WorldWideScience

Sample records for safe flight instrument

  1. Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…

  2. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  3. Pseudo Control Hedging and its Application for Safe Flight Envelope Protection

    NARCIS (Netherlands)

    Lombaerts, T.J.J.; Looye, G.H.N.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    This paper describes how the previously developed concept of Pseudo Control Hedging (PCH) can be integrated in a Fault Tolerant Flight Controller (FTFC) as a safe flight envelope protection system of the first degree. This PCH algorithm adapts the reference model for the system output in case of

  4. The Effects of Advanced 'Glass Cockpit' Displayed Flight Instrumentation on In-flight Pilot Decision Making

    Science.gov (United States)

    Steigerwald, John

    The Cognitive Continuum Theory (CCT) was first proposed 25 years ago to explain the relationship between intuition and analytical decision making processes. In order for aircraft pilots to make these analytical and intuitive decisions, they obtain information from various instruments within the cockpit of the aircraft. Advanced instrumentation is used to provide a broad array of information about the aircraft condition and flight situation to aid the flight crew in making effective decisions. The problem addressed is that advanced instrumentation has not improved the pilot decision making in modern aircraft. Because making a decision is dependent upon the information available, this experimental quantitative study sought to determine how well pilots organize and interpret information obtained from various cockpit instrumentation displays when under time pressure. The population for this study was the students, flight instructors, and aviation faculty at the Middle Georgia State College School of Aviation campus in Eastman, Georgia. The sample was comprised of two groups of 90 individuals (45 in each group) in various stages of pilot licensure from student pilot to airline transport pilot (ATP). The ages ranged from 18 to 55 years old. There was a statistically significant relationship at the p safety of flight.

  5. Revalidation of the Selection Instrument for Flight Training

    Science.gov (United States)

    2017-07-01

    flight training . ( Technical Report No. 1195). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. Department of...Research Report 2002 Revalidation of the Selection Instrument for Flight Training Victor Ingurgio U.S. Army Research...MICHELLE SAMS, Ph.D. Director Research accomplished for the Department of the Army. Technical Review by Dr. William Bickley

  6. Flight experience with lightweight, low-power miniaturized instrumentation systems

    Science.gov (United States)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  7. Factors affecting the design of instrument flight procedures

    Directory of Open Access Journals (Sweden)

    Ivan FERENCZ

    2008-01-01

    Full Text Available The article highlights factors, which might affect the design of instrument flight procedures. Ishikawa diagram is used to distribute individual factors into classes, as are People, Methods, Regulations, Tools, Data and Environment.

  8. 14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airworthiness Criteria for Helicopter... Appendix B to Part 29—Airworthiness Criteria for Helicopter Instrument Flight I. General. A transport category helicopter may not be type certificated for operation under the instrument flight rules (IFR) of...

  9. Testing Commodities as Safe Haven and Hedging Instrument on ASEAN's Five Stock Markets

    Directory of Open Access Journals (Sweden)

    Robiyanto Robiyanto

    2017-08-01

    Full Text Available This study attempts to analyze commodity market instruments such as gold, silver, platinum, palladium, and West Texas Intermediate (WTI crude oil’s potential as hedge and safe haven toward some stock markets in South East Asia such as in Indonesia, Singapore, Malaysia, Philippines, and Thailand. To analyze the data, GARCH (1,1 was applied. The research findings showed that gold, silver, platinum, palladium, and WTI could not play their role as hedging instrument for five South East Asian capital markets. WTI could act as a robust safe haven for most South East Asian capital markets. Gold could do the role as a robust safe haven in Singapore and Malaysia, whereas, platinum and silver consistently could be safe haven only for Singapore Stock Exchange. Palladium could only be safe haven for Philippines Stock Exchange.

  10. 14 CFR Appendix B to Part 27 - Airworthiness Criteria for Helicopter Instrument Flight

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airworthiness Criteria for Helicopter... Appendix B to Part 27—Airworthiness Criteria for Helicopter Instrument Flight I. General. A normal category helicopter may not be type certificated for operation under the instrument flight rules (IFR) of this chapter...

  11. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  12. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  13. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  14. Design of an intelligent flight instrumentation unit using embedded RTOS

    Science.gov (United States)

    Estrada-Marmolejo, R.; García-Torales, G.; Torres-Ortega, H. H.; Flores, J. L.

    2011-09-01

    Micro Unmanned Aerial Vehicles (MUAV) must calculate its spatial position to control the flight dynamics, which is done by Inertial Measurement Units (IMUs). MEMS Inertial sensors have made possible to reduce the size and power consumption of such units. Commonly the flight instrumentation operates independently of the main processor. This work presents an instrumentation block design, which reduces size and power consumption of the complete system of a MUAV. This is done by coupling the inertial sensors to the main processor without considering any intermediate level of processing aside. Using Real Time Operating Systems (RTOS) reduces the number of intermediate components, increasing MUAV reliability. One advantage is the possibility to control several different sensors with a single communication bus. This feature of the MEMS sensors makes a smaller and less complex MUAV design possible.

  15. Lunar EVA Dosimetry: MIcroDosimeter iNstrument (MIDN) System Suitable for Space Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — MIDN PROTOTYPE FLIGHT INSTRUMENT 1. Based on our experience with the MIDN development, we designed and developed an advanced version of the instrument. 2. A...

  16. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    Science.gov (United States)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  17. Instrumentation utilisation for risk control in safety operations. [balloons and rockets

    Science.gov (United States)

    Swayer, F. R.

    1987-01-01

    Ways in which instrumentation is utilized for risk control for inherently safe (no control or guidance) and flight programmed launch vehicles is presented. Instrumentation and how it is utilized in the launching and recovery of balloons and payloads is also presented. Wind sensing, computer systems, tracking, and telemetry are discussed.

  18. Evaluation of Root Canal Cleaning and Shaping Efficacy of Three Engine-driven Instruments: SafeSider, ProTaper Universal and Lightspeed LSX.

    Science.gov (United States)

    Wigler, Ronald; Koren, Tal; Tsesis, Igor

    2015-11-01

    To compare the cleaning effectiveness and shaping ability of SafeSider, ProTaper Universal and Lightspeed rotary instruments during the preparation of curved root canals in extracted human teeth. A total of 63 roots with curved root canals were divided into three groups. Canals were prepared using SafeSider, ProTaper Universal or Lightspeed LSX. Using pre- and post-instrumentation radiographs, straightening of the canal curvatures and loss of working length were determined with a computer image analysis program. The amounts of debris at the apical 5 mm were quantified on the basis of a numerical evaluation scale. The data were analyzed statistically using the two-way analysis of variance (ANOVA). There was significantly more transportation among the Lightspeed LSX group compared to the SafeSider and ProTaper Universal groups only at the 4 mm level (p engine-driven instruments with regards to debris removal. SafeSider, ProTaper Universal and Lightspeed LSX rotary instruments maintained the original canal curvature well at the apical 3 mm and were safe to use. No difference was found in cleaning efficacy and none rendered the apical part of the canal free of debris. SafeSider, ProTaper Universal and Lightspeed LSX rotary instruments are safe to use in curved root canals.

  19. Testing Commodities as Safe Haven and Hedging Instrument on ASEAN's Five Stock Markets

    OpenAIRE

    Robiyanto, Robiyanto

    2017-01-01

    This study attempts to analyze commodity market instruments such as gold, silver, platinum, palladium, and West Texas Intermediate (WTI) crude oil’s potential as hedge and safe haven toward some stock markets in South East Asia such as in Indonesia, Singapore, Malaysia, Philippines, and Thailand. To analyze the data, GARCH (1,1) was applied. The research findings showed that gold, silver, platinum, palladium, and WTI could not play their role as hedging instrument for five South East Asi...

  20. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  1. Operational Problems Associated with Head-Up Displays during Instrument Flight.

    Science.gov (United States)

    1980-10-01

    Force project engineers were Major Michael F. Rundle and Mr. William L. Welde . 41 4 TABLE OF CONTENTS Page ABBREVIATIONS...of Automotive Engineers SETP Society of Experimental Test Pilots SI Solid Instruments SNPL Syndicat National des Pilotes des Lignes (French ALPA) TACAN...Factors Relevent to Jet Upsets ," Lessons with Emphasis on Flight Mechanics from Operating Experience, Incidents, and Accidents, AGARD CP-76, 1971 153 J

  2. Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments Aboard the James Webb Space Telescope

    Science.gov (United States)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; hide

    2014-01-01

    The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.

  3. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    Science.gov (United States)

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  4. 76 FR 16689 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Science.gov (United States)

    2011-03-25

    ... safe and efficient use of the navigable airspace and to promote safe flight operations under instrument... Reading, PA, Reading Rgnl/Carl A Spaatz Field, ILS OR LOC RWY 13, Amdt 1A Reading, PA, Reading Rgnl/Carl A Spaatz Field, ILS OR LOC RWY 36, Amdt 30A Reading, PA, Reading Rgnl/Carl A Spaatz Field, NDB RWY 36, Amdt...

  5. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  6. Neutron xyz - polarization analysis at a time-of-flight instrument

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, Georg [ORNL; Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory; Andersen, Ken [ESS

    2015-01-01

    When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  7. A new time-of-flight instrument for quantitative surface analysis

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Moore, Jerry F.; Pellin, Michael J.; Burnett, Donald S.

    2004-01-01

    A new generation of time-of-flight mass spectrometers that implement ion sputtering and laser desorption for probing solid samples and can operate in regimes of laser post-ionization secondary neutral mass spectrometry and secondary ion mass spectrometry is being developed at Argonne National Laboratory. These new instruments feature novel ion optical systems for efficient extraction of ions from large laser post-ionization volumes and for lossless transport of these ions to detectors. Another feature of this design is a new in-vacuum all-reflecting optical microscope with 0.5-μm resolution. Advanced ion and light optics and three ion sources, including a liquid metal ion gun (focusable to 50 nm) and a low energy ion gun, give rise to an instrument capable of quantitative analyses of samples for the most challenging applications, such as determining elemental concentrations in shallow implants at ultra-trace levels (for example, solar wind samples delivered by NASA Genesis mission) and analyzing individual sub-micrometer particles on a sample stage (such as, interstellar dust delivered by NASA Stardust mission). Construction of a prototype instrument has been completed and testing is underway. A more advanced instrument of similar design is under construction. The overall design of the new instrument and the innovations that make it unique are outlined. Results of the first tests to characterize its analytical capabilities are presented also

  8. An ergonomics based design research method for the arrangement of helicopter flight instrument panels.

    Science.gov (United States)

    Alppay, Cem; Bayazit, Nigan

    2015-11-01

    In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    Science.gov (United States)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  10. Recovery of the SuperTIGER Instrument and Preparations for the Flight of SuperTIGER-2

    Science.gov (United States)

    Walsh, N. E.; Supertiger Collaboration

    2016-03-01

    On December 8, 2012, the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument began its long-duration balloon flight from Williams Field, Antarctica. Flying for a record-breaking 55 days at a mean altitude of 125,000 feet, the instrument successfully measured the relative elemental abundances of Galactic cosmic ray nuclei having charge (Z) greater than Z=10, showing very well resolved individual element peaks up to Z=40. The instrument measures particle charge and energy through the combined use of two Cherenkov detectors and three scintillation detectors, and determines particle trajectory with a scintillating fiber hodoscope. After cutdown and two years on the ice, SuperTIGER was successfully recovered in January, 2015. Its detectors and hodoscopes are being tested and refurbished, and are expected to be used again for a second flight, SuperTIGER-2. The second flight is aimed at improving SuperTIGER's already excellent charge resolution as well as at accumulating more data to be combined with that of SuperTIGER for improved statistics. In November 2015, a test of the scintillator saturation effect was performed at CERN using a beam of interacted Pb nuclei to help create more accurate charge reconstruction models that will help resolve elements in the range Z=41 to Z=60. This research was supported by NASA under Grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation and the McDonnell Center for the Space Sciences at Washington University.

  11. SUSI 62 A ROBUST AND SAFE PARACHUTE UAV WITH LONG FLIGHT TIME AND GOOD PAYLOAD

    Directory of Open Access Journals (Sweden)

    H. P. Thamm

    2012-09-01

    Full Text Available In many research areas in the geo-sciences (erosion, land use, land cover change, etc. or applications (e.g. forest management, mining, land management etc. there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for

  12. Pilot dynamics for instrument approach tasks: Full panel multiloop and flight director operations

    Science.gov (United States)

    Weir, D. H.; Mcruer, D. T.

    1972-01-01

    Measurements and interpretations of single and mutiloop pilot response properties during simulated instrument approach are presented. Pilot subjects flew Category 2-like ILS approaches in a fixed base DC-8 simulaton. A conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Reduced and interpreted pilot describing functions and remmant are given for pitch attitude, flight director, and multiloop (longitudinal) control tasks. The response data are correlated with simultaneously recorded eye scanning statistics, previously reported in NASA CR-1535. The resulting combined response and scanning data and their interpretations provide a basis for validating and extending the theory of manual control displays.

  13. An implantable instrument for studying the long-term flight biology of migratory birds

    Energy Technology Data Exchange (ETDEWEB)

    Spivey, Robin J., E-mail: r.spivey@bangor.ac.uk, E-mail: c.bishop@bangor.ac.uk; Bishop, Charles M., E-mail: r.spivey@bangor.ac.uk, E-mail: c.bishop@bangor.ac.uk [Department of Biological Sciences, Bangor University, Gwynedd LL57 2UW (United Kingdom)

    2014-01-15

    The design of an instrument deployed in a project studying the high altitude Himalayan migrations of bar-headed geese (Anser indicus) is described. The electronics of this archival datalogger measured 22 × 14 × 6.5 mm, weighed 3 g, was powered by a ½AA-sized battery weighing 10 g and housed in a transparent biocompatible tube sealed with titanium electrodes for electrocardiography (ECG). The combined weight of 32 g represented less than 2% of the typical bodyweight of the geese. The primary tasks of the instrument were to continuously record a digitised ECG signal for heart-rate determination and store 12-bit triaxial accelerations sampled at 100 Hz with 15% coverage over each 2 min period. Measurement of atmospheric pressure provided an indication of altitude and rate of ascent or descent during flight. Geomagnetic field readings allowed for latitude estimation. These parameters were logged twice per minute along with body temperature. Data were stored to a memory card of 8 GB capacity. Instruments were implanted in geese captured on Mongolian lakes during the breeding season when the birds are temporarily flightless due to moulting. The goal was to collect data over a ten month period, covering both southward and northward migrations. This imposed extreme constraints on the design's power consumption. Raw ECG can be post-processed to obtain heart-rate, allowing improved rejection of signal interference due to strenuous activity of locomotory muscles during flight. Accelerometry can be used to monitor wing-beat frequency and body kinematics, and since the geese continued to flap their wings continuously even during rather steep descents, act as a proxy for biomechanical power. The instrument enables detailed investigation of the challenges faced by the geese during these arduous migrations which typically involve flying at extreme altitudes through cold, low density air where oxygen availability is significantly reduced compared to sea level.

  14. Quantitative assessment of probability of failing safely for the safety instrumented system using reliability block diagram method

    International Nuclear Information System (INIS)

    Jin, Jianghong; Pang, Lei; Zhao, Shoutang; Hu, Bin

    2015-01-01

    Highlights: • Models of PFS for SIS were established by using the reliability block diagram. • The more accurate calculation of PFS for SIS can be acquired by using SL. • Degraded operation of complex SIS does not affect the availability of SIS. • The safe undetected failure is the largest contribution to the PFS of SIS. - Abstract: The spurious trip of safety instrumented system (SIS) brings great economic losses to production. How to ensure the safety instrumented system is reliable and available has been put on the schedule. But the existing models on spurious trip rate (STR) or probability of failing safely (PFS) are too simplified and not accurate, in-depth studies of availability to obtain more accurate PFS for SIS are required. Based on the analysis of factors that influence the PFS for the SIS, using reliability block diagram method (RBD), the quantitative study of PFS for the SIS is carried out, and gives some application examples. The results show that, the common cause failure will increase the PFS; degraded operation does not affect the availability of the SIS; if the equipment was tested and repaired one by one, the unavailability of the SIS can be ignored; the corresponding occurrence time of independent safe undetected failure should be the system lifecycle (SL) rather than the proof test interval and the independent safe undetected failure is the largest contribution to the PFS for the SIS

  15. Solar Hot Air Balloons: A Low Cost, Multi-hour Flight System for Lightweight Scientific Instrumentation Packages

    Science.gov (United States)

    Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.

    2017-12-01

    Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.

  16. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    Science.gov (United States)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  17. The Gravity-Probe-B relativity gyroscope experiment - Development of the prototype flight instrument

    Science.gov (United States)

    Turneaure, J. P.; Everitt, C. W. F.; Parkinson, B. W.; Bardas, D.; Breakwell, J. V.

    1989-01-01

    The Gravity-Probe-B relativity gyroscope experiment (GP-B) will measure the geodetic and frame-dragging precession rates of gyroscopes in a 650 km high polar orbit about the earth. The goal is to measure these two effects, which are predicted by Einstein's General Theory of Relativity, to 0.01 percent (geodetic) and 1 percent (frame-dragging). This paper presents the development progress for full-size prototype flight hardware including the gyroscopes, gyro readout and magnetic shielding system, and an integrated ground test instrument.

  18. Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results.

    Science.gov (United States)

    Collier, Michael R; Porter, F Scott; Sibeck, David G; Carter, Jenny A; Chiao, Meng P; Chornay, Dennis J; Cravens, Thomas E; Galeazzi, Massimiliano; Keller, John W; Koutroumpa, Dimitra; Kujawski, Joseph; Kuntz, Kip; Read, Andy M; Robertson, Ina P; Sembay, Steve; Snowden, Steven L; Thomas, Nicholas; Uprety, Youaraj; Walsh, Brian M

    2015-07-01

    We describe the development, launch into space, and initial results from a prototype wide field-of-view soft X-ray imager that employs lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The sheath transport observer for the redistribution of mass is the first instrument using this type of optics launched into space and provides proof-of-concept for future flight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the Moon, and the solar wind interaction with planetary bodies like Venus and Mars [Kuntz et al., Astrophys. J. (in press)].

  19. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  20. A Method of Separation Assurance for Instrument Flight Procedures at Non-Radar Airports

    Science.gov (United States)

    Conway, Sheila R.; Consiglio, Maria

    2002-01-01

    A method to provide automated air traffic separation assurance services during approach to or departure from a non-radar, non-towered airport environment is described. The method is constrained by provision of these services without radical changes or ambitious investments in current ground-based technologies. The proposed procedures are designed to grant access to a large number of airfields that currently have no or very limited access under Instrument Flight Rules (IFR), thus increasing mobility with minimal infrastructure investment. This paper primarily addresses a low-cost option for airport and instrument approach infrastructure, but is designed to be an architecture from which a more efficient, albeit more complex, system may be developed. A functional description of the capabilities in the current NAS infrastructure is provided. Automated terminal operations and procedures are introduced. Rules of engagement and the operations are defined. Results of preliminary simulation testing are presented. Finally, application of the method to more terminal-like operations, and major research areas, including necessary piloted studies, are discussed.

  1. The pre-flight calibration setup of the instrument SIMBIO-SYS onboard the mission BepiColombo

    Science.gov (United States)

    Poulet, F.; Rodriguez-Ferreira, J.; Arondel, A.; Dassas, K.; Eng, P.; Lami, P.; Langevin, Y.; Longval, Y.; Pradel, P.; Dami, M.

    2015-11-01

    BepiColombo, an European Space Agency (ESA) mission being conducted in cooperation with the Japan space agency, will explore Mercury with a set of eleven instruments onboard the spacecraft Mercury Planetary Orbiter (MPO). Among them, SIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument that will provide images and spectra in the 400-2000 nm wavelength range of the entire surface of Mercury. Pre-flight calibration of the SYMBIO-SYS instrument is mandatory for reliable scientific interpretation of images and spectra returned from the planet Mercury. This paper presents the calibration device designed and implemented for the specific requirements of this instrument. It mainly consists of a thermal vacuum chamber simulating the space environment, an optical bench collecting calibration sources and optical elements that simulate the conditions of Mercury observations, mechanical interfaces used for positioning the three channels inside the vacuum chamber, thermal interfaces to explore the operating temperatures, computer interfaces that allow to communicate with both the instrument and the calibration elements and synchronize the calibrations sequences with the status of the calibration device. As the major goal is the characterization of the radiometric performances of the three channels of SIMBIO-SYS, radiometric performances of the test setup evaluated by simulations and measurements are emphasized.

  2. Envelope Protection for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Ranaudo, Richard J.; Ratvasky, Thomas P.; Morelli, Eugene A.

    2010-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  3. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    Science.gov (United States)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  4. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    inputs with the outputs provided to instrumentation only. The IFCS was not used to control the airplane. In another stage of the flight test, the Phase I pre-trained neural network was integrated into a Phase III version of the flight control system. The Phase I pretrained neural network provided realtime stability and control derivatives to a Phase III controller that was based on a stochastic optimal feedforward and feedback technique (SOFFT). This combined Phase I/III system was operated together with the research flight-control system (RFCS) of the F-15 ACTIVE during the flight test. The RFCS enables the pilot to switch quickly from the experimental- research flight mode back to the safe conventional mode. These initial IFCS ACP flight tests were completed in April 1999. The Phase I/III flight test milestone was to demonstrate, across a range of subsonic and supersonic flight conditions, that the pre-trained neural network could be used to supply real-time aerodynamic stability and control derivatives to the closed-loop optimal SOFFT flight controller. Additional objectives attained in the flight test included (1) flight qualification of a neural-network-based control system; (2) the use of a combined neural-network/closed-loop optimal flight-control system to obtain level-one handling qualities; and (3) demonstration, through variation of control gains, that different handling qualities can be achieved by setting new target parameters. In addition, data for the Phase-II (on-line-learning) neural network were collected, during the use of stacked-frequency- sweep excitation, for post-flight analysis. Initial analysis of these data showed the potential for future flight tests that will incorporate the real-time identification and on-line learning aspects of the IFCS.

  5. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Science.gov (United States)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  6. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    Science.gov (United States)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  7. Smart Adaptive Flight Effective Cue (SAFE-Cue), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As a means to enhance aviation safety, numerous adaptive control techniques have been developed to maintain aircraft stability and safety of flight in the presence...

  8. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    Science.gov (United States)

    2017-07-07

    IFR ) IFR Instrument Flight Rules LED Light Emitting Diode LEP Laser Eye Protection MAPP Model Assessing Pilot Performance OD Optical Density...LEP and then use them to assess the impact of wearing LEP in a flight simulator environment. 2 Pending Distribution, A: Approved for public...2005). LEP has the potential to alter distinct characteristics of the visual environment, giving rise to concerns over the impact on flight tasks and

  9. 14 CFR 61.193 - Flight instructor privileges.

    Science.gov (United States)

    2010-01-01

    ... than Flight Instructors With a Sport Pilot Rating § 61.193 Flight instructor privileges. A person who...; (e) An aircraft rating; (f) An instrument rating; (g) A flight review, operating privilege, or...

  10. Upper-stratospheric glider flights for low-g experimentation

    Science.gov (United States)

    Loesch, Adam

    Near Space Corporation's fully-operational High Altitude Shuttle System (HASS) consists of a glider carried to 100,000ft by a high altitude balloon. Originally intended to safely return sensitive instrumentation from altitude back to Earth, the glider provides the opportunity to fly ultra-smooth "parabolas" for low-g experimentation. This work models the dynamic behavior of the glider using aerodynamic parameters of a scaled F-4 Phantom to determine the optimal flight path during descent. Low-g parabola and pull-up pairs are flown until the altitude drops below 18km, approaching the maximum altitude of controlled airspace. With this model, it was found that eleven low-g parabolas can be flown to yield 137 seconds of total test time at an average RMS g-loading of 4.9x10 -2. By changing the weighting factor of the merit function, a tradeoff can be made to increase total test time at the expense of increasing g-loading, or vice-versa. A preliminary design exercise for an improved glider is conducted based on lessons learned from the scaled F-4 flight results.

  11. Remote Monitoring of Instrumentation in Sealed Compartments

    International Nuclear Information System (INIS)

    Landron, Clinton; Moser, John C.

    1999-01-01

    The Instrumentation and Telemetry Departments at Sandia National Laboratories have been exploring the instrumentation of sealed canisters where the flight application will not tolerate either the presence of a chemical power source or penetration by power supply wires. This paper will describe the application of a low power micro-controller based instrumentation system that uses magnetic coupling for both power and data to support a flight application

  12. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  13. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  14. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  15. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  16. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  17. Armstrong Flight Research Center Research Technology and Engineering 2017

    Science.gov (United States)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  18. Software-Enabled Modular Instrumentation Systems

    NARCIS (Netherlands)

    Soijer, M.W.

