WorldWideScience

Sample records for safe motion planning

  1. Layered Safe Motion Planning for Autonomous Vehicles.

    Science.gov (United States)

    1995-09-01

    The major problem addressed by this research is how to plan a safe motion for autonomous vehicles in a two dimensional, rectilinear world. With given start and goal configurations, the planner performs motion planning which

  2. Real-Time Motion Planning and Safe Navigation in Dynamic Multi-Robot Environments

    National Research Council Canada - National Science Library

    Bruce, James R

    2006-01-01

    .... While motion planning has been used for high level robot navigation, or limited to semi-static or single-robot domains, it has often been dismissed for the real-time low-level control of agents due...

  3. Temporal logic motion planning

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2010-01-01

    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  4. Landscape planning for a safe city

    Directory of Open Access Journals (Sweden)

    M. Ishikawa

    2002-06-01

    Full Text Available To create a safe city free from natural disasters has been one of the important criteria in city planning. Since large cities have suffered from large fires caused by earthquakes, the planning of open spaces to prevent the spread of fires is part of the basic structure of city planning in Japan. Even in the feudal city of Edo, the former name of Tokyo, there had been open spaces to prevent fire disasters along canals and rivers. This paper discusses the historical evolution of open space planning, that we call landscape planning, through the experiences in Tokyo, and clarifies the characteristics and problems for achieving a safe city.

  5. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  6. Safe Maritime Autonomous Path Planning in a High Sea State

    Science.gov (United States)

    Ono, Masahiro; Quadrelli, Marco; Huntsberger, Terrance L.

    2014-01-01

    This paper presents a path planning method for sea surface vehicles that prevents capsizing and bow-diving in a high sea-state. A key idea is to use response amplitude operators (RAOs) or, in control terminology, the transfer functions from a sea state to a vessel's motion, in order to find a set of speeds and headings that results in excessive pitch and roll oscillations. This information is translated to arithmetic constraints on the ship's velocity, which are passed to a model predictive control (MPC)-based path planner to find a safe and optimal path that achieves specified goals. An obstacle avoidance capability is also added to the path planner. The proposed method is demonstrated by simulations.

  7. Multi-agent System for Off-line Coordinated Motion Planning of Multiple Industrial Robots

    Directory of Open Access Journals (Sweden)

    Shital S. Chiddarwar

    2011-03-01

    Full Text Available This article presents an agent based framework for coordinated motion planning of multiple robots. The emerging paradigm of agent based systems is implemented to address various issues related to safe and fast task execution when multiple robots share a common workspace. In the proposed agent based framework, each issue vital for coordinated motion planning of multiple robots and every robot participating in coordinated task is considered as an agent. The identified agents are interfaced with each other in order to incorporate the desired flexibility in the developed framework. This framework gives a complete strategy for determination of optimal trajectories of robots working in coordination with due consideration to their kinematic, dynamic and payload constraint. The complete architecture of the proposed framework and the detailed discussion on various modules are covered in this paper.

  8. Community participation in fire management planning: The Trinity county fire safe council's fire plan

    Science.gov (United States)

    Yvonne Everett

    2008-01-01

    In 1999, Trinity County CA, initiated a participatory fire management planning effort. Since that time, the Trinity County Fire Safe Council has completed critical portions of a fire safe plan and has begun to implement projects defined in the plan. Completion of a GIS based, landscape scale fuels reduction element in the plan defined by volunteer fire fighters, agency...

  9. Software for Project-Based Learning of Robot Motion Planning

    Science.gov (United States)

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-01-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…

  10. Semantic Mapping and Motion Planning with Turtlebot Roomba

    International Nuclear Information System (INIS)

    Butt, Rizwan Aslam; Ali, Syed M Usman

    2013-01-01

    In this paper, we have successfully demonstrated the semantic mapping and motion planning experiments on Turtlebot Robot using Microsoft Kinect in ROS environment. Moreover, we have also performed the comparative studies on various sampling based motion planning algorithms with Turtlebot in Open Motion Planning Library. Our comparative analysis revealed that Expansive Space Trees (EST) surmounted all other approaches with respect to memory occupation and processing time. We have also tried to summarize the related concepts of autonomous robotics which we hope would be helpful for beginners

  11. Rough terrain motion planning for actively reconfigurable mobile robots

    International Nuclear Information System (INIS)

    Brunner, Michael

    2015-01-01

    In the aftermath of the Tohoku earthquake and the nuclear meltdown at the power plant of Fukushima Daiichi in 2011, reconfigurable robots like the iRobot Packbot were deployed. Instead of humans, the robots were used to investigate contaminated areas. Other incidents are the two major earthquakes in Northern Italy in May 2012. Besides many casualties, a large number of historical buildings was severely damaged. Due to the imminent danger of collapse, it was too dangerous for rescue personnel to enter many of the buildings. Therefore, the sites were inspected by reconfigurable robots, which are able to traverse the rubble and debris of the partially destroyed buildings. This thesis develops a navigation system enabling wheeled and tracked robots to safely traverse rough terrain and challenging structures. It consists of a planning mechanism and a controller. The focus of this thesis, however, is on the contribution to motion planning. The planning scheme employs a hierarchical approach to motion planning for actively reconfigurable robots in rough environments. Using a map of the environment the algorithm estimates the traversability under the consideration of uncertainties. Based on this analysis, an initial path search determines an approximate solution with respect to the robot's operating limits.Subsequently, a detailed planning step refines the initial path where it is required. The refinement step considers the robot's actuators and stability in addition to the quantities of the first search. Determining the robot-terrain interaction is very important in rough terrain. This thesis presents two path refinement approaches: a deterministic and a randomized approach. The experimental evaluation investigates the separate components of the planning scheme, the robot-terrain interaction for instance.In simulation as well as in real world experiments the evaluation demonstrates the necessity of such a planning algorithm in rough terrain and it provides

  12. Rough terrain motion planning for actively reconfigurable mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Michael

    2015-02-05

    In the aftermath of the Tohoku earthquake and the nuclear meltdown at the power plant of Fukushima Daiichi in 2011, reconfigurable robots like the iRobot Packbot were deployed. Instead of humans, the robots were used to investigate contaminated areas. Other incidents are the two major earthquakes in Northern Italy in May 2012. Besides many casualties, a large number of historical buildings was severely damaged. Due to the imminent danger of collapse, it was too dangerous for rescue personnel to enter many of the buildings. Therefore, the sites were inspected by reconfigurable robots, which are able to traverse the rubble and debris of the partially destroyed buildings. This thesis develops a navigation system enabling wheeled and tracked robots to safely traverse rough terrain and challenging structures. It consists of a planning mechanism and a controller. The focus of this thesis, however, is on the contribution to motion planning. The planning scheme employs a hierarchical approach to motion planning for actively reconfigurable robots in rough environments. Using a map of the environment the algorithm estimates the traversability under the consideration of uncertainties. Based on this analysis, an initial path search determines an approximate solution with respect to the robot's operating limits.Subsequently, a detailed planning step refines the initial path where it is required. The refinement step considers the robot's actuators and stability in addition to the quantities of the first search. Determining the robot-terrain interaction is very important in rough terrain. This thesis presents two path refinement approaches: a deterministic and a randomized approach. The experimental evaluation investigates the separate components of the planning scheme, the robot-terrain interaction for instance.In simulation as well as in real world experiments the evaluation demonstrates the necessity of such a planning algorithm in rough terrain and it provides

  13. The anatomy of a distributed motion planning roadmap

    KAUST Repository

    Jacobs, Sam Ade

    2014-09-01

    © 2014 IEEE. In this paper, we evaluate and compare the quality and structure of roadmaps constructed from parallelizing sampling-based motion planning algorithms against that of roadmaps constructed using sequential planner. Also, we make an argument and provide experimental results that show that motion planning problems involving heterogenous environments (common in most realistic and large-scale motion planning) is a natural fit for spatial subdivision-based parallel processing. Spatial subdivision-based parallel processing approach is suited for heterogeneous environments because it allows for local adaption in solving a global problem while taking advantage of scalability that is possible with parallel processing.

  14. The anatomy of a distributed motion planning roadmap

    KAUST Repository

    Jacobs, Sam Ade; Amato, Nancy M.

    2014-01-01

    © 2014 IEEE. In this paper, we evaluate and compare the quality and structure of roadmaps constructed from parallelizing sampling-based motion planning algorithms against that of roadmaps constructed using sequential planner. Also, we make an argument and provide experimental results that show that motion planning problems involving heterogenous environments (common in most realistic and large-scale motion planning) is a natural fit for spatial subdivision-based parallel processing. Spatial subdivision-based parallel processing approach is suited for heterogeneous environments because it allows for local adaption in solving a global problem while taking advantage of scalability that is possible with parallel processing.

  15. A 3D motion planning framework for snake robots

    OpenAIRE

    Liljebäck, Pål; Pettersen, Kristin Ytterstad; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2014-01-01

    - Author's postprint This paper presents a motion planning framework for three-dimensional body shape control of snake robots. Whereas conventional motion planning approaches define the body shape of snake robots in terms of their individual joint angles, the proposed framework allows the body shape to be specified in terms of Cartesian coordinates in the environment of the robot. This approach simplifies motion planning since Cartesian coordinates are more intuitively mapped to the overal...

  16. Motion planning for gantry mounted manipulators

    DEFF Research Database (Denmark)

    Olsen, Anders Lau; Petersen, Henrik Gordon

    2007-01-01

    We present a roadmap based planner for finding robot motions for gantry mounted manipulators for a line welding application at Odense Steel Shipyard (OSS). The robot motions are planned subject to constraints on when the gantry may be moved. We show that random sampling of gantry configurations...

  17. Benchmarking motion planning algorithms for bin-picking applications

    DEFF Research Database (Denmark)

    Iversen, Thomas Fridolin; Ellekilde, Lars-Peter

    2017-01-01

    Purpose For robot motion planning there exists a large number of different algorithms, each appropriate for a certain domain, and the right choice of planner depends on the specific use case. The purpose of this paper is to consider the application of bin picking and benchmark a set of motion...... planning algorithms to identify which are most suited in the given context. Design/methodology/approach The paper presents a selection of motion planning algorithms and defines benchmarks based on three different bin-picking scenarios. The evaluation is done based on a fixed set of tasks, which are planned...... and executed on a real and a simulated robot. Findings The benchmarking shows a clear difference between the planners and generally indicates that algorithms integrating optimization, despite longer planning time, perform better due to a faster execution. Originality/value The originality of this work lies...

  18. A Motion Planning Method for Omnidirectional Mobile Robot Based on the Anisotropic Characteristics

    Directory of Open Access Journals (Sweden)

    Chuntao Leng

    2008-11-01

    Full Text Available A more suitable motion planning method for an omni-directional mobile robot (OMR, an improved APF method (iAPF, is proposed in this paper by introducing the revolving factor into the artificial potential field (APF. Accordingly, the motion direction derived from traditional artificial potential field (tAPF is regulated. The maximum velocity, maximum acceleration and energy consumption of the OMR moving in different directions are analyzed, based on the kinematic and dynamic constraints of an OMR, and the anisotropy of OMR is presented in this paper. Then the novel concept of an Anisotropic-Function is proposed to indicate the quality of motion in different directions, which can make a very favorable trade-off between time-optimality, stability and efficacy-optimality. In order to obtain the optimal motion, the path that the robot can take in order to avoid the obstacle safely and reach the goal in a shorter path is deduced. Finally, simulations and experiments are carried out to demonstrate that the motion resulting from the iAPF is high-speed, highly stable and highly efficient when compared to the tAPF.

  19. Motion Planning in Multi-robot Systems using Timed Automata

    DEFF Research Database (Denmark)

    Andersen, Michael. S.; Jensen, Rune S.; Bak, Thomas

    This paper dscribes how interacting timed automata can be used to model, analyze, and verify motion planning problems for systems with multiple mobile robots. The method assumes an infra-structure of simple unicycle type robots, moving om a planar grid. The motion of the robots, including simple...... kinematics, is captured in an automata formalism that allows formal composition and symbolic reasoning. The verification software UppAal is used to verify specification requirements formulated in computational tree logic (CTL), generating all feasible trajectories that satisfy specifications. The results...... of the planning are demonstrateted in a testbed that allows execution of the planned paths and motion primitives by synchronizing the planning results from UppAal with actual robotic vehicles. The planning problem may be modified online by moving obstacles in the physical environment, which causes a re...

  20. Motion Planning of Autonomous Vehicles on a Dual Carriageway without Speed Lanes

    Directory of Open Access Journals (Sweden)

    Rahul Kala

    2015-01-01

    Full Text Available The problem of motion planning of an autonomous vehicle amidst other vehicles on a straight road is considered. Traffic in a number of countries is unorganized, where the vehicles do not move within predefined speed lanes. In this paper, we formulate a mechanism wherein an autonomous vehicle may travel on the “wrong” side in order to overtake a vehicle. Challenges include assessing a possible overtaking opportunity, cooperating with other vehicles, partial driving on the “wrong” side of the road and safely going to and returning from the “wrong” side. The experimental results presented show vehicles cooperating to accomplish overtaking manoeuvres.

  1. Software for project-based learning of robot motion planning

    Science.gov (United States)

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-12-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.

  2. Whole-Body Motion Planning for Humanoid Robots by Specifying Via-Points

    Directory of Open Access Journals (Sweden)

    ChangHyun Sung

    2013-07-01

    Full Text Available We design a framework about the planning of whole body motion for humanoid robots. Motion planning with various constraints is essential to success the task. In this research, we propose a motion planning method corresponding to various conditions for achieving the task. We specify some via-points to deal with the conditions for target achievement depending on various constraints. Together with certain constraints including task accomplishment, the via-point representation plays a crucial role in the optimization process of our method. Furthermore, the via-points as the optimization parameters are related to some physical conditions. We applied this method to generate the kicking motion of a humanoid robot HOAP-3. We have confirmed that the robot was able to complete the task of kicking a ball over an obstacle into a goal in addition to changing conditions of the location of a ball. These results show that the proposed motion planning method using via-point representation can increase articulation of the motion.

  3. Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles

    Science.gov (United States)

    Cowlagi, Raghvendra V.

    Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption

  4. Onboard Risk-Aware Real-Time Motion Planning Algorithms for Spacecraft Maneuvering

    Data.gov (United States)

    National Aeronautics and Space Administration — Unlocking the next generation of complex missions for autonomous spacecraft will require significant advances in robust motion planning. The aim of motion planning...

  5. Motion Planning for a Direct Metal Deposition Rapid Prototyping System

    Energy Technology Data Exchange (ETDEWEB)

    AMES,ARLO L.; HENSINGER,DAVID M.; KUHLMANN,JOEL L.

    1999-10-18

    A motion planning strategy was developed and implemented to generate motion control instructions from solid model data for controlling a robotically driven solid free-form fabrication process. The planning strategy was tested using a PUMA type robot arm integrated into a LENS{trademark} (Laser Engineered Net Shape) system. Previous systems relied on a series of x, y, and z stages, to provide a minimal coordinated motion control capability. This limited the complexity of geometries that could be constructed. With the coordinated motion provided by a robotic arm, the system can produce three dimensional parts by ''writing'' material onto any face of existing material. The motion planning strategy relied on solid model geometry evaluation and exploited robotic positioning flexibility to allow the construction of geometrically complex parts. The integration of the robotic manipulator into the LENS{trademark} system was tested by producing metal parts directly from CAD models.

  6. Motion and operation planning of robotic systems background and practical approaches

    CERN Document Server

    Gomez-Barvo, Fernando

    2015-01-01

    This book addresses the broad multi-disciplinary topic of robotics, and presents the basic techniques for motion and operation planning in robotics systems. Gathering contributions from experts in diverse and wide ranging fields, it offers an overview of the most recent and cutting-edge practical applications of these methodologies. It covers both theoretical and practical approaches, and elucidates the transition from theory to implementation. An extensive analysis is provided, including humanoids, manipulators, aerial robots and ground mobile robots. ‘Motion and Operation Planning of Robotic Systems’ addresses the following topics: *The theoretical background of robotics. *Application of motion planning techniques to manipulators, such as serial and parallel manipulators. *Mobile robots planning, including robotic applications related to aerial robots, large scale robots and traditional wheeled robots. *Motion planning for humanoid robots. An invaluable reference text for graduate students and researche...

  7. Motion planning for multiple robots

    NARCIS (Netherlands)

    Aronov, B.; Berg, de M.; van der Stappen, A.F.; Svestka, P.; Vleugels, J.M.

    1999-01-01

    We study the motion-planning problem for pairs and triples of robots operating in a shared workspace containing n obstacles. A standard way to solve such problems is to view the collection of robots as one composite robot, whose number of degrees of freedom is d , the sum of the numbers of degrees

  8. Optimal motion planning using navigation measure

    Science.gov (United States)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  9. Project management plan for Reactor 105-C Interim Safe Storage project

    International Nuclear Information System (INIS)

    Plagge, H.A.

    1996-09-01

    Reactor 105-C (located on the Hanford Site in Richland, Washington) will be placed into an interim safe storage condition such that (1) interim inspection can be limited to a 5-year frequency; (2) containment ensures that releases to the environmental are not credible under design basis conditions; and (3) final safe storage configuration shall not preclude or significantly increase the cost for any decommissioning alternatives for the reactor assembly.This project management plan establishes plans, organizational responsibilities, control systems, and procedures for managing the execution of Reactor 105-C interim safe storage activities to meet programmatic requirements within authorized funding and approved schedules

  10. Impact of leaf motion constraints on IMAT plan quality, deliver accuracy, and efficiency

    International Nuclear Information System (INIS)

    Chen Fan; Rao Min; Ye Jinsong; Shepard, David M.; Cao Daliang

    2011-01-01

    Purpose: Intensity modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines the efficiency of arc based delivery with the dose painting capabilities of intensity modulated radiation therapy (IMRT). A key challenge in developing robust inverse planning solutions for IMAT is the need to account for the connectivity of the beam shapes as the gantry rotates from one beam angle to the next. To overcome this challenge, inverse planning solutions typically impose a leaf motion constraint that defines the maximum distance a multileaf collimator (MLC) leaf can travel between adjacent control points. The leaf motion constraint ensures the deliverability of the optimized plan, but it also impacts the plan quality, the delivery accuracy, and the delivery efficiency. In this work, the authors have studied leaf motion constraints in detail and have developed recommendations for optimizing the balance between plan quality and delivery efficiency. Methods: Two steps were used to generate optimized IMAT treatment plans. The first was the direct machine parameter optimization (DMPO) inverse planning module in the Pinnacle 3 planning system. Then, a home-grown arc sequencer was applied to convert the optimized intensity maps into deliverable IMAT arcs. IMAT leaf motion constraints were imposed using limits of between 1 and 30 mm/deg. Dose distributions were calculated using the convolution/superposition algorithm in the Pinnacle 3 planning system. The IMAT plan dose calculation accuracy was examined using a finer sampling calculation and the quality assurance verification. All plans were delivered on an Elekta Synergy with an 80-leaf MLC and were verified using an IBA MatriXX 2D ion chamber array inserted in a MultiCube solid water phantom. Results: The use of a more restrictive leaf motion constraint (less than 1-2 mm/deg) results in inferior plan quality. A less restrictive leaf motion constraint (greater than 5 mm/deg) results in improved plan quality

  11. Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

    Science.gov (United States)

    Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.

    2016-12-01

    Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.

  12. Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms

    KAUST Repository

    Fidel, Adam; Jacobs, Sam Ade; Sharma, Shishir; Amato, Nancy M.; Rauchwerger, Lawrence

    2014-01-01

    Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores. © 2014 IEEE.

  13. Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms

    KAUST Repository

    Fidel, Adam

    2014-05-01

    Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores. © 2014 IEEE.

  14. The effects of tumor motion on planning and delivery of respiratory-gated IMRT

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Agazaryan, Nzhde; Solberg, Timothy D.

    2003-01-01

    The purpose of this study is to investigate the effects of object motion on the planning and delivery of IMRT. Two phantoms containing objects were imaged using CT under a variety of motion conditions. The effects of object motion on axial CT acquisition with and without gating were assessed qualitatively and quantitatively. Measurements of effective slice width and position for the CT scans were made. Mutual information image fusion was adapted for use as a quantitative measure of object deformation in CT images. IMRT plans were generated on the CT scans of the moving and gated object images. These plans were delivered with motion, with and without gating, and the delivery error between the moving deliveries and a nonmoving delivery was assessed using a scalable vector-based index. Motion during CT acquisition produces motion artifact, object deformation, and object mispositioning, which can be substantially reduced with gating. Objects that vary in cross section in the direction of motion exhibit the most deformation in CT images. Mutual information provides a useful quantitative estimate of object deformation. The delivery of IMRT in the presence of target motion significantly alters the delivered dose distribution in relation to the planned distribution. The utilization of gating for IMRT treatment, including imaging, planning, and delivery, significantly reduces the errors introduced by object motion

  15. Integrated Task and Motion Planning with Verification via Formal Methods

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal lays out a research plan to "lift" current state-of-the-art results combining discrete and continuous layers of planning in motion planning to the more...

  16. Utilize target motion to cover clinical target volume (ctv) - a novel and practical treatment planning approach to manage respiratory motion

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin

    2008-01-01

    Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies

  17. The Toggle Local Planner for sampling-based motion planning

    KAUST Repository

    Denny, Jory; Amato, Nancy M.

    2012-01-01

    Sampling-based solutions to the motion planning problem, such as the probabilistic roadmap method (PRM), have become commonplace in robotics applications. These solutions are the norm as the dimensionality of the planning space grows, i.e., d > 5

  18. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  19. Surveillance and Maintenance Plan for the 105-C Reactor Safe Storage Enclosure

    International Nuclear Information System (INIS)

    Logan, T. E.

    1998-01-01

    This document provides a plan for implementing surveillance and maintenance activities to ensure that the 105-C Reactor Safe Storage Enclosure is maintained in a safe, environmentally secure, and cost-effective manner until subsequent closure during the final disposition phase of decommissioning

  20. Multi-Robot Motion Planning: A Timed Automata Approach

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Bak, Thomas; Izadi-Zamanabadi, Roozbeh

    2004-01-01

    This paper describes how a network of interacting timed automata can be used to model, analyze, and verify motion planning problems in a scenario with multiple robotic vehicles. The method presupposes an infra-structure of robots with feed-back controllers obeying simple restriction on a planar...... grid. The automata formalism merely presents a high-level model of environment, robots and control, but allows composition and formal symbolic reasoning about coordinated solutions. Composition is achieved through synchronization, and the verification software UPPAAL is used for a symbolic verification...... then subsequently be used as a high-level motion plan for the robots. This paper reports on the timed automata framework, results of two verification experiments, promise of the approach, and gives a perspective for future research....

  1. Multi-Robot Motion Planning: A Timed Automata Approach

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Bak, Thomas; Izadi-Zamanabadi, Roozbeh

    This paper describes how a network of interacting timed automata can be used to model, analyze, and verify motion planning problems in a scenario with multiple robotic vehicles. The method presupposes an infra-structure of robots with feed-back controllers obeying simple restriction on a planar...... grid. The automata formalism merely presents a high-level model of environment, robots and control, but allows composition and formal symbolic reasoning about coordinated solutions. Composition is achieved through synchronization, and the verification software UPPAAL is used for a symbolic verification...... then subsequently be used as a high-level motion plan for the robots. This paper reports on the timed automata framework, results of two verification experiments, promise of the approach, and gives a perspective for future research....

  2. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  3. Study on State Transition Method Applied to Motion Planning for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available This paper presents an approach of motion planning for a humanoid robot using a state transition method. In this method, motion planning is simplified by introducing a state-space to describe the whole motion series. And each state in the state-space corresponds to a contact state specified during the motion. The continuous motion is represented by a sequence of discrete states. The concept of the transition between two neighboring states, that is the state transition, can be realized by using some traditional path planning methods. Considering the dynamical stability of the robot, a state transition method based on search strategy is proposed. Different sets of trajectories are generated by using a variable 5th-order polynomial interpolation method. After quantifying the stabilities of these trajectories, the trajectories with the largest stability margin are selected as the final state transition trajectories. Rising motion process is exemplified to validate the method and the simulation results show the proposed method to be feasible and effective.

  4. Repetitive motion planning and control of redundant robot manipulators

    CERN Document Server

    Zhang, Yunong

    2013-01-01

    Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Informa...

  5. Lazy Toggle PRM: A single-query approach to motion planning

    KAUST Repository

    Denny, Jory; Shi, Kensen; Amato, Nancy M.

    2013-01-01

    Probabilistic RoadMaps (PRMs) are quite suc-cessful in solving complex and high-dimensional motion plan-ning problems. While particularly suited for multiple-query scenarios and expansive spaces, they lack efficiency in both solving single

  6. A test case of computer aided motion planning for nuclear maintenance operation

    International Nuclear Information System (INIS)

    Schmitzberger, E.; Bouchet, J.L.; Schmitzberger, E.

    2001-01-01

    Needs for improved tools for nuclear power plant maintenance preparation are expressed by EDF engineering. These are an easier and better management of logistics constraints such as free spaces for motions or handling tasks. The lack of generic or well suited tools and the specificity of nuclear maintenance operation have led EDF R and D to develop its own motion planning tools in collaboration with LAAS-CNRS, Utrecht University and the software publisher CADCENTRE within the framework of the three years Esprit LTR project MOLOG. EDF users needs will be summed up in the first part of the paper under the title ''Motion feasibility studies for maintenance operation'' and then compared to the current industrial offer in the ''Software's background'''s part. The definition and objectives ''Towards motion planning tools'' follows. It explains why maintenance preparation pertains to automatic motion planning and how it makes studies much simpler. The ''MOLOG's Benchmark and first result'''s part describes the test-case used to evaluate the MOLOG project and gives an outlook at the results obtained so far. (author)

  7. Human-like motion planning model for driving in signalized intersections

    Directory of Open Access Journals (Sweden)

    Yanlei Gu

    2017-10-01

    Full Text Available Highly automated and fully autonomous vehicles are much more likely to be accepted if they react in the same way as human drivers do, especially in a hybrid traffic situation, which allows autonomous vehicles and human-driven vehicles to share the same road. This paper proposes a human-like motion planning model to represent how human drivers assess environments and operate vehicles in signalized intersections. The developed model consists of a pedestrian intention detection model, gap detection model, and vehicle control model. These three submodels are individually responsible for situation assessment, decision making, and action, and also depend on each other in the process of motion planning. In addition, these submodels are constructed and learned on the basis of human drivers' data collected from real traffic environments. To verify the effectiveness of the proposed motion planning model, we compared the proposed model with actual human driver and pedestrian data. The experimental results showed that our proposed model and actual human driver behaviors are highly similar with respect to gap acceptance in intersections.

  8. A test case of computer aided motion planning for nuclear maintenance operation

    Energy Technology Data Exchange (ETDEWEB)

    Schmitzberger, E.; Bouchet, J.L. [Electricite de France (EDF), Dept. Surveillance Diagnostic Maintenance, 78 - Chatou (France); Schmitzberger, E. [Institut National Polytechnique, CRAN, 54 - Vandoeuvre les Nancy (France)

    2001-07-01

    Needs for improved tools for nuclear power plant maintenance preparation are expressed by EDF engineering. These are an easier and better management of logistics constraints such as free spaces for motions or handling tasks. The lack of generic or well suited tools and the specificity of nuclear maintenance operation have led EDF R and D to develop its own motion planning tools in collaboration with LAAS-CNRS, Utrecht University and the software publisher CADCENTRE within the framework of the three years Esprit LTR project MOLOG. EDF users needs will be summed up in the first part of the paper under the title ''Motion feasibility studies for maintenance operation'' and then compared to the current industrial offer in the ''Software's background'''s part. The definition and objectives ''Towards motion planning tools'' follows. It explains why maintenance preparation pertains to automatic motion planning and how it makes studies much simpler. The ''MOLOG's Benchmark and first result'''s part describes the test-case used to evaluate the MOLOG project and gives an outlook at the results obtained so far. (author)

  9. Dose/volume–response relations for rectal morbidity using planned and simulated motion-inclusive dose distributions

    International Nuclear Information System (INIS)

    Thor, Maria; Apte, Aditya; Deasy, Joseph O.; Karlsdóttir, Àsa; Moiseenko, Vitali; Liu, Mitchell; Muren, Ludvig Paul

    2013-01-01

    Background and purpose: Many dose-limiting normal tissues in radiotherapy (RT) display considerable internal motion between fractions over a course of treatment, potentially reducing the appropriateness of using planned dose distributions to predict morbidity. Accounting explicitly for rectal motion could improve the predictive power of modelling rectal morbidity. To test this, we simulated the effect of motion in two cohorts. Materials and methods: The included patients (232 and 159 cases) received RT for prostate cancer to 70 and 74 Gy. Motion-inclusive dose distributions were introduced as simulations of random or systematic motion to the planned dose distributions. Six rectal morbidity endpoints were analysed. A probit model using the QUANTEC recommended parameters was also applied to the cohorts. Results: The differences in associations using the planned over the motion-inclusive dose distributions were modest. Statistically significant associations were obtained with four of the endpoints, mainly at high doses (55–70 Gy), using both the planned and the motion-inclusive dose distributions, primarily when simulating random motion. The strongest associations were observed for GI toxicity and rectal bleeding (Rs = 0.12–0.21; Rs = 0.11–0.20). Applying the probit model, significant associations were found for tenesmus and rectal bleeding (Rs = 0.13, p = 0.02). Conclusion: Equally strong associations with rectal morbidity were observed at high doses (>55 Gy), for the planned and the simulated dose distributions including in particular random rectal motion. Future studies should explore patient-specific descriptions of rectal motion to achieve improved predictive power

  10. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade

    2013-05-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  11. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade; Stradford, Nicholas; Rodriguez, Cesar; Thomas, Shawna; Amato, Nancy M.

    2013-01-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  12. Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons

    Science.gov (United States)

    Lauretti, Clemente; Cordella, Francesca; Ciancio, Anna Lisa; Trigili, Emilio; Catalan, Jose Maria; Badesa, Francisco Javier; Crea, Simona; Pagliara, Silvio Marcello; Sterzi, Silvia; Vitiello, Nicola; Garcia Aracil, Nicolas; Zollo, Loredana

    2018-01-01

    The reference joint position of upper-limb exoskeletons is typically obtained by means of Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian; this approach allows exploiting the available Degrees of Freedom (i.e. DoFs) of the robot kinematic chain to achieve the desired end-effector pose; however, if used to operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria are satisfied in the whole human-robot workspace. This paper proposes a motion planning system, based on Learning by Demonstration, for upper-limb exoskeletons that allow successfully assisting patients during Activities of Daily Living (ADLs) in unstructured environment, while ensuring that anthropomorphic criteria are satisfied in the whole human-robot workspace. The motion planning system combines Learning by Demonstration with the computation of Dynamic Motion Primitives and machine learning techniques to construct task- and patient-specific joint trajectories based on the learnt trajectories. System validation was carried out in simulation and in a real setting with a 4-DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb Girdle Muscular Dystrophy. Validation was addressed to (i) compare the performance of the proposed motion planning with traditional methods; (ii) assess the generalization capabilities of the proposed method with respect to the environment variability. Three ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The achieved results showed a 100% success rate in the task fulfillment, with a high level of generalization with respect to the environment variability. Moreover, an anthropomorphic configuration of the exoskeleton is always ensured. PMID:29527161

  13. Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons

    Directory of Open Access Journals (Sweden)

    Clemente Lauretti

    2018-02-01

    Full Text Available The reference joint position of upper-limb exoskeletons is typically obtained by means of Cartesian motion planners and inverse kinematics algorithms with the inverse Jacobian; this approach allows exploiting the available Degrees of Freedom (i.e. DoFs of the robot kinematic chain to achieve the desired end-effector pose; however, if used to operate non-redundant exoskeletons, it does not ensure that anthropomorphic criteria are satisfied in the whole human-robot workspace. This paper proposes a motion planning system, based on Learning by Demonstration, for upper-limb exoskeletons that allow successfully assisting patients during Activities of Daily Living (ADLs in unstructured environment, while ensuring that anthropomorphic criteria are satisfied in the whole human-robot workspace. The motion planning system combines Learning by Demonstration with the computation of Dynamic Motion Primitives and machine learning techniques to construct task- and patient-specific joint trajectories based on the learnt trajectories. System validation was carried out in simulation and in a real setting with a 4-DoF upper-limb exoskeleton, a 5-DoF wrist-hand exoskeleton and four patients with Limb Girdle Muscular Dystrophy. Validation was addressed to (i compare the performance of the proposed motion planning with traditional methods; (ii assess the generalization capabilities of the proposed method with respect to the environment variability. Three ADLs were chosen to validate the system: drinking, pouring and lifting a light sphere. The achieved results showed a 100% success rate in the task fulfillment, with a high level of generalization with respect to the environment variability. Moreover, an anthropomorphic configuration of the exoskeleton is always ensured.

  14. Project Management Plan to Maintain Safe and Compliant Conditions at the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    COX, G.J.

    1999-01-01

    This Project Management Plan presents the overall plan, description, mission, and workscope for the Plutonium Finishing Plant (PFP) maintain safe and compliant conditions project at PFP. This plan presents the overall description, mission, work scope, and planning for the Plutonium Finishing Plant (PFP) Maintain Safe and Compliant Conditions Project at PFP. This project includes all tasks required to maintain the safety boundary for the PFP Complex, except for the 2736-2 Vault Complex and the 234-52 vaults and vault-type rooms. The intent of this plan is to describe how this project will be managed and integrated with the stabilization, and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines that will manage the execution of this project. It describes the organizational approach and roles/responsibilities implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action

  15. Safe teleoperation based on flexible intraoperative planning for robot-assisted laser microsurgery.

    Science.gov (United States)

    Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new intraoperative planning system created to improve precision and safety in teleoperated laser microsurgeries. It addresses major safety issues related to real-time control of a surgical laser during teleoperated procedures, which are related to the reliability and robustness of the telecommunication channels. Here, a safe solution is presented, consisting in a new planning system architecture that maintains the flexibility and benefits of real-time teleoperation and keeps the surgeon in control of all surgical actions. The developed system is based on our virtual scalpel system for robot-assisted laser microsurgery, and allows the intuitive use of stylus to create surgical plans directly over live video of the surgical field. In this case, surgical plans are defined as graphic objects overlaid on the live video, which can be easily modified or replaced as needed, and which are transmitted to the main surgical system controller for subsequent safe execution. In the process of improving safety, this new planning system also resulted in improved laser aiming precision and improved capability for higher quality laser procedures, both due to the new surgical plan execution module, which allows very fast and precise laser aiming control. Experimental results presented herein show that, in addition to the safety improvements, the new planning system resulted in a 48% improvement in laser aiming precision when compared to the previous virtual scalpel system.

  16. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade; Manavi, Kasra; Burgos, Juan; Denny, Jory; Thomas, Shawna; Amato, Nancy M.

    2012-01-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  17. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade

    2012-05-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  18. Fuzzy Logic Unmanned Air Vehicle Motion Planning

    Directory of Open Access Journals (Sweden)

    Chelsea Sabo

    2012-01-01

    Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.

  19. Being safe: making the decision to have a planned home birth in the United States.

    Science.gov (United States)

    Lothian, Judith A

    2013-01-01

    Although there is evidence that supports the safety of planned home birth for healthy women, less than 1 percent of women in the United States choose to have their baby at home. An ethnographic study of the experience of planned home birth provided rich descriptions of women's experiences planning, preparing for, and having a home birth.This article describes findings related to how women make the decision to have a planned home birth. For these women, being safe emerged as central in making the decision. For them, being safe included four factors: avoiding technological birth interventions, knowing the midwife and the midwife knowing them, feeling comfortable and protected at home, and knowing that backup hospital medical care was accessible if needed.

  20. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglová

    2004-03-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  1. Constrained optimal motion planning for autonomous vehicles using PRONTO

    NARCIS (Netherlands)

    Aguiar, A.P.; Bayer, F.A.; Hauser, J.; Häusler, A.J.; Notarstefano, G.; Pascoal, A.M.; Rucco, A.; Saccon, A.

    2017-01-01

    This chapter provides an overview of the authors’ efforts in vehicle trajectory exploration and motion planning based on PRONTO, a numerical method for solving optimal control problems developed over the last two decades. The chapter reviews the basics of PRONTO, providing the appropriate references

  2. Towards Safe Robotic Surgical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    a controller for motion compensation in beating-heart surgery, and prove that it is safe, i.e., the surgical tool is kept within an allowable distance and orientation of the heart. We solve the problem by simultaneously finding a control law and a barrier function. The motion compensation system is simulated...... from several initial conditions to demonstrate that the designed control system is safe for every admissible initial condition....

  3. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.

    Science.gov (United States)

    Vicentini, Federico; Pedrocchi, Nicola; Malosio, Matteo; Molinari Tosatti, Lorenzo

    2014-09-01

    Robot-assisted neurorehabilitation often involves networked systems of sensors ("sensory rooms") and powerful devices in physical interaction with weak users. Safety is unquestionably a primary concern. Some lightweight robot platforms and devices designed on purpose include safety properties using redundant sensors or intrinsic safety design (e.g. compliance and backdrivability, limited exchange of energy). Nonetheless, the entire "sensory room" shall be required to be fail-safe and safely monitored as a system at large. Yet, sensor capabilities and control algorithms used in functional therapies require, in general, frequent updates or re-configurations, making a safety-grade release of such devices hardly sustainable in cost-effectiveness and development time. As such, promising integrated platforms for human-in-the-loop therapies could not find clinical application and manufacturing support because of lacking in the maintenance of global fail-safe properties. Under the general context of cross-machinery safety standards, the paper presents a methodology called SafeNet for helping in extending the safety rate of Human Robot Interaction (HRI) systems using unsafe components, including sensors and controllers. SafeNet considers, in fact, the robotic system as a device at large and applies the principles of functional safety (as in ISO 13489-1) through a set of architectural procedures and implementation rules. The enabled capability of monitoring a network of unsafe devices through redundant computational nodes, allows the usage of any custom sensors and algorithms, usually planned and assembled at therapy planning-time rather than at platform design-time. A case study is presented with an actual implementation of the proposed methodology. A specific architectural solution is applied to an example of robot-assisted upper-limb rehabilitation with online motion tracking. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Design and implementation of motion planning of inspection and maintenance robot for ITER-like vessel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Lai, Yinping [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Cao, Qixin [Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-12-15

    Robot motion planning is a fundamental problem to ensure the robot executing the task without clashes, fast and accurately in a special environment. In this paper, a motion planning of a 12 DOFs remote handling robot used for inspecting the working state of the ITER-like vessel and maintaining key device components is proposed and implemented. Firstly, the forward and inverse kinematics are given by analytic method. The work space and posture space of this manipulator are both considered. Then the motion planning is divided into three stages: coming out of the cassette mover, moving along the in-vessel center line, and inspecting the D-shape section. Lastly, the result of experiments verified the performance of the motion design method. In addition, the task of unscrewing/screwing the screw demonstrated the feasibility of system in function.

  5. Adaptive Motion Planning in Bin-Picking with Object Uncertainties

    DEFF Research Database (Denmark)

    Iversen, Thomas Fridolin; Ellekilde, Lars-Peter; Miró, Jaime Valls

    2017-01-01

    Doing motion planning for bin-picking with object uncertainties requires either a re-grasp of picked objects or an online sensor system. Using the latter is advantageous in terms of computational time, as no time is wasted doing an extra pick and place action. It does, however, put extra...... requirements on the motion planner, as the target position may change on-the-fly. This paper solves that problem by using a state adjusting Partial Observable Markov Decision Process, where the state space is modified between runs, to better fit earlier solved problems. The approach relies on a set...

  6. State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2012-05-01

    Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots. To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.

  7. State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots.To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.

  8. The initial safe range of motion of the ankle joint after three methods of internal fixation of simulated fractures of the medial malleolus.

    Science.gov (United States)

    Shimamura, Yoshio; Kaneko, Kazuo; Kume, Kazuhiko; Maeda, Mutsuhiro; Iwase, Hideaki

    2006-07-01

    Previous studies have demonstrated the safe passive range of ankle motion for inter-bone stiffness after internal fixation under load but there is a lack of information about the safe range of ankle motion for early rehabilitation in the absence of loading. The present study was designed to assess the effect of ankle movement on inter-bone displacement characteristics of medial malleolus fractures following three types of internal fixation to determine the safe range of motion. Five lower legs obtained during autopsy were used to assess three types of internal fixation (two with Kirschner-wires alone; two with Kirschner-wires plus tension band wiring; and, one with an AO/ASIF malleolar screw alone). Following a simulated fracture by sawing through the medial malleolus the displacement between the fractured bone ends was measured during a passive range of movement with continuous monitoring using omega (Omega) shaped transducers and a biaxial flexible goniometer. Statistical analysis was performed with repeated measures analysis of variance. Inter-bone displacement was not proportional to the magnitude of movement throughout the range of ankle motion as, when separation exceeded 25 microm, there was increasingly wide separation as plantar-flexion or dorsal-flexion was increased. There was no statistical significant difference between the small amount of inter-bone displacement observed with three types of fixation within the safe range of dorsal-flexion and plantar-flexion for early rehabilitation. However the inter-bone separation when fixation utilized two Kirschner-wires alone tended to be greater than when using the other two types of fixation during dorsal-flexion and eversion. The present study revealed a reproducible range of ankle motion for early rehabilitation which was estimated to be within the range of 20 degrees of dorsal-flexion and 10 degrees of plantar-flexion without eversion. Also, internal fixation with two Kirschner-wires alone does not seem to

  9. Planning Study Comparison of Real-Time Target Tracking and Four-Dimensional Inverse Planning for Managing Patient Respiratory Motion

    International Nuclear Information System (INIS)

    Zhang Peng; Hugo, Geoffrey D.; Yan Di

    2008-01-01

    Purpose: Real-time target tracking (RT-TT) and four-dimensional inverse planning (4D-IP) are two potential methods to manage respiratory target motion. In this study, we evaluated each method using the cumulative dose-volume criteria in lung cancer radiotherapy. Methods and Materials: Respiration-correlated computed tomography scans were acquired for 4 patients. Deformable image registration was applied to generate a displacement mapping for each phase image of the respiration-correlated computed tomography images. First, the dose distribution for the organs of interest obtained from an idealized RT-TT technique was evaluated, assuming perfect knowledge of organ motion and beam tracking. Inverse planning was performed on each phase image separately. The treatment dose to the organs of interest was then accumulated from the optimized plans. Second, 4D-IP was performed using the probability density function of respiratory motion. The beam arrangement, prescription dose, and objectives were consistent in both planning methods. The dose-volume and equivalent uniform dose in the target volume, lung, heart, and spinal cord were used for the evaluation. Results: The cumulative dose in the target was similar for both techniques. The equivalent uniform dose of the lung, heart, and spinal cord was 4.6 ± 2.2, 11 ± 4.4, and 11 ± 6.6 Gy for RT-TT with a 0-mm target margin, 5.2 ± 3.1, 12 ± 5.9, and 12 ± 7.8 Gy for RT-TT with a 2-mm target margin, and 5.3 ± 2.3, 11.9 ± 5.0, and 12 ± 5.6 Gy for 4D-IP, respectively. Conclusion: The results of our study have shown that 4D-IP can achieve plans similar to those achieved by RT-TT. Considering clinical implementation, 4D-IP could be a more reliable and practical method to manage patient respiration-induced motion

  10. The motion planning problem and exponential stabilization of a heavy chain. Part II

    OpenAIRE

    Piotr Grabowski

    2008-01-01

    This is the second part of paper [P. Grabowski, The motion planning problem and exponential stabilization of a heavy chain. Part I, to appear in International Journal of Control], where a model of a heavy chain system with a punctual load (tip mass) in the form of a system of partial differential equations was interpreted as an abstract semigroup system and then analysed on a Hilbert state space. In particular, in [P. Grabowski, The motion planning problem and exponential stabilization of a h...

  11. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    Pulsford, S.K.

    1997-01-01

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  12. The Motion Planning of Overhead Crane Based on Suppressing Payload Residual Swing

    Directory of Open Access Journals (Sweden)

    Liu Hua-sen

    2016-01-01

    Full Text Available Since the overhead crane system is subject to under actuation system due to that overhead crane and payload are connected by flexibility wire rope. The payload generates residual swing when the overhead crane is accelerating/ decelerating the motions. This may cause trouble for the payload precise positioning and motion planning. Hence, an optimization input shaping control method is presented to reduce the under actuated overhead crane’s payload swing caused via the inertia force. The dynamic model of the overhead crane is proposed according to the physics structure of the crane. The input shaper based on the motion planning of the crane is used as the feed forward input to suppress payload residual swing. Simulation and experiment results indicate that the ZV input shaper and ZVD input shaper can reduce the payload swing of the overhead crane.

