from sun exposure. Based on these results, we developed two short Spanish-language films. The first emphasized photoaging benefits of sun protection, while the second focused on its benefits for skin cancer prevention. Our hypothesis was that the reduction of photoaging would be a more persuasive argument than skin cancer prevention for the adoption of sunscreen use by Hispanic women. Study participants were recruited from beauty salons located in predominantly Hispanic neighborhoods. Each of the two Spanish-language films was approximately 3 min long. A pre-intervention questionnaire assessed subjects' general knowledge and sunscreen habits, and a second questionnaire administered after viewing both films assessed for improvements in risk perception and inquired about which film was more persuasive. Eighty Hispanics participated ranging in age from 19 to 75. The pre-education survey found that 54 out of 80 believed that fair-skin Hispanics (FS) were at risk for skin cancer, and 44 out of 80 believed that dark-skin Hispanics (DS) were at risk. These numbers increased to 72 (FS) and 69 (DS) after the intervention (p value: <0.0002 FS, <0.0001 DS). Hispanics overwhelmingly selected the video emphasizing the benefits of sun protection for skin cancer prevention as the more persuasive film (74 out of 80). A Spanish-language video has the potential to make an impact in healthy sun-protective behaviors, and information on how to properly apply sunscreen should be included in educational messages.

  17. The response of mouse skin and lung to fractionated x-rays

    International Nuclear Information System (INIS)

    Field, S.B.; Hornsey, S.

    1975-01-01

    The relationship between total dose and number of fractions has been investigated for damage to lung and skin in mice. Single doses and various numbers of fractions have been given and the results are analysed in two ways: (i) by comparing the fractionated treatment with a single dose. With this approach, and assuming that the observed damage to lung and skin is the result of cell killing, it is estimated that the ratio of initial to final slope of the cell survival curve is about 7:1; (ii) by measuring the additional dose required when the number of fractions is doubled. These results are roughly fitted by a single-hit times multitarget survival-curve model, with the ratio of slopes about 3:1. It is concluded from this discrepancy that the two-component model is an inadequate description of the survival curve for the cells of either skin or lung. (author)

  18. Weekly Carboplatin Reduces Toxicity During Synchronous Chemoradiotherapy for Merkel Cell Carcinoma of Skin

    International Nuclear Information System (INIS)

    Poulsen, Michael; Walpole, Euan; Harvey, Jennifer; Dickie, Graeme; O'Brien, Peter; Keller, Jacqui; Tpcony, Lee; Rischin, Danny

    2008-01-01

    Purpose: The toxicity of radiotherapy (RT) combined with weekly carboplatin and adjuvant carboplatin and etoposide was prospectively assessed in a group of patients with high-risk Stage I and II Merkel cell carcinoma of the skin. This regimen was compared with the Trans-Tasman Radiation Oncology Group 96:07 study, which used identical eligibility criteria but carboplatin and etoposide every 3 weeks during RT. Patients and Methods: Patients were eligible if they had disease localized to the primary site and lymph nodes, with high-risk features. RT was delivered to the primary site and lymph nodes to a dose of 50 Gy and weekly carboplatin (area under the curve of 2) was given during RT. This was followed by three cycles of carboplatin and etoposide. A total of 18 patients were entered into the study, and their data were compared with the data from 53 patients entered into the Trans-Tasman Radiation Oncology Group 96:07 study. Results: Involved lymph nodes (Stage II) were present in 14 patients (77%). Treatment was completed as planned in 16 patients. The weekly carboplatin dose was delivered in 17 patients, and 15 were able to complete all three cycles of adjuvant carboplatin and etoposide. Grade 3 and 4 neutrophil toxicity occurred in 7 patients, but no cases of febrile neutropenia developed. Compared with the Trans-Tasman Radiation Oncology Group 96:07 protocol (19 of 53 cases of febrile neutropenia), the reduction in the febrile neutropenia rate (p = 0.003) and decrease in Grade 3 skin toxicity (p = 0.006) were highly statistically significant. Conclusion: The results of our study have shown that weekly carboplatin at this dosage is a safe way to deliver synchronous chemotherapy during RT for MCC and results in a marked reduction of febrile neutropenia and Grade 3 skin toxicity compared with the three weekly regimen

  19. Chronic effects of UV on human skin

    International Nuclear Information System (INIS)

    Cesarini, J.P.

    1996-01-01

    Chronic exposures and acute accidents of the skin to UV has been recognized as an important risk for skin cancers in human. Attempts have been made with mathematical models to correlate the ambient UV dose and occupational irradiations with the risk of skin cancers. Development of accurate global measurements of solar irradiance and personal dosimetry is expected in the future in order to reduce the exposure of the general population, to precise the measures to be taken for indoor and outdoor workers. (author)

  20. Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model.

    Directory of Open Access Journals (Sweden)

    Germain J P Fernando

    Full Text Available BACKGROUND: Over 14 million people die each year from infectious diseases despite extensive vaccine use [1]. The needle and syringe--first invented in 1853--is still the primary delivery device, injecting liquid vaccine into muscle. Vaccines could be far more effective if they were precisely delivered into the narrow layer just beneath the skin surface that contains a much higher density of potent antigen-presenting cells (APCs essential to generate a protective immune response. We hypothesized that successful vaccination could be achieved this way with far lower antigen doses than required by the needle and syringe. METHODOLOGY/PRINCIPAL FINDINGS: To meet this objective, using a probability-based theoretical analysis for targeting skin APCs, we designed the Nanopatch, which contains an array of densely packed projections (21025/cm(2 invisible to the human eye (110 microm in length, tapering to tips with a sharpness of <1000 nm, that are dry-coated with vaccine and applied to the skin for two minutes. Here we show that the Nanopatches deliver a seasonal influenza vaccine (Fluvax 2008 to directly contact thousands of APCs, in excellent agreement with theoretical prediction. By physically targeting vaccine directly to these cells we induced protective levels of functional antibody responses in mice and also protection against an influenza virus challenge that are comparable to the vaccine delivered intramuscularly with the needle and syringe--but with less than 1/100(th of the delivered antigen. CONCLUSIONS/SIGNIFICANCE: Our results represent a marked improvement--an order of magnitude greater than reported by others--for injected doses administered by other delivery methods, without reliance on an added adjuvant, and with only a single vaccination. This study provides a proven mathematical/engineering delivery device template for extension into human studies--and we speculate that successful translation of these findings into humans could

  1. Relationship between measurements of blood oxidative metabolites and skin reaction in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Recently, oxidative metabolites have been able to be measured by simple small device. It has been reported that the value of oxidative metabolites increases under several conditions such as hypertension, smoking, diabetes mellitus, etc. Radiation used in radiotherapy also causes free radicals and oxidative metabolites, and irradiation causes dermatitis and sometimes causes skin ulcer in the irradiated site. We analyzed the relationships between the value of oxidative metabolites and skin reactions. A certain doses of radiation were irradiated to the right thigh of rats, and oxidative metabolites of rat's blood from caudal vein were measured by d-reactive oxygen metabolites (ROMs) test using an exclusive device. Skin reactions were evaluated according to a skin-reaction grading system from the day before irradiation to day 38 after irradiation. As a results, a significant correlation was shown between irradiation dose and skin grade. And a significant correlation was also shown between the value of oxidative metabolites and irradiation dose. The increase in oxidative metabolites was seen in the Day 16 after irradiation, and that corresponded with the appearance of skin reaction. It was suggested that the value of oxidative metabolites seems to be useful for estimating degree of skin reaction and time to appear skin reaction after irradiation. (author)

  2. Dose estimation at the entrance of the skin in diagnostic imaging equipment using distributions of workloads

    International Nuclear Information System (INIS)

    Pereira, Paula A.A.; Furquim, Tania A.C.; Costa, Paulo R.

    2005-01-01

    The work proposed to implement workload distributions with respect to radiological equipment of different technologies, the input dose calculation in the skin (DEP). With the results of the survey in the field (radiological clinics and hospitals of the city of Sao Paulo, SP, Brazil), a methodology was studied for the application of this information in the calculation of DEP and the application of statistical treatment of results of measurements performed. With the results, we can conclude that the choice of the appropriate number of samples is important in order to obtain statistically acceptable values. In addition, it can be concluded that the method presented is valid because the DEP found values are very close to the values calculated by other methods previously developed by the authors

  3. Clinical meaning of radiodermatitis considering the surface dose of supervoltage electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Rikimaru, S; Kakishita, M; Kuranishi, M

    1975-12-01

    In our experience using supervoltage betatron electron beam, the skin surface dose of the electron decreased when the energy became either greater or less than 18 MeV. When we considered 18 MeV to be a 100% dose, the dose with 4 MeV, which was the least amount, corresponded to 81% of the dose. The skin surface dose of 10 MeV betatron electrons or more became greater than the 90% standard tumor dose. An external irradiation of more than 10 MeV should not be applied to neoplasms of which the curative ratio is less than 1.0. Therefore another methods such as intraoperative irradiation, should be used. The surface skin dose about 4 to 6 MeV betatron postoperative irradiation, particularly after resection of breast cancer, was less than the skin dose with 10 MeV. Close care should be taken to prevent hot lesions which are caused by duplication of irradiation fields. It should be kept in mind that the late effects of hot lesions caused by electron beam irradiation with an energy of 10 MeV or more are serious.

  4. Paediatric doses from diagnostic radiology in Victoria

    International Nuclear Information System (INIS)

    Boal, T.J.; Cardillo, I.; Einsiedel, P.F.