    2003-01-01

    Like most other types of instrumentation systems, flight test instrumentation is not produced in series; its development is a one-time achievement by a test department. With the introduction of powerful digital computers, instrumentation systems have included data analysis tasks that were previously

  19. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  20. An Automated Safe-to-Mate (ASTM) Tester

    Science.gov (United States)

    Nguyen, Phuc; Scott, Michelle; Leung, Alan; Lin, Michael; Johnson, Thomas

    2013-01-01

    Safe-to-mate testing is a common hardware safety practice where impedance measurements are made on unpowered hardware to verify isolation, continuity, or impedance between pins of an interface connector. A computer-based instrumentation solution has been developed to resolve issues. The ASTM is connected to the circuit under test, and can then quickly, safely, and reliably safe-to-mate the entire connector, or even multiple connectors, at the same time.

  1. Managing Cassini Safe Mode Attitude at Saturn

    Science.gov (United States)

    Burk, Thomas A.

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.

  2. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  3. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  4. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  5. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  6. Wireless Sensor Networks for Developmental and Flight Instrumentation

    Science.gov (United States)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments

  7. 14 CFR 61.107 - Flight proficiency.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight proficiency. 61.107 Section 61.107 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... reference maneuvers; (vii) Navigation; (viii) Slow flight and stalls; (ix) Basic instrument maneuvers; (x...

  8. Flight telerobotic servicer legacy

    Science.gov (United States)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include

  9. Solar array flight dynamic experiment

    Science.gov (United States)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  10. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  11. Women in Flight Research at NASA Dryden Flight Research Center from 1946 to 1995. Number 6; Monographs in Aerospace History

    Science.gov (United States)

    Powers, Sheryll Goecke

    1997-01-01

    This monograph discusses the working and living environment of women involved with flight research at NASA Dryden Flight Research Center during the late 1940s and early 1950s. The women engineers, their work and the airplanes they worked on from 1960 to December 1995 are highlighted. The labor intensive data gathering and analysis procedures and instrumentation used before the age of digital computers are explained by showing and describing typical instrumentation found on the X-series aircraft from the X-1 through the X-15. The data reduction technique used to obtain the Mach number position error curve for the X-1 aircraft and which documents the historic first flight to exceed the speed of sound is described and a Mach number and altitude plot from an X-15 flight is shown.

  12. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  13. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  14. Theseus Landing Following Maiden Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  15. The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, S. K.; Riethmüller, T. L.; Barthol, P.; Danilovic, S.; Deutsch, W.; Doerr, H.-P.; Feller, A.; Gandorfer, A.; Germerott, D.; Gizon, L.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Lagg, A.; Meller, R.; Tomasch, G.; Noort, M. van [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco; Blesa, J. L. Gasent, E-mail: solanki@mps.mpg.de [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); and others

    2017-03-01

    The Sunrise balloon-borne solar observatory, consisting of a 1 m aperture telescope that provides a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in 2013 June. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg ii k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000 Å after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR 11768 observed relatively close to disk center is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500 G, and while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.

  16. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    Science.gov (United States)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  17. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  18. Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device.

    Science.gov (United States)

    Katzschmann, Robert K; Araki, Brandon; Rus, Daniela

    2018-03-01

    This paper presents ALVU (Array of Lidars and Vibrotactile Units), a contactless, intuitive, hands-free, and discreet wearable device that allows visually impaired users to detect low- and high-hanging obstacles, as well as physical boundaries in their immediate environment. The solution allows for safe local navigation in both confined and open spaces by enabling the user to distinguish free space from obstacles. The device presented is composed of two parts: a sensor belt and a haptic strap. The sensor belt is an array of time-of-flight distance sensors worn around the front of a user's waist, and the pulses of infrared light provide reliable and accurate measurements of the distances between the user and surrounding obstacles or surfaces. The haptic strap communicates the measured distances through an array of vibratory motors worn around the user's upper abdomen, providing haptic feedback. The linear vibration motors are combined with a point-loaded pretensioned applicator to transmit isolated vibrations to the user. We validated the device's capability in an extensive user study entailing 162 trials with 12 blind users. Users wearing the device successfully walked through hallways, avoided obstacles, and detected staircases.

  19. The effects of display and autopilot functions on pilot workload for Single Pilot Instrument Flight Rule (SPIFR) operations

    Science.gov (United States)

    Hoh, Roger H.; Smith, James C.; Hinton, David A.

    1987-01-01

    An analytical and experimental research program was conducted to develop criteria for pilot interaction with advanced controls and displays in single pilot instrument flight rules (SPIFR) operations. The analytic phase reviewed fundamental considerations for pilot workload taking into account existing data, and using that data to develop a divided attention SPIFR pilot workload model. The pilot model was utilized to interpret the two experimental phases. The first experimental phase was a flight test program that evaluated pilot workload in the presence of current and near-term displays and autopilot functions. The second experiment was conducted on a King Air simulator, investigating the effects of co-pilot functions in the presence of very high SPIFR workload. The results indicate that the simplest displays tested were marginal for SPIFR operations. A moving map display aided the most in mental orientation, but had inherent deficiencies as a stand alone replacement for an HSI. Autopilot functions were highly effective for reducing pilot workload. The simulator tests showed that extremely high workload situations can be adequately handled when co-pilot functions are provided.

  20. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  1. Rocket-borne time-of-flight mass spectrometry

    Science.gov (United States)

    Reiter, R. F.

    1976-01-01

    Theoretical and numerical analyses are made of planar, cylindrical and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km.

  2. Rocket-borne time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reiter, R.F.

    1976-08-01

    Theoretical and numerical analyses are made of planar-, cylindrical- and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km

  3. Characteristics of protective instrumentation

    International Nuclear Information System (INIS)

    Reichart, G.

    1982-01-01

    Protective Instrumentation (PI) for Nuclear Power Plants (NPP) is a general term for an highly reliable instrumentation, which provides information for keeping the system within safe limits, for initation of countermeasures in the case of an incident or for mitigation of consequences of an accident. In German NPPs one can find a hierarchical structure of protective instrumentation, wherein the Reactor Protection System (RPS) has the highest priority. To meet the reliability requirements different design principles are used, like - redundancy - diversity - fail safe - decoupling. The presentation gives an overview about the different design principles and characterizes their reliability aspects. As an example for the technical realization the RPS of a German NPP is discussed in some detail. Furthermore some information about other type of PI is given and reliability aspects of the interaction of operating personell with these systems are mentioned. (orig.)

  4. Maneuver of Spinning Rocket in Flight

    OpenAIRE

    HAYAKAWA, Satio; ITO, Koji; MATSUI, Yutaka; NOGUCHI, Kunio; UESUGI, Kuninori; YAMASHITA, Kojun

    1980-01-01

    A Yo-despin device successfully functioned to change in flight the precession axis of a sounding rocket for astronomical observation. The rocket attitudes before and after yodespin were measured with a UV star sensor, an infrared horizon sensor and an infrared telescope. Instrumentation and performance of these devices as well as the attitude data during flight are described.

  5. Safe pediatric surgery: development and validation of preoperative interventions checklist

    Directory of Open Access Journals (Sweden)

    Maria Paula de Oliveira Pires

    2013-09-01

    Full Text Available OBJECTIVES: this study was aimed at developing and validating a checklist of preoperative pediatric interventions related to the safety of surgical patients. METHOD: methodological study concerning the construction and validation of an instrument with safe preoperative care indicators. The checklist was subject to validation through the Delphi technique, establishing a consensus level of 80%. RESULTS: five professional specialists in the area conducted the validation and a consensus on the content and the construct was reached after two applications of the Delphi technique. CONCLUSION: the "Safe Pediatric Surgery Checklist", simulating the preoperative trajectory of children, is an instrument capable of contributing to the preparation and promotion of safe surgery, as it identifies the presence or absence of measures required to promote patient safety.

  6. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    Science.gov (United States)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  7. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    Science.gov (United States)

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  8. Theseus First Flight - May 24, 1996

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to

  9. Theseus on Take-off for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden

  10. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  11. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  12. The economic context for the development of "blind flight".

    Science.gov (United States)

    Temme, Leonard A; Rupert, Angus

    2003-07-01

    On 24 September 1929, at Mitchel Field, Long Island, NY, Jimmy Doolittle performed the first so-called "blind flight." He executed a flight plan and landed using only cockpit instruments, a feat that culminated a research program supported by the Daniel Guggenheim Fund for the Promotion of Aeronautics. Contemporary aviation medicine, with its understanding of the challenges of spatial (dis)orientation, has a special understanding and appreciation of the complex human performance, medical and technical problems that had to be overcome to make instrument flight possible. It is likely that the problems would not have been solved unless a socioeconomic context provoked a sufficient motivation to address them. This paper outlines some of the economic factors that motivated the research and development necessary for instrument flight. These factors were the direct consequence of the sudden, huge explosion of the aviation industry caused by World War I, and with the Armistice, the equally sudden loss of the industry's primary customer, the military. Finding a civilian role for aviation awaited the development of air mail, which, in turn, depended on the ability to fly according to a reliable schedule. The need to reliably adhere to a schedule forced the scientific and technological research needed to develop all-weather, blind flight.

  13. 14 CFR 121.303 - Airplane instruments and equipment.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  14. Mars Science Laboratory Heatshield Flight Data Analysis

    Science.gov (United States)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  15. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  16. Flight testing of a luminescent surface pressure sensor

    Science.gov (United States)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  17. A compact time-of-flight SANS instrument optimised for measurements of small sample volumes at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Kynde, Søren, E-mail: kynde@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen (Denmark); Hewitt Klenø, Kaspar [Niels Bohr Institute, University of Copenhagen (Denmark); Nagy, Gergely [SINQ, Paul Scherrer Institute (Switzerland); Mortensen, Kell; Lefmann, Kim [Niels Bohr Institute, University of Copenhagen (Denmark); Kohlbrecher, Joachim, E-mail: Joachim.kohlbrecher@psi.ch [SINQ, Paul Scherrer Institute (Switzerland); Arleth, Lise, E-mail: arleth@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen (Denmark)

    2014-11-11

    The high flux at European Spallation Source (ESS) will allow for performing experiments with relatively small beam-sizes while maintaining a high intensity of the incoming beam. The pulsed nature of the source makes the facility optimal for time-of-flight small-angle neutron scattering (ToF-SANS). We find that a relatively compact SANS instrument becomes the optimal choice in order to obtain the widest possible q-range in a single setting and the best possible exploitation of the neutrons in each pulse and hence obtaining the highest possible flux at the sample position. The instrument proposed in the present article is optimised for performing fast measurements of small scattering volumes, typically down to 2×2×2 mm{sup 3}, while covering a broad q-range from about 0.005 1/Å to 0.5 1/Å in a single instrument setting. This q-range corresponds to that available at a typical good BioSAXS instrument and is relevant for a wide set of biomacromolecular samples. A central advantage of covering the whole q-range in a single setting is that each sample has to be loaded only once. This makes it convenient to use the fully automated high-throughput flow-through sample changers commonly applied at modern synchrotron BioSAXS-facilities. The central drawback of choosing a very compact instrument is that the resolution in terms of δλ/λ obtained with the short wavelength neutrons becomes worse than what is usually the standard at state-of-the-art SANS instruments. Our McStas based simulations of the instrument performance for a set of characteristic biomacromolecular samples show that the resulting smearing effects still have relatively minor effects on the obtained data and can be compensated for in the data analysis. However, in cases where a better resolution is required in combination with the large simultaneous q-range characteristic of the instrument, we show that this can be obtained by inserting a set of choppers.

  18. Cassini Ion Mass Spectrometer Peak Calibrations from Statistical Analysis of Flight Data

    Science.gov (United States)

    Woodson, A. K.; Johnson, R. E.

    2017-12-01

    The Cassini Ion Mass Spectrometer (IMS) is an actuating time-of-flight (TOF) instrument capable of resolving ion mass, energy, and trajectory over a field of view that captures nearly the entire sky. One of three instruments composing the Cassini Plasma Spectrometer, IMS sampled plasma throughout the Kronian magnetosphere from 2004 through 2012 when it was permanently disabled due to an electrical malfunction. Initial calibration of the flight instrument at Southwest Research Institute (SwRI) was limited to a handful of ions and energies due to time constraints, with only about 30% of planned measurements carried out prior to launch. Further calibration measurements were subsequently carried out after launch at SwRI and Goddard Space Flight Center using the instrument prototype and engineering model, respectively. However, logistical differences among the three calibration efforts raise doubts as to how accurately the post-launch calibrations describe the behavior of the flight instrument. Indeed, derived peak parameters for some ion species differ significantly from one calibration to the next. In this study we instead perform a statistical analysis on 8 years of flight data in order to extract ion peak parameters that depend only on the response of the flight instrument itself. This is accomplished by first sorting the TOF spectra based on their apparent compositional similarities (e.g. primarily water group ions, primarily hydrocarbon ions, etc.) and normalizing each spectrum. The sorted, normalized data are then binned according to TOF, energy, and counts in order to generate energy-dependent probability density maps of each ion peak contour. Finally, by using these density maps to constrain a stochastic peak fitting algorithm we extract confidence intervals for the model parameters associated with various measured ion peaks, establishing a logistics-independent calibration of the body of IMS data gathered over the course of the Cassini mission.

  19. Flight Testing and Real-Time System Identification Analysis of a UH-60A Black Hawk Helicopter with an Instrumented External Sling Load

    Science.gov (United States)

    McCoy, Allen H.

    1998-01-01

    Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near

  20. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    Science.gov (United States)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  1. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  2. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    OpenAIRE

    Yamina BOUGHARI; Georges GHAZI; Ruxandra Mihaela BOTEZ; Florian THEEL

    2017-01-01

    In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augme...

  3. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  4. Manual Manipulation of Engine Throttles for Emergency Flight Control

    Science.gov (United States)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Maine, Trindel A.

    2004-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only engines thrust. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. Flight test and simulation results on many airplanes have shown that pilot manipulation of throttles is usually adequate to maintain up-and-away flight, but is most often not capable of providing safe landings. There are techniques that will improve control and increase the chances of a survivable landing. This paper reviews the principles of throttles-only control (TOC), a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.

  5. Model and Sensor Based Nonlinear Adaptive Flight Control with Online System Identification

    NARCIS (Netherlands)

    Sun, L.G.

    2014-01-01

    Consensus exists that many loss-of-control (LOC) in flight accidents caused by severe aircraft damage or system failure could be prevented if flight performance could be recovered using the valid and remaining control authorities. However, the safe maneuverability of a post-failure aircraft will

  6. A Particle System for Safety Verification of Free Flight in Air Traffic

    NARCIS (Netherlands)

    Blom, H.A.P.; Krystul, J.; Bakker, G.J.

    2006-01-01

    Under free flight, an aircrew has both the freedom to select their trajectory and the responsibility of resolving conflicts with other aircraft. The general belief is that free flight can be made safe under low traffic conditions. Increasing traffic, however, raises safety verification issues. This

  7. Theseus Waits on Lakebed for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype remotely-piloted aircraft (RPA) waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  8. Instrument care: everyone's responsibility

    Directory of Open Access Journals (Sweden)

    Renée du Toit

    2011-12-01

    Full Text Available Everyone working in an ophthalmic operating theatre must be competent in the care, handling, storage, and maintenance of instruments. This will help to improve surgical outcomes, maintain an economic and affordable service for patients, and provide a safe environment for the wellbeing of patients and staff.Including instrument care in theatre courses and in-service training is one way of ensuring staff competence.

  9. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful

  10. Human Factors on the Flight Deck Safe Piloting Behaviour in Practice

    CERN Document Server

    Scheiderer, Joachim

    2013-01-01

    What is for a professional pilot required to fly as safe as possible? Written by pilots the book gives a detailed introduction into the basics of accident prevention in air traffic. Explicit background knowledge as well as detailed listings of safety relevant features in human behaviour are included.

  11. Nuclear instrumentation evaluation and analysis

    International Nuclear Information System (INIS)

    Park, Suk Jun; Han, Sang Joon; Chung, Chong Eun; Han, Kwang Soo; Kim, Dong Hwa; Park, Byung Hae; Moon, Je Sun; Lee, Chel Kwon; Song, Ki Sang; Choi, Myung Jin; Kim, Seung Bok; Kim, Jung Bok

    1986-12-01

    This project provides the program for improving instrumentation reliability as well as developing a cost-effective preventive maintenance activity through evaluation and analysis of nuclear instrumentation concerning pilot plants, large-scale test facilities and various laboratories on KAERI site. In addition, it discusses the program for enhancing safe operations and improving facility availability through establishment of maintenance technology. (Author)

  12. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  13. Consolidation and What it Could Mean to Military Helicopter Flight Training

    Science.gov (United States)

    2013-05-22

    met? 3. What is the impact or deficiencies in a consolidated syllabus? 4. If unable to productively create a Joint syllabus, can the possibility of...instrument flight rules ( IFR ) flight plan 2. Perform instrument takeoff (ITO) 26U.S, Army. Initial Entry Rotary Wing (IERW) Aviator Course Common...Recommendations will be made by the author and covered later in this chapter. 65 What is the impact or deficiencies in a consolidated syllabus

  14. Safe-life and damage-tolerant design approaches for helicopter structures

    Science.gov (United States)

    Reddick, H. K., Jr.

    1983-01-01

    The safe-life and damage-tolerant design approaches discussed apply to both metallic and fibrous composite helicopter structures. The application of these design approaches to fibrous composite structures is emphasized. Safe-life and damage-tolerant criteria are applied to all helicopter flight critical components, which are generally categorized as: dynamic components with a main and tail rotor system, which includes blades, hub and rotating controls, and drive train which includes transmission, and main and interconnecting rotor shafts; and the airframe, composed of the fuselage, aerodynamic surfaces, and landing gear.

  15. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  16. Propulsion systems for vertical flight aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, A.

    1990-01-01

    The present evaluation of VTOL airframe/powerplant integration configurations combining high forward flight speed with safe and efficient vertical flight identifies six configurations that can be matched with one of three powerplant types: turboshafts, convertible-driveshaft lift fans, and gas-drive lift fans. The airframes configurations are (1) tilt-rotor, (2) folded tilt-rotor, (3) tilt-wing, (4) rotor wing/disk wing, (5) lift fan, and (6) variable-diameter rotor. Attention is given to the lift-fan VTOL configuration. The evaluation of these configurations has been conducted by both a joint NASA/DARPA program and the NASA High Speed Rotorcraft program. 7 refs.

  17. 1998 Fuel Use and Emissions for Danish IFR Flights

    DEFF Research Database (Denmark)

    Winther, M.

    This report explains a city-pair fuel use and emission inventory made for all IFR (Instrumental Flight Rules) flights leaving Danish airports in 1998. Pollutants covered are CO, NOx, VOC, CO2 and SO2. The calculations have been made for domestic and international LTO (Landing and Take Off...

  18. Adaptive Flight Control Research at NASA

    Science.gov (United States)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  19. Design aspects of safety critical instrumentation of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, P. [Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)]. E-mail: swamy@igcar.ernet.in

    2005-07-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  20. Design aspects of safety critical instrumentation of nuclear installations

    International Nuclear Information System (INIS)

    Swaminathan, P.

    2005-01-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  1. ANALYSIS OF OPERATING INSTRUMENT LANDING SYSTEM ACCURACY UNDER SIMULATED CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jerzy MERKISZ

    2017-03-01

    Full Text Available The instrument landing system (ILS is the most popular landing aid in the world. It is a distance-angled support system for landing in reduced visibility, while its task is the safe conduct of the aircraft from the prescribed course landing on the approach path. The aim of this study is to analyse the correctness of the ILS in simulated conditions. The study was conducted using a CKAS MotionSim5 flight simulator in the Simulation Research Laboratory of the Institute of Combustion Engines and Transport at Poznan University of Technology. With the advancement of technical equipment, it was possible to check the operation of the system in various weather conditions. Studies have shown that the impact of fog, rain and snow on the correct operation of the system is marginal. Significant influence has been observed, however, during landing in strong winds.

  2. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  3. Sodium heat pipe module test for the SAFE-30 reactor prototype

    International Nuclear Information System (INIS)

    Reid, Robert S.; Sena, J. Tom; Martinez, Adam L.

    2001-01-01

    Reliable, long-life, low-cost heat pipes can enable safe, affordable space fission power and propulsion systems. Advanced versions of these systems can in turn allow rapid access to any point in the solar system. Twelve stainless steel-sodium heat pipe modules were built and tested at Los Alamos for use in a non-nuclear thermohydraulic simulation of the SAFE-30 reactor (Poston et al., 2000). SAFE-30 is a near-term, low-cost space fission system demonstration. The heat pipes were designed to remove thermal power from the SAFE-30 core, and transfer this power to an electrical power conversion system. These heat pipe modules were delivered to NASA Marshall Space Flight Center in August 2000 and were assembled and tested in a prototypical configuration during September and October 2000. The construction and test of one of the SAFE-30 modules is described

  4. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    Science.gov (United States)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  5. Optimization of the design of X-Calibur for a long-duration balloon flight and results from a one-day test flight

    Science.gov (United States)

    Kislat, Fabian; Abarr, Quin; Beheshtipour, Banafsheh; De Geronimo, Gianluigi; Dowkontt, Paul; Tang, Jason; Krawczynski, Henric

    2018-01-01

    X-ray polarimetry promises exciting insights into the physics of compact astrophysical objects by providing two observables: the polarization fraction and angle as function of energy. X-Calibur is a balloon-borne hard x-ray scattering polarimeter for the 15- to 60-keV energy range. After the successful test flight in September 2016, the instrument is now being prepared for a long-duration balloon (LDB) flight in December 2018 through January 2019. During the LDB flight, X-Calibur will make detailed measurements of the polarization of Vela X-1 and constrain the polarization of a sample of between 4 and 9 additional sources. We describe the upgraded polarimeter design, including the use of a beryllium scattering element, lower-noise front-end electronics, and an improved fully active CsI(Na) anticoincidence shield, which will significantly increase the instrument sensitivity. We present estimates of the improved polarimeter performance based on simulations and laboratory measurements. We present some of the results from the 2016 flight and show that we solved several problems, which led to a reduced sensitivity during the 2016 flight. We end with a description of the planned Vela X-1 observations, including a Swift/BAT-guided observation strategy.

  6. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  7. GRIP NOAA GLOBAL HAWK IN-FLIGHT TURBULENCE SENSOR (GHIS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NOAA Global Hawk In-flight Turbulence Sensor (GHIS) instrument measures acceleration at the location of the instrument. Two accelerometers (2g and 5g full scale)...

  8. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Science.gov (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  9. Additive Manufacturing: From Rapid Prototyping to Flight

    Science.gov (United States)

    Prater, Tracie

    2015-01-01

    Additive manufacturing (AM) offers tremendous promise for the rocket propulsion community. Foundational work must be performed to ensure the safe performance of AM parts. Government, industry, and academia must collaborate in the characterization, design, modeling, and process control to accelerate the certification of AM parts for human-rated flight.

  10. Computer aided in-flight radiation scanning

    International Nuclear Information System (INIS)

    Schmitzer, C.; Kloesch, W.

    1989-01-01

    The equipment consists of a radiation detecting instrument, a flight prospection probe and a portable PC. It is aimed at detection of ground radiation sources from a flying airplane, e.g. in case of radiation accident. 3 figs

  11. Cement-augmented dorsal instrumentation of the spine as a safe adjunct to the multimodal management of metastatic pheochromocytoma: a case report

    Directory of Open Access Journals (Sweden)

    Rittirsch Daniel

    2012-01-01

    Full Text Available Abstract Malignant pheochromocytoma is a neuroendocrine tumor that originates from chromaffin tissue. Although osseous metastases are common, metastatic dissemination to the spine rarely occurs. Five years after primary diagnosis of extra-adrenal, abdominal pheochromocytoma and laparoscopic extirpation, a 53-year old patient presented with recurrence of pheochromocytoma involving the spine, the pelvis, both proximal femora and the right humerus. Magnetic resonance imaging and computed tomography revealed osteolytic lesions of numerous vertebrae (T1, T5, T10, and T12. In the case of T10, total destruction of the vertebral body with involvement of the rear edge resulted in the risk of vertebral collapse and subsequent spinal stenosis. Thus, dorsal instrumentation (T8-T12 and cement augmentation of T12 was performed after perioperative alpha- and beta-adrenergic blockade with phenoxybenzamine and bisoprolol. After thorough preoperative evaluation to assess the risk for surgery and anesthesia, and appropriate perioperative management including pharmacological antihypertensive treatment, dorsal instrumentation of T8-T12 and cement augmentation of T12 prior to placing the corresponding pedicle screws did not result in hypertensive crisis or hemodynamic instability due to the release of catecholamines from metastatic lesions. To the authors' knowledge, this is the first report describing cement-augmentation in combination with dorsal instrumentation to prevent osteolytic vertebral collapse in a patient with metastatic pheochromocytoma. With appropriate preoperative measures, cement-augmented dorsal instrumentation represents a safe approach to stabilize vertebral bodies with metastatic malignant pheochromocytoma. Nevertheless, direct manipulation of metastatic lesions should be avoided as far as possible in order to minimize the risk of hemodynamic complications.