  13. Motion planning with complete knowledge using a colored SOM.

    Science.gov (United States)

    Vleugels, J; Kok, J N; Overmars, M

    1997-01-01

    The motion planning problem requires that a collision-free path be determined for a robot moving amidst a fixed set of obstacles. Most neural network approaches to this problem are for the situation in which only local knowledge about the configuration space is available. The main goal of the paper is to show that neural networks are also suitable tools in situations with complete knowledge of the configuration space. In this paper we present an approach that combines a neural network and deterministic techniques. We define a colored version of Kohonen's self-organizing map that consists of two different classes of nodes. The network is presented with random configurations of the robot and, from this information, it constructs a road map of possible motions in the work space. The map is a growing network, and different nodes are used to approximate boundaries of obstacles and the Voronoi diagram of the obstacles, respectively. In a second phase, the positions of the two kinds of nodes are combined to obtain the road map. In this way a number of typical problems with small obstacles and passages are avoided, and the required number of nodes for a given accuracy is within reasonable limits. This road map is searched to find a motion connecting the given source and goal configurations of the robot. The algorithm is simple and general; the only specific computation that is required is a check for intersection of two polygons. We implemented the algorithm for planar robots allowing both translation and rotation and experiments show that compared to conventional techniques it performs well, even for difficult motion planning scenes.

  14. Knowledge-Oriented Physics-Based Motion Planning for Grasping Under Uncertainty

    OpenAIRE

    Ud Din, Muhayy; Akbari, Aliakbar; Rosell Gratacòs, Jan

    2017-01-01

    Grasping an object in unstructured and uncertain environments is a challenging task, particularly when a collision-free trajectory does not exits. High-level knowledge and reasoning processes, as well as the allowing of interaction between objects, can enhance the planning efficiency in such environments. In this direction, this study proposes a knowledge-oriented physics-based motion planning approach for a hand-arm system that uses a high-level knowledge-based reasoning to partition the wor...

  15. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    International Nuclear Information System (INIS)

    Pin, Francois G.

    2003-01-01

    Our overall objective is the development of a generalized methodology and code for the automated generation of the kinematics equations of robots and for the analytical solution of their motion planning equations subject to time-varying constraints, behavioral objectives and modular configuration

  16. Multi-optimization Criteria-based Robot Behavioral Adaptability and Motion Planning

    International Nuclear Information System (INIS)

    Pin, Grancois G.

    2004-01-01

    Our overall objective is the development of a generalized methodology and code for the automated generation of the kinematics equations of robots and for the analytical solution of their motion planning equations subject to time-varying constraints, behavioral objectives, and modular configuration

  17. Frustration-guided motion planning reveals conformational transitions in proteins.

    Science.gov (United States)

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; van den Bedem, Henry

    2017-10-01

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/. © 2017 Wiley Periodicals, Inc.

  18. Intelligent Aircraft Damage Assessment, Trajectory Planning, and Decision-Making under Uncertainty

    Science.gov (United States)

    Lopez, Israel; Sarigul-Klijn, Nesrin

    Situational awareness and learning are necessary to identify and select the optimal set of mutually non-exclusive hypothesis in order to maximize mission performance and adapt system behavior accordingly. This paper presents a hierarchical and decentralized approach for integrated damage assessment and trajectory planning in aircraft with uncertain navigational decision-making. Aircraft navigation can be safely accomplished by properly addressing the following: decision-making, obstacle perception, aircraft state estimation, and aircraft control. When in-flight failures or damage occur, rapid and precise decision-making under imprecise information is required in order to regain and maintain control of the aircraft. To achieve planned aircraft trajectory and complete safe landing, the uncertainties in system dynamics of the damaged aircraft need to be learned and incorporated at the level of motion planning. The damaged aircraft is simulated via a simplified kinematic model. The different sources and perspectives of uncertainties in the damage assessment process and post-failure trajectory planning are presented and classified. The decision-making process for an emergency motion planning and landing is developed via the Dempster-Shafer evidence theory. The objective of the trajectory planning is to arrive at a target position while maximizing the safety of the aircraft given uncertain conditions. Simulations are presented for an emergency motion planning and landing that takes into account aircraft dynamics, path complexity, distance to landing site, runway characteristics, and subjective human decision.

  19. Points-Based Safe Path Planning of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Khuram Shahzad

    2015-07-01

    Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g., working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot's movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.

  20. Safe Human-Robot Cooperation in an Industrial Environment

    Directory of Open Access Journals (Sweden)

    Nicola Pedrocchi

    2013-01-01

    Full Text Available The standard EN ISO10218 is fostering the implementation of hybrid production systems, i.e., production systems characterized by a close relationship among human operators and robots in cooperative tasks. Human-robot hybrid systems could have a big economic benefit in small and medium sized production, even if this new paradigm introduces mandatory, challenging safety aspects. Among various requirements for collaborative workspaces, safety-assurance involves two different application layers; the algorithms enabling safe space-sharing between humans and robots and the enabling technologies allowing acquisition data from sensor fusion and environmental data analysing. This paper addresses both the problems: a collision avoidance strategy allowing on-line re-planning of robot motion and a safe network of unsafe devices as a suggested infrastructure for functional safety achievement.

  1. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 05: A novel respiratory motion simulation program for VMAT treatment plans: a phantom validation study

    Energy Technology Data Exchange (ETDEWEB)

    Hubley, Emily; Pierce, Greg; Ploquin, Nicolas [University of Calgary, Tom Baker Cancer Centre, Tom Baker Cancer Centre (Canada)

    2016-08-15

    Purpose: To develop and validate a computational method to simulate craniocaudal respiratory motion in a VMAT treatment plan. Methods: Three 4DCTs of the QUASAR respiratory motion phantom were acquired with a 2cm water-density spherical tumour embedded in cedar to simulate lung. The phantom was oscillating sinusoidally with an amplitude of 2cm and periods of 3, 4, and 5 seconds. An ITV was contoured and 5mm PTV margin was added. High and a low modulation factor VMAT plans were created for each scan. An in-house program was developed to simulate respiratory motion in the treatment plans by shifting the MLC leaf positions relative to the phantom. Each plan was delivered to the phantom and the dose was measured using Gafchromic film. The measured and calculated plans were compared using an absolute dose gamma analysis (3%/3mm). Results: The average gamma pass rate for the low modulation plan and high modulation plans were 91.1% and 51.4% respectively. The difference between the high and low modulation plans gamma pass rates is likely related to the different sampling frequency of the respiratory curve and the higher MLC leaf speeds in the high modulation plan. A high modulation plan has a slower gantry speed and therefore samples the breathing cycle at a coarser frequency leading to inaccuracies between the measured and planned doses. Conclusion: A simple program, including a novel method for increasing sampling frequency beyond the control point frequency, has been developed to simulate respiratory motion in VMAT plans by shifting the MLC leaf positions.

  2. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 05: A novel respiratory motion simulation program for VMAT treatment plans: a phantom validation study

    International Nuclear Information System (INIS)

    Hubley, Emily; Pierce, Greg; Ploquin, Nicolas

    2016-01-01

    Purpose: To develop and validate a computational method to simulate craniocaudal respiratory motion in a VMAT treatment plan. Methods: Three 4DCTs of the QUASAR respiratory motion phantom were acquired with a 2cm water-density spherical tumour embedded in cedar to simulate lung. The phantom was oscillating sinusoidally with an amplitude of 2cm and periods of 3, 4, and 5 seconds. An ITV was contoured and 5mm PTV margin was added. High and a low modulation factor VMAT plans were created for each scan. An in-house program was developed to simulate respiratory motion in the treatment plans by shifting the MLC leaf positions relative to the phantom. Each plan was delivered to the phantom and the dose was measured using Gafchromic film. The measured and calculated plans were compared using an absolute dose gamma analysis (3%/3mm). Results: The average gamma pass rate for the low modulation plan and high modulation plans were 91.1% and 51.4% respectively. The difference between the high and low modulation plans gamma pass rates is likely related to the different sampling frequency of the respiratory curve and the higher MLC leaf speeds in the high modulation plan. A high modulation plan has a slower gantry speed and therefore samples the breathing cycle at a coarser frequency leading to inaccuracies between the measured and planned doses. Conclusion: A simple program, including a novel method for increasing sampling frequency beyond the control point frequency, has been developed to simulate respiratory motion in VMAT plans by shifting the MLC leaf positions.

  3. Multi-Robot Motion Planning: A Timed Automata Approach

    OpenAIRE

    Quottrup, Michael Melholt; Bak, Thomas; Izadi-Zamanabadi, Roozbeh

    2004-01-01

    This paper describes how a network of interacting timed automata can be used to model, analyze, and verify motion planning problems in a scenario with multiple robotic vehicles. The method presupposes an infra-structure of robots with feed-back controllers obeying simple restriction on a planar grid. The automata formalism merely presents a high-level model of environment, robots and control, but allows composition and formal symbolic reasoning about coordinated solutions. Composition is achi...

  4. Project management plan for the 105-C Reactor interim safe storage project. Revision 1

    International Nuclear Information System (INIS)

    Miller, R.L.

    1997-01-01

    In 1942, the Hanford Site was commissioned by the US Government to produce plutonium. Between 1942 and 1955, eight water-cooled, graphite-moderated reactors were constructed along the Columbia River at the Hanford Site to support the production of plutonium. The reactors were deactivated from 1964 to 1971 and declared surplus. The Surplus Production Reactor Decommissioning Project (BHI 1994b) will decommission these reactors and has selected the 105-C Reactor to be used as a demonstration project for interim safe storage at the present location and final disposition of the entire reactor core in the 200 West Area. This project will result in lower costs, accelerated schedules, reduced worker exposure, and provide direct benefit to the US Department of Energy for decommissioning projects complex wide. This project sets forth plans, organizational responsibilities, control systems, and procedures to manage the execution of the Project Management Plan for the 105-C Reactor Interim Safe Storage Project (Project Management Plan) activities to meet programmatic requirements within authorized funding and approved schedules. The Project Management Plan is organized following the guidelines provided by US Department of Energy Order 4700.1, Project Management System and the Richland Environmental Restoration Project Plan (DOE-RL 1992b)

  5. On Motion Planning for Point-to-Point Maneuvers for a Class of Sailing Vehicles

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2011-01-01

    Despite their interesting dynamic and controllability properties, sailing vehicles have not been much studied in the control community. In this paper, we investigate motion planning of such vehicles. Starting from a simple dynamic model of sailing vessels in one dimension, this paper first...... considers their associated controllability issues, with the so-called no-sailing zone as a starting point, and it links them with a motion planning strategy using two-point boundary value problems as the main mathematical tool. This perspective is then expanded to do point-to-point maneuvers of sailing...

  6. The Concept of Collision-Free Motion Planning Using a Dynamic Collision Map

    Directory of Open Access Journals (Sweden)

    Keum-Bae Cho

    2014-09-01

    Full Text Available In this paper, we address a new method for the collision-free motion planning of a mobile robot in dynamic environments. The motion planner is based on the concept of a conventional collision map (CCM, represented on the L(travel length-T(time plane. We extend the CCM with dynamic information about obstacles, such as linear acceleration and angular velocity, providing useful information for estimating variation in the collision map. We first analyse the effect of the dynamic motion of an obstacle in the collision region. We then define the measure of collision dispersion (MOCD. The dynamic collision map (DCM is generated by drawing the MOCD on the CCM. To evaluate a collision-free motion planner using the DCM, we extend the DCM with MOCD, then draw the unreachable region and deadlocked regions. Finally, we construct a collision-free motion planner using the information from the extended DCM.

  7. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    International Nuclear Information System (INIS)

    Matney, Jason; Park, Peter C.; Bluett, Jaques; Chen, Yi Pei; Liu, Wei; Court, Laurence E.; Liao, Zhongxing; Li, Heng; Mohan, Radhe

    2013-01-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  8. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Matney, Jason; Park, Peter C. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Bluett, Jaques [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chen, Yi Pei [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Liu, Wei; Court, Laurence E. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Heng [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe, E-mail: rmohan@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-11-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  9. Two-Step System Identification and Primitive-Based Motion Planning for Control of Small Unmanned Aerial Vehicles

    Science.gov (United States)

    Grymin, David J.

    This dissertation addresses motion planning, modeling, and feedback control for autonomous vehicle systems. A hierarchical approach for motion planning and control of nonlinear systems operating in obstacle environments is presented. To reduce computation time during the motion planning process, dynamically feasible trajectories are generated in real-time through concatenation of pre-specified motion primitives. The motion planning task is posed as a search over a directed graph, and the applicability of informed graph search techniques is investigated. Specifically, a locally greedy algorithm with effective backtracking ability is developed and compared to weighted A* search. The greedy algorithm shows an advantage with respect to solution cost and computation time when larger motion primitive libraries that do not operate on a regular state lattice are utilized. Linearization of the nonlinear system equations about the motion primitive library results in a hybrid linear time-varying model, and an optimal control algorithm using the l 2-induced norm as the performance measure is applied to ensure that the system tracks the desired trajectory. The ability of the resulting controller to closely track the trajectory obtained from the motion planner, despite various disturbances and uncertainties, is demonstrated through simulation. Additionally, an approach for obtaining dynamically feasible reference trajectories and feedback controllers for a small unmanned aerial vehicle (UAV) based on an aerodynamic model derived from flight tests is presented. The modeling approach utilizes the two step method (TSM) with stepwise multiple regression to determine relevant explanatory terms for the aerodynamic models. Dynamically feasible trajectories are then obtained through the solution of an optimal control problem using pseudospectral optimal control software. Discretetime feedback controllers are then obtained to regulate the vehicle along the desired reference trajectory

  10. Sample-Based Motion Planning in High-Dimensional and Differentially-Constrained Systems

    Science.gov (United States)

    2010-02-01

    path planning and motion primitives to enable crawling gaits on rough terrain e.g. [Rebula et al., 2007, Kolter et al., 2008,Pongas et al., 2007,Ratliff...demonstrating robust planning and locomotion over quite challenging terrain (e.g., [Rebula et al., 2007, Kolter et al., 2008, Pongas et al., 2007, Zucker, 2009...and Systems. [ Kolter et al., 2008] Kolter , J. Z., Rodgers, M. P., and Ng, A. Y. (2008). A control architecture for quadruped locomotion over rough

  11. Impact of tumour motion compensation and delineation methods on FDG PET-based dose painting plan quality for NSCLC radiation therapy

    International Nuclear Information System (INIS)

    Thomas, Hannah M.; Kinahan, Paul E.; Samuel, James J.E.; Bowen, Stephen R.

    2018-01-01

    To quantitatively estimate the impact of different methods for both boost volume delineation and respiratory motion compensation of [18F] FDG PET/CT images on the fidelity of planned non-uniform ‘dose painting’ plans to the prescribed boost dose distribution. Six locally advanced non-small cell lung cancer (NSCLC) patients were retrospectively reviewed. To assess the impact of respiratory motion, time-averaged (3D AVG), respiratory phase-gated (4D GATED) and motion-encompassing (4D MIP) PET images were used. The boost volumes were defined using manual contour (MANUAL), fixed threshold (FIXED) and gradient search algorithm (GRADIENT). The dose painting prescription of 60 Gy base dose to the planning target volume and an integral dose of 14 Gy (total 74 Gy) was discretized into seven treatment planning substructures and linearly redistributed according to the relative SUV at every voxel in the boost volume. Fifty-four dose painting plan combinations were generated and conformity was evaluated using quality index VQ0.95–1.05, which represents the sum of planned dose voxels within 5% deviation from the prescribed dose. Trends in plan quality and magnitude of achievable dose escalation were recorded. Different segmentation techniques produced statistically significant variations in maximum planned dose (P < 0.02), as well as plan quality between segmentation methods for 4D GATED and 4D MIP PET images (P < 0.05). No statistically significant differences in plan quality and maximum dose were observed between motion-compensated PET-based plans (P > 0.75). Low variability in plan quality was observed for FIXED threshold plans, while MANUAL and GRADIENT plans achieved higher dose with lower plan quality indices. The dose painting plans were more sensitive to segmentation of boost volumes than PET motion compensation in this study sample. Careful consideration of boost target delineation and motion compensation strategies should guide the design of NSCLC dose painting

  12. Impact of tumour motion compensation and delineation methods on FDG PET-based dose painting plan quality for NSCLC radiation therapy.

    Science.gov (United States)

    Thomas, Hannah Mary; Kinahan, Paul E; Samuel, James Jebaseelan E; Bowen, Stephen R

    2018-02-01

    To quantitatively estimate the impact of different methods for both boost volume delineation and respiratory motion compensation of [18F] FDG PET/CT images on the fidelity of planned non-uniform 'dose painting' plans to the prescribed boost dose distribution. Six locally advanced non-small cell lung cancer (NSCLC) patients were retrospectively reviewed. To assess the impact of respiratory motion, time-averaged (3D AVG), respiratory phase-gated (4D GATED) and motion-encompassing (4D MIP) PET images were used. The boost volumes were defined using manual contour (MANUAL), fixed threshold (FIXED) and gradient search algorithm (GRADIENT). The dose painting prescription of 60 Gy base dose to the planning target volume and an integral dose of 14 Gy (total 74 Gy) was discretized into seven treatment planning substructures and linearly redistributed according to the relative SUV at every voxel in the boost volume. Fifty-four dose painting plan combinations were generated and conformity was evaluated using quality index VQ0.95-1.05, which represents the sum of planned dose voxels within 5% deviation from the prescribed dose. Trends in plan quality and magnitude of achievable dose escalation were recorded. Different segmentation techniques produced statistically significant variations in maximum planned dose (P plan quality between segmentation methods for 4D GATED and 4D MIP PET images (P plan quality and maximum dose were observed between motion-compensated PET-based plans (P > 0.75). Low variability in plan quality was observed for FIXED threshold plans, while MANUAL and GRADIENT plans achieved higher dose with lower plan quality indices. The dose painting plans were more sensitive to segmentation of boost volumes than PET motion compensation in this study sample. Careful consideration of boost target delineation and motion compensation strategies should guide the design of NSCLC dose painting trials. © 2017 The Royal Australian and New Zealand College of

  13. A Framework for Multi-Robot Motion Planning from Temporal Logic Specifications

    DEFF Research Database (Denmark)

    Koo, T. John; Li, Rongqing; Quottrup, Michael Melholt

    2012-01-01

    -time Temporal Logic, Computation Tree Logic, and -calculus can be preserved. Motion planning can then be performed at a discrete level by considering the parallel composition of discrete abstractions of the robots with a requirement specification given in a suitable temporal logic. The bisimilarity ensures...

  14. Energy-optimal motion planning for multiple robotic vehicles with collision avoidance

    NARCIS (Netherlands)

    Häusler, A.J.; Saccon, A.; Aguiar, A.P.; Hauser, J.; Pascoal, A.M.

    2016-01-01

    We propose a numerical algorithm for multiple-vehicle motion planning that explicitly takes into account the vehicle dynamics, temporal and spatial specifications, and energy-related requirements. As a motivating example, we consider the case where a group of vehicles is tasked to reach a number of

  15. Robust Control and Motion Planning for Nonlinear Underactuated Systems Using H infinity Techniques

    National Research Council Canada - National Science Library

    Toussaint, Gregory

    2000-01-01

    This thesis presents new techniques for planning and robustly controlling the motion of nonlinear underactuated vehicles when disturbances are present and only imperfect state measurements are available for feedback...

  16. Perturbed Motion of Airplane and Safe Store Separation

    OpenAIRE

    S. C. Raisinghani; S. Rao

    1983-01-01

    A method is presented to predict the perturbed motion of an airplane following stores jettisoning. The mass, moment of inertia, forces, and moments acting on the airplane are suitable split into contributions from the stores and the rest of the airplane parts. The seperation of stores is assumed to result in a step change of mass, moment of intertai, forces, and moments contributed by stores. The resulting set of perturbed state equations of motion are solved for two illustrative airplane str...

  17. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.

    Science.gov (United States)

    Lasota, Przemyslaw A; Shah, Julie A

    2015-02-01

    The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human-robot interaction. We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human-robot team fluency and human worker satisfaction. Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human-robot collaboration.

  18. SU-E-T-622: Planning Technique for Passively-Scattered Involved-Node Proton Therapy of Mediastinal Lymphoma with Consideration of Cardiac Motion

    Energy Technology Data Exchange (ETDEWEB)

    Flampouri, S; Li, Z; Hoppe, B [University of Florida Health Proton Therapy Institute, Jacksonville, FL (United States)

    2015-06-15

    Purpose: To develop a treatment planning method for passively-scattered involved-node proton therapy of mediastinal lymphoma robust to breathing and cardiac motions. Methods: Beam-specific planning treatment volumes (bsPTV) are calculated for each proton field to incorporate pertinent uncertainties. Geometric margins are added laterally to each beam while margins for range uncertainty due to setup errors, breathing, and calibration curve uncertainties are added along each beam. The calculation of breathing motion and deformation effects on proton range includes all 4DCT phases. The anisotropic water equivalent margins are translated to distances on average 4DCT. Treatment plans are designed so each beam adequately covers the corresponding bsPTV. For targets close to the heart, cardiac motion effects on dosemaps are estimated by using a library of anonymous ECG-gated cardiac CTs (cCT). The cCT, originally contrast-enhanced, are partially overridden to allow meaningful proton dose calculations. Targets similar to the treatment targets are drawn on one or more cCT sets matching the anatomy of the patient. Plans based on the average cCT are calculated on individual phases, then deformed to the average and accumulated. When clinically significant dose discrepancies occur between planned and accumulated doses, the patient plan is modified to reduce the cardiac motion effects. Results: We found that bsPTVs as planning targets create dose distributions similar to the conventional proton planning distributions, while they are a valuable tool for visualization of the uncertainties. For large targets with variability in motion and depth, integral dose was reduced because of the anisotropic margins. In most cases, heart motion has a clinically insignificant effect on target coverage. Conclusion: A treatment planning method was developed and used for proton therapy of mediastinal lymphoma. The technique incorporates bsPTVs compensating for all common sources of uncertainties

  19. TU-AB-BRB-02: Stochastic Programming Methods for Handling Uncertainty and Motion in IMRT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, J. [Massachusetts General Hospital (United States)

    2015-06-15

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. The treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand

  20. Analyzing the Effects of Human-Aware Motion Planning on Close-Proximity Human–Robot Collaboration

    Science.gov (United States)

    Shah, Julie A.

    2015-01-01

    Objective: The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. Background: The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human–robot interaction. Method: We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. Results: When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. Conclusion: People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human–robot team fluency and human worker satisfaction. Application: Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human–robot collaboration. PMID:25790568

  1. The Toggle Local Planner for sampling-based motion planning

    KAUST Repository

    Denny, Jory

    2012-05-01

    Sampling-based solutions to the motion planning problem, such as the probabilistic roadmap method (PRM), have become commonplace in robotics applications. These solutions are the norm as the dimensionality of the planning space grows, i.e., d > 5. An important primitive of these methods is the local planner, which is used for validation of simple paths between two configurations. The most common is the straight-line local planner which interpolates along the straight line between the two configurations. In this paper, we introduce a new local planner, Toggle Local Planner (Toggle LP), which extends local planning to a two-dimensional subspace of the overall planning space. If no path exists between the two configurations in the subspace, then Toggle LP is guaranteed to correctly return false. Intuitively, more connections could be found by Toggle LP than by the straight-line planner, resulting in better connected roadmaps. As shown in our results, this is the case, and additionally, the extra cost, in terms of time or storage, for Toggle LP is minimal. Additionally, our experimental analysis of the planner shows the benefit for a wide array of robots, with DOF as high as 70. © 2012 IEEE.

  2. Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-01-01

    Full Text Available Motion planning is a crucial, basic issue in robotics, which aims at driving vehicles or robots towards to a given destination with various constraints, such as obstacles and limited resource. This paper presents a new version of rapidly exploring random trees (RRT, that is, liveness-based RRT (Li-RRT, to address autonomous underwater vehicles (AUVs motion problem. Different from typical RRT, we define an index of each node in the random searching tree, called “liveness” in this paper, to describe the potential effectiveness during the expanding process. We show that Li-RRT is provably probabilistic completeness as original RRT. In addition, the expected time of returning a valid path with Li-RRT is obviously reduced. To verify the efficiency of our algorithm, numerical experiments are carried out in this paper.

  3. MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning

    International Nuclear Information System (INIS)

    Blackall, J M; Ahmad, S; Miquel, M E; McClelland, J R; Landau, D B; Hawkes, D J

    2006-01-01

    Respiratory organ motion has a significant impact on the planning and delivery of radiotherapy (RT) treatment for lung cancer. Currently widespread techniques, such as 4D-computed tomography (4DCT), cannot be used to measure variability of this motion from one cycle to the next. In this paper, we describe the use of fast magnetic resonance imaging (MRI) techniques to investigate the intra- and inter-cycle reproducibility of respiratory motion and also to estimate the level of errors that may be introduced into treatment delivery by using various breath-hold imaging strategies during lung RT planning. A reference model of respiratory motion is formed to enable comparison of different breathing cycles at any arbitrary position in the respiratory cycle. This is constructed by using free-breathing images from the inhale phase of a single breathing cycle, then co-registering the images, and thereby tracking landmarks. This reference model is then compared to alternative models constructed from images acquired during the exhale phase of the same cycle and the inhale phase of a subsequent cycle, to assess intra- and inter-cycle variability ('hysteresis' and 'reproducibility') of organ motion. The reference model is also compared to a series of models formed from breath-hold data at exhale and inhale. Evaluation of these models is carried out on data from ten healthy volunteers and five lung cancer patients. Free-breathing models show good levels of intra- and inter-cycle reproducibility across the tidal breathing range. Mean intra-cycle errors in the position of organ surface landmarks of 1.5(1.4)-3.5(3.3) mm for volunteers and 2.8(1.8)-5.2(5.2) mm for patients. Equivalent measures of inter-cycle variability across this range are 1.7(1.0)-3.9(3.3) mm for volunteers and 2.8(1.8)-3.3(2.2) mm for patients. As expected, models based on breath-hold sequences do not represent normal tidal motion as well as those based on free-breathing data, with mean errors of 4

  4. A qualitative study of safe abortion and post-abortion family planning service experiences of women attending private facilities in Kenya.

    Science.gov (United States)

    Penfold, Suzanne; Wendot, Susy; Nafula, Inviolata; Footman, Katharine

    2018-04-24

    To inform improvements in safe abortion and post-abortion family planning (PAFP) services, this study aimed to explore the pathways, decision-making, experiences and preferences of women receiving safe abortion and post-abortion family planning (PAFP) at private clinics in western Kenya. We conducted semi-structured interviews with 22 women who had recently used a safe abortion service from a private clinic. Interviews explored abortion-seeking behaviour and decision-making, abortion experience, use and knowledge of contraception, experience of PAFP counselling, and perceived facilitators of and challenges to family planning use. Respondents discovered their pregnancies due to physical symptoms, which were confirmed using pregnancy testing kits, often purchased from pharmacies. Respondents usually discussed their abortion decision with their partner, and, sometimes, carefully-selected friends or family members. Some reported being referred to private clinics for abortion services directly from other providers. Others had more complex pathways, first seeking care from unsafe providers, trying to self-induce abortion, being turned away from alternative safe facilities that were closed or too busy, or taking time to gather financial resources to pay for care. Participants wanted to use abortion services at facilities reputed for being accessible, clean, medically safe, and offering quick, respectful, private and courteous services. Awareness of reputable clinics was gained through personal experience, and recommendations from contacts and other health providers. Most participants had previously used contraception, with some reports of incorrect use and many reports of side effects. PAFP counselling was valued by clients, but some accounts suggested the counselling lacked comprehensive information. Many women chose contraception immediately following PAFP counselling; but others wanted to delay decision-making about contraception until the abortion was complete

  5. Kinodynamic Motion Planning for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Jiwung Choi

    2014-06-01

    Full Text Available This article proposes a computationally effective motion planning algorithm for autonomous ground vehicles operating in a semi-structured environment with a mission specified by waypoints, corridor widths and obstacles. The algorithm switches between two kinds of planners, (i static planners and (ii moving obstacle avoidance manoeuvre planners, depending on the mobility of any detected obstacles. While the first is broken down into a path planner and a controller, the second generates a sequence of controls without global path planning. Each subsystem is implemented as follows. The path planner produces an optimal piecewise linear path by applying a variant of cell decomposition and dynamic programming. The piecewise linear path is smoothed by Bézier curves such that the maximum curvatures of the curves are minimized. The controller calculates the highest allowable velocity profile along the path, consistent with the limits on both tangential and radial acceleration and the steering command for the vehicle to track the trajectory using a pure pursuit method. The moving obstacle avoidance manoeuvre produces a sequence of time-optimal local velocities, by minimizing the cost as determined by the safety of the current velocity against obstacles in the velocity obstacle paradigm and the deviation of the current velocity relative to the desired velocity, to satisfy the waypoint constraint. The algorithms are shown to be robust and computationally efficient, and to demonstrate a viable methodology for autonomous vehicle control in the presence of unknown obstacles.

  6. Sampling-based real-time motion planning under state uncertainty for autonomous micro-aerial vehicles in GPS-denied environments.

    Science.gov (United States)

    Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan

    2014-11-18

    This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.

  7. InaSAFE applications in disaster preparedness

    Science.gov (United States)

    Pranantyo, Ignatius Ryan; Fadmastuti, Mahardika; Chandra, Fredy

    2015-04-01

    Disaster preparedness activities aim to reduce the impact of disasters by being better prepared to respond when a disaster occurs. In order to better anticipate requirements during a disaster, contingency planning activities can be undertaken prior to a disaster based on a realistic disaster scenario. InaSAFE is a tool that can inform this process. InaSAFE is a free and open source software that estimates the impact to people and infrastructure from potential hazard scenarios. By using InaSAFE, disaster managers can develop scenarios of disaster impacts (people and infrastructures affected) to inform their contingency plan and emergency response operation plan. While InaSAFE provides the software framework exposure data and hazard data are needed as inputs to run this software. Then InaSAFE can be used to forecast the impact of the hazard scenario to the exposure data. InaSAFE outputs include estimates of the number of people, buildings and roads are affected, list of minimum needs (rice and clean water), and response checklist. InaSAFE is developed by Indonesia's National Disaster Management Agency (BNPB) and the Australian Government, through the Australia-Indonesia Facility for Disaster Reduction (AIFDR), in partnership with the World Bank - Global Facility for Disaster Reduction and Recovery (GFDRR). This software has been used in many parts of Indonesia, including Padang, Maumere, Jakarta, and Slamet Mountain for emergency response and contingency planning.

  8. Clinical Implementation of an Online Adaptive Plan-of-the-Day Protocol for Nonrigid Motion Management in Locally Advanced Cervical Cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Heijkoop, Sabrina T., E-mail: s.heijkoop@erasmusmc.nl; Langerak, Thomas R.; Quint, Sandra; Bondar, Luiza; Mens, Jan Willem M.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2014-11-01

    Purpose: To evaluate the clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid target motion management in locally advanced cervical cancer intensity modulated radiation therapy (IMRT). Methods and Materials: Each of the 64 patients had four markers implanted in the vaginal fornix to verify the position of the cervix during treatment. Full and empty bladder computed tomography (CT) scans were acquired prior to treatment to build a bladder volume-dependent cervix-uterus motion model for establishment of the plan library. In the first phase of clinical implementation, the library consisted of one IMRT plan based on a single model-predicted internal target volume (mpITV), covering the target for the whole pretreatment observed bladder volume range, and a 3D conformal radiation therapy (3DCRT) motion-robust backup plan based on the same mpITV. The planning target volume (PTV) combined the ITV and nodal clinical target volume (CTV), expanded with a 1-cm margin. In the second phase, for patients showing >2.5-cm bladder-induced cervix-uterus motion during planning, two IMRT plans were constructed, based on mpITVs for empty-to-half-full and half-full-to-full bladder. In both phases, a daily cone beam CT (CBCT) scan was acquired to first position the patient based on bony anatomy and nodal targets and then select the appropriate plan. Daily post-treatment CBCT was used to verify plan selection. Results: Twenty-four and 40 patients were included in the first and second phase, respectively. In the second phase, 11 patients had two IMRT plans. Overall, an IMRT plan was used in 82.4% of fractions. The main reasons for selecting the motion-robust backup plan were uterus outside the PTV (27.5%) and markers outside their margin (21.3%). In patients with two IMRT plans, the half-full-to-full bladder plan was selected on average in 45% of the first 12 fractions, which was reduced to 35% in the last treatment fractions. Conclusions: The implemented

  9. Visibility-based optimal path and motion planning

    CERN Document Server

    Wang, Paul Keng-Chieh

    2015-01-01

    This monograph deals with various visibility-based path and motion planning problems motivated by real-world applications such as exploration and mapping planetary surfaces, environmental surveillance using stationary or mobile robots, and imaging of global air/pollutant circulation. The formulation and solution of these problems call for concepts and methods from many areas of applied mathematics including computational geometry, set-covering, non-smooth optimization, combinatorial optimization and optimal control. Emphasis is placed on the formulation of new problems and methods of approach to these problems. Since geometry and visualization play important roles in the understanding of these problems, intuitive interpretations of the basic concepts are presented before detailed mathematical development. The development of a particular topic begins with simple cases illustrated by specific examples, and then progresses forward to more complex cases. The intended readers of this monograph are primarily studen...

  10. 29 CFR 2550.404a-2 - Safe harbor for automatic rollovers to individual retirement plans.

    Science.gov (United States)

    2010-07-01

    ... retirement plans. 2550.404a-2 Section 2550.404a-2 Labor Regulations Relating to Labor (Continued) EMPLOYEE... RETIREMENT INCOME SECURITY ACT OF 1974 RULES AND REGULATIONS FOR FIDUCIARY RESPONSIBILITY § 2550.404a-2 Safe..., whether or not such return is guaranteed, consistent with liquidity; (ii) For purposes of paragraph (c)(3...

  11. Validation of a computational method for assessing the impact of intra-fraction motion on helical tomotherapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Meeks, Sanford L; Kupelian, Patrick A; Langen, Katja M [Department of Radiation Oncology, M D Anderson Cancer Center Orlando, 1400 South Orange Avenue, Orlando, FL 32806 (United States); Schnarr, Eric [TomoTherapy, Inc., 1240 Deming Way, Madison, WI 53717 (United States)], E-mail: wilfred.ngwa@orlandohealth.com

    2009-11-07

    In this work, a method for direct incorporation of patient motion into tomotherapy dose calculations is developed and validated. This computational method accounts for all treatment dynamics and can incorporate random as well as cyclical motion data. Hence, interplay effects between treatment dynamics and patient motion are taken into account during dose calculation. This allows for a realistic assessment of intra-fraction motion on the dose distribution. The specific approach entails modifying the position and velocity events in the tomotherapy delivery plan to accommodate any known motion. The computational method is verified through phantom and film measurements. Here, measured prostate motion and simulated respiratory motion tracks were incorporated in the dose calculation. The calculated motion-encoded dose profiles showed excellent agreement with the measurements. Gamma analysis using 3 mm and 3% tolerance criteria showed over 97% and 96% average of points passing for the prostate and breathing motion tracks, respectively. The profile and gamma analysis results validate the accuracy of this method for incorporating intra-fraction motion into the dose calculation engine for assessment of dosimetric effects on helical tomotherapy dose deliveries.

  12. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.

    Science.gov (United States)

    Ben-Tzvi, Pinhas; Ma, Zhou

    2015-11-01

    This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.

  13. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.; Tapia, Lydia; Thomas, Shawna

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer's disease

  14. Sampling Based Trajectory Planning for Robots in Dynamic Human Environments

    DEFF Research Database (Denmark)

    Svenstrup, Mikael

    2010-01-01

    Open-ended human environments, such as pedestrian streets, hospital corridors, train stations etc., are places where robots start to emerge. Hence, being able to plan safe and natural trajectories in these dynamic environments is an important skill for future generations of robots. In this work...... the problem is formulated as planning a minimal cost trajectory through a potential field, defined from the perceived position and motion of persons in the environment. A modified Rapidlyexploring Random Tree (RRT) algorithm is proposed as a solution to the planning problem. The algorithm implements a new...... for the uncertainty in the dynamic environment. The planning algorithm is demonstrated in a simulated pedestrian street environment....

  15. Triangular Geometrized Sampling Heuristics for Fast Optimal Motion Planning

    Directory of Open Access Journals (Sweden)

    Ahmed Hussain Qureshi

    2015-02-01

    Full Text Available Rapidly-exploring Random Tree (RRT-based algorithms have become increasingly popular due to their lower computational complexity as compared with other path planning algorithms. The recently presented RRT* motion planning algorithm improves upon the original RRT algorithm by providing optimal path solutions. While RRT determines an initial collision-free path fairly quickly, RRT* guarantees almost certain convergence to an optimal, obstacle-free path from the start to the goal points for any given geometrical environment. However, the main limitations of RRT* include its slow processing rate and high memory consumption, due to the large number of iterations required for calculating the optimal path. In order to overcome these limitations, we present another improvement, i.e, the Triangular Geometerized-RRT* (TG-RRT* algorithm, which utilizes triangular geometrical methods to improve the performance of the RRT* algorithm in terms of the processing time and a decreased number of iterations required for an optimal path solution. Simulations comparing the performance results of the improved TG-RRT* with RRT* are presented to demonstrate the overall improvement in performance and optimal path detection.

  16. Control of nonholonomic systems from sub-Riemannian geometry to motion planning

    CERN Document Server

    Jean, Frédéric

    2014-01-01

    Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.

  17. Bifurcation of Safe Basins and Chaos in Nonlinear Vibroimpact Oscillator under Harmonic and Bounded Noise Excitations

    Directory of Open Access Journals (Sweden)

    Rong Haiwu

    2014-01-01

    Full Text Available The erosion of the safe basins and chaotic motions of a nonlinear vibroimpact oscillator under both harmonic and bounded random noise is studied. Using the Melnikov method, the system’s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained. Using the Monte-Carlo and Runge-Kutta methods, the erosion of the safe basins is also discussed. The sudden change in the character of the stochastic safe basins when the bifurcation parameter of the system passes through a critical value may be defined as an alternative stochastic bifurcation. It is founded that random noise may destroy the integrity of the safe basins, bring forward the occurrence of the stochastic bifurcation, and make the parametric threshold for motions vary in a larger region, hence making the system become more unsafely and chaotic motions may occur more easily.

  18. A report on developing a checklist to assess company plans focused on improving safety awareness, safe behaviour and safety culture: final report

    NARCIS (Netherlands)

    Steijger, N.; Starren, H.; Keus, M.; Gort, J.; Vervoort, M.

    2003-01-01

    This report describes the process of developing a checklist to asses company plans focused on improving safety awareness, safe behaviour and safety culture. These plans are part of a programme initiated by the Ministry of Social Affairs and Employment aiming at improving the safety performance of

  19. Relationship of Imaging Frequency and Planning Margin to Account for Intrafraction Prostate Motion: Analysis Based on Real-Time Monitoring Data

    International Nuclear Information System (INIS)

    Curtis, William; Khan, Mohammad; Magnelli, Anthony; Stephans, Kevin; Tendulkar, Rahul; Xia, Ping

    2013-01-01

    Purpose: Correction for intrafraction prostate motion becomes important for hypofraction treatment of prostate cancer. The purpose of this study was to estimate an ideal planning margin to account for intrafraction prostate motion as a function of imaging and repositioning frequency in the absence of continuous prostate motion monitoring. Methods and Materials: For 31 patients receiving intensity modulated radiation therapy treatment, prostate positions sampled at 10 Hz during treatment using the Calypso system were analyzed. Using these data, we simulated multiple, less frequent imaging protocols, including intervals of every 10, 15, 20, 30, 45, 60, 90, 120, 180, and 240 seconds. For each imaging protocol, the prostate displacement at the imaging time was corrected by subtracting prostate shifts from the subsequent displacements in that fraction. Furthermore, we conducted a principal component analysis to quantify the direction of prostate motion. Results: Averaging histograms of every 240 and 60 seconds for all patients, vector displacements of the prostate were, respectively, within 3 and 2 mm for 95% of the treatment time. A vector margin of 1 mm achieved 91.2% coverage of the prostate with 30 second imaging. The principal component analysis for all fractions showed the largest variance in prostate position in the midsagittal plane at 54° from the anterior direction, indicating that anterosuperior to inferoposterior is the direction of greatest motion. The smallest prostate motion is in the left-right direction. Conclusions: The magnitudes of intrafraction prostate motion along the superior-inferior and anterior-posterior directions are comparable, and the smallest motion is in the left-right direction. In the absence of continuous prostate motion monitoring, and under ideal circumstances, 1-, 2-, and 3-mm vector planning margins require a respective imaging frequency of every 15, 60, and 240 to account for intrafraction prostate motion while achieving

  20. Prepare to protect: Operating and maintaining a tornado safe room.

    Science.gov (United States)

    Herseth, Andrew; Goldsmith-Grinspoon, Jennifer; Scott, Pataya

    2017-06-01

    Operating and maintaining a tornado safe room can be critical to the effective continuity of business operations because a firm's most valuable asset is its people. This paper describes aspects of operations and maintenance (O&M) for existing tornado safe rooms as well as a few planning and design aspects that affect the ultimate operation of a safe room for situations where a safe room is planned, but not yet constructed. The information is based on several Federal Emergency Management Agency safe room publications that provide guidance on emergency management and operations, as well as the design and construction of tornado safe rooms.

  1. Using Motion Planning to Determine the Existence of an Accessible Route in a CAD Environment

    Science.gov (United States)

    Pan, Xiaoshan; Han, Charles S.; Law, Kincho H.

    2010-01-01

    We describe an algorithm based on motion-planning techniques to determine the existence of an accessible route through a facility for a wheeled mobility device. The algorithm is based on LaValle's work on rapidly exploring random trees and is enhanced to take into consideration the particularities of the accessible route domain. Specifically, the…

  2. Safe and Sustainable Tall Buildings - State of the Art

    Directory of Open Access Journals (Sweden)

    Mendis P.

    2012-01-01

    Full Text Available Tall buildings are becoming very popular around the world. Asia will have most of the tall buildings in this century. Both safety and sustainability aspects are important in planning and designing these buildings. The design and construction of tall buildings present many challenges for the design team, from engineers, architect through to the builder. Although structural systems could be developed and construction solutions could be found to design and construct very tall buildings in excess of 1 km (even 1 mile, other aspects such as fire and egress, long-term movements, environmental wind and perception of motion (including damping for dynamic effects, transportation (lifts issues, sustainability, durability and maintenance will govern and may even restrict the heights. Current practices and important issues related to design of safe and sustainable design of tall buildings are discussed in this paper.

  3. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  4. Intelligent robot action planning

    Energy Technology Data Exchange (ETDEWEB)

    Vamos, T; Siegler, A

    1982-01-01

    Action planning methods used in intelligent robot control are discussed. Planning is accomplished through environment understanding, environment representation, task understanding and planning, motion analysis and man-machine communication. These fields are analysed in detail. The frames of an intelligent motion planning system are presented. Graphic simulation of the robot's environment and motion is used to support the planning. 14 references.

  5. LA SAFE and Isle de Jean Charles: Regional Adaptation and Community Resettlement Planning

    Science.gov (United States)

    Sanders, M.

    2017-12-01

    LA SAFE, or Louisiana's Strategic Adaptations for Future Environments, is a strategic framework for community development utilizing future projections of coastal land loss and flood risk as a determining factor in regional growth management and local planning initiatives along a 10, 25, and 50 year timeline. LA SAFE utilizes the input of passionate local citizen leaders and organizations committed to enabling community members to take proactive steps towards mitigating risk and increasing resilience against coastal issues. The project aims to acknowledge that adaptation and restoration must go hand-in-hand with addressing community growth and contraction, as well as realizing Louisiana's most vulnerable coastal communities will need to contemplate resettlement over the next 50 years. The project's outlook is to become a global leader for adaptation and cultural design and restoration. Connecting a global interest with the project and offering extensive ways for people to learn about the issues and get involved will provide an immense amount of support necessary for future coastal environments around the world. This presentation will focus on the output of a year-long planning effort across a six-parish target area encompassing several vulnerable coastal Louisiana locales. The Resettlement of Isle de Jean Charles is a federally-funded and first-of-its kind initiative marking Louisiana's first attempt to relocate a vulnerable coastal community at-scale and as a group. Due to a myriad of environmental factors, the Island has experienced 98 percent land loss since 1955, leading to many of the Island's historical inhabitants to retreat to higher, drier landscapes. In moving the community at-scale, the project seeks to inject new life into the community and its residents in relocating the community to higher, safer ground, while also developing the new community in such a way that it maximizes economic development, job training, and educational opportunities and can be a

  6. A motion-planning method for dexterous hand operating a tool based on bionic analysis

    Directory of Open Access Journals (Sweden)

    Wei Bo

    2017-01-01

    Full Text Available In order to meet the needs of robot’s operating tools for different types and sizes, the dexterous hand is studied by many scientific research institutions. However, the large number of joints in a dexterous hand leads to the difficulty of motion planning. Aiming at this problem, this paper proposes a planning method abased on BPNN inspired by human hands. Firstly, this paper analyses the structure and function of the human hand and summarizes its typical strategy of operation. Secondly, based on the manual operation strategy, the tools are classified according to the shape and the operation mode of the dexterous hand is presented. Thirdly, the BPNN is used to train the humanoid operation, and then output the operation plan. Finally, the simulating experiments of grasping simple tools and operating complex tools are made by MATLAB and ADAMS. The simulation verifies the effectiveness of this method.

  7. Initial experience with active breathing control of liver motion during ventilation

    International Nuclear Information System (INIS)

    Robertson, John M.; Sharpe, Michael B.; Jaffray, David A.; Wong, John W.