    1998-01-01

    This study examines doses to paediatric patients from diagnostic radiology. Measurements were made at 29 hospitals and private radiology practices in the state of Victoria. Entrance skin doses in air were measured for the exposure factors used by hospital radiology departments and private radiology practices for a standard size 1, 5, 10 and 15 year old child, for the following procedures: chest AP/PA, lat; abdomen AP; pelvis AP; lumbar spine AP, lat; and skull AP, lat. There was a large range of doses for each particular procedure and age group. Factors contributing to the range of doses were identified. Guidance levels for paediatric radiology based on the third quartile value of the skin entrance doses have been recommended and are compared with guidance levels. Copyright (1998) Australasian Physical and Engineering Sciences in Medicine

  5. Dose evaluation in special fluoroscopy procedures: Hysterosalpingography and Dacryocystography

    International Nuclear Information System (INIS)

    Lopes, Cintya Carolina Barbosa

    2006-04-01

    The hysterosalpingography (HSG) and dacryocystography (DCG) are among the special fluoroscopy procedures. The HSG is a radiodiagnostic technique used to detect uterine and tubal pathologies and it is fundamental for the investigation of infertility. The DCG is a form of lacrimal system imaging, being important to show the level of obstruction, the presence of dilatation of the lacrimal sac, as well as alterations in nearby structures. At this research, the study of skin entrance dose was evaluated for these two special fluoroscopy procedures, besides the analyses of staff doses whose performs the exams. The exams of 22 HSG patients and 8 DCG patients were evaluated using TL-100 dosimeters attached on patient' skin at anatomical landmarks evolved on each exam. In the case of HSG, the results showed that skin entrance doses varied from 0.5 mGy to 73.4 mGy, with an average value of 22.1 mGy. The estimated uterus dose was 5.5 mGy, and 6.6 mGy was the average dose estimated to the ovaries. The patient' skin entrance dose undergoing to DCG examinations varied from 2.1 mGy to 10.6 mGy, and the average eye's dose was 6.1 mGy. The results of staff dose showed that, on HSG, the average dose on doctor's right hand was 4.3 mGy per examination. This value had to the fact that the physician introduces the contrast manually while all contrast exposures. In relation of DCG, the staff's dose values were nearby background radiation, evidencing that, inside of permitted limits, there is no risk for the physicians at this procedure. (author)

  6. A multilayered polyurethane foam technique for skin graft immobilization.

    Science.gov (United States)

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  7. Skin, eye, and testis: current exposure problems and recent advances in radiobiology

    International Nuclear Information System (INIS)

    Charles, M.W.

    1986-01-01

    Three organs, the skin, eye and testis are potentially at risk from poorly penetrating radiations such as beta particles or low energy X-Rays. They may be preferentially irradiated in fields with steep depth - dose gradients and thereby dictate radiological protection procedures. Since there is not a wide margin of safety in the annual permissible dose limits for these organs it is important to have clearly defensible methods of dose assessment. This requires both an adequate understanding of the radiobiology of these organs and the availability of experimental techniques for measuring doses at various depths near the surface of the body. This paper reviews the current state of knowledge in this field, drawing partly on information from two recent CEC workshops on the 'Dosimetry of Beta Particles and Low Energy X-Rays' and 'Radiation Damage to the Skin'. It is concluded that protection criteria for the limitation of skin dose are in need of revision. (author)

  8. Evaluation of skin and ingestion exposure pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, Rosanne [Pacific Northwest Laboratory, Richland, WA (United States); Logsdon, Joe E [United States Environmental Protection Agency, Office of Radiation Programs, Washington, DC (United States)

    1989-06-01

    After a nuclear accident when there has been a release of radionuclides into the atmosphere with consequential deposition on the ground, decisions are necessary on whether protective action guides should be implemented. In order to do this, several pathways for radiation exposure must be evaluated to determine the projected dose to individuals. The objective of this study, conducted by Pacific Northwest Laboratories for the U.S. Environmental Protection Agency, is to provide background information on exposure pathways for use in the development of Protective Action Guides. The relative importance of three exposure pathways that are usually considered to be unimportant compared to other pathways expected to control relocation decisions following a nuclear power plant accident is evaluated. The three pathways are the skin dose from contact with radionuclides transferred from the ground, the skin dose from radionuclides on the ground surface, and ingestion of radionuclides transferred directly to the mouth from the hands or other contaminated surfaces. Ingestion of contaminated food is not included in this evaluation, except for situations where the food is contaminated as a result of actions by the person who consumes the food (e.g., transfer of contamination from hands to food). Estimates of skin and ingestion doses are based on a source term with a radionuclide mix predicted for an SST2-type nuclear accident in an area where the first year reference whole-body dose equivalent from whole body external exposure to gamma radiation plus the committed effective dose equivalent from inhalation of resuspended radionuclides is 1 rem. Appendixes have been included to allow the reader to examine dose factor calculations, source-term data, and quantification of contact and ingestion parameters in more detail.

  9. Evaluation of skin and ingestion exposure pathways

    International Nuclear Information System (INIS)

    Aaberg, Rosanne; Logsdon, Joe E.

    1989-06-01

    After a nuclear accident when there has been a release of radionuclides into the atmosphere with consequential deposition on the ground, decisions are necessary on whether protective action guides should be implemented. In order to do this, several pathways for radiation exposure must be evaluated to determine the projected dose to individuals. The objective of this study, conducted by Pacific Northwest Laboratories for the U.S. Environmental Protection Agency, is to provide background information on exposure pathways for use in the development of Protective Action Guides. The relative importance of three exposure pathways that are usually considered to be unimportant compared to other pathways expected to control relocation decisions following a nuclear power plant accident is evaluated. The three pathways are the skin dose from contact with radionuclides transferred from the ground, the skin dose from radionuclides on the ground surface, and ingestion of radionuclides transferred directly to the mouth from the hands or other contaminated surfaces. Ingestion of contaminated food is not included in this evaluation, except for situations where the food is contaminated as a result of actions by the person who consumes the food (e.g., transfer of contamination from hands to food). Estimates of skin and ingestion doses are based on a source term with a radionuclide mix predicted for an SST2-type nuclear accident in an area where the first year reference whole-body dose equivalent from whole body external exposure to gamma radiation plus the committed effective dose equivalent from inhalation of resuspended radionuclides is 1 rem. Appendixes have been included to allow the reader to examine dose factor calculations, source-term data, and quantification of contact and ingestion parameters in more detail

  10. SU-F-T-82: Dosimetric Evaluation of a Shield Used for Hemi-Body Skin Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, C; Singh, A [Roswell Park Cancer Institute, Buffalo, NY (United States); AlDahlawi, I; Wang, I; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States); State University of New York at Buffalo, Buffalo, NY (United States)

    2016-06-15

    Purpose: We had several mycosis fungoides patients with a limited disease to about half of the skin surface. A custom-made plywood shield was used to protect the non-targeted skin region with our total skin electron irradiation (TSEI) technique. We report a dosimetric evaluation for our “hemi-body” skin electron irradiation technique. Methods: The technique is similar to our clinical total skin electron irradiation (TSEI), performed with a six-pair dual field (Stanford technique) at an extended source-to-skin distance (SSD) of 377 cm, with the addition of a plywood shield placed 50 cm from the patient. The shield is made of three layers of standard 5/8″ thick plywood (total thickness of 4.75 cm) that are clamped securely on an adjustable-height stand. Gafchromic EBT3 films were used in assessing the shield’s transmission factor and the extend of the dose penumbra region. To verify the dose delivered for hemi-body skin radiation in a real patient treatment, in-vivo dosimetry using Gafchromic EBT3 films were performed. Film pieces were taped on the patient skin to measure the dose received during the first two fractions, placed on the forehead and upper body (shielded region); and also at the level of pelvic area, left thigh, and left ankle. Results: The shield transmission factor was found to be 10%, and the width of the penumbra (80-to-20% dose fall-off) was about 12 cm. In-vivo dosimetry of a real case confirmed the expected shielded area dose. Conclusion: Hemi-Body skin electron irradiation at an extended SSD is feasible with the addition of a plywood shield at a distance from patient skin. The penumbra dose region and the shield’s transmission factor should be evaluated prior to clinical use. We have treated several hemi-body skin patients with our custom-made plywood shield, the current patient measurements are representative of these for other patients as well.

  11. Risk factors for skin cancer among Finnish airline cabin crew.

    Science.gov (United States)

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study.

  12. Tolerance of human skin applying pulsed brachytherapy with large afterloading moulds

    International Nuclear Information System (INIS)

    Fritz, Peter; Hensley, Frank W.; Berns, Christiane; Schraube, Peter; Wannenmacher, Michael

    1995-01-01

    Purpose: The concept of pulsed brachytherapy suggested by Brenner and Hall requires an unusual fractionation scheme. The effectiveness and sequelae of this new irradiation method was observed on patients with disseminated cutaneous metastases of breast cancer. Materials and Methods: A flexible, re-usable skin mould (weight 110 g) was developed for use with a PDR afterload. An array of 18 parallel catheters (2 mm diameter) at equal distances of 10 mm was constructed by fixation of the catheters in a plastic wire mesh. The array is sewn between two foam rubber slabs of 5 mm thickness to provide a defined constant distance to the skin. Irradiations are performed up to a maximum field size of 17 x 23,5 cm 2 with a nominal 37 GBq Ir-192 source in pulses of 1 Gy per hour at the skin surface. The dose distribution is geometrically optimized to provide a homogeneous skin dose (100±10%). The 80% dose level lies at 5 mm below the skin surface. 20 patients suffering from cutaneous metastases at the thoracic wall were treated with 22 fields (area irradiated: 100-919 cm 2 ) at total doses of 40 to 50 Gy applying two PDR courses with a pause of 4 to 6 weeks. 12 of the fields were previously irradiated with external beam therapy to doses of 40 to 60 Gy at 7 to 22 months in advance. Results: Complete remissions (CR) were achieved in 21 out of 22 fields. (18(20)) patients were free of relapse at the time of death or evaluation. Pre-irradiated fields (n=12): follow-up times 6-21,5 months (median: 11,5 months). CR: (11(12)) fields. Recurrencies:(2(12)) fields. Maximum degree of early skin reactions: marked erythema: (8(12)) fields; epitheliolysis (>50% field size): (4(12)) fields. Intermediate skin reactions after minimum follow-up of 6 months: pigmentation/atrophy: (8(12)) fields; marked teleangiectasia: (3(12)) fields; small skin necrosis:(1(12)) fields. Newly irradiated fields (n=11): follow-up: 6-13,5 months (median:8 month). CR: (11(11)) fields. Recurrencies:(0(11)) fields

  13. Late nonstochastic changes in pig skin after β irradiation

    International Nuclear Information System (INIS)

    Peel, D.M.; Hopewell, J.W.; Wells, J.; Charles, M.W.