  12. LISA Pathfinder instrument data analysis

    Science.gov (United States)

    Guzman, Felipe

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtrac-tion techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology Subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of pre-flight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  13. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    OpenAIRE

    Ghassan Yared

    2015-01-01

    This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy...

  14. Pilot Control Behavior Discrepancies Between Real and Simulated Flight Caused by Limited Motion Stimuli

    NARCIS (Netherlands)

    Zaal, P.M.T.

    2011-01-01

    Flight simulators provide a flexible, efficient, and safe environment for research and training at much lower costs than real flight. The ultimate validity of any simulation would be achieved when – for a particular task – human cognitive and psychomotor behavior in the simulator corresponds

  15. Effects of visual, seat, and platform motion during flight simulator air transport pilot training and evaluation

    Science.gov (United States)

    2009-04-27

    Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...

  16. Use of neural network techniques to identify cosmic ray electrons and positrons during the 1993 balloon flight of the NMSU/Wizard-TS93 instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bellotti, R.; Castellano, M. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Candusso, M.; Casolino, M.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Aversa, F.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Barbiellini, G. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1995-09-01

    The detectors used in the TS93 balloon flight produced a large volume of information for each cosmic ray trigger. Some of the data was visual in nature, other portions contained energy deposition and timing information. The data sets are amenable to conventional analysis techniques but there is no assurance that conventional techniques make full use of subtle correlations and relations amongst the detector responses. With the advent of neural network technologies, particularly adept at classification of complex phenomena, it would seem appropriate to explore the utility of neural network techniques to classify particles observed with the instruments. In this paper neural network based methodology for signal/background discrimination in a cosmic ray space experiment is discussed. Results are presented for electron and positron classification in the TS93 flight data set and will be compared to conventional analyses.

  17. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    Science.gov (United States)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  18. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    Science.gov (United States)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  19. Helicopter Pilot Performance for Discrete-maneuver Flight Tasks

    Science.gov (United States)

    Heffley, R. K.; Bourne, S. M.; Hindson, W. S.

    1984-01-01

    This paper describes a current study of several basic helicopter flight maneuvers. The data base consists of in-flight measurements from instrumented helicopters using experienced pilots. The analysis technique is simple enough to apply without automatic data processing, and the results can be used to build quantitative matah models of the flight task and some aspects of the pilot control strategy. In addition to describing the performance measurement technqiue, some results are presented which define the aggressiveness and amplitude of maneuvering for several lateral maneuvers including turns and sidesteps.

  20. Void Fraction Instrument operation and maintenance manual

    International Nuclear Information System (INIS)

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O ampersand MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document

  1. XML in an Adaptive Framework for Instrument Control

    Science.gov (United States)

    Ames, Troy J.

    2004-01-01

    NASA Goddard Space Flight Center is developing an extensible framework for instrument command and control, known as Instrument Remote Control (IRC), that combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms.

  2. Controlling Precision Stepper Motors in Flight Using (Almost) No Parts

    Science.gov (United States)

    Randall, David

    2010-01-01

    This concept allows control of high-performance stepper motors with minimal parts count and minimal flight software complexity. Although it uses a small number of common flight-qualified parts and simple control algorithms, it is capable enough to meet demanding system requirements. Its programmable nature makes it trivial to implement changes to control algorithms both during integration & test and in flight. Enhancements such as microstepping, half stepping, back-emf compensation, and jitter reduction can be tailored to the requirements of a large variety of stepper motor based applications including filter wheels, focus mechanisms, antenna tracking subsystems, pointing and mobility. The hardware design (using an H-bridge motor controller IC) was adapted from JPL's MER mission, still operating on Mars. This concept has been fully developed and incorporated into the MCS instrument on MRO, currently operating in Mars orbit. It has been incorporated into the filter wheel mechanism and linear stage (focus) mechanism for the AMT instrument. On MCS/MRO, two of these circuits control the elevation and azimuth of the MCS telescope/radiometer assembly, allowing the instrument to continuously monitor the limb of the Martian atmosphere. Implementation on MCS/MRO resulted in a 4:1 reduction in the volume and mass required for the motor driver electronics (100:25 square inches of PCB space), producing a very compact instrument. In fact, all of the electronics for the MCS instrument are packaged within the movable instrument structure. It also saved approximately 3 Watts of power. Most importantly, the design enabled MCS to meet very its stringent maximum allowable torque disturbance requirements.

  3. The Undergraduate Student Instrument Project (USIP) - building the STEM workforce by providing exciting, multi-disciplinary, student-led suborbital flight projects.

    Science.gov (United States)

    Dingwall, B. J.

    2015-12-01

    NASA's Science Mission Directorate (SMD) recognizes that suborbital carriers play a vital role in training our country's future science and technology leaders. SMD created the Undergraduate Student Instrument Project (USIP) to offer students the opportunity to design, build, and fly instruments on NASA's unique suborbital research platforms. This paper explores the projects, the impact, and the lessons learned of USIP. USIP required undergraduate teams to design, build, and fly a scientific instrument in 18 months or less. Students were required to form collaborative multidisciplinary teams to design, develop and build their instrument. Teams quickly learned that success required skills often overlooked in an academic environment. Teams quickly learned to share technical information in a clear and concise manner that could be understood by other disciplines. The aggressive schedule required team members to hold each other accountable for progress while maintaining team unity. Unanticipated problems and technical issues led students to a deeper understanding of the need for schedule and cost reserves. Students exited the program with a far deeper understanding of project management and team dynamics. Through the process of designing and building an instrument that will enable new research transforms students from textbook learners to developers of new knowledge. The initial USIP project funded 10 undergraduate teams that flew a broad range of scientific instruments on scientific balloons, sounding rockets, commercial rockets and aircraft. Students were required to prepare for and conduct the major reviews that are an integral part of systems development. Each project conducted a Preliminary Design Review, Critical Design Review and Mission Readiness review for NASA officials and flight platform providers. By preparing and presenting their designs to technical experts, the students developed a deeper understanding of the technical and programmatic project pieces that

  4. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    Science.gov (United States)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  5. In-flight Quality and Accuracy of Attitude Measurements from the CHAMP Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute...... attitude with accuracy in the arc second range. In order to investigate the in-flight accuracy of the ASC, the terminology to characterize noise and biases is introduced. Relative instrument accuracy (RIA) and absolute instrument accuracy (AIA) can in principle be determined in-flight. However problems...

  6. Status of the Neutron Imaging and Diffraction Instrument IMAT

    Science.gov (United States)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  7. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  8. Rocket flight of a multilayer coated high-density EUV toroidal grating

    Science.gov (United States)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Davila, Joseph M.

    1992-01-01

    A multilayer coated high density toroidal grating was flown on a sounding rocket experiment in the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. To our knowledge this is the first space flight of a multilayer coated grating. Pre-flight performance evaluation showed that the application of a 10-layer Ir/Si multilayer coating to the 3600 l/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength around 30 nm in first order over the standard gold coating, with a measured EUV efficiency that peaked at 3.3 percent. In addition, the grating's spectral resolution of better than 5000 was maintained. The region of enhanced grating efficiency due to the multilayer coating is clearly evident in the flight data. Within the bandpass of the multilayer coating, the recorded film densities were roughly equivalent to those obtained with a factor of six longer exposure on the previous flight of the SERTS instrument.

  9. University of Houston Undergraduate Student Instrumentation Projects

    Science.gov (United States)

    Bering, E. A., III; Talbot, R. W.; Hampton, D. L.; Molders, N.; Millan, R. M.; Halford, A. J.; Dunbar, B.; Morris, G. A.; Prince, J.; Gamblin, R.; Ehteshami, A.; Lehnen, J. N.; Greer, M.; Porat, I.; Alozie, M.; Behrend, C. C.; Bias, C.; Fenton, A.; Gunawan, B.; Harrison, W.; Martinez, A.; Mathur, S.; Medillin, M.; Nguyen, T.; Nguyen, T. V.; Nowling, M.; Perez, D.; Pham, M.; Pina, M.; Thomas, G.; Velasquez, B.; Victor, L.

    2017-12-01

    The Undergraduate Student Instrumentation Project (USIP) is a NASA program to engage undergraduate students in rigorous scientific research, for the purposes of innovation and developing the next generation of professionals for an array of fields. The program is student led and executed from initial ideation to research to the design and deployment of scientific payloads. The University of Houston has been selected twice to participate in the USIP programs. The first program (USIP_UH I) ran from 2013 to 2016. USIP_UH II started in January of 2016, with funding starting at the end of May. USIP_UH I (USIP_UH II) at the University of Houston was (is) composed of eight (seven) research teams developing six (seven), distinct, balloon-based scientific instruments. These instruments will contribute to a broad range of geophysical sciences from Very Low Frequency recording and Total Electron Content to exobiology and ozone profiling. USIP_UH I had 12 successful launches with 9 recoveries from Fairbanks, AK in March 2015, and 4 piggyback flights with BARREL 3 from Esrange, Kiruna, Sweden in August, 2015. USIP_UH II had 8 successful launches with 5 recoveries from Fairbanks, AK in March 2017, 3 piggyback flights with BARREL 4 from Esrange, Kiruna, Sweden in August, 2016, and 1 flight each from CSBF and UH. The great opportunity of this program is capitalizing on the proliferation of electronics miniaturization to create new generations of scientific instruments that are smaller and lighter than ever before. This situation allows experiments to be done more cheaply which ultimately allows many more experiments to be done.

  10. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    Science.gov (United States)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  11. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    Directory of Open Access Journals (Sweden)

    Ghassan Yared

    2015-02-01

    Full Text Available This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.

  12. MATHEMATICAL MODELLING OF AIRCRAFT PILOTING PROSSESS UNDER SPECIFIED FLIGHT PATH

    Directory of Open Access Journals (Sweden)

    И. Кузнецов

    2012-04-01

    Full Text Available The author suggests mathematical model of pilot’s activity as follow up system and mathematical methods of pilot’s activity description. The main idea of the model is flight path forming and aircraft stabilization on it during instrument flight. Input of given follow up system is offered to be aircraft deflection from given path observed by pilot by means of sight and output is offered to be pilot’s regulating actions for aircraft stabilization on flight path.

  13. Guidance notes : safe practice for the use of nuclear density meters

    International Nuclear Information System (INIS)

    2000-06-01

    These 'Guidance notes' have been written to provide information for owners and users on the safe care and use of instruments containing radioactive materials used for the measurement of moisture content and/or density of materials. They give practical guidance on compliance with the requirements of radiation protection legislation and the 'Code of safe practice for the use of nuclear density meters, NRL C15'. Some of these instruments have been known as 'soil moisture gauges' and others as 'nuclear density meters' or just 'NDMs'. For simplicity, these 'Guidance notes' will follow industry terminology and use the term 'nuclear density meter'. Some parts of these 'Guidance notes' and of the 'Code, NRL C15' are relevant for users of asphalt gauges containing radioactive sources. These are normally laboratory bench instruments, and are not portable field instruments. Nevertheless, the radioactive sources used are similar to those used for moisture measurement and the safety implications are similar. The units of measurement of radioactivity and radiation dose are discussed in Appendix 1. Appendix 2 contains consent application forms while sample transport forms can be found in Appendix 3. (author). 10 refs

  14. The First Flight Decision for New Human Spacecraft Vehicles - A General Approach

    Science.gov (United States)

    Schaible, Dawn M.; Sumrall, John Phillip

    2011-01-01

    Determining when it is safe to fly a crew on a launch vehicle/spacecraft for the first time, especially when the test flight is a part of the overall system certification process, has long been a challenge for program decision makers. The decision on first flight is ultimately the judgment of the program and agency management in conjunction with the design and operations team. To aid in this decision process, a NASA team undertook the task to develop a generic framework for evaluating whether any given program or commercial provider has sufficiently complete and balanced plans in place to allow crewmembers to safely fly on human spaceflight systems for the first time. It was the team s goal to establish a generic framework that could easily be applied to any new system, although the system design and intended mission would require specific assessment. Historical data shows that there are multiple approaches that have been successful in first flight with crew. These approaches have always been tailored to the specific system design, mission objectives, and launch environment. Because specific approaches may vary significantly between different system designs and situations, prescriptive instructions or thorough checklists cannot be provided ahead of time. There are, however, certain general approaches that should be applied in thinking through the decision for first flight. This paper addresses some of the most important factors to consider when developing a new system or evaluating an existing system for whether or not it is safe to fly humans to/from space. In the simplest terms, it is time to fly crew for the first time when it is safe to do so and the benefit of the crewed flight is greater than the residual risk. This is rarely a straight-forward decision. The paper describes the need for experience, sound judgment, close involvement of the technical and management teams, and established decision processes. In addition, the underlying level of confidence the

  15. Two-dimensional unsteady lift problems in supersonic flight

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  16. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    Science.gov (United States)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  17. Can triptans safely be used for airplane headache?

    Science.gov (United States)

    Ipekdal, H Ilker; Karadaş, Ömer; Öz, Oğuzhan; Ulaş, Ümit H

    2011-12-01

    A few cases of airplane headache (AH) have been reported in the literature. Treatment strategies of AHs are also controversial. We followed-up five patients with AH. They were symptom-free during the daytime. Their physical, neurological, and ear-nose-throat examinations were all normal. Blood chemistries, cerebral magnetic resonance imaging, cerebral magnetic resonance imaging angiography, and paranasal sinus tomography studies of the patients were also normal. We preferred triptans because of the possible effect on the mechanism of AH. Patients were recommended to use single-dose of their drugs half an hour prior to flights. All of the patients had a good response to single dose triptan treatment and became headache-free during flights. This is the first study which puts forward the usefulness of the triptans as a safe treatment choice for airplane AH.

  18. The multiple disk chopper neutron time-of-flight spectrometer at NIST

    International Nuclear Information System (INIS)

    Altorfer, F.B.; Cook, J.C.; Copley, J.R.D.

    1995-01-01

    A highly versatile multiple disk chopper neutron time-of-flight spectrometer is being installed at the Cold Neutron Research Facility of the National institute of Standards and Technology. This new instrument will fill an important gap in the portfolio of neutron inelastic scattering spectrometers in North America. It will be used for a wide variety of experiments such as studies of magnetic and vibrational excitations, tunneling spectroscopy, and quasielastic neutron scattering investigations of local and translational diffusion. The instrument uses disk choppers to monochromate and pulse the incident beam, and the energy changes of scattered neutrons are determined from their times-of-flight to a large array of detectors. The disks and the guide have been designed to make the instrument readily adaptable to the specific performance requirements of experimenters. The authors present important aspects of the design, as well as estimated values of the flux at the sample and the energy resolution for elastic scattering. The instrument should be operational in 1996

  19. Neutron beam instruments at Harwell

    International Nuclear Information System (INIS)

    Baston, A.H.; Harris, D.H.C.

    1978-11-01

    A list and brief descriptions are given of the neutron beam facilities for U.K. scientists at Harwell and in academic institutions, available under an agreement between the Science Research Council and AERE (Harwell). The list falls under the following headings: reactor instruments (single crystal diffractometers, powder diffractometers, triple axis spectrometers, time-of-flight cold neutron twin rotor spectrometer, beryllium filter spectrometer, MARX spectrometer, Harwell small-angle scattering spectrometer); LINAC instruments (total scattering spectrometer, back scattering spectrometer, active sample spectrometer, inelastic rotor spectrometer, constant Q spectrometer); ancillary equipment (cryostats, superconducting magnets, electromagnets, furnaces). (U.K.)

  20. The Author’s Guide to Writing Air Force Flight Test Center Technical Reports

    Science.gov (United States)

    2009-08-01

    arguments about how bad is bad and how good is good; this table should apply in most cases. If you feel you have an exception to the rating table... IFR instrument flight rules --- ILS instrument landing system --- IMC instrument meteorological conditions --- IMU inertial measurement

  1. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    Science.gov (United States)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements

  2. Eclipse - tow flight closeup and release

    Science.gov (United States)

    1998-01-01

    flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable

  3. Multi-instrument comparisons of D-region plasma measurements

    Directory of Open Access Journals (Sweden)

    M. Friedrich

    2013-01-01

    Full Text Available The ECOMA (Existence and Charge state Of Meteoric dust grains in the middle Atmosphere series of sounding rocket flights consisted of nine flights with almost identical payload design and flight characteristics. All flights carried a radio wave propagation experiment together with a variety of plasma probes. Three of these measured electron densities, two ion densities. The rockets were all launched from the Andøya Rocket Range, Norway, in four campaigns between 2006 and 2010. Emphasis is on the final three flights from 2010 where the payloads were equipped with four instruments capable of measuring plasma densities in situ, among them a novel probe flown for the first time in conjunction with a wave propagation experiment. Deviation factors of all probe data relative to the wave propagation results were derived and revealed that none of the probe data were close to the wave propagation results at all heights, but – more importantly – the instruments showed very different behaviour at different altitudes. The novel multi-needle Langmuir probe exhibits the best correlation to the wave propagation data, as there is minimal influence of the payload potential, but it is still subject to aerodynamics, especially at its location at the rear of the payload. For all other probe types, the deviation factor comes closer to unity with increasing plasma density. No systematic difference of the empirical deviation factor between day and night can be found. The large negative payload potential in the last three flights may be the cause for discrepancies between electron and ion probe data below 85 km.

  4. Evaluating Flight Crew Performance by a Bayesian Network Model

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2018-03-01

    Full Text Available Flight crew performance is of great significance in keeping flights safe and sound. When evaluating the crew performance, quantitative detailed behavior information may not be available. The present paper introduces the Bayesian Network to perform flight crew performance evaluation, which permits the utilization of multidisciplinary sources of objective and subjective information, despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of 484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance Model is constructed. The Delphi technique helps to gather subjective data as a supplement to objective data from accident reports. The conditional probabilities are elicited by the leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis are used and some interesting conclusions are drawn, which could provide data support to make interventions for human error management in aviation safety.

  5. Validity and reliability of a self-administered foot evaluation questionnaire (SAFE-Q).

    Science.gov (United States)

    Niki, Hisateru; Tatsunami, Shinobu; Haraguchi, Naoki; Aoki, Takafumi; Okuda, Ryuzo; Suda, Yasunori; Takao, Masato; Tanaka, Yasuhito

    2013-03-01

    The Japanese Society for Surgery of the Foot (JSSF) is developing a QOL questionnaire instrument for use in pathological conditions related to the foot and ankle. The main body of the outcome instrument (the Self-Administered Foot Evaluation Questionnaire, SAFE-Q version 2) consists of 34 questionnaire items, which provide five subscale scores (1: Pain and Pain-Related; 2: Physical Functioning and Daily Living; 3: Social Functioning; 4: Shoe-Related; and 5: General Health and Well-Being). In addition, the instrument has nine optional questionnaire items that provide a Sports Activity subscale score. The purpose of this study was to evaluate the test-retest reliability of the SAFE-Q. Version 2 of the SAFE-Q was administered to 876 patients and 491 non-patients, and the test-retest reliability was evaluated for 131 patients. In addition, the SF-36 questionnaire and the JSSF Scale scoring form were administered to all of the participants. Subscale scores were scaled such that the final sum of scores ranged between zero (least healthy) to 100 (healthiest). The intraclass correlation coefficients were larger than 0.7 for all of the scores. The means of the five subscale scores were between 60 and 75. The five subscales easily separated patients from non-patients. The coefficients for the correlations of the subscale scores with the scores on the JSSF Scale and the SF-36 subscales were all highly statistically significantly greater than zero (p valid and reliable. In the future, it will be beneficial to test the responsiveness of the SAFE-Q.

  6. Recent advances in radiation protection instrumentation

    International Nuclear Information System (INIS)

    Babu, D.A.R.

    2012-01-01

    Radiation protection instrumentation plays very important role in radiation protection and surveillance programme. Radiation detector, which appears at the frontal end of the instrument, is an essential component of these instruments. The instrumental requirement of protection level radiation monitoring is different from conventional radiation measuring instruments. Present paper discusses the new type of nuclear radiation detectors, new protection level instruments and associated electronic modules for various applications. Occupational exposure to ionizing radiation can occur in a range of industries, such as nuclear power plants; mining and milling; medical institutions; educational and research establishments; and nuclear fuel cycle facilities. Adequate radiation protection to workers is essential for the safe and acceptable use of radioactive materials for different applications. The radiation exposures to the individual radiation workers and records of their cumulative radiation doses need to be routinely monitored and recorded

  7. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    Science.gov (United States)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  8. Latest NASA Instrument Cost Model (NICM): Version VI

    Science.gov (United States)

    Mrozinski, Joe; Habib-Agahi, Hamid; Fox, George; Ball, Gary

    2014-01-01

    The NASA Instrument Cost Model, NICM, is a suite of tools which allow for probabilistic cost estimation of NASA's space-flight instruments at both the system and subsystem level. NICM also includes the ability to perform cost by analogy as well as joint confidence level (JCL) analysis. The latest version of NICM, Version VI, was released in Spring 2014. This paper will focus on the new features released with NICM VI, which include: 1) The NICM-E cost estimating relationship, which is applicable for instruments flying on Explorer-like class missions; 2) The new cluster analysis ability which, alongside the results of the parametric cost estimation for the user's instrument, also provides a visualization of the user's instrument's similarity to previously flown instruments; and 3) includes new cost estimating relationships for in-situ instruments.

  9. Status of ART-XC/SRG Instrument

    Science.gov (United States)

    Pavlinsky, M.; Akimov, V.; Levin, V.; Lapshov, I.; Tkachenko, A.; Semena, N.; Buntov, M.; Glushenko, A.; Arefiev, V.; Yaskovich, A.; hide

    2014-01-01

    Spectrum Roentgen Gamma (SRG) is an X-ray astrophysical observatory, developed by Russia in collaboration with Germany. The mission will be launched in March 2016 from Baikonur, by a Zenit rocket with a Fregat booster and placed in a 6-month-period halo orbit around L2. The scientific payload consists of two independent telescopes - a soft-x-ray survey instrument, eROSITA, being provided by Germany and a medium-x-ray-energy survey instrument ART-XC being developed by Russia. ART-XC will consist of seven independent, but co-aligned, telescope modules. The NASA Marshall Space Flight Center (MSFC) is fabricating the flight mirror modules for the ART-XC/SRG. Each mirror module will be aligned with a focal plane CdTe double-sided strip detectors which will operate over the energy range of 6-30 keV, with an angular resolution of less than 1', a field of view of approximately 34' and an expected energy resolution of about 10 percent at 14 keV.

  10. Achievements of the EC network of excellence HySafe

    NARCIS (Netherlands)

    Jordan, T.; Adams, P.; Azkarate, I.; Baraldi, D.; Barthelemy, H.; Bauwens, L.; Bengaouer, A.; Brennan, S.; Carcassi, M.; Dahoe, A.; Eisenreich, N.; Engebo, A.; Funnemark, E.; Gallego, E.; Gavrikov, A.; Haland, E.; Hansen, A.M.; Haugom, G.P.; Hawksworth, S.; Jedicke, O.; Kessler, A.; Kotchourko, A.; Kumar, S.; Langer, G.; Ledin, S.; Makarov, D.; Marangon, A.; Markert, F.; Middha, P.; Molkov, V.; Nilsen, S.; Papanikolaou, E.; Perrette, L.; Reinecke, E.-A.; Schmidtchen, U.; Serre-Combe, P.; Stöcklin, M.; Sully, A.; Teodorczyk, A.; Tigreat, D.; Venetsanos, A.; Verfondern, K.; Versloot, N.A.H.; Vetere, A.; Wilms, M.; Zaretskiy, N.

    2009-01-01

    In many areas European research has been largely fragmented. To support the required integration and to focus and coordinate related research efforts the European Commission created a new instrument, the Networks of Excellences (NoEs). The goal of the NoE HySafe has been to provide the basis to

  11. Satellite images to aircraft in flight. [GEOS image transmission feasibility analysis

    Science.gov (United States)

    Camp, D.; Luers, J. K.; Kadlec, P. W.

    1977-01-01

    A study has been initiated to evaluate the feasibility of transmitting selected GOES images to aircraft in flight. Pertinent observations that could be made from satellite images on board aircraft include jet stream activity, cloud/wind motion, cloud temperatures, tropical storm activity, and location of severe weather. The basic features of the Satellite Aircraft Flight Environment System (SAFES) are described. This system uses East GOES and West GOES satellite images, which are interpreted, enhanced, and then retransmitted to designated aircraft.