    1997-01-01

    Purpose: Recent evidence has shown that some patients with hepatic tumors can be safely irradiated to a dose well over twice the whole liver tolerance dose if portions of normal liver are spared. Correction during treatment planning for the ventilatory motion of the liver can add a large volume of normal liver to the planning target volume. Any reduction in ventilatory motion has the potential to allow a higher dose of radiation to be given safely. Active Breathing Control (ABC) can be used to temporarily stop the airflow to a patient, thus immobilizing the liver, at any part of a patient's ventilatory cycle. ABC during helical CT scanning can be used to study the full three dimensional motion of the liver and other abdominal organs during ventilation. Ultimately, if the use of ABC is found to be clinically feasible, tolerable for patients, and, most importantly, reproducible over time, then ABC may be used during radiation treatment. Materials and Methods: An ABC apparatus was constructed using a flow monitor and scissor valves on both the inhalation and exhalation paths to the patient. The patient breathed through either a mouthpiece or facemask during the procedure. The ventilatory cycle was displayed in real time. When a stable breathing pattern was observed, the ABC was activated at a specific lung volume, closing both scissors valves, and preventing ventilation. The length of time for comfortable activation of the ABC machine for the individual patient was determined during a teaching and practice period prior to CT scanning. Helical CT scans (slice thickness 0.5 cm) to assess the potential benefit of immobilizing breathing were obtained for normal breathing, end-inspiration and end-expiration. The reproducibility of ABC over time was assessed by repeating the end-inspiration scan both immediately and one week later. The contours of the liver and kidneys were entered for each study. Results: Five patients have undergone ABC study of the abdomen. End

  8. Lazy Toggle PRM: A single-query approach to motion planning

    KAUST Repository

    Denny, Jory

    2013-05-01

    Probabilistic RoadMaps (PRMs) are quite suc-cessful in solving complex and high-dimensional motion plan-ning problems. While particularly suited for multiple-query scenarios and expansive spaces, they lack efficiency in both solving single-query scenarios and mapping narrow spaces. Two PRM variants separately tackle these gaps. Lazy PRM reduces the computational cost of roadmap construction for single-query scenarios by delaying roadmap validation until query time. Toggle PRM is well suited for mapping narrow spaces by mapping both Cfree and Cobst, which gives certain theoretical benefits. However, fully validating the two resulting roadmaps can be costly. We present a strategy, Lazy Toggle PRM, for integrating these two approaches into a method which is both suited for narrow passages and efficient single-query calculations. This simultaneously addresses two challenges of PRMs. Like Lazy PRM, Lazy Toggle PRM delays validation of roadmaps until query time, but if no path is found, the algorithm augments the roadmap using the Toggle PRM methodology. We demonstrate the effectiveness of Lazy Toggle PRM in a wide range of scenarios, including those with narrow passages and high descriptive complexity (e.g., those described by many triangles), concluding that it is more effective than existing methods in solving difficult queries. © 2013 IEEE.

  9. Examining the predictive utility of an extended theory of planned behaviour model in the context of specific individual safe food-handling.

    Science.gov (United States)

    Mullan, Barbara; Allom, Vanessa; Sainsbury, Kirby; Monds, Lauren A

    2015-07-01

    In order to minimise the occurrence of food-borne illness, it is recommended that individuals perform safe food-handling behaviours, such as cooking food properly, cleaning hands and surfaces before preparing food, keeping food at the correct temperature, and avoiding unsafe foods. Previous research examining the determinants of safe food-handling behaviour has produced mixed results; however, this may be due to the fact that this research examined these behaviours as a totality, rather than considering the determinants of each behaviour separately. As such, the objective for the present study was to examine the predictors of the four aforementioned safe food-handling behaviours by applying an extended theory of planned behaviour to the prediction of each distinct behaviour. Participants were 170 students who completed theory of planned behaviour measures, with the addition of moral norm and habit strength at time 1, and behaviour measures one week later. While the influence of injunctive and descriptive norm and perceived behavioural control differed between behaviours, it appeared that moral norm was an important predictor of intention to engage in each of the four behaviours. Similarly, habit strength was an important predictor of each of the behaviours and moderated the relationship between intention and behaviour for the behaviour of avoiding unsafe food. The implication of these findings is that examining safe food-handling behaviours separately, rather than as a totality, may result in meaningful distinctions between the predictors of these behaviours. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. SU-F-T-337: Accounting for Patient Motion During Volumetric Modulated Ac Therapy (VMAT) Planning for Post Mastectomy Chest Wall Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M; Fontenot, J [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Heins, D [Louisiana State University, Baton Rouge, LA (United States)

    2016-06-15

    Purpose: To evaluate two dose optimization strategies for maintaining target volume coverage of inversely-planned post mastectomy radiotherapy (PMRT) plans during patient motion. Methods: Five patients previously treated with VMAT for PMRT at our clinical were randomly selected for this study. For each patient, two plan optimization strategies were compared. Plan 1 was optimized to a volume that included the physician’s planning target volume (PTV) plus an expansion up to 0.3 cm from the bolus surface. Plan 2 was optimized to the PTV plus an expansion up to 0.3 cm from the patient surface (i.e., not extending into the bolus). VMAT plans were optimized to deliver 95% of the prescription to 95% of the PTV while sparing organs at risk based on clinical dose limits. PTV coverage was then evaluated following the simulation of patient shifts by 1.0 cm in the anterior and posterior directions using the treatment planning system. Results: Posterior patient shifts produced a difference in D95% of around 11% in both planning approaches from the non-shifted dose distributions. Coverage of the medial and lateral borders of the evaluation volume was reduced in both the posteriorly shifted plans (Plan 1 and Plan 2). Anterior patient shifts affected Plan 2 more than Plan 1 with a difference in D95% of 1% for Plan 1 versus 6% for Plan 2 from the non-shifted dose distributions. The least variation in PTV dose homogeneity for both shifts was obtained with Plan 1. However, all posteriorly shifted plans failed to deliver 95% of the prescription to 95% of the PTV. Whereas, only a few anteriorly shifted plans failed this criteria. Conclusion: The results of this study suggest both planning volume methods are sensitive to patient motion, but that a PTV extended into a bolus volume is slightly more robust for anterior patient shifts.

  11. SU-F-T-337: Accounting for Patient Motion During Volumetric Modulated Ac Therapy (VMAT) Planning for Post Mastectomy Chest Wall Irradiation

    International Nuclear Information System (INIS)

    Hernandez, M; Fontenot, J; Heins, D

    2016-01-01

    Purpose: To evaluate two dose optimization strategies for maintaining target volume coverage of inversely-planned post mastectomy radiotherapy (PMRT) plans during patient motion. Methods: Five patients previously treated with VMAT for PMRT at our clinical were randomly selected for this study. For each patient, two plan optimization strategies were compared. Plan 1 was optimized to a volume that included the physician’s planning target volume (PTV) plus an expansion up to 0.3 cm from the bolus surface. Plan 2 was optimized to the PTV plus an expansion up to 0.3 cm from the patient surface (i.e., not extending into the bolus). VMAT plans were optimized to deliver 95% of the prescription to 95% of the PTV while sparing organs at risk based on clinical dose limits. PTV coverage was then evaluated following the simulation of patient shifts by 1.0 cm in the anterior and posterior directions using the treatment planning system. Results: Posterior patient shifts produced a difference in D95% of around 11% in both planning approaches from the non-shifted dose distributions. Coverage of the medial and lateral borders of the evaluation volume was reduced in both the posteriorly shifted plans (Plan 1 and Plan 2). Anterior patient shifts affected Plan 2 more than Plan 1 with a difference in D95% of 1% for Plan 1 versus 6% for Plan 2 from the non-shifted dose distributions. The least variation in PTV dose homogeneity for both shifts was obtained with Plan 1. However, all posteriorly shifted plans failed to deliver 95% of the prescription to 95% of the PTV. Whereas, only a few anteriorly shifted plans failed this criteria. Conclusion: The results of this study suggest both planning volume methods are sensitive to patient motion, but that a PTV extended into a bolus volume is slightly more robust for anterior patient shifts.

  12. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion?

    Science.gov (United States)

    Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara

    2018-01-01

    Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.

  13. 77 FR 24483 - Wausau Paper Mills, LLC; Notice of Final Land Management Plan and Soliciting Comments, Motions To...

    Science.gov (United States)

    2012-04-24

    ... Mills, LLC; Notice of Final Land Management Plan and Soliciting Comments, Motions To Intervene, and...: Wausau Paper Mills, LLC. e. Name of Project: Rhinelander Hydroelectric Project. f. Location: The upper.... Applicant Contact: Mr. Tim Hasbargen, Wausau Paper Mills, LLC, 515 Davenport St., Rhinelander, Wisconsin...

  14. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map.

    Science.gov (United States)

    Park, Wooram; Liu, Yan; Zhou, Yu; Moses, Matthew; Chirikjian, Gregory S

    2008-04-11

    A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.

  15. Bio-inspired motion planning algorithms for autonomous robots facilitating greater plasticity for security applications

    Science.gov (United States)

    Guo, Yi; Hohil, Myron; Desai, Sachi V.

    2007-10-01

    Proposed are techniques toward using collaborative robots for infrastructure security applications by utilizing them for mobile sensor suites. A vast number of critical facilities/technologies must be protected against unauthorized intruders. Employing a team of mobile robots working cooperatively can alleviate valuable human resources. Addressed are the technical challenges for multi-robot teams in security applications and the implementation of multi-robot motion planning algorithm based on the patrolling and threat response scenario. A neural network based methodology is exploited to plan a patrolling path with complete coverage. Also described is a proof-of-principle experimental setup with a group of Pioneer 3-AT and Centibot robots. A block diagram of the system integration of sensing and planning will illustrate the robot to robot interaction to operate as a collaborative unit. The proposed approach singular goal is to overcome the limits of previous approaches of robots in security applications and enabling systems to be deployed for autonomous operation in an unaltered environment providing access to an all encompassing sensor suite.

  16. Adaptive vehicle motion estimation and prediction

    Science.gov (United States)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  17. Planning, delivery, and quality assurance of treatment with dynamic multileaf collimator for prostate: a strategy for large scale implementation

    International Nuclear Information System (INIS)

    Burman, Chandra; Chen, Chui; Kutcher, Gerald; Leibel, Steven; Zelefsky, Michael; LoSasso, Thomas; Spirou, Spiridon; Wu Qiuwen; Stein, Jorge; Mohan, Radhe; Ling, C. Clifton; Fuks, Zvi

    1996-01-01

    Purpose: In an attempt to improve tumor control of patients treated for the adenocarcinoma of the prostate, we have implemented a technique to deliver a prescribed dose of 81 Gy. At such high doses, the surrounding normal organs such as the rectum, bladder, and femur impose challenging constraints. We present a method to plan and deliver intensity modulated fields with dynamic multileaf collimators (DMLCs) in an effort to meet the difficult constraints. While the planning technique which uses inverse planning has been described in the literature, safe delivery with DMLC is a new and challenging problem. We will describe in detail our procedures with the emphasis on the delivery problems and chosen solutions. Procedures for the quality assurance of DMLC will be described. Methods and Materials: Using a recently developed and modified inverse planning algorithm, we have developed a 5-field intensity modulated plan that is delivered using DMLC. The planner specifies the target, normal organs, and the desired doses for these tissues and for the overlap regions. The planning system designs the desired intensity profiles to meet the specified criteria. To deliver the dose DMLCs provide a practical and convenient method. A procedure has been developed for the dose delivery. A scheme has been designed to determine the leaf motion to produce the required intensity pattern based on the prescribed dose and the dose rate. In order to ensure that the dose is delivered as planned, we have instituted the following procedures: (1) verification of the aperture shape on a localization port film, (2) an additional dose calculation, which uses the delivered leaf motion, and compares the difference between the planned and delivered doses, (3) comparison of the machine log files, generated during the actual dose delivery, with the planned leaf motions, (4) comparison of the measured dose profile in a flat phantom with the calculated dose distribution using the prescribed treatment

  18. Motion induced interplay effects for VMAT radiotherapy

    Science.gov (United States)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-01

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin6 breathing motion in the superior–inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD98% and ΔD2%) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD98% and maximum ΔD2% being  ‑16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was

  19. Motion induced interplay effects for VMAT radiotherapy.

    Science.gov (United States)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-19

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin 6 breathing motion in the superior-inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD 98% and ΔD 2% ) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD 98% and maximum ΔD 2% being  -16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was

  20. Task and Motion Planning for Selective Weed Conrol using a Team of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; la Cour-Harbo, Anders; Hansen, Karl Damkjær

    2014-01-01

    with the right amount. In this article, a task and motion planning for a team of autonomous vehicles to reduce chemicals in farming is presented. Field data are collected by small unmanned helicopters equipped with a range of sensors, including multispectral and thermal cameras. Data collected are transmitted...... to a ground station to be analyzed and triggers aerial and ground-based vehicles to start close inspection and/or plant/weed treatment in specified areas. A complete trajectory is generated to enable ground-based vehicle to visit infested areas and start chemical/mechanical weed treatment....

  1. Effective and Safe Ships

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Amdahl, Jørgen; Rutgersson, Olle

    1996-01-01

    A Joint Nordic Research project "Effecive and Safe Ships" is presented. The project is aiming to develop methods and tools for quantitative evaluation fo ship safety. This report is the report of the preliminary phase where the plan for the main project is developed. The objectives of the project...

  2. A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy.

    Science.gov (United States)

    Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah

    2017-12-01

    External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Passivity-based model predictive control for mobile vehicle motion planning

    CERN Document Server

    Tahirovic, Adnan

    2013-01-01

    Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and  • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimi...

  4. Inter-fraction variations in respiratory motion models

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J R; Modat, M; Ourselin, S; Hawkes, D J [Centre for Medical Image Computing, University College London (United Kingdom); Hughes, S; Qureshi, A; Ahmad, S; Landau, D B, E-mail: j.mcclelland@cs.ucl.ac.uk [Department of Oncology, Guy' s and St Thomas' s Hospitals NHS Trust, London (United Kingdom)

    2011-01-07

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  5. Parallel autonomy in automated vehicles : Safe motion generation with minimal intervention

    NARCIS (Netherlands)

    Schwarting, Wilko; Alonso Mora, J.; Pauli, Liam; Karaman, Sertac; Rus, Daniela; Chen, I-Ming; Nakamura, Yoshihiko

    2017-01-01

    Current state-of-the-art vehicle safety systems, such as assistive braking or automatic lane following, are still only able to help in relatively simple driving situations. We introduce a Parallel Autonomy shared-control framework that produces safe trajectories based on human inputs even in much

  6. PET Motion Compensation for Radiation Therapy Using a CT-Based Mid-Position Motion Model: Methodology and Clinical Evaluation

    International Nuclear Information System (INIS)

    Kruis, Matthijs F.; Kamer, Jeroen B. van de; Houweling, Antonetta C.; Sonke, Jan-Jakob; Belderbos, José S.A.; Herk, Marcel van

    2013-01-01

    Purpose: Four-dimensional positron emission tomography (4D PET) imaging of the thorax produces sharper images with reduced motion artifacts. Current radiation therapy planning systems, however, do not facilitate 4D plan optimization. When images are acquired in a 2-minute time slot, the signal-to-noise ratio of each 4D frame is low, compromising image quality. The purpose of this study was to implement and evaluate the construction of mid-position 3D PET scans, with motion compensated using a 4D computed tomography (CT)-derived motion model. Methods and Materials: All voxels of 4D PET were registered to the time-averaged position by using a motion model derived from the 4D CT frames. After the registration the scans were summed, resulting in a motion-compensated 3D mid-position PET scan. The method was tested with a phantom dataset as well as data from 27 lung cancer patients. Results: PET motion compensation using a CT-based motion model improved image quality of both phantoms and patients in terms of increased maximum SUV (SUV max ) values and decreased apparent volumes. In homogenous phantom data, a strong relationship was found between the amplitude-to-diameter ratio and the effects of the method. In heterogeneous patient data, the effect correlated better with the motion amplitude. In case of large amplitudes, motion compensation may increase SUV max up to 25% and reduce the diameter of the 50% SUV max volume by 10%. Conclusions: 4D CT-based motion-compensated mid-position PET scans provide improved quantitative data in terms of uptake values and volumes at the time-averaged position, thereby facilitating more accurate radiation therapy treatment planning of pulmonary lesions

  7. PlanJury: probabilistic plan evaluation revisited

    Science.gov (United States)

    Witte, M.; Sonke, J.-J.; van Herk, M.

    2014-03-01

    Purpose: Over a decade ago, the 'Van Herk margin recipe paper' introduced plan evaluation through DVH statistics based on population distributions of systematic and random errors. We extended this work for structures with correlated uncertainties (e.g. lymph nodes or parotid glands), and considered treatment plans containing multiple (overlapping) dose distributions (e.g. conventional lymph node and hypo-fractionated tumor doses) for which different image guidance protocols may lead to correlated errors. Methods: A command-line software tool 'PlanJury' was developed which reads 3D dose and structure data exported from a treatment planning system. Uncertainties are specified by standard deviations and correlation coefficients. Parameters control the DVH statistics to be computed: e.g. the probability of reaching a DVH constraint, or the dose absorbed at given confidence in a (combined) volume. Code was written in C++ and parallelized using OpenMP. Testing geometries were constructed using idealized spherical volumes and dose distributions. Results: Negligible stochastic noise could be attained within two minutes computation time for a single target. The confidence to properly cover both of two targets was 90% for two synchronously moving targets, but decreased by 7% if the targets moved independently. For two partially covered organs at risk the confidence of at least one organ below the mean dose threshold was 40% for synchronous motion, 36% for uncorrelated motion, but only 20% for either of the organs separately. Two abutting dose distributions ensuring 91% confidence of proper target dose for correlated motions led to 28% lower confidence for uncorrelated motions as relative displacements between the doses resulted in cold spots near the target. Conclusions: Probabilistic plan evaluation can efficiently be performed for complicated treatment planning situations, thus providing important plan quality information unavailable in conventional PTV based evaluations.

  8. Visual Motion Perception

    Science.gov (United States)

    1991-08-15

    displace- ment limit for motion in random dots," Vision Res., 24, 293-300. Pantie , A. & K. Turano (1986) "Direct comparisons of apparent motions...Hicks & AJ, Pantie (1978) "Apparent movement of successively generated subjec. uve figures," Perception, 7, 371-383. Ramachandran. V.S. & S.M. Anstis...thanks think deaf girl until world uncle flag home talk finish short thee our screwdiver sonry flower wrCstlir~g plan week wait accident guilty tree

  9. Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Beth Leigh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    The common theme of this dissertation is sampling-based motion planning with the two key contributions being in the area of replanning and spatial load balancing for robotic systems. Here, we begin by recalling two sampling-based motion planners: the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptotically optimal probabilistic roadmap (PRM*). We also provide a brief background on collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm. The next four chapters detail novel contributions for motion replanning in environments with unexpected static obstacles, for multi-agent collision avoidance, and spatial load balancing. First, we show improved performance of the RRT* when using the proposed Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal Tree algorithm for replanning with unexpected static obstacles is detailed and proven to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle environments is approached via the RRT*, leading to the novel Sampling-Based Collision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee collision free trajectories for all of the agents, even when subject to uncertainties in the knowledge of the other agents’ positions and velocities. Given that a solution exists, we prove that livelocks and deadlock will lead to the cost to the goal being decreased. We introduce a new deconfliction maneuver that decreases the cost-to-come at each step. This new maneuver removes the possibility of livelocks and allows a result to be formed that proves convergence to the goal configurations. Finally, we present a limited range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a non-convex space among multiple agents that are subject to differential constraints and have a limited travel distance. The GSLB is proven to converge to a solution when maximizing the area covered by the agents. The analysis

  10. Curiosity driven reinforcement learning for motion planning on humanoids

    Science.gov (United States)

    Frank, Mikhail; Leitner, Jürgen; Stollenga, Marijn; Förster, Alexander; Schmidhuber, Jürgen

    2014-01-01

    Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub while respecting constraints, and a high-level curious agent, which explores the iCub's state-action space through information gain maximization, learning a world model from experience, controlling the actual iCub hardware in real-time. To the best of our knowledge, this is the first ever embodied, curious agent for real-time motion planning on a humanoid. We demonstrate that it can learn compact Markov models to represent large regions of the iCub's configuration space, and that the iCub explores intelligently, showing interest in its physical constraints as well as in objects it finds in its environment. PMID:24432001

  11. Quantifying motion for pancreatic radiotherapy margin calculation

    International Nuclear Information System (INIS)

    Whitfield, Gillian; Jain, Pooja; Green, Melanie; Watkins, Gillian; Henry, Ann; Stratford, Julie; Amer, Ali; Marchant, Thomas; Moore, Christopher; Price, Patricia

    2012-01-01

    Background and purpose: Pancreatic radiotherapy (RT) is limited by uncertain target motion. We quantified 3D patient/organ motion during pancreatic RT and calculated required treatment margins. Materials and methods: Cone-beam computed tomography (CBCT) and orthogonal fluoroscopy images were acquired post-RT delivery from 13 patients with locally advanced pancreatic cancer. Bony setup errors were calculated from CBCT. Inter- and intra-fraction fiducial (clip/seed/stent) motion was determined from CBCT projections and orthogonal fluoroscopy. Results: Using an off-line CBCT correction protocol, systematic (random) setup errors were 2.4 (3.2), 2.0 (1.7) and 3.2 (3.6) mm laterally (left–right), vertically (anterior–posterior) and longitudinally (cranio-caudal), respectively. Fiducial motion varied substantially. Random inter-fractional changes in mean fiducial position were 2.0, 1.6 and 2.6 mm; 95% of intra-fractional peak-to-peak fiducial motion was up to 6.7, 10.1 and 20.6 mm, respectively. Calculated clinical to planning target volume (CTV–PTV) margins were 1.4 cm laterally, 1.4 cm vertically and 3.0 cm longitudinally for 3D conformal RT, reduced to 0.9, 1.0 and 1.8 cm, respectively, if using 4D planning and online setup correction. Conclusions: Commonly used CTV–PTV margins may inadequately account for target motion during pancreatic RT. Our results indicate better immobilisation, individualised allowance for respiratory motion, online setup error correction and 4D planning would improve targeting.

  12. Magnetic Resonance Imaging Assessment of Spinal Cord and Cauda Equina Motion in Supine Patients With Spinal Metastases Planned for Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chia-Lin [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Sussman, Marshall S. [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Atenafu, Eshetu G. [Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, California (United States); Soliman, Hany; Thibault, Isabelle [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Cho, B. C. John; Simeonov, Anna [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Yu, Eugene [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Fehlings, Michael G. [Department of Neurosurgery and Spine Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada)

    2015-04-01

    Purpose: To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. Methods and Materials: We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motion (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. Results: In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. Conclusions: Oscillatory CNT motion was observed to be relatively minor. Our results

  13. Adaptive local learning in sampling based motion planning for protein folding.

    Science.gov (United States)

    Ekenna, Chinwe; Thomas, Shawna; Amato, Nancy M

    2016-08-01

    Simulating protein folding motions is an important problem in computational biology. Motion planning algorithms, such as Probabilistic Roadmap Methods, have been successful in modeling the folding landscape. Probabilistic Roadmap Methods and variants contain several phases (i.e., sampling, connection, and path extraction). Most of the time is spent in the connection phase and selecting which variant to employ is a difficult task. Global machine learning has been applied to the connection phase but is inefficient in situations with varying topology, such as those typical of folding landscapes. We develop a local learning algorithm that exploits the past performance of methods within the neighborhood of the current connection attempts as a basis for learning. It is sensitive not only to different types of landscapes but also to differing regions in the landscape itself, removing the need to explicitly partition the landscape. We perform experiments on 23 proteins of varying secondary structure makeup with 52-114 residues. We compare the success rate when using our methods and other methods. We demonstrate a clear need for learning (i.e., only learning methods were able to validate against all available experimental data) and show that local learning is superior to global learning producing, in many cases, significantly higher quality results than the other methods. We present an algorithm that uses local learning to select appropriate connection methods in the context of roadmap construction for protein folding. Our method removes the burden of deciding which method to use, leverages the strengths of the individual input methods, and it is extendable to include other future connection methods.

  14. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X

    2014-01-01

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method

  15. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-15

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method.

  16. Compliant Task Execution and Learning for Safe Mixed-Initiative Human-Robot Operations

    Science.gov (United States)

    Dong, Shuonan; Conrad, Patrick R.; Shah, Julie A.; Williams, Brian C.; Mittman, David S.; Ingham, Michel D.; Verma, Vandana

    2011-01-01

    We introduce a novel task execution capability that enhances the ability of in-situ crew members to function independently from Earth by enabling safe and efficient interaction with automated systems. This task execution capability provides the ability to (1) map goal-directed commands from humans into safe, compliant, automated actions, (2) quickly and safely respond to human commands and actions during task execution, and (3) specify complex motions through teaching by demonstration. Our results are applicable to future surface robotic systems, and we have demonstrated these capabilities on JPL's All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robot.

  17. Guidelines for respiratory motion management in radiation therapy

    International Nuclear Information System (INIS)

    Matsuo, Yukinori; Onishi, Hiroshi; Nakagawa, Keiichi

    2013-01-01

    Respiratory motion management (RMM) systems in external and stereotactic radiotherapies have been developed in the past two decades. Japanese medical service fee regulations introduced reimbursement for RMM from April 2012. Based on thorough discussions among the four academic societies concerned, these Guidelines have been developed to enable staff (radiation oncologists, radiological technologists, medical physicists, radiotherapy quality managers, radiation oncology nurses, and others) to apply RMM to radiation therapy for tumors subject to respiratory motion, safely and appropriately. (author)

  18. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The ''Tank Farm Restoration and Safe Operations'' (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization's waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ''Test and Evaluation,'' which is derived from DOE Order 430.1, ''Life Cycle Asset Management.'' It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  19. Trajectory Planning and Walking Pattern Generation of Humanoid Robot Motion

    Directory of Open Access Journals (Sweden)

    Saeed Abdolshah

    2014-12-01

    Full Text Available Walking trajectory generation for a humanoid robot is a challenging control  issue. In this paper, a walking cycle has been recognized considering human motion, and nine simple steps were distinguished in a full step of walking which form motion trajectory, and generates a simplified ZMP motion formulation. This system was used in humanoid robot simulation motion and is achievable easily in walking steps of robot. A minimum DOFs humanoid robot has been considered and geometrical relationships between the robot links were presented by the Denavit-Hartenberg method. The inverse kinematics equations have been solved regarding to extracted ZMP trajectory formula, and constraints in different steps. As a result; angular velocity, acceleration and power of motors were obtained using the relationships and Jacobin. At each step, extracted data were applied on simulated robot in Matlab, and Visual Nastran software. Zero moment point trajectory was evaluated in simulation environment.

  20. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods

    International Nuclear Information System (INIS)

    Beltran, Chris; Herman, Michael G.; Davis, Brian J.

    2008-01-01

    Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the four daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction

  1. Direct aperture optimization of breast IMRT and the dosimetric impact of respiration motion

    International Nuclear Information System (INIS)

    Zhang Guowei; Jiang Ziping; Shepard, David; Zhang Bin; Yu, Cedric

    2006-01-01

    We have studied the application of direct aperture optimization (DAO) as an inverse planning tool for breast IMRT. Additionally, we have analysed the impact of respiratory motion on the quality of the delivered dose distribution. From this analysis, we have developed guidelines for balancing the desire for a high-quality optimized plan with the need to create a plan that will not degrade significantly in the presence of respiratory motion. For a DAO optimized breast IMRT plan, the tangential fields incorporate a flash field to cover the range of respiratory motion. The inverse planning algorithm then optimizes the shapes and weights of additional segments that are delivered in combination with the open fields. IMRT plans were generated using DAO with the relative weights of the open segments varied from 0% to 95%. To assess the impact of breathing motion, the dose distribution for the optimized IMRT plan was recalculated with the isocentre sampled from a predefined distribution in a Monte Carlo convolution/superposition dose engine with the breast simulated as a rigid object. The motion amplitudes applied in this study ranged from 0.5 to 2.0 cm. For a range of weighting levels assigned to the open field, comparisons were made between the static plans and the plans recalculated with motion. For the static plans, we found that uniform dose distributions could be generated with relative weights for the open segments equal to and below 80% and unacceptable levels of underdosage were observed with the weights larger than 80%. When simulated breathing motion was incorporated into the dose calculation, we observed a loss in dose uniformity as the weight of the open field was decreased to below 65%. More quantitatively, for each 1% decrease in the weight, the per cent volume of the target covered by at least 95% of the prescribed dose decreased by approximately 0.10% and 0.16% for motion amplitudes equal to 1.5 cm and 2.0 cm, respectively. When taking into account the

  2. Behavior-based evacuation planning

    KAUST Repository

    Rodriguez, Samuel

    2010-05-01

    In this work, we present a formulation of an evacuation planning problem that is inspired by motion planning and describe an integrated behavioral agent-based and roadmap-based motion planning approach to solve it. Our formulation allows users to test the effect on evacuation of a number of different environmental factors. One of our main focuses is to provide a mechanism to investigate how the interaction between agents influences the resulting evacuation plans. Specifically, we explore how various types of control provided by a set of directing agents effects the overall evacuation planning strategies of the evacuating agents. ©2010 IEEE.

  3. Behavior-based evacuation planning

    KAUST Repository

    Rodriguez, Samuel; Amato, Nancy M

    2010-01-01

    In this work, we present a formulation of an evacuation planning problem that is inspired by motion planning and describe an integrated behavioral agent-based and roadmap-based motion planning approach to solve it. Our formulation allows users to test the effect on evacuation of a number of different environmental factors. One of our main focuses is to provide a mechanism to investigate how the interaction between agents influences the resulting evacuation plans. Specifically, we explore how various types of control provided by a set of directing agents effects the overall evacuation planning strategies of the evacuating agents. ©2010 IEEE.

  4. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  5. Impact of the planning CT scan time on the reflection of the lung tumor motion

    International Nuclear Information System (INIS)

    Kim, Su San; Choi, Eun Kyung; Yi, Byong Yong; Ha, Sung Whan

    2004-01-01

    To evaluate the reflection of tumor motion according to the planning CT scan time. A model of N-shape, which moved along the longitudinal axis during the ventilation caused by a mechanical ventilator, was produced. The model was scanned by planning CT, while setting the relative CT scan time (T; CT scan time/ventilatory period) to 0.33, 0.50, 0.67, 0.75, 1.00, 1.33 T, and 1.53 T. In addition, three patients with non-small cell lung cancer who received stereotactic radiosurgery in the Department of Radiation Oncology, Asan Medical Center from 03/19/2002 to 05/21/2002 were scanned. Slow (IQ Premier, Picker, scan time 2.0 seconds per slice) and fast CT scans (Light Speed, GE Medical System, with a scan time of 0.8 second per slice) were performed for each patient. The magnitude of reflected movement of the N-shaped model was evaluated by measuring the transverse length, which reflected the movement of the declined bar of the model at each slice. For patients' scans, all CT data sets were registered using a stereotactic body frame scale with the gross tumor volumes delineated in one CT image set. The volume and three-dimensional diameter of the gross tumor volume were measured and analyzed between the slow and fast CT scans. The reflection degree of longitudinal movement of the model increased in proportion to the relative CT scan times below 1.00 T, but remained constant above 1.00 T. Assuming the mean value of scanned transverse lengths with CT scan time 1.00 T to be 100%, CT scans with scan times of 0.33, 0.50, 0.67, and 0.75 T missed the tumor motion by 30, 27, 20, and 7.0% respectively. Slow (scan time 2.0 sec) and Fast (scan time 0.8 sec) CT scans of three patients with longitudinal movement of 3, 5, and 10 mm measured by fluoroscopy revealed the increases in the diameter along the longitudinal axis increased by 6.3, 17, and 23% in the slow CT scans. As the relative CT scan time increased, the reflection of the respiratory tumor movement on planning CT also

  6. Optimum motion track planning for avoiding obstacles

    International Nuclear Information System (INIS)

    Attia, A.A.A

    2008-01-01

    A genetic algorithm (GA) is a stochastic search and optimization technique based on the mechanism of natural selection. A population of candidate solutions (Chromosomes) is held and interacts over a number of iterations (Generations) to produce better solutions. In canonical GA, the chromosomes are encoded as binary strings. Driving the process is the fitness of the chromosomes, which relates the quality of a candidate in quantitative terms. The fitness function encapsulates the problem- specific knowledge. The fitness is used in a stochastic selection of pairs of chromosomes which are 'reproduced' to generate new solution strings. Reproduction involves crossover, which generates new children by combining chromosomes in a process which swaps portions of each others genes. The other reproduction operator is called mutation. Mutation randomly changes genes and is used to introduce new information into the search. Both crossover and mutation make heavy use of random numbers.The aim of this thesis is to investigate the H/W implementation of genetic algorithm based motion path planning of robot. The potential benefit of using genetic algorithm hardware is that it allows both the huge parallelism which is suited to random number generation, crossover, mutation and fitness evaluation. For many real-world applications, GA can run for days, even when it is executed on a high performance workstation. According to the extensive computation of GA, it follows that hardware-based GA has been put forward. There are aspects of GA approach attract H/W implementation. The operation of selection and reproduction are basically problem independent and involve basic string manipulation tasks. These can be achieved by logical circuits.The fitness evaluation task, which is problem dependent, however proves a major difficulty in H/W implementation. Another difficulty comes from that designs can only be used for the individual problem their fitness function represents. Therefore, in this

  7. Patient Involvement in Safe Delivery: A Qualitative Study

    OpenAIRE

    Olfati, Forozun; Asefzadeh, Saeid; Changizi, Nasrin; Keramat, Afsaneh; Yunesian, Masud

    2015-01-01

    Introduction: Patient involvement in safe delivery planning is considered important yet not widely practiced. The present study aimed at identifythe factors that affect patient involvementin safe delivery, as recommended by parturient women. Methods: This study was part of a qualitative research conducted by content analysis method and purposive sampling in 2013. The data were collected through 63 semi-structured interviews in4 hospitalsand analyzed using thematic content analysis. The partic...

  8. Feasibility of four-dimensional conformal planning for robotic radiosurgery

    International Nuclear Information System (INIS)

    Schlaefer, A.; Fisseler, J.; Dieterich, S.; Shiomi, H.; Cleary, K.; Schweikard, A.

    2005-01-01

    Organ motion can have a severe impact on the dose delivered by radiation therapy, and different procedures have been developed to address its effects. Conventional techniques include breath hold methods and gating. A different approach is the compensation for target motion by moving the treatment beams synchronously. Practical results have been reported for robot based radiosurgery, where a linear accelerator mounted on a robotic arm delivers the dose. However, not all organs move in the same way, which results in a relative motion of the beams with respect to the body and the tissues in the proximity of the tumor. This relative motion can severely effect the dose delivered to critical structures. We propose a method to incorporate motion in the treatment planning for robotic radiosurgery to avoid potential overdosing of organs surrounding the target. The method takes into account the motion of all considered volumes, which is discretized for dose calculations. Similarly, the beam motion is taken into account and the aggregated dose coefficient over all discrete steps is used for planning. We simulated the treatment of a moving target with three different planning methods. First, we computed beam weights based on a 3D planning situation and simulated treatment with organ motion and the beams moving synchronously to the target. Second, beam weights were computed by the 4D planning method incorporating the organ and beam motion and treatment was simulated for beams moving synchronously to the target. Third, the beam weights were determined by the 4D planning method with the beams fixed during planning and simulation. For comparison we also give results for the 3D treatment plan if there was no organ motion and when the plan is delivered by fixed beams in the presence of organ motion. The results indicate that the new 4D method is preferable and can further improve the overall conformality of motion compensated robotic radiosurgery

  9. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    Science.gov (United States)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  10. Fast Numerical Simulation of Focused Ultrasound Treatments During Respiratory Motion With Discontinuous Motion Boundaries.

    Science.gov (United States)

    Schwenke, Michael; Georgii, Joachim; Preusser, Tobias

    2017-07-01

    Focused ultrasound (FUS) is rapidly gaining clinical acceptance for several target tissues in the human body. Yet, treating liver targets is not clinically applied due to a high complexity of the procedure (noninvasiveness, target motion, complex anatomy, blood cooling effects, shielding by ribs, and limited image-based monitoring). To reduce the complexity, numerical FUS simulations can be utilized for both treatment planning and execution. These use-cases demand highly accurate and computationally efficient simulations. We propose a numerical method for the simulation of abdominal FUS treatments during respiratory motion of the organs and target. Especially, a novel approach is proposed to simulate the heating during motion by solving Pennes' bioheat equation in a computational reference space, i.e., the equation is mathematically transformed to the reference. The approach allows for motion discontinuities, e.g., the sliding of the liver along the abdominal wall. Implementing the solver completely on the graphics processing unit and combining it with an atlas-based ultrasound simulation approach yields a simulation performance faster than real time (less than 50-s computing time for 100 s of treatment time) on a modern off-the-shelf laptop. The simulation method is incorporated into a treatment planning demonstration application that allows to simulate real patient cases including respiratory motion. The high performance of the presented simulation method opens the door to clinical applications. The methods bear the potential to enable the application of FUS for moving organs.

  11. Simulation of respiratory motion during IMRT dose delivery

    International Nuclear Information System (INIS)

    Mohn, Silje; Wasboe, Ellen

    2011-01-01

    Background. When intensity modulated radiation therapy (IMRT) is realised with dynamic multi-leaf collimators (MLC) and given under respiratory motion, dosimetric errors may occur. These errors are a consequence of the dose blurring and the interplay between the organ motion and the leaf motion. In the present study, a model for evaluating these dosimetric effects for patient-specific cases has been developed and tested. Material and methods. In the purpose written software, three dimensional (3D) dose distributions can be calculated both with and without a generated breathing cycle. To validate the presented model and illustrate its application, periodic breathing cycles were generated, where the starting phase was set randomly for each field during the calculations. Respiration in the anterior-posterior (AP), superior-inferior (SI) and left-right (LR) direction was tested and verified. To illustrate the application of the presented model, two 5-fields IMRT plans with different complexity were calculated with a 2 cm peak-to-peak motion in the AP direction for one fraction and for 25 fractions. Results. The results showed that the calculation method is of good accuracy, in particular for IMRT plans consisting of several fields, where 97% of the pixels within the body fulfilled a tolerance set to 4% dose difference and 4 mm distance to agreement (DTA). For the two IMRT plans with different complexity, pronounced respiratory induced dose errors, which increased with increasing complexity, were found for both one fraction and 25 fractions, but due to the random stating phase the interplay effect was considerably reduced for the plans consisting of 25 fractions. This illustrates how the dosimetric effects will vary depending on the dose plan and on the number of fractions investigated. Conclusion. For patient specific cases, the model can with good accuracy calculate 3D dose distributions both with and without respiratory motion, and evaluate the dosimetric effects

  12. 76 FR 30495 - National Safe Boating Week, 2011

    Science.gov (United States)

    2011-05-25

    ... precautions and sensible behavior when spending time on the water. Safe boating is responsible boating. Individuals can prepare for excursions by taking boating safety courses and filing float plans with family...

  13. Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill

    Directory of Open Access Journals (Sweden)

    Jonghyun Kim

    2015-09-01

    Full Text Available Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject’s intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping.

  14. Safe Grid

    Science.gov (United States)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  15. Comparison of dosimetry distribution between three-dimension conformal and intensity modulated plan integrated with breath motion in postoperative radiation of gastric cancer

    International Nuclear Information System (INIS)

    Sun Wenjie; Zhang Zhen; Hu Weigang; Gu Weilie; Zhu Ji; Li Guichao; Cai Gang; Ma Xuejun

    2010-01-01

    Objective: To compare the dose distribution of the target and normal tissues in gastric cancers between three-dimension conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) plan when respiratory motion factors integrated in the plan. Methods: From January 2005 to November 2006, 10 patients with post-operatively radiation of gastric cancer were enrolled in this study. Planning CT were acquired conventionally with free-breath mode and the static treatment plans of the 3DCRT and IMRT were designed respectively. Probability distribution functions (PDF) were generated and convoluted with the static dose distributions from 3DCRT and IMRT plans to obtain the integrated plans. The dose distributions of the target and normal tissues were compared between 3DCRT and IMRT integration treatment plans, such as V 45 of clinical target volume, V 40 of liver and V 15 , V 18 of left and right kidney. Results: In the respiratory integrated treatment planning, the target volume coverage and homogeneity with IMRT are superior to those with 3DCRT ((V 45 98% : 87% (t = -3.35, P =0.010), mean dose 46.81 Gy ±0.75 Gy : 45.99 Gy ± 1.12 Gy (t = -0.31, P=0.020)). The V 40 of the liver in IMRT are smaller than those in 3DCRT ( 12% : 16%; t=3.75, P=0.010). For the left kidney, the V 15 and V 18 in IMRT are smaller than those in 3DCRT ((34% : 50% (t = 2.17, P = 0.050) and 27% : 46% (t = 3.11, P = 0.020) ),but for the right kidney, V 15 and V 18 in 3DCRT are smaller than those in IMRT ((15% : 21% (t = - 2.42, P=0.040) and 11% : 15% (t= -2.71, P=0.030)). Conclusions: When respiratory motion factor integrated in the treatment plan, IMRT showed advantage both in target coverage and normal tissue sparing in the high dose region of liver and left kidney. (authors)

  16. The safe home project.

    Science.gov (United States)

    Arphorn, Sara; Jiraniratisai, Sopaphan; Rungtakul, Rungsri; Phutta, Nikom

    2011-12-01

    The Thai Health Promotion Foundation supported the Improvement of Quality of Life of Informal Workers project in Ban Luang District, Amphur Photaram, Ratchaburi Province. There were many informal workers in Ban Luang District. Sweet-crispy fish producers in Ban Luang were the largest group among the sweet-crispy fish producers in Thailand. This project was aimed at improving living and working conditions of informal workers, with a focus on the sweet-crispy fish group. Good practices of improved living and working conditions were used to help informal workers build safe, healthy and productive work environments. These informal workers often worked in substandard conditions and were exposed to various hazards in the working area. These hazards included risk of exposure to hot work environment, ergonomics-related injuries, chemical hazards, electrical hazards etc. Ergonomics problems were commonly in the sweet-crispy fish group. Unnatural postures such as prolonged sitting were performed dominantly. One hundred and fifty informal workers participated in this project. Occupational health volunteers were selected to encourage occupational health and safety in four groups of informal workers in 2009. The occupational health volunteers trained in 2008 were farmers, beauty salon workers and doll makers. The occupational health and safety knowledge is extended to a new informal worker group: sweet-crispy fish producer, in 2009. The occupational health and safety training for sweet-crispy fish group is conducted by occupational health volunteers. The occupational health volunteers increased their skills and knowledge assist in to make safe home and safe community through participatory oriented training. The improvement of living and working condition is conducted by using a modified WISH, Work Improvement for Safe Home, checklist. The plans of improvement were recorded. The informal workers showed improvement mostly on material handling and storage. The safe uses and safe

  17. Planned hospital birth versus planned home birth

    DEFF Research Database (Denmark)

    Olsen, O.; Clausen, J.A.

    2012-01-01

    Observational studies of increasingly better quality and in different settings suggest that planned home birth in many places can be as safe as planned hospital birth and with less intervention and fewer complications. This is an update of a Cochrane review first published in 1998....

  18. School Counselors: Untapped Resources for Safe Schools.

    Science.gov (United States)

    Callahan, Connie J.

    2000-01-01

    Principals should consider redirecting school counselors' responsibilities to include directing safe-school teams; establishing networks to identify at-risk students and violent behavior signs; developing conflict-resolution activities; assessing and counseling misbehaving students; devising crisis- management plans; and helping staff predict and…

  19. Motion planning and synchronized control of the dental arch generator of the tooth-arrangement robot.

    Science.gov (United States)

    Jiang, Jin-Gang; Zhang, Yong-De

    2013-03-01

    The traditional, manual method of reproducing the dental arch form is prone to numerous random errors caused by human factors. The purpose of this study was to investigate the automatic acquisition of the dental arch and implement the motion planning and synchronized control of the dental arch generator of the multi-manipulator tooth-arrangement robot for use in full denture manufacture. First, the mathematical model of the dental arch generator was derived. Then the kinematics and control point position of the dental arch generator of the tooth arrangement robot were calculated and motion planning of each control point was analysed. A hardware control scheme is presented, based on the industrial personal computer and control card PC6401. In order to gain single-axis, precise control of the dental arch generator, we studied the control pulse realization of high-resolution timing. Real-time, closed-loop, synchronous control was applied to the dental arch generator. Experimental control of the dental arch generator and preliminary tooth arrangement were gained by using the multi-manipulator tooth-arrangement robotic system. The dental arch generator can automatically generate a dental arch to fit a patient according to the patient's arch parameters. Repeated positioning accuracy is 0.12 mm for the slipways that drive the dental arch generator. The maximum value of single-point error is 1.83 mm, while the arc-width direction (x axis) is -33.29 mm. A novel system that generates the dental arch has been developed. The traditional method of manually determining the dental arch may soon be replaced by a robot to assist in generating a more individual dental arch. The system can be used to fabricate full dentures and bend orthodontic wires. Copyright © 2012 John Wiley & Sons, Ltd.