    1985-01-01

    Late radiation-induced changes in pig skin have been assessed following irradiation with β-rays from a 22.5- or 15-mm-diameter 90 Sr/ 90 Y source and a 19- or 9-mm-diameter 170 Tm source. Late damage, in terms of dermal atrophy, was assessed 2 years after irradiation from measurements of dermal thickness of 40-50% of the control value, occurred at a dose of approx. 40 Gy from the 22.5-mm source and approx. 75 Gy from the 15-mm source. In the case of 170 Tm the 19- and 9-mm sources produced similar degrees of atrophy at equal doses. Maximum atrophy occurred at approx. 70 Gy, when the dermis was approx. 70% of the thickness of normal skin. Significant late tissue atrophy was seen at doses, from both types of radiation, which only produced minimal erythema in the early reaction. Such late reactions need to be taken into account when revised radiological protection criteria are proposed for skin

  14. Porcine skin damage thresholds for pulsed nanosecond-scale laser exposure at 1064-nm

    Science.gov (United States)

    DeLisi, Michael P.; Peterson, Amanda M.; Noojin, Gary D.; Shingledecker, Aurora D.; Tijerina, Amanda J.; Boretsky, Adam R.; Schmidt, Morgan S.; Kumru, Semih S.; Thomas, Robert J.

    2018-02-01

    Pulsed high-energy lasers operating in the near-infrared (NIR) band are increasingly being used in medical, industrial, and military applications, but there are little available experimental data to characterize their hazardous effects on skin tissue. The current American National Standard for the Safe Use of Lasers (ANSI Z136.1-2014) defines the maximum permissible exposure (MPE) on the skin as either a single-pulse or total exposure time limit. This study determined the minimum visible lesion (MVL) damage thresholds in Yucatan miniature pig skin for the single-pulse case and several multiple-pulse cases over a wide range of pulse repetition frequencies (PRFs) (10, 125, 2,000, and 10,000 Hz) utilizing nanosecond-scale pulses (10 or 60 ns). The thresholds are expressed in terms of the median effective dose (ED50) based on varying individual pulse energy with other laser parameters held constant. The results confirm a decrease in MVL threshold as PRF increases for exposures with a constant number of pulses, while also noting a PRF-dependent change in the threshold as a function of the number of pulses. Furthermore, this study highlights a change in damage mechanism to the skin from melanin-mediated photomechanical events at high irradiance levels and few numbers of pulses to bulk tissue photothermal additivity at lower irradiance levels and greater numbers of pulses. The observed trends exceeded the existing exposure limits by an average factor of 9.1 in the photothermally-damaged cases and 3.6 in the photomechanicallydamaged cases.

  15. Radiotherapy: how to save your skin

    International Nuclear Information System (INIS)

    Butson, M.; Carolan, M.; Metcalfe, P.; University of Wollongong, NSW; Mathur, J.

    1996-01-01

    Full text: The skin sparing properties of Megavoltage photon beams are widely known. The effects of electron contamination and head scattered photons produced by the primary beam interacting with materials in its path compromise this situation. But by how much and to what extent can this be reduced? This work reports the development of an empirical model to accurately calculate skin and build up percentage dose for a 6MV photon beam in any patient. New dosimetry techniques for measurement of surface dose and methods for reduction of electron contamination are also presented. A 6MV x-ray beam from a Varian 2100C linear accelerator has been studied in detail. An Attix parallel plate ionisation chamber, Thermoluminescent Dosimeter extrapolation methods, Radiochromic film and Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are used to evaluate skin and build up dose in phantom conditions. Neodymium Iron Boron (NdFeB) rare earth magnets (weight 10kg) minium field strength 0.15T and Helium bag experiments are used to reduce electron contamination reaching the phantom. The empirical model developed for accurate calculation of build up dose is given by the following equation: D tot = D prim +D cont + ΔD blktry + ΔD ang + ΔD wdg +ΔD ssd + ΔD geo . D tot is the total percentage dose at any depth in the build up region. The components comprised in D tot are: dose from primary photons (D prim ), dose from electron contamination/head scattered photons in open fields (D cont ), change in dose from the introduction of block trays (ΔD blktry ), change in dose from oblique angle of incidence (ΔD ang ), change in dose from the use of wedges (ΔD wdg ), change in dose from varying SSD (ΔD ssd ) and change in dose from effect of patients irregular geometry (ΔD geo ). The experimental build up dose and calculated dose for an irregular patient field are given. Percentage dose is modelled to within a mean error of ±1% for typical patient fields. Radiochromic film

  16. Adenosine-loaded dissolving microneedle patches to improve skin wrinkles, dermal density, elasticity and hydration.

    Science.gov (United States)

    Kang, G; Tu, T N T; Kim, S; Yang, H; Jang, M; Jo, D; Ryu, J; Baek, J; Jung, H

    2018-04-01

    Although dissolving microneedle patches have been widely studied in the cosmetics field, no comparisons have been drawn with the topical applications available for routine use. In this study, two wrinkle-improving products, adenosine-loaded dissolving microneedle patches and an adenosine cream, were evaluated for efficacy, with respect to skin wrinkling, dermal density, elasticity, and hydration, and safety in a clinical test on the crow's feet area. Clinical efficacy and safety tests were performed for 10 weeks on 22 female subjects with wrinkles around their eyes. The adenosine-loaded dissolving microneedle patch was applied once every 3 days, in the evening, for 8 weeks to the designated crow's feet area. The adenosine cream was applied two times per day, in the morning and evening, for 8 weeks to the other crow's feet area. Skin wrinkling, dermal density, elasticity, and hydration were measured by using PRIMOS ® premium, Dermascan ® C, Cutometer ® MPA580, and Corneometer ® CM 825, respectively. In addition, subjective skin irritation was evaluated by self-observation, and objective skin irritation was assessed through expert interviews. The adenosine-loaded dissolving microneedle patches had a similar or better efficacy than the adenosine cream. Both groups showed statistically significant efficacy for almost all parameters (P hydration efficacy (P skin-improvement parameters, adenosine-loaded dissolving microneedle patches showed the same or better effect than the adenosine cream, although the weekly adenosine dose was 140 times lower. The dissolving microneedle patches caused no adverse reactions. These adenosine-loaded dissolving microneedle patches are expected to be safe, effective, and novel cosmetics for skin improvement. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. In vivo verification of superficial dose for head and neck treatments using intensity-modulated techniques

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Zhang Li; He Zhichun; Allen Li, X.; Kwan, Ian; Lerch, Michael; Cutajar, Dean; Metcalfe, Peter; Rosenfeld, Anatoly

    2009-01-01

    Skin dose is one of the key issues for clinical dosimetry in radiation therapy. Currently planning computer systems are unable to accurately predict dose in the buildup region, leaving ambiguity as to the dose levels actually received by the patient's skin during radiotherapy. This is one of the prime reasons why in vivo measurements are necessary to estimate the dose in the buildup region. A newly developed metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector designed specifically for dose measurements in rapidly changing dose gradients was introduced for accurate in vivo skin dosimetry. The feasibility of this detector for skin dose measurements was verified in comparison with plane parallel ionization chamber and radiochromic films. The accuracy of a commercial treatment planning system (TPS) in skin dose calculations for intensity-modulated radiation therapy treatment of nasopharyngeal carcinoma was evaluated using MOSFET detectors in an anthropomorphic phantom as well as on the patients. Results show that this newly developed MOSFET detector can provide a minimal but highly reproducible intrinsic buildup of 7 mg cm -2 corresponding to the requirements of personal surface dose equivalent Hp (0.07). The reproducibility of the MOSFET response, in high sensitivity mode, is found to be better than 2% at the phantom surface for the doses normally delivered to the patients. The MOSFET detector agrees well with the Attix chamber and the EBT Gafchromic registered film in terms of surface and buildup region dose measurements, even for oblique incident beams. While the dose difference between MOSFET measurements and TPS calculations is within measurement uncertainty for the depths equal to or greater than 0.5 cm, an overestimation of up to 8.5% was found for the surface dose calculations in the anthropomorphic phantom study. In vivo skin dose measurements reveal that the dose difference between the MOSFET results and the TPS calculations was on average -7

  18. Single Intravenous Dose of Oritavancin for Treatment of Acute Skin and Skin Structure Infections Caused by Gram-Positive Bacteria: Summary of Safety Analysis from the Phase 3 SOLO Studies.