  12. Fundamental Research into Hyperelastic Materials for Flight Applications (FY15)

    Data.gov (United States)

    National Aeronautics and Space Administration — This research project is working to develop methods to characterize elastomer materials for flight applications as well as instrumentation methods to monitor their...

  13. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  14. Development of a NEW Vector Magnetograph at Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Hagyard, Mona; Gary, Allen; Smith, James; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the Experimental Vector Magnetograph that has been developed at the Marshall Space Flight Center (MSFC). This instrument was designed to improve linear polarization measurements by replacing electro-optic and rotating waveplate modulators with a rotating linear analyzer. Our paper will describe the motivation for developing this magnetograph, compare this instrument with traditional magnetograph designs, and present a comparison of the data acquired by this instrument and original MSFC vector magnetograph.

  15. In-flight calibration and verification of the Planck-LFI instrument

    OpenAIRE

    Gregorio, Anna; Cuttaia, Francesco; Mennella, Aniello; Bersanelli, Marco; Maris, Michele; Meinhold, Peter; Sandri, Maura; Terenzi, Luca; Tomasi, Maurizio; Villa, Fabrizio; Frailis, Marco; Morgante, Gianluca; Pearson, Dave; Zacchei, Andrea; Battaglia, Paola

    2013-01-01

    In this paper we discuss the Planck-LFI in-flight calibration campaign. After a brief overview of the ground test campaigns, we describe in detail the calibration and performance verification (CPV) phase, carried out in space during and just after the cool-down of LFI. We discuss in detail the functionality verification, the tuning of the front-end and warm electronics, the preliminary performance assessment and the thermal susceptibility tests. The logic, sequence, goals and results of the i...

  16. Instrument for liquids, amorphous and power diffraction

    International Nuclear Information System (INIS)

    Soper, A.K.

    1981-01-01

    A time-of-flight diffractometer, which has been built at the Los Alamos pulsed neutron source, is described. The concept of resolution focussing is discussed and the application of the instrument to liquid structure over a broad range of momentum transfers is presented

  17. Autonomous formation flight of helicopters: Model predictive control approach

    Science.gov (United States)

    Chung, Hoam

    Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected

  18. Neutron radiography of aircraft composite flight control surfaces

    International Nuclear Information System (INIS)

    Lewis, W.J.; Bennett, L.G.I.; Chalovich, T.R.; Francescone, O.

    2001-01-01

    A small (20 kWth), safe, pool-type nuclear research reactor called the SLOWPOKE-2 is located at the Royal Military College of Canada (RMC). The reactor was originally installed for teaching, training, research and semi-routine analysis, specifically, neutron activation analysis. It was envisioned that the neutrons from the SLOWPOKE-2 could also be used for neutron radiography, and so a research program was initiated to develop this technology. Over a period of approximately 15 years, and through a series of successive modifications, a neutron radiography system (NRS) was developed. Once completed, several applications of the technology have been demonstrated, including the nondestructive examination of the composite flight control surfaces from the Canadian Air Force's primary jet fighter, the CF18 Hornet aircraft. An initial trial was setup to investigate the flight control surfaces of 3 aircraft, to determine the parameters for a final licensed system, and to compare the results to other nondestructive methods. Over 500 neutron radiographs were made for these first 3 aircraft, and moisture and corrosion were discovered in the honeycomb structure and hydration was found in the composite and adhesive layers. In comparison with other NDT methods, neutron radiography was the only method that could detect the small areas of corrosion and moisture entrapment. However, before examining an additional 7 aircraft, the recommended modifications to the NRS were undertaken. These modifications were necessary to accommodate the larger flight control surfaces safely by incorporating flexible conformable shielding. As well, to expedite inspections so that all flight control surfaces from one aircraft could be completed in less than two weeks, there was a need to decrease the exposure time by both faster film/conversion screen combinations and by incorporating the capability of near realtime, digital radioscopy. Finally, as there are no inspection specific image quality

  19. The effect of brushing motion on the cyclic fatigue of rotary nickel titanium instruments

    Directory of Open Access Journals (Sweden)

    Gianluca Gambarini

    2010-12-01

    Full Text Available The goal of the study is to evaluate if the use of rotary nickel-titanium (RNT instruments, as Hedstroem files, is safe. Twelve twisted files (TF RNT instruments size 06-25 were selected and randomly divided in 2 groups of 6 instruments each. Group A (new instruments were used as control. Group B (test instruments were clinically used only as Hedstroem files in a canal that had been previously instrumented to the working length with other 06-25 RNT instruments. Group B instruments were used only in the straight portion of the canal (1 minute at 1000 rpm. A cyclic fatigue test was performed for each instrument of groups. Data were statistically analyzed (Student's t-test. Results showed no significant difference (P > 0.05 between groups A and B. Data confirmed that the use of TF instruments as Hedstroem files is a safe procedure. Cross section images and volumes of the same instrument, before and after cyclic fatigue testing, have been obtained by means of microtomographic analysis to evaluate possible microstructure alterations.

  20. Thrust imbalance of solid rocket motor pairs on Space Shuttle flights

    Science.gov (United States)

    Foster, W. A., Jr.; Shu, P. H.; Sforzini, R. H.

    1986-01-01

    This analysis extends the investigation presented at the 17th Joint Propulsion Conference in 1981 to include fifteen sets of Space Shuttle flight data. The previous report dealt only with static test data and the first flight pair. The objective is to compare the authors' previous theoretical analysis of thrust imbalance with actual Space Shuttle performance. The theoretical prediction method, which involves a Monte Carlo technique, is reviewed briefly as are salient features of the flight instrumentation system and the statistical analysis. A scheme for smoothing flight data is discussed. The effects of changes in design parameters are discussed with special emphasis on the filament wound motor case being developed to replace the steel case. Good agreement between the predictions and the flight data is demonstrated.

  1. Invited Article: Characterization of background sources in space-based time-of-flight mass spectrometers

    International Nuclear Information System (INIS)

    Gilbert, J. A.; Gershman, D. J.; Gloeckler, G.; Lundgren, R. A.; Zurbuchen, T. H.; Orlando, T. M.; McLain, J.; Steiger, R. von

    2014-01-01

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments

  2. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  3. A new method for flight test determination of propulsive efficiency and drag coefficient

    Science.gov (United States)

    Bull, G.; Bridges, P. D.

    1983-01-01

    A flight test method is described from which propulsive efficiency as well as parasite and induced drag coefficients can be directly determined using relatively simple instrumentation and analysis techniques. The method uses information contained in the transient response in airspeed for a small power change in level flight in addition to the usual measurement of power required for level flight. Measurements of pitch angle and longitudinal and normal acceleration are eliminated. The theoretical basis for the method, the analytical techniques used, and the results of application of the method to flight test data are presented.

  4. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    Science.gov (United States)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  5. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  6. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses

    Science.gov (United States)

    Winebarger, R. M.; Neely, W. R., Jr.

    1984-01-01

    An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

  7. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  8. Time-of-flight and vector polarization analysis for diffuse neutron scattering

    International Nuclear Information System (INIS)

    Schweika, W.

    2003-01-01

    The potential of pulsed neutron sources for diffuse scattering including time-of-flight (TOF) and polarization analysis is discussed in comparison to the capabilities of the present instrument diffuse neutron scattering at the research center Juelich. We present first results of a new method for full polarization analysis using precessing neutron polarization. A proposal is made for a new type of instrument at pulsed sources, which allows for vector polarization analysis in TOF instruments with multi-detectors

  9. A pilot's opinion - VTOL control design requirements for the instrument approach task.

    Science.gov (United States)

    Patton, J. M., Jr.

    1972-01-01

    This paper presents pilot opinion supported by test data concerning flight control and display concepts and control system design requirements for VTOL aircraft in the instrument approach task. Material presented is drawn from research flights in the following aircraft: Dornier DO-31, Short SC-1, LTV XC-142A, and Boeing-Vertol CH-46. The control system concepts and mechanizations employed in the above aircraft are discussed, and the effect of control system augmentation is shown on performance. Operational procedures required in the instrument approach task are described, with comments on need for automation and combining of control functions.

  10. Saturn V Instrument Unit Being Checked At MSFC

    Science.gov (United States)

    1967-01-01

    A technician checks the systems of the Saturn V instrument unit in a test facility in Huntsville. This instrument unit was flown aboard Apollo 4 on November 7, 1967, which was the first test flight of the Saturn V. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  11. Mid Infrared Instrument cooler subsystem test facility overview

    Science.gov (United States)

    Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.

    2017-12-01

    The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.

  12. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    Science.gov (United States)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.

  13. The Portable Dynamic Fundus Instrument: Uses in telemedicine and research

    Science.gov (United States)

    Hunter, Norwood; Caputo, Michael; Billica, Roger; Taylor, Gerald; Gibson, C. Robert; Manuel, F. Keith; Mader, Thomas; Meehan, Richard

    1994-01-01

    For years ophthalmic photographs have been used to track the progression of many ocular diseases such as macular degeneration and glaucoma as well as the ocular manifestations of diabetes, hypertension, and hypoxia. In 1987 a project was initiated at the Johnson Space Center (JSC) to develop a means of monitoring retinal vascular caliber and intracranial pressure during space flight. To conduct telemedicine during space flight operations, retinal images would require real-time transmissions from space. Film-based images would not be useful during in-flight operations. Video technology is beneficial in flight because the images may be acquired, recorded, and transmitted to the ground for rapid computer digital image processing and analysis. The computer analysis techniques developed for this project detected vessel caliber changes as small as 3 percent. In the field of telemedicine, the Portable Dynamic Fundus Instrument demonstrates the concept and utility of a small, self-contained video funduscope. It was used to record retinal images during the Gulf War and to transmit retinal images from the Space Shuttle Columbia during STS-50. There are plans to utilize this device to provide a mobile ophthalmic screening service in rural Texas. In the fall of 1993 a medical team in Boulder, Colorado, will transmit real-time images of the retina during remote consultation and diagnosis. The research applications of this device include the capability of operating in remote locations or small, confined test areas. There has been interest shown utilizing retinal imaging during high-G centrifuge tests, high-altitude chamber tests, and aircraft flight tests. A new design plan has been developed to incorporate the video instrumentation into face-mounted goggle. This design would eliminate head restraint devices, thus allowing full maneuverability to the subjects. Further development of software programs will broaden the application of the Portable Dynamic Fundus Instrument in

  14. Development of the Electron Drift Instrument (EDI) for Cluster

    Science.gov (United States)

    Quinn, Jack; Christensen, John L. (Technical Monitor)

    2001-01-01

    The Electron Drift Instrument (EDI) is a new technique for measuring electric fields in space by detecting the effect on weak beams of test electrons. This U.S. portions of the technique, flight hardware, and flight software were developed for the Cluster mission under this contract. Dr. Goetz Paschmann of the Max Planck Institute in Garching, Germany, was the Principle Investigator for Cluster EDI. Hardware for Cluster was developed in the U.S. at the University of New Hampshire, Lockheed Palo Alto Research Laboratory, and University of California, San Diego. The Cluster satellites carrying the original EDI instruments were lost in the catastrophic launch failure of first flight of the Arianne-V rocket in 1996. Following that loss, NASA and ESA approved a rebuild of the Cluster mission, for which all four satellites were successfully launched in the Summer of 2000. Limited operations of EDI were also obtained on the Equator-S satellite, which was launched in December, 1997. A satellite failure caused a loss of the Equator-S mission after only 5 months, but these operations were extremely valuable in learning about the characteristics and operations of the complex EDI instrument. The Cluster mission, satellites, and instruments underwent an extensive on-orbit commissioning phase in the Fall of 2000, carrying over through January 2001. During this period all elements of the instruments were checked and careful measurements of inter-experiments interferences were made. EDI is currently working exceptionally well in orbit. Initial results verify that all aspects of the instrument are working as planned, and returning highly valuable scientific information. The first two papers describing EDI on-orbit results have been submitted for publication in April, 2001. The principles of the EDI technique, and its implementation on Cluster are described in two papers by Paschmann et al., attached as Appendices A and B. The EDI presentation at the formal Cluster Commissioning

  15. 78 FR 10060 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Science.gov (United States)

    2013-02-13

    ... to provide safe and efficient use of the navigable airspace and to promote safe flight operations... 3, Amdt 1A 7-Mar-13 CA Apple Valley....... Apple Valley....... 2/4862 01/23/13 RNAV (GPS) Z Rwy 18, Orig 7-Mar-13 CA Apple Valley....... Apple Valley....... 2/4868 01/23/13 RNAV (GPS) Y Rwy 18, Amdt 1 7...

  16. The Micro-Instrumentation Package: A Solution to Lightweight Ballooning

    Science.gov (United States)

    Juneau, Jill

    This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit

  17. Development of NPTC-11 intelligence control instrument with digital display

    International Nuclear Information System (INIS)

    Wang Chengming; Pu Li; Yu Jiang; Xue Yuping; Zhang Bo; Chen Yong

    2007-01-01

    The accurate of the process control gauge has direct influence on the safe operation of nuclear power plants. Therefore it is necessary to accumulate experiences for the domestic development of this Instrument. In this paper, NPTC-11 intelligence control Instrument with digital display is developed based on the design code for nuclear Instrument, considering the actual application requirements and technical redundancy. Its application in nuclear power plant for almost one year indicates that this Instrument satisfies the development purpose and requirements. (authors)

  18. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    Science.gov (United States)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  19. THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Atwood, W. B.; Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Institut fuer Astro- und Teilchenphysik and Institut fuer Theoretische Physik, Leopold-Franzens-Universitaet Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E., E-mail: echarles@slac.stanford.edu, E-mail: luca.baldini@pi.infn.it, E-mail: rando@pd.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); and others

    2012-11-15

    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy {gamma}-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.

  20. THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bottacini, E.; Albert, A.; Atwood, W. B.; Bouvier, A.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bonamente, E.

    2012-01-01

    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.

  1. AsMA Medical Guidelines for Air Travel: stresses of flight.

    Science.gov (United States)

    Thibeault, Claude; Evans, Anthony D

    2015-05-01

    Medical Guidelines for Airline Travel provide information that enables healthcare providers to properly advise patients who plan to travel by air. Modern commercial aircraft are very safe and, in most cases, reasonably comfortable. However, all flights, short or long haul, impose stresses on passengers. Preflight stresses include airport commotion on the ground such as carrying baggage, walking long distances, getting to the gate on time, and being delayed. In-flight stresses include acceleration, vibration (including turbulence), noise, lowered barometric pressure, variations of temperature and humidity, and fatigue among others. Healthy passengers normally tolerate these stresses quite well; however, there is the potential for passengers to become ill during or after the flight due to these stresses, especially for those with pre-existing medical conditions and reduced physiological reserves.

  2. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  3. Safe sex

    Science.gov (United States)

    ... sex; Sexually transmitted - safe sex; GC - safe sex; Gonorrhea - safe sex; Herpes - safe sex; HIV - safe sex; ... contact. STIs include: Chlamydia Genital herpes Genital warts Gonorrhea Hepatitis HIV HPV Syphilis STIs are also called ...

  4. A Light-Weight Instrumentation System Design

    International Nuclear Information System (INIS)

    Kidner, Ronald

    1999-01-01

    To meet challenging constraints on telemetry system weight and volume, a custom Light-Weight Instrumentation System was developed to collect vehicle environment and dynamics on a short-duration exo-atmospheric flight test vehicle. The total telemetry system, including electronics, sensors, batteries, and a 1 watt transmitter weighs about 1 kg. Over 80 channels of measurement, housekeeping, and telemetry system diagnostic data are transmitted at 128 kbps. The microcontroller-based design uses the automotive industry standard Controller Area Network to interface with and support in-flight control fimctions. Operational parameters are downloaded via a standard asynchronous serial communications intefiace. The basic design philosophy and functionality is described here

  5. Touching for attention: How flight instructors support a pilot wearing a view-limiting device

    DEFF Research Database (Denmark)

    Nevile, Maurice Richard; Tuccio, William A.

    2018-01-01

    We use video recordings from pilot training flights to show how instructors support attention of a student wearing ‘foggles’, a view-limiting device designed to train pilots to fly by reference only to the cockpit flight instruments. The instructors touch cockpit displays with a pointing finger...... demonstrates a technique for controlling descent. The data examples are taken from a corpus of almost 100 hours of video recordings of actual in-flight instruction. We consider how our analyses can inform flight instructor training and improve instructor effectiveness, for example by revealing possible...

  6. MD-11 PCA - Research flight team egress

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 has parked on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. Coming down the steps from the aircraft are Gordon Fullerton (in front), followed by Bill Burcham, Propulsion Controlled Aircraft (PCA) project engineer at Dryden; NASA Dryden controls engineer John Burken; John Feather of McDonnell Douglas; and Drew Pappas, McDonnell Douglas' project manager for PCA.

  7. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    Science.gov (United States)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; hide

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  8. Development of Interactive Monitoring System for Neutron Scattering Instrument

    Energy Technology Data Exchange (ETDEWEB)

    So, Ji Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Neutron scattering instruments in HANARO research reactor have been contributed to various fields of basic science and material engineering. These instruments are open to publics and researchers can apply beam-time and do experiments with instrument scientists. In most cases, these instruments run for several weeks without stopping, and therefore instrument scientist wants to see the instrument status and receive information if the instruments have some problem. This is important for the safety. However, it is very hard to get instrument information outside of instruments. Access from external site is strongly forbidden in the institute due to the network safety, I developed another way to send instrument status information using commercial short messaging service(SMS). In this presentation, detailed features of this system will be shown. As a prototype, this system is being developed for the single instrument: Disk-chopper time-of-flight instruments (DC-TOF). I have successfully developed instruments and operate for several years. This information messaging system can be used for other neutron scattering instruments.

  9. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    facility provides all the necessary infrastructure to conduct the research flights in a safe and efficient manner. This paper gives a comprehensive overview of the development of the AirSTAR testbed.

  10. Using wide area differential GPS to improve total system error for precision flight operations

    Science.gov (United States)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  11. Flight nursing expertise: towards a middle-range theory

    Science.gov (United States)

    Reimer, Andrew P.; Moore, Shirley M.

    2010-01-01

    Aim This paper presents a middle-range Theory of Flight Nursing Expertise. Background Rotary-wing (helicopter) medical transport has grown rapidly in the USA since its introduction, particularly during the past 5 years. Patients once considered too sick to transport are now being transported more frequently and over longer distances. Many limitations are imposed by the air medical transport environment and these require nurses to alter their practice. Data sources A literature search was conducted using Pubmed, Medline, CINAHL, secondary referencing and an Internet search from 1960 to 2008 for studies related to the focal concepts in flight nursing. Discussion The middle-range Theory of Flight Nursing Expertise is composed of nine concepts (experience, training, transport environment of care, psychomotor skills, flight nursing knowledge, cue recognition, pattern recognition, decision-making and action) and their relationships. Five propositions describe the relationships between those concepts and how they apply to flight nursing expertise. Implications for nursing After empirical testing, this theory may be a useful tool to assist novice flight nurses to attain the skills necessary to provide safe and competent care more efficiently, and may aid in designing curricula and programmes of research. Conclusion Research is needed to determine the usefulness of this theory in both rotary and fixed-wing medical transport settings, and to examine the similarities and differences related to expertise needed for different flight nurse team compositions. Curriculum and training innovations can result from increased understanding of the concepts and relationships proposed in this theory. PMID:20337803

  12. A digital data acquisition system for a time of flight neutron diffuse scattering instrument

    International Nuclear Information System (INIS)

    Venegas, Rafael; Bacza, Lorena; Navarro, Gustavo

    1998-01-01

    Full text. We describe the design of a digital data acquisition system built for acquiring and storing the information produced by a neutron diffuse scattering apparatus. This instrument is based on the analysis of pulsed subthermal neutron which are scattered by a solid or liquid sample, measured as function of the scattered neutron wavelength and momentum direction. The time of flight neutron intensities on 14 different angular detector positions and two fission chambers must be analyzed simultaneously for each neutron burst. A PC controlled data acquisition board system was built based on two parallel multiscannning units, each with its own add-one counting unit, and a common base time generator. The unit plugs onto the ISA bus through an interface card. Two separate counting units were designed, to avoid possible access competition between low counting rate counters at off-axis positions and the higher rate frontal 0 deg and beam monitoring counters. the first unit contains logic for 14 independent and simultaneous multi scaling inputs, with 128 time channels and dwell time per channel of 5, 10 or 20 microseconds. Sweep trigger is synchronized with an electric signal from a coil sensing the rotor. The second unit contains logic for four additional multi scalers using the same external synchronizing signal, similar in all others details to the previously described multi scalers. Basic control routines for the acquisitions were written in C and a program for spectrum display and user interface was written in C ++ for a Windows 3.1 OS. A block diagram of the system is presented

  13. A Laser-Induced Fluorescence Instrument for Aircraft Measurements of Sulfur Dioxide in the Upper Troposphere and Lower Stratosphere

    Science.gov (United States)

    Rollins, Andrew W.; Thornberry, Troy D.; Ciciora, Steven J.; McLaughlin, Richard J.; Watts, Laurel A.; Hanisco, Thomas F.; Baumann, Esther; Giorgetta, Fabrizio R.; Bui, Thaopaul V.; Fahey, David W.

    2016-01-01

    This work describes the development and testing of a new instrument for in situ measurements of sulfur dioxide (SO2) on airborne platforms in the upper troposphere and lower stratosphere (UTLS). The instrument is based on the laser-induced fluorescence technique and uses the fifth harmonic of a tunable fiber-amplified semiconductor diode laser system at 1084.5 nm to excite SO2 at 216.9 nm. Sensitivity and background checks are achieved in flight by additions of SO2 calibration gas and zero air, respectively. Aircraft demonstration was performed during the NASA Volcano Plume Investigation Readiness and Gas-Phase and Aerosol Sulfur (VIRGAS) experiment, which was a series of flights using the NASA WB-57F during October 2015 based at Ellington Field and Harlingen, Texas. During these flights, the instrument successfully measured SO2 in the UTLS at background (non-volcanic) conditions with a precision of 2 ppt at 10 s and an overall uncertainty determined primarily by instrument drifts of +/- (16% + 0.9 ppt).

  14. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  15. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    Science.gov (United States)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  16. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width

  17. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    Science.gov (United States)

    Jones, Daniel S.; Brooks, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles

  18. A summary of results from solar monitoring rocket flights

    Science.gov (United States)

    Duncan, C. H.

    1981-01-01

    Three rocket flights to measure the solar constant and provide calibration data for sensors aboard Nimbus 6, 7, and Solar Maximum Mission (SMM) spacecraft were accomplished. The values obtained by the rocket instruments for the solar constant in SI units are: 1367 w/sq m on 29 June 1976; 1372 w/sq m on 16 November 1978; and 1374 w/sq m on 22 May 1980. The uncertainty of the rocket measurements is + or - 0.5%. The values obtained by the Hickey-Frieden sensor on Nimbus 7 during the second and third flights was 1376 w/sq m. The value obtained by the Active Cavity Radiometer Model IV (ACR IV) on SMM during the flight was 1368 w/sq m.

  19. ISOMAX: a balloon-borne instrument to measure cosmic ray isotopes

    International Nuclear Information System (INIS)

    Hof, M.; Bremerich, M.; Goebel, H.; Hams, T.; Menn, W.; Simon, M.; Barbier, L.M.; Christian, E.R.; Geier, S.; Gupta, S.K.; Krizmanic, J.F.; Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E.; Davis, A.J.; Nolfo, G.A. de; Mewaldt, R.A.; Schindler, S.M.

    2000-01-01

    The Isotope Magnet Experiment (ISOMAX) is a new balloon-borne instrument developed to measure the isotopic composition of the light elements in the cosmic radiation, in particular to obtain the ratio of the radioactive 10 Be to stable 9 Be. ISOMAX was first flown in August 4-5, 1998, from Lynn Lake, Manitoba, Canada. ISOMAX has a geometry factor of 450 cm 2 sr and was configured for this flight with a large, Helmholtz-like, superconducting magnet in combination with a drift-chamber tracking system, a state-of-the-art time-of-flight system and two aerogel Cherenkov detectors to measure light isotopes with a mass resolution of better than 0.25 amu. In the 1998 flight the obtained maximum detectable rigidity of the magnetic spectrometer was 970 GeV/c for helium at 60% of the full magnetic field. ISOMAX took data for more than 16 h at float altitudes above 36 km. We here present the performance of the individual detectors and initial isotopic results of the instrument

  20. Designing new guides and instruments using McStas

    DEFF Research Database (Denmark)

    Farhi, E.; Hansen, T.; Wildes, A.

    2002-01-01

    of guides, neutron optics and instruments [1]. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers...