  20. First online real-time evaluation of motion-induced 4D dose errors during radiotherapy delivery

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Skouboe, Simon; Hansen, Rune

    2018-01-01

    PURPOSE: In radiotherapy, dose deficits caused by tumor motion often far outweigh the discrepancies typically allowed in plan-specific quality assurance (QA). Yet, tumor motion is not usually included in present QA. We here present a novel method for online treatment verification by real......-time motion-including 4D dose reconstruction and dose evaluation and demonstrate its use during stereotactic body radiotherapy (SBRT) delivery with and without MLC tracking. METHODS: Five volumetric modulated arc therapy (VMAT) plans were delivered with and without MLC tracking to a motion stage carrying...... a Delta4 dosimeter. The VMAT plans have previously been used for (non-tracking) liver SBRT with intra-treatment tumor motion recorded by kilovoltage intrafraction monitoring (KIM). The motion stage reproduced the KIM-measured tumor motions in 3D while optical monitoring guided the MLC tracking. Linac...

  1. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Price, A; Chang, S; Matney, J; Wang, A; Lian, J [University of North Carolina, Chapel Hill, NC (United States); Chao, E [Accuray Incorporated, Madison, WI (United States)

    2016-06-15

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.

  2. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    International Nuclear Information System (INIS)

    Price, A; Chang, S; Matney, J; Wang, A; Lian, J; Chao, E

    2016-01-01

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.

  3. An application of a theory of planned behaviour to determine the association between behavioural intentions and safe road-crossing in college students: perspective from Isfahan, Iran.

    Science.gov (United States)

    Jalilian, Mohsen; Mostafavi, Firoozeh; Mahaki, Behzad; Delpisheh, Ali; Rad, Gholamreza Sharifi

    2015-07-01

    To identify the determinants of behavioural intention towards safe road-crossing among college students. The cross-sectional study was conducted in 2013-14 and comprised students of Isfahan University of Medical Sciences, Isfahan, Iran. A self-administrated questionnaire was distributed among the subjects related to road-crossing based on the theory of planned behaviour. Data was analysed using SPSS 21. Of the 300 questionnaires distributed, 278(92.66%) were returned completed. The mean age of the subjects was 23.16±3.66 years. There were 149(53.6%) females and 129(46.4%) males, with females crossing the street more safely than the males. There was a significant difference between the genders for subjective norms (p=0.001), perceived behavioural control (p=0.002) and behavioural intention (p=0.001), but no differences were traced with respect to attitude towards safe crossing (p=0.597). Results showed a direct and positive correlation between attitude towards safe crossing (r=0.276; p=0.001), subjective norms (r=0.368; p=0.001) and perceived behavioural control (r=0.419; p=0.000) with behavioural intention to safe crossing. The attitude towards safe crossing and perceived behavioural control had significant effect on behavioural intention among college students.

  4. Motion perception tasks as potential correlates to driving difficulty in the elderly

    Science.gov (United States)

    Raghuram, A.; Lakshminarayanan, V.

    2006-09-01

    Changes in the demographics indicates that the population older than 65 is on the rise because of the aging of the ‘baby boom’ generation. This aging trend and driving related accident statistics reveal the need for procedures and tests that would assess the driving ability of older adults and predict whether they would be safe or unsafe drivers. Literature shows that an attention based test called the useful field of view (UFOV) was a significant predictor of accident rates compared to any other visual function tests. The present study evaluates a qualitative trend on using motion perception tasks as a potential visual perceptual correlates in screening elderly drivers who might have difficulty in driving. Data was collected from 15 older subjects with a mean age of 71. Motion perception tasks included—speed discrimination with radial and lamellar motion, time to collision using prediction motion and estimating direction of heading. A motion index score was calculated which was indicative of performance on all of the above-mentioned motion tasks. Scores on visual attention was assessed using UFOV. A driving habit questionnaire was also administered for a self report on the driving difficulties and accident rates. A qualitative trend based on frequency distributions show that thresholds on the motion perception tasks are successful in identifying subjects who reported to have had difficulty in certain aspects of driving and had accidents. Correlation between UFOV and motion index scores was not significant indicating that probably different aspects of visual information processing that are crucial to driving behaviour are being tapped by these two paradigms. UFOV and motion perception tasks together can be a better predictor for identifying at risk or safe drivers than just using either one of them.

  5. MOTION PLANNING OF MULTIPLE MOBILE ROBOTS COOPERATIVELY TRANSPORTING A COMMON OBJECT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many applications above the capability of a single robot need the cooperation of multiple mobile robots, but effective cooperation is hard to achieve. In this paper, a master-slave method is proposed to control the motions of multiple mobile robots that cooperatively transport a common object from a start point to a goal point. A noholonomic kinematic model to constrain the motions of multiple mobile robots is built in order to achieve cooperative motions of them, and a "Dynamic Coordinator" strategy is used to deal with the collision-avoidance of the master robot and slave robot individually. Simulation results show the robustness and effectiveness of the method.

  6. Development of safe routes for children in urban environment

    Science.gov (United States)

    Koryagin, M. E.; Medvedev, V. I.; Strykov, P. G.

    2018-01-01

    The matter of development of safe travel routes for children between school and home is analyzed. The availability of various applications and devices to identify the location of the child and his/her travel routes is noted. The main factors to be taken into account when planning children travel routes are described. The most popular Russian services for route planning, Google, Yandex, and 2GIS, are discussed. These services are shown to have a number of shortcomings which does not allow them to choose really safe routes. A decision on making the route selection by two criteria (the travel time and the probability of an accident) is obtained. As a numerical example, the Pareto area for possible routes is constructed.

  7. An Architecture for Robot Assemblt Task Planning

    DEFF Research Database (Denmark)

    Sun, Hongyan

    1999-01-01

    This paper discusses an integrated robot assembly task planning system architecture. In such an integrated system, the robot motion commands produced from the planning system can be validated before done-loading for actual execution.......This paper discusses an integrated robot assembly task planning system architecture. In such an integrated system, the robot motion commands produced from the planning system can be validated before done-loading for actual execution....

  8. Have a Safe and Healthy Fall

    Centers for Disease Control (CDC) Podcasts

    2010-10-14

    Fall is a great time to try new and healthy activities with your parents! Have a food tasting or a leaf raking contest! Whatever your plans, make sure to have fun and be safe!  Created: 10/14/2010 by CDC Office of Women’s Health.   Date Released: 10/14/2010.

  9. The eigenmode analysis of human motion

    International Nuclear Information System (INIS)

    Park, Juyong; Lee, Deok-Sun; González, Marta C

    2010-01-01

    Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of the spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data has great potential in applications such as urban planning in addition to being a subject of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion

  10. Development of excavator training simulator using leap motion controller

    Science.gov (United States)

    Fahmi, F.; Nainggolan, F.; Andayani, U.; Siregar, B.

    2018-03-01

    Excavator is a heavy machinery that is used for many industries purposes. Controlling the excavator is not easy. Its operator has to be trained well in many skills to make sure it is safe, effective, and efficient while using the excavator. In this research, we proposed a virtual reality excavator simulator supported by a device called Leap Motion Controller that supports finger and hand motions as an input. This prototype will be developed than in the virtual reality environment to give a more real sensing to the user.

  11. Linear Temporal Logic-based Mission Planning

    OpenAIRE

    Anil Kumar; Rahul Kala

    2016-01-01

    In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Tem...

  12. Linear Temporal Logic-based Mission Planning

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-06-01

    Full Text Available In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Temporal Logic to give a representation for such complex task specification and constraints. The specifications are used by a verification engine to judge the feasibility and suitability of plans. The planner gives a motion strategy as output. Finally a controller is used to generate the desired trajectory to achieve such a goal. The approach is tested using simulations on the LTLMoP mission planning tool, operating over the Robot Operating System. Simulation results generated using high level planners and low level controllers work simultaneously for mission planning and controlling the physical behavior of the robot.

  13. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  14. Changes in pilot control behaviour across Stewart platform motion systems

    NARCIS (Netherlands)

    Nieuwenhuizen, F.M.

    2012-01-01

    Flight simulators provide an effective, efficient, and safe environment for practising flight-critical manoeuvres without requiring a real aircraft. Most simulators are equipped with a Stewart-type motion system, which consists of six linear actuators in a hexapod configuration. The argument for use

  15. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli; Ruchala, Kenneth J; Chen Quan; Olivera, Gustavo H [TomoTherapy Inc., 1240 Deming Way, Madison, WI (United States); Langen, Katja M; Kupelian, Patrick A [MD Anderson Cancer Center-Orlando, Orlando, FL (United States)], E-mail: wlu@tomotherapy.com

    2009-07-21

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy (registered) research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large

  16. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    International Nuclear Information System (INIS)

    Lu Weiguo; Chen Mingli; Ruchala, Kenneth J; Chen Quan; Olivera, Gustavo H; Langen, Katja M; Kupelian, Patrick A

    2009-01-01

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy (registered) research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large prostate motions. The results conceptually

  17. Holiday Meal Planning

    Science.gov (United States)

    ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... plan ahead. Fitting in Sweets Learn about eating desserts on special occasions. In this section Planning Meals ...

  18. Elaboration of Safe Community Assessment System

    Directory of Open Access Journals (Sweden)

    Birutė Mikulskienė

    2013-08-01

    Full Text Available The paper aims to design an assessment system to monitor and evaluate safety parameters and administrative efforts with the purpose to increase safety in municipalities. The safety monitoring system considered is to be the most important tool for creation and development of safe communities in Lithuania. Several methods were applied to achieve this purpose. In order to determine the role of local government in ensuring the safety of people, property and environment at the local level of a meta-analysis of research reports, the Lithuanian national legislation, strategic planning documents of the state and local government were carried out. Analysis of statistical data, structural analysis, comparative analysis and synthesis methods were used while investigating the areas of safety uncertainty, risk groups, identifying safety risk factors, determining their relationship, and creating a safe community assessment system. A safe community assessment system, which consists of two types of criteria, has been elaborated. The assessment system is based on the multi-level criteria for safety monitoring and the multi-level criteria for the evaluation of municipal activities in the field of building safety. Links between the criteria, peculiarities of their application and advantages in the process of safe community creation and development are analyzed. Design and implementation of the safe community assessment system is one of the most important stages to implement the idea of safe communities. The proposed system integrates a variety of risk areas, the safety achievement criteria are linked to the criteria used in the strategic planning. Periodic assessment of the safety situation using the proposed system ensures possibility to monitor current local safety conditions and assess the changes and the trends. A safe community assessment system is proposed to be used as a tool to unified municipalities safety comprehensiveness and compare safety level in

  19. Elaboration of Safe Community Assessment System

    Directory of Open Access Journals (Sweden)

    Algirdas Astrauskas

    2011-12-01

    Full Text Available The paper aims to design an assessment system to monitor and evaluate safety parameters and administrative efforts with the purpose to increase safety in municipalities. The safety monitoring system considered is to be the most important tool for creation anddevelopment of safe communities in Lithuania. Several methods were applied to achieve this purpose. In order to determine the role of local government in ensuring the safety of people, property and environment at the local level of a meta-analysis of research reports,the Lithuanian national legislation, strategic planning documents of the state and local government were carried out. Analysis of statistical data, structural analysis, comparative analysis and synthesis methods were used while investigating the areas of safety uncertainty, risk groups, identifying safety risk factors, determining their relationship, and creating a safe community assessment system.A safe community assessment system, which consists of two types of criteria, has been elaborated. The assessment system is based on the multi-level criteria for safety monitoring and the multi-level criteria for the evaluation of municipal activities in the field of building safety. Links between the criteria, peculiarities of their application and advantages in the process of safe community creation and development are analyzed.Design and implementation of the safe community assessment system is one of the most important stages to implement the idea of safe communities. The proposed system integrates a variety of risk areas, the safety achievement criteria are linked to the criteria used in thestrategic planning. Periodic assessment of the safety situation using the proposed system ensures possibility to monitor current local safety conditions and assess the changes and the trends. A safe community assessment system is proposed to be used as a tool to unified municipalities safety comprehensiveness and compare safety level in

  20. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply

    Science.gov (United States)

    Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  1. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply.

    Science.gov (United States)

    Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  2. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements

    KAUST Repository

    Agha-mohammadi, A.-a.; Chakravorty, S.; Amato, N. M.

    2013-01-01

    In this paper we present feedback-based information roadmap (FIRM), a multi-query approach for planning under uncertainty which is a belief-space variant of probabilistic roadmap methods. The crucial feature of FIRM is that the costs associated with the edges are independent of each other, and in this sense it is the first method that generates a graph in belief space that preserves the optimal substructure property. From a practical point of view, FIRM is a robust and reliable planning framework. It is robust since the solution is a feedback and there is no need for expensive replanning. It is reliable because accurate collision probabilities can be computed along the edges. In addition, FIRM is a scalable framework, where the complexity of planning with FIRM is a constant multiplier of the complexity of planning with PRM. In this paper, FIRM is introduced as an abstract framework. As a concrete instantiation of FIRM, we adopt stationary linear quadratic Gaussian (SLQG) controllers as belief stabilizers and introduce the so-called SLQG-FIRM. In SLQG-FIRM we focus on kinematic systems and then extend to dynamical systems by sampling in the equilibrium space. We investigate the performance of SLQG-FIRM in different scenarios. © The Author(s) 2013.

  3. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements

    KAUST Repository

    Agha-mohammadi, A.-a.

    2013-11-15

    In this paper we present feedback-based information roadmap (FIRM), a multi-query approach for planning under uncertainty which is a belief-space variant of probabilistic roadmap methods. The crucial feature of FIRM is that the costs associated with the edges are independent of each other, and in this sense it is the first method that generates a graph in belief space that preserves the optimal substructure property. From a practical point of view, FIRM is a robust and reliable planning framework. It is robust since the solution is a feedback and there is no need for expensive replanning. It is reliable because accurate collision probabilities can be computed along the edges. In addition, FIRM is a scalable framework, where the complexity of planning with FIRM is a constant multiplier of the complexity of planning with PRM. In this paper, FIRM is introduced as an abstract framework. As a concrete instantiation of FIRM, we adopt stationary linear quadratic Gaussian (SLQG) controllers as belief stabilizers and introduce the so-called SLQG-FIRM. In SLQG-FIRM we focus on kinematic systems and then extend to dynamical systems by sampling in the equilibrium space. We investigate the performance of SLQG-FIRM in different scenarios. © The Author(s) 2013.

  4. Safe sex

    Science.gov (United States)

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  5. Differentially Constrained Motion Planning with State Lattice Motion Primitives

    Science.gov (United States)

    2012-02-01

    underlying sampling lattice. 2.4 IMPLICIT SAMPLING Recent works have also discussed ”lazy” variants of the above planning methods that avoid colli ...settings, at the cost of performing colli - sion checking during the search. An even ”lazier” version is suggested, in which ”the initial graph CHAPTER...cycling at the border of fidelity regions due to obstacles, as suggested in Example 1.2.2. In order to avoid such difficulties, it is sufficient to

  6. Automatic Motion Generation for Robotic Milling Optimizing Stiffness with Sample-Based Planning

    Directory of Open Access Journals (Sweden)

    Julian Ricardo Diaz Posada

    2017-01-01

    Full Text Available Optimal and intuitive robotic machining is still a challenge. One of the main reasons for this is the lack of robot stiffness, which is also dependent on the robot positioning in the Cartesian space. To make up for this deficiency and with the aim of increasing robot machining accuracy, this contribution describes a solution approach for optimizing the stiffness over a desired milling path using the free degree of freedom of the machining process. The optimal motion is computed based on the semantic and mathematical interpretation of the manufacturing process modeled on its components: product, process and resource; and by configuring automatically a sample-based motion problem and the transition-based rapid-random tree algorithm for computing an optimal motion. The approach is simulated on a CAM software for a machining path revealing its functionality and outlining future potentials for the optimal motion generation for robotic machining processes.

  7. Visual identification and similarity measures used for on-line motion planning of autonomous robots in unknown environments

    Science.gov (United States)

    Martínez, Fredy; Martínez, Fernando; Jacinto, Edwar

    2017-02-01

    In this paper we propose an on-line motion planning strategy for autonomous robots in dynamic and locally observable environments. In this approach, we first visually identify geometric shapes in the environment by filtering images. Then, an ART-2 network is used to establish the similarity between patterns. The proposed algorithm allows that a robot establish its relative location in the environment, and define its navigation path based on images of the environment and its similarity to reference images. This is an efficient and minimalist method that uses the similarity of landmark view patterns to navigate to the desired destination. Laboratory tests on real prototypes demonstrate the performance of the algorithm.

  8. Effect of Intrafraction Prostate Motion on Proton Pencil Beam Scanning Delivery: A Quantitative Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shikui, E-mail: TangS@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Deville, Curtiland; McDonough, James; Tochner, Zelig [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wang, Ken Kang-Hsin [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland (United States); Vapiwala, Neha; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-10-01

    Purpose: To assess the dosimetric impact caused by the interplay between intrafraction prostate motion and the intermittent delivery of proton pencil beam scanning (PBS). Methods and Materials: A cohort of 10 prostate patients was treated with PBS using a bilateral single-field uniform dose (SFUD) modality. Bilateral intensity-modulated proton therapy (IMPT) plans were generated for comparison. Because beam-on time in PBS was intermittent, the actual beam-on time was determined from treatment logs. Prostate motion was generalized according to real-time Calypso tracking data from our previously reported prospective photon trial. We investigated potential dose deviations by considering the interplay effect resulting from the worst-case scenario motion and the PBS delivery sequence. Results: For both bilateral-field SFUD and IMPT plans, clinical target volume (CTV) D{sub 99}% coverage was degraded <2% owing to prostate intrafraction motion when averaged over the course of treatment, but was >10% for the worst fraction. The standard deviation of CTV D{sub 99}% distribution was approximately 1.2%. The CTV coverage of individual fields in SFUD plans degraded as time elapsed after the initial alignment, owing to prostate drift. Intensity-modulated proton therapy and SFUD demonstrated comparable results when bilateral opposed fields were used. Single-field SFUD plans that were repainted twice, which could reduce half of the treatment time, resulted in similar CTV coverage as bilateral-field plans. Conclusions: Intrafraction prostate motion affects the actual delivered dose to CTV; however, when averaged over the course of treatment, CTV D{sub 99}% coverage degraded only approximately 2% even for the worst-case scenario. The IMPT plan results are comparable to those of the SFUD plan, and similar coverage can be achieved if treated by SFUD 1 lateral field per day when rescanning the field twice to shorten the treatment time and mitigate intrafraction motion.

  9. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions

    International Nuclear Information System (INIS)

    Lomax, A J

    2008-01-01

    Simple tools for studying the effects of inter-fraction and inter-field motions on intensity modulated proton therapy (IMPT) plans have been developed, and have been applied to both 3D and distal edge tracking (DET) IMPT plans. For the inter-fraction motion, we have investigated the effects of misaligned density heterogeneities, whereas for the inter-field motion analysis, the effects of field misalignment on the plans have been assessed. Inter-fraction motion problems have been analysed using density differentiated error (DDE) distributions, which specifically show the additional problems resulting from misaligned density heterogeneities for proton plans. Likewise, for inter-field motion, we present methods for calculating motion differentiated error (MDE) distributions. DDE and MDE analysis of all plans demonstrate that the 3D approach is generally more robust to both inter-fraction and inter-field motions than the DET approach, but that strong in-field dose gradients can also adversely affect a plan's robustness. An important additional conclusion is that, for certain IMPT plans, even inter-fraction errors cannot necessarily be compensated for by the use of a simple PTV margins, implying that more sophisticated tools need to be developed for uncertainty management and assessment for IMPT treatments at the treatment planning level

  10. Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP

    Science.gov (United States)

    Huang, M.J.; Shakal, A.F.

    2009-01-01

    The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.

  11. Issues on safe radioactive waste management at ChNPP site in International Shelter Implementation Plan

    International Nuclear Information System (INIS)

    Bykov, V.; Kilochytska, T.; Gromyko, S.; Kadkin, Y.; Kondratiev, S.; Pavlenko, A.; Bogorinski, P.

    2003-01-01

    The International Shelter Implementation Plan (SIP) [1], is aimed to convert the ChNPP unit 4, destroyed by a beyond-design accident in 1986, into an environmentally safe facility by means of large-scale projects such as stabilization of the existing Sarcophagus (Shelter), construction of a New Safe Confinement (NSC), and installation of engineering and monitoring systems. This report presents some important safety issues concerning radioactive waste (RAW) management at the Shelter. One of the main problems of RAW management is to dispose of large volumes of RAW generated during ground preparation work. It is necessary that RAW be sorted carefully to separate low-active radioactive waste (LLW), which will be the majority, from high-level waste. Considering the fact that the Shelter is in the exclusion zone, the interim storage of LLW in this zone is possible, but a set of safety measures is required, e.g. prevention of dust generation or spreading of radioactivity with water. Another problem is high level RAW management. Highly radioactive fragments of the core, including fuel were ejected during the accident and are now buried under the man-made layer around the Shelter. Unanticipated disclosure of such fragments may happen during any ground preparation work as well as during clearing of premises inside the damaged buildings. Therefore, permanent radiation monitoring is required to prevent any intolerable exposure of workers. Unanticipated disclosure of high-active radioactive waste (HLW) could lead to considerable delay of any work. Since it is particularly difficult to remove HLW from those locations, which can not be easily accessed with removal equipment, such waste needs to be confined and properly shielded at in situ. Due to absence of a permanent HLW storage, an interim storage needs to be provided for in the territory of the Sarcophagus. (author)

  12. SU-E-T-452: Impact of Respiratory Motion On Robustly-Optimized Intensity-Modulated Proton Therapy to Treat Lung Cancers

    International Nuclear Information System (INIS)

    Liu, W; Schild, S; Bues, M; Liao, Z; Sahoo, N; Park, P; Li, H; Li, Y; Li, X; Shen, J; Anand, A; Dong, L; Zhu, X; Mohan, R

    2014-01-01

    Purpose: We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case robustly optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods: For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional Method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from the internal target volume (ITV). The second employed the worst-case robust optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results: Without respiratory motion considered, we affirmed that worst-case robust optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, robust optimization still leads to more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% - D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusion: Worst-case robust optimization led to superior solutions for lung IMPT. Despite of the fact that robust optimization did not explicitly

  13. 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Saito, Nami; Chaudhri, Naved; Richter, Christian; Durante, Marco; Enghardt, Wolfgang; Rietzel, Eike; Bert, Christoph

    2009-01-01

    Purpose: Clinically safe and effective treatment of intrafractionally moving targets with scanned ion beams requires dedicated delivery techniques such as beam tracking. Apart from treatment delivery, also appropriate methods for validation of the actual tumor irradiation are highly desirable. In this contribution the feasibility of four-dimensionally (space and time) resolved, motion-compensated in-beam positron emission tomography (4DibPET) was addressed in experimental studies with scanned carbon ion beams. Methods: A polymethyl methracrylate block sinusoidally moving left-right in beam's eye view was used as target. Radiological depth changes were introduced by placing a stationary ramp-shaped absorber proximal of the moving target. Treatment delivery was compensated for motion by beam tracking. Time-resolved, motion-correlated in-beam PET data acquisition was performed during beam delivery with tracking the moving target and prolonged after beam delivery first with the activated target still in motion and, finally, with the target at rest. Motion-compensated 4DibPET imaging was implemented and the results were compared to a stationary reference irradiation of the same treatment field. Data were used to determine feasibility of 4DibPET but also to evaluate offline in comparison to in-beam PET acquisition. Results: 4D in-beam as well as offline PET imaging was found to be feasible and offers the possibility to verify the correct functioning of beam tracking. Motion compensation of the imaged β + -activity distribution allows recovery of the volumetric extension of the delivered field for direct comparison with the reference stationary condition. Observed differences in terms of lateral field extension and penumbra in the direction of motion were typically less than 1 mm for both imaging strategies in comparison to the corresponding reference distributions. However, in-beam imaging retained a better spatial correlation of the measured activity with the delivered

  14. Real-Time Motion Management of Prostate Cancer Radiotherapy

    DEFF Research Database (Denmark)

    Pommer, Tobias

    of this thesis is to manage prostate motion in real-time by aligning the radiation beam to the prostate using the novel dynamic multileaf collimator (DMLC) tracking method. Specifically, the delivered dose with tracking was compared to the planned dose, and the impact of treatment plan complexity and limitations...

  15. A convolution method for predicting mean treatment dose including organ motion at imaging

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2000-01-01

    Full text: The random treatment delivery errors (organ motion and set-up error) can be incorporated into the treatment planning software using a convolution method. Mean treatment dose is computed as the convolution of a static dose distribution with a variation kernel. Typically this variation kernel is Gaussian with variance equal to the sum of the organ motion and set-up error variances. We propose a novel variation kernel for the convolution technique that additionally considers the position of the mobile organ in the planning CT image. The systematic error of organ position in the planning CT image can be considered random for each patient over a population. Thus the variance of the variation kernel will equal the sum of treatment delivery variance and organ motion variance at planning for the population of treatments. The kernel is extended to deal with multiple pre-treatment CT scans to improve tumour localisation for planning. Mean treatment doses calculated with the convolution technique are compared to benchmark Monte Carlo (MC) computations. Calculations of mean treatment dose using the convolution technique agreed with MC results for all cases to better than ± 1 Gy in the planning treatment volume for a prescribed 60 Gy treatment. Convolution provides a quick method of incorporating random organ motion (captured in the planning CT image and during treatment delivery) and random set-up errors directly into the dose distribution. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  16. The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer

    International Nuclear Information System (INIS)

    Wu, Q. Jackie; Thongphiew, Danthai; Wang Zhiheng; Chankong, Vira; Yin Fangfang

    2008-01-01

    Stereotactic body radiation therapy (SBRT), which delivers a much higher fractional dose than conventional treatment in only a few fractions, is an effective treatment for liver metastases. For patients who are treated under free-breathing conditions, however, respiration-induced tumor motion in the liver is a concern. Limited clinical information is available related to the impact of tumor motion and treatment technique on the dosimetric consequences. This study evaluated the dosimetric deviations between planned and delivered SBRT dose in the presence of tumor motion for three delivery techniques: three-dimensional conformal static beams (3DCRT), dynamic conformal arc (DARC), and intensity-modulated radiation therapy (IMRT). Five cases treated with SBRT for liver metastases were included in the study, with tumor motions ranging from 0.5 to 1.75 cm. For each case, three different treatment plans were developed using 3DCRT, DARC, and IMRT. The gantry/multileaf collimator (MLC) motion in the DARC plans and the MLC motion in the IMRT plans were synchronized to the patient's respiratory motion. Retrospectively sorted four-dimensional computed tomography image sets were used to determine patient-organ motion and to calculate the dose delivered during each respiratory phase. Deformable registration, using thin-plate-spline models, was performed to encode the tumor motion and deformation and to register the dose-per-phase to the reference phase images. The different dose distributions resulting from the different delivery techniques and motion ranges were compared to assess the effect of organ motion on dose delivery. Voxel dose variations occurred mostly in the high gradient regions, typically between the target volume and normal tissues, with a maximum variation up to 20%. The greatest CTV variation of all the plans was seen in the IMRT technique with the largest motion range (D99: -8.9%, D95: -8.3%, and D90: -6.3%). The greatest variation for all 3DCRT plans was less

  17. Respiration-correlated spiral CT: A method of measuring respiratory-induced anatomic motion for radiation treatment planning

    International Nuclear Information System (INIS)

    Ford, E.C.; Mageras, G.S.; Yorke, E.; Ling, C.C.

    2003-01-01

    irregular respiration. Limitations from x-ray tube heating in our current CT unit restrict the length of the scan region to 9 cm for the RCCT settings used, though this will not be a limitation for a multislice scanner. RCCT offers an alternative to the current method of respiration-triggered axial scans. Multiple phases of respiration are imaged with RCCT in approximately the same scanning time required to image a single phase with a triggered axial scan. RCCT scans can be used in connection with respiratory-gated treatment to identify the patient-specific phase of minimum tumor motion, determine residual tumor motion within the gate interval, and compare treatment plans at different phases

  18. Animation and radiobiological analysis of 3D motion in conformal radiotherapy.

    Science.gov (United States)

    MacKay, R I; Graham, P A; Moore, C J; Logue, J P; Sharrock, P J

    1999-07-01

    To allow treatment plans to be evaluated against the range of expected organ motion and set up error anticipated during treatment. Planning tools have been developed to allow concurrent animation and radiobiological analysis of three dimensional (3D) target and organ motion in conformal radiotherapy. Surfaces fitted to structures outlined on CT studies are projected onto pre-treatment images or onto megavoltage images collected during the patient treatment. Visual simulation of tumour and normal tissue movement is then performed by the application of three dimensional affine transformations, to the selected surface. Concurrent registration of the surface motion with the 3D dose distribution allows calculation of the change in dose to the volume. Realistic patterns of motion can be applied to the structure to simulate inter-fraction motion and set-up error. The biologically effective dose for the structure is calculated for each fraction as the surface moves over the course of the treatment and is used to calculate the normal tissue complication probability (NTCP) or tumour control probability (TCP) for the moving structure. The tool has been used to evaluate conformal therapy plans against set up measurements recorded during patient treatments. NTCP and TCP were calculated for a patient whose set up had been corrected after systematic deviations from plan geometry were measured during treatment, the effect of not making the correction were also assessed. TCP for the moving tumour was reduced if inadequate margins were set for the treatment. Modelling suggests that smaller margins could have been set for the set up corrected during the course of the treatment. The NTCP for the rectum was also higher for the uncorrected set up due to a more rectal tissue falling in the high dose region. This approach provides a simple way for clinical users to utilise information incrementally collected throughout the whole of a patient's treatment. In particular it is possible to

  19. Measurement of vertical motions of bulk carriers navigating in port entrance channels

    CSIR Research Space (South Africa)

    Moes, J

    2007-06-01

    Full Text Available measurements of ship motions with simultaneous recording of tide, wave and ship conditions. The measured wave parameters include the wave height, period and direction. Based on these relationships, the maximum safe draught for Richards Bay can be determined...

  20. Simulation of spatiotemporal CT data sets using a 4D MRI-based lung motion model.

    Science.gov (United States)

    Marx, Mirko; Ehrhardt, Jan; Werner, René; Schlemmer, Heinz-Peter; Handels, Heinz

    2014-05-01

    Four-dimensional CT imaging is widely used to account for motion-related effects during radiotherapy planning of lung cancer patients. However, 4D CT often contains motion artifacts, cannot be used to measure motion variability, and leads to higher dose exposure. In this article, we propose using 4D MRI to acquire motion information for the radiotherapy planning process. From the 4D MRI images, we derive a time-continuous model of the average patient-specific respiratory motion, which is then applied to simulate 4D CT data based on a static 3D CT. The idea of the motion model is to represent the average lung motion over a respiratory cycle by cyclic B-spline curves. The model generation consists of motion field estimation in the 4D MRI data by nonlinear registration, assigning respiratory phases to the motion fields, and applying a B-spline approximation on a voxel-by-voxel basis to describe the average voxel motion over a breathing cycle. To simulate a patient-specific 4D CT based on a static CT of the patient, a multi-modal registration strategy is introduced to transfer the motion model from MRI to the static CT coordinates. Differences between model-based estimated and measured motion vectors are on average 1.39 mm for amplitude-based binning of the 4D MRI data of three patients. In addition, the MRI-to-CT registration strategy is shown to be suitable for the model transformation. The application of our 4D MRI-based motion model for simulating 4D CT images provides advantages over standard 4D CT (less motion artifacts, radiation-free). This makes it interesting for radiotherapy planning.

  1. Automated Kinematics Equations Generation and Constrained Motion Planning Resolution for Modular and Reconfigurable Robots

    Energy Technology Data Exchange (ETDEWEB)

    Pin, Francois G.; Love, Lonnie L.; Jung, David L.

    2004-03-29

    Contrary to the repetitive tasks performed by industrial robots, the tasks in most DOE missions such as environmental restoration or Decontamination and Decommissioning (D&D) can be characterized as ''batches-of-one'', in which robots must be capable of adapting to changes in constraints, tools, environment, criteria and configuration. No commercially available robot control code is suitable for use with such widely varying conditions. In this talk we present our development of a ''generic code'' to allow real time (at loop rate) robot behavior adaptation to changes in task objectives, tools, number and type of constraints, modes of controls or kinematics configuration. We present the analytical framework underlying our approach and detail the design of its two major modules for the automatic generation of the kinematics equations when the robot configuration or tools change and for the motion planning under time-varying constraints. Sample problems illustrating the capabilities of the developed system are presented.

  2. A path planning method for robot end effector motion using the curvature theory of the ruled surfaces

    Science.gov (United States)

    Güler, Fatma; Kasap, Emin

    Using the curvature theory for the ruled surfaces a technique for robot trajectory planning is presented. This technique ensures the calculation of robot’s next path. The positional variation of the Tool Center Point (TCP), linear velocity, angular velocity are required in the work area of the robot. In some circumstances, it may not be physically achievable and a re-computation of the robot trajectory might be necessary. This technique is suitable for re-computation of the robot trajectory. We obtain different robot trajectories which change depending on the darboux angle function and define trajectory ruled surface family with a common trajectory curve with the rotation trihedron. Also, the motion of robot end effector is illustrated with examples.

  3. SU-E-J-73: Extension of a Clinical OIS/EMR/R&V System to Deliver Safe and Efficient Adaptive Plan-Of-The-Day Treatments Using a Fully Customizable Plan-Library-Based Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Akhiat, A. [Erasmus MC Cancer Institute, Radiation Oncology, Rotterdam (Netherlands); Elekta, Sunnyvale, CA (United States); Kanis, A.P.; Penninkhof, J.J.; Sodjo, S.; O’Neill, T.; Quint, S.; Doorn, X. van; Schillemans, W.; Heijmen, B.; Hoogeman, M. [Erasmus MC Cancer Institute, Radiation Oncology, Rotterdam (Netherlands); Linton, N.; Coleman, A. [Elekta, Sunnyvale, CA (United States)

    2015-06-15

    Purpose: To extend a clinical Record and Verify (R&V) system to enable a safe and fast workflow for Plan-of-the-Day (PotD) adaptive treatments based on patient-specific plan libraries. Methods: Plan libraries for PotD adaptive treatments contain for each patient several pre-treatment generated treatment plans. They may be generated for various patient anatomies or CTV-PTV margins. For each fraction, a Cone Beam CT scan is acquired to support the selection of the plan that best fits the patient’s anatomy-of-the-day. To date, there are no commercial R&V systems that support PotD delivery strategies. Consequently, the clinical workflow requires many manual interventions. Moreover, multiple scheduled plans have a high risk of excessive dose delivery. In this work we extended a commercial R&V system (MOSAIQ) to support PotD workflows using IQ-scripting. The PotD workflow was designed after extensive risk analysis of the manual procedure, and all identified risks were incorporated as logical checks. Results: All manual PotD activities were automated. The workflow first identifies if the patient is scheduled for PotD, then performs safety checks, and continues to treatment plan selection only if no issues were found. The user selects the plan to deliver from a list of candidate plans. After plan selection, the workflow makes the treatment fields of the selected plan available for delivery by adding them to the treatment calendar. Finally, control is returned to the R&V system to commence treatment. Additional logic was added to incorporate off-line changes such as updating the plan library. After extensive testing including treatment fraction interrupts and plan-library updates during the treatment course, the workflow is running successfully in a clinical pilot, in which 35 patients have been treated since October 2014. Conclusion: We have extended a commercial R&V system for improved safety and efficiency in library-based adaptive strategies enabling a wide

  4. SU-E-J-73: Extension of a Clinical OIS/EMR/R&V System to Deliver Safe and Efficient Adaptive Plan-Of-The-Day Treatments Using a Fully Customizable Plan-Library-Based Workflow

    International Nuclear Information System (INIS)

    Akhiat, A.; Kanis, A.P.; Penninkhof, J.J.; Sodjo, S.; O’Neill, T.; Quint, S.; Doorn, X. van; Schillemans, W.; Heijmen, B.; Hoogeman, M.; Linton, N.; Coleman, A.

    2015-01-01

    Purpose: To extend a clinical Record and Verify (R&V) system to enable a safe and fast workflow for Plan-of-the-Day (PotD) adaptive treatments based on patient-specific plan libraries. Methods: Plan libraries for PotD adaptive treatments contain for each patient several pre-treatment generated treatment plans. They may be generated for various patient anatomies or CTV-PTV margins. For each fraction, a Cone Beam CT scan is acquired to support the selection of the plan that best fits the patient’s anatomy-of-the-day. To date, there are no commercial R&V systems that support PotD delivery strategies. Consequently, the clinical workflow requires many manual interventions. Moreover, multiple scheduled plans have a high risk of excessive dose delivery. In this work we extended a commercial R&V system (MOSAIQ) to support PotD workflows using IQ-scripting. The PotD workflow was designed after extensive risk analysis of the manual procedure, and all identified risks were incorporated as logical checks. Results: All manual PotD activities were automated. The workflow first identifies if the patient is scheduled for PotD, then performs safety checks, and continues to treatment plan selection only if no issues were found. The user selects the plan to deliver from a list of candidate plans. After plan selection, the workflow makes the treatment fields of the selected plan available for delivery by adding them to the treatment calendar. Finally, control is returned to the R&V system to commence treatment. Additional logic was added to incorporate off-line changes such as updating the plan library. After extensive testing including treatment fraction interrupts and plan-library updates during the treatment course, the workflow is running successfully in a clinical pilot, in which 35 patients have been treated since October 2014. Conclusion: We have extended a commercial R&V system for improved safety and efficiency in library-based adaptive strategies enabling a wide

  5. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Chugh, B; Keller, B [Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Sahgal, A; Song, W [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm{sup 2} and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should

  6. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    International Nuclear Information System (INIS)

    Soliman, A; Chugh, B; Keller, B; Sahgal, A; Song, W

    2016-01-01

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm 2 and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should focus

  7. Strategies to reduce the systematic error due to tumor and rectum motion in radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Hoogeman, Mischa S.; Herk, Marcel van; Bois, Josien de; Lebesque, Joos V.

    2005-01-01

    Background and purpose: The goal of this work is to develop and evaluate strategies to reduce the uncertainty in the prostate position and rectum shape that arises in the preparation stage of the radiation treatment of prostate cancer. Patients and methods: Nineteen prostate cancer patients, who were treated with 3-dimensional conformal radiotherapy, received each a planning CT scan and 8-13 repeat CT scans during the treatment period. We quantified prostate motion relative to the pelvic bone by first matching the repeat CT scans on the planning CT scan using the bony anatomy. Subsequently, each contoured prostate, including seminal vesicles, was matched on the prostate in the planning CT scan to obtain the translations and rotations. The variation in prostate position was determined in terms of the systematic, random and group mean error. We tested the performance of two correction strategies to reduce the systematic error due to prostate motion. The first strategy, the pre-treatment strategy, used only the initial rectum volume in the planning CT scan to adjust the angle of the prostate with respect to the left-right (LR) axis and the shape and position of the rectum. The second strategy, the adaptive strategy, used the data of repeat CT scans to improve the estimate of the prostate position and rectum shape during the treatment. Results: The largest component of prostate motion was a rotation around the LR axis. The systematic error (1 SD) was 5.1 deg and the random error was 3.6 deg (1 SD). The average LR-axis rotation between the planning and the repeat CT scans correlated significantly with the rectum volume in the planning CT scan (r=0.86, P<0.0001). Correction of the rotational position on the basis of the planning rectum volume alone reduced the systematic error by 28%. A correction, based on the data of the planning CT scan and 4 repeat CT scans reduced the systematic error over the complete treatment period by a factor of 2. When the correction was

  8. Be-safe travel, a web-based geographic application to explore safe-route in an area

    Science.gov (United States)

    Utamima, Amalia; Djunaidy, Arif

    2017-08-01

    In large cities in developing countries, the various forms of criminality are often found. For instance, the most prominent crimes in Surabaya, Indonesia is 3C, that is theft with violence (curas), theft by weighting (curat), and motor vehicle theft (curanmor). 3C case most often occurs on the highway and residential areas. Therefore, new entrants in an area should be aware of these kind of crimes. Route Planners System or route planning system such as Google Maps only consider the shortest distance in the calculation of the optimal route. The selection of the optimal path in this study not only consider the shortest distance, but also involves other factors, namely the security level. This research considers at the need for an application to recommend the safest road to be passed by the vehicle passengers while drive an area. This research propose Be-Safe Travel, a web-based application using Google API that can be accessed by people who like to drive in an area, but still lack of knowledge of the pathways which are safe from crime. Be-Safe Travel is not only useful for the new entrants, but also useful for delivery courier of valuables goods to go through the safest streets.

  9. 75 FR 81456 - Hybrid Retirement Plans; Correction

    Science.gov (United States)

    2010-12-28

    ... accumulated benefit under the plan is expressed in terms of only one safe-harbor formula measure and no... expressed in terms of any measure other than that same safe- harbor formula measure. Thus, for example, if a... expressed under the terms of the plan as a life annuity payable at normal retirement age (or current age, if...

  10. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Opp, Daniel; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir, E-mail: vladimir.feygelman@moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2014-06-15

    Purpose: In this work, the feasibility of implementing a motion-perturbation approach to accurately estimate volumetric dose in the presence of organ motion—previously demonstrated for VMAT-–is studied for static gantry IMRT. The method's accuracy is improved for the voxels that have very low planned dose but acquire appreciable dose due to motion. The study describes the modified algorithm and its experimental validation and provides an example of a clinical application. Methods: A contoured region-of-interest is propagated according to the predefined motion kernel throughout time-resolved 4D phantom dose grids. This timed series of 3D dose grids is produced by the measurement-guided dose reconstruction algorithm, based on an irradiation of a staticARCCHECK (AC) helical dosimeter array (Sun Nuclear Corp., Melbourne, FL). Each moving voxel collects dose over the dynamic simulation. The difference in dose-to-moving voxel vs dose-to-static voxel in-phantom forms the basis of a motion perturbation correction that is applied to the corresponding voxel in the patient dataset. A new method to synchronize the accelerator and dosimeter clocks, applicable to fixed-gantry IMRT, was developed. Refinements to the algorithm account for the excursion of low dose voxels into high dose regions, causing appreciable dose increase due to motion (LDVE correction). For experimental validation, four plans using TG-119 structure sets and objectives were produced using segmented IMRT direct machine parameters optimization in Pinnacle treatment planning system (v. 9.6, Philips Radiation Oncology Systems, Fitchburg, WI). All beams were delivered with the gantry angle of 0°. Each beam was delivered three times: (1) to the static AC centered on the room lasers; (2) to a static phantom containing a MAPCHECK2 (MC2) planar diode array dosimeter (Sun Nuclear); and (3) to the moving MC2 phantom. The motion trajectory was an ellipse in the IEC XY plane, with 3 and 1.5 cm axes. The period

  11. An alternative fabrication method of the dart thrower's motion orthosis (also known as the dart orthosis).

    Science.gov (United States)

    Schwartz, Deborah A

    2016-01-01

    To allow safe early wrist motion after wrist injury, this author has modified an earlier version of a dart thrower's motion orthotic device using material that is currently available on the market and an inexpensive paper fastener as the rivet. - KristinValdes, OTD, OT, CHT, Practice Forum Editor. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  12. Storyboard dalam Pembuatan Motion Graphic

    Directory of Open Access Journals (Sweden)

    Satrya Mahardhika

    2013-10-01

    Full Text Available Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will be determined through camera angles, blocking, sets, and many supporting roles involved in a scene. Storyboard is also useful as a production reference in recording or taping each scene in sequence or as an efficient priority. The example used is an ad creation using motion graphic animation storyboard which has an important role as a blueprint for every scene and giving instructions to make the transition movement, layout, blocking, and defining camera movement that everything should be done periodically in animation production. Planning before making the animation or motion graphic will make the job more organized, presentable, and more efficient in the process.  

  13. Safe physical human robot interaction- past, present and future

    International Nuclear Information System (INIS)

    Pervez, Aslam; Ryu, Jeha

    2008-01-01

    When a robot physically interacts with a human user, the requirements should be drastically changed. The most important requirement is the safety of the human user in the sense that robot should not harm the human in any situation. During the last few years, research has been focused on various aspects of safe physical human robot interaction. This paper provides a review of the work on safe physical interaction of robotic systems sharing their workspace with human users (especially elderly people). Three distinct areas of research are identified: interaction safety assessment, interaction safety through design, and interaction safety through planning and control. The paper then highlights the current challenges and available technologies and points out future research directions for realization of a safe and dependable robotic system for human users

  14. A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept - A compromise between small safety margins and long duty cycles

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Kavanagh, Anthony; Webb, Steve; Brada, Michael

    2011-01-01

    Purpose: To evaluate a novel respiratory motion compensation strategy combining gated beam delivery with the mean target position (MTP) concept for pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Four motion compensation strategies were compared for 10 targets with motion amplitudes between 6 mm and 31 mm: the internal target volume concept (plan ITV ); the MTP concept where safety margins were adapted based on 4D dose accumulation (plan MTP ); gated beam delivery without margins for motion compensation (plan gated ); a novel approach combining gating and the MTP concept (plan gated and MTP ). Results: For 5/10 targets with an average motion amplitude of 9 mm, the differences in the mean lung dose (MLD) between plan gated and plan MTP were gated and MTP . Despite significantly shorter duty cycles, plan gated reduced the MLD by gated and MTP . The MLD was increased by 18% in plan MTP compared to that of plan gated and MTP . Conclusions: For pulmonary targets with motion amplitudes >10-15 mm, the combination of gating and the MTP concept allowed small safety margins with simultaneous long duty cycles.