    Science.gov (United States)

    Corey, G Ralph; Loutit, Jeffery; Moeck, Greg; Wikler, Matthew; Dudley, Michael N; O'Riordan, William

    2018-04-01

    Oritavancin is a lipoglycopeptide with bactericidal activity against Gram-positive organisms. Its rapid concentration-dependent bactericidal activity and long elimination half-life allow single-dose treatment of acute bacterial skin and skin structure infections (ABSSSI). SOLO I and SOLO II were randomized, double-blind studies evaluating the efficacy and safety of a single 1,200-mg intravenous (i.v.) dose of oritavancin versus twice-daily i.v. vancomycin for 7 to 10 days in ABSSSI patients. Safety data from both studies were pooled for safety analysis. The database comprised pooled safety data for 976 oritavancin-treated patients and 983 vancomycin-treated patients. The incidences of adverse events, serious adverse events, and discontinuations due to adverse events were similar for oritavancin (55.3, 5.8, and 3.7%, respectively) and vancomycin (56.9, 5.9, and 4.2%, respectively). The median time to onset (3.8 days versus 3.1 days, respectively) and the duration (3.0 days for both groups) of adverse events were also similar between the two groups. The most frequently reported events were nausea, headache, and vomiting. Greater than 90% of all events were mild or moderate in severity. There were slightly more infections and infestations, abscesses or cellulitis, and hepatic and cardiac adverse events in the oritavancin group; however, more than 80% of these events were mild or moderate. Subgroup analyses did not identify clinically meaningful differences in the incidence of adverse events attributed to oritavancin. A single 1,200-mg dose of oritavancin was well tolerated and had a safety profile similar to that of twice-daily vancomycin. The long elimination half-life of oritavancin compared to that of vancomycin did not result in a clinically meaningful delay to the onset or prolongation of adverse events. (This study has been registered at ClinicalTrials.gov under registration no. NCT01252719 and NCT01252732.). Copyright © 2018 American Society for Microbiology.

  19. Is phototherapy safe for HIV-infected individuals?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.L.; Houpt, K.R.; Cruz, P.D. Jr. [Texas Univ., Dallas, TX (United States). Southwestern Medical Center

    1996-08-01

    Patients infected with human immunodeficiency virus (HIV) have a high prevalence of UV radiation-responsive skin diseases including psoriasis, pruitus, eosinophillic folliculitis and eczemas. On the other hand, UV has been shown to suppress T cell-mediated immune responses and to induce activation and replication of HIV. These developments have prompted clinicians and investigators to question whether phototherapy is safe for HIV-infected individuals. We have reviewed these issues and hereby provide a summary and critique of relevant laboratory and clinical evidence. (Author).

  20. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    Energy Technology Data Exchange (ETDEWEB)

    Muizzuddin, N.; Shakoori, A.R. [Univ. of the Punjab, Dept. of Zoology, Cell and Molecular Biology Lab., Lahore (Pakistan); Marenus, K.D. [SUNY at Stonybrook, Stonybrook, NY (United States)

    1998-11-01

    Background/aims: Within the past three decades, there has emerged a greater awareness of the molecular effects of solar rays especially ultraviolet radiation (UV-R), to the extent that the harmful effects of solar radiation are recognized not only by molecular biologists and physicians, but also by the general public. Various sunscreen molecules that effectively block the UVB component of the sun are available; however, a large part of Western populations elicits adverse reactions against chemical sunscreens. This study was designed to observe the protective effect of antioxidants against the damaging effects of chronic UVB exposure of skin in an attempt to introduce antioxidants and free radical scavengers as topical sun protective agents. Methods: Jackson hairless mice were exposed to suberythemal doses of UVB, three times a week, and topically treated with a cream containing the anti-oxidants vitamin E, butylated hydroxytoluene, nordihydroguaradinic acid and vitamin C. Results: Treatment with vehicle alone along with UVB exposure resulted in an increase in epidermal thickness showing a 38%, 77% and 112% increase after 4 weeks, 8 weeks and 12 weeks, respectively. Chronic UVB exposed skin treated with the material containing free radical scavengers and antioxidants mix (AO mix) exhibited 39%, 73% and 124% thicker epidermis than the untreated control after, respectively, 4 weeks, 8 weeks and 12 weeks of treatment. The vehicle did not appear to protect skin against UV irradiation, since there appeared to be more (16%) sunburn cells in vehicle treated skin than the untreated, UV exposed skin after 4 weeks of treatment. After 8 weeks and 12 weeks, there were 33% and 36% less sunburn cells in the vehicle treated skin than the untreated, UV exposed skin. The antioxidant mix was significantly effective (P=<0.001) in protecting against UVB irradiation, having 63%, 71% and 79% fewer sunburn cells than the untreated, UV exposed skin af after 4 weeks, 8 weeks and 12 weeks of

  1. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    International Nuclear Information System (INIS)

    Muizzuddin, N.; Shakoori, A.R.; Marenus, K.D.

    1998-01-01

    Background/aims: Within the past three decades, there has emerged a greater awareness of the molecular effects of solar rays especially ultraviolet radiation (UV-R), to the extent that the harmful effects of solar radiation are recognized not only by molecular biologists and physicians, but also by the general public. Various sunscreen molecules that effectively block the UVB component of the sun are available; however, a large part of Western populations elicits adverse reactions against chemical sunscreens. This study was designed to observe the protective effect of antioxidants against the damaging effects of chronic UVB exposure of skin in an attempt to introduce antioxidants and free radical scavengers as topical sun protective agents. Methods: Jackson hairless mice were exposed to suberythemal doses of UVB, three times a week, and topically treated with a cream containing the anti-oxidants vitamin E, butylated hydroxytoluene, nordihydroguaradinic acid and vitamin C. Results: Treatment with vehicle alone along with UVB exposure resulted in an increase in epidermal thickness showing a 38%, 77% and 112% increase after 4 weeks, 8 weeks and 12 weeks, respectively. Chronic UVB exposed skin treated with the material containing free radical scavengers and antioxidants mix (AO mix) exhibited 39%, 73% and 124% thicker epidermis than the untreated control after, respectively, 4 weeks, 8 weeks and 12 weeks of treatment. The vehicle did not appear to protect skin against UV irradiation, since there appeared to be more (16%) sunburn cells in vehicle treated skin than the untreated, UV exposed skin after 4 weeks of treatment. After 8 weeks and 12 weeks, there were 33% and 36% less sunburn cells in the vehicle treated skin than the untreated, UV exposed skin. The antioxidant mix was significantly effective (P=<0.001) in protecting against UVB irradiation, having 63%, 71% and 79% fewer sunburn cells than the untreated, UV exposed skin af after 4 weeks, 8 weeks and 12 weeks of

  2. Is oxycodone/naloxone effective and safe in managing chronic pain of a fragile elderly patient with multiple skin ulcers of the lower limbs? A case report 

    Directory of Open Access Journals (Sweden)

    Guerriero F

    2015-08-01

    Full Text Available Fabio Guerriero,1,2 Niccolo Maurizi,1 Matthew Francis,1 Carmelo Sgarlata,1 Giovanni Ricevuti,1,2 Mariangela Rondanelli,2,3 Simone Perna,2,3 Marco Rollone21Department of Internal Medicine and Medical Therapy, Section of Geriatrics, University of Pavia, 2Azienda di Servizi alla Persona, Istituto di Cura Santa Margherita of Pavia, 3Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, University of Pavia, Pavia, Italy Abstract: Skin ulcers are a common issue in the elderly, as physiological loss of skin elasticity, alterations in microcirculation, and concomitant chronic diseases typically occur in advanced age, thereby predisposing to these painful lesions. Wound-related pain is often associated with skin ulcers and negatively impacts both the patient’s quality of life and, indirectly, wound healing. Pain management is an ongoing issue in the elderly, and remains underestimated and undertreated in this fragile population. Recent guidelines suggest the use of opioids as the frontline treatment of moderate and severe pain in nononcological pain in the elderly. However, due to the concerns of adverse reactions, drug interactions, and addiction, clinicians frequently hesitate to prescribe opioids. This case report describes an elderly diabetic patient with multiple ulcers of the lower limbs suffering wound-related pain. In our report, oxycodone/naloxone has proved to be an effective and safe drug, providing pain relief as well as increased compliance when redressing wounds and faster healing compared to that in similar patients. Our case provides anecdotal evidence, supported by other studies, to justify future, larger studies on chronic pain using this therapy. Keywords: chronic pain, skin ulcers, elderly, opioids, oxycodone, naloxone

  3. Non-invasive biological dosimetry of the skin

    International Nuclear Information System (INIS)

    Barton, S.; Marks, R.; Charles, M.W.; Wells, J.

    1986-01-01

    Investigations designed to identify a potential biological dosimetry technique to examine the effects of X-ray doses down to 0.1 Gy on human skin, are described. In a variety of parameters assessed, the most important changes observed were a significant depression in epidermal cell production in the basal layer after X-ray doses between 0.5 Gy and 1 Gy and a concomitant reduction in the desquamation rate of corneocytes after doses above 1 Gy. Changes in non-specific esterase (NSE) activity were also observed. Further work is described which applies these results to several non-invasive techniques which may have potential for routine application. Preliminary data from irradiated human skin are presented on the measurement of forced desquamation, the evaluation of NSE activity from hair samples and the evaluation of stratum corneum turnover time using the fluorescent dye, dansyl chloride. (author)

  4. Assessment of Organ Radiation Dose Associated with Uterine Artery Embolization

    International Nuclear Information System (INIS)

    Glomset, O.; Hellesnes, J.; Heimland, N.; Hafsahl, G.; Smith, H.J.