  1. Instruments shaping sustainable mobility of urban residents

    Directory of Open Access Journals (Sweden)

    Krzysztof Grzelec

    2016-10-01

    Full Text Available Urban development increases the demand for efficient, fast, safe ecological transport. Extensive development of urban transport system, in particular transport infrastructure, changed the point of view about transport needs. Research on the effectiveness of transport systems for years accompanied the study of mobility. The development of modern technology, the need to increase efficiency of transport and increase environmental awareness determined the development of principles and instruments of sustainable mobility. This paper discusses these instruments, their characteristics and application examples.

  2. X-1A in flight with flight data superimposed

    Science.gov (United States)

    1953-01-01

    This photo of the X-1A includes graphs of the flight data from Maj. Charles E. Yeager's Mach 2.44 flight on December 12, 1953. (This was only a few days short of the 50th anniversary of the Wright brothers' first powered flight.) After reaching Mach 2.44, then the highest speed ever reached by a piloted aircraft, the X-1A tumbled completely out of control. The motions were so violent that Yeager cracked the plastic canopy with his helmet. He finally recovered from a inverted spin and landed on Rogers Dry Lakebed. Among the data shown are Mach number and altitude (the two top graphs). The speed and altitude changes due to the tumble are visible as jagged lines. The third graph from the bottom shows the G-forces on the airplane. During the tumble, these twice reached 8 Gs or 8 times the normal pull of gravity at sea level. (At these G forces, a 200-pound human would, in effect, weigh 1,600 pounds if a scale were placed under him in the direction of the force vector.) Producing these graphs was a slow, difficult process. The raw data from on-board instrumentation recorded on oscillograph film. Human computers then reduced the data and recorded it on data sheets, correcting for such factors as temperature and instrument errors. They used adding machines or slide rules for their calculations, pocket calculators being 20 years in the future. Three second generation Bell Aircraft Corporations X-1s were built, though four were requested. They were the X-1A (48-1384); X-1B (48-1385); X-1C (canceled and never built); X-1D (48-1386). These aircraft were similar to the X-1s, except they were five feet longer, had conventional canopies, and were powered by Reaction Motors, Inc. XLR11-RM-5 rocket engines. The RM-5, like the previous engines, had no throttle and was controlled by igniting one or more of the four thrust chambers at will. The original program outline called for the X-1A and X-1B to be used for dynamic stability and air loads investigations. The X-1D was to be used

  3. Concurrent Pilot Instrument Monitoring in the Automated Multi-Crew Airline Cockpit.

    Science.gov (United States)

    Jarvis, Stephen R

    2017-12-01

    Pilot instrument monitoring has been described as "inadequate," "ineffective," and "insufficient" after multicrew aircraft accidents. Regulators have called for improved instrument monitoring by flight crews, but scientific knowledge in the area is scarce. Research has tended to investigate the monitoring of individual pilots when in the pilot-flying role; very little research has looked at crew monitoring, or that of the "monitoring-pilot" role despite it being half of the apparent problem. Eye-tracking data were collected from 17 properly constituted and current Boeing 737 crews operating in a full motion simulator. Each crew flew four realistic flight segments, with pilots swapping between the pilot-flying and pilot-monitoring roles, with and without the autopilot engaged. Analysis was performed on the 375 maneuvering-segments prior to localizer intercept. Autopilot engagement led to significantly less visual dwell time on the attitude director indicator (mean 212.8-47.8 s for the flying pilot and 58.5-39.8 s for the monitoring-pilot) and an associated increase on the horizontal situation indicator (18-52.5 s and 36.4-50.5 s). The flying-pilots' withdrawal of attention from the primary flight reference and increased attention to the primary navigational reference was paralleled rather than complemented by the monitoring-pilot, suggesting that monitoring vulnerabilities can be duplicated in the flight deck. Therefore it is possible that accident causes identified as "inadequate" or "insufficient" monitoring, are in fact a result of parallel monitoring.Jarvis SR. Concurrent pilot instrument monitoring in the automated multi-crew airline cockpit. Aerosp Med Hum Perform. 2017; 88(12):1100-1106.

  4. Results from the First Two Flights of the Static Computer Memory Integrity Testing Experiment

    Science.gov (United States)

    Hancock, Thomas M., III

    1999-01-01

    This paper details the scientific objectives, experiment design, data collection method, and post flight analysis following the first two flights of the Static Computer Memory Integrity Testing (SCMIT) experiment. SCMIT is designed to detect soft-event upsets in passive magnetic memory. A soft-event upset is a change in the logic state of active or passive forms of magnetic memory, commonly referred to as a "Bitflip". In its mildest form a soft-event upset can cause software exceptions, unexpected events, start spacecraft safeing (ending data collection) or corrupted fault protection and error recovery capabilities. In it's most severe form loss of mission or spacecraft can occur. Analysis after the first flight (in 1991 during STS-40) identified possible soft-event upsets to 25% of the experiment detectors. Post flight analysis after the second flight (in 1997 on STS-87) failed to find any evidence of soft-event upsets. The SCMIT experiment is currently scheduled for a third flight in December 1999 on STS-101.

  5. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  6. Rocket flight performance of a preprototype Apollo 17 UV spectrometer S-169

    Science.gov (United States)

    Fastie, W. G.

    1971-01-01

    The design, construction, testing, calibration, flight performance and flight data of an Ebert ultraviolet spectrometer are described which is an accurate representation of the conceptual design of the Apollo 17 UV spectrometer. The instrument was flown in an Aerobee 350 rocket from Wallops Island, Va., at 7:10 p.m. EDT on June 10, 1971 to an altitude of 328 km with a solar elevation angle of about 11 deg.

  7. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    Science.gov (United States)

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  8. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    Directory of Open Access Journals (Sweden)

    Yamina BOUGHARI

    2017-06-01

    Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.

  9. Key convention on safe management of spent fuel and radioactive waste to enter into force

    International Nuclear Information System (INIS)

    2001-01-01

    At a ceremony at IAEA Headquarters today, Ireland deposited its instrument of ratification to an important convention on the safe management of spent fuel and radioactive waste, thereby ensuring its entry into force. The Convention will be the first international instrument to address the safety of management and storage of radioactive wastes and spent fuels in countries with and without nuclear programmes

  10. A Stochastic Model for the Landing Dispersion of Hazard Detection and Avoidance Capable Flight Systems

    Science.gov (United States)

    Witte, L.

    2014-06-01

    To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.

  11. Rietveld refinement with time-of-flight powder diffraction data from pulsed neutron sources

    International Nuclear Information System (INIS)

    David, W.I.F.; Jorgensen, J.D.

    1990-10-01

    The recent development of accelerator-based pulsed neutron sources has led to the widespread use of the time-of-flight technique for neutron powder diffraction. The properties of the pulsed source make possible unusually high resolution over a wide range of d spacings, high count rates, and the ability to collect complete data at fixed scattering angles. The peak shape and other instrument characteristics can be accurately modelled, which make Rietveld refinement possible for complex structures. In this paper we briefly review the development of the Rietveld method for time-of-flight diffraction data from pulsed neutron sources and discuss the latest developments in high resolution instrumentation and advanced Rietveld analysis methods. 50 refs., 12 figs., 14 tabs

  12. The Legacy of Space Shuttle Flight Software

    Science.gov (United States)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  13. MD-11 PCA - Research flight team photo

    Science.gov (United States)

    1995-01-01

    On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.

  14. IPNS time-of-flight single crystal diffractometer

    International Nuclear Information System (INIS)

    Schultz, A.J.; Teller, R.G.; Williams, J.M.

    1983-01-01

    The single crystal diffractometer (SCD) at the Argonne Intense Pulsed Neutron Source (IPNS) utilizes the time-of-flight (TOF) Laue technique to provide a three-dimensional sampling of reciprocal space during each pulse. The instrument contains a unique neutron position-sensitive 6 Li-glass scintillation detector with an active area of 30 x 30 cm. The three-dimensional nature of the data is very useful for fast, efficient measurement of Bragg intensities and for the studies of superlattice and diffuse scattering. The instrument was designed to achieve a resolution of 2% or better (R = δQ/Q) with 2 THETA > 60 0 and lambda > 0.7A

  15. Advanced Instrumentation for Positron Emission Tomography [PET

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  16. Liulin-type spectrometry-dosimetry instruments

    International Nuclear Information System (INIS)

    Dachev, T.; Dimitrov, P.; Tomov, B.; Matviichuk, Y.; Spurny, F.; Ploc, O.; Brabcova, K.; Jadrnickova, I.

    2011-01-01

    The main purpose of Liulin-type spectrometry-dosimetry instruments (LSDIs) is cosmic radiation monitoring at the workplaces. An LSDI functionally is a low mass, low power consumption or battery-operated dosemeter. LSDIs were calibrated in a wide range of radiation fields, including radiation sources, proton and heavy-ion accelerators and CERN-EC high-energy reference field. Since 2000, LSDIs have been used in the scientific programmes of four manned space flights on the American Laboratory and ESA Columbus modules and on the Russian segment of the International Space Station, one Moon spacecraft and three spacecraft around the Earth, one rocket, two balloons and many aircraft flights. In addition to relative low price, LSDIs have proved their ability to qualify the radiation field on the ground and on the above-mentioned carriers. (authors)

  17. Intelligent Pilot Aids for Flight Re-Planning in Emergencies

    Science.gov (United States)

    Pritchett, Amy R.; Ockerman, Jennifer

    2005-01-01

    Effective and safe control of an aircraft may be difficult or nearly impossible for a pilot following an unexpected system failure. Without prior training, the pilot must ascertain on the fly those changes in both manual control technique and procedures that will lead to a safe landing of the aircraft. Sophisticated techniques for determining the required control techniques are now available. Likewise, a body of literature on pilot decision making provides formalisms for examining how pilots approach discrete decisions framed as the selection between options. However, other aspects of behavior, such as the task of route planning and guidance, are not as well studied. Not only is the pilot faced with possible performance changes to the aircraft dynamics, but he or she is also tasked to create a plan of actions that will effectively take the aircraft down to a safe landing. In this plan, the many actions that the pilot can perform are closely intertwined with the trajectory of the aircraft, making it difficult to accurately predict the final outcome. Coupled with the vast number of potential actions to be taken, this problem may seem intractable. This is reflected in the lack of a pre-specified procedure capable of giving pilots the ability to find a resolution for this task. This report summarizes a multi-year effort to examine methods to aid pilots in planning an approach and arrival to an airport following an aircraft systems failure. Ultimately, we hypothesize that automatic assistance to pilots can be provided in real-time in the form of improving pilot control of a damaged aircraft and providing pilots with procedural directives suitable for critical flight conditions; such systems may also benefit pilot training and procedure design. To achieve this result, a systematic, comprehensive research program was followed, building on prior research. This approach included a pencil-and-paper study with airline pilots examining methods of representing a flight route in

  18. Apollo 11 Astronaut Armstrong Arrives at the Flight Crew Training Building

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil Armstrong walks to the flight crew training building at the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis

    Science.gov (United States)

    Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus

    2011-05-01

    The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.

  20. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    Science.gov (United States)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  1. Live Aircraft Encounter Visualization at FutureFlight Central

    Science.gov (United States)

    Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John

    2018-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.

  2. The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    Science.gov (United States)

    Dominique, M.; Hochedez, J.-F.; Schmutz, W.; Dammasch, I. E.; Shapiro, A. I.; Kretzschmar, M.; Zhukov, A. N.; Gillotay, D.; Stockman, Y.; BenMoussa, A.

    2013-08-01

    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

  3. Comparison of SANS instruments at reactors and pulsed sources

    International Nuclear Information System (INIS)

    Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.; Carpenter, J.M.; Hjelm, R.P. Jr.

    1992-01-01

    Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges until now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments

  4. Food Sanitation and Safety Self-assessment Instrument for Family Day-Care Homes.

    Science.gov (United States)

    1990

    This self-assessment instrument for family day care providers is designed to help caregivers provide safe food to children. The eight sections of the instrument, presented in checklist format, concern: (1) personal hygiene; (2) purchasing and inspecting of food; (3) food storage; (4) kitchen equipment; (5) food preparation; (6) infant food…

  5. PHARAO laser source flight model: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P. [Centre National d’Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse (France); Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S. [Sodern, 20 Avenue Descartes, 94451 Limeil-Brévannes (France); Laurent, Ph. [LNE-SYRTE, CNRS, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris (France)

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  6. Multiple spacecraft configuration designs for coordinated flight missions

    Science.gov (United States)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  7. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    Science.gov (United States)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  8. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    Science.gov (United States)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  9. Quality Assurance for Space Instruments Built with COTS

    DEFF Research Database (Denmark)

    Guldager, Peter Buch; Thuesen, Gøsta Guldbæk; Jørgensen, John Leif

    2005-01-01

    be changed at any time and have major consequences to the components ability to survive the space environment. A safe way to protect to components, which are not Latch-Up immune, is to protect the components with a Latch-Up protection circuit. A strict control has to be established, when procuring COTS......Instruments for space can be built with COTS. However no radiation data are available for COTS, so the only way to ensure that the components can survive the space environment is to irradiate each component. Samples from each Lot have to be irradiated, because the manufac-turing process can...... component, testing and manufacturing the instrument before the instrument is qualified for space. By having a strict control with instrument built with COTS, it is possible to manufacture a reliable instrument as with Rad-Hard components....

  10. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  11. Imaging Sensor Flight and Test Equipment Software

    Science.gov (United States)

    Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa

    2007-01-01

    The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes

  12. Safe sleep practices in a New Zealand community and development of a Sudden Unexpected Death in Infancy (SUDI) risk assessment instrument.

    Science.gov (United States)

    Galland, Barbara C; Gray, Andrew; Sayers, Rachel M; Heath, Anne-Louise M; Lawrence, Julie; Taylor, Rachael; Taylor, Barry J

    2014-10-13

    Interventions to prevent sudden unexpected death in infancy (SUDI) have generally been population wide interventions instituted after case-control studies identified specific childcare practices associated with sudden death. While successful overall, in New Zealand (NZ), the rates are still relatively high by international comparison. This study aims to describe childcare practices related to SUDI prevention messages in a New Zealand community, and to develop and explore the utility of a risk assessment instrument based on international guidelines and evidence. Prospective longitudinal study of 209 infants recruited antenatally. Participant characteristics and infant care data were collected by questionnaire at: baseline (third trimester), and monthly from infant age 3 weeks through 23 weeks. Published meta-analyses data were used to estimate individual risk ratios for 6 important SUDI risk factors which, when combined, yielded a "SUDI risk score". Most infants were at low risk for SUDI with 72% at the lowest or slightly elevated risk (combined risk ratio ≤1.5). There was a high prevalence of the safe practices: supine sleeping (86-89% over 3-19 weeks), mother not smoking (90-92% over 3-19 weeks), and not bed sharing at a young age (87% at 3 weeks). Five independent predictors of a high SUDI risk score were: higher parity (P =0.028), younger age (P =0.030), not working or caring for other children antenatally (P =0.031), higher depression scores antenatally (P =0.036), and lower education (P =0.042). Groups within the community identified as priorities for education about safe sleep practices beyond standard care are mothers who are young, have high parity, low educational levels, and have symptoms of depression antenatally. These findings emphasize the importance of addressing maternal depression as a modifiable risk factor in pregnancy.

  13. Development and Evaluation of Fault-Tolerant Flight Control Systems

    Science.gov (United States)

    Song, Yong D.; Gupta, Kajal (Technical Monitor)

    2004-01-01

    The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions.

  14. Supplement analysis for the proposed upgrades to the tank farm ventilation, instrumentation, and electrical systems under Project W-314 in support of tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    1997-05-01

    The mission of the TWRS program is to store, treat, and immobilize highly radioactive tank waste in an environmentally sound, safe, and cost-effective manner. Within this program, Project W-314, Tank Farm Restoration and Safe Operations, has been established to provide upgrades in the areas of instrumentation and control, tank ventilation, waste transfer, and electrical distribution for existing tank farm facilities. Requirements for tank farm infrastructure upgrades to support safe storage were being developed under Project W-314 at the same time that the TWRS EIS alternative analysis was being performed. Project W-314 provides essential tank farm infrastructure upgrades to support continued safe storage of existing tank wastes until the wastes can be retrieved and disposed of through follow-on TWRS program efforts. Section4.0 provides a description of actions associated with Project W-314. The TWRS EIS analyzes the environmental consequences form the entire TWRS program, including actions similar to those described for Project W-314 as a part of continued tank farm operations. The TWRS EIS preferred alternative was developed to a conceptual level of detail to assess bounding impact areas. For this Supplement Analysis, in each of the potential impact areas for Project W-314, the proposed action was evaluated and compared to the TWRS EIS evaluation of the preferred alternative (Section 5.0). Qualitative and/or quantitative comparisons are then provided in this Supplement Analysis to support a determination on the need for additional National Environmental Policy Act (NEPA) analysis. Based on this Supplement Analysis, the potential impacts for Project W-314 would be small in comparison to and are bounded by the impacts assessed for the TWRS EIS preferred alternative, and therefore no additional NEPA analysis is required (Section 7.0)

  15. Using XML and Java for Astronomical Instrumentation Control

    Science.gov (United States)

    Ames, Troy; Koons, Lisa; Sall, Ken; Warsaw, Craig

    2000-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). ]ML is used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, and communication mechanisms. Although the current effort is targeted for the High-resolution Airborne Wideband Camera, a first-light instrument of the Stratospheric Observatory for Infrared Astronomy, the framework is designed to be generic and extensible so that it can be applied to any instrument.

  16. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap......, Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale...

  17. Application of Fiber Optic Instrumentation

    Science.gov (United States)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  18. Measurements of radiation exposure on commercial aircraft with the LIULIN-3M instrument

    International Nuclear Information System (INIS)

    Stassinopoulos, E.G.; Stauffer, C.A.; Dachev, T.P.; Tomov, B.T.; Dimitrov, P.G.; Brucker, G.J.

    1999-01-01

    The LIULIN-3M evolved from an international cooperative project by a group of Bulgarian, Russian, German, and American scientists. The radiometer is a low power, small size, light weight, and low cost instrument composed of a solid state detector (SSD) with supporting electronics that enable it to operate as a pulse height analyzer of energy deposited in the detector, and to obtain from these measurements the total dose or the dose rate produced by charged particles. The instrument has also been used as a low-LET radiation spectrometer for measuring biological doses of potential human exposures. A flash memory allows self-storage of data during flights and post flight retrieval. Results will be presented and discussed. (author)

  19. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  20. Knowledge Capture and Management for Space Flight Systems

    Science.gov (United States)

    Goodman, John L.

    2005-01-01

    The incorporation of knowledge capture and knowledge management strategies early in the development phase of an exploration program is necessary for safe and successful missions of human and robotic exploration vehicles over the life of a program. Following the transition from the development to the flight phase, loss of underlying theory and rationale governing design and requirements occur through a number of mechanisms. This degrades the quality of engineering work resulting in increased life cycle costs and risk to mission success and safety of flight. Due to budget constraints, concerned personnel in legacy programs often have to improvise methods for knowledge capture and management using existing, but often sub-optimal, information technology and archival resources. Application of advanced information technology to perform knowledge capture and management would be most effective if program wide requirements are defined at the beginning of a program.

  1. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  2. NASA-FAA helicopter Microwave Landing System curved path flight test

    Science.gov (United States)

    Swenson, H. N.; Hamlin, J. R.; Wilson, G. W.

    1984-01-01

    An ongoing series of joint NASA/FAA helicopter Microwave Landing System (MLS) flight tests was conducted at Ames Research Center. This paper deals with tests done from the spring through the fall of 1983. This flight test investigated and developed solutions to the problem of manually flying curved-path and steep glide slope approaches into the terminal area using the MLS and flight director guidance. An MLS-equipped Bell UH-1H helicopter flown by NASA test pilots was used to develop approaches and procedures for flying these approaches. The approaches took the form of Straight-in, U-turn, and S-turn flightpaths with glide slopes of 6 deg, 9 deg, and 12 deg. These procedures were evaluated by 18 pilots from various elements of the helicopter community, flying a total of 221 hooded instrument approaches. Flying these curved path and steep glide slopes was found to be operationally acceptable with flight director guidance using the MLS.

  3. Two-port laparoscopic ovarian cystectomy using 3-mm instruments

    Directory of Open Access Journals (Sweden)

    Naoyuki Yoshiki

    2016-05-01

    Conclusion: Two-port laparoscopic ovarian cystectomy using 3-mm instruments is a feasible and safe approach by which surgeons expert in conventional multiport laparoscopy achieve minimally invasive surgery with low morbidity and a low rate of conversion to the conventional approach.

  4. Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairing atop the

    Science.gov (United States)

    2002-01-01

    Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairing atop the upper fuselage of the Altair unmanned aerial vehicle (UAV) at General Atomics Aeronautical Systems, Inc., facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  5. Safe sorting of GFP-transduced live cells for subsequent culture using a modified FACS vantage

    DEFF Research Database (Denmark)

    Sørensen, T U; Gram, G J; Nielsen, S D

    1999-01-01

    BACKGROUND: A stream-in-air cell sorter enables rapid sorting to a high purity, but it is not well suited for sorting of infectious material due to the risk of airborne spread to the surroundings. METHODS: A FACS Vantage cell sorter was modified for safe use with potentially HIV infected cells...... culture. CONCLUSIONS: Sorting of live infected cells can be performed safely and with no deleterious effects on vector expression using the modified FACS Vantage instrument....

  6. Obtaining the neutron time-of-flight instrument response function for a single D-T neutron utilizing n-alpha coincidence from the d(t, α) n nuclear reaction

    Science.gov (United States)

    Styron, Jedediah; Ruiz, Carlos; Hahn, Kelly; Cooper, Gary; Chandler, Gordon; Jones, Brent; McWatters, Bruce; Smith, Jenny; Vaughan, Jeremy

    2017-10-01

    A measured neutron time-of-flight (nTOF) signal is a convolution of the neutron reaction history and the instrument response function (IRF). For this work, the IRF was obtained by measuring single, D-T neutron events by utilizing n-alpha coincidence. The d(t, α) n nuclear reaction was produced at Sandia National Laboratories' Ion Beam Laboratory using a 300-keV Cockroft-Walton generator to accelerate a 2- μA beam, of 175-keV D + ions, into a stationary, 2.6- μm, ErT2 target. Comparison of these results to those obtained using cosmic-rays and photons will be discussed. Sandia National Laboratories.

  7. Final Phase Flight Performance and Touchdown Time Assessment of TDV in RLV-TD HEX-01 Mission

    Science.gov (United States)

    Yadav, Sandeep; Jayakumar, M.; Nizin, Aziya; Kesavabrahmaji, K.; Shyam Mohan, N.

    2017-12-01

    RLV-TD HEX-01 mission was configured as a precursor flight to actual two stages to orbit vehicle. In this mission RLV-TD was designed as a two stage vehicle for demonstrating the hypersonic flight of a winged body vehicle at Mach No. 5. One of the main objectives of this mission was to generate data for better understanding of new technologies required to design the future vehicle. In this mission, the RLV-TD vehicle was heavily instrumented to get data related to performance of different subsystems. As per the mission design, RLV-TD will land in sea after flight duration of 700 s and travelling a distance of nearly 500 km in Bay of Bengal from the launch site for a nominal trajectory. The visibility studies for telemetry data of vehicle for the nominal and off nominal trajectories were carried out. Based on that, three ground stations were proposed for the telemetry data reception (including one in sea). Even with this scheme it was seen that during the final phase of the flight there will not be any ground station visible to the flight due to low elevation. To have the mission critical data during final phase of the flight, telemetry through INSAT scheme was introduced. During the end of the mission RLV-TD will be landing in the sea on a hypothetical runway. To know the exact time of touchdown for the flight in sea, there was no direct measurement available. Simultaneously there were all chances of losing ground station visibility just before touchdown, making it difficult to assess flight performance during that phase. In this work, telemetry and instrumentation scheme of RLV-TD HEX-01 mission is discussed with an objective to determine the flight performance during the final phase. Further, using various flight sensor data the touchdown time of TDV is assessed for this mission.

  8. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    Science.gov (United States)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  9. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    Science.gov (United States)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  10. In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines

    Science.gov (United States)

    Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik

    2015-11-01

    The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.

  11. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  12. External debt and capital flight in Nigeria: Is there a revolving door?

    Directory of Open Access Journals (Sweden)

    OT Ajilore

    2014-10-01

    Full Text Available Using the residual method of capital flight estimation, this paper estimates Nigerian capital flight over the period 1970 - 2001 and finds a close correlation between external debt and capital flight flows. This phenomenon suggests a paradoxical revolving door of a bi-directional flow of capital, i.e. where capital enters the country in the guise of external borrowing and simultaneously slips out of the country as private capital flight. The research question addressed by this paper is whether such a financial revolving door relationship exists in Nigeria, just as previous empirical researches had established in a number of countries. The paper utilises a simultaneous equation model and three stage least square estimation technique (3SLS, in addition to two-way Granger causality tests, to obtain statistical evidence that confirms the existence of a financial revolving door relationship between the two endogenous variables. In addition, existence of stronger causality from debt to capital flight is instrumental in showing that growing public deficit and the resulting increase in external debt is being used as a transfer mechanism for capital flight.