  15. Path planning algorithms for assembly sequence planning. [in robot kinematics

    Science.gov (United States)

    Krishnan, S. S.; Sanderson, Arthur C.

    1991-01-01

    Planning for manipulation in complex environments often requires reasoning about the geometric and mechanical constraints which are posed by the task. In planning assembly operations, the automatic generation of operations sequences depends on the geometric feasibility of paths which permit parts to be joined into subassemblies. Feasible locations and collision-free paths must be present for part motions, robot and grasping motions, and fixtures. This paper describes an approach to reasoning about the feasibility of straight-line paths among three-dimensional polyhedral parts using an algebra of polyhedral cones. A second method recasts the feasibility conditions as constraints in a nonlinear optimization framework. Both algorithms have been implemented and results are presented.

  16. TU-C-17A-06: Evaluating IMRT Plan Deliverability Via PTV Shape and MLC Motion

    International Nuclear Information System (INIS)

    McGurk, R; Smith, VA; Price, M

    2014-01-01

    Purpose: For step-and-shoot intensity-modulated radiation therapy (IMRT) plans, the dosimetry and deliverability can be affected by the number and shape of the segments used. Thus, plan deliverability is likely related to target volume and shape. We investigated whether the sphericity of target volumes and the previously proposed Modulation Complexity Score (MCS) could be used together to improve the detection of IMRT fields that failed quality assurance (QA). Methods: 526 and 353 IMRT fields from 32 prostate and 28 head-and-neck (H'N) patients, respectively, were analyzed. MCS was used to quantify the complexity of multi-leaf collimator shapes and motion patterns for each field. Sphericity was calculated using the surface area and volume of each patient’s planning target volume (PTV). Logistic regression models with MCS-alone or MCS and sphericity terms were fit to PlanUNC IMRT pass/fail results (5% dose difference, 4mm distance-to-agreement criteria) using SAS 9.3 (Cary, NC). Model concordance, discordance and area under the curve (AUC) were used to quantify model accuracy. Results: Mean (±1 standard deviation) MCS for prostate and H'N were 0.58(±0.15) and 0.40 (±0.14), respectively. Mean sphericity scores were 0.75(±0.05) for prostate and 0.63 (±0.12) for H'N. Both metrics were significantly different between treatment locations (p<0.01, Wilcoxon Rank Sum Test) indicating greater complexity in shape and variations for H'N PTVs. For prostate, concordance, discordance and AUC using MCS alone were 80.8%, 18.7% and 0.811. Including sphericity in the model improved these to 81.7%, 17.7% and 0.820. For H'N, the original concordance, discordance and AUC were of 72.9%, 26.9% and 0.729. Including sphericity into the model improved these metrics to 76.5%, 23.2% and 0.729. Conclusion: Sphericity provides a quantitative measure of PTV shape. While improvement in IMRT QA failure detection was modest for both prostate and H'N plans

  17. Setting priorities for safe motherhood interventions in resource-scarce settings.

    Science.gov (United States)

    Prata, Ndola; Sreenivas, Amita; Greig, Fiona; Walsh, Julia; Potts, Malcolm

    2010-01-01

    Guide policy-makers in prioritizing safe motherhood interventions. Three models (LOW, MED, HIGH) were constructed based on 34 sub-Saharan African countries to assess the relative cost-effectiveness of available safe motherhood interventions. Cost and effectiveness data were compiled and inserted into the WHO Mother Baby Package Costing Spreadsheet. For each model we assessed the percentage in maternal mortality reduction after implementing all interventions, and optimal combinations of interventions given restricted budgets of US$ 0.50, US$ 1.00, US$ 1.50 per capital maternal health expenditures respectively for LOW, MED, and HIGH models. The most cost-effective interventions were family planning and safe abortion (fpsa), antenatal care including misoprostol distribution for postpartum hemorrhage prevention at home deliveries (anc-miso), followed by sepsis treatment (sepsis) and facility-based postpartum hemorrhage management (pph). The combination of interventions that avert the greatest number of maternal deaths should be prioritized and expanded to cover the greatest number of women at risk. Those which save the most number of lives in each model are 'fpsa, anc-miso' and 'fpsa, sepsis, safe delivery' for LOW; 'fpsa, anc-miso' and 'fpsa, sepsis, safe delivery' for MED; and 'fpsa, anc-miso, sepsis, eclampsia treatment, safe delivery' for HIGH settings. Safe motherhood interventions save a significant number of newborn lives.

  18. Effect of Educational Program to Encourage Safe Sexual Behaviors Among Addicted Men Refered to Substance Abuse Treatment Centers in Hamadan, Western Iran: Applying the Theory of Planned Behavior

    Directory of Open Access Journals (Sweden)

    Babak Moeini

    2014-06-01

    Full Text Available Introduction: Unsafe sexual behaviors as important risky behaviors can expose individuals and society to dangerous infectious disease such as AIDS and viral hepatitis. Considering the high prevalence of unsafe sexual behaviors, this study aimed to determine the effect of educational programs to encourage safe sexual behaviors among substance abusers referred to substance abuse treatment centers in Hamadan, Western Iran by applying the theory of planned behavior. Materials & Methods: This quasi-experimental study was performed on 104 men substance abusers (52 participants in each of the control and intervention groups referred to substance abuse treatment centers in Hamadan. Data collection tool was a questionnaire containing demographic information and the theory of planned behavior constructs. Before the educational program, questionnaires were completed by both groups. After the pretest in both groups, participants in the intervention group participated in four educational sessions designed based on the theory of planned behavior. Two months after the end of program, posttest was performed. Data was analyzed using independent T-test, chi-square, fisher exact test, McNemar’s test and multiple linear regressions using SPSS-16. Results: After educational intervention, the mean scores of the theory constructs (attitude toward behavior, subjective norms, behavioral control, behavioral intention and behaviors, in the intervention group increased significantly (P<0.05, despite the fact, changes were not significant in the control group. Conclusion: Implementation of educational courses to encourage safe sexual behaviors based on the theory of planned behavior can be beneficial for substance abusers referred to substance abuse treatment centers.

  19. Planning the Motion of a Robotic Assistant for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutions in computing hardware and software have brought about an age where robots and people will be able to peacefully and safely co-exist in the same...

  20. Robot Motion and Control 2011

    CERN Document Server

    2012-01-01

    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  1. Rural planning organizations--their role in transportation planning and project development in Texas : technical report.

    Science.gov (United States)

    2010-10-01

    While a formal planning and programming process is established for urbanized areas through Metropolitan : Planning Organizations, no similar requirement has been established for rural areas. Currently, under the : Safe, Accountable, Flexible, Efficie...

  2. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, V; McLaughlin, P [Providence Cancer Center, Southfield, MI (United States); University of Michigan, Ann Arbor, MI (United States); Ealbaj, J [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients were set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.

  3. Advances in 4D treatment planning for scanned particle beam therapy - report of dedicated workshops.

    Science.gov (United States)

    Bert, Christoph; Graeff, Christian; Riboldi, Marco; Nill, Simeon; Baroni, Guido; Knopf, Antje-Christin

    2014-12-01

    We report on recent progress in the field of mobile tumor treatment with scanned particle beams, as discussed in the latest editions of the 4D treatment planning workshop. The workshop series started in 2009, with about 20 people from 4 research institutes involved, all actively working on particle therapy delivery and development. The first workshop resulted in a summary of recommendations for the treatment of mobile targets, along with a list of requirements to apply these guidelines clinically. The increased interest in the treatment of mobile tumors led to a continuously growing number of attendees: the 2012 edition counted more than 60 participants from 20 institutions and commercial vendors. The focus of research discussions among workshop participants progressively moved from 4D treatment planning to complete 4D treatments, aiming at effective and safe treatment delivery. Current research perspectives on 4D treatments include all critical aspects of time resolved delivery, such as in-room imaging, motion detection, beam application, and quality assurance techniques. This was motivated by the start of first clinical treatments of hepato cellular tumors with a scanned particle beam, relying on gating or abdominal compression for motion mitigation. Up to date research activities emphasize significant efforts in investigating advanced motion mitigation techniques, with a specific interest in the development of dedicated tools for experimental validation. Potential improvements will be made possible in the near future through 4D optimized treatment plans that require upgrades of the currently established therapy control systems for time resolved delivery. But since also these novel optimization techniques rely on the validity of the 4DCT, research focusing on alternative 4D imaging technique, such as MRI based 4DCT generation will continue.

  4. Remedial action planning for Trench 1

    International Nuclear Information System (INIS)

    Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J.; Greengard, T.; Castaneda, N.

    1998-01-01

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site

  5. SU-F-J-128: Dosimetric Impact of Esophagus Motion in Spine Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J; Wang, X; Zhao, Z; Yang, J; Zhang, Y; Court, L; Li, J; Brown, P; Ghia, A [MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Acute esophageal toxicity is a common side effect in spine stereotactic body radiotherapy (SBRT). The respiratory motion may alter esophageal position from the planning scan resulting in excessive esophageal dose. Here we assessed the dosimetric impact resulting from the esophageal motion using 4DCT. Methods: Nine patients treated to their thoracic spines in one fraction of 24 Gy were identified for this study. The original plan on a free breathing CT was copied to each phase image of a 4DCT scan, recalculated, scaled, and accumulated to the free breathing CT using deformable image registration. A segment of esophagus was contoured in the vicinity of treatment target. Esophagus dose volume histogram (DVH) was generated for both the original planned dose and the accumulated 4D dose for comparison. In parallel, we performed a chained deformable registration of 4DCT phase images to estimate the motion magnitude of the esophagus in a breathing cycle. We examined the correlation between the motion magnitude and the dosimetric deviation. Results: The esophageal motion mostly exhibited in the superior-inferior direction. The cross-sectional motion was small. Esophagus motion at T1 vertebra level (0.7 mm) is much smaller than that at T11 vertebra level (6.5 mm). The difference of Dmax between the original and 4D dose distributions ranged from 9.1 cGy (esophagus motion: 5.6 mm) to 231.1 cGy (esophagus motion: 3.1 mm). The difference of D(5cc) ranged from 5 cGy (esophagus motion: 3.1 mm) to 85 cGy (esophagus motion: 3.3 mm). There was no correlation between the dosimetric deviation and the motion magnitude. The V(11.9Gy)<5cc constraint was met for each patient when examining the DVH calculated from the 4D dose. Conclusion: Respiratory motion did not result in substantial dose increase to esophagus in spine SBRT. 4DCT simulation may not be necessary with regards to esophageal dose assessment.

  6. Approach to developing a ground-motion design basis for facilities important to safety at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.

    1990-01-01

    This paper discusses a methodology for developing a ground-motion design basis for prospective facilities at Yucca Mountain that are important to safety. The methodology utilizes a guasi-deterministic construct called the 10,000-year cumulative-slip earthquake that is designed to provide a conservative, robust, and reproducible estimate of ground motion that has a one-in-ten chance of occurring during the preclosure period. This estimate is intended to define a ground-motion level for which the seismic design would ensure minimal disruption to operations engineering analyses to ensure safe performance are included

  7. Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method

    Directory of Open Access Journals (Sweden)

    Weihao Li

    2017-01-01

    Full Text Available In this paper, potential field method has been used to navigate a three omnidirectional wheels’ mobile robot and to avoid obstacles. The potential field method is used to overcome the local minima problem and the goals nonreachable with obstacles nearby (GNRON problem. For further consideration, model predictive control (MPC has been used to incorporate motion constraints and make the velocity more realistic and flexible. The proposed method is employed based on the kinematic model and dynamics model of the mobile robot in this paper. To show the performance of proposed control scheme, simulation studies have been carried to perform the motion process of mobile robot in specific workplace.

  8. Path-Constrained Motion Planning for Robotics Based on Kinematic Constraints

    NARCIS (Netherlands)

    Dijk, van N.J.M.; Wouw, van de N.; Pancras, W.C.M.; Nijmeijer, H.

    2007-01-01

    Common robotic tracking tasks consist of motions along predefined paths. The design of time-optimal path-constrained trajectories for robotic applications is discussed in this paper. To increase industrial applicability, the proposed method accounts for robot kinematics together with actuator

  9. Flood action plans

    International Nuclear Information System (INIS)

    Slopek, R.J.

    1995-01-01

    Safe operating procedures developed by TransAlta Utilities for dealing with flooding, resulting from upstream dam failures or extreme rainfalls, were presented. Several operating curves developed by Monenco AGRA were described, among them the No Overtopping Curve (NOC), the Safe Filling Curve (SFC), the No Spill Curve (NSC) and the Guaranteed Fill Curve (GFC). The concept of an operational comfort zone was developed and defined. A flood action plan for all operating staff was created as a guide in case of a flooding incident. Staging of a flood action plan workshop was described. Dam break scenarios pertinent to the Bow River were developed for subsequent incorporation into a Flood Action Plan Manual. Evaluation of the technical presentations made during workshops were found them to have been effective in providing operating staff with a better understanding of the procedures that they would perform in an emergency. 8 figs

  10. Cooperative Path Planning and Constraints Analysis for Master-Slave Industrial Robots

    Directory of Open Access Journals (Sweden)

    Yahui Gan

    2012-09-01

    Full Text Available A strategy of cooperative path planning for a master-slave multiple robot system is presented in this paper. The path planning method is based on motion constraints between the end-effectors of cooperative robots. Cooperation motions have been classified into three types by relative motions between end-effectors of master and slave robots, which is concurrent cooperation, coupled synchronous cooperation and combined synchronous cooperation. Based on this classification, position /orientation constraints and joint velocity constraints are explored in-depth here. In order to validate the path planning method and the theoretical developments in motion constraints analysis, representative experiments based on two industrial robots, Motoman VA1400 and HP20, are provided at the end of the paper. The experimental results have proved both the effectiveness of the path planning method and the correctness of the constraints analysis.

  11. Analysis of means of improving the uncontrolled lateral motions of personal airplanes

    Science.gov (United States)

    Mckinney, Marion O , Jr

    1951-01-01

    A theoretical analysis has been made of means of improving the uncontrolled motions of personal airplanes. The purpose of this investigation was to determine whether such airplanes could be made to fly uncontrolled for an indefinite period of time without getting into dangerous attitudes and for a reasonable period of time (1 to 3 min) without deviating excessively from their original course. The results of this analysis indicated that the uncontrolled motions of a personal airplane could be made safe as regards spiral tendencies and could be greatly improved as regards maintenance of course without resort to an autopilot. The only way to make the uncontrolled motions completely satisfactory as regards continuous maintenance of course, however, is to use a conventional type of autopilot.

  12. Software functions for safe operation - learning from Sizewell-B

    International Nuclear Information System (INIS)

    Welbourne, D.

    1996-01-01

    Future nuclear plants will use computer-based systems extensively. Regulatory acceptance must be planned and not underestimated. Commercial software packages will simplify it, but costly analysis and demonstration may be needed. Multiplexed control needs preparation of extensive configuration data and careful checking. On-screen soft control will need consideration of the integrity of the control path. Display design should follow human factors analysis of the operators' needs, and display layout needs great care for clarity. Computer-based system with planned quality will then bring great benefits in safe operation. (author) 1 fig., 3 refs

  13. Strategies for safe motherhood.

    Science.gov (United States)

    Chatterjee, A

    1995-02-01

    The Safe Motherhood Initiative was launched in 1988 as a global effort to halve maternal mortality and morbidity by the year 2000. The program uses a combination of health and nonhealth strategies to emphasize the need for maternal health services, extend family planning services, and improve the status of women. The maternal mortality rate (per 100,000 live births) is 390 for the world, 20-30 for developed countries, 450 for developing countries, and 420 for Asia. This translates into 308,000 maternal deaths in Asia, of which 100,000 occur in India. The direct causes of maternal mortality include sepsis, hemorrhage, eclampsia, and ruptured uterus. Indirect causes occur when associated medical conditions, such as anemia and jaundice, are exacerbated by pregnancy. Underlying causes are ineffective health services, inadequate obstetric care, unregulated fertility, infections, illiteracy, early marriage, poverty, malnutrition, and ignorance. India's Child Survival and Safe Motherhood Program seeks to achieve immediate improvements by improving health care. Longterm improvements will occur as nutrition, income, education, and the status of women improve. Improvements in health care will occur in through the provision of 1) essential obstetric care for all women (which will be essentially designed for low-risk women), 2) early detection of complications during pregnancy and labor, and 3) emergency services. Services will be provided to pregnant women at their door by field staff, at a first referral hospital, perhaps at maternity villages where high risk cases can be housed in the latter part of their pregnancies, and through the continual accessibility of government vehicles. In addition, family planning services will be improved so that fertility regulation can have its expected beneficial effect on the maternal mortality rate. The professional health organizations in India will also play a vital role in the success of this effort to reduce maternal mortality.

  14. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)

    2015-06-15

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

  15. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    International Nuclear Information System (INIS)

    Tuvshinjargal, Doopalam; Lee, Deok Jin

    2015-01-01

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments

  16. Target Trailing With Safe Navigation With Colregs for Maritime Autonomous Surface Vehicles

    Science.gov (United States)

    Kuwata, Yoshiaki (Inventor); Wolf, Michael T. (Inventor); Zarzhitsky, Dimitri V. (Inventor); Aghazarian, Hrand (Inventor); Huntsberger, Terrance L. (Inventor); Howard, Andrew B. (Inventor)

    2014-01-01

    Systems and methods for operating autonomous waterborne vessels in a safe manner. The systems include hardware for identifying the locations and motions of other vessels, as well as the locations of stationary objects that represent navigation hazards. By applying a computational method that uses a maritime navigation algorithm for avoiding hazards and obeying COLREGS using Velocity Obstacles to the data obtained, the autonomous vessel computes a safe and effective path to be followed in order to accomplish a desired navigational end result, while operating in a manner so as to avoid hazards and to maintain compliance with standard navigational procedures defined by international agreement. The systems and methods have been successfully demonstrated on water with radar and stereo cameras as the perception sensors, and integrated with a higher level planner for trailing a maneuvering target.

  17. 76 FR 12719 - Safe Schools/Healthy Students Program; Office of Safe and Drug-Free Schools; Safe Schools/Healthy...

    Science.gov (United States)

    2011-03-08

    ... DEPARTMENT OF EDUCATION Safe Schools/Healthy Students Program; Office of Safe and Drug- Free Schools; Safe Schools/Healthy Students Program; Catalog of Federal Domestic Assistance (CFDA) Numbers: 84... priorities, requirements, and definitions under the Safe Schools/Healthy Students (SS/HS) program. Since...

  18. Special Needs: Planning for Adulthood (Videos)

    Medline Plus

    Full Text Available ... Staying Safe Videos for Educators Search English Español Special Needs: Planning for Adulthood (Video) KidsHealth / For Parents / Special Needs: Planning for Adulthood (Video) Print Young adults with ...

  19. Phantom investigation of 3D motion-dependent volume aliasing during CT simulation for radiation therapy planning

    International Nuclear Information System (INIS)

    Tanyi, James A; Fuss, Martin; Varchena, Vladimir; Lancaster, Jack L; Salter, Bill J

    2007-01-01

    To quantify volumetric and positional aliasing during non-gated fast- and slow-scan acquisition CT in the presence of 3D target motion. Single-slice fast, single-slice slow, and multi-slice fast scan helical CTs were acquired of dynamic spherical targets (1 and 3.15 cm in diameter), embedded in an anthropomorphic phantom. 3D target motions typical of clinically observed tumor motion parameters were investigated. Motion excursions included ± 5, ± 10, and ± 15 mm displacements in the S-I direction synchronized with constant displacements of ± 5 and ± 2 mm in the A-P and lateral directions, respectively. For each target, scan technique, and motion excursion, eight different initial motion-to-scan phase relationships were investigated. An anticipated general trend of target volume overestimation was observed. The mean percentage overestimation of the true physical target volume typically increased with target motion amplitude and decreasing target diameter. Slow-scan percentage overestimations were larger, and better approximated the time-averaged motion envelope, as opposed to fast-scans. Motion induced centroid misrepresentation was greater in the S-I direction for fast-scan techniques, and transaxial direction for the slow-scan technique. Overestimation is fairly uniform for slice widths < 5 mm, beyond which there is gross overestimation. Non-gated CT imaging of targets describing clinically relevant, 3D motion results in aliased overestimation of the target volume and misrepresentation of centroid location, with little or no correlation between the physical target geometry and the CT-generated target geometry. Slow-scan techniques are a practical method for characterizing time-averaged target position. Fast-scan techniques provide a more reliable, albeit still distorted, target margin

  20. Manipulator motion planning for high-speed robotic laser cutting

    OpenAIRE

    Dolgui , Alexandre; Pashkevich , Anatol

    2009-01-01

    Abstract Recent advances in laser technology, and especially the essential increase of the cutting speed, motivate amending the existing robot path methods, which do not allow the complete utilisation of the actuator capabilities as well as neglect some particularities in the mechanical design of the wrist of the manipulator arm. This research addresses the optimisation of the 6-axes robot motions for continuous contour tracking while considering the redundancy caused by the tool a...

  1. Securing VoIP keeping your VoIP network safe

    CERN Document Server

    (Bud) Bates, Regis J Jr

    2015-01-01

    Securing VoIP: Keeping Your VoIP Network Safe will show you how to take the initiative to prevent hackers from recording and exploiting your company's secrets. Drawing upon years of practical experience and using numerous examples and case studies, technology guru Bud Bates discusses the business realities that necessitate VoIP system security and the threats to VoIP over both wire and wireless networks. He also provides essential guidance on how to conduct system security audits and how to integrate your existing IT security plan with your VoIP system and security plans, helping you prevent

  2. Calculations on safe storage and transportation of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M; El-Messiry, A M; Amin, E [National Center for Nuclear Safety and Radiation Control and AEA, Cairo (Egypt)

    1997-12-31

    In this work the safe storage and transportation of fresh fuel as a radioactive material studied. Egypt planned ET RR 2 reactor which is of relatively high power and would require adequate handling and transportation. Therefore, the present work is initiated to develop a procedure for safe handling and transportation of radioactive materials. The possibility of reducing the magnitude of radiation transmitted on the exterior of the packages is investigated. Neutron absorbers are used to decrease the neutron flux. Criticality calculations are carried out to ensure the achievement of subcriticality so that the inherent safety can be verified. The discrete ordinate transport code ANISN was used. The results show good agreement with other techniques. 2 figs., 2 tabs.

  3. Configuration Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    Westinghouse Savannah River Company (WSRC) has established a configuration management (CM) plan to execute the SRS CM Policy and the requirements of the DOE Order 4700.1. The Reactor Restart Division (RRD) has developed its CM Plan under the SRS CM Program and is implementing it via the RRD CM Program Plan and the Integrated Action Plan. The purpose of the RRD CM program is to improve those processes which are essential to the safe and efficient operation of SRS production reactors. This document provides details of this plan

  4. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    Science.gov (United States)

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  5. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  6. Regulatory requirements on management of radioactive material safe transport in China

    International Nuclear Information System (INIS)

    Chu, C.

    2016-01-01

    Since 1980s, the IAEA Regulation for safe transport of radioactive material was introduced into China; the regulatory system of China began with international standards, and walked towards the institutionalized. In 2003 the National People’s Congress (NPC) promulgated “the Act on the Prevention of Radioactive Pollution of the People's Republic of China”. In 2009 “Regulation for the Safe Transport of Radioactive Material” (Referred to “Regulation”) was promulgated by the State Council. Subsequently, the National Nuclear Safety Administration (NNSA) began to formulate executive detailed department rules, regulations guidelines and standards. The present system of acts, regulations and standards on management of safe transport of radioactive material in China and future planning were introduced in this paper. Meanwhile, the paper described the specific administration requirements of the Regulation on classification management of radioactive materials, license management of transport packaging including design, manufacture and use, licensing management of transport activities and the provisions of illegal behaviors arising in safe transport of radioactive material. (author)

  7. New Design of Mobile Robot Path Planning with Randomly Moving Obstacles

    Directory of Open Access Journals (Sweden)

    T. A. Salih

    2013-05-01

    Full Text Available The navigation of a mobile robot in an unknown environment has always been a very challenging task. In order to achieve safe and autonomous navigation, the mobile robot needs to sense the surrounding environment and plans a collision-free path. This paper focuses on designing and implementing a mobile robot which has the ability of navigating smoothly in an unknown environment, avoiding collisions, without having to stop in front of obstacles, detecting leakage of combustible gases and transmitting a message of detection results to the civil defense unit automatically through the Internet to the E-mail. This design uses the implementation of artificial neural network (ANN on a new technology represented by Field Programmable Analog Array (FPAA for controlling the motion of the robot. The robot with the proposed controller is tested and has completed the required objective successfully.

  8. Implementing AORN recommended practices for a safe environment of care, part II.

    Science.gov (United States)

    Kennedy, Lynne

    2014-09-01

    Construction in and around a working perioperative suite is a challenge beyond merely managing traffic patterns and maintaining the sterile field. The AORN "Recommended practices for a safe environment of care, part II" provides guidance on building design; movement of patients, personnel, supplies, and equipment; environmental controls; safety and security; and control of noise and distractions. Whether the OR suite evolves through construction, reconstruction, or remodeling, a multidisciplinary team of construction experts and health care professionals should create a functional plan and communicate at every stage of the project to maintain a safe environment and achieve a well-designed outcome. Emergency preparedness, a facility-wide security plan, and minimization of noise and distractions in the OR also help enhance the safety of the perioperative environment. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  9. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  10. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Chen, Ting; Qin, Songbing; Xu, Xiaoting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning J.

    2014-01-01

    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  11. Leveraging respiratory organ motion for non-invasive tumor treatment devices: a feasibility study

    Science.gov (United States)

    Möri, Nadia; Jud, Christoph; Salomir, Rares; Cattin, Philippe C.

    2016-06-01

    In noninvasive abdominal tumor treatment, research has focused on minimizing organ motion either by gating, breath holding or tracking of the target. The paradigm shift proposed in this study takes advantage of the respiratory organ motion to passively scan the tumor. In the proposed self-scanning method, the focal point of the HIFU device is held fixed for a given time, while it passively scans the tumor due to breathing motion. The aim of this paper is to present a treatment planning method for such a system and show by simulation its feasibility. The presented planning method minimizes treatment time and ensures complete tumor ablation under free-breathing. We simulated our method on realistic motion patterns from a patient specific statistical respiratory model. With our method, we achieved a shorter treatment time than with the gold-standard motion-compensation approach. The main advantage of the proposed method is that electrically steering of the focal spot is no longer needed. As a consequence, it is much easier to find an optimal solution for both avoiding near field heating and covering the whole tumor. However, the reduced complexity on the beam forming comes at the price of an increased complexity on the planning side as well as a reduced efficiency in the energy distribution. Although we simulate the approach on HIFU, the idea of self-scanning passes over to other tumor treatment modalities such as proton therapy or classical radiation therapy.

  12. SU-F-T-560: Measurement of Dose Blurring Effect Due to Respiratory Motion for Lung Stereotactic Body Radiation Therapy (SBRT) Using Monte Carlo Based Calculation Algorithm

    International Nuclear Information System (INIS)

    Badkul, R; Pokhrel, D; Jiang, H; Lominska, C; Wang, F; Ramanjappa, T

    2016-01-01

    Purpose: Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. Methods: SBRT lung patients were planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. Results: To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0

  13. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  14. Symmetry Motion Classes; Cambridge Conference on School Mathematics Feasibility Study No. 40.

    Science.gov (United States)

    McLane, Lyn

    These materials were written with the aim of reflecting the thinking of The Cambridge Conference on School Mathematics (CCSM) regarding the goals and objectives for school mathematics. This document details the planning and response for each of ten lessons involving symmetry motions. The problems focused on (1) combining motions in a given order,…

  15. Adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion

    International Nuclear Information System (INIS)

    Webb, S

    2008-01-01

    This paper presents a technique for coping with variable intrafraction organ motion when delivering intensity-modulated radiation therapy (IMRT). The strategy is an adaptive delivery in which the fluence delivered up to a particular fraction is subtracted from the required total-course planned fluence to create an adapted residual fluence for the next fraction. This requires that the fluence already delivered can be computed, knowing the intrafraction motion during each fraction. If the adaptation is unconstrained, as would be required for perfect delivery of the planned fluence, then the individual fractional fluences would become unphysical, with both negative components and spikes. Hence it is argued that constraints must be applied; first, positivity constraints and second, constraints to limit fluence spikes. Additionally, it is shown to be helpful to constrain other quantities which are explained. The power of the strategy is that it adapts to the (potentially variable) moving geometry during each fraction. It is not a perfect delivery but it is always better than making no adaptation. The fractionated nature of radiation therapy is thus exploited to advantage. The fluence adaptation method does not require re-planning at each fraction but this imposes limitations which are stated. The fuller theory of dose adaptation is also developed for intrafraction motion. The method is complementary to other adaptive strategies recently discussed with respect to interfraction motion

  16. Target motion predictions for pre-operative planning during needle-based interventions

    NARCIS (Netherlands)

    op den Buijs, J.; Abayazid, Momen; de Korte, Chris L.; Misra, Sarthak

    During biopsies, breast tissue is subjected to displacement upon needle indentation, puncture, and penetration. Thus, accurate needle placement requires pre-operative predictions of the target motions. In this paper, we used ultrasound elastography measurements to non-invasively predict elastic

  17. Safe motherhood at risk?

    Science.gov (United States)

    Thompson, A

    1996-12-01

    Health professionals' negative attitudes toward clients often exacerbate the problems women face in terms of health status and access to health care. Thus, the health professionals can themselves be obstacles to women seeking the health care they need. A key challenge to midwives, in addition to providing technically competent services, is gaining insight into the people for whom they are responsible so that childbirth traditions are treated with respect and women are offered dignity. Safe motherhood requires intersectoral collaboration. Many innovative approaches to safe motherhood are based on the community's participation in planning services that meet the needs of women. Other approaches are based on decentralization of services. For example, a large university teaching hospital in Lusaka, Zambia, set up birthing centers around the city to take the pressure off the hospital. Midwives head up these centers, which are close to the women's homes. Decentralization of delivery services has improved the physical and emotional outcomes for mothers and newborns. Midwives must be prepared to articulate concerns about inequalities and deficiencies in the health care system in order to persuade the government to change. Women, including midwives, need to form multidisciplinary alliances to work together to effect change. The front-line workers in maternity care are midwives. They should adopt the following strategies to become even more effective in their efforts to make motherhood safer. They should listen to what women say about their needs. They should scale services to a manageable, human scale. They should learn the skills to become politically active advocates. They should work with other midwives, women, leaders, and other professional groups. Motherhood can be safe when women have more control over their own decision making, the education to liberate themselves to make their own decisions, and access to skilled care.

  18. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    International Nuclear Information System (INIS)

    Bowen, S R; Nyflot, M J; Meyer, J; Sandison, G A; Herrmann, C; Groh, C M; Wollenweber, S D; Stearns, C W; Kinahan, P E

    2015-01-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [ 18 F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/B mean ) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  19. Environmental protection Implementation Plan

    International Nuclear Information System (INIS)

    Holland, R. C.

    1999-01-01

    This ''Environmental Protection Implementation Plan'' is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California's commitment to conduct its operations in an environmentally safe and responsible manner. The ''Environmental Protection Implementation Plan'' helps management and staff comply with applicable environmental responsibilities

  20. Cone beam CT for organs motion evaluation in pediatric abdominal neuroblastoma

    International Nuclear Information System (INIS)

    Nazmy, Mohamed Soliman; Khafaga, Yasser; Mousa, Amr; Khalil, Ehab

    2012-01-01

    Background and purpose: To quantify the organ motion relative to bone in different breathing states in pediatric neuroblastoma using cone beam CT (CBCT) for better definition of the planning margins during abdominal IMRT. Methods and materials: Forty-two datasets of kV CBCT for 9 pediatric patients with abdominal neuroblastoma treated with IMRT were evaluated. Organs positions on planning CT scan were considered the reference position against which organs and target motions were evaluated. The position of the kidneys and the liver was assessed in all scans. The target movement was evaluated in four patients who were treated for gross residual disease. Results: The mean age of the patients was 4.1 ± 1.6 years. The range of target movement in the craniocaudal direction (CC) was 5 mm. In the CC direction, the range of movement was 10 mm for the right kidney, and 8 mm for the left kidney. Similarly, the liver upper edge range of motion was 11 mm while the lower edge range of motion was 13 mm. Conclusions: With the use of daily CBCT we may be able to reduce the PTV margin. If CBCT is not used daily, a wider margin is needed.

  1. 'SIP', as a tool of 'Ukrytie' shelter transformation into an ecologically safe system

    International Nuclear Information System (INIS)

    Dzhadd, K.; Shmidt, D.

    1999-01-01

    The Shelter implementation plan (SIP) was used for realisation of 'Ukrytie' stabilization and for its transformation into an ecologically safe system SIP includes logic of needed actions and process of solution adaption during 'Ukrytie' transformation

  2. Hybrid task priority-based motion control of a redundant free-floating space robot

    Directory of Open Access Journals (Sweden)

    Cheng ZHOU

    2017-12-01

    Full Text Available This paper presents a novel hybrid task priority-based motion planning algorithm of a space robot. The satellite attitude control task is defined as the primary task, while the least-squares-based non-strict task priority solution of the end-effector plus the multi-constraint task is viewed as the secondary task. Furthermore, a null-space task compensation strategy in the joint space is proposed to derive the combination of non-strict and strict task-priority motion planning, and this novel combination is termed hybrid task priority control. Thus, the secondary task is implemented in the primary task’s null-space. Besides, the transition of the state of multiple constraints between activeness and inactiveness will only influence the end-effector task without any effect on the primary task. A set of numerical experiments made in a real-time simulation system under Linux/RTAI shows the validity and feasibility of the proposed methodology. Keywords: Base attitude control, Hybrid task-priority, Motion planning, Multiple constraints, Redundant space robot

  3. A patient-specific planning target volume used in 'plan of the day' adaptation for interfractional motion mitigation

    International Nuclear Information System (INIS)

    Chen, Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a patient-specific planning target volume (PTV) to deal with interfractional variations, and test its feasibility in a retrospective treatment-planning study. Instead of using one planning image only, multiple scans are taken on different days. The target and organs at risk (OARs) are delineated on each images. The proposed PTV is generated from a union of those target contours on the planning images, excluding voxels of the OARs, and is denoted the PTV 'GP-OAR' (global prostate-organs at risk). The study is performed using 'plan of the day' adaptive workflow, which selects a daily plan from a library of plans based on a similarity comparison between the daily scan and planning images. The daily plans optimized for GP-OAR volumes are compared with those optimized for PTVs generated from a single prostate contour (PTV SP). Four CT serials of prostate cancer patient datasets are included in the test, and in total 28 fractions are simulated. The results show that the daily chosen GP-OAR plans provide excellent target coverage, with V95 values of the prostate mostly >95%. In addition, dose delivered to the OARs as calculated from applying daily chosen GP-OAR plans is slightly increased but comparable to that calculated from applying daily SP plans. In general, the PTV GP-OARs are able to cover possible target variations while keeping dose delivered to the OARs at a similar level to that of the PTV SPs. (author)

  4. Managing radioactive waste safely. Engaging Scotland

    International Nuclear Information System (INIS)

    Elrick, D.; Boyes, L.; McCormick, J.

    2002-01-01

    The report presents findings from a study to explore how best to engage the public and other stakeholders in decision-making processes on the safe management of radioactive waste. Scottish Council Foundation conducted extended focus groups with the Scottish public in 4 locations, as well as group and one-to-one interviews with stakeholders from the nuclear industry, environment non-governmental organisations (NGOs), bodies experienced in using other public engagement methods, Community Planning partners and media reporters. A review of literature on public involvement in radioactive waste issues and public engagement more generally was also conducted

  5. Community-level effect of the reproductive health vouchers program on out-of-pocket spending on family planning and safe motherhood services in Kenya.

    Science.gov (United States)

    Obare, Francis; Warren, Charlotte; Kanya, Lucy; Abuya, Timothy; Bellows, Ben

    2015-08-25

    Although vouchers can protect individuals in low-income countries from financial catastrophe and impoverishment arising from out-of-pocket expenditures on healthcare, their effectiveness in achieving this goal depends on whether both service and transport costs are subsidized as well as other factors such as service availability in a given locality and community perceptions about the quality of care. This paper examines the community-level effect of the reproductive health vouchers program on out-of-pocket expenditure on family planning, antenatal, delivery and postnatal care services in Kenya. Data are from two rounds of cross-sectional household surveys in voucher and non-voucher sites. The first survey was conducted between May 2010 and July 2011 among 2,933 women aged 15-49 years while the second survey took place between July and October 2012 among 3,094 women of similar age groups. The effect of the program on out-of-pocket expenditure is determined by difference-in-differences estimation. Analysis entails comparison of changes in proportions, means and medians as well as estimation of multivariate linear regression models with interaction terms between indicators for study site (voucher or non-voucher) and period of study (2010-2011 or 2012). There were significantly greater declines in the proportions of women from voucher sites that paid for antenatal, delivery and postnatal care services at health facilities compared to those from non-voucher sites. The changes were also consistent with increased uptake of the safe motherhood voucher in intervention sites over time. There was, however, no significant difference in changes in the proportions of women from voucher and non-voucher sites that paid for family planning services. The results further show that there were significant differences in changes in the amount paid for family planning and antenatal care services by women from voucher compared to those from non-voucher sites. Although there were greater

  6. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    Energy Technology Data Exchange (ETDEWEB)

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Wolf, Theresa K. [Live Oak Technologies LLC, Kirkwood, Missouri 63122 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States)

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  7. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    International Nuclear Information System (INIS)

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.

    2013-01-01

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1–1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90° (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT MLC

  8. A margin-based analysis of the dosimetric impact of motion on step-and-shoot IMRT lung plans

    International Nuclear Information System (INIS)

    Waghorn, Benjamin J; Shah, Amish P; Rineer, Justin M; Langen, Katja M; Meeks, Sanford L

    2014-01-01

    Intrafraction motion during step-and-shoot (SNS) IMRT is known to affect the target dosimetry by a combination of dose blurring and interplay effects. These effects are typically managed by adding a margin around the target. A quantitative analysis was performed, assessing the relationship between target motion, margin size, and target dosimetry with the goal of introducing new margin recipes. A computational algorithm was used to calculate 1,174 motion-encoded dose distributions and DVHs within the patient’s CT dataset. Sinusoidal motion tracks were used simulating intrafraction motion for nine lung tumor patients, each with multiple margin sizes. D 95% decreased by less than 3% when the maximum target displacement beyond the margin experienced motion less than 5 mm in the superior-inferior direction and 15 mm in the anterior-posterior direction. For target displacements greater than this, D 95% decreased rapidly. Targets moving in excess of 5 mm outside the margin can cause significant changes to the target. D 95% decreased by up to 20% with target motion 10 mm outside the margin, with underdosing primarily limited to the target periphery. Multi-fractionated treatments were found to exacerbate target under-coverage. Margins several millimeters smaller than the maximum target displacement provided acceptable motion protection, while also allowing for reduced normal tissue morbidity

  9. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study.

    Science.gov (United States)

    Bowen, S R; Nyflot, M J; Herrmann, C; Groh, C M; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-05-07

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude

  10. Prostate motion during standard radiotherapy as assessed by fiducial markers

    International Nuclear Information System (INIS)

    Raymond, Y.; Crook, J.M.; Salhani, D.; Yang, H.; Esche, B.

    1995-01-01

    From November 1993 to August 1994, 55 patients with localized prostate carcinoma had three gold seeds placed in the prostate under transrectal ultrasound guidance prior to the start of radiotherapy in order to track prostate motion. Patients had a planning CT scan before initial simulation and again at about 40 Gy, just prior to simulation of a field reduction. Seed position relative to fixed bony landmarks (pubic symphysis and both ischial tuberosities) was digitized from each pair of orthogonal films from the initial and boost simulation using the Nucletron brachytherapy planning system. Vector analysis was performed to rule out the possibility of independent seed migration within the prostate between the time of initial and boost simulation. Prostate motion was seen in the posterior (mean: 0.56 cm; SD: 0.41 cm) and inferior directions (mean: 0.59 cm; SD: 0.45 cm). The base of the prostate was displaced more than 1 cm posteriorly in 30% of patients and in 11% in the inferior direction. Prostate position is related to rectal and bladder filling. Distension of these organs displaces the prostate in an anterosuperior direction, with lesser degrees of filling allowing the prostate to move posteriorly and inferiorly. Conformal therapy planning must take this motion into consideration. Changes in prostate position of this magnitude preclude the use of standard margins

  11. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  12. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  13. Realistic respiratory motion margins for external beam partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Leigh; Quirk, Sarah [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Smith, Wendy L., E-mail: wendy.smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2015-09-15

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dose profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was

  14. Realistic respiratory motion margins for external beam partial breast irradiation

    International Nuclear Information System (INIS)

    Conroy, Leigh; Quirk, Sarah; Smith, Wendy L.

    2015-01-01

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dose profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was

  15. In Situ Surgery: Is It Safe ? (Experience with 60 cases) | El Sadat ...

    African Journals Online (AJOL)

    Conclusion: NSU is a safe place for performing in-situ surgery (ISS) without increased risk of infection. Successful operative intervention within NSU requires good planning and cooperation between anesthesiologist, surgeons, neonatologist and nursing staff. Maximum benefit is observed in neonates who have definite risk ...

  16. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  17. SU-F-J-124: Reduction in Dosimetric Impact of Motion Using VMAT Compared to IMRT in Hypofractionated Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, B; Xiong, J; Happersett, L; Mageras, G; Zhang, P; Hunt, M [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To quantify and compare the dosimetric impact of motion management correction strategies during VMAT and IMRT for hypofractionated prostate treatment. Methods: Two arc VMAT and 9 field IMRT plans were generated for two prostate cancer patients undergoing hypofractionated radiotherapy (7.5Gy × 5 and 8Gy × 5). 212 motion traces were retrospectively extracted from treatment records of prostate cancer patients with implanted Calypso beacons. Dose to the CTV and normal tissues was reconstructed for each trace and plan taking into account the actual treatment delivery time. Following motion correction scenarios were simulated: (1) VMAT plan – (a) No correction, (b) correction between arcs, (c) correction every 20 degrees of gantry rotation and (2) IMRT plan - (a) No correction,(b) correction between fields. Two mm action threshold for position correction was assumed. The 5–95% confidence interval (CI) range was extracted from the family of DVHs for each correction scenario. Results: Treatment duration for 8Gy plan (VMAT vs IMRT) was 3 vs 12 mins and for 7.5Gy plan was 3 vs 9 mins. In the absence of correction, the VMAT 5–−95% CI dose spread was, on average, less than the IMRT dose spread by 2% for CTVD95, 9% for rectalwall (RW) D1cc and 9% for bladderwall (BW) D53. Further, VMAT b/w arcs correction strategy reduced the spread about the planned value compared to IMRT b/w fields correction by: 1% for CTVD95, 2.6% for RW1cc and 2% for BWD53. VMAT 20 degree strategy led to greater reduction in dose spread compared to IMRT by: 2% for CTVD95, 4.5% for RW1cc and 6.7% for BWD53. Conclusion: In the absence of a correction strategy, the limited motion during VMAT’s shorter delivery times translates into less motion-induced dosimetric degradation than IMRT. Performing limited periodic motion correction during VMAT can yield excellent conformity to planned values that is superior to IMRT. This work was partially supported by Varian Medical Systems.

  18. Motion estimation of tagged cardiac magnetic resonance images using variational techniques

    Czech Academy of Sciences Publication Activity Database

    Carranza-Herrezuelo, N.; Bajo, A.; Šroubek, Filip; Santamarta, C.; Cristóbal, G.; Santos, A.; Ledesma-Carbayo, M.J.

    2010-01-01

    Roč. 34, č. 6 (2010), s. 514-522 ISSN 0895-6111 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging processing * motion estimation * variational techniques * tagged cardiac magnetic resonance images * optical flow Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.110, year: 2010 http://library.utia.cas.cz/separaty/2010/ZOI/sroubek- motion estimation of tagged cardiac magnetic resonance images using variational techniques.pdf

  19. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    International Nuclear Information System (INIS)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-01-01

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation's first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities

  20. Motion Planning and Task Assignment for Unmanned Aerial Vehicles Cooperating with Unattended Ground Sensors

    Science.gov (United States)

    2014-10-24

    constraints on its motion. This problem was formalized as the Dubins travelling salesman problem (TSP). In the second phase of the research we have...given constraints on its motion. This problem was formalized as the Dubins travelling salesman problem (TSP). The contributions of the study in the...assumptions were made on the magnitude of the intercity distances. The two algorithms complement each other in terms of their range of applicability

  1. Safe Kids Worldwide

    Science.gov (United States)

    ... Blog Videos Newsletter facebook twitter instagram pinterest gplus youtube Search Menu Why It Matters Who We Are What We Do Find Your Safe Kids Safe Kids Day Main menu Keeping All Kids Safe Safety Tips Get Involved 4 Star Charity Donate Text Burns and Scalds 4 tips ...