    2006-01-01

    Purpose: To evaluate the radiation dose to the skin, uterus, and ovaries during uterine artery embolization. Material and Methods: Guided uterine artery embolization for leiomyomata and two types of X-ray equipment with different dose levels were utilized during fluoroscopy in 20 women (ages ranging from 32 to 52 years, body weights from 55 to 68 kg). The first 13 women were treated using a non-pulsed system A, with 3.3 mm Al filtering and, for simplicity, a fixed peak voltage 80 kV. During treatment of the other 7 women, a pulsed system B with 5.4 mm Al filtering and an identical fixed voltage was used. The dose area product (DAP) was recorded. The vaginal dose of the first 13 patients and the peak skin dose of all patients were measured with thermoluminescent dosimeters (TLDs). TLDs were placed in the posterior vaginal fornix and on the skin at the beam entrance site. The uterine and ovarian doses were estimated based on the measured skin doses, normalized depth dose, and organ depth values. The effective dose (D eff ) was estimated based on the observed DAP values. The measured vaginal doses and the corresponding estimated uterine doses were compared statistically, as were the DAP values from systems A and B. Results: For system A, the mean fluoroscopic time was 20.9 min (range 12.7-31.1), and for system B 35.9 min (range 16.4-55.4). The mean numbers of angiographic exposures for systems A and B were 82 (range 30-164) and 37 (range 20-72), respectively. The mean peak skin dose for system A was 601.5 mGy (range 279-1030) and for system B 453 mGy (range 257-875). The mean DAP for system A was 88.6 Gy cm 2 (range 41.4-161.0) and for system B 52.5 Gy cm 2 (range 20.1-107.9). Statistical analysis showed a significant difference between the DAP values, the DAP for system B being the lower one. The mean estimated effective doses from systems A and B were 32 mSv (range 15.1-58.4) and 22 mSv (range 9-46), respectively. The mean estimated maximum uterine and ovarian doses

  5. Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours.

    Science.gov (United States)

    Maybody, Majid; Tang, Peter Q; Moskowitz, Chaya S; Hsu, Meier; Yarmohammadi, Hooman; Boas, F Edward

    2017-03-01

    Pneumodissection is described as a simple method for preventing skin injury during cryoablation of superficial musculoskeletal tumours. Superficial tumour cryoablations performed from 2009 to 2015 were retrospectively reviewed. Pneumodissection was performed in 13 patients when the shortest tumour-skin distance was less than 25 mm. Indications were pain palliation (n = 9) and local tumour control (n = 4). Patients, target tumours, technical characteristics and complications up to 60 days post ablation were reviewed. The ice ball-skin distances with and without pneumodissection were compared by a paired t-test and further assessed for association with covariates using ANCOVA. Technical success for ablation was 12 of 13. The mean shortest tumour-skin distance was 15.0 mm (3.2-24.5 mm). The mean thickness of pneumodissection was 9.6 mm (5.2-16.6 mm) resulting in mean elevation of skin of 3.4 mm (1.2-5.3 mm). Mean shortest ice ball-skin distance after pneumodissection was 10.5 mm (4.2-19.7 mm). No infection or systemic air embolism was noted. No intraprocedural frostbite was observed. Pneumodissection is feasible, effective and safe in protecting the skin during image-guided cryoablation of superficial tumours. • Frostbite during image-guided cryoablation of superficial tumours is commonly under-reported. • Frostbites are painful and may introduce infection into the superficial ablation zone. • Warm compress, saline and CO 2 have shortcomings in protecting the skin. • Pneumodissection is free, readily available, easy to use and safe and effective.

  6. Safe Driving After Propofol Sedation.

    Science.gov (United States)

    Summerlin-Grady, Lee; Austin, Paul N; Gabaldon, Dion A

    2017-10-01

    Propofol is a short-acting medication with fast cognitive and psychomotor recovery. However, patients are usually instructed not to drive a motor vehicle for 24 hours after receiving propofol. The purpose of this article was to review the evidence examining when it is safe to drive after receiving propofol for sedation for diagnostic and surgical procedures. This is a systematic review of the literature. A search of the literature was conducted using Google Scholar, PubMed, and the Cochrane Library for the time period 1990 to 2015. Two randomized controlled trials and two observational studies met the inclusion criteria. Using a simulator, investigators examined driving ability of subjects who received modest doses (about 100 mg) of propofol for endoscopic procedures and surveyed subjects who drove immediately after discharge. There were methodological concerns with the studies such as small sample sizes, modest doses of propofol, and three of the four studies were done in Japan by the same group of investigators limiting generalizability. This limited research suggests that it may be safe for patients to drive sooner than 24 hours after receiving propofol. However, large multicenter trials using heterogenous samples using a range of propofol doses are needed to support an evidence-based revision to the current discharge guidelines for patients receiving propofol. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  7. Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Lee, Woo Suk; Koo, Ki Lae; Kim, Joo Seob; Lee, Sang Hyeon [Dept. of Radiation Oncology, GangNeung Asan Hospital, Gangneung (Korea, Republic of)

    2016-06-15

    To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography). Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv. As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  8. Construction tool and suitability of voxel phantom for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio

    2011-01-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  9. Construction tool and suitability of voxel phantom for skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Siqueira, Paulo T.D.; Fonseca, Gabriel P.; Yoriyaz, Helio, E-mail: ptsiquei@ipen.b, E-mail: hyoriyaz@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper describes a new software tool called 'SkinVop' which was developed to enable accurate voxel phantom skin dosimetry. A voxel phantom is a model used to describe human anatomy in a realistic way in radiation transport codes. This model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in a 3D matrix. Each entry in this array represents a voxel (volume element) directly associated to the units of picture resolution (pixel) of medical images. Currently, these voxel phantoms, in association with the transport code MCNP (Monte Carlo N-Particle), have provided subsidies to the planning systems used on the hospital routine, once they afford accurate and personalized estimative of dose distribution. However, these assessments are limited to geometric representations of organs and tissues in the voxel phantom, which do not discriminates some thin body structure, such as the skin. In this context, to enable accurate dosimetric skin dose assessment by the MCNP code, it was developed this new software tool that discriminates this region with thickness and localization in the voxel phantoms similar to the real. This methodology consists in manipulating the skin volume elements by segmenting and subdividing them in different thicknesses. A graphical user interface was designed to fulfill display the modified voxel model. This methodology is extremely useful once the skin dose is inaccurately assessed of current hospital system planning, justified justly by its small thickness. (author)

  10. Cutaneous contamination after a uranyl nitrate skin burn: incident report

    International Nuclear Information System (INIS)

    Berard, P.; Chalabreysse, J.; Quesne, B.; Auriol, B.

    1994-01-01

    The authors review the circumstances of a handburn incident by a mixture of dilute nitric acid and uranyl nitrate. The burn was localised on the thumb and three fingers of the left hand. After abundant washing, external direct measurements revealed the presence of uranium on the fingers. The injured employee was maintained under observation for ten days, and therapy was performed until all the activity disappeared. External monitoring with various detectors, and measurements of the bandages and skin showed a rapid decrease of uranium fixation. All urine was collected throughout the duration of the treatment. The study shows that all the activity was retained on the burnt skin, with very little systemic uptake. Rapid peeling eliminated the cutaneous retention. Internal and external dose assessments were calculated and the committed effective dose equivalent and the committed dose equivalent for the skin and bone surfaces were low. (author)

  11. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture.

    Science.gov (United States)

    Mytych, Jennifer; Wnuk, Maciej; Rattan, Suresh I S

    2016-04-01

    Nanodiamonds (ND) and silica nanoparticles (SiO2-NP) have been much investigated for their toxicity at high doses, little is known about their biological activity at low concentrations. Here we report the biphasic dose response of ND and SiO2-NP in modulating normal human facial skin fibroblasts (FSF1) in culture. ND and SiO2-NP at low concentration (up to 0.5 μg/ml) had beneficial effects on FSF1 in terms of increasing their proliferation and metabolic activity. Exposure of FSF1 cells to low levels of NP enhanced their wound healing ability in vitro and slowed down aging during serial passaging as measured by maintenance of youthful morphology, reduction in the rate of loss of telomeres, and the over all proliferative characteristics. Furthermore, NP treatment induced the activation of Nrf2- and FOXO3A-mediated cellular stress responses, including an increased expression of heme oxygenease (HO-1), sirtuin (SIRT1), and DNA methyltransferase II (DNMT2). These results imply that ND and SiO2-NP at low doses are potential hormetins, which exert mild stress-induced beneficial hormetic effects through improved survival, longevity, maintenance, repair and function of human cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. How safe is safe enough?

    International Nuclear Information System (INIS)

    Desnoyers, B.; Chanzy, Y.

    2004-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material, were historically established with the objective to reduce the probability that persons be exposed to unacceptable doses due to normal operation or accident situations during transport of radioactive material. Based on the International Basic Safety Standards for Protection against Ionizing Radiation (BSS), the definition, which was adopted for an unacceptable dose for an accident situation, is the excess of the maximum dose limits permissible in a single year for the occupational exposure of a worker in the BSS. Concerning the severity of accident situations, it has always be clearly stated that the objective of the tests for demonstrating ability to withstand accident conditions of transport was not to cover every accident condition, but solely most of them. The last available evaluations regarding the rate of accidents which are covered by the standardised accident conditions of transport defined in the IAEA Regulations give a range of about 80%, plus or minus 15% which depends on transport mode and studies. Consequently, slight variations in the capabilities of the packages to meet the specified performance would probably not have significant consequences on the protection level in case of accident. In the assessment of the compliance with the regulations, the tendency of experts, taking advantage of the enhanced performances of computer calculation codes, is to ask more and more calculations, with more and more accuracy, leading to more and more restrictions. Consequently, cost and delay are considerably increased without any evidence of an equivalent effect on the level of protection. This paper will initiate a reflection on the general objectives and principles when implementing the Regulations, in such a way that demonstrations remain cost effective, taking into account evolution of the techniques and a high level of safety

  13. Intrinsically Safe Robot Arm : Adjustable Static Balancing and Low Power Actuation

    NARCIS (Netherlands)

    Vermeulen, M.; Wisse, M.