  13. Elemental Spectra from the CREAM-I Flight

    CERN Document Server

    Ahn, Hoseok; Bagliesi, M G; Beatty, J J; Bigongiari, G; Boyle, P J; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Jeon, J A; Kim, K C; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinine, A; Marrocchesi, P S; Minnick, S; Mognet, S I; Nam, S; Nutter, S; Park, I H; Park, N H; Seo, E S; Sina, R; Swordy, S; Wakely, S P; Wu, J; Yang, J; Yoon, Y S; Zei, R; Zinn, S Y

    2007-01-01

    The Cosmic Ray Energetics And Mass (CREAM) instrument is a balloon-borne experiment designed to measure the composition and energy spectra of cosmic rays of charge Z = 1 to 26 up to an energy of ∼1015 eV. CREAM had two successful flights on long-duration balloons (LDB) launched from McMurdo Station, Antarctica, in December 2004 and December 2005. CREAM achieves a substantial measurement redundancy by employing multiple detector systems, namely a Timing Charge Detector (TCD), a Silicon Charge Detector (SCD), and a Cherenkov Detector (CD) for particle identification, and a Transition Radiation Detector (TRD) and a sampling tungsten/scintillating-fiber ionization calorimeter (CAL) for energy measurement. In this paper, preliminary energy spectra of various elements measured with CAL/SCD during the first 42-day flight are presented.

  14. Maturing CCD Photon-Counting Technology for Space Flight

    Science.gov (United States)

    Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian

    2015-01-01

    This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.

  15. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  16. Science Flight Program of the Nuclear Compton Telescope

    Science.gov (United States)

    Boggs, Steven

    This is the lead proposal for this program. We are proposing a 5-year program to perform the scientific flight program of the Nuclear Compton Telescope (NCT), consisting of a series of three (3) scientific balloon flights. NCT is a balloon-borne, wide-field telescope designed to survey the gamma-ray sky (0.2-5 MeV), performing high-resolution spectroscopy, wide-field imaging, and polarization measurements. NCT has been rebuilt as a ULDB payload under the current 2-year APRA grant. (In that proposal we stated our goal was to return at this point to propose the scientific flight program.) The NCT rebuild/upgrade is on budget and schedule to achieve flight-ready status in Fall 2013. Science: NCT will map the Galactic positron annihilation emission, shedding more light on the mysterious concentration of this emission uncovered by INTEGRAL. NCT will survey Galactic nucleosynthesis and the role of supernova and other stellar populations in the creation and evolution of the elements. NCT will map 26-Al and positron annihilation with unprecedented sensitivity and uniform exposure, perform the first mapping of 60-Fe, search for young, hidden supernova remnants through 44-Ti emission, and enable a host of other nuclear astrophysics studies. NCT will also study compact objects (in our Galaxy and AGN) and GRBs, providing novel measurements of polarization as well as detailed spectra and light curves. Design: NCT is an array of germanium gamma-ray detectors configured in a compact, wide-field Compton telescope configuration. The array is shielded on the sides and bottom by an active anticoincidence shield but is open to the 25% of the sky above for imaging, spectroscopy, and polarization measurements. The instrument is mounted on a zenith-pointed gondola, sweeping out ~50% of the sky each day. This instrument builds off the Compton telescope technique pioneered by COMPTEL on the Compton Gamma Ray Observatory. However, by utilizing modern germanium semiconductor strip detectors

  17. Purging sensitive science instruments with nitrogen in the STS environment

    Science.gov (United States)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  18. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  19. 76 FR 12719 - Safe Schools/Healthy Students Program; Office of Safe and Drug-Free Schools; Safe Schools/Healthy...

    Science.gov (United States)

    2011-03-08

    ... DEPARTMENT OF EDUCATION Safe Schools/Healthy Students Program; Office of Safe and Drug- Free Schools; Safe Schools/Healthy Students Program; Catalog of Federal Domestic Assistance (CFDA) Numbers: 84... priorities, requirements, and definitions under the Safe Schools/Healthy Students (SS/HS) program. Since...

  20. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  1. Calibration and flight qualification of FORTIS

    Science.gov (United States)

    Fleming, Brian T.; McCandliss, Stephan R.; Redwine, Keith; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2013-09-01

    The Johns Hopkins University sounding rocket group has completed the assembly and calibration of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of up to 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. FORTIS is capable of selecting the far-UV brightest regions of the target area by utilizing an autonomous targeting system. Medium resolution (R ~ 400) spectra are recorded in redundant dual-order spectroscopic channels with ~40 cm2 of effective area at 1216 Å. The maiden launch of FORTIS occurred on May 10, 2013 out of the White Sands Missile Range, targeting the extended spiral galaxy M61 and nearby companion NGC 4301. We report on the final flight calibrations of the instrument, as well as the flight results.

  2. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  3. Measurements of the Ice Water Content of Cirrus in the Tropics and Subtropics. I; Instrument Details and Validation

    Science.gov (United States)

    Weinstock, E. M.; Smith, J. B.; Sayres, D.; Pittman, J. V.; Allen, N.; Demusz, J.; Greenberg, M.; Rivero, M.; Anderson, J. G.

    2003-01-01

    We describe an instrument mounted in a pallet on the NASA WB-57 aircraft that is designed to measure the sum of gas phase and solid phase water, or total water, in cirrus clouds. Using an isokinetic inlet, a 600-watt heater mounted directly in the flow, and Lyman-alpha photofragment fluorescence technique for detection, accurate measurements of total water have been made over almost three orders of magnitude. Isokinetic flow is achieved with an actively controlled roots pump by referencing aircraft pressure, temperature, and true air speed, together with instrument flow velocity, temperature, and pressure. During CRYSTAL FACE, the instrument operated at duct temperatures sufficiently warm to completely evaporate particles up to 150 microns diameter. In flight diagnostics, intercomparison with water measured by absorption in flight, as well as intercomparisons in clear air with water vapor measured by the Harvard water vapor instrument and the JPL infrared tunable diode laser hygrometer validate the detection sensitivity of the instrument and illustrate minimal hysteresis from instrument surfaces. The simultaneous measurement of total water and water vapor in cirrus clouds yields their ice water content.

  4. A software simulator for the SPICA Safari instrument

    International Nuclear Information System (INIS)

    Naylor, D A; Hayton, D J; Lindner, J V; Sadeghi, B

    2011-01-01

    A software simulator that has been developed for the Safari instrument proposed for the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) mission is presented. The simulator can ingest a range of realistic input spectra and, following a thorough radiative transfer analysis, calculates the power reaching the detector as a function of the optical path difference within the interferometer. The simulator is modular in design so that it can be easily modified to ingest test data as they become available. The simulator will not only find use during the design phase of the Safari instrument, but also during ground performance verification campaigns of the flight model. Through validation of the simulator on ground test data, it will be possible to predict accurately the in-orbit performance of the Safari instrument

  5. Development of a versatile laser light scattering instrument

    Science.gov (United States)

    Meyer, William V.; Ansari, Rafat R.

    1990-10-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  6. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    Science.gov (United States)

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  7. DT&E Forum for Best Practices and Lessons Learned

    Science.gov (United States)

    2013-05-01

    uncertainties involving computational analysis and wind tunnel testing to provide accurate, useful, and safe operational envelopes for the warfighter. BP...Assurance ICD Initial Capability Document ICE Independent Cost Estimate IFR Instrument Flight Rules IL Integration Laboratory IOC Initial

  8. CeSiCò - a new technology for lightweight and cost effective space instruments structures and mirrors

    Science.gov (United States)

    Devilliers, Christophe; Krödel, Matthias

    2017-11-01

    Alcatel Alenia Space and ECM have jointly developed a new ceramic material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument the CesicÒ. Its intrinsic properties, added to ample manufacturing capabilities allow to manufacture stiff and lightweight cost effective mirrors and structure for space instruments. Different scale 1 flight representative CesicÒ optical structures have been manufactured and successfully tested under very strong dynamic environment and cryogenic condition down to 30K CesicÒ is also envisaged for large and lightweight space telescopes mirrors, a large CesicÒ 1 meter class mirror with an area mass of less than 25 Kg/m2 has been sized again launch loads and WFE performance and manufactured. CesicÒ applicability for large focal plane have been demonstrated through different scale 1 breadboards. Based on these successful results, AlcatelAleniaSpace and ECM are now in position to propose for space this technology with new innovative concepts thanks to the CesicÒ manufacturing capabilities. CesicÒ has therefore been selected for the structure and mirrors parts of a flight instrument payload and the manufacturing of the flight hardware is already underway. An high temperature high gain lightweight antenna breadboard is also under manufacturing for Bepi colombo mission. CesicÒ is therefore a good candidate for future challenging space instruments and is currently proposed for Japan and US space projects.

  9. Instrument Failure, Stress, and Spatial Disorientation Leading to a Fatal Crash With a Large Aircraft.

    Science.gov (United States)

    Tribukait, Arne; Eiken, Ola

    2017-11-01

    An aircraft's orientation relative to the ground cannot be perceived via the sense of balance or the somatosensory system. When devoid of external visual references, the pilot must rely on instruments. A sudden unexpected instrument indication is a challenge to the pilot, who might have to question the instrument instead of responding with the controls. In this case report we analyze, from a human-factors perspective, how a limited instrument failure led to a fatal accident. During straight-ahead level flight in darkness, at 33,000 ft, the commander of a civil cargo airplane was suddenly confronted by an erroneous pitch-up indication on his primary flight display. He responded by pushing the control column forward, making a bunt maneuver with reduced/negative Gz during approximately 15 s. The pilots did not communicate rationally or cross-check instruments. Recordings of elevator and aileron positions suggest that the commander made intense efforts to correct for several extreme and erroneous roll and pitch indications. Gz displayed an increasing trend with rapid fluctuations and peaks of approximately 3 G. After 50 s the aircraft entered a turn with decreasing radius and finally hit the ground in an inverted attitude. A precipitate maneuvring response can, even if occurring in a large aircraft at high altitude, result in a seemingly inexorable course of events, ending with a crash. In the present case both pilots were probably incapacitated by acute psychological stress and spatial disorientation. Intense variations in Gz may have impaired the copilot's reading of the functioning primary flight display.Tribukait A, Eiken O. Instrument failure, stress, and spatial disorientation leading to a fatal crash with a large aircraft. Aerosp Med Hum Perform. 2017; 88(11):1043-1048.

  10. Cool and Safe: Multiplicity in Safe Innovation at Unilever

    Science.gov (United States)

    Penders, Bart

    2011-01-01

    This article presents the making of a safe innovation: the application of ice structuring protein (ISP) in edible ices. It argues that safety is not the absence of risk but is an active accomplishment; innovations are not "made safe afterward" but "safe innovations are made". Furthermore, there are multiple safeties to be accomplished in the…

  11. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  12. In-flight scalar calibration and characterisation of the Swarm magnetometry package

    DEFF Research Database (Denmark)

    Tøffner-Clausen, Lars; Lesur, Vincent; Olsen, Nils

    2016-01-01

    of magnetometers is demonstrated, confirming the high performance of these instruments. The results presented here, including the characterisation of a Sun-driven disturbance field, form the basis of the correction of the magnetic vector measurements from Swarm which is applied to the Swarm Level 1b magnetic data.......We present the in-flight scalar calibration and characterisation of the Swarm magnetometry package consisting of the absolute scalar magnetometer, the vector magnetometer, and the spacecraft structure supporting the instruments. A significant improvement in the scalar residuals between the pairs...

  13. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  14. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  15. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The

  16. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    Science.gov (United States)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated

  17. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  18. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  19. The VUV instrument SPICE for Solar Orbiter: performance ground testing

    Science.gov (United States)

    Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter

    2017-08-01

    SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  20. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    Science.gov (United States)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  1. Ion optics of a new time-of-flight mass spectrometer for quantitative surface analysis

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Pellin, Michael J.

    2004-01-01

    A new time-of-flight instrument for quantitative surface analysis was developed and constructed at Argonne National Laboratory. It implements ion sputtering and laser desorption for probing analyzed samples and can operate in regimes of secondary neutral mass spectrometry with laser post-ionization and secondary ion mass spectrometry. The instrument incorporates two new ion optics developments: (1) 'push-pull' front end ion optics and (2) focusing and deflecting lens. Implementing these novel elements significantly enhance analytical capabilities of the instrument. Extensive three-dimensional computer simulations of the instrument were conducted in SIMION 3D (c) to perfect its ion optics. The operating principles of the new ion optical systems are described, and a scheme of the new instrument is outlined together with its operating modes

  2. Powered Flight Design and Reconstructed Performance Summary for the Mars Science Laboratory Mission

    Science.gov (United States)

    Sell, Steven; Chen, Allen; Davis, Jody; San Martin, Miguel; Serricchio, Frederick; Singh, Gurkirpal

    2013-01-01

    The Powered Flight segment of Mars Science Laboratory's (MSL) Entry, Descent, and Landing (EDL) system extends from backshell separation through landing. This segment is responsible for removing the final 0.1% of the kinetic energy dissipated during EDL and culminating with the successful touchdown of the rover on the surface of Mars. Many challenges exist in the Powered Flight segment: extraction of Powered Descent Vehicle from the backshell, performing a 300m divert maneuver to avoid the backshell and parachute, slowing the descent from 85 m/s to 0.75 m/s and successfully lowering the rover on a 7.5m bridle beneath the rocket-powered Descent Stage and gently placing it on the surface using the Sky Crane Maneuver. Finally, the nearly-spent Descent Stage must execute a Flyaway maneuver to ensure surface impact a safe distance from the Rover. This paper provides an overview of the powered flight design, key features, and event timeline. It also summarizes Curiosity's as flown performance on the night of August 5th as reconstructed by the flight team.

  3. In-flight evaluation of aerodynamic predictions of an air-launched space booster

    Science.gov (United States)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1993-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent.

  4. Instrumentation. Nondestructive Examination for Verification of Canister and Cladding Integrity - FY2013 Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This report documents FY13 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) characterize hydrogen effects in UNF cladding to facilitate safe storage and retrieval.

  5. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  6. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  7. Instrumentation qualification. Seismic qualification of C-E instrumentation equipment. Part One

    International Nuclear Information System (INIS)

    1977-05-01

    A summary of the C-E seismic qualification program utilized to demonstrate the seismic design adequacy of the instrumentation and control equipment used in C-E supplied Nuclear Steam Supply Systems (NSSS) is presented. The report is divided into two parts. Part One includes the equipment seismic requirements and a description of the qualification methods. Part Two lists the specific equipment by nuclear station in which it is used and the equipment test results are summarized in a standard data sheet format to facilitate review. The seismic requirements are based on individual contract commitments with C-E customers and the NRC Standard Review Plan, Section 3.10 ''Seismic Qualification of Category I Instrumentation and Electrical Equipment.'' Equipment is qualified for use in a seismic environment where damage potential to the equipment is less than or equal to that simulated seismic environment to which it has been qualified. The anticipated Safe Shutdown Earthquake (SSE) environment at the inservice location of equipment should be confirmed by each applicant as not exceeding that to which it is qualified

  8. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  9. Quantitative imaging of the human upper airway: instrument design and clinical studies

    Science.gov (United States)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  10. Aquarius' Object-Oriented, Plug and Play Component-Based Flight Software

    Science.gov (United States)

    Murray, Alexander; Shahabuddin, Mohammad

    2013-01-01

    The Aquarius mission involves a combined radiometer and radar instrument in low-Earth orbit, providing monthly global maps of Sea Surface Salinity. Operating successfully in orbit since June, 2011, the spacecraft bus was furnished by the Argentine space agency, Comision Nacional de Actividades Espaciales (CONAE). The instrument, built jointly by NASA's Caltech/JPL and Goddard Space Flight Center, has been successfully producing expectation-exceeding data since it was powered on in August of 2011. In addition to the radiometer and scatterometer, the instrument contains an command & data-handling subsystem with a computer and flight software (FSW) that is responsible for managing the instrument, its operation, and its data. Aquarius' FSW is conceived and architected as a Component-based system, in which the running software consists of a set of Components, each playing a distinctive role in the subsystem, instantiated and connected together at runtime. Component architectures feature a well-defined set of interfaces between the Components, visible and analyzable at the architectural level (see [1]). As we will describe, this kind of an architecture offers significant advantages over more traditional FSW architectures, which often feature a monolithic runtime structure. Component-based software is enabled by Object-Oriented (OO) techniques and languages, the use of which again is not typical in space mission FSW. We will argue in this paper that the use of OO design methods and tools (especially the Unified Modeling Language), as well as the judicious usage of C++, are very well suited to FSW applications, and we will present Aquarius FSW, describing our methods, processes, and design, as a successful case in point.

  11. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2014-01-01

    This paper presents the characterization of the in-flight beams, the beam window functions and the associated errors for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is the key to determining their imprint on the transfer function from the observed to the actual sky a...

  12. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    This paper presents the characterization of the in-flight beams, the beam window functions and the associated errors for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is the key to determining their imprint on the transfer function from the observed to the actual sky a...

  13. Standardization of Nuclear Instrumentation Applied in the NPP and in other nuclear installations

    International Nuclear Information System (INIS)

    Kusnowo, Arlinah; Darmawati, Suzie

    2002-01-01

    Nuclear power plant (NPP) and other nuclear installations have been recognized as applications needing very sophisticated technologies. One of technologies used in this all nuclear facilities is nuclear instrumentation. In order that NPP and other nuclear installations be operated safely, nuclear instrumentation requires standardization from design to its operation. Internationally, standardizations of nuclear instrumentation have been issued by IEC (International Electrotechnical Commission). Formulation of standard in nuclear instrumentation in IEC is carried out by Technical Committee (TC) 45. This paper describes briefly the standardization of nuclear instrumentation applied in Indonesia as Indonesian National Standard (SNI, Standard National Indonesia), standardization of nuclear instrumentation developed by TC 45, SC 45A, and SC 45B, as well as the possibility to adopt and apply those IEC standard in Indonesia

  14. Overview of the In-Flight Experimentations and Measurements on the IXV Experimental Vehicle

    Science.gov (United States)

    Cosson, E.; Giusto, S.; Del Vecchio, A.; Mancuso, S.

    2009-01-01

    After an assessment and then a trade-off of all the passenger experiments proposed by different partners within Europe, a selection of Core Experiments to be embarked on-board IXV to fulfil the Mission and System Requirements has been made. Some Passenger Experiments have also been identified to be potentially embarked, provided it is compatible with the system allocations, since they could bring valuable additional in-flight data. All those experiments include Thermal Protection System (TPS) experiments (including innovative TPS materials), AeroThermoDynamic (ATD) experiments and Health Monitoring System (HMS) experiments. Aside the previously mentioned experiments, a specific Vehicle Model Identification experiment (VMI) aims at validating in-flight the mathematical models of flight dynamics for a gliding re-entry vehicle. This paper also presents a preliminary version of the in- flight measurement plan, encompassing both conventional instrumentation and advanced sensors or even innovative measurement techniques.

  15. Daedalus - Last Dryden flight

    Science.gov (United States)

    1988-01-01

    autopilot that could be used on high altitude or human powered aircraft, and determining the power required to fly the Daedalus aircraft. The research flights began in late December 1987 with a shake-down of the Light Eagle instrumentation and data transfer links. The first flight of the Daedalus 87 also occurred during this time. On February 7, 1988, the Daedalus 87 aircraft crashed on Rogers Dry Lakebed. The Daedalus 88, which later set the world record, was then shipped from MIT to replace the 87's research flights, and for general checkout procedures. Due to the accident, flight testing was extended four weeks and thus ended in mid-March 1988 after having achieved the major goals of the program; exploring the dynamics of low Reynolds number aircraft, and investigating the aeroelastic behavior of lightweight aircraft. The information obtained from this program had direct applications to the later design of many high-altitude, long endurance aircraft.

  16. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    Science.gov (United States)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; hide

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  17. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  18. Analysis of Flight of Near-Space Balloon

    Science.gov (United States)

    Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric

    2015-04-01

    In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.

  19. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  20. Noise exposure during ambulance flights and repatriation operations.

    Science.gov (United States)

    Küpper, Thomas E; Zimmer, Bernd; Conrad, Gerson; Jansing, Paul; Hardt, Aline

    2010-01-01

    Although ambulance flights are routine work and thousands of employees work in repatriation organizations, there is no data on noise exposure which may be used for preventive advice. We investigated the noise exposure of crews working in ambulance flight organizations for international patient repatriation to get the data for specific guidelines concerning noise protection. Noise levels inside Learjet 35A, the aircraft type which is most often used for repatriation operations, were collected from locations where flight crews typically spend their time. A sound level meter class 1 meeting the DIN IEC 651 requirements was used for noise measurements, but several factors during the real flight situations caused a measurement error of ~3%. Therefore, the results fulfill the specifications for class 2. The data was collected during several real repatriation operations and was combined with the flight data (hours per day) regarding the personnel to evaluate the occupationally encountered equivalent noise level according to DIN 45645-2. The measured noise levels were safely just below the 85 dB(A) threshold and should not induce permanent threshold shifts, provided that additional high noise exposure by non-occupational or private activities was avoided. As the levels of the noise produced by the engines outside the cabin are significantly above the 85 dB(A) threshold, the doors of the aircraft must be kept closed while the engines are running, and any activity performed outside the aircraft - or with the doors opened while the engines are running - must be done with adequate noise protection. The new EU noise directive (2003/10/EG) states that protective equipment must be made available to the aircrew to protect their hearing, though its use is not mandatory.

  1. Designing new guides and instruments using McStas

    CERN Document Server

    Farhi, E; Wildes, A R; Ghosh, R; Lefmann, K

    2002-01-01

    With the increasing complexity of modern neutron-scattering instruments, the need for powerful tools to optimize their geometry and physical performances (flux, resolution, divergence, etc.) has become essential. As the usual analytical methods reach their limit of validity in the description of fine effects, the use of Monte Carlo simulations, which can handle these latter, has become widespread. The McStas program was developed at Riso National Laboratory in order to provide neutron scattering instrument scientists with an efficient and flexible tool for building Monte Carlo simulations of guides, neutron optics and instruments. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers. In this paper, we present some simulation results concerning different guide geometries that may be used in the future at th...

  2. Tether dynamics and control results for tethered satellite system's initial flight

    Science.gov (United States)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  3. A Safe Supervisory Flight Control Scheme in the Presence of Constraints and Anomalies

    Directory of Open Access Journals (Sweden)

    Franzè Giuseppe

    2015-03-01

    Full Text Available In this paper the hybrid supervisory control architecture developed by Famularo et al. (2011 for constrained control systems is adopted with the aim to improve safety in aircraft operations when critical events like command saturations or unpredicted anomalies occur. The capabilities of a low-computational demanding predictive scheme for the supervision of non-linear dynamical systems subject to sudden switchings amongst operating conditions and time-varying constraints are exploited in the flight control systems framework. The strategy is based on command governor ideas and is tailored to jointly take into account time-varying set-points/constraints. Unpredictable anomalies in the nominal plant behaviour, whose models fall in the category of time-varying constraints, can also be tolerated by the control scheme. In order to show the effectiveness of the proposed approach, simulations both on a high altitude performance demonstrator unmanned aircraft with redundant control surfaces and the P92 general aviation aircraft are discussed.

  4. Visualization of time-of-flight neutron diffraction data

    International Nuclear Information System (INIS)

    Mikkelson, D.J.; Price, D.L.; Worlton, T.G.

    1995-01-01

    The glass, liquids and amorphous materials diffractometer (GLAD) is a new instrument at the intense pulsed neutron source (IPNS) at Argonne National Laboratory. The GLAD currently has 218 linear position sensitive detectors arranged in five banks. Raw data collected from the instrument are typically split into 1000-1500 angular groups each of which contains approximately 2000 time channels. In order to obtain a meaningful overview of such a large amount of data, an interactive system to view the data has been designed. The system was implemented in C using the graphical kernel system (GKS) for portability.The system treats data from each bank of detectors as a three-dimensional data set with detector number, position along detector and time of flight as the three coordinate axes. The software then slices the data parallel to any of the coordinate planes and displays the slices as images. This approach has helped with the detailed analysis of detector electronics, verification of instrument calibration and resolution determination. In addition, it has helped to identify low-level background signals and provided insight into the overall operation of the instrument. ((orig.))

  5. Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

    Science.gov (United States)

    Edquist, Karl T.

    2006-01-01

    Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required.