  2. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  3. Safe transport of radioactive material

    International Nuclear Information System (INIS)

    1990-01-01

    Recently the Agency redefined its policy for education and training in radiation safety. The emphasis is now on long-term strategic planning of general education and training programmes. In line with this general policy the Agency's Standing Advisory Group for the Safe Transport of Radioactive Material (SAGSTRAM) in its 7th meeting (April 1989) agreed that increased training activity should be deployed in the area of transport. SAGSTRAM specifically recommended the development of a standard training programme on this subject area, including audio-visual aids, in order to assist Member States in the implementation of the Agency's Regulations for the Safe Transport of Radioactive Material. This training programme should be substantiated by a biennial training course which is thought to be held either as an Interregional or a Regional Course depending on demand. This training manual, issued as a first publication in the Training Course Series, represents the basic text material for future training courses in transport safety. The topic areas covered by this training manual and most of the texts have been developed from the course material used for the 1987 Bristol Interregional Course on Transport Safety. The training manual is intended to give guidance to the lecturers of a course and will be provided to the participants for retention. Refs, figs and tabs

  4. Unique and massive Chernobyl cranes for deconstruction activities in the new safe confinement

    International Nuclear Information System (INIS)

    Parameswaran, N. A. Vijay; Chornyy, Igor; Owen, Rob; Saint Victor, Francois de

    2013-01-01

    On 26 April 1986, the worst nuclear power plant accident in history occurred at the Chernobyl plant in Ukraine (then part of the Soviet Union). The destruction of Unit 4 sent highly radioactive fallout over Belarus, Russia, Ukraine, and Europe. The object shelter-a containment sarcophagus-was built in November 1986 to limit exposure to radiation. However, it has only a planned 25-year lifespan and would probably not survive even a moderate seismic event in a region that has more than its share of such events. It was time to take action. One of the largest tasks that are in progress is the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant Unit. One of the major mechanical handling systems to be installed in the new safe confinement is the Main Cranes System. The planned decontamination and decommissioning or dismantling activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the new safe confinement, will require large and sophisticated cranes. The article will focus on the current progress of the new safe confinement and of the main cranes system for the decommissioning or dismantling activities. (authors)

  5. Unique and massive Chernobyl cranes for deconstruction activities in the new safe confinement

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, N. A. Vijay; Chornyy, Igor [Bechtel Systems and Infrastructure, Inc., Chernobyl Project-SIP-PMU, 7/1, Gvardeyskoy div. Str., Kiev Region, Slavutich, 07101 (Ukraine); Owen, Rob [PaR Systems, Inc., 707 Country Road E West, Shoreview, Minnesota 55126-7007 (United States); Saint Victor, Francois de [Bouygues Travaux Publics Challenger, 1, avenue Eugene Freyssinet, Guyancourt, 78601 St-Quentin-en-Yvelines (France)

    2013-07-01

    On 26 April 1986, the worst nuclear power plant accident in history occurred at the Chernobyl plant in Ukraine (then part of the Soviet Union). The destruction of Unit 4 sent highly radioactive fallout over Belarus, Russia, Ukraine, and Europe. The object shelter-a containment sarcophagus-was built in November 1986 to limit exposure to radiation. However, it has only a planned 25-year lifespan and would probably not survive even a moderate seismic event in a region that has more than its share of such events. It was time to take action. One of the largest tasks that are in progress is the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant Unit. One of the major mechanical handling systems to be installed in the new safe confinement is the Main Cranes System. The planned decontamination and decommissioning or dismantling activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the new safe confinement, will require large and sophisticated cranes. The article will focus on the current progress of the new safe confinement and of the main cranes system for the decommissioning or dismantling activities. (authors)

  6. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems

    Science.gov (United States)

    Panettieri, Vanessa; Wennberg, Berit; Gagliardi, Giovanna; Amor Duch, Maria; Ginjaume, Mercè; Lax, Ingmar

    2007-07-01

    The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm-3) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle3 (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate

  7. Safe Zones for Shock-Protection of Fragile Components during Impact-Induced Clatter

    Directory of Open Access Journals (Sweden)

    Suresh Goyal

    2002-01-01

    Full Text Available Clattering motion that occurs when flat objects strike the ground at an oblique angle is studied through a simple, tractable, model of a rigid bar with arbitrary, but symmetric, mass distribution and coefficient of restitution. The maximum velocity changes, or velocity shocks, that occur at various locations of the bar as it clatters to rest, are presented. It is shown that different parts of the bar can be subjected to sequences of velocity changes that are both higher, and lower, than those encountered in a single clatter-free impact. The implication that the drop-tolerance of an electronic product can be increased by configuring it to have ‘safe zones’ – where the velocity shocks are lower – for the placement of fragile components, is analysed. It is shown, through example, that a significant safe zone can be created in the center of the product by configuring it to have a low moment of inertia and by minimizing coefficient of restitution.

  8. Collision-free motion coordination of heterogeneous robots

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Nak Yong [Chosun University, Gwangju (Korea, Republic of); Seo, Dong Jin [RedOne Technologies, Gwangju (Korea, Republic of); Simmons, Reid G. [Carnegie Mellon University, Pennsylvania (United States)

    2008-11-15

    This paper proposes a method to coordinate the motion of multiple heterogeneous robots on a network. The proposed method uses prioritization and avoidance. Priority is assigned to each robot; a robot with lower priority avoids the robots of higher priority. To avoid collision with other robots, elastic force and potential field force are used. Also, the method can be applied separately to the motion planning of a part of a robot from that of the other parts of the robot. This is useful for application to the robots of the type mobile manipulator or highly redundant robots. The method is tested by simulation, and it results in smooth and adaptive coordination in an environment with multiple heterogeneous robots

  9. Collision-free motion coordination of heterogeneous robots

    International Nuclear Information System (INIS)

    Ko, Nak Yong; Seo, Dong Jin; Simmons, Reid G.

    2008-01-01

    This paper proposes a method to coordinate the motion of multiple heterogeneous robots on a network. The proposed method uses prioritization and avoidance. Priority is assigned to each robot; a robot with lower priority avoids the robots of higher priority. To avoid collision with other robots, elastic force and potential field force are used. Also, the method can be applied separately to the motion planning of a part of a robot from that of the other parts of the robot. This is useful for application to the robots of the type mobile manipulator or highly redundant robots. The method is tested by simulation, and it results in smooth and adaptive coordination in an environment with multiple heterogeneous robots

  10. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    Science.gov (United States)

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the

  11. Modelling, Simulation and Testing of a Reconfigurable Cable-Based Parallel Manipulator as Motion Aiding System

    Directory of Open Access Journals (Sweden)

    Gianni Castelli

    2010-01-01

    Full Text Available This paper presents results on the modelling, simulation and experimental tests of a cable-based parallel manipulator to be used as an aiding or guiding system for people with motion disabilities. There is a high level of motivation for people with a motion disability or the elderly to perform basic daily-living activities independently. Therefore, it is of great interest to design and implement safe and reliable motion assisting and guiding devices that are able to help end-users. In general, a robot for a medical application should be able to interact with a patient in safety conditions, i.e. it must not damage people or surroundings; it must be designed to guarantee high accuracy and low acceleration during the operation. Furthermore, it should not be too bulky and it should exert limited wrenches after close interaction with people. It can be advisable to have a portable system which can be easily brought into and assembled in a hospital or a domestic environment. Cable-based robotic structures can fulfil those requirements because of their main characteristics that make them light and intrinsically safe. In this paper, a reconfigurable four-cable-based parallel manipulator has been proposed as a motion assisting and guiding device to help people to accomplish a number of tasks, such as an aiding or guiding system to move the upper and lower limbs or the whole body. Modelling and simulation are presented in the ADAMS environment. Moreover, experimental tests are reported as based on an available laboratory prototype.

  12. "Same Room, Safe Place".

    Science.gov (United States)

    Keene Woods, Nikki

    2017-04-01

    There are many different professional stances on safe sleep and then there is the reality of caring for a newborn. There is a debate among professionals regarding safe sleep recommendations. The continum of recommendations vary from the American Academy of Pediatrics (AAP) Safe Sleep Guidelines to the bed-sharing recommendations from the Mother-Baby Behavioral Sleep Laboratory. The lack of consistent and uniform safe sleep recommendations from health professionals has been confusing for families but has more recently raised a real professional ethical dilemma. Despite years of focused safe sleep community education and interventions, sleep-related infant deaths are on the rise in many communities. This commentary calls for a united safe sleep message from all health professionals to improve health for mothers and infants most at-risk, "Same Room, Safe Place."

  13. The use of active breathing control (ABC) to reduce margin for breathing motion

    International Nuclear Information System (INIS)

    Wong, John W.; Sharpe, Michael B.; Jaffray, David A.; Kini, Vijay R.; Robertson, John M.; Stromberg, Jannifer S.; Martinez, Alavro A.

    1999-01-01

    Purpose: For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. Methods and Materials: An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable

  14. A method for evaluation of proton plan robustness towards inter-fractional motion applied to pelvic lymph node irradiation

    DEFF Research Database (Denmark)

    Andersen, Andreas G; Casares-Magaz, Oscar; Muren, Ludvig P

    2015-01-01

    of the pelvic lymph nodes (LNs) from different beam angles. Patient- versus population-specific patterns in dose deterioration were explored. MATERIAL AND METHODS: Patient data sets consisting of a planning computed tomography (pCT) as well as multiple repeat CT (rCT) scans for three patients were used......BACKGROUND: The benefit of proton therapy may be jeopardized by dose deterioration caused by water equivalent path length (WEPL) variations. In this study we introduced a method to evaluate robustness of proton therapy with respect to inter-fractional motion and applied it to irradiation...... in deterioration patterns were found for the investigated patients, with beam angles delivering less dose to rectum, bladder and overall normal tissue identified around 40° and around 150°-160° for the left LNs, and corresponding angles for the right LNs. These angles were also associated with low values of WEPL...

  15. Rectal Balloon for the Immobilization of the Prostate Internal Motion

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Beak, Jong Geal; Kim, Joo Ho; Jeon, Byong Chul; Cho, Jeong Hee; Kim, Dong Wook; Song, Tae Soo; Cho, Jae Ho; Na, Soo Kyong

    2005-01-01

    The using of endo-rectal balloon has proposed as optimal method that minimized the motion of prostate and the dose of rectum wall volume for treated prostate cancer patients, so we make the customized rectal balloon device. In this study, we analyzed the efficiency of the Self-customized rectal balloon in the aspects of its reproducibility. In 5 patients, for treatment planning, each patient was acquired CT slice images in state of with and without rectal balloon. Also they had CT scanning same repeated third times in during radiation treatment (IMRT). In each case, we analyzed the deviation of rectal balloon position and verified the isodose distribution of rectum wall at closed prostate. Using the rectal balloon, we minimized the planning target volume (PTV) by decreased the internal motion of prostate and overcome the dose limit of radiation therapy in prostate cancer by increased the gap between the rectum wall and high dose region. The using of rectal balloon, although, was reluctant to treat by patients. View a point of immobilization of prostate internal motion and dose escalation of GTV (gross tumor volume), its using consider large efficient for treated prostate cancer patients.

  16. Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles

    Science.gov (United States)

    Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.

    2013-01-01

    This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.

  17. The Pennsylvania State University Light Water Ultra-Safe Plant Concept: 3rd quarter progress report

    International Nuclear Information System (INIS)

    Klevans, E.

    1987-01-01

    Progress in the Ultra Safe study has substantially increased since the last report. The search for pressurizing pump turbine component information is now complete and a final plant layout for detailed evaluation has been chosen. Significant results for the normal operation performance of the Ultra Safe pressurizing technique are included. The plan of attack for the evaluation of the Ultra Safe shutdown scenario and natural circulation capability is discussed. This process is expected to be the next key area for analysis. The reactor design is complete including a change to alleviate the need for a soluble boron system. Material on the reactor building layout is also provided

  18. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  19. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-01-01

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  20. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system

    International Nuclear Information System (INIS)

    Li, X. Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-01

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy

  1. Effective motion design applied to energy-efficient handling processes

    Energy Technology Data Exchange (ETDEWEB)

    Brett, Tobias

    2013-10-01

    Industrial robots are available in a large variety of mechanical alternatives regarding size, motor power, link length ratio or payload. The four major types of serial kinematics dominating the market are complemented by various parallel kinematics for special purpose. In contrast, few other path planning alternatives are applied in industrial robotics which are based on similar analytic solution principles. The objective of this thesis is to develop a systematic design method for artifacts in motion, to integrate motion design and mechanical design to enable new processes for production. For each design, a theoretical benchmark is developed, which cannot be attained by conventional robots in principle. A key performance indicator enables to measure the degree of goal achievement towards the benchmark during all design phases. Motion behaviors are identified on a local level by dynamic systems modeling and are integrated into new global behavior featuring a new quality, suitable for exceeding the design benchmark in industrial processes. Two exemplary handling robot designs are presented. The first concept enables motion behavior to consume less electrical power than kinetic energy transferred to and from its payload during motion. The second concept enables motion with four degrees of freedom by single motor stimulation, reducing idle power consumption on factor 4 towards conventional robots.

  2. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  3. FFTF reactor plant procedures plan

    International Nuclear Information System (INIS)

    1972-01-01

    The document presented defines the plan to be used to coordinate the preparation, review, approval, and issuance of the operating procedure documents required to ensure safe and efficient operation of FFTF

  4. Computed tomography in therapy planning: Abdominal region

    International Nuclear Information System (INIS)

    Munzenrider, J.E.

    1983-01-01

    The radiotherapy community is continuing to appreciate the significant contribution CBT can make to planning abdominal radiotherapy and is also beginning to appreciate the pitfalls and limitations of the technique. Specific attention should continue to focus on patient registration with the scanner and simulator radiographs, patient position during scanning and treatment, and effects of involuntary patient motion, especially breathing, on organ and tumor localization. Effects of patient positional changes and of involuntary motion during treatment on treatment planning and execution should be quantitated, as should effects of inhomogeneities, especially gut air, on abdominal dose distribution. Radiotherapy planned with CBT data can impact significantly on morbidity and mortality associated with abdominal malignancies. Faster scanners (with a scanning time of 9 sec or less) should be employed where possible to obtain maximum diagnostic information. Multiplanar reconstruction and true three-dimensional treatment planning can enhance significantly the value of CBT in treatment planning. Radiotherapists, radiodiagnosticians, radiation physicists, and oncologists must be continue to meet the challenge of realizing the true potential of CBT for the benefit of the cancer patients entrusted to their care

  5. The struggle for safe nuclear expansion in China

    International Nuclear Information System (INIS)

    Xu, Y.C.

    2014-01-01

    After a temporary halt following the Fukushima nuclear disaster in March 2011, China resumed its fast, yet cautious, expansion of nuclear energy programme. Nuclear energy is considered as part of the general strategy to deal with the challenges of energy security and climate change and to advance with ‘state of the art’ technology in its development. This article briefly discusses recent development in and driving forces behind nuclear industry in China, and several challenges it has been facing: how to adopt, adapt, standardise and indigenise whose technologies, and how to address the shortage of qualified nuclear engineers, scientists, skilled labour force and qualified regulators. More importantly, it argues that safe and secure nuclear development requires consistent policies and effective regulations. Therefore, it is crucial to build policy and regulatory capacities based on coordination, planning and management of government agencies and the industry. - Highlights: • Nuclear energy development in China. • Nuclear technology selection. • Human capital. • Regulatory regime. • Safe and secure development

  6. Radiotherapy of tumors under respiratory motion. Estimation of the motional velocity field and dose accumulation based on 4D image data

    International Nuclear Information System (INIS)

    Werner, Rene

    2013-01-01

    Respiratory motion represents a major challenge in radiation therapy in general, and especially for the therapy of lung tumors. In recent years and due to the introduction of modern techniques to 'acquire temporally resolved computed tomography images (4D CT images), different approaches have been developed to explicitly account for breathing motion during treatment. An integral component of such approaches is the concept of motion field estimation, which aims at a mathematical description and the computation of the motion sequences represented by the patient's images. As part of a 4D dose calculation/dose accumulation, the resulting vector fields are applied for assessing and accounting for breathing-induced effects on the dose distribution to be delivered. The reliability of related 4D treatment planning concepts is therefore directly tailored to the precision of the underlying motion field estimation process. Taking this into account, the thesis aims at developing optimized methods for the estimation of motion fields using 4D CT images and applying the resulting methods for the analysis of breathing induced dosimetric effects in radiation therapy. The thesis is subdivided into three parts that thematically build upon each other. The first part of the thesis is about the implementation, evaluation and optimization of methods for motion field estimation with the goal of precisely assessing respiratory motion of anatomical and pathological structures represented in a patient's 4D er image sequence; this step is the basis of subsequent developments and analysis parts. Especially non-linear registration techniques prove to be well suited to this purpose. After being optimized for the particular problem at hand, it is shown as part of an extensive multi-criteria evaluation study and additionally taking into account publicly accessible evaluation platforms that such methods allow estimating motion fields with subvoxel accuracy - which means that the developed methods

  7. Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails. Does target motion differ between superior and inferior portions of the clinical target volume

    International Nuclear Information System (INIS)

    Verma, Vivek; Zhou, Sumin; Enke, Charles A.; Wahl, Andrew O.; Chen, Shifeng

    2017-01-01

    Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV). Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left-right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: ''total PB-CTV motion'' represented total shifts from skin tattoos to RTOG-defined anatomic areas; ''PB-CTV target motion'' (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone). Mean (± standard deviation, SD) total PB-CTV motion was -1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction. There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV. (orig.) [de

  8. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  9. Representation of bidirectional ground motions for design spectra in building codes

    Science.gov (United States)

    Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.

    2011-01-01

    The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.

  10. 4D modeling and estimation of respiratory motion for radiation therapy

    CERN Document Server

    Lorenz, Cristian

    2013-01-01

    Respiratory motion causes an important uncertainty in radiotherapy planning of the thorax and upper abdomen. The main objective of radiation therapy is to eradicate or shrink tumor cells without damaging the surrounding tissue by delivering a high radiation dose to the tumor region and a dose as low as possible to healthy organ tissues. Meeting this demand remains a challenge especially in case of lung tumors due to breathing-induced tumor and organ motion where motion amplitudes can measure up to several centimeters. Therefore, modeling of respiratory motion has become increasingly important in radiation therapy. With 4D imaging techniques spatiotemporal image sequences can be acquired to investigate dynamic processes in the patient’s body. Furthermore, image registration enables the estimation of the breathing-induced motion and the description of the temporal change in position and shape of the structures of interest by establishing the correspondence between images acquired at different phases of the br...

  11. Psychomotor skills assessment by motion analysis in minimally invasive surgery on an animal organ.

    Science.gov (United States)

    Hofstad, Erlend Fagertun; Våpenstad, Cecilie; Bø, Lars Eirik; Langø, Thomas; Kuhry, Esther; Mårvik, Ronald

    2017-08-01

    A high level of psychomotor skills is required to perform minimally invasive surgery (MIS) safely. To be able to measure these skills is important in the assessment of surgeons, as it enables constructive feedback during training. The aim of this study was to test the validity of an objective and automatic assessment method using motion analysis during a laparoscopic procedure on an animal organ. Experienced surgeons in laparoscopy (experts) and medical students (novices) performed a cholecystectomy on a porcine liver box model. The motions of the surgical tools were acquired and analyzed by 11 different motion-related metrics, i.e., a total of 19 metrics as eight of them were measured separately for each hand. We identified for which of the metrics the experts outperformed the novices. In total, two experts and 28 novices were included. The experts achieved significantly better results for 13 of the 19 instrument motion metrics. Expert performance is characterized by a low time to complete the cholecystectomy, high bimanual dexterity (instrument coordination), a limited amount of movement and low measurement of motion smoothness of the dissection instrument, and relatively high usage of the grasper to optimize tissue positioning for dissection.

  12. [Towards safe motherhood. World Health Day].

    Science.gov (United States)

    Plata, M I

    1998-06-01

    The objective of the 'safe motherhood' initiative is to reduce maternal mortality by 50% by the year 2000. A strong policy is needed to permit development of national and international programs. The lifetime risk of death from causes related to complications of pregnancy is estimated at 1/16 in Africa, 1/65 in Asia, 1/130 in Latin America and the Caribbean, 1/1400 in Europe, and 1/3700 in North America. A minimum of 585,000 women die of maternal causes each year, with nearly 90% of the deaths occurring in Asia and Africa. Approximately 50 million women suffer from illnesses related to childbearing. A principal cause of maternal mortality is lack of medical care during labor, delivery, and the postpartum period. Motherhood will become safe if governments, multilateral and bilateral funding agencies, and nongovernmental organizations give it the high priority it requires. Women also die because they lack rights. Their reduced decision-making power and inequitable access to family and social resources prevents them from overcoming barriers to health care. Women die when they begin childbearing at a very young age, yet an estimated 11% of births throughout the world each year are to adolescents. Adolescents have very limited access to family planning, either through legal restrictions or obstacles created by family planning workers. Maternal deaths would be avoided if all births were attended by trained health workers; an estimated 60 million births annually are not. Prevention of unwanted pregnancy and, thus, of the 50 million abortions estimated to take place each year would avoid over 200 maternal deaths each day. Unsafe abortions account for 13% of maternal deaths. The evidence demonstrates that rates of unsafe abortion and abortion mortality are higher where laws are more restrictive.

  13. DroidSafe

    Science.gov (United States)

    2016-12-01

    Massachusetts Avenue, Build E19-750 Cambridge , MA 02139-4307 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS...Activity objects illustrating the challenges of points-to and information flow analysis...measure how many malicious flows Droid- Safe was able to detect). As these results illustrate , DroidSafe implements an analysis of unprece- dented

  14. DMLC motion tracking of moving targets for intensity modulated arc therapy treatment

    DEFF Research Database (Denmark)

    Zimmerman, Jens; Korreman, Stine; Persson, Gitte

    2009-01-01

    (DMLC). The aim of this work was to evaluate the dose delivered to moving targets using the RapidArc (Varian Medical Systems, Inc.) technology with and without a DMLC tracking algorithm. MATERIAL AND METHODS: A Varian Clinac iX was equipped with a preclinical RapidArc and a 3D DMLC tracking application......) and state (1). CONCLUSIONS: DMLC tracking together with RapidArc make a feasible combination and is capable of improving the dose distribution delivered to a moving target. It seems to be of importance to minimize noise influencing the tracking, to gain the full benefit from the application........ A motion platform was placed on the couch, with the detectors on top: a PTW seven29 and a Scandidos Delta4. One lung plan and one prostate plan were delivered. Motion was monitored using a Real-time Position Management (RPM) system. Reference measurements were performed for both plans with both detectors...

  15. Removal Action Work Plan for 105-DR and 105-F Building Interim Safe Storage Projects and Ancillary Buildings

    International Nuclear Information System (INIS)

    Morton, M.R.

    2000-01-01

    This document contains the removal action work plan for the 105-DR and 105-F Reactor buildings and ancillary facilities. These buildings and facilities are located in the 100-D/DR and 100-F Areas of the Hanford Site, which is owned and operated by the US Department of Energy (DOE), in Benton County, Washington. The 100 Areas (including the 100-D/DR and 100-F Areas) of the Hanford Site were placed on the US Environmental Protection Agency's (EPA's) National Priorities List under the ''Comprehensive Environmental Response, Compensation, and Liability Act of 1980'' (CERCLA). The DOE has determined that hazardous substances in the 105-DR and 105-F Reactor buildings and four ancillary facilities present a potential threat to human health or the environment. The DOE has also determined that a non-time critical removal action is warranted at these facilities. Alternatives for conducting a non-time critical removal action were evaluated in the ''Engineering Evaluation/Cost Analysis for the 105-DR and 105-F Reactor Facilities and Ancillary Facilities'' (DOE-RL 1998a). The engineering evaluation/cost analysis (EE/CA) resulted in the recommendation to decontaminate and demolish the contaminated reactor buildings (except for the reactor blocks) and the ancillary facilities and to construct a safe storage enclosure (SSE) over the reactor blocks. The recommendation was approved in an action memorandum (Ecology et al. 1998) signed by the Washington State Department of Ecology (Ecology), EPA, and DOE. The DOE is the agency responsible for implementing the removal actions in the 105-D/DR and 105-F Areas. Ecology is the lead regulatory agency for facilities in the 100-D/DR Area, and EPA is the lead regulatory agency for facilities in the 100-F Area. The term ''lead regulator agency'' hereinafter, refers to these authorities. This removal action work plan supports implementation of the non-time critical removal action

  16. Safe havens in Europe

    DEFF Research Database (Denmark)

    Paldam, Martin

    2013-01-01

    Eleven safe havens exist in Europe providing offshore banking and low taxes. Ten of these states are very small while Switzerland is moderately small. All 11 countries are richer than their large neighbors. It is shown that causality is from small to safe haven to wealth, and that theoretically...... equilibriums are likely to exist where a certain regulation is substantially lower in a small country than in its big neighbor. This generates a large capital inflow to the safe havens. The pool of funds that may reach the safe havens is shown to be huge. It is far in excess of the absorptive capacity...... of the safe havens, but it still explains, why they are rich. Microstates offer a veil of anonymity to funds passing through, and Switzerland offers safe storage of funds....

  17. Traveling Safely with Medicines

    Science.gov (United States)

    ... Medications Safely My Medicine List How to Administer Traveling Safely with Medicines Planes, trains, cars – even boats ... your trip, ask your pharmacist about how to travel safely with your medicines. Make sure that you ...

  18. The safe road transport system approach

    Directory of Open Access Journals (Sweden)

    Vollpracht Hans-Joachim

    2016-07-01

    Full Text Available More than 1,24 million people die each year on the worlds roads and between 20 to 50 million suffer from nonfatal injuries. The UN Road Safety Collaboration Meetings under the leadership of WHO developed the Programme for the Decade of Actions for road safety taking nations into the responsibility of improving their accident figures by the five pillars of a national Road Safety Policy, safer Roads, safer Vehicles, safer Road Users and Post Crash Care. It is this Safe System Approach that takes into consideration the land use, infrastructure and transport planning, road user’s abilities and limitations and the close cooperation of all governmental and none governmental stakeholders involved.

  19. Comprehensive training structure for the safe transport of radioactive materials in Switzerland

    International Nuclear Information System (INIS)

    Pfeiffer, H.J.; Smith, L.

    1993-01-01

    The introduction of the 1985 IAEA Regulations for the Safe Transport of Radioactive Materials into Swiss national dangerous goods transport regulations has induced significant changes to the national radiation protection regulations. The combination of these two sets of regulatory requirements has in turn given rise to a major expansion in the national training infrastructure for the safe transport of RAM material. The established nationally recognized courses for vehicle drivers in accordance with national and regional regulations is now supplemented by an IAEA level 2 course for managers and responsible persons with consignors and shippers. A new IAEA level 3 course specifically for inspectors carrying out inspections during shipment is planned to commence in 1993. National one day general information seminars on RAM transportation are now an established part of the training scenario in Switzerland. Commencing in 1992, annual two day seminars for supervising authority inspectors involved in organizational compliance assurance are planned. Experience to date for this significantly increased activity in training has been that of enthusiastic cooperation between all parties concerned. (J.P.N.)

  20. A model of ATL ground motion for storage rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Walker, Nicholas J.

    2003-01-01

    Low emittance electron storage rings, such as those used in third generation light sources or linear collider damping rings, rely for their performance on highly stable alignment of the lattice components. Even if all vibration and environmental noise sources could be suppressed, diffusive ground motion will lead to orbit drift and emittance growth. Understanding such motion is important for predicting the performance of a planned accelerator and designing a correction system. A description (known as the ATL model) of ground motion over relatively long time scales has been developed and has become the standard for studies of the long straight beamlines in linear colliders. Here, we show how the model may be developed to include beamlines of any geometry. We apply the model to the NLC and TESLA damping rings, to compare their relative stability under different conditions

  1. Risk Management Plan for Tank Farm Restoration and Safe Operations, Project W-314

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    The Risk Management Plan for Project W-314 describes the systems, processes and procedures for implementation of applicable risk management practices described in HNF-0842, Volume IV, Section 2.6, ''Risk Management''. This plan is tailored specifically for use by Project W-314

  2. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, R.L.

    1995-08-01

    This document describes the plans of the Hanford Site for the safe interim storage of fissile materials. Currently, spent nuclear fuels reside in storage basins that have leaked in the past and are projected to leak in the future. Other problems in the basins include; sludge from decomposition, degraded cladding of fuel elements, and construction defects which make the basins seismically unsafe. This management plan describes the time and cost that it will take to implement a safe interim storage plan for the fissile materials.

  3. Relief Plans Spurring Debate over Vouchers

    Science.gov (United States)

    Robelen, Erik W.

    2005-01-01

    Washington is a safe distance from the powerful winds that have wreaked havoc on the Gulf Coast, but a political storm continued to brew in the capital over President Bush's plan to help pay the costs of private school tuition for students displaced by Hurricane Katrina. As voucher opponents decried the president's plan, Louisiana's two U.S.…

  4. Safe management of spent radiation source

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Valdezco, E.M.; Choi, Kwang-Sub

    2003-01-01

    Presented are 8 investigation reports concerning the safe management of spent radiation source (SRS) during the current 2 years. Four reports from Japan are: Scheme for SRS management (approach and present status of the SRS management and consideration toward solving problems); Current International Atomic Energy Agency (IAEA) activities related to safety of radiation sources (Chronology of action plan development, Outline of revised action plan, and Asian regional activities); Current status of SRS management in Japan (Regulation system, Obligations of licensed users, Regulatory system on sealed sources, Status in the incidents on sources occurred, Incident of source loss, and Incidents of orphan sources); and SRS management system in Japan (Current status of using of sealed sources, collection system of SRS-Japan Radioisotope Association (JRIA) services, and Disposal of SRS). Four reports from the Asian countries also concern the current statuses of SRS management in the Philippine (Radioactive waste sources, Waste management strategies, Conditioning of Ra sources, Ra project action plan, as low as reasonably achievable (ALARA) program, Dose assessment, Regulations on radioactive waste, Action plan on the safety and security of sources, IAEA Regional Demonstration Centers, and sitting studies for a near surface disposal facility); Thailand (Current status of using sealed sources, Inventory of SRS, and Current topics of SRS management); Indonesia (Principles of management of radiation sources, Legislative framework of SRS management practices, Regulatory on SRS, management of sealed SRS, management hurdles, and reported incidents); and Korea (Regulatory frame work, Collection systems of SRS, Radioisotope waste generation, Radiation exposure incident, and Scrap monitoring system). (N.I.)

  5. A margin model to account for respiration-induced tumour motion and its variability

    International Nuclear Information System (INIS)

    Coolens, Catherine; Webb, Steve; Evans, Phil M; Shirato, H; Nishioka, K

    2008-01-01

    In order to reduce the sensitivity of radiotherapy treatments to organ motion, compensation methods are being investigated such as gating of treatment delivery, tracking of tumour position, 4D scanning and planning of the treatment, etc. An outstanding problem that would occur with all these methods is the assumption that breathing motion is reproducible throughout the planning and delivery process of treatment. This is obviously not a realistic assumption and is one that will introduce errors. A dynamic internal margin model (DIM) is presented that is designed to follow the tumour trajectory and account for the variability in respiratory motion. The model statistically describes the variation of the breathing cycle over time, i.e. the uncertainty in motion amplitude and phase reproducibility, in a polar coordinate system from which margins can be derived. This allows accounting for an additional gating window parameter for gated treatment delivery as well as minimizing the area of normal tissue irradiated. The model was illustrated with abdominal motion for a patient with liver cancer and tested with internal 3D lung tumour trajectories. The results confirm that the respiratory phases around exhale are most reproducible and have the smallest variation in motion amplitude and phase (approximately 2 mm). More importantly, the margin area covering normal tissue is significantly reduced by using trajectory-specific margins (as opposed to conventional margins) as the angular component is by far the largest contributor to the margin area. The statistical approach to margin calculation, in addition, offers the possibility for advanced online verification and updating of breathing variation as more data become available

  6. Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study

    Science.gov (United States)

    Werner, René; Gauer, Tobias

    2015-03-01

    Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.

  7. The Role of Motion Concepts in Understanding Non-Motion Concepts

    Directory of Open Access Journals (Sweden)

    Omid Khatin-Zadeh

    2017-12-01

    Full Text Available This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems.

  8. Patient Involvement in Safe Delivery: A Qualitative Study.

    Science.gov (United States)

    Olfati, Forozun; Asefzadeh, Saeid; Changizi, Nasrin; Keramat, Afsaneh; Yunesian, Masud

    2015-09-28

    Patient involvement in safe delivery planning is considered important yet not widely practiced. The present study aimed at identifythe factors that affect patient involvementin safe delivery, as recommended by parturient women. This study was part of a qualitative research conducted by content analysis method and purposive sampling in 2013.The data were collected through 63 semi-structured interviews in4 hospitalsand analyzed using thematic content analysis. The participants in this research were women before discharge and after delivery. Findings were analyzed using Colaizzi's method. Four categories of factors that could affect patient involvement in safe delivery emerged from our analysis: patient-related (true and false beliefs, literacy, privacy, respect for patient), illness-related (pain, type of delivery, patient safety incidents), health care professional-relatedand task-related factors (behavior, monitoring &training), health care setting-related (financial aspects, facilities). More research is needed to explore the factors affecting the participation of mothers. It is therefore, recommended to: 1) take notice of mother education, their husbands, midwives and specialists; 2) provide pregnant women with insurance coverage from the outset of pregnancy, especially during prenatal period; 3) form a labor pain committee consisting of midwives, obstetricians, and anesthesiologists in order to identify the preferred painless labor methods based on the existing facilities and conditions, 4) carry out research on observing patients' privacy and dignity; 5) pay more attention on the factors affecting cesarean.

  9. 29 CFR 1918.100 - Emergency action plans.

    Science.gov (United States)

    2010-07-01

    ... action plans. (a) Scope and application. This section requires all employers to develop and implement an... departments that can be contacted for further information or explanation of duties under the plan. (c) Alarm... emergency action or for reaction time for safe escape of employees from the workplace or the immediate work...

  10. Biosafety Procedure for Safe Handling of Genetically Modified Plant Materials in Bio Design Facility

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Shuhaimi Shamsudin; Mohamed Najli Mohamed Yasin; Affrida Abu Hassan; Mohd Zaid Hassan; Rusli Ibrahim

    2015-01-01

    Bio Design Facility is the specifically designed glass house for propagation, screening and analysis of high quality plant varieties developed through biotechnology or a combination of nuclear technology and biotechnology. High quality plant varieties especially genetically modified plants (GMO) require a special glass house facility for propagation and screening to isolate them from cross-pollinating with wild type varieties in surrounding ecosystem, and for carrying out evaluation of possible risks of the plants to human, animal and environment before they are proven safe for field trials or commercial release. This facility which was developed under the Ninth Malaysia Plan is classified as the Plant Containment Level 2 and is compliance with the bio safety regulations and guidance for the safe release of GMO according to Malaysian Bio safety Act 2007. Bio Design Facility is fully operational since 2010 and in 2012, it has also been certified as the glass house for post-entry quarantine by The Department of Agriculture. This paper summarizes the bio safety procedure for a safe, controlled and contained growing and evaluation of GMO in Bio Design Facility. This procedure covers the physical (containment and equipment's) and operational (including responsibility, code of practice, growing, decontamination and disposal of plant materials, emergency and contingency plan) aspects of the facility. (author)

  11. Making planned paths look more human-like in humanoid robot manipulation planning

    DEFF Research Database (Denmark)

    Zacharias, F.; Schlette, C.; Schmidt, F.

    2011-01-01

    It contradicts the human's expectations when humanoid robots move awkwardly during manipulation tasks. The unnatural motion may be caused by awkward start or goal configurations or by probabilistic path planning processes that are often used. This paper shows that the choice of an arm's target...... for the robot arm....

  12. TH-EF-BRA-11: Feasibility of Super-Resolution Time-Resolved 4DMRI for Multi-Breath Volumetric Motion Simulation in Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Li, G; Zakian, K; Deasy, J [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Wei, J [City College of New York, New York, NY (United States); Hunt, M [Mem Sloan-Kettering Cancer Ctr, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel super-resolution time-resolved 4DMRI technique to evaluate multi-breath, irregular and complex organ motion without respiratory surrogate for radiotherapy planning. Methods: The super-resolution time-resolved (TR) 4DMRI approach combines a series of low-resolution 3D cine MRI images acquired during free breathing (FB) with a high-resolution breath-hold (BH) 3DMRI via deformable image registration (DIR). Five volunteers participated in the study under an IRB-approved protocol. The 3D cine images with voxel size of 5×5×5 mm{sup 3} at two volumes per second (2Hz) were acquired coronally using a T1 fast field echo sequence, half-scan (0.8) acceleration, and SENSE (3) parallel imaging. Phase-encoding was set in the lateral direction to minimize motion artifacts. The BH image with voxel size of 2×2×2 mm{sup 3} was acquired using the same sequence within 10 seconds. A demons-based DIR program was employed to produce super-resolution 2Hz 4DMRI. Registration quality was visually assessed using difference images between TR 4DMRI and 3D cine and quantitatively assessed using average voxel correlation. The fidelity of the 3D cine images was assessed using a gel phantom and a 1D motion platform by comparing mobile and static images. Results: Owing to voxel intensity similarity using the same MRI scanning sequence, accurate DIR between FB and BH images is achieved. The voxel correlations between 3D cine and TR 4DMRI are greater than 0.92 in all cases and the difference images illustrate minimal residual error with little systematic patterns. The 3D cine images of the mobile gel phantom preserve object geometry with minimal scanning artifacts. Conclusion: The super-resolution time-resolved 4DMRI technique has been achieved via DIR, providing a potential solution for multi-breath motion assessment. Accurate DIR mapping has been achieved to map high-resolution BH images to low-resolution FB images, producing 2Hz volumetric high-resolution 4DMRI

  13. Assessment of Respiration-Induced Motion and Its Impact on Treatment Outcome for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available This study presented the analysis of free-breathing lung tumor motion characteristics using GE 4DCT and Varian RPM systems. Tumor respiratory movement was found to be associated with GTV size, the superior-inferior tumor location in the lung, and the attachment degree to rigid structure (e.g., chest wall, vertebrae, or mediastinum, with tumor location being the most important factor among the other two. Improved outcomes in survival and local control of 43 lung cancer patients were also reported. Consideration of respiration-induced motion based on 4DCT for lung cancer yields individualized margin and more accurate and safe target coverage and thus can potentially improve treatment outcome.

  14. Camera Planning in Virtual Environments using the Corridor Map Method

    NARCIS (Netherlands)

    Geraerts, R.J.

    2009-01-01

    Planning high-quality camera motions is a challenging problem for applications dealing with interactive virtual environments. This challenge is caused by conflicting requirements. On the one hand we need good motions, formed by trajectories that are collision-free and keep the character that is

  15. The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.

    Science.gov (United States)

    Hubley, Emily; Pierce, Greg

    2017-08-01

    Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Quality of Family Planning Services in Primary Health Centers of ...

    African Journals Online (AJOL)

    Background: Good quality of care in family planning (FP) services help individuals and couples to meet their reproductive health needs safely and effectively. Therefore, assessment and improvement of the quality of family planning services could enhance family planning services utilization. This study was thus conducted ...

  17. Differential Motion Between Mediastinal Lymph Nodes and Primary Tumor in Radically Irradiated Lung Cancer Patients

    International Nuclear Information System (INIS)

    Schaake, Eva E.; Rossi, Maddalena M.G.; Buikhuisen, Wieneke A.; Burgers, Jacobus A.; Smit, Adrianus A.J.; Belderbos, José S.A.; Sonke, Jan-Jakob

    2014-01-01

    Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancer during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced a

  18. SU-E-J-175: Comparison of the Treatment Reproducibility of Tumors Affected by Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, M; Piotrowski, T; Adamczyk, S [Medical Physics Department, Greater Poland Cancer Centre, Poznan (Poland)

    2015-06-15

    Purpose: The aim of the dose distribution simulations was to form a global idea of intensity-modulated radiation therapy (IMRT) realization, by its comparison to three-dimensional conformal radiation therapy (3DCRT) delivery for tumors affected by respiratory motion. Methods: In the group of 10patients both 3DCRT and IMRT plans were prepared.For each field the motion kernel was generated with the largest movement amplitude of 4;6 and 8mm.Additionally,the sets of reference measurements were made in no motion conditions(0 mm).The evaluation of plan delivery,using a diode array placed on moving platform,was based on the Gamma Index analysis with distance to agreement of 3mm and dose difference of 3%. Results: IMRT plans tended to spare doses delivered to lungs compared to 3DCRT.Nonetheless,analyzed volumes showed no significant difference between the static and dynamic techniques,except for the volumes of both lungs receiving 10 and 15Gy.After adding the components associated with the respiratory movement,all IMRT lung parameters evaluated for the ipsilateral,contralateral and both lungs together,revealed considerable differences between the 0vs.6, 0vs.8 and 4vs.8-mm amplitudes.Similar results were obtained for the 3DCRT lung measurements,but without significance between the 0vs.6-mm amplitude.Taking into account the CTV score parameter in 3DCRT and IMRT plans,there was no statistically significant difference between the motion patterns with the smallest amplitudes.The differences were found for the 8-mm amplitude when it was compared both with static conditions and 4-mm amplitude (for 3DCRT) and between 0vs.6, 0vs.8 and 4vs.8-mm amplitudes (for IMRT).All accepted and measured 3DCRT and IMRT doses to spinal cord,esophagus and heart were always below the QUANTEC limits. Conclusion: The application of IMRT technique in lung radiotherapy affords possibilities for reducing the lung doses.For maximal amplitudes of breathing trajectory below 4mm,the disagreement between CTV

  19. Adaptive Power Saving Method for Mobile Walking Guidance Device Using Motion Context

    Directory of Open Access Journals (Sweden)

    Jin-Hee Lee

    2015-01-01

    Full Text Available It is important to recognize the motion of the user and the surrounding environment with multiple sensors. We developed a guidance system based on mobile device for visually impaired person that helps the user to walk safely to the destination in the previous study. However, a mobile device having multiple sensors spends more power when the sensors are activated simultaneously and continuously. We propose a method for reducing the power consumption of a mobile device by considering the motion context of the user. We analyze and classify the user’s motion accurately by means of a decision tree and HMM (Hidden Markov Model that exploit the data from a triaxial accelerometer sensor and a tilt sensor. We can reduce battery power consumption by controlling the number of active ultrasonic sensors and the frame rate of the camera used to acquire spatial context around the user. This helps us to extend the operating time of the device and reduce the weight of the device’s built-in battery.

  20. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar

    2014-05-01

    © 2014 IEEE. Motion planning in belief space (under motion and sensing uncertainty) is a challenging problem due to the computational intractability of its exact solution. The Feedback-based Information RoadMap (FIRM) framework made an important theoretical step toward enabling roadmap-based planning in belief space and provided a computationally tractable version of belief space planning. However, there are still challenges in applying belief space planners to physical systems, such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes in the obstacle map), as well as unforeseen large deviations in the robot\\'s location (e.g., the kidnapped robot problem). We then utilize these techniques to implement the first online replanning scheme in belief space on a physical mobile robot that is robust to changes in the environment and large disturbances. This method demonstrates that belief space planning is a practical tool for robot motion planning.

  1. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  2. Rapid sampling of molecular motions with prior information constraints.

    Science.gov (United States)

    Raveh, Barak; Enosh, Angela; Schueler-Furman, Ora; Halperin, Dan

    2009-02-01

    Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.

  3. Rapid sampling of molecular motions with prior information constraints.

    Directory of Open Access Journals (Sweden)

    Barak Raveh

    2009-02-01

    Full Text Available Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT. Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.

  4. Decontamination and dismantlement plan for international reviewing

    International Nuclear Information System (INIS)

    Wells, P.B.; Earle, O.K.; Klepikov, A.Kh.

    2000-01-01

    When developing a decommissioning plan, several factors need to be included. First and foremost is the issue of outline and scope. Specific to the BN-350, are issues related to short term tasks required to support the safe storage of the reactor for the next 50 years, and long term tasks required to dismantle the reactor, leaving some sort of final state, (brown field, green field, etc.) In addition, issues such as personnel and physical safety as well as environmental concerns must be addressed to ensure the shut down and dismantlement of the reactor is done in a safe manner, both for personnel and the environment. In addition to being the base document in which to support work, a D and D plan can also be utilized to obtain financial resources necessary to complete the plan, as is the case for the BN-350 Reactor located in Aktau, Kazakhstan. By providing a clear and complete D and D plan, which includes costs and schedules for each item, it is anticipated that donor countries will have the ability to review, approve, and provide financial support to complete the work described in the plan

  5. Consensus together to jointly promote the safe and efficient development of China's Nuclear industry

    International Nuclear Information System (INIS)

    Lei Zengguang

    2012-01-01

    After the development of China's nuclear industry 56 years, and a certain ability to form a strategic advantage for sustainable development, laying a solid foundation for the development of the national nuclear energy. 2011 Japan's Fukushima Daiichi nuclear accident occurred seven. 2011 of the 'Economic and Social Development Twelfth Five Five Year plan' clearly stated: 'on the basis of ensuring efficient and safe development of nuclear power', the development of China's nuclear industry is facing unprecedented opportunities and challenges, requiring the nuclear industry and nuclear academia work together to jointly promote China's nuclear industry safe and efficient, development

  6. Safe Transport of Radioactive Material, Philosophy and Overview

    Energy Technology Data Exchange (ETDEWEB)

    EL-Shinawy, R M.K. [Radiation Protection Dept., Nuclear Rasearch Center, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others.