    2010-01-01

    We present a design for a manipulator that is intrinsically mechanically safe, i.e. it can not cause pain (let alone damage) to a human being even if the control system has a failure. Based on the pressure pain thresholds for human skin, we derive a pinching safety constraint that limits the

  14. Mouse skin damages caused by fractionated irradiation with carbon ions

    International Nuclear Information System (INIS)

    Ando, K.; Chen, Y.J.; Ohira, C.; Nojima, K.; Ando, S.; Kobayashi, N.; Ohbuchi, T.; Shimizu, W.; Koike, S.; Kanai, T.

    1997-01-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/μm also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/μm in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/μm were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/μ steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  15. Mouse skin damages caused by fractionated irradiation with carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K; Chen, Y J; Ohira, C; Nojima, K; Ando, S; Kobayashi, N; Ohbuchi, T; Shimizu, W [Space and Particle Radiation Science Research Group, Chiba (Japan); Koike, S; Kanai, T [National Inst. of Radiological Sciences, Chiba (Japan). Div. of Accelerator Physics

    1997-09-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/{mu}m also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/{mu}m in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/{mu}m were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/{mu} steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  16. Further development of LLNA:DAE method as stand-alone skin-sensitization testing method and applied for evaluation of relative skin-sensitizing potency between chemicals.

    Science.gov (United States)

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Itagaki, Hiroshi

    2015-04-01

    To date, there has been no well-established local lymph node assay (LLNA) that includes an elicitation phase. Therefore, we developed a modified local lymph node assay with an elicitation phase (LLNA:DAE) to discriminate true skin sensitizers from chemicals that gave borderline positive results and previously reported this assay. To develop the LLNA:DAE method as a useful stand-alone testing method, we investigated the complete procedure for the LLNA:DAE method using hexyl cinnamic aldehyde (HCA), isoeugenol, and 2,4-dinitrochlorobenzene (DNCB) as test compounds. We defined the LLNA:DAE procedure as follows: in the dose-finding test, four concentrations of chemical applied to dorsum of the right ear on days 1, 2, and 3 and dorsum of both ears on day 10. Ear thickness and skin irritation score were measured on days 1, 3, 5, 10, and 12. Local lymph nodes were excised and weighed on day 12. The test dose for the primary LLNA:DAE study was selected as the dose that gave the highest left ear lymph node weight in the dose-finding study, or the lowest dose that produced a left ear lymph node of over 4 mg. This procedure was validated using nine different chemicals. Furthermore, qualitative relationship was observed between the degree of elicitation response in the left ear lymph node and the skin sensitizing potency of 32 chemicals tested in this study and the previous study. These results indicated that LLNA:DAE method was as first LLNA method that was able to evaluate the skin sensitizing potential and potency in elicitation response.

  17. The clinical meaning of radiodermatitis considering the surface dose of supervoltage electron beam

    International Nuclear Information System (INIS)

    Hiraki, Tatsunosuke; Rikimaru, Shigeho; Kakishita, Masao; Kuranishi, Makoto.

    1975-01-01

    In our experience using supervoltage betatron electron beam, the skin surface dose of the electron decreased when the energy became either greater of less than 18 MeV. When we considered 18 MeV to be a 100% dose, the dose with 4 MeV, which was the least amount, corresponded to 81% of the dose. The skin surface dose of 10 MeV betatron electrons or more became greater than the 90% standard tumor dose. An external irradiation of more than 10 MeV should not be applied to neoplasms of which the curative ratio is less than 1.0. Therefore another methods such as intraoperative irradiation, should be used. The surface skin dose about 4-6 MeV betatron postoperative irradiation, particularly after resection of breast cancer, was less than the skin dose with 10 MeV. Close care should be taken to prevent hot lesions which are caused by duplication of irradiation fields. It should be kept in mind that the late effects of hot lesions caused by electron beam irradiation with an energy of 10 MeV or more are serious. (Kashu, E.)

  18. Clinical picture of delayed radiation effects in the skin

    International Nuclear Information System (INIS)

    Hundeiker, M.

    1987-01-01

    Chronic radiation injuries of the skin develop over years or decades. Gradually increasing atrophy, sclerosis, telangiectasis, possibly - in highly exposed parts of the skin - keratosis due to radiation ulcers, carcinomas and basilomas occur after a latency period of decades, not so much in X-ray-injured skin after tumour therapy as in diffusely altered X-ray-injured skin after multiple exposure to low doses. Radiotherapy is indispensable, but like other effective methods of treatment it requires stringent indications, accurate execution and careful after-treatment. (TRV) [de

  19. The antiviral drug tenofovir, an inhibitor of Pannexin-1-mediated ATP release, prevents liver and skin fibrosis by downregulating adenosine levels in the liver and skin.

    Directory of Open Access Journals (Sweden)

    Jessica L Feig

    Full Text Available Fibrosing diseases are a leading cause of morbidity and mortality worldwide and, therefore, there is a need for safe and effective antifibrotic therapies. Adenosine, generated extracellularly by the dephosphorylation of adenine nucleotides, ligates specific receptors which play a critical role in development of hepatic and dermal fibrosis. Results of recent clinical trials indicate that tenofovir, a widely used antiviral agent, reverses hepatic fibrosis/cirrhosis in patients with chronic hepatitis B infection. Belonging to the class of acyclic nucleoside phosphonates, tenofovir is an analogue of AMP. We tested the hypothesis that tenofovir has direct antifibrotic effects in vivo by interfering with adenosine pathways of fibrosis using two distinct models of adenosine and A2AR-mediated fibrosis.Thioacetamide (100mg/kg IP-treated mice were treated with vehicle, or tenofovir (75mg/kg, SubQ (n = 5-10. Bleomycin (0.25U, SubQ-treated mice were treated with vehicle or tenofovir (75mg/kg, IP (n = 5-10. Adenosine levels were determined by HPLC, and ATP release was quantitated as luciferase-dependent bioluminescence. Skin breaking strength was analysed and H&E and picrosirus red-stained slides were imaged. Pannexin-1expression was knocked down following retroviral-mediated expression of of Pannexin-1-specific or scrambled siRNA.Treatment of mice with tenofovir diminished adenosine release from the skin of bleomycin-treated mice and the liver of thioacetamide-treated mice, models of diffuse skin fibrosis and hepatic cirrhosis, respectively. More importantly, tenofovir treatment diminished skin and liver fibrosis in these models. Tenofovir diminished extracellular adenosine concentrations by inhibiting, in a dose-dependent fashion, cellular ATP release but not in cells lacking Pannexin-1.These studies suggest that tenofovir, a widely used antiviral agent, could be useful in the treatment of fibrosing diseases.

  20. Protective molecular mechanisms of resveratrol in UVR-induced Skin carcinogenesis.

    Science.gov (United States)

    Aziz, Saba W; Aziz, Moammir H

    2018-01-01

    Skin cancer is a major health problem worldwide. It is the most common cancer in the United States and poses a significant healthcare burden. Excessive UVR exposure is the most common cause of skin cancer. Despite various precautionary measures to avoid direct UVR exposure, the incidence of skin cancer and mortality related to it remains high. Furthermore, the current treatment options are expensive and have side effects including toxicity to normal cells. Thus, a safe and effective approach is needed to prevent and treat skin cancer. Chemopreventive strategy using naturally occurring compounds, such as resveratrol, is a promising approach to reduce the incidence of UVR-induced skin cancer and delay its progression. This review highlights the current body of evidence related to chemopreventive role of resveratrol and its molecular mechanisms in UVR-induced skin carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Skin contamination dosimeter

    Science.gov (United States)

    Hamby, David M [Corvallis, OR; Farsoni, Abdollah T [Corvallis, OR; Cazalas, Edward [Corvallis, OR

    2011-06-21

    A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.

  2. Resveratrol anti-ultraviolet-induced guinea pig skin injury

    International Nuclear Information System (INIS)

    Li Wenxing; Zhao Ying

    2014-01-01

    Objective: To Estimate on the protection effect of Stilbene on skin damage induced by ultraviolet radiation. Methods: After the normal skin in guinea pig under the intervene of Resveratrol was irradiated with over- dose of ultraviolet rays (UVB and UVA), the samples in every group were matched and compared. Results: The skin tissue in the Resveratrol intervene group irradiated by ultraviolet rays didn't change obviously as compared with that in the self-control group. But, the damage skin tissue in the control group irradiated by ultraviolet did change significantly as compared with that in the Stilbene intervene group. Conclusion: Resveratrol is a good material to protect the skin from damage effect by ultraviolet radiation. (authors)

  3. Improvement of the skin sparing characteristics of the clinac 4 by the use of leaded glass electron filters

    International Nuclear Information System (INIS)

    Ames, T.E.; Saylor, W.; Dillard, M.