  6. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    Science.gov (United States)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  7. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    Science.gov (United States)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  8. Safe Kids Worldwide

    Science.gov (United States)

    ... Blog Videos Newsletter facebook twitter instagram pinterest gplus youtube Search Menu Why It Matters Who We Are What We Do Find Your Safe Kids Safe Kids Day Main menu Keeping All Kids Safe Safety Tips Get Involved 4 Star Charity Donate Text Burns and Scalds 4 tips ...

  9. Development and Testing of a Low-Cost Instrumentation Platform for Fixed-Wing UAV Performance Analysis

    Directory of Open Access Journals (Sweden)

    Tulio Dapper e Silva

    2018-05-01

    Full Text Available The flight data of a fixed-wing Unmanned Aerial Vehicle (UAV can be evaluated by its designers in order to analyze its performance, to validate the project criteria and to make new decisions based on the data analyses. In this paper, the authors propose the development of a low-cost instrumentation platform capable of collecting the following data: airspeed, orientation and altitude of the airplane, and the current drained by the electric system. Moreover, this paper presents the use of a telemetry system in order to display the flight conditions to the pilot. The system contains a variety of sensors, which were chosen based on their price, applicability and ease of use. After a test flight had been performed, the collected measurements were plotted and analyzed. Having the flight data, a set of flight characteristics might be observed.

  10. Airborne Turbulence Detection and Warning ACLAIM Flight Test Results

    Science.gov (United States)

    Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack

    1999-01-01

    The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.

  11. Flight Testing of Night Vision Systems in Rotorcraft (Test en vol de systemes de vision nocturne a bord des aeronefs a voilure tournante)

    Science.gov (United States)

    2007-07-01

    Test Engineer GVE Good Visual Environment HMD Head Mounted Displays HQR Handling Quality Rating HUD Heads Up Display IFR Instrument Flight...may take the form of general questionnaires such as the China Lake Situational Awareness Rating Scale, the Situational Awareness Global Assessment...performed in 5-ft decrements. IFR transit flight duties should also be performed, when simulating flight in IMC. In all cases, internal lighting must

  12. The Cibola flight experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael Paul [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Roussel - Dupre, Diane [Los Alamos National Laboratory; Katko, Kim [Los Alamos National Laboratory; Palmer, Joseph [ISE-3; Robinson, Scott [Los Alamos National Laboratory; Wirthlin, Michael [BRIGHAM YOUNG UNIV; Howes, William [BRIGHAM YOUNG UNIV; Richins, Daniel [BRIGHAM YOUNG UNIV

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite carrying a reconfigurable processing instrument developed at the Los Alamos National Laboratory that demonstrates the feasibility of using FPGA-based high-performance computing for sensor processing in the space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  13. How birds direct impulse to minimize the energetic cost of foraging flight

    Science.gov (United States)

    Chin, Diana; Lentink, David

    2017-11-01

    Foraging arboreal birds frequently hop and fly between branches by extending long-jumps with a few wingbeats. Their legs transfer impulse to the branch during takeoff and landing, and their wings transfer impulse to the air to support their bodyweight during flight. To determine the mechanical energy tradeoffs of this bimodal locomotion, we studied how Pacific parrotlets transfer impulse during voluntary perch-to-perch flights. We tested five foraging flight variations by varying the inclination and distance between instrumented perches inside a novel aerodynamic force platform. This setup enables direct, time-resolved in vivo measurements of both leg and wing forces, which we combined with high-speed kinematics to develop a new bimodal long-jump and flight model. The model demonstrates how parrotlets direct their leg impulse to minimize the mechanical energy needed for each flight, and further shows how even a single proto-wingbeat would have significantly lengthened the long-jump of foraging arboreal dinosaurs. By directing jumps and flapping their wings, both extant and ancestral birds could thus improve foraging effectiveness. Similarly, bimodal robots could also employ these locomotion strategies to traverse cluttered environments more effectively.

  14. A Description of the Software Element of the NASA EME Flight Tests

    Science.gov (United States)

    Koppen, Sandra V.

    1996-01-01

    In support of NASA's Fly-By-Light/Power-By-Wire (FBL/PBW) program, a series of flight tests were conducted by NASA Langley Research Center in February, 1995. The NASA Boeing 757 was flown past known RF transmitters to measure both external and internal radiated fields. The aircraft was instrumented with strategically located sensors for acquiring data on shielding effectiveness and internal coupling. The data are intended to support computational and statistical modeling codes used to predict internal field levels of an electromagnetic environment (EME) on aircraft. The software was an integral part of the flight tests, as well as the data reduction process. The software, which provided flight test instrument control, data acquisition, and a user interface, executes on a Hewlett Packard (HP) 300 series workstation and uses BP VEEtest development software and the C programming language. Software tools were developed for data processing and analysis, and to provide a database organized by frequency bands, test runs, and sensors. This paper describes the data acquisition system on board the aircraft and concentrates on the software portion. Hardware and software interfaces are illustrated and discussed. Particular attention is given to data acquisition and data format. The data reduction process is discussed in detail to provide insight into the characteristics, quality, and limitations of the data. An analysis of obstacles encountered during the data reduction process is presented.

  15. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  16. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  17. Flight Load Assessment for Light Aircraft Landing Trajectories in Windy Atmosphere and Near Wind Farms

    Directory of Open Access Journals (Sweden)

    Carmine Varriale

    2018-04-01

    Full Text Available This work focuses on the wake encounter problem occurring when a light, or very light, aircraft flies through or nearby a wind turbine wake. The dependency of the aircraft normal load factor on the distance from the turbine rotor in various flight and environmental conditions is quantified. For this research, a framework of software applications has been developed for generating and controlling a population of flight simulation scenarios in presence of assigned wind and turbulence fields. The JSBSim flight dynamics model makes use of several autopilot systems for simulating a realistic pilot behavior during navigation. The wind distribution, calculated with OpenFOAM, is a separate input for the dynamic model and is considered frozen during each flight simulation. The aircraft normal load factor during wake encounters is monitored at different distances from the rotor, aircraft speeds, rates of descent and crossing angles. Based on these figures, some preliminary guidelines and recommendations on safe encounter distances are provided for general aviation aircraft, with considerations on pilot comfort and flight safety. These are needed, for instance, when an accident risk assessment study is required for flight in proximity of aeolic parks. A link to the GitHub code repository is provided.

  18. A dynamic fail-safe approach to the design of computer-based safety systems

    International Nuclear Information System (INIS)

    Smith, I.C.; Miller, M.

    1994-01-01

    For over 30 years AEA Technology has carried out research and development in the field of nuclear instrumentation and protection systems. Throughout the course of this extensive period of research and development the dominant theme has been the achievement of fully fail-safe designs. These are defined as designs in which the failure of any single component will result in the unit output reverting to a demand for trip action status. At an early stage it was recognized that the use of dynamic rather than static logic could ease the difficulties inherent in achieving a fail-safe design. The first dynamic logic systems coupled logic elements magnetically. The paper outlines the evolution from these early concepts of a dynamic fail-safe approach to the design of computer-based safety systems. Details are given of collaboration between AEA Technology and Duke Power Co. to mount an ISAT TM demonstration at Duke's Oconee Nuclear Power Station

  19. A pilot's assessment of helicopter handling-quality factors common to both agility and instrument flying tasks

    Science.gov (United States)

    Gerdes, R. M.

    1980-01-01

    A series of simulation and flight investigations were undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-Earth (NOE) agility and instrument flying tasks. Handling quality factors common to both tasks were identified. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping, and rotor system cross coupling due to helicopter angular rate and collective pitch input. Application of rate command, attitude command, and control input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. The NOE agility and instrument flying handling quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.

  20. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  1. Data processing and in-flight calibration systems for OMI-EOS-Aura

    Science.gov (United States)

    van den Oord, G. H. J.; Dobber, M.; van de Vegte, J.; van der Neut, I.; Som de Cerff, W.; Rozemeijer, N. C.; Schenkelaars, V.; ter Linden, M.

    2006-08-01

    The OMI instrument that flies on the EOS Aura mission was launched in July 2004. OMI is a UV-VIS imaging spectrometer that measures in the 270 - 500 nm wavelength range. OMI provides daily global coverage with high spatial resolution. Every orbit of 100 minutes OMI generates about 0.5 GB of Level 0 data and 1.2 GB of Level 1 data. About half of the Level 1 data consists of in-flight calibration measurements. These data rates make it necessary to automate the process of in-flight calibration. For that purpose two facilities have been developed at KNMI in the Netherlands: the OMI Dutch Processing System (ODPS) and the Trend Monitoring and In-flight Calibration Facility (TMCF). A description of these systems is provided with emphasis on the use for radiometric, spectral and detector calibration and characterization. With the advance of detector technology and the need for higher spatial resolution, data rates will become even higher for future missions. To make effective use of automated systems like the TMCF, it is of paramount importance to integrate the instrument operations concept, the information contained in the Level 1 (meta-)data products and the inflight calibration software and system databases. In this way a robust but also flexible end-to-end system can be developed that serves the needs of the calibration staff, the scientific data users and the processing staff. The way this has been implemented for OMI may serve as an example of a cost-effective and user friendly solution for future missions. The basic system requirements for in-flight calibration are discussed and examples are given how these requirements have been implemented for OMI. Special attention is paid to the aspect of supporting the Level 0 - 1 processing with timely and accurate calibration constants.

  2. Cosmic radiation dosimetry in international flights argentine airlines

    International Nuclear Information System (INIS)

    Ciancio, Vicente R.; Oliveri, Pedro V.; Di Giovan B, Gustavo; Ciancio, Vanina L.; Lewis, Brent J.; Green, Anna R.; Bennet, L.

    2008-01-01

    Full text: Introduction: In commercial aviation the most important determinants of radiation exposure in humans are the altitude, latitude, flight duration and the solar cycle's period. This study was conducted to address this type of exposure trough radiation dosimetry. Method: The study was performed in the business-class cabin of an Airbus 340-200 aircraft, provided by Argentine Airlines, during 2 flights routes: New York-Miami-Buenos Aires (trans equatorial) and Buenos Aires-Auckland (circumpolar). Measurements addressed the electromagnetic spectrum or low Linear Energy Transfer (LET) and corpuscular radiation (High LET). The instruments used were an Ion Chamber (IC), to measure the ionizing component of radiation (i.e., gamma radiation), the SWENDI, to measure only the neutron component, and the Tissue Equivalent Proportional Counter (TEPC) for measuring all radiation types. Results: The routes' dose rates are presented in the table. TEPC rates agreed with the LET findings. The total dose rates of high latitude flights were higher than those of low latitude flights. The SWENDI (High LET) results for the flights over the equator, at low latitude, represented only 1/3 of the total radiation. The New York-Miami and Buenos Aires-Auckland flights, at high latitude, represented just under 1/2 of the Total radiation (-45%). Conclusion: Based on the results of this study, the annual dose rates of radiation exposure of air crew personnel serving on international flights offered by Argentine Airlines is between 3 and 7 mSv. This rate is higher than the maximum recommended for the general population by the International Commission on Radiological Protection (ICRP), which is 1 milli Sv./y. Therefore, these personnel must be officially considered 'Occupationally Exposed to Radiation' in way to provide the appropriate measures that must be implemented for their protection in accordance to ICRP guidelines. Dose(uSv): Route N Y-Miami, IC 6.07, SWENDI 5.07, TEPC 11.04; Route

  3. VLF and X-ray Instruments for Stratospheric Balloons: ABOVE2 and EPEx

    Science.gov (United States)

    Cully, C. M.; Galts, D.; Patrick, M.; Duffin, C.; Jang, A. C.; Pitzel, J.; Trumpour, T.; McCarthy, M.; Milling, D. K.

    2017-12-01

    The ABOVE2 (2016) and EPEx (2018) stratospheric balloon missions are designed to study energetic electrons precipitating from the radiation belts into the atmosphere. The payloads include instruments that measure Very Low Frequency (VLF) magnetic and electric fields, and bremsstrahlung X-rays. The ABOVE2 VLF instrument is an FPGA-based design with >200 kHz sampling rates, sub-microsecond timing accuracy and onboard spectral processing, designed in a Cubesat-friendly format. The EPEx X-ray instrument is a hard X-ray imaging system, also in a Cubesat-friendly format, incorporating a commercially-available Cadmium-Zinc-Telluride module. The imager is sufficiently lightweight that we can launch it on-demand with low-volume latex balloons. I will discuss the design and performance of both instruments, and present data from the ABOVE2 flights.

  4. A feasibility study to assess the effectiveness of safe dates for teen mothers.

    Science.gov (United States)

    Herrman, Judith W; Waterhouse, Julie K

    2014-01-01

    To determine the effectiveness of the adapted Safe Dates curriculum as an intervention for pregnant and/or parenting teens to prevent teen dating violence (TDV). This pre-/posttest, single-sample study provided a means to assess the effectiveness of an adapted Safe Dates curriculum for teen mothers. The adapted Safe Dates curriculum was implemented in three schools designed for the unique needs of teens who are pregnant and/or parenting. The final sample of 41 teen participants, with a mean age of 16.27, completed 80% of the curriculum and two of the three assessments. Most of the teens were pregnant during participation in the curriculum, and six had infants between age 1 and 3 months. The teen mothers completed the pretest, participated in the 10-session adapted Safe Dates curriculum, and completed the posttest at the end of the program and 1 month after program completion. The pre/posttest was adapted from the Safe Dates curriculum-specific evaluation instrument. Senior, undergraduate nursing students were trained in and implemented the curriculum. Participation in the adapted Safe Dates program yielded significant differences in the areas of responses to anger, gender stereotyping, awareness of resources for perpetrators and victims, and psychological violence perpetration. This adapted program may be effective in changing selected outcomes. The implementation of a larger scale, experimental/control group study may demonstrate the program's efficacy at reducing the incidence of TDV among teen mothers. © 2014 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  5. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    Science.gov (United States)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  6. "Same Room, Safe Place".

    Science.gov (United States)

    Keene Woods, Nikki

    2017-04-01

    There are many different professional stances on safe sleep and then there is the reality of caring for a newborn. There is a debate among professionals regarding safe sleep recommendations. The continum of recommendations vary from the American Academy of Pediatrics (AAP) Safe Sleep Guidelines to the bed-sharing recommendations from the Mother-Baby Behavioral Sleep Laboratory. The lack of consistent and uniform safe sleep recommendations from health professionals has been confusing for families but has more recently raised a real professional ethical dilemma. Despite years of focused safe sleep community education and interventions, sleep-related infant deaths are on the rise in many communities. This commentary calls for a united safe sleep message from all health professionals to improve health for mothers and infants most at-risk, "Same Room, Safe Place."

  7. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    determine the power required to fly the airplane, optimize the airframe/propulsion system, and train the pilot. He made the first flights on April 7, 1980, and made a brief solar-powered flight on May 18. The official project pilot was Janice Brown, a Bakersfield school teacher who weighed in at slightly under 100 pounds and was a charter pilot with commercial, instrument, and glider ratings. She checked out in the plane at Shafter and made about 40 flights under battery and solar power there. Wind direction, turbulence, convection, temperature and radiation at Shafter in mid-summer proved to be less than ideal for Gossamer Penguin because takeoffs required no crosswind and increases in temperature reduced the power output from the solar cells. Consequently, the project moved to Dryden in late July, although conditions there also were not ideal. Nevertheless, Janice finished the testing, and on August 7, 1980, she flew a public demonstration of the aircraft at Dryden in which it went roughly 1.95 miles in 14 minutes and 21 seconds. This was significant as the first sustained flight of an aircraft relying solely on direct solar power rather than batteries. It provided the designers with practical experience for developing a more advanced, solar-powered aircraft, since the Gossamer Penguin was fragile and had limited controllability. This necessitated its flying early in the day when there were minimal wind and turbulence levels, but the angle of the sun was also low, requiring a panel for the solar cells that could be tilted toward the sun. Using the specific conclusions derived from their experience with Gossamer Penguin, the AeroVironment engineers designed Solar Challenger, a piloted, solar-powered aircraft strong enough to handle both long and high flights when encountering normal turbulence.

  8. Visual information transfer. 1: Assessment of specific information needs. 2: The effects of degraded motion feedback. 3: Parameters of appropriate instrument scanning behavior

    Science.gov (United States)

    Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.

    1984-01-01

    Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.

  9. Concluding from operating experience to instrumentation and control systems

    International Nuclear Information System (INIS)

    Pleger, H.; Heinsohn, H.

    1997-01-01

    Where conclusions are drawn from operating experience to instrumentation and control systems, two general statements should be made. First: There have been braekdowns, there have also been deficiencies, but in principle operating experience with the instrumentation and control systems of German nuclear power plants has been good. With respect to the debates about the use of modern digital instrumentation and control systems it is safe to say, secondly, that the instrumentation and control systems currently in use are working reliably. Hence, there is no need at present to replace existing systems for reasons of technical safety. However, that time will come. It is a good thing, therefore, that the use of modern digital instrumentation and control systems is to begin in the field of limiting devices. The operating experience which will thus be accumulated will benefit digital instrumentation and control systems in their qualification process for more demanding applications. This makes proper logging of operating experience an important function, even if it cannot be transferred in every respect. All parties involved therefore should see to it that this operating experience is collected in accordance with criteria agreed upon so as to prevent unwanted surprises later on. (orig.) [de

  10. Safety Climate of Ab-Initio Flying Training Organizations: The Case of an Australian Tertiary (Collegiate) Aviation Program

    OpenAIRE

    Gao, Yi; Rajendran, Natalia

    2017-01-01

    A healthy safety culture is essential to the safe operation of any aviation organization, including flight schools. This study aimed to assess the safety climate of an Australian tertiary (collegiate) aviation program using a self-constructed instrument. Factor analysis of the instrument identified four safety themes, which are Safety Reporting Culture, Safety Reporting Procedure, Organizational Culture and Practice, and General Safety Knowledge. The responses of student pilots suggested that...

  11. Distributed Framework for Dynamic Telescope and Instrument Control

    Science.gov (United States)

    Ames, Troy J.; Case, Lynne

    2002-01-01

    Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see httD://www.jxta.org,) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device's IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have

  12. Effects of Short- and Long-Duration Space Flight on Neuromuscular Function

    Science.gov (United States)

    Buxton, Roxanne E.; Spiering, Barry A.; Ryder, Jeffrey W.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    The Functional Task Tests (FTT) is an interdisciplinary study designed to correlate the changes in functional tasks (such as emergency egress, ladder climbing, and hatch opening) with changes in neuromuscular, cardiovascular, and sensorimotor function. One aspect of the FTT, the neuromuscular function test, is used to investigate the neuromuscular component underlying changes in the ability of astronauts to perform functional tasks (representative of critical mission tasks) safely and quickly after flight. PURPOSE: To describe neuromuscular function after short- and long-duration space flight. METHODS: To date, 5 crewmembers on short-duration (10- to 15-day) missions and 3 on long-duration missions have participated. Crewmembers were assessed 30 days before flight, on landing day (short-duration subjects only) and 1, 6, and 30 days after landing. The interpolated twitch technique, which utilizes a combination of maximal voluntary contractions and electrically evoked contractions, was used to assess the maximal voluntary isometric force (MIF) and central activation capacity of the knee extensors. Leg-press and bench-press devices were used to assess MIF and maximal dynamic power of the lower and upper body respectively. Specifically, power was measured during concentric-only ballistic throws of the leg-press sled and bench-press bar loaded to 40% and 30% of MIF respectively. RESULTS: Data are currently being collected from both Shuttle and ISS crewmembers. Emerging data indicate that measures of knee extensor muscle function are decreased with long-duration flight. DISCUSSION: The relationships between flight duration, neural drive, and muscle performance are of particular interest. Ongoing research will add to the current sample size and will focus on defining changes in muscle performance measures after long-duration space flight.

  13. Replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The DOE-Idaho Operations Office (DOE-ID) has prepared an environmental assessment (EA) on the replacement of the Idaho National Engineering Laboratory Health Physics Instrumentation Laboratory at the Idaho National Engineering Laboratory (INEL). The purpose of this project is to replace the existing Health Physics Instrumentation Laboratory (HPIL) with a new facility to provide a safe environment for maintaining and calibrating radiation detection instruments used at the Idaho National Engineering Laboratory. The existing HPIL facility provides portable health physics monitoring instrumentation and direct reading dosimetry procurement, maintenance and calibration of radiation detection instruments, and research and development support-services to the INEL and others. However, the existing facility was not originally designed for laboratory activities and does not provide an adequate, safe environment for calibration activities. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality (CEQ) Regulations (40 CFR Parts 1500-1508). Based on the environmental analysis in the attached EA, the proposed action will not have a significant effect on the human environment within the meaning of the National Environmental Policy Act (NEPA) and 40 CFR Parts 1508.18 and 1508.27. The selected action (the proposed alternative) is composed of the following elements, each described or evaluated in the attached EA on the pages referenced. The proposed action is expected to begin in 1997 and will be completed within three years: design and construction of a new facility at the Central Facility Area of the INEL; operation of the facility, including instrument receipt, inspections and repairs, precision testing and calibration, and storage and issuance. The selected action will result in no significant environmental impacts

  14. Overview of the CERN Linac4 beam instrumentation

    CERN Document Server

    Roncarolo, F; Bravin, E; Dehning, B; Duraffourg, M; Gerard, D; Holzer, E B; Lenardon, F; Focker, G; Raich, U; Soby, L; Sordet, M; Tan, J; Tranquille, G; Vuitton, C; Zamantzas, C; Cheymol, B

    2010-01-01

    The CERN LINAC4 will represent the first upgrade of the LHC injection chain, by accelerating H- ions from 45 KeV to 160 MeV for charge-exchange injection into the PS Booster. In order to provide its safe and efficient commissioning and operation, a wide variety of beam diagnostics devices has been designed for installation at convenient locations all over the accelerator length and in the transfer line to the PS Booster. This paper gives an overview of all instrumentation devices, including those to measure beam position, transverse and longitudinal profile, beam current and beam loss. The well advanced status of the system design and the main instrument features are discussed

  15. On the design of flight-deck procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl L.

    1994-01-01

    In complex human-machine systems, operations, training, and standardization depend on a elaborate set of procedures which are specified and mandated by the operational management of the organization. The intent is to provide guidance to the pilots, to ensure a logical, efficient, safe, and predictable means of carrying out the mission objectives. In this report the authors examine the issue of procedure use and design from a broad viewpoint. The authors recommend a process which we call 'The Four P's:' philosophy, policies, procedures, and practices. We believe that if an organization commits to this process, it can create a set of procedures that are more internally consistent, less confusing, better respected by the flight crews, and that will lead to greater conformity. The 'Four-P' model, and the guidelines for procedural development in appendix 1, resulted from cockpit observations, extensive interviews with airline management and pilots, interviews and discussion at one major airframe manufacturer, and an examination of accident and incident reports. Although this report is based on airline operations, we believe that the principles may be applicable to other complex, high-risk systems, such as nuclear power production, manufacturing process control, space flight, and military operations.

  16. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    Science.gov (United States)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; hide

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  17. CoMA, an instrument for the detailed in-situ analysis of collected cometary particulates

    International Nuclear Information System (INIS)

    Kissel, J.; Fechtig, H.; Jessberger, E.K.; Krueger, F.R.; Niemczyk, N.; Schaefer, G.; Zscheeg, H.

    1988-01-01

    The proposal for CoMA, a pulsed time-of-flight SIMS instrument to be flown onboard CRAF to rendezvous with a comet, had been accepted by NASA in October 1986. After several attempts it seems that funding by BMFT for the instrument pre-development phase can be obtained. Apart from that we made first essential progress in producing the primary ion pulses from an indium liquid metal ion source. Those pulses are needed to operate CoMA. (orig.)

  18. Is safe surgery possible when resources are scarce?

    Science.gov (United States)

    O'Hara, Nathan N

    2015-07-01

    The greatest burden of surgical disease exists in low- and middle-income countries, where the quality and safety of surgical treatment cause major challenges. Securing necessary and appropriate medical supplies and infrastructure remains a significant and under-recognised limitation to providing safe and high-quality surgical care in these settings. The majority of surgical instruments are sold in high-income countries. Limited market pressures lead to superfluous designs and inflated costs for these devices. This context creates an opportunity for frugal innovation-the search for designs that will enable low-cost care without compromising quality. Although progressive examples of frugal surgical innovations exist, policy innovation is required to augment design pathways while fostering appropriate safety controls for prospective devices. Many low-cost, high-quality medical technologies will increase access to safe surgical care in low-income countries and have widespread applicability as all countries look to reduce the cost of providing care, without compromising quality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Rapidly Adaptable Instrumentation Tester (RAIT)

    International Nuclear Information System (INIS)

    Vargo, Timothy D.

    1999-01-01

    Emerging technologies in the field of ''Test ampersand Measurement'' have recently enabled the development of the Rapidly Adaptable Instrumentation Tester (RAIT). Based on software developed with LabVIEW, the RAIT design enables quick reconfiguration to test and calibrate a wide variety of telemetry systems. The consequences of inadequate testing could be devastating if a telemetry system were to fail during an expensive flight mission. Supporting both open-bench testing as well as automated test sequences, the RAIT has significantly lowered total time required to test and calibrate a system. This has resulted in an overall lower per unit testing cost than has been achievable in the past

  20. Interferometric laser imaging for in-flight cloud droplet sizing

    International Nuclear Information System (INIS)

    Dunker, Christina; Roloff, Christoph; Grassmann, Arne

    2016-01-01

    A non-intrusive particle sizing method with a high spatial distribution is used to estimate cloud droplet spectra during flight test campaigns. The interferometric laser imaging for droplet sizing (ILIDS) method derives particle diameters of transparent spheres by evaluating the out-of-focus image patterns. This sizing approach requires a polarized monochromatic light source, a camera including an objective lens with a slit aperture, a synchronization unit and a processing tool for data evaluation. These components are adapted to a flight test environment to enable the microphysical investigation of different cloud genera. The present work addresses the design and specifications of ILIDS system, flight test preparation and selected results obtained in the lower and middle troposphere. The research platform was a Dornier Do228-101 commuter aircraft at the DLR Flight Operation Center in Braunschweig. It was equipped with the required instrumentation including a high-energy laser as the light source. A comprehensive data set of around 71 800 ILIDS images was acquired over the course of five flights. The data evaluation of the characteristic ILIDS fringe patterns relies, among other things, on a relationship between the fringe spacing and the diameter of the particle. The simplest way to extract this information from a pattern is by fringe counting, which is not viable for such an extensive number of data. A brief contrasting comparison of evaluation methods based on frequency analysis by means of fast Fourier transform and on correlation methods such as minimum quadratic difference is used to encompass the limits and accuracy of the ILIDS method for such applications. (paper)

  1. Data acquisition and control system for the IPNS time-of-flight neutron scattering instruments

    International Nuclear Information System (INIS)

    Daly, R.T.; Haumann, J.R.; Kraimer, M.R.; Lenkszus, F.R.; Lidinsky, W.P.; Morgan, C.B.; Rutledge, L.L.; Rynes, P.E.; Tippie, J.W.

    1979-01-01

    The Argonne Intense Pulsed Neutron System (IPNS-I) presently under construction at Argonne National Laboratory will include a number of neutron scattering instruments. This study investigates the data acquisition requirements of these instruments and proposes three alternative multiprocessor systems which will satisfy these requirements. All proposals are star configurations with a super-mini as the central node or HOST. The first proposal is based on front-ends composed of two or more 16-bit microcomputers, the second proposal is based on front ends consisting of a combination of a mini and microcomputers, and the third is based on a minicomputer with an intelligent CAMAC controller

  2. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    Science.gov (United States)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  3. DroidSafe

    Science.gov (United States)

    2016-12-01

    Massachusetts Avenue, Build E19-750 Cambridge , MA 02139-4307 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS...Activity objects illustrating the challenges of points-to and information flow analysis...measure how many malicious flows Droid- Safe was able to detect). As these results illustrate , DroidSafe implements an analysis of unprece- dented

  4. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    International Nuclear Information System (INIS)

    Krucker, S.; Bednarzik, M.; Grimm, O.; Hurford, G.J.; Limousin, O.; Meuris, A.; Orleański, P.; Seweryn, K.; Skup, K.R.

    2016-01-01

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  5. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    Science.gov (United States)

    He, M.; Goodman, H. M.; Blakeslee, R.; Hall, J. M.

    2010-12-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA’s well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when “chasing” a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool

  6. Analytical and Experimental Verification of a Flight Article for a Mach-8 Boundary-Layer Experiment

    Science.gov (United States)

    Richards, W. Lance; Monaghan, Richard C.

    1996-01-01

    Preparations for a boundary-layer transition experiment to be conducted on a future flight mission of the air-launched Pegasus(TM) rocket are underway. The experiment requires a flight-test article called a glove to be attached to the wing of the Mach-8 first-stage booster. A three-dimensional, nonlinear finite-element analysis has been performed and significant small-scale laboratory testing has been accomplished to ensure the glove design integrity and quality of the experiment. Reliance on both the analysis and experiment activities has been instrumental in the success of the flight-article design. Results obtained from the structural analysis and laboratory testing show that all glove components are well within the allowable thermal stress and deformation requirements to satisfy the experiment objectives.

  7. Safe havens in Europe

    DEFF Research Database (Denmark)

    Paldam, Martin

    2013-01-01

    Eleven safe havens exist in Europe providing offshore banking and low taxes. Ten of these states are very small while Switzerland is moderately small. All 11 countries are richer than their large neighbors. It is shown that causality is from small to safe haven to wealth, and that theoretically...... equilibriums are likely to exist where a certain regulation is substantially lower in a small country than in its big neighbor. This generates a large capital inflow to the safe havens. The pool of funds that may reach the safe havens is shown to be huge. It is far in excess of the absorptive capacity...... of the safe havens, but it still explains, why they are rich. Microstates offer a veil of anonymity to funds passing through, and Switzerland offers safe storage of funds....

  8. Fault-tolerant NAND-flash memory module for next-generation scientific instruments

    Science.gov (United States)

    Lange, Tobias; Michel, Holger; Fiethe, Björn; Michalik, Harald; Walter, Dietmar

    2015-10-01

    Remote sensing instruments on today's space missions deliver a high amount of data which is typically evaluated on ground. Especially for deep space missions the telemetry downlink is very limited which creates the need for the scientific evaluation and thereby a reduction of data volume already on-board the spacecraft. A demanding example is the Polarimetric and Helioseismic Imager (PHI) instrument on Solar Orbiter. To enable on-board offline processing for data reduction, the instrument has to be equipped with a high capacity memory module. The module is based on non-volatile NAND-Flash technology, which requires more advanced operation than volatile DRAM. Unlike classical mass memories, the module is integrated into the instrument and allows readback of data for processing. The architecture and safe operation of such kind of memory module is described in the following paper.

  9. Traveling Safely with Medicines

    Science.gov (United States)

    ... Medications Safely My Medicine List How to Administer Traveling Safely with Medicines Planes, trains, cars – even boats ... your trip, ask your pharmacist about how to travel safely with your medicines. Make sure that you ...

  10. The SLICE, CHESS, and SISTINE Ultraviolet Spectrographs: Rocket-Borne Instrumentation Supporting Future Astrophysics Missions

    Science.gov (United States)

    France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.

    2016-03-01

    NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.

  11. Flight Test of a Propulsion-Based Emergency Control System on the MD-11 Airplane with Emphasis on the Lateral Axis

    Science.gov (United States)

    Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.

    1996-01-01

    A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.

  12. The test beamline of the European Spallation Source - Instrumentation development and wavelength frame multiplication

    DEFF Research Database (Denmark)

    Woracek, R.; Hofmann, T.; Bulat, M.

    2016-01-01

    which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor...... wavelength band between 1.6 A and 10 A by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components....... This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects....

  13. UAS-NAS Flight Test Series 3: Test Environment Report

    Science.gov (United States)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and

  14. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  15. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  16. Preliminary Effect of Synthetic Vision Systems Displays to Reduce Low-Visibility Loss of Control and Controlled Flight Into Terrain Accidents

    Science.gov (United States)

    Glaab, Louis J.; Takallu, Mohammad A.

    2002-01-01

    An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a glass display that also included advanced flight symbology, such as a velocity vector. The third concept, referred to as the SVS display, was identical to the EAI except that computer-generated terrain imagery replaced the conventional blue-sky/brown-ground of the EAI. Pilot performance parameters, pilot control inputs and physiological data were recorded for post-test analysis. Situation awareness (SA) and qualitative pilot comments were obtained through questionnaires and free-form interviews administered immediately after the experimental session. Initial pilot performance data were obtained by instructor pilot observations. Physiological data (skin temperature, heart rate, and muscle flexure) were also recorded. Preliminary results indicate that far less errors were committed when using the EAI and SVS displays than when using conventional instruments. The specific data example examined in this report illustrates the benefit from SVS displays to avoid massive loss of SA conditions. All pilots acknowledged the enhanced situation awareness provided by the SVS display concept. Levels of

  17. The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build

    DEFF Research Database (Denmark)

    Wright, G. S.; Wright, David; Goodson, G. B.

    2015-01-01

    The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 µm. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar...... in terms of the "as-built" instrument. It also describes the test program that led to delivery of the tested and calibrated Flight Model to NASA in 2012, and the confirmation after delivery of the key interface requirements....

  18. Implementasi Prototype Alat Uji Flight Control Actuator Pesawat Berbasis Mikrokontroller Arduino Uno

    Directory of Open Access Journals (Sweden)

    NANDANG TARYANA

    2018-02-01

    Full Text Available ABSTRAK Flight control system merupakan suatu sistem di pesawat udara yang digunakan untuk manuver dari satu kondisi terbang ke kondisi terbang lainnya. Alat uji flight control actuator pesawat ini dirancang berupa prototype yang dikendalikan dengan menggunakan mikrokontroller arduino uno, yang terdiri dari input dan output. Input tersebut adalah sensor load cell yang berfungsi untuk mengetahui beban yang diterima dari aktuator pesawat, serta input sensor ping berfungsi untuk mengetahui jarak ataupun sudut dari pergerakan aktuator pesawat. Sedangkan output yang dihasilkan berupa data dari hasil pembacaan sensor load cell dan sensor ping. Alat uji flight control sistem aktuator pesawat yang telah direalisasikan mampu menggerakkan 2 buah double acting cylinder untuk bekerja naik dan turun secara bergantian serta mampu menggerakkan motor servo dengan jarak pergerakkan 3 cm – 4 cm. Kata kunci: Flight control system, Arduino Uno, double acting cylinder, Sensor Ping, Load Cell, Motor Servo ABSTRACT Flight control system is a system in which aircraft are used to maneuver from one condition to fly to other flight conditions. Testing instruments aircraft flight control actuator designed a prototype of which is controlled by using microcontroller arduino uno, which consists of input and output. The input is a load cell sensor that serves to determine the load received from aircraft actuators, as well as ping sensor input is used to determine the distance or angle of the aircraft actuator movement . While the output of the data from the load cell sensor readings and sensor ping . Test equipment aircraft flight control actuator system that has been realized is able to move two pieces of double acting cylinder to work up and down alternately and able to drive the servo motor with the movement distance of 3 cm – 4 cm . Keywords: Flight control system , Arduino Uno , double acting cylinder , Ping Sensor, Load Cell, Servo Motor

  19. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  20. Physiology, medicine, long-duration space flight and the NSBRI

    Science.gov (United States)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  1. Disassembly and removal of sodium instrumentation test loop

    International Nuclear Information System (INIS)

    Ishikawa, Okinobu; Onojima, Takamitu; Nagai, Keiichi

    2000-07-01

    In 1999, the Sodium Instrumentation Test Loop was disassembled and removed. This report describes the tasks and experiences obtained in removing sodium from a storage tank, disassembling, and cleansing components and related activities. Overall the disassembly, handling and cleansing tasks proceeded as planned and the activities were carried out efficiently and safely. Documentation of the process is meant to establish not only a procedure, but also a guideline for future similar tasks. (author)

  2. Free-flight experiments in LISA Pathfinder

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Cutler, C; Dunbar, N; Ferraioli, L

    2015-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this ‘suspension noise’. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data. (paper)

  3. Process instrumentation for nuclear power station

    International Nuclear Information System (INIS)

    Yanai, Katsuya; Shinohara, Katsuhiko

    1978-01-01

    Nuclear power stations are the large scale compound system composed of many process systems. Accordingly, for the safe and high reliability operation of the plants, it is necessary to grasp the conditions of respective processes exactly and control the operation correctly. For this purpose, the process instrumentation undertakes the important function to monitor the plant operation. Hitachi Ltd. has exerted ceaseless efforts since long before to establish the basic technology for the process instrumentation in nuclear power stations, to develop and improve hardwares of high reliability, and to establish the quality control system. As for the features of the process instrumentation in nuclear power stations, the enormous quantity of measurement, the diversity of measured variables, the remote measurement and monitoring method, and the ensuring of high reliability are enumerated. Also the hardwares must withstand earthquakes, loss of coolant accidents, radiations, leaks and fires. Hitachi Unitrol Sigma Series is the measurement system which is suitable to the general process instrumentation in nuclear power stations, and satisfies sufficiently the basic requirements described above. It has various features as the nuclear energy system, such as high reliability by the use of ICs, the methods of calculation and transmission considering signal linkage, loop controller system and small size. HIACS-1000 Series is the analog controller of high reliability for water control. (Kako, I.)

  4. Instrument pre-development activities for FLEX

    Science.gov (United States)

    Pettinato, L.; Fossati, E.; Coppo, P. M.; Taiti, A.; Labate, D.; Capanni, A.; Taccola, M.; Bézy, J. L.; Francois, M.; Meynart, R.; Erdmann, L.; Triebel, P.

    2017-09-01

    The FLuorescence Imaging Spectrometer (FLORIS) is the payload of the FLuorescence Explorer Mission (FLEX) of the European Space Agency. The mission objective is to perform quantitative measurements of the solar induced vegetation fluorescence to monitor photosynthetic activity. FLORIS works in a push-broom configuration and it is designed to acquire data in the 500-780 nm spectral range, with a sampling of 0.1 nm in the oxygen bands (759-769 nm and 686- 697 nm) and 0.5-2.0 nm in the red edge, chlorophyll absorption and Photochemical Reflectance Index bands. FLEX will fly in formation with Sentinel-3 to benefit of the measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening, proper characterization of the atmospheric state and determination of the surface temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with reflective concave gratings both for the High Resolution (HR) and Low Resolution (LR) spectrometers. In the frame of the instrument pre-development Leonardo Company (I) has built and tested an elegant breadboard of the instrument consisting of the telescope and the HR spectrometer. The development of the LR spectrometer is in charge of OHB System AG (D) and is currently in the manufacturing phase. The main objectives of the activity are: anticipate the development of the instrument and provide early risk retirement of critical components, evaluate the system performances such as imaging quality parameters, straylight, ghost, polarization sensitivity and environmental influences, verify the adequacy of critical tests such as spectral characterization and straylight, define and optimize instrument alignment procedures. Following a brief overview of the FLEX mission, the paper will cover the design and the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned for the flight unit.

  5. The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G

    Science.gov (United States)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2016-12-01

    Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.

  6. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  7. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Flight Test Report

    Science.gov (United States)

    Iannicca, Dennis C.; Ishac, Joseph A.; Shalkhauser, Kurt A.

    2015-01-01

    NASA Glenn Research Center (GRC), in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the Federal Aviation Administration (FAA) and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the GRC prototype CNPC architecture as a demonstration platform. The proposed security controls were integrated into the GRC flight test system aboard our S-3B Viking surrogate aircraft and several network tests were conducted during a flight on November 15th, 2014 to determine whether the controls were working properly within the flight environment. The flight test was also the first to integrate Robust Header Compression (ROHC) as a means of reducing the additional overhead introduced by the security controls and Mobile IPv6. The effort demonstrated the complete end-to-end secure CNPC link in a relevant flight environment.

  8. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  9. Space dosimetry measurement results using the Pille instrument during the EUROMIR/NASAMIR space flights

    International Nuclear Information System (INIS)

    Hejja, I.; Apathy, J.; Deme, S.

    1997-01-01

    The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)

  10. Raman Spectroscopy for In-Line Water Quality Monitoring—Instrumentation and Potential

    Directory of Open Access Journals (Sweden)

    Zhiyun Li

    2014-09-01

    Full Text Available Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  11. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    Science.gov (United States)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  12. Legal Aspects of Radioactive Waste Management: Relevant International Legal Instruments

    International Nuclear Information System (INIS)

    Wetherall, Anthony; Robin, Isabelle

    2014-01-01

    The responsible use of nuclear technology requires the safe and environmentally sound management of radioactive waste, for which countries need to have stringent technical, administrative and legal measures in place. The legal aspects of radioactive waste management can be found in a wide variety of legally binding and non-binding international instruments. This overview focuses on the most relevant ones, in particular those on nuclear safety, security, safeguards and civil liability for nuclear damage. It also identifies relevant regional instruments concerning environmental matters, in particular, with regard to strategic environmental assessments (SEAs), environmental impact assessments (EIAs), public access to information and participation in decision-making, as well as access to justice

  13. Management Process of a Frequency Response Flight Test for Rotorcraft Flying Qualities Evaluation

    Directory of Open Access Journals (Sweden)

    João Otávio Falcão Arantes Filho

    2016-07-01

    Full Text Available This paper applies the frequency response methodology to characterize and analyze the flying qualities of longitudinal and lateral axes of a rotary-wing aircraft, AS355-F2. Using the results, it is possible to check the suitability of the aircraft in accordance with ADS-33E-PRF standard, whose flying qualities specifications criteria are based on parameters in the frequency domain. The key steps addressed in the study involve getting, by means of flight test data, the closed-loop dynamic responses including the design of the instrumentation and specification of the sensors to be used in the flight test campaign, the definition of the appropriate maneuvers characteristics for excitation of the aircraft, the planning and execution of the flight test to collect the data, and the proper data treatment, processing and analysis after the flight. After treatment of the collected data, single input-single output spectral analysis is performed. The results permit the analysis of the flying qualities characteristics, anticipation of the demands to which the pilot will be subjected during closed-loop evaluations and check of compliance with the aforementioned standard, within the range of consistent excitation frequencies for flight tests, setting the agility level of the test aircraft.

  14. Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems

    Science.gov (United States)

    Thompson, Sarah; Davies, Misty D.; Gundy-Burlet, Karen

    2010-01-01

    Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior

  15. Using XML and Java Technologies for Astronomical Instrument Control

    Science.gov (United States)

    Ames, Troy; Case, Lynne; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center, under the Instrument Remote Control (IRC) project, is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is that the software is driven by an instrument description, written using the Instrument Markup Language (IML), a dialect of XML. IML is used to describe the command sets and command formats of the instrument, communication mechanisms, format of the data coming from the instrument, and characteristics of the graphical user interface to control and monitor the instrument. The IRC framework allows the users to define a data analysis pipeline which converts data coming out of the instrument. The data can be used in visualizations in order for the user to assess the data in real-time, if necessary. The data analysis pipeline algorithms can be supplied by the user in a variety of forms or programming languages. Although the current integration effort is targeted for the High-resolution Airborne Wideband Camera (HAWC) and the Submillimeter and Far Infrared Experiment (SAFIRE), first-light instruments of the Stratospheric Observatory for Infrared Astronomy (SOFIA), the framework is designed to be generic and extensible so that it can be applied to any instrument. Plans are underway to test the framework

  16. SOFIA science instruments: commissioning, upgrades and future opportunities

    Science.gov (United States)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  17. SAFE Newsletter

    OpenAIRE

    2013-01-01

    The Center of Excellence SAFE – “Sustainable Architecture for Finance in Europe” – is a cooperation of the Center for Financial Studies and Goethe University Frankfurt. It is funded by the LOEWE initiative of the State of Hessen (Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz). SAFE brings together more than 40 professors and just as many junior researchers who are all dedicated to conducting research in support of a sustainable financial architecture. The Center has...

  18. Entropy Minimizing Curves with Application to Flight Path Design and Clustering

    Directory of Open Access Journals (Sweden)

    Stéphane Puechmorel

    2016-09-01

    Full Text Available Air traffic management (ATM aims at providing companies with a safe and ideally optimal aircraft trajectory planning. Air traffic controllers act on flight paths in such a way that no pair of aircraft come closer than the regulatory separation norms. With the increase of traffic, it is expected that the system will reach its limits in the near future: a paradigm change in ATM is planned with the introduction of trajectory-based operations. In this context, sets of well-separated flight paths are computed in advance, tremendously reducing the number of unsafe situations that must be dealt with by controllers. Unfortunately, automated tools used to generate such planning generally issue trajectories not complying with operational practices or even flight dynamics. In this paper, a means of producing realistic air routes from the output of an automated trajectory design tool is investigated. For that purpose, the entropy of a system of curves is first defined, and a mean of iteratively minimizing it is presented. The resulting curves form a route network that is suitable for use in a semi-automated ATM system with human in the loop. The tool introduced in this work is quite versatile and may be applied also to unsupervised classification of curves: an example is given for French traffic.

  19. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  20. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  1. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    Science.gov (United States)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  2. Instrument hardware and software upgrades at IPNS

    International Nuclear Information System (INIS)

    Worlton, Thomas; Hammonds, John; Mikkelson, D.; Mikkelson, Ruth; Porter, Rodney; Tao, Julian; Chatterjee, Alok

    2006-01-01

    IPNS is in the process of upgrading their time-of-flight neutron scattering instruments with improved hardware and software. The hardware upgrades include replacing old VAX Qbus and Multibus-based data acquisition systems with new systems based on VXI and VME. Hardware upgrades also include expanded detector banks and new detector electronics. Old VAX Fortran-based data acquisition and analysis software is being replaced with new software as part of the ISAW project. ISAW is written in Java for ease of development and portability, and is now used routinely for data visualization, reduction, and analysis on all upgraded instruments. ISAW provides the ability to process and visualize the data from thousands of detector pixels, each having thousands of time channels. These operations can be done interactively through a familiar graphical user interface or automatically through simple scripts. Scripts and operators provided by end users are automatically included in the ISAW menu structure, along with those distributed with ISAW, when the application is started

  3. THE ROLE OF NAVIGATIONAL AIDS IN FLIGHT SAFETY MANAGEMENT WITHIN ICAO GLOBAL AIR NAVIGATION PLAN

    Directory of Open Access Journals (Sweden)

    Vadim V. Vurobyov

    2017-01-01

    Full Text Available The development of the global civil aviation is provided on the basis of the ICAO Communication and Surveillance/Air Traffic Management Concept, which has determined the basic strategy for further commercial flight management effectiveness improvement. On the basis of this concept a Global Air Navigation Plan has been developed by ICAO recently. The core strategies of CNS/ATM concept were specified and combined into so-called blocks. Thus the term Global Aviation System block upgrade has been introduced. At the same time, GANP states that the introduction of new procedures and flight management systems will inevitably affect flight safety. Accordingly, there is a task of flight safety management level maintaining, or even increasing within the Global Air Navigation Plan implementation. Various air navigational aids play a significant role in the process as they are directly associated with the new systems and structures introduction.This breeds the new global challenge of flight safety management level change assessment during the introduction of new procedures and systems connected with the use of both navigational aids and instruments. Some aspects of this problem solution are covered in the article.

  4. New technology for BWR power plant control and instrumentation

    International Nuclear Information System (INIS)

    Takano, Yoshiyuki; Nakamura, Makoto; Murata, Fumio.

    1992-01-01

    Nuclear power plants are facing strong demands for higher reliability and cost-performance in their control and instrumentation systems. To meet these needs, Hitachi is developing advanced control and instrumentation technology by rationalizing the conventional technology in that field. The rationalization is done through the utilization of reliable digital technology and optical transmission technology, and others, which are now commonly used in computer applications. The goal of the development work is to ensure safe, stable operation of the plant facilities and to secure harmony between man and machine. To alleviate the burdens of the operators, the latest electronic devices are being employed to create an advanced man-machine interface, and to promote automatic operation of the plant based upon the automatic operation of individual systems. In addition, the control and instrumentation system, including the safety system, incorporates more and more digital components in order to further enhance the reliability and maintainability of the plant. (author)

  5. FOCUS: time-of-flight spectrometer for cold neutrons at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S; Mesot, J [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland); Hempelmann, R [Saarbruecken Univ., Physical Chemistry, Saarbruecken (Germany)

    1996-11-01

    The physical layout of the Time-Of-Flight spectrometer at the new spallation source SINQ is presented. The concept shows up a hybrid-TOF combining a Fermi-chopper with a crystal monochromator. The demand of a versatile and flexible instrument for several applications is taken into account by the option of switching from time-focusing to monochromatic focusing mode such that the spectrometer can be optimised for both quasielastic and inelastic scattering applications. (author) 5 figs., 2 tabs., 16 refs.

  6. Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center

    Science.gov (United States)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn; hide

    2016-01-01

    Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.

  7. On the use of the cold time-of-flight spectrometer in Studsvik for liquid 3He measurements

    International Nuclear Information System (INIS)

    Faak, Bjoern.

    1989-01-01

    The time-of-flight spectrometer for cold neutrons at the R2 reactor in Studsvik has been reconstructed. The design and the performance of the instrument are briefly described. Improvements required for measurement of the neutron scattering function of liquid 3 He are discussed. (author)

  8. Perseus A in Flight with Moon

    Science.gov (United States)

    1994-01-01

    The Perseus A, a remotely-piloted