  7. Safe Transport of Radioactive Material, Philosophy and Overview

    International Nuclear Information System (INIS)

    EL-Shinawy, R.M.K.

    2008-01-01

    Safe transport of radioactive material regulations issued by IAEA since 1961, provide standards for insuring a high level of safety of people,transport workers, property and environment against radiation, contamination and criticality hazards as well as thermal effects associated with the transport of the radioactive wastes and material. The history ,development, philosophy and scope of these international and national regulations were mentioned as well as the different supporting documents to the regulations for safe transport of radioactive material were identified.The first supporting document , namely TS - G-1.1(ST-2) ,Advisory material is also issued by the IAEA.It contains both the advisory and explanatory materials previously published in safety series Nos 7and 37 and therefore TS-G-1.1 (ST-2) will supersede safety series Nos 7 and 37. The second supporting document namely TS-G-1.2 (ST-3), planning and preparing for emergency response to transport accidents involving radioactive material ,which will supersede safety series No 87. In addition to quality assurance (SS no.113), compliance assurance (SS no. 112), the training manual and others

  8. 75 FR 2068 - Definition of “Plan Assets”-Participant Contributions

    Science.gov (United States)

    2010-01-14

    ... permitted to pre-fund contributions. The commenter indicated that an employer may wish to deposit the... would allow most employers with small plans to take advantage of the safe harbor and, thereby, benefit... should be balanced against any additional income and security the plan and plan participants would...

  9. When is respiratory management necessary for partial breast intensity modulated radiotherapy: A respiratory amplitude escalation treatment planning study

    International Nuclear Information System (INIS)

    Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: The impact of typical respiratory motion amplitudes (∼2 mm) on partial breast irradiation (PBI) is minimal; however, some patients have larger respiratory amplitudes that may negatively affect dose homogeneity. Here we determine at what amplitude respiratory management may be required to maintain plan quality. Methods and Materials: Ten patients were planned with PBI IMRT. Respiratory motion (2–20 mm amplitude) probability density functions were convolved with static plan fluence to estimate the delivered dose. Evaluation metrics included target coverage, ipsilateral breast hotspot, homogeneity, and uniformity indices. Results: Degradation of dose homogeneity was the limiting factor in reduction of plan quality due to respiratory motion, not loss of coverage. Hotspot increases were observed even at typical motion amplitudes. At 2 and 5 mm, 2/10 plans had a hotspot greater than 107% and at 10 mm this increased to 5/10 plans. Target coverage was only compromised at larger amplitudes: 5/10 plans did not meet coverage criteria at 15 mm amplitude and no plans met minimum coverage at 20 mm. Conclusions: We recommend that if respiratory amplitude is greater than 10 mm, respiratory management or alternative radiotherapy should be considered due to an increase in the hotspot in the ipsilateral breast and a decrease in dose homogeneity

  10. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques

    International Nuclear Information System (INIS)

    Bettinardi, Valentino; Picchio, Maria; Di Muzio, Nadia; Gianolli, Luigi; Gilardi, Maria Carla; Messa, Cristina

    2010-01-01

    Purpose: To describe the degradation effects produced by respiratory organ and lesion motion on PET/CT images and to define the role of respiratory gated (RG) 4D-PET/CT techniques to compensate for such effects. Methods: Based on the literature and on our own experience, technical recommendations and clinical indications for the use of RG 4D PET/CT have been outlined. Results: RG 4D-PET/CT techniques require a state of the art PET/CT scanner, a respiratory monitoring system and dedicated acquisition and processing protocols. Patient training is particularly important to obtain a regular breathing pattern. An adequate number of phases has to be selected to balance motion compensation and statistical noise. RG 4D PET/CT motion free images may be clinically useful for tumour tissue characterization, monitoring patient treatment and target definition in radiation therapy planning. Conclusions: RG 4D PET/CT is a valuable tool to improve image quality and quantitative accuracy and to assess and measure organ and lesion motion for radiotherapy planning.

  11. Planned home birth: the professional responsibility response.

    Science.gov (United States)

    Chervenak, Frank A; McCullough, Laurence B; Brent, Robert L; Levene, Malcolm I; Arabin, Birgit

    2013-01-01

    This article addresses the recrudescence of and new support for midwife-supervised planned home birth in the United States and the other developed countries in the context of professional responsibility. Advocates of planned home birth have emphasized patient safety, patient satisfaction, cost effectiveness, and respect for women's rights. We provide a critical evaluation of each of these claims and identify professionally appropriate responses of obstetricians and other concerned physicians to planned home birth. We start with patient safety and show that planned home birth has unnecessary, preventable, irremediable increased risk of harm for pregnant, fetal, and neonatal patients. We document that the persistently high rates of emergency transport undermines patient safety and satisfaction, the raison d'etre of planned home birth, and that a comprehensive analysis undermines claims about the cost-effectiveness of planned home birth. We then argue that obstetricians and other concerned physicians should understand, identify, and correct the root causes of the recrudescence of planned home birth; respond to expressions of interest in planned home birth by women with evidence-based recommendations against it; refuse to participate in planned home birth; but still provide excellent and compassionate emergency obstetric care to women transported from planned home birth. We explain why obstetricians should not participate in or refer to randomized clinical trials of planned home vs planned hospital birth. We call on obstetricians, other concerned physicians, midwives and other obstetric providers, and their professional associations not to support planned home birth when there are safe and compassionate hospital-based alternatives and to advocate for a safe home-birth-like experience in the hospital. Copyright © 2013 Mosby, Inc. All rights reserved.

  12. SAFE Newsletter

    OpenAIRE

    2013-01-01

    The Center of Excellence SAFE – “Sustainable Architecture for Finance in Europe” – is a cooperation of the Center for Financial Studies and Goethe University Frankfurt. It is funded by the LOEWE initiative of the State of Hessen (Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz). SAFE brings together more than 40 professors and just as many junior researchers who are all dedicated to conducting research in support of a sustainable financial architecture. The Center has...

  13. Reduction of prostate intrafraction motion using gas-release rectal balloons

    International Nuclear Information System (INIS)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy

    2012-01-01

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5Σ+ 0.7σ to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior–inferior (SI) and anterior–posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left–right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  14. Reduction of prostate intrafraction motion using gas-release rectal balloons

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  15. Pushover, Response Spectrum and Time History Analyses of Safe Rooms in a Poor Performance Masonry Building

    International Nuclear Information System (INIS)

    Mazloom, M.

    2008-01-01

    The idea of safe room has been developed for decreasing the earthquake casualties in masonry buildings. The information obtained from the previous ground motions occurring in seismic zones expresses the lack of enough safety of these buildings against earthquakes. For this reason, an attempt has been made to create some safe areas inside the existing masonry buildings, which are called safe rooms. The practical method for making these safe areas is to install some prefabricated steel frames in some parts of the existing structure. These frames do not carry any service loads before an earthquake. However, if a devastating earthquake happens and the load bearing walls of the building are destroyed, some parts of the floors, which are in the safe areas, will fall on the roof of the installed frames and the occupants who have sheltered there will survive. This paper presents the performance of these frames located in a destroying three storey masonry building with favorable conclusions. In fact, the experimental pushover diagram of the safe room located at the ground-floor level of this building is compared with the analytical results and it is concluded that pushover analysis is a good method for seismic performance evaluation of safe rooms. For time history analysis the 1940 El Centro, the 2003 Bam, and the 1990 Manjil earthquake records with the maximum peak accelerations of 0.35g were utilized. Also the design spectrum of Iranian Standard No. 2800-05 for the ground kind 2 is used for response spectrum analysis. The results of time history, response spectrum and pushover analyses show that the strength and displacement capacity of the steel frames are adequate to accommodate the distortions generated by seismic loads and aftershocks properly

  16. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  17. Assessment methodology applicable to safe decommissioning of Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Baniu, O.; Vladescu, G.; Vidican, D.; Penescu, M.

    2002-01-01

    The paper contains the results of research activity performed by CITON specialists regarding the assessment methodology intended to be applied to safe decommissioning of the research reactors, developed taking into account specific conditions of the Romanian VVR-S Research Reactor. The Romanian VVR-S Research Reactor is an old reactor (1957) and its Decommissioning Plan is under study. The main topics of paper are as follows: Safety approach of nuclear facilities decommissioning. Applicable safety principles; Main steps of the proposed assessment methodology; Generic content of Decommissioning Plan. Main decommissioning activities. Discussion about the proposed Decommissioning Plan for Romanian Research Reactor; Safety risks which may occur during decommissioning activities. Normal decommissioning operations. Fault conditions. Internal and external hazards; Typical development of a scenario. Features, Events and Processes List. Exposure pathways. Calculation methodology. (author)

  18. Path Planning Algorithms for Autonomous Border Patrol Vehicles

    Science.gov (United States)

    Lau, George Tin Lam

    This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.

  19. Safe-Taipei a Program Project for Strong Motions, Active Faults, and Earthquakes in the Taipei Metropolitan Area

    Science.gov (United States)

    Wang, Jeen-Hwa

    Strong collision between the Eurasian and Philippine Sea Plates causes high seismicity in the Taiwan region, which is often attacked by large earthquakes. Several cities, including three mega-cities, i.e., Taipei, Taichung, and Kaoshung, have been constructed on western Taiwan, where is lying on thick sediments. These cities, with a high-population density, are usually a regional center of culture, economics, and politics. Historically, larger-sized earthquakes, e.g. the 1935 Hsingchu—Taichung earthquake and the 1999 Chi—Chi earthquake, often caused serious damage on the cities. Hence, urban seismology must be one of the main subjects of Taiwan's seismological community. Since 2005, a program project, sponsored by Academia Sinica, has been launched to investigate seismological problems in the Taipei Metropolitan Area. This program project is performed during the 2005—2007 period. The core research subjects are: (1) the deployment of the Taipei Down-hole Seismic Array; (2) the properties of earthquakes and active faults in the area; (3) the seismogenic-zone structures, including the 3-D velocity and Q structures, of the area; (4) the characteristics of strong-motions and sites affects; and (5) strong-motion prediction. In addition to academic goals, the results obtained from the program project will be useful for seismic hazard mitigation not only for the area but also for others.

  20. Anticipating Terrorist Safe Havens from Instability Induced Conflict

    Science.gov (United States)

    Shearer, Robert; Marvin, Brett

    This chapter presents recent methods developed at the Center for Army Analysis to classify patterns of nation-state instability that lead to conflict. The ungoverned areas endemic to failed nation-states provide terrorist organizations with safe havens from which to plan and execute terrorist attacks. Identification of those states at risk for instability induced conflict should help to facilitate effective counter terrorism policy planning efforts. Nation-states that experience instability induced conflict are similar in that they share common instability factors that make them susceptible to experiencing conflict. We utilize standard pattern classification algorithms to identify these patterns. First, we identify features (political, military, economic and social) that capture the instability of a nation-state. Second, we forecast the future levels of these features for each nation-state. Third, we classify each future state’s conflict potential based upon the conflict level of those states in the past most similar to the future state.

  1. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  2. Fast flux test facility, transition project plan

    International Nuclear Information System (INIS)

    Guttenberg, S.

    1994-01-01

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  3. Fast flux test facility, transition project plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  4. Margins for treatment planning of proton therapy

    International Nuclear Information System (INIS)

    Thomas, Simon J

    2006-01-01

    For protons and other charged particles, the effect of set-up errors on the position of isodoses is considerably less in the direction of the incident beam than it is laterally. Therefore, the margins required between the clinical target volume (CTV) and planning target volume (PTV) can be less in the direction of the incident beam than laterally. Margins have been calculated for a typical head plan and a typical prostate plan, for a single field, a parallel opposed and a four-field arrangement of protons, and compared with margins calculated for photons, assuming identical geometrical uncertainties for each modality. In the head plan, where internal motion was assumed negligible, the CTV-PTV margin reduced from approximately 10 mm to 3 mm in the axial direction for the single field and parallel opposed plans. For a prostate plan, where internal motion cannot be ignored, the corresponding reduction in margin was from 11 mm to 7 mm. The planning organ at risk (PRV) margin in the axial direction reduced from 6 mm to 2 mm for the head plan, and from 7 mm to 4 mm for the prostate plan. No reduction was seen on the other axes, or for any axis of the four-field plans. Owing to the shape of proton dose distributions, there are many clinical cases in which good dose distributions can be obtained with one or two fields. When this is done, it is possible to use smaller PTV and PRV margins. This has the potential to convert untreatable cases, in which the PTV and PRV overlap, into cases with a gap between PTV and PRV of adequate size for treatment planning

  5. New French basic safety rule on seismic input ground motions

    International Nuclear Information System (INIS)

    Forner, Sophie; Boulaigue, Yves

    2002-01-01

    French regulatory practice requires that the main safety functions of a land-based major nuclear facility, in particular in accordance with its specific characteristics, safe shutdown, cooling and containment of radioactive substances, be assured during and/or after earthquake events that can plausibly occur at the site where the installation is located. This rule specifies an acceptable method for determining the seismic motion to be taken into account when designing a facility to address the seismic risk. In regions where deformation factors are low, such as in metropolitan France, the intervals between strong earthquakes are long and it can be difficult to associate some earthquakes with known faults. In addition, despite substantial progress in recent years, it is difficult, given the French seismotectonic situation, to identify potentially seismogenic faults and determine the characteristics of the earthquakes that are liable to occur. Therefore, the approach proposed in this Basic Safety Rule is intended to avoid this difficulty by allowing for all direct and indirect influences that can play a role in the occurrence of earthquakes, as well as all seismic knowledge. Furthermore, as concerns calculation of seismic motion, the low number of records of strong motion in metropolitan France makes it necessary to use data from other regions of the world

  6. Airspace Integration Plan for Unmanned Aviation

    National Research Council Canada - National Science Library

    2004-01-01

    The Office of the Secretary of Defense Airspace Integration Plan for Unmanned Aviation outlines the key issues that must be addressed to achieve the goal of safe, routine use of the National Airspace System (NAS...

  7. Dosimetric and motion analysis of margin-intensive therapy by stereotactic ablative radiotherapy for resectable pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Heinzerling John H

    2011-10-01

    Full Text Available Abstract Background The retroperitoneal margin is a common site of positive surgical margins in patients with resectable pancreatic cancer. Preoperative margin-intensive therapy (MIT involves delivery of a single high dose of ablative radiotherapy (30 Gy focused on this surgically inaccessible margin, utilizing stereotactic techniques in an effort to reduce local failure following surgery. In this study, we investigated the motion of regional organs at risk (OAR utilizing 4DCT, evaluated the dosimetric effects of abdominal compression (AC to reduce regional motion, and compared various planning techniques to optimize MIT. Methods 10 patients were evaluated with 4DCT scans. All 10 patients had scans using AC and seven of the 10 patients had scans both with and without AC. The peak respiratory abdominal organ and major vessel centroid excursion was measured. A "sub-GTV" region was defined by a radiation oncologist and surgical oncologist encompassing the retroperitoneal margin typically lateral and posterior to the superior mesenteric artery (SMA, and a 3-5 mm margin was added to constitute the PTV. Identical 3D non-coplanar SABR (3DSABR plans were designed for the average compression and non-compression scans. Compression scans were planned with 3DSABR, coplanar IMRT (IMRT, and Cyberknife (CK planning techniques. Dose volume analysis was undertaken for various endpoints, comparing OAR doses with and without AC and for different planning methods. Results The mean PTV size was 20.2 cm3. Regional vessel motion of the SMA, celiac trunk, and renal vessels was small ( 5 mm, so AC has been used in all patients enrolled thus far. AC did not significantly increase OAR dose including the stomach and traverse colon. There were several statistically significant differences in the doses to OARs as a function of the type of planning modality used. Conclusions AC does not significantly reduce the limited motion of structures in close proximity to the MIT target

  8. Safe decommissioning of the Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Garlea, C.; Garlea, I.; Kelerman, C.; Rodna, A.

    2002-01-01

    The VVR-S Romania research reactor was operated between 1957-1997, at 2 MW nominal power, for research and radioisotopical production. The detailed decommissioning plan was developed between 1995-1998, in the frame of the International Atomic Energy Agency Technical assistance project ROM/9/017. The proposed strategy agreed by the counterpart as well as international experts was stage 1. In 1997, an independent analysis performed by European Commission experts, in the frame of PHARE project PH04.1/1994 was dedicated to the 'Study of Soviet Design Research Reactors', had consolidated the development of the project emphasizing technical options of safe management for radioactive wastes and VVR-S spent fuel. The paper presents the main technical aspects as well as those of social impact, which lead to the establishment of strategy for safe management of decommissioning. Technical analysis of the VVR-S reactor and associated radwaste facilities (Radioactive Waste Treatment Plant - Magurele and National Repository Baita-Bihor) proved the possibility of the classical method utilization for dismantling of the facility and treatment-conditioning-disposal of the arrised wastes in safe conditions. The decommissioning plan at stage 2 has been developed based on radiological safety assessment, evaluation of radwaste inventory (removed as well as preserved on site), cost analysis and environmental impact. Technical data were provided by the R and D programme including neutron calculations and experiments, radiological characterizing (for facility and its influence area), seismic analysis and environmental balance during the operation and after shut down of the reactor. A special chapter is dedicated to regulatory issues concerning the development of decommissioning under nuclear safety. Based on the Fundamental Norms of Radiological Safety, the Regulatory Body defined the clearance levels and safety criteria for the process. The development of National Norms for the

  9. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  10. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view

    International Nuclear Information System (INIS)

    McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech

    2008-01-01

    An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (1D) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated

  11. 29 CFR 2550.404a-3 - Safe harbor for distributions from terminated individual account plans.

    Science.gov (United States)

    2010-07-01

    ... RETIREMENT INCOME SECURITY ACT OF 1974 RULES AND REGULATIONS FOR FIDUCIARY RESPONSIBILITY § 2550.404a-3 Safe... rate of return, whether or not such return is guaranteed, consistent with liquidity (except that... liquidity; (v) A statement explaining what fees, if any, will be paid from the participant or beneficiary's...

  12. A finite state model for respiratory motion analysis in image guided radiation therapy

    International Nuclear Information System (INIS)

    Wu Huanmei; Sharp, Gregory C; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B

    2004-01-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates

  13. A finite state model for respiratory motion analysis in image guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Sharp, Gregory C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Salzberg, Betty [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Kaeli, David [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2004-12-07

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  14. Funnel Libraries for Real-Time Robust Feedback Motion Planning

    Science.gov (United States)

    2016-07-21

    control inputs to the SBach are raw servo commands to the control surfaces (ailerons, rudder, elevator) and a raw throttle setting. These commands are...Convex Optimization. Cambridge University Press . [Brooks, 1982] Brooks, R. (1982). Symbolic error analysis and robot planning. The International Journal

  15. Safe motherhood -- from advocacy to action.

    Science.gov (United States)

    Tinker, A

    1991-12-01

    Every minute a woman dies from complications related to pregnancy or childbirth. That translates to 500,000 annually, of which, 99% live in developing countries. A woman in Africa has a 1:18 lifetime chance of dying from pregnancy-related causes, compared with a northern European woman who has a 1:10,000 chance. Thus, in 1987 international and regional agencies and national governments started a global program titled the Safe Motherhood Initiative. Its goal is to reduce maternal morbidity and mortality 50% by 2000. The death of a woman during pregnancy or child birth means that her surviving children are much more likely to die. In a bangladesh study it was found that the death of the mother was associated with a 200% increase in mortality for her sons and 350% for her daughters for children up to 10. Family planning is the key, since it is the single best tool of preventing these deaths, by reducing the number of times a woman gets pregnant. Family planning also reduces the number of abortions which are estimated to kill 200,000 women annually in developing countries. Trained midwives who can provide obstetrical emergency assistance will also make a large impact. Risk assessment was once considered very important, but studies have shown that the majority of pregnancy complications develop without being detected. Further, the number of women with risk factors that develop complications is much lower than the number of women who develop complications during pregnancy. So monitoring women with risk factors misses most complications. Regular monitoring and medical examinations are much more effective for preventing complications. Safe motherhood can only be achieved if each program is tailored to the needs of the community. Donor nations are necessary for this program to succeed, but ultimate success rests in the hands of each country. National priorities must be set, resources must be allocated, and programs must be designed to be effective.

  16. Evaluation of MotionSim XY/4D for patient specific QA of respiratory gated treatment for lung cancer

    International Nuclear Information System (INIS)

    Wen, C.; Ackerly, T.; Lancaster, C.; Bailey, N.

    2011-01-01

    Full text: A commercial system-MotionSim XY/4D(TM) capable of simulating two-dimensional tumour motion and measuring planar dose with diode-matrix was evaluated at the Alfred Hospital, for establishing patient-specific QA programme of respiratory gated treatment of lung cancer. This study presents the investigation of accuracies, limitations and the practical aspects of that system. Planar doses generated on iPlan-TM by mapping clinical beams to a scanned-in water phantom were measured by MotionSim XY/4D-TM with 5 cm water equivalent build-up at normal incidence. The gated delivery using ExacTrac-TM through tracking infrared markers simulating external respiration surrogate was measured simultaneously with Gaf-ChromicR RTQA2 film and MapCHECK 2TM . Dose maps of both non-gated and gated beams with 30% duty cycle were compared with both film and diodes measurements. Differences in dose distribution were analysed with built-in tools in MapCHECK2 TM and the effect of residual motion within the beamenabled window was then assessed. Preliminary results indicate that difference between Gafchromic film and MapCHECK2 measurements of same beam was ignorable. Gated dose delivery to a target at 9 mm maximum motion was in good agreement with planned dose. Complement to measurements suggested in AAPM Report No.9 I I, this QA device can detect any random error and assess the magnitude of residual target motion through analysing differences between planned and delivered doses as gamma function. Although some user-friendliness aspects could be improved, it meets its specification and can be used for routine clinical QA purposes provided calibrations were performed and procedures were followed.

  17. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  18. SU-E-J-61: Monitoring Tumor Motion in Real-Time with EPID Imaging During Cervical Cancer Treatment

    International Nuclear Information System (INIS)

    Mao, W; Hrycushko, B; Yan, Y; Foster, R; Albuquerque, K

    2015-01-01

    Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internal markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long

  19. SU-E-J-61: Monitoring Tumor Motion in Real-Time with EPID Imaging During Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mao, W; Hrycushko, B; Yan, Y; Foster, R; Albuquerque, K [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internal markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long

  20. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  1. 32 CFR 634.24 - Traffic planning and codes.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Traffic planning and codes. 634.24 Section 634.24 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.24 Traffic planning and codes. (a) Safe and efficient...

  2. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  3. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  4. Detecting Biological Motion for Human–Robot Interaction: A Link between Perception and Action

    Directory of Open Access Journals (Sweden)

    Alessia Vignolo

    2017-06-01

    Full Text Available One of the fundamental skills supporting safe and comfortable interaction between humans is their capability to understand intuitively each other’s actions and intentions. At the basis of this ability is a special-purpose visual processing that human brain has developed to comprehend human motion. Among the first “building blocks” enabling the bootstrapping of such visual processing is the ability to detect movements performed by biological agents in the scene, a skill mastered by human babies in the first days of their life. In this paper, we present a computational model based on the assumption that such visual ability must be based on local low-level visual motion features, which are independent of shape, such as the configuration of the body and perspective. Moreover, we implement it on the humanoid robot iCub, embedding it into a software architecture that leverages the regularities of biological motion also to control robot attention and oculomotor behaviors. In essence, we put forth a model in which the regularities of biological motion link perception and action enabling a robotic agent to follow a human-inspired sensory-motor behavior. We posit that this choice facilitates mutual understanding and goal prediction during collaboration, increasing the pleasantness and safety of the interaction.

  5. Canada`s green plan - The second year. Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Canada`s Green Plan is the national strategy and action plan for sustainable development launched by the federal government. The Green Plan`s goal is `to secure for current and future generations a safe and healthy environment and a sound and prosperous economy.` It represents a fundamental shift in the way the federal government views economic development and environmental protection: they are inextricably linked; both are critical to the health and well-being of Canadians. Substantial development has been made in Canada, with advances being made on the Green Plan`s short-term objectives and on our longer term priorities.

  6. Double shell tank waste analysis plan

    International Nuclear Information System (INIS)

    Mulkey, C.H.; Jones, J.M.

    1994-01-01

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations

  7. MO-F-CAMPUS-J-02: Commissioning of Radiofrequency Tracking for Gated SBRT of the Liver Using Novel Motion System

    International Nuclear Information System (INIS)

    James, J; Cetnar, A; Nguyen, V; Wang, B

    2015-01-01

    Purpose: Tracking soft tissue targets has recently been approved as a new application of the Calypso radiofrequency tracking system allowing for gated treatment of the liver based on the motion of the target volume itself. As part of the commissioning process, an end-to-end test was performed using a 3D diode array and 6D motion platform to verify the dosimetric accuracy and establish the workflow of gated SBRT treatment of the liver using Calypso. Methods: A 4DCT scan of the ScandiDos Delta4 phantom was acquired using the HexaMotion motion platform to simulate realistic breathing motion. A VMAT plan was optimized on the end of inspiration phase of the 4DCT scan and delivered to the Delta4 phantom using the Varian TrueBeam. The treatment beam was gated by Calypso to deliver dose at the end of inspiration. The expected dose was compared to the delivered dose using gamma analysis. In addition, gating limits were investigated to determine how large the gating range can be while still maintaining dosimetric accuracy. Results: The 3%/3mm and 2%/2mm gamma pass rate for the gated treatment delivery was 100% and 98.4%, respectively. When increasing the gating limits beyond the known extent of planned motion from the 4DCT, the gamma pass rates decreased as expected. The 3%/3mm gamma pass rate for a 1, 2, and 3mm increase in gating limits were measured to be 96.0%, 92.7%, and 78.8%, respectively. Conclusion: Radiofrequency tracking was shown to be an effective way to provide gated SBRT treatment of the liver. Baseline gating limits should be determined by measuring the extent of target motion during the respiratory phases used for planning. We recommend adding 1mm to the baseline limits to provide the proper balance between treatment efficiency and dosimetric accuracy

  8. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  9. Robust Path Planning for Space Exploration Rovers

    Data.gov (United States)

    National Aeronautics and Space Administration — Motion planning considers the problem of moving a system from a starting position to a desired goal position. This problem has been shown to be a computationally...

  10. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  11. Global optimal path planning of an autonomous vehicle for overtaking a moving obstacle

    Directory of Open Access Journals (Sweden)

    B. Mashadi

    Full Text Available In this paper, the global optimal path planning of an autonomous vehicle for overtaking a moving obstacle is proposed. In this study, the autonomous vehicle overtakes a moving vehicle by performing a double lane-change maneuver after detecting it in a proper distance ahead. The optimal path of vehicle for performing the lane-change maneuver is generated by a path planning program in which the sum of lateral deviation of the vehicle from a reference path and the rate of steering angle become minimum while the lateral acceleration of vehicle does not exceed a safe limit value. A nonlinear optimal control theory with the lateral vehicle dynamics equations and inequality constraint of lateral acceleration are used to generate the path. The indirect approach for solving the optimal control problem is used by applying the calculus of variation and the Pontryagin's Minimum Principle to obtain first-order necessary conditions for optimality. The optimal path is generated as a global optimal solution and can be used as the benchmark of the path generated by the local motion planning of autonomous vehicles. A full nonlinear vehicle model in CarSim software is used for path following simulation by importing path data from the MATLAB code. The simulation results show that the generated path for the autonomous vehicle satisfies all vehicle dynamics constraints and hence is a suitable overtaking path for the following vehicle.

  12. Pediatric Patient with Incidental Os Odontoideum Safely Treated with Posterior Fixation Using Rod-Hook System and Preoperative Planning Using 3D Printer: A Case Report.

    Science.gov (United States)

    Sakai, Toshinori; Tezuka, Fumitake; Abe, Mitsunobu; Yamashita, Kazuta; Takata, Yoichiro; Higashino, Kosaku; Nagamachi, Akihiro; Sairyo, Koichi

    2017-05-01

    Os odontoideum is often found incidentally. Surgical treatment is recommended for patients with atlantoaxial instability or neurologic deficits. Although various techniques have been used for C1-C2 fusion in adults, the use of these procedures in children is not widely accepted. We present a 12-year-old boy with incidental os odontoideum and obvious C1-C2 instability, in which bony union was achieved safely and successfully by posterior fixation using a rod-hook system and perioperative planning using a three-dimensional printer. At the 2-year follow-up, bone formation around the gap of the dens, which has been generally considered as pseudoarthrosis, was obtained after union of the posterior element of C1-C2. Georg Thieme Verlag KG Stuttgart · New York.

  13. Interplay effect on a 6-MV flattening-filter-free linear accelerator with high dose rate and fast multi-leaf collimator motion treating breast and lung phantoms.

    Science.gov (United States)

    Netherton, Tucker; Li, Yuting; Nitsch, Paige; Shaitelman, Simona; Balter, Peter; Gao, Song; Klopp, Ann; Muruganandham, Manickam; Court, Laurence

    2018-06-01

    Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion. To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 10 6 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies. The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants

  14. Acceptance and Use of Eight Arsenic-Safe Drinking Water Options in Bangladesh

    Science.gov (United States)

    Inauen, Jennifer; Hossain, Mohammad Mojahidul; Johnston, Richard B.; Mosler, Hans-Joachim

    2013-01-01

    Arsenic contamination of drinking water is a serious public health threat. In Bangladesh, eight major safe water options provide an alternative to contaminated shallow tubewells: piped water supply, deep tubewells, pond sand filters, community arsenic-removal, household arsenic removal, dug wells, well-sharing, and rainwater harvesting. However, it is uncertain how well these options are accepted and used by the at-risk population. Based on the RANAS model (risk, attitudes, norms, ability, and self-regulation) this study aimed to identify the acceptance and use of available safe water options. Cross-sectional face-to-face interviews were used to survey 1,268 households in Bangladesh in November 2009 (n = 872), and December 2010 (n = 396). The questionnaire assessed water consumption, acceptance factors from the RANAS model, and socioeconomic factors. Although all respondents had access to at least one arsenic-safe drinking water option, only 62.1% of participants were currently using these alternatives. The most regularly used options were household arsenic removal filters (92.9%) and piped water supply (85.6%). However, the former result may be positively biased due to high refusal rates of household filter owners. The least used option was household rainwater harvesting (36.6%). Those who reported not using an arsenic-safe source differed in terms of numerous acceptance factors from those who reported using arsenic-safe sources: non-users were characterized by greater vulnerability; showed less preference for the taste and temperature of alternative sources; found collecting safe water quite time-consuming; had lower levels of social norms, self-efficacy, and coping planning; and demonstrated lower levels of commitment to collecting safe water. Acceptance was particularly high for piped water supplies and deep tubewells, whereas dug wells and well-sharing were the least accepted sources. Intervention strategies were derived from the results in order to

  15. A Prospective Cohort Study of Gated Stereotactic Liver Radiation Therapy Using Continuous Internal Electromagnetic Motion Monitoring

    DEFF Research Database (Denmark)

    Worm, Esben S; Høyer, Morten; Hansen, Rune

    2018-01-01

    PURPOSE: Intrafraction motion can compromise the treatment accuracy in liver stereotactic body radiation therapy (SBRT). Respiratory gating can improve treatment delivery; however, gating based on external motion surrogates is inaccurate. The present study reports the use of Calypso-based internal...... electromagnetic motion monitoring for gated liver SBRT. METHODS AND MATERIALS: Fifteen patients were included in a study of 3-fraction respiratory gated liver SBRT guided by 3 implanted electromagnetic transponders. The planning target volume was created by a 5-mm axial and 7-mm (n = 12) or 10-mm (n = 3...

  16. Strategies to evaluate the impact of rectal volume on prostate motion during three-dimensional conformal radiotherapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Ana Paula Diniz Fortuna Poli

    2016-02-01

    Full Text Available Abstract Objective: To evaluate the rectal volume influence on prostate motion during three-dimensional conformal radiotherapy (3D-CRT for prostate cancer. Materials and Methods: Fifty-one patients with prostate cancer underwent a series of three computed tomography scans including an initial planning scan and two subsequent scans during 3D-CRT. The organs of interest were outlined. The prostate contour was compared with the initial CT images considering the anterior, posterior, superior, inferior and lateral edges of the organ. Variations in the anterior limits and volume of the rectum were assessed and correlated with prostate motion in the anteroposterior direction. Results: The maximum range of prostate motion was observed in the superoinferior direction, followed by the anteroposterior direction. A significant correlation was observed between prostate motion and rectal volume variation ( p = 0.037. A baseline rectal volume superior to 70 cm3 had a significant influence on the prostate motion in the anteroposterior direction ( p = 0.045. Conclusion: The present study showed a significant interfraction motion of the prostate during 3D-CRT with greatest variations in the superoinferior and anteroposterior directions, and that a large rectal volume influences the prostate motion with a cutoff value of 70 cm3. Therefore, the treatment of patients with a rectal volume > 70 cm3 should be re-planned with appropriate rectal preparation.

  17. The strategy of the shelter implementation plan (SIP) performance

    International Nuclear Information System (INIS)

    Geras'ko, V.N.; Nosovskij, A.V.

    1999-01-01

    In 1997 the 'Shelter Implementation Plan' (SIP) was developed it's purpose was to transform Unit 4 of the Chernobyl NPP into the ecologically safe system. The Plan was developed by common efforts of the Ukrainian scientists, CES representatives and experts from the United States of America. The fact that there are no nuclear and radiation safety criteria for the projects will result into the situation when different designers might use within the various project tasks various design criteria. Till now o exact date for the constructions stabilization activities has been defined, and it creates a kind of on definiteness while developing the Radioactive Waste Management strategy and Safe Confinement

  18. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, R.L.

    1997-05-07

    In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued DNFSB Recommendation 94-1 (Conway 1994), which identified concerns related to US Department of Energy (DOE) management of legacy fissile materials remaining from past defense production activities. The DNFSB expressed concern about the existing storage conditions for these materials and the slow pace at which the conditions were being remediated. The DNFSB also expressed its belief that additional delays in stabilizing these fissile materials would be accompanied by further deterioration of safety and unnecessary increased risks to workers and the public. In February 1995, DOE issued the DNFSB Recommendation 94-1 Implementation Plan (O`Leary 1995) to address the concerns identified in DNFSB Recommendation 94-1. The Implementation Plan (IP) identifies several DOE commitments to achieve safe interim storage for the legacy fissile materials, and constitutes DOE`s baseline DNFSB Recommendation 94-1 Integrated Program Plan (IPP). The IPP describes the actions DOE plans to implement within the DOE complex to convert its excess fissile materials to forms or conditions suitable for safe interim storage. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. The additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs also supported

  19. DNFSB recommendation 94-1 Hanford site integrated stabilization management plan

    International Nuclear Information System (INIS)

    McCormack, R.L.

    1997-01-01

    In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued DNFSB Recommendation 94-1 (Conway 1994), which identified concerns related to US Department of Energy (DOE) management of legacy fissile materials remaining from past defense production activities. The DNFSB expressed concern about the existing storage conditions for these materials and the slow pace at which the conditions were being remediated. The DNFSB also expressed its belief that additional delays in stabilizing these fissile materials would be accompanied by further deterioration of safety and unnecessary increased risks to workers and the public. In February 1995, DOE issued the DNFSB Recommendation 94-1 Implementation Plan (O'Leary 1995) to address the concerns identified in DNFSB Recommendation 94-1. The Implementation Plan (IP) identifies several DOE commitments to achieve safe interim storage for the legacy fissile materials, and constitutes DOE's baseline DNFSB Recommendation 94-1 Integrated Program Plan (IPP). The IPP describes the actions DOE plans to implement within the DOE complex to convert its excess fissile materials to forms or conditions suitable for safe interim storage. The IPP was subsequently supplemented with an Integrated Facilities Plan and a Research and Development Plan, which further develop complex-wide research and development and long-range facility requirements and plans. The additions to the baseline IPP were developed based on a systems engineering approach that integrated facilities and capabilities at the various DOE sites and focused on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the DNFSB Recommendation 94-1 IP. The SISMPs also supported

  20. Characterization of Pancreatic Tumor Motion Using Cine MRI: Surrogates for Tumor Position Should Be Used With Caution

    International Nuclear Information System (INIS)

    Feng, Mary; Balter, James M.; Normolle, Daniel; Adusumilli, Saroja; Cao Yue; Chenevert, Thomas L.; Ben-Josef, Edgar

    2009-01-01

    Purpose: Our current understanding of intrafraction pancreatic tumor motion due to respiration is limited. In this study, we characterized pancreatic tumor motion and evaluated the application of several radiotherapy motion management strategies. Methods and Materials: Seventeen patients with unresectable pancreatic cancer were enrolled in a prospective internal review board-approved study and imaged during shallow free-breathing using cine MRI on a 3T scanner. Tumor borders were agreed on by a radiation oncologist and an abdominal MRI radiologist. Tumor motion and correlation with the potential surrogates of the diaphragm and abdominal wall were assessed. These data were also used to evaluate planning target volume margin construction, respiratory gating, and four-dimensional treatment planning for pancreatic tumors. Results: Tumor borders moved much more than expected. To provide 99% geometric coverage, margins of 20 mm inferiorly, 10 mm anteriorly, 7 mm superiorly, and 4 mm posteriorly are required. Tumor position correlated poorly with diaphragm and abdominal wall position, with patient-level Pearson correlation coefficients of -0.18-0.43. Sensitivity and specificity of gating with these surrogates was also poor, at 53%-68%, with overall error of 35%-38%, suggesting that the tumor may be underdosed and normal tissues overdosed. Conclusions: Motion of pancreatic tumor borders is highly variable between patients and larger than expected. There is substantial deformation with breathing, and tumor border position does not correlate well with abdominal wall or diaphragmatic position. Current motion management strategies may not account fully for tumor motion and should be used with caution.

  1. Motion on an Inclined Plane and the Nature of Science

    Science.gov (United States)

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  2. Special Needs: Planning for Adulthood (Videos)

    Medline Plus

    Full Text Available ... Answers (Q&A) Staying Safe Videos for Educators Search English Español Special Needs: Planning for Adulthood (Video) ... Nondiscrimination Visit the Nemours Web site. Note: All information on KidsHealth® is for educational purposes only. For ...

  3. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  4. Analysis of motion of the rectum during preoperative intensity modulated radiation therapy for rectal cancer using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Yamashita, Hideomi; Takenaka, Ryousuke; Sakumi, Akira; Haga, Akihiro; Otomo, Kuni; Nakagawa, Keiichi

    2015-01-01

    The purpose of the present study was to quantify the inter-fractional motion of the rectum and the rectal and bladder volumes using CBCT scans taken during chemoradiation therapy (CRT) for rectal cancer. Also, assessment was made for a better margin for simultaneous integrated boost - intensity modulated radiation therapy (SIB-IMRT) for rectal cancer. There were 32 patients in this study undergoing preoperative CRT for rectal cancer. Each rectum and bladder was contoured on all planning CTs and CBCTs (day 1, 7, 13, 19, 25). The target volume was configured by adding margins (0, 3, 5, 7, 10, and 15 mm) to the rectum on planning CT. The respective percentage of rectal volume that exceeds the target volume was calculated for each of these margins. The percentage of bladder volume that exceeds the bladder volume in the planning CT and motion of the center of gravity of rectum were also analyzed. Planning CTs and series of each 5 CBCTs for 32 patients were analyzed in this study. The rectal volume tended to shrink week after week. The mean values (± SD) in the 32 series per patient of the percentage of rectum on the CBCTs exceeding target volume in which the margins of 0, 3, 5, 7, 10, and 15 mm were added to the rectum on planning CT were 20.7 ± 12.5%, 7.2 ± 8.3%, 3.9 ± 5.9%, 2.1 ± 3.9%, 0.7 ± 1.8%, and 0.1 ± 0.3%, respectively. No association was seen between the percentage of changes of bladder volume and motion of rectal centroid. In this study, we estimated the motion of the rectum using planning CT and CBCT. Ten to fifteen mm is a sufficient margin for the rectum during SIB-IMRT for rectal cancer in the supine position

  5. Application Of Three-Dimensional Videography To Human Motion Studies: Constraints, Assumptions, And Mathematics

    Science.gov (United States)

    Rab, George T.

    1988-02-01

    Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.

  6. Tank 241-AP-104 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-11-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Double-Shell Tank (DST) 241-AP-104

  7. Infant Safe Sleep Interventions, 1990-2015: A Review.

    Science.gov (United States)

    Salm Ward, Trina C; Balfour, Giselle M

    2016-02-01

    Sleep-related infant deaths remain a major public health issue. Multiple interventions have been implemented in efforts to increase adherence to safe sleep recommendations. We conducted a systematic review of the international research literature to synthesize research on interventions to reduce the risk of sleep-related deaths and their effectiveness in changing infant sleep practices. We searched PubMed, CINAHL, PsycINFO, and Google Scholar for peer-reviewed articles published between 1990 and 2015 which described an intervention and reported results. Twenty-nine articles were included for review. Studies focused on infant caregivers, health care professionals, peers, and child care professionals. Targeted behaviors included sleep position, location, removing items from the crib, breastfeeding, smoke exposure, clothing, pacifier use, and knowledge of Sudden Infant Death Syndrome. Most articles described multi-faceted interventions, including: one-on-one or group education, printed materials, visual displays, videos, and providing resources such as cribs, pacifiers, wearable blankets, and infant t-shirts. Two described public education campaigns, one used an educative questionnaire, and one encouraged maternal note taking. Health professional interventions included implementing safe sleep policies, in-service training, printed provider materials, eliciting agreement on a Declaration of Safe Sleep Practice, and sharing adherence data. Data collection methods included self-report via surveys and observational crib audits. Over half of the studies utilized comparison groups which helped determine effectiveness. Most articles reported some degree of success in changing some of the targeted behaviors; no studies reported complete adherence to recommendations. Future studies should incorporate rigorous evaluation plans, utilize comparison groups, and collect demographic and collect follow-up data.

  8. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  9. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  10. Canada's green plan - The second year. Summary

    International Nuclear Information System (INIS)

    1993-01-01

    Canada's Green Plan is the national strategy and action plan for sustainable development launched by the federal government. The Green Plan's goal is 'to secure for current and future generations a safe and healthy environment and a sound and prosperous economy.' It represents a fundamental shift in the way the federal government views economic development and environmental protection: they are inextricably linked; both are critical to the health and well-being of Canadians. Substantial development has been made in Canada, with advances being made on the Green Plan's short-term objectives and on our longer term priorities

  11. 12 CFR 563b.115 - How will OTS review my business plan?

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false How will OTS review my business plan? 563b.115... business plan? (a) OTS will review your business plan to determine that it demonstrates a safe and sound... will be determinative. OTS will review every case on its merits. (b) You must file your business plan...

  12. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning

    Science.gov (United States)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2018-01-01

    Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

  13. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  14. SU-G-BRA-13: An Advanced Deformable Lung Phantom for Analyzing the Dosimetric Impact of Respiratory Motion

    International Nuclear Information System (INIS)

    Shin, D; Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Suh, T

    2016-01-01

    Purpose: The difference between three-dimensional (3D) and four-dimensional (4D) dose is affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control for each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate characteristics. Methods: A phantom was designed to simulate diaphragm motion with amplitude in the range 1 to 7 cm and various periods of regular breathing. To simulate different size tumors, tumors were produced by pouring liquid silicone into custom molds created by a 3D printer. The accuracy of phantom diaphragm motion was assessed using calipers and protractor. To control tumor motion, tumor trajectories were evaluated using 4D computed tomography (CT), and diaphragm-tumor correlation curve was calculated by curve fitting method. Three-dimensional dose and 4D dose were calculated and compared according to tumor motion. Results: The accuracy of phantom diaphragm motion was less than 1 mm. Maximum tumor motion amplitudes in the left-right and anterior-posterior directions were 0.08 and 0.12 cm, respectively, in a 10 cm"3 tumor, and 0.06 and 0.27 cm, respectively, in a 90 cm"3 tumor. The diaphragm-tumor correlation curve showed that tumor motion in the superior-inferior direction was increased with increasing diaphragm motion. In the 10 cm"3 tumor, the tumor motion was larger than the 90 cm"3 tumor. According to tumor motion, variation of dose difference between 3D and 4D was identified. Conclusion: The developed phantom can independently control factors such as tumor size and motion. In potentially, this phantom can be used to quantitatively analyze the dosimetric impact of respiratory motion according to the factors that influence the difference between 3D and 4D dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future

  15. Notification: Evaluation of Benefits and Use of Office of Research and Development's Safe and Sustainable Water Resources Research

    Science.gov (United States)

    Project #OPE-FY17-0021, August 1, 2017. The EPA OIG plans to begin preliminary research to assess the benefits and use of the Office of Research and Development’s (ORD) Safe and Sustainable Water Resources research.