    1977-01-01

    Ionization chamber measurements were taken to determine the Relative Skin Dose from the Varian Clinac 4 (lead flattening filter). The effect of blocking tray material, field size, and scatterer-skin distance on the relative skin dose was investigated both on and off the central axis. It was found that the leaded glass tray enhanced the skin sparing effect of the beam by 25 to 30 percent

  4. A randomized DBPC trial to determine the optimal effective and safe dose of a SLIT-birch pollen extract for the treatment of allergic rhinitis : results of a phase II study

    NARCIS (Netherlands)

    Pfaar, O.; van Twuijver, E.; Boot, J. D.; Opstelten, D. J. E.; Klimek, L.; van Ree, R.; Diamant, Z.; Kuna, P.; Panzner, P.

    Background: Sublingual immunotherapy (SLIT) is a potential efficacious and safe treatment option for patients with respiratory, IgE-mediated allergic diseases. A combined tolerability, dose-finding study with a sublingual liquid birch pollen preparation (SB) was conducted. Methods: Two hundred and

  5. ICRP-recommendations on dose limits for workers

    International Nuclear Information System (INIS)

    Beninson, D.J.

    1976-01-01

    Dose limits proposed by the ICRP have been incorporated in most national and international standards and their respect has caused a distribution of doses with a average not exceeding 1/10 of the maximum permissible dose. This distribution corresponds to a risk which is well within the risks in 'safe industries'. There are at present some inconsistancies in the current system of recommended limits, for example having the same limit of 5 rem for the whole-body and also for some organs. Hopefully, this incosistancy will be removed in the next recommendation of the ICRP. But the whole-body limit of 5 rem in a year has been safe and there is little ground to reduce this limit on the basis of comparisons with 'safe industries'. (orig./HP) [de

  6. Assessment of Patients’ Entrance Skin Dose from Diagnostic X-ray Examinations at Public Hospitals of Akwa Ibom State, Nigeria

    Directory of Open Access Journals (Sweden)

    Esen Nsikan U

    2015-07-01

    Full Text Available Introduction High doses of ionizing radiation can lead to adverse health outcomes such as cancer induction in humans. Although the consequences are less evident at very low radiation doses, the associated risks are of societal importance. This study aimed at assessing entrance skin doses (ESDs in patients undergoing selected diagnostic X-ray examinations at public hospitals of Akwa Ibom State, Nigeria. Materials and Methods In total, six examinations were performed on 720 patients in this study.   CALDose_X5 software program was used in estimating ESDs based on patients’ information and technical exposure parameters. Results The estimated ESDs ranged from 0.59 to 0.61 mGy for PA and RLAT projections of the thorax, respectively. ESDs for the AP and RLAT projections of the cranium were 1.65 and 1.48 mGy, respectively. Also, ESD values for the AP view of the abdomen and pelvis were 1.89 and 1.88 mGy, respectively. The mean effective dose was within the range of 0.021-0.075 mGy for the thorax (mean= 0.037, 0.008-0.045 mGy for the cranium (mean= 0.016, 0.215-0.225 mGy for the abdomen (mean= 0.219 and 0.101-0.119 mGy for the pelvis (mean= 0.112. Conclusion The obtained results were comparable to the international reference dose levels, except for the PA projection of the thorax. Therefore, quality assurance programs are required in diagnostic X-ray units of Nigeria hospitals. The obtained findings add to the available data and can help authorities establish reference dose levels for diagnostic radiography in Nigeria.

  7. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment

    International Nuclear Information System (INIS)

    Rong, Yi; Welsh, James S.

    2010-01-01

    Purpose: The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. Methods: The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. Results: The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with ±5% variation for 16 sources. The dose-rate output and stability (within ±5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be

  8. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Yi; Welsh, James S. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 and University of Wisconsin Cancer Center-Riverview, Riverview Hospital Association, Wisconsin Rapids, Wisconsin 54494 (United States); Department of Human Oncology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 and University of Wisconsin Cancer Center-Riverview, Riverview Hospital Association, Wisconsin Rapids, Wisconsin 54494 (United States)

    2010-10-15

    Purpose: The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. Methods: The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. Results: The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with {+-}5% variation for 16 sources. The dose-rate output and stability (within {+-}5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs

  9. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment.

    Science.gov (United States)

    Rong, Yi; Welsh, James S

    2010-10-01

    The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with +/- 5% variation for 16 sources. The dose-rate output and stability (within +/- 5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be measured for each case with

  10. Systemic antioxidants and skin health.

    Science.gov (United States)

    Nguyen, Gloria; Torres, Abel

    2012-09-01

    Most dermatologists agree that antioxidants help fight free radical damage and can help maintain healthy skin. They do so by affecting intracellular signaling pathways involved in skin damage and protecting against photodamage, as well as preventing wrinkles and inflammation. In today's modern world of the rising nutraceutical industry, many people, in addition to applying topical skin care products, turn to supplementation of the nutrients missing in their diets by taking multivitamins or isolated, man-made nutraceuticals, in what is known as the Inside-Out approach to skin care. However, ingestion of large quantities of isolated, fragmented nutrients can be harmful and is a poor representation of the kind of nutrition that can be obtained from whole food sources. In this comprehensive review, it was found that few studies on oral antioxidants benefiting the skin have been done using whole foods, and that the vast majority of current research is focused on the study of compounds in isolation. However, the public stands to benefit greatly if more research were to be devoted toward the impact that physiologic doses of antioxidants (obtained from fruits, vegetables, and whole grains) can have on skin health, and on health in general.

  11. Aware, motivated and striving for a 'safe tan': an exploratory mixed-method study of sun-protection during holidays.

    Science.gov (United States)

    Rodrigues, Angela M; Sniehotta, Falko F; Birch-Machin, Mark A; Araujo-Soares, Vera

    2017-01-01

    Background: This article presents an exploratory study, aiming to explore the correspondence between knowledge, motivation and sun-protection practices during holidays. Methods: Seventeen participants aged 21-62 years old, recruited from community settings took part in individual face-to-face semi-structured interviews, completed sun sensitivity questions and an objective assessment of sunscreen use. Holidaymakers' knowledge about sun-safe messages, intentions and perceptions of barriers and facilitators for sun-protection were assessed. Qualitative data were analysed using thematic analysis and integrated with quantitative data, using a pragmatic theory-informed approach to synthesise the findings. Results: Participants were well informed about sun-safe messages, highly motivated to protect themselves from solar UV radiation (UVR) and they perceived themselves as well protected. However, they did not seem to use effective protective practices. Sunscreen was the preferred method of sun-protection, but most participants used considerably less than the recommended amount and significantly overestimated the amount of time they could be safely exposed. Seeking shade was the least used method of sun-protection and covering-up strategies were mostly implemented as a partial protection (i.e. hats or sunglasses). The desire to reach an optimal balance between getting a tan and using sun-protection to avoid sunburns was preeminent. Several additional barriers and facilitators for sun-protection were identified. Conclusions: Holidaymakers might have a false sense of security when it comes to sun-exposure. They are aware of the need to protect from solar UVR, but the motive for a safe tan, the overreliance on sunscreen, the overestimation of the safe sun-exposure time for their skin type and the insufficient application of sunscreen leaves holidaymakers motivated to protect their skin at significant risk of overexposure, sunburn and skin cancer. Public health messages need to

  12. Skin carcinomas: Radiobiological principles, radiotherapeutic techniques and clinical management

    International Nuclear Information System (INIS)

    Schmidt-Ullrich, Rupert K.; Johnson, Christopher R.

    1997-01-01

    Purpose/Objective: The course will be divided into three major topics: (1) Review of radiobiological principles as they apply to the radiotherapeutic management of skin carcinomas; (2) review of radiotherapeutic techniques including beam qualities, beam collimation, tissue dose profiles, and the relative indications of external beam irradiation vs. brachytherapy; (3) comprehensive review of the tumor biology of skin malignancies, including malignant melanoma, and of the relative indications for radiotherapeutic and/or surgical management. (1) Review of critical data which have led to currently applied principles of time-dose-volume concepts in the radiotherapeutic management of skin carcinomas. Emphasis will be placed on the relative importance of fraction size and overall treatment time on tumor control probability and acute and late normal tissue toxicity. (2) Considering that radiotherapy in the management of skin carcinomas is often used to minimize patient disfiguration and to preserve critical body functions (e.g. eye lids) the technical aspects of radiotherapy delivery are most critical. Careful evaluation of the extent of the lesions including evaluation of their depth of invasion will determine the quality of the radiation beams, orthovoltage and low energy electrons being the most useful. Beam harding for orthovoltage beams and secondary and tertiary (skin) collimation of appropriate electron beams are critical. For more extensive and deeply invasive lesions contour-shaping through customized bolus material is essential. Equally important is the familiarity with custom shielding of critical structures, such as eyes, ears, oral cavity and central nervous system structures. Brachytherapy applications in the treatment of skin carcinomas is limited but should be considered when implants with high dose uniformity can be constructed. (3) The discussion of clinical management will start with a discussion of properties and routes of spread of the diverse

  13. The biodisposition and hypertrichotic effects of bimatoprost in mouse skin

    Science.gov (United States)

    Woodward, David F; Tang, Elaine S-H; Attar, Mayssa; Wang, Jenny W

    2013-01-01

    Studies on bimatoprost were performed with two objectives: (i) to determine whether bimatoprost possesses hair growth-stimulating properties beyond eyelash hypertrichosis and (ii) to investigate the biodisposition of bimatoprost in skin for the first time. Bimatoprost, at the dose used clinically for eyelash growth (0.03%) and given once daily for 14 days, increased pelage hair growth in C57/black 6 mice. This occurred as a much earlier onset of new hair growth in shaved mice and the time taken to achieve complete hair regrowth, according to photographic documentation and visual assessment. Bimatoprost biodisposition in the skin was determined at three concentrations: 0.01%, 0.03% and 0.06%. Dose-dependent Cmax values were obtained (3.41, 6.74, 12.3 μg/g tissue), and cutaneous bimatoprost was well maintained for 24 h following a single dose. Bimatoprost was recovered from the skin only as the intact molecule, with no detectable levels of metabolites. Thus, bimatoprost produces hypertrichosis as the intact molecule. PMID:23278986

  14. Calibration of thermoluminescence skin dosemeter response to beta emitters found in Ontario Hydro nuclear power stations

    International Nuclear Information System (INIS)

    Walsh, M.L.; Agnew, D.A.; Donnelly, K.E.

    1984-01-01

    The response of the Ontario Hydro Thermoluminescence Dosimetry System to beta radiation in nuclear power station environments was evaluated. Synthetic beta spectra were constructed, based on activity samples from heat transport systems and fuelling machine contamination smears at nuclear power stations. Using these spectra and dosemeter energy response functions, an overall response factor for the skin dosemeter relative to skin dose at 7 mg.cm -2 was calculated. This calculation was done assuming three specific geometries: (1) an infinite uniformly contaminated plane source at a distance of 33 cm (50 mg.cm -2 total shielding) from the receptor; (2) an infinite cloud surrounding the receptor; (3) a point source at 33 cm. Based on these calculations, a conservative response factor of 0.7 has been chosen. This provides an equation for skin dose assignment, i.e. Skin Dose = 1.4 x Skin Dosemeter Reading when the skin dosemeter is directly calibrated in mGy(gamma). (author)

  15. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    Science.gov (United States)

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  16. Vitamin D production depends on ultraviolet-B dose but not on dose rate: a randomized controlled trial

    DEFF Research Database (Denmark)

    Bogh, Morten K B; Schmedes, Anne V; Philipsen, Peter A

    2011-01-01

    Ultraviolet-B (UV-B) radiation increases serum vitamin D level expressed as 25-hydroxyvitamin D(3) (25(OH)D), but the dose-response relationship and the importance of dose rate is unclear. Of 172 fair-skinned persons screened for 25(OH)D, 55 with insufficient baseline 25(OH)D=50 nm (mean 31.2 nm...... exposed. Skin pigmentation and 25(OH)D were measured before and after the irradiations. The increase in 25(OH)D after UV-B exposure (adjusted for baseline 25(OH)D) was positively correlated with the UV-B dose (P=0.001; R(2) =0.176) but not to dose rate (1-20 min). 25(OH)D increased in response to four UV......-B treatments of 3 SED with 24.8 nm on average and 14.2 nm after four UV-B treatments of just 0.375 SED. In conclusion, the increase in 25(OH)D after UV-B exposure depends on the dose but not on the dose rate (1-20 min). Further, a significant increase in 25(OH)D was achieved with a very low UV-B dose....

  17. Clinical Outcome of Dose-Escalated Image-Guided Radiotherapy for Spinal Metastases

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Goebel, Joachim; Wilbert, Juergen; Baier, Kurt; Richter, Anne; Sweeney, Reinhart A.; Bratengeier, Klaus; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the outcomes after dose-escalated radiotherapy (RT) for spinal metastases and paraspinal tumors. Methods and Materials: A total of 14 patients, 12 with spinal metastases and a long life expectancy and 2 with paraspinal tumors, were treated for 16 lesions with intensity-modulated, image-guided RT. A median biologic effective dose of 74 Gy 10 (range, 55-86) in a median of 20 fractions (range, 3-34) was prescribed to the target volume. The spinal canal was treated to 40 Gy in 20 fractions using a second intensity-modulated RT dose level in the case of epidural involvement. Results: After median follow-up of 17 months, one local recurrence was observed, for an actuarial local control rate of 88% after 2 years. Local control was associated with rapid and long-term pain relief. Of 11 patients treated for a solitary spinal metastasis, 6 developed systemic disease progression. The actuarial overall survival rate for metastatic patients was 85% and 63% after 1 and 2 years, respectively. Acute Grade 2-3 skin toxicity was seen in 2 patients with no late toxicity greater than Grade 2. No radiation-induced myelopathy was observed. Conclusion: Dose-escalated irradiation of spinal metastases was safe and resulted in excellent local control. Oligometastatic patients with a long life expectancy and epidural involvement are considered to benefit the most from fractionated RT.

  18. Consequential late radiation damage in the skin in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li Wei; Kong Ling; Zhang Youwang; Hu Chaosu; Wu Yongru

    2008-01-01

    Objective: To evaluate the relationship between early and late radiation damage in skin. Methods: 335 patients with nasopharyngeal carcinoma treated with radical radiotherapy were evaluated. 240 patients had lymph nodes in the neck at initial diagnosis. The median doses were 70 Gy (55-86 Gy) to the nasopharyngeal region by external beam radiotherapy. The median doses were 64 Gy (46-72 Gy) to the neck with lymph node metastases, 55 Gy (21-67 Gy) to the node-negative neck. 71 patients were treated with facial-neck fields, while 264 patients were treated with pre-auricular fields. Chemotherapy was given in 48 patients. According to the 1995 SOMA scales late radiation damage in the skin was evaluated. Results: The median time from the radiotherapy to follow up was 14 years (range, 5-38 years). 63 patients have grade 0 late radiation reactions in the neck skin, the grade 1,2, 3,4 late radiation reactions in the neck skin were 43.9% (147 patients), 20.9% (70 patients), 13.7% (46 patients) and 2.7% (9 patients), respectively. 44 patients had moist desquamation in the medical records. The grade 1,2,3,4 late radiation reactions in the neck skin were 41%, 23%, 30% and 5%, respectively in patients with moist desquamation, while in patients without moist desquamation, the corresponding rates were 44.3%, 20.6%, 11.3% and 2.4%, respectively. The difference were significant between these two groups by chi-square analysis(χ 2 =17.42, P=0.002). Furthermore, whether patients had positive lymph node in the neck or not, the size of facial-neck fields and higher doses to the neck had more severe late radiation reaction in the neck skin, while age, gender and chemotherapy failed to show any effects on the development of late radiation reactions in the neck skin. Conclusion: The severe early radiation damage in the skin possibly increases the late radiation damage in the neck skin. (authors)

  19. Development of a external exposure computational model for studying of input dose in skin for radiographs of thorax and vertebral column; Desenvolvimento de um modelo computacional de exposicao externa para estudo da dose de entrada na pele para radiografias de torax e coluna

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Bianca C.; Menezes, Claudio J.M., E-mail: bianca.cm95@gmail.com, E-mail: cjmm@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Vieira, Jose W., E-mail: jwvieira@br.inter.net [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    The dosimetric measurements do not always happen directly in the human body. Therefore, these assessments can be performed using anthropomorphic models (phantoms) evidencing models computational exposure (MCE) using techniques of Monte Carlo Method for virtual simulations. These processing techniques coupled with more powerful and affordable computers make the Monte Carlo method one of the tools most used worldwide in radiation transport area. In this work, the Monte Carlo EGS4 program was used to develop a computer model of external exposure to study the entrance skin dose for chest and column X-radiography and, aiming to optimize these practices by reducing doses to patients, professionals involved and the general public. The results obtained experimentally with the electrometer Radcal, model 9015, associated with the ionization chamber for radiology model 10X5-6, showed that the proposed computational model can be used in quality assurance programs in radiodiagnostic, evaluating the entrance skin dose when varying parameters of the radiation beam such as kilo voltage peak (kVp), current-time product (mAs), total filtration and distance surface source (DFS), optimizing the practices in radiodiagnostic and meeting the current regulation.

  20. Optical microscopy of targeted drug delivery and local distribution in skin of a topical minocycline: implications in translational research and guidance for therapeutic dose selection (Conference Presentation)

    Science.gov (United States)

    Hermsmeier, Maiko; Sawant, Tanvee; Lac, Diana; Yamamoto, Akira; Chen, Xin; Huang, Susan Y.; Nagavarapu, Usha; Evans, Conor L.; Chan, Kin Foong; Daniels, AnnaMarie

    2017-02-01

    Acne vulgaris is a chronic inflammatory skin condition commonly resulting in negative aesthetic and social impacts on those affected. Minocycline, currently available as an oral antibiotic for moderate to severe acne, has a known minimum inhibitory concentration (MIC) for the acne-causing bacterium Propionibacterium acnes (P. acnes) in vitro, with its anti-inflammatory properties also eliciting inhibitory effects on pro-inflammatory molecules. A novel topical gel composition containing solubilized minocycline (BPX-01) has been developed to directly deliver the drug to the skin. Because minocycline is a known fluorophore, fluorescence microscopy and concurrent quantitative measurements were performed on excised human facial skin dosed with different concentrations, in order to determine the spatial distribution of the drug and quantification of its local concentration in the epidermis and the pilosebaceous unit where P. acnes generally reside. Local minocycline delivery confirmed achievement of an adequate therapeutic dose to support clinical studies. Subsequently, a 4-week double-blind, randomized, vehicle controlled clinical study was performed to assess the safety and efficacy of 1% minocycline BPX-01 applied daily. No instances of cutaneous toxicity were reported, and a greater than 1 log reduction of P. acnes count was observed at week 4 with statistical significance from baseline and vehicle control. In addition, no detectable amounts of minocycline in the plasma were reported, suggesting the potential of this new formulation to diminish the known systemic adverse effects associated with oral minocycline. Follow-on clinical plans are underway to further establish the safety of BPX-01 and to evaluate its efficacy against inflammatory acne lesions in a 225 patient multi-center dose-finding study.