  16. A synchronous surround increases the motion strength gain of motion.

    Science.gov (United States)

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  17. TH-CD-207A-12: Impacts of Inter- and Intra-Fractional Organ Motion for High-Risk Prostate Cancer Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hassan Rezaeian, N; Chi, Y; Zhou, Y; Tian, Z; Jiang, S; Hannan, R; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: We are conducting a clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer. Doses to three targets, prostate, intra-prostatic lesion, and pelvic lymph node (PLN) region, are escalated to three different levels via simultaneous integrated boost technique. Inter-/intra-fractional organ motions deteriorate planned dose distribution. This study aims at developing a dose reconstruction system to comprehensively understand the impacts of organ motion in our clinical trial. Methods: A 4D dose reconstruction system has been developed for this study. Using a GPU-based Monte-Carlo dose engine and delivery log file, the system is able to reconstruct dose on static or dynamic anatomy. For prostate and intra-prostatic targets, intra-fractional motion is the main concern. Motion trajectory acquired from Calypso in previously treated SBRT patients were used to perform 4D dose reconstructions. For pelvic target, inter-fractional motion is one concern. Eight patients, each with four cone beam CTs, were used to derive fractional motion. The delivered dose was reconstructed on the deformed anatomy. Dosimetric parameters for delivered dose distributions of the three targets were extracted and compared with planned levels. Results: For prostate intra-fractional motion, the mean 3D motion amplitude during beam delivery ranged from 1.5mm to 5.0mm and the average among all patients was 2.61mm. Inter-fractional motion for the PLN target was more significant. The average amplitude among patients was 4mm with the largest amplitude up to 9.6mm. The D95% deviation from planned level for prostate PTVs and GTVs are on average less than<0.1% and this deviation for intra-prostatic lesion PTVs and GTVs were more prominent. The dose at PLN was significantly affected with D{sub 95}% reduced by up to 44%. Conclusion: Intra-/inter-fractional organ motion is a concern for high-risk prostate SBRT, particularly for the PLN target. Our dose reconstruction

  18. SU-E-J-164: Estimation of DVH Variation for PTV Due to Interfraction Organ Motion in Prostate VMAT Using Gaussian Error Function

    International Nuclear Information System (INIS)

    Lewis, C; Jiang, R; Chow, J

    2015-01-01

    Purpose: We developed a method to predict the change of DVH for PTV due to interfraction organ motion in prostate VMAT without repeating the CT scan and treatment planning. The method is based on a pre-calculated patient database with DVH curves of PTV modelled by the Gaussian error function (GEF). Methods: For a group of 30 patients with different prostate sizes, their VMAT plans were recalculated by shifting their PTVs 1 cm with 10 increments in the anterior-posterior, left-right and superior-inferior directions. The DVH curve of PTV in each replan was then fitted by the GEF to determine parameters describing the shape of curve. Information of parameters, varying with the DVH change due to prostate motion for different prostate sizes, was analyzed and stored in a database of a program written by MATLAB. Results: To predict a new DVH for PTV due to prostate interfraction motion, prostate size and shift distance with direction were input to the program. Parameters modelling the DVH for PTV were determined based on the pre-calculated patient dataset. From the new parameters, DVH curves of PTVs with and without considering the prostate motion were plotted for comparison. The program was verified with different prostate cases involving interfraction prostate shifts and replans. Conclusion: Variation of DVH for PTV in prostate VMAT can be predicted using a pre-calculated patient database with DVH curve fitting. The computing time is fast because CT rescan and replan are not required. This quick DVH estimation can help radiation staff to determine if the changed PTV coverage due to prostate shift is tolerable in the treatment. However, it should be noted that the program can only consider prostate interfraction motions along three axes, and is restricted to prostate VMAT plan using the same plan script in the treatment planning system

  19. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  20. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  1. Power source with spark-safe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Tsesarenko, N P; Alekhin, A V

    1982-01-01

    The invention refers to the technique of electrical monitoring and control in systems operating in a spark-safe medium (for example, in coal mines). A more accurate area of application is mobile objects with autonomous source of electricity (mine diesel locomotives, battery electric locomotives etc.). The purpose of the invention is to simplify and to improve the reliability of the planned device, and also to expand the area of application for conditions when it is powered from an autonomous generator of direct voltage. This goal is achieved because the power source with spark-safe outlet (the source contains a thyristor of advance disconnection, connected by anode to the delimiting throttle, one outlet of which is connected to the capacitor included between the controlling electrode and the anode of the thyristor, and the capacitor is connected through the resistor parallel to the outlet clamps of the source, while the thyristor of emergency protection connected parallel to the inlet clamps of the power source) is additionally equipped with a current sensor, hercon, transistor key (included in series in the power circuit) and optron, whose emitter is connected parallel to the current sensor connected in series to the inlet of the power source, while the receiver of the optron is connected in a circuit for controlling the thyristor of emergency protection. Hercon is built into the core of the delimiting throttle and is connected to the circuit for controlling the transistor key.

  2. Flip-flop motion of circular hydrogen bond array in thiacalix[4]arene

    Czech Academy of Sciences Publication Activity Database

    Lang, J.; Vágnerová, K.; Czernek, Jiří; Lhoták, P.

    2006-01-01

    Roč. 18, č. 4 (2006), s. 371-381 ISSN 1061-0278 R&D Projects: GA AV ČR KJB4050311 Institutional research plan: CEZ:AV0Z40500505 Keywords : flip-flop motion * hydrogen bond * enthalpy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.861, year: 2006

  3. The observer's guide to planetary motion explaining the cycles of the night sky

    CERN Document Server

    Ford, Dominic

    2014-01-01

    To the naked eye, the most evident defining feature of the planets is their motion across the night sky. It was this motion that allowed ancient civilizations to single them out as different from fixed stars. But how does the geometry of the Solar System give rise to the observed motions of the planets and their moons? Although the motions of the planets may be described as simple elliptical orbits around the Sun, they must be observed from a particular vantage point--the Earth, which spins daily on its axis and circles around the Sun each year, resulting in more complicated patterns. The Observer’s Guide to Planetary Motion provides accurate tables of the best time for observing each planet, together with other notable events in their orbits, helping amateur astronomers plan when and what to observe. Along the way, many questions are answered: Why does Mars take over two years between apparitions (the times when it is visible from Earth) in the night sky, while Uranus and Neptune take almost exactly a yea...

  4. Guidelines for ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-06-01

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs

  5. Negligible motion artifacts in scalp electroencephalography (EEG during treadmill walking

    Directory of Open Access Journals (Sweden)

    Kevin eNathan

    2016-01-01

    Full Text Available Recent Mobile Brain/Body Imaging (MoBI techniques based on active electrode scalp electroencephalogram (EEG allow the acquisition and real-time analysis of brain dynamics during active unrestrained motor behavior involving whole body movements such as treadmill walking, over-ground walking and other locomotive and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological and non-physiological artifacts, including motion artifacts that may contaminate the EEG recordings. A few attempts have been made to quantify these artifacts during locomotion tasks but with inconclusive results due in part to methodological pitfalls. In this paper, we investigate the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h using a wireless 64 channel active EEG system and a wireless inertial sensor attached to the subject’s head. The experimental setup was designed according to good measurement practices using state-of-the-art commercially-available instruments, and the measurements were analyzed using Fourier analysis and wavelet coherence approaches. Contrary to prior claims, the subjects’ motion did not significantly affect their EEG during treadmill walking although precaution should be taken when gait speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.

  6. Self-Reconfiguration Planning of Robot Embodiment for Inherent Safe Performance

    Science.gov (United States)

    Uchida, Masafumi; Nozawa, Akio; Asano, Hirotoshi; Onogaki, Hitoshi; Mizuno, Tota; Park, Young-Il; Ide, Hideto; Yokoyama, Shuichi

    In the situation in which a robot and a human work together by collaborating with each other, a robot and a human share one working environment, and each interferes in each other. In other ward, it is impossible to avoid the physical contact and the interaction of force between a robot and a human. The boundary of each complex dynamic occupation area changes in the connection movement which is the component of collaborative works at this time. The main restraint condition which relates to the robustness of that connection movement is each physical charactristics, that is, the embodiment. A robot body is variability though the embodiment of a human is almost fixed. Therefore, the safe and the robust connection movement is brought when a robot has the robot body which is well suitable for the embodiment of a human. A purpose for this research is that the colaboration works between the self-reconfiguration robot and a human is realized. To achieve this purpose, a self-reconfiguration algorithm based on some indexes to evaluate a robot body in the macroscopic point of view was examined on a modular robot system of the 2-D lattice structure. In this paper, it investigated effect specially that the object of learning of each individual was limited to the cooperative behavior between the adjoining modules toward the macroscopic evaluation index.

  7. A multistage motion vector processing method for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  8. Development and Reliability of the Comprehensive Crisis Plan Checklist

    Science.gov (United States)

    Aspiranti, Kathleen B.; Pelchar, Taylor K.; McCLeary, Daniel F.; Bain, Sherry K.; Foster, Lisa N.

    2011-01-01

    It is of vital importance that children are educated in a safe environment. Every school needs to have a well-developed crisis management document containing plans for prevention, intervention, and postvention. We developed the Comprehensive Crisis Plan Checklist (CCPC) to serve as a valuable tool that can be used to assist practitioners with…

  9. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  10. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  11. Strategies for Online Organ Motion Correction for Intensity-Modulated Radiotherapy of Prostate Cancer: Prostate, Rectum, and Bladder Dose Effects

    International Nuclear Information System (INIS)

    Rijkhorst, Erik-Jan; Lakeman, Annemarie; Nijkamp, Jasper; Bois, Josien de; Herk, Marcel van; Lebesque, Joos V.; Sonke, Jan-Jakob

    2009-01-01

    Purpose: To quantify and evaluate the accumulated prostate, rectum, and bladder dose for several strategies including rotational organ motion correction for intensity-modulated radiotherapy (IMRT) of prostate cancer using realistic organ motion data. Methods and Materials: Repeat computed tomography (CT) scans of 19 prostate patients were used. Per patient, two IMRT plans with different uniform margins were created. To quantify prostate and seminal vesicle motion, repeat CT clinical target volumes (CTVs) were matched onto the planning CTV using deformable registration. Four different strategies, from online setup to full motion correction, were simulated. Rotations were corrected for using gantry and collimator angle adjustments. Prostate, rectum, and bladder doses were accumulated for each patient, plan, and strategy. Minimum CTV dose (D min ), rectum equivalent uniform dose (EUD, n = 0.13), and bladder surface receiving ≥78 Gy (S78), were calculated. Results: With online CTV translation correction, a 7-mm margin was sufficient (i.e., D min ≥ 95% of the prescribed dose for all patients). A 4-mm margin required additional rotational correction. Margin reduction lowered the rectum EUD(n = 0.13) by ∼2.6 Gy, and the bladder S78 by ∼1.9%. Conclusions: With online correction of both translations and rotations, a 4-mm margin was sufficient for 15 of 19 patients, whereas the remaining four patients had an underdosed CTV volume <1%. Margin reduction combined with online corrections resulted in a similar or lower dose to the rectum and bladder. The more advanced the correction strategy, the better the planned and accumulated dose agreed.

  12. Nuclear Waste Policy Act transportation planning

    International Nuclear Information System (INIS)

    Klein, K.A.

    1984-01-01

    The importance and magnitude of effort to put in place a safe, publicly acceptable transportation system for radioactive wastes are discussed. The importance of working openly, documenting efforts in a way that is objective and can be understood by the general public, and being particularly sensitive and responsive to public concerns is recognized. Key elements of current planning have been described, but numerous details remain to be worked out. These details will be worked out, proposed in programs plans, and made publicly available. The author looks forward to ideas and comments for improving these plans and their implementation

  13. Savannah River waste management program plan

    International Nuclear Information System (INIS)

    1980-04-01

    This document provides the program plan as requested by the Savannah River Operations Office of the Department of Energy. The plan was developed to provide a working knowledge of the nature and extent of the waste management programs being undertaken by Savannah River contractors for the Fiscal Year 1980. In addition, the document projects activities for several years beyond 1980 to adequately plan for safe handling and storage of radioactive wastes generated at Savannah River, for developing technology to immobilize high-level radioactive wastes generated and stored at SR, and for developing technology for improved management of low-level solid wastes

  14. Are Detox Diets Safe?

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Are Detox Diets Safe? KidsHealth / For Teens / Are Detox Diets ... seguras las dietas de desintoxicación? What Is a Detox Diet? The name sounds reassuring — everyone knows that ...

  15. Plutonium Vulnerability Management Plan

    International Nuclear Information System (INIS)

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy's response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department's Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B

  16. Program Implementation Plan

    International Nuclear Information System (INIS)

    1987-06-01

    The Program Implementation Plan (PIP) describes the US Department of Energy's (DOE's) current approaches for managing the permanent disposal of defense high-level waste (HLW), transuranic (TRU) waste, and low-level waste (LLW) from atomic energy defense activities. It documents the implementation of the HLW and TRU waste policies as stated in the Defense Waste Management Plan (DWMP) (DOE/DP-0015), dated June 1983, and also addresses the management of LLW. The narrative reflects both accomplishments and changes in the scope of activities. All cost tables and milestone schedules are current as of January 1987. The goals of the program, to provide safe processing and utilization, storage, and disposal of DOE radioactive waste and byproducts to support defense nuclear materials production activities, and to implement cost-effective improvements in all of its ongoing and planned activities, have not changed

  17. Strategies to evaluate the impact of rectal volume on prostate motion during three-dimensional conformal radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Ana Paula Diniz Fortuna, E-mail: anapaulafortuna@yahoo.com.br [Universidade Estadual de Campinas (CAISM/UNICAMP), Campinas, SP (Brazil). Centro de Atencao Integrada a Saude da Mulher. Divisao de Radioterapia; Dias, Rodrigo Souza; Giordani, Adelmo Jose; Segreto, Helena Regina Comodo; Segreto, Roberto Araujo [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Divisao de Radioterapia

    2016-01-15

    Objective: To evaluate the rectal volume influence on prostate motion during three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. Materials and Methods: Fifty-one patients with prostate cancer underwent a series of three computed tomography scans including an initial planning scan and two subsequent scans during 3D-CRT. The organs of interest were outlined. The prostate contour was compared with the initial CT images considering the anterior, posterior, superior, inferior and lateral edges of the organ. Variations in the anterior limits and volume of the rectum were assessed and correlated with prostate motion in the anteroposterior direction. Results: The maximum range of prostate motion was observed in the superoinferior direction, followed by the anteroposterior direction. A significant correlation was observed between prostate motion and rectal volume variation (p = 0.037). A baseline rectal volume superior to 70 cm{sup 3} had a significant influence on the prostate motion in the anteroposterior direction (p = 0.045). Conclusion: The present study showed a significant interfraction motion of the prostate during 3D-CRT with greatest variations in the superoinferior and anteroposterior directions, and that a large rectal volume influences the prostate motion with a cutoff value of 70 cm{sup 3}. Therefore, the treatment of patients with a rectal volume > 70 cm{sup 3} should be re-planned with appropriate rectal preparation. Keywords: Rectal volume; Prostate cancer; Three-dimensional conformal radiotherapy. (author)

  18. Configuration Management Plan for K Basins

    International Nuclear Information System (INIS)

    Weir, W.R.; Laney, T.

    1995-01-01

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Programclose quotes

  19. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  20. Technical Work Plan For: Calculation of Waste Package and Drip Shield Response to Vibratory Ground Motion and Revision of the Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    M. Gross

    2006-01-01

    The overall objective of the work scope covered by this technical work plan (TWP) is to develop new damage abstractions for the seismic scenario class in total system performance assessment (TSPA). The new abstractions will be based on a new set of waste package and drip shield damage calculations in response to vibratory ground motion and fault displacement. The new damage calculations, which are collectively referred to as damage models in this TWP, are required to represent recent changes in waste form packaging and in the regulatory time frame. The new damage models also respond to comments from the Independent Validation Review Team (IVRT) postvalidation review of the draft TSPA model regarding performance of the drip shield and to an Additional Information Need (AIN) from the U.S. Nuclear Regulatory Commission (NRC)

  1. Technical Work Plan For: Calculation of Waste Packave and Drip Shield Response to Vibratory Ground Motion and Revision of the Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2006-12-08

    The overall objective of the work scope covered by this technical work plan (TWP) is to develop new damage abstractions for the seismic scenario class in total system performance assessment (TSPA). The new abstractions will be based on a new set of waste package and drip shield damage calculations in response to vibratory ground motion and fault displacement. The new damage calculations, which are collectively referred to as damage models in this TWP, are required to represent recent changes in waste form packaging and in the regulatory time frame. The new damage models also respond to comments from the Independent Validation Review Team (IVRT) postvalidation review of the draft TSPA model regarding performance of the drip shield and to an Additional Information Need (AIN) from the U.S. Nuclear Regulatory Commission (NRC).

  2. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  3. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    International Nuclear Information System (INIS)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-01-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  4. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    Science.gov (United States)

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  5. Safe Anesthesia For Every Tot

    DEFF Research Database (Denmark)

    Weiss, Markus; Vutskits, Laszlo; Hansen, Tom G

    2015-01-01

    PURPOSE OF REVIEW: The term 'safe use of anesthesia in children is ill-defined and requires definition of and focus on the 'safe conduct of pediatric anesthesia'. RECENT FINDINGS: The Safe Anesthesia For Every Tot initiative (www.safetots.org) has been set up during the last year to focus...... on the safe conduct of pediatric anesthesia. This initiative aims to provide guidance on markers of quality anesthesia care. The introduction and implementation of national regulations of 'who, where, when and how' are required and will result in an improved perioperative outcome in vulnerable children....... The improvement of teaching, training, education and supervision of the safe conduct of pediatric anesthesia are the main goals of the safetots.org initiative. SUMMARY: This initiative addresses the well known perioperative risks in young children, perioperative causes for cerebral morbidity as well as gaps...

  6. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  7. A programmable motion phantom for quality assurance of motion management in radiotherapy

    International Nuclear Information System (INIS)

    Dunn, L.; Franich, R.D.; Kron, T.; Taylor, M.L.; Johnston, P.N.; McDermott, L.N.; Callahan, J.

    2012-01-01

    A commercially available motion phantom (QUASAR, Modus Medical) was modified for programmable motion control with the aim of reproducing patient respiratory motion in one dimension in both the anterior–posterior and superior–inferior directions, as well as, providing controllable breath-hold and sinusoidal patterns for the testing of radiotherapy gating systems. In order to simulate realistic patient motion, the DC motor was replaced by a stepper motor. A separate 'chest-wall' motion platform was also designed to accommodate a variety of surrogate marker systems. The platform employs a second stepper motor that allows for the decoupling of the chest-wall and insert motion. The platform's accuracy was tested by replicating patient traces recorded with the Varian real-time position management (RPM) system and comparing the motion platform's recorded motion trace with the original patient data. Six lung cancer patient traces recorded with the RPM system were uploaded to the motion platform's in-house control software and subsequently replicated through the phantom motion platform. The phantom's motion profile was recorded with the RPM system and compared to the original patient data. Sinusoidal and breath-hold patterns were simulated with the motion platform and recorded with the RPM system to verify the systems potential for routine quality assurance of commercial radiotherapy gating systems. There was good correlation between replicated and actual patient data (P 0.003). Mean differences between the location of maxima in replicated and patient data-sets for six patients amounted to 0.034 cm with the corresponding minima mean equal to 0.010 cm. The upgraded motion phantom was found to replicate patient motion accurately as well as provide useful test patterns to aid in the quality assurance of motion management methods and technologies.

  8. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    International Nuclear Information System (INIS)

    Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

    2014-01-01

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  9. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia and Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Blanck, O.; Rades, D. [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Oborn, B. [Illawarra Cancer Care Centre (ICCC), Wollongong, New South Wales 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales 2500 (Australia); Bode, F. [Medical Department II, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Liney, G. [Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, New South Wales 2170 (Australia); Hunold, P. [Department of Radiology and Nuclear Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Schweikard, A. [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Keall, P. J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  10. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery.

    Science.gov (United States)

    Ipsen, S; Blanck, O; Oborn, B; Bode, F; Liney, G; Hunold, P; Rades, D; Schweikard, A; Keall, P J

    2014-12-01

    Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior-inferior), 2.4 mm (anterior-posterior), and 2 mm (left-right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the ideal scenario, compromising

  11. Savannah River Site FY 1998 Spent Nuclear Fuel Interim Management Plan

    International Nuclear Information System (INIS)

    Dupont, M.E.

    1998-01-01

    This document has been prepared to present in one place the near and long-term plans for safe management of Savannah River Site (SRS) spent nuclear fuel inventories until final disposition has been identified and implemented. The activities described are consistent with FY 1998 Annual Operational Plan guidance and with the December 1997 SRS Accelerated Cleanup Plan update. Summarized are highlights, key decision dates, and baseline assumptions of this plan

  12. Sustainability Criteria for Planning, Constructing, and Operating Contingency Bases

    Science.gov (United States)

    2012-05-22

    common PREREQ 1 Walkable Streets yes Planning, Desi gn, Construction, OaM Medium use areas. Plan careft,j!y to accommodate simftar functions in the...apjly the specific LEED·ND criteria. Pay special attention to roads that connect LSA ~ife support areas) to common Walkable Streets yes Planning... Walkable Streets  Intent: ►To promote transportation efficiency. ►To promote walking by providing: • Safe •Appealing •Comfortable street

  13. Picking Robot Arm Trajectory Planning Method

    Directory of Open Access Journals (Sweden)

    Zhang Zhiyong

    2014-01-01

    Full Text Available The picking robot arm is scheduled to complete picking tasks in the working space, to overcome the shaking vibration to improve the picking stability, its movement should follow specific consistence trajectory points. Usually we should give definite multiple feature picking points, map their inverse kinematics to the joint space, establish motion equation for the corresponding point in the joint space, then follow these equations motion for the interpolation on the joint so that we can meet the movement requirements. Trajectory planning is decisive significance for accuracy and stability of controlling robot arm. The key issue that picking arm complete picking task will be come true by trajectory planning, namely, robot arm track the desired trajectory. which based on kinematics and statics picking analysis in a joint space according to the requirements of picking tasks, and obtain the position and orientation for picking robot arm, study and calculate the theory of trajectory parameters timely.

  14. Planning for implementation in a volunteer process

    International Nuclear Information System (INIS)

    Tweed, Cherry

    2014-01-01

    The framework for implementing geological disposal of the UK's higher activity radioactive wastes is laid out in the Managing Radioactive Waste Safely (MRWS) White Paper published by the UK Government in June 2008. The process to site a facility is to be staged and based on voluntarism and partnership with local communities. This process is in its early stages and this paper outlines the work being undertaken by the Nuclear Decommissioning Authority's Radioactive Waste Management Directorate (NDA-RWMD), the implementing body for geological disposal in the UK, to plan, along with others, how to deal with the waste and get it safely underground. It describes how the work programme has been developed, how the safety is demonstrated, how to provide packaging advice and develop the organisation. The processes used to build confidence in these plans are also presented

  15. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    International Nuclear Information System (INIS)

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck af Rosenschoeld, Per

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358 deg. arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy x 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45 deg. or 315 deg. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system

  16. Real-time 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy.

    Science.gov (United States)

    Furtado, Hugo; Steiner, Elisabeth; Stock, Markus; Georg, Dietmar; Birkfellner, Wolfgang

    2013-10-01

    Intra-fractional respiratory motion during radiotherapy leads to a larger planning target volume (PTV). Real-time tumor motion tracking by two-dimensional (2D)/3D registration using on-board kilo-voltage (kV) imaging can allow for a reduction of the PTV though motion along the imaging beam axis cannot be resolved using only one projection image. We present a retrospective patient study investigating the impact of paired portal mega-voltage (MV) and kV images on registration accuracy. Material and methods. We used data from 10 patients suffering from non-small cell lung cancer (NSCLC) undergoing stereotactic body radiation therapy (SBRT) lung treatment. For each patient we acquired a planning computed tomography (CT) and sequences of kV and MV images during treatment. We compared the accuracy of motion tracking in six degrees-of-freedom (DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. Results. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 2.9 mm to 1.5 mm and the motion along AP was successfully extracted. Mean registration time was 188 ms. Conclusion. Our evaluation shows that using kV-MV image pairs leads to improved motion extraction in six DOF and is suitable for real-time tumor motion tracking with a conventional LINAC.

  17. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  18. Have a Blast, Safely!

    Science.gov (United States)

    Roy, Ken

    2005-01-01

    Model rocketry is one of the best ways to get students interested in the physical sciences. Following safety guidelines, rocketry can really turn students on to science and also help them understand the applications of theories and scientific principles (Newton's laws of motion, force, mass, projectile motion, etc.) they are learning. The study…

  19. State of Montana ITS/CVO business plan : intelligent transportation system commercial vehicle operations

    Science.gov (United States)

    1998-01-01

    This plans purpose is to encourage coordinated, efficient and safe commercial vehicle operations throughout Montana, and to promote inter-agency and regional cooperation as ITS/CVO projects are developed and deployed. The Plan discusses Montana...

  20. Motion-Cyclo-oxygenase-2 Selective Nonsteroidal Anti-Inflammatory Drugs are as Safe as Placebo for the Stomach: Arguments for the Motion

    Directory of Open Access Journals (Sweden)

    Richard H Hunt

    2003-01-01

    Full Text Available Traditional nonsteroidal anti-inflammatory drugs (NSAIDs are known to cause gastritis, gastric and duodenal ulcers, and gastrointestinal (GI blood loss, as well as alterations in small bowel permeability. Patients at a high risk for these complications include those who are older than 60 years of age, those with a previous history of complicated peptic disease and bleeding, and those who take high dose or multiple NSAIDs, including low dose aspirin, corticosteroids or anticoagulants. The introduction of selective inhibitors of cyclo-oxygenase-2 (COX-2 has provided effective treatment of inflammatory arthritis and musculoskeletal pain, with dramatic reductions in the risk of GI adverse events. The two most widely prescribed coxibs are celecoxib and rofecoxib, and others are being developed. Endoscopic studies have revealed that coxibs are only half as likely to induce upper GI ulceration than are traditional NSAIDs, and are as safe as placebo. Furthermore, the newer drugs do not cause excessive blood loss from the GI tract and do not affect small bowel permeability. The Vioxx Gastrointestinal Outcomes Research Study (VIGOR revealed that the incidence of myocardial infarction was significantly lower with naproxen than rofecoxib, although this study was not designed to look at this endpoint. Coxibs are an important addition to the pharmacotherapy of inflammatory disease.

  1. Most Effective Practices in Lesson Planning

    Science.gov (United States)

    Womack, Sid T.; Pepper, Stephanie; Hanna, Shellie L.; Bell, Columbus David

    2015-01-01

    In a previous study with 130 undergraduate teacher candidates from all licensure levels, data on candidate effectiveness were examined using factor analysis. Four factors were found in effective teaching, those being lesson planning, teacher and student reflection, safe school environment, and teacher professionalism. The present study followed…

  2. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Larsson, Tobias; Keall, P.

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced......-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The dosimetric results were evaluated using gamma index evaluation with static target measurements as reference. Results: The plan quality...

  3. Effects prediction guidelines for structures subjected to ground motion

    International Nuclear Information System (INIS)

    1975-07-01

    Part of the planning for an underground nuclear explosion (UNE) is determining the effects of expected ground motion on exposed structures. Because of the many types of structures and the wide variation in ground motion intensity typically encountered, no single prediction method is both adequate and feasible for a complete evaluation. Furthermore, the nature and variability of ground motion and structure damage prescribe effects predictions that are made probabilistically. Initially, prediction for a UNE involves a preliminary assessment of damage to establish overall project feasibility. Subsequent efforts require more detailed damage evaluations, based on structure inventories and analyses of specific structures, so that safety problems can be identified and safety and remedial measures can be recommended. To cover this broad range of effects prediction needs for a typical UNE project, three distinct but interrelated methods have been developed and are described. First, the fundamental practical and theoretical aspects of predicting the effects of dynamic ground motion on structures are summarized. Next, experimentally derived and theoretically determined observations of the behavior of typical structures subjected to ground motion are presented. Then, based on these fundamental considerations and on the observed behavior of structures, the formulation of the three effects prediction procedures is described, along with guidelines regarding their applicability. Example damage predictions for hypothetical UNEs demonstrate these procedures. To aid in identifying the vibration properties of complex structures, one chapter discusses alternatives in vibration testing, instrumentation, and data analysis. Finally, operational guidelines regarding data acquisition procedures, safety criteria, and remedial measures involved in conducting structure effects evaluations are discussed. (U.S.)

  4. Response spectra for differential motion of structures supports during earthquakes in Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed I.S. Elmasry

    2012-12-01

    Full Text Available Differential motions of ground supports of stiff structures with large plan dimensions and separate foundations under earthquakes were studied by researchers during the last few decades. Such a type of structural response was previously underestimated. The importance of studying such a response comes up from the fact that usually the structures affected are of strategic importance such as bridges. During their expected life, structures may experience vibrations excited by ground waves of short wavelengths during near-source earthquakes, or during amplified earthquake signals, during explosions, or during vibrations induced from nearby strong vibration sources. This is the case when the differential motion of supports becomes considerable. This paper aims to review the effects of seismic signal variations along the structures dimensions with emphasis on Egypt as a case study. The paper shows some patterns of the damage imposed by such differential motion. A replication of the differential motion in the longitudinal direction is applied on a frame bridge model. The resulting straining actions show the necessity for considering the differential motion of supports in the design of special structures in Egypt. Finally, response spectra for the differential motion of supports, based on the available data from previous earthquakes in Egypt, is derived and proposed for designers to include in the design procedure when accounting for such type of structural response, and especially in long-span bridges.

  5. Assessment of Bladder Motion for Clinical Radiotherapy Practice Using Cine-Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    McBain, Catherine A.; Khoo, Vincent S.; Buckley, David L.; Sykes, Jonathan S.; Green, Melanie M.; Cowan, Richard A.; Hutchinson, Charles E.; Moore, Christopher J.; Price, Patricia M.

    2009-01-01

    Purpose: Organ motion is recognized as the principal source of inaccuracy in bladder radiotherapy (RT), but there is currently little information on intrafraction bladder motion. Methods and Materials: We used cine-magnetic resonance imaging (cine-MRI) to study bladder motion relevant to intrafraction RT delivery. On two occasions, a 28 minute cine-MRI sequence was acquired from 10 bladder cancer patients and 5 control participants immediately after bladder emptying, after abstinence from drinking for the preceding hour. From the resulting cine sequences, bladder motion was subjectively assessed. To quantify bladder motion, the bladder was contoured in imaging volume sets at 0, 14, and 28 min to measure changes to bladder volumes, wall displacements, and center of gravity (COG) over time. Results: The dominant source of bladder motion during imaging was bladder filling (up to 101% volume increase); rectal and small bowel movements were transient, with minimal impact. Bladder volume changes were similar for all participants. However for bladder cancer patients, wall displacements were larger (up to 58 mm), less symmetrical, and more variable compared with nondiseased control bladders. Conclusions: Significant and individualized intrafraction bladder wall displacements may occur during bladder RT delivery. This important source of inaccuracy should be incorporated into treatment planning and verification.

  6. Water hydraulic manipulator for fail safe and fault tolerant remote handling operations at ITER

    International Nuclear Information System (INIS)

    Nieminen, Peetu; Esque, Salvador; Muhammad, Ali; Mattila, Jouni; Vaeyrynen, Jukka; Siuko, Mikko; Vilenius, Matti

    2009-01-01

    Department of Intelligent Hydraulics and Automation (IHA) of Tampere University of Technology has been involved in the European Fusion program since 1994 within the ITER reactor maintenance activities. In this paper we discuss the design and development of a six degrees of freedom water hydraulic manipulator with a force feedback for teleoperation tasks. The manipulator is planned to be delivered to Divertor Test Platform 2 (DTP2) during year 2008. The paper also discusses the possibility to improve the fail safe and redundant operation of the manipulator. During the design of the water hydraulic manipulator, special provisions have been made in order to meet the safety requirements such as servo valve block for redundant operation and safety vane brakes for fail safe operation.

  7. Maintenance service for major component of PWR plant. Replacement of pressurizer safe end weld

    International Nuclear Information System (INIS)

    Miyoshi, Yoshiyuki; Kobayashi, Yuki; Yamamoto, Kazuhide; Ueda, Takeshi; Suda, Naoki; Shintani, Takashi

    2017-01-01

    In October 2016, MHI completed the replacement of safe end weld of pressurizer (Pz) of Ringhals unit 3, which was the first maintenance work for main component of pressurized water reactor (PWR) plant in Europe. For higher reliability and longer lifetime of PWR plant, MHI has conducted many kinds of maintenance works of main components of PWR plants in Japan against stress corrosion cracking due to aging degradation. Technical process for replacement of Pz safe end weld were established by MHI. MHI has experienced the work for 21 PWR units in Japan. That of Ringhals unit 3 was planned and conducted based on the experiences. In this work, Alloy 600 used for welds of nozzles of Pz was replaced with Alloy 690. Alloy 690 is more corrosive-resistant than Alloy 600. Specially designed equipment and technical process were developed and established by MHI to replace safe end weld of Pz and applied for the Ringhals unit 3 as a first application in Europe. The application had been performed in success and achieved the planned replacement work duration and total radiation dose by using sophisticated machining and welding equipment designed to meet the requirements to be small, lightweight and remote-controlled and operating by well skilled MHI personnel experienced in maintenance activities for major components of PWR plant in Japan. The success shows that the experience, activities and technology developed in Japan for main components of PWR plant shall be applicable to contribute reliable operations of nuclear power plants in Europe and other countries. (author)

  8. The role of family planning in achieving safe pregnancy for serodiscordant couples: commentary from the United States government's interagency task force on family planning and HIV service integration.

    Science.gov (United States)

    Mason, Jennifer; Medley, Amy; Yeiser, Sarah; Nightingale, Vienna R; Mani, Nithya; Sripipatana, Tabitha; Abutu, Andrew; Johnston, Beverly; Watts, D Heather

    2017-03-08

    People living with HIV (PLHIV) have the right to exercise voluntary choices about their health, including their reproductive health. This commentary discusses the integral role that family planning (FP) plays in helping PLHIV, including those in serodiscordant relationships, achieve conception safely. The United States (US) President's Emergency Plan for AIDS Relief (PEPFAR) is committed to meeting the reproductive health needs of PLHIV by improving their access to voluntary FP counselling and services, including prevention of unintended pregnancy and counselling for safer conception. Inclusion of preconception care and counselling (PCC) as part of routine HIV services is critical to preventing unintended pregnancies and perinatal infections among PLHIV. PLHIV not desiring a current pregnancy should be provided with information and counselling on all available FP methods and then either given the method onsite or through a facilitated referral process. PLHIV, who desire children should be offered risk reduction counselling, support for HIV status disclosure and partner testing, information on safer conception options to reduce the risk of HIV transmission to the partner and the importance of adhering to antiretroviral treatment during pregnancy and breastfeeding to reduce the risk of vertical transmission to the infant. Integration of PCC, HIV and FP services at the same location is recommended to improve access to these services for PLHIV. Other considerations to be addressed include the social and structural context, the health system capacity to offer these services, and stigma and discrimination of providers. Evaluation of innovative service delivery models for delivering PCC services is needed, including provision in community-based settings. The US Government will continue to partner with local organizations, Ministries of Health, the private sector, civil society, multilateral and bilateral donors, and other key stakeholders to strengthen both the policy and

  9. Prostate stereotactic body radiotherapy with simultaneous integrated boost: which is the best planning method?

    International Nuclear Information System (INIS)

    Tree, Alison; Jones, Caroline; Sohaib, Aslam; Khoo, Vincent; As, Nicholas van

    2013-01-01

    The delivery of a simultaneous integrated boost to the intra-prostatic tumour nodule may improve local control. The ability to deliver such treatments with hypofractionated SBRT was attempted using RapidArc (Varian Medical systems, Palo Alto, CA) and Multiplan (Accuray inc, Sunnyvale, CA). 15 patients with dominant prostate nodules had RapidArc and Multiplan plans created using a 5 mm isotropic margin, except 3 mm posteriorly, aiming to deliver 47.5 Gy in 5 fractions to the boost whilst treating the whole prostate to 36.25 Gy in 5 fractions. An additional RapidArc plan was created using an 8 mm isotropic margin, except 5 mm posteriorly, to account for lack of intrafraction tracking. Both RapidArc and Multiplan can produce clinically acceptable boost plans to a dose of 47.5 Gy in 5 fractions. The mean rectal doses were lower for RapidArc plans (D50 13.2 Gy vs 15.5 Gy) but the number of missed constraints was the same for both planning methods (11/75). When the margin was increased to 8 mm/5 mm for the RapidArc plans to account for intrafraction motion, 37/75 constraints were missed. RapidArc and Multiplan can produce clinically acceptable simultaneous integrated boost plans, but the mean rectal D50 and D20 with RapidArc are lower. If the margins are increased to account for intrafraction motion, the RapidArc plans exceed at least one dose constraint in 13/15 cases. Delivering a simultaneous boost with hypofractionation appears feasible, but requires small margins needing intrafraction motion tracking

  10. The transportation institutional plan: Cooperative planning for NWPA transportation

    International Nuclear Information System (INIS)

    Denny, S.H.; Livingston-Behan, E.A.

    1987-01-01

    The Transportation Institutional Plan, published in 1986 by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), defines a process for effective interaction among those who may be affected by transportation activities conducted under provisions of the Nuclear Waste Policy Act of 1982 (NWPA). The Plan describes formal mechanisms for identifying, addressing, and resolving specific transportation issues. An appendix to the Plan includes detailed discussion of the following transportation issues: (1) the transportation of defense waste; (2) prenotification; (3) physical and rail shipments; (4) highway routing; (5) rail routing; (6) inspection and enforcement for highway and rail shipments; (7) emergency response; (8) liability coverage for transportation to NWPA facilities; (9) cask design and testing; (10) overweight truck shipments; (11) rail service analysis; (12) mixture of transportation modes; (13) transportation infrastructure improvements; (14) OCRWM training standards; (15) transportation operational procedures; and (16) State, Tribal, and local regulation of transportation. The OCRWM's intent is to provide an open accounting of planning, to identify opportunities for public involvement in program activities, and to foster communication and negotiation in the cooperative development of a safe, efficient, and cost-effective NWPA transportation program

  11. SU-G-BRA-13: An Advanced Deformable Lung Phantom for Analyzing the Dosimetric Impact of Respiratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D; Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Suh, T [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The difference between three-dimensional (3D) and four-dimensional (4D) dose is affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control for each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate characteristics. Methods: A phantom was designed to simulate diaphragm motion with amplitude in the range 1 to 7 cm and various periods of regular breathing. To simulate different size tumors, tumors were produced by pouring liquid silicone into custom molds created by a 3D printer. The accuracy of phantom diaphragm motion was assessed using calipers and protractor. To control tumor motion, tumor trajectories were evaluated using 4D computed tomography (CT), and diaphragm-tumor correlation curve was calculated by curve fitting method. Three-dimensional dose and 4D dose were calculated and compared according to tumor motion. Results: The accuracy of phantom diaphragm motion was less than 1 mm. Maximum tumor motion amplitudes in the left-right and anterior-posterior directions were 0.08 and 0.12 cm, respectively, in a 10 cm{sup 3} tumor, and 0.06 and 0.27 cm, respectively, in a 90 cm{sup 3} tumor. The diaphragm-tumor correlation curve showed that tumor motion in the superior-inferior direction was increased with increasing diaphragm motion. In the 10 cm{sup 3} tumor, the tumor motion was larger than the 90 cm{sup 3} tumor. According to tumor motion, variation of dose difference between 3D and 4D was identified. Conclusion: The developed phantom can independently control factors such as tumor size and motion. In potentially, this phantom can be used to quantitatively analyze the dosimetric impact of respiratory motion according to the factors that influence the difference between 3D and 4D dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science

  12. SU-E-J-79: Internal Tumor Volume Motion and Volume Size Assessment Using 4D CT Lung Data

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, I [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Stathakis, S; Li, Y; Patel, A; Vincent, J; Papanikolaou, N; Mavroidis, P [Cancer Therapy and Research Center University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States)

    2014-06-01

    Purpose: To assess internal tumor volume change through breathing cycle and associated tumor motion using the 4DCT data. Methods: Respiration induced volume change through breathing cycle and associated motion was analyzed for nine patients that were scanned during the different respiratory phases. The examined datasets were the maximum and average intensity projections (MIP and AIP) and the 10 phases of the respiratory cycle. The internal target volume (ITV) was delineated on each of the phases and the planning target volume (PTV) was then created by adding setup margins to the ITV. Tumor motion through the phases was assessed using the acquired 4DCT dataset, which was then used to determine if the margins used for the ITV creation successfully encompassed the tumor in three dimensions. Results: Results showed that GTV motion along the superior inferior axes was the largest in all the cases independent of the tumor location and/or size or the use of abdomen compression. The extent of the tumor motion was found to be connected with the size of the GTV. The smallest GTVs exhibited largest motion vector independent of the tumor location. The motion vector size varied through the phases depending on the tumor size and location and it was smallest for phases 20 and 30. The smaller the volume of the delineated GTV, the greater its volume difference through the different respiratory phases was. The average GTV volume change was largest for the phases 60 and 70. Conclusion: Even if GTV is delineated using both AIP and MIP datasets, its motion extent will exceed the used margins especially for the very small GTV volumes. When the GTV size is less than 10 cc it is recommended to use fusion of the GTVs through all the phases to create the planning ITV.

  13. 30 CFR 250.110 - What must I include in my welding plan?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my welding plan? 250.110... must I include in my welding plan? You must include all of the following in the Welding Plan that you... qualified personnel weld; (c) Practices and procedures for safe welding that address: (1) Welding in...

  14. Daily Online Cone Beam Computed Tomography to Assess Interfractional Motion in Patients With Intact Cervical Cancer

    International Nuclear Information System (INIS)

    Tyagi, Neelam; Lewis, John H.; Yashar, Catheryn M.; Vo, Daniel; Jiang, Steve B.; Mundt, Arno J.; Mell, Loren K.

    2011-01-01

    Purpose: To quantify interfraction motion in patients with intact cervical cancer and assess implications for clinical target volume (CTV) coverage and required planning margins. Methods and Materials: We analyzed 10 patients undergoing external beam radiotherapy using online cone beam computed tomography (CBCT) before each fraction. CTVs were contoured on the planning CT and on each CBCT. Each CBCT was rigidly registered to the planning CT with respect to bony anatomy. The CTV from each CBCT was projected onto the planning CT and compared to the CTV from the planning CT. Uniform three-dimensional expansions were applied to the planning CTV to assess required planning margins. For each fraction, the minimum margin required to encompass the CTV was calculated, and the volume of CTV (on the CBCT) encompassed by the PTV was determined as a function of margin size. Results: A uniform CTV planning treatment volume margin of 15 mm would have failed to encompass the CTV in 32% of fractions. The mean volume of CTV missed, however, was small (4 cc). The mean planning margin (across patients and fractions) required to encompass the CTV was 15 mm. Variation in margin estimates was high, with interpatient variation being the predominant component. Increased rectal volume was associated with posterior (p < 0.0001) and superior (p = 0.0004) shifts in the CTV, whereas increased bladder volume was associated with superior shifts (p < 0.0001). Conclusions: Interfraction motion results in a high probability of missing the CTV using conventional planning margins, but the volume of CTV missed is small. Adaptive radiotherapy approaches are needed to improve treatment accuracy.

  15. SAFE/SNAP application to shipboard security

    International Nuclear Information System (INIS)

    Grady, L.M.; Walker, J.L.; Polito, J.

    1981-11-01

    An application of the combined Safeguards Automated Facility Evaluation/Safeguards Network Analysis Procedure (SAFE/SNAP) modeling technique to a physical protection system (PPS) aboard a generic ship is described. This application was performed as an example of how the SAFE and SNAP techniques could be used. Estimates of probability of interruption and neutralization for the example shipboard PPS are provided by SAFE as well as an adversary scenario, which serves as input to SNAP. This adversary scenario is analyzed by SNAP through four cases which incorporate increasingly detailed security force tactics. Comparisons between the results of the SAFE and SNAP analyses are made and conclusions drawn on the validity of each technique. Feedback from SNAP to SAFE is described, and recommendations for upgrading the ship based on the results of the SAFE/SNAP application are also discussed

  16. The plane motion control of the quadrocopter

    Directory of Open Access Journals (Sweden)

    A. N. Kanatnikov

    2015-01-01

    Full Text Available Among a large number of modern flying vehicles, the quadrocopter relates to unmanned aerial vehicles (UAV which are relatively cheap and easy to design. Quadrocopters are able to fly in bad weather, hang in the air for quite a long time, observe the objects and perform many other tasks. They have been applied in rescue operations, in agriculture, in the military and many other fields.For quadrocopters, the problems of path planning and control are relevant. These problems have many variants in which limited resources of modern UAV, possible obstacles, for instance, for flying in a cross-country terrain or in a city environment and weather conditions (particularly, wind conditions are taken into account. Many research studies are concerned with these problems and reflected in series of publications (note the interesting survey [1] and references therein. Various methods were used for the control synthesis for these vehicles: linear approximations [2], sliding mode control [3], the covering method [4] and so on.In the paper, a quadrocopter is considered as a rigid body. The kinematic and dynamic equations of the motion are analyzed. Two cases of motion are emphasized: a motion in a vertical plane and in a horizontal plane. The control is based on transferring of the affine system to the canonical form [5] and the nonlinear stabilization method [6].

  17. On the integration of equations of motion for particle-in-cell codes

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Gunn, J. P.

    2006-01-01

    Roč. 214, - (2006), s. 299-315 ISSN 0021-9991 R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z20430508 Keywords : Equations of motion * 2nd order integration methods * nonlinear oscillations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.328, year: 2006

  18. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    Science.gov (United States)

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  19. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  20. Light duty utility arm startup plan

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1998-01-01

    This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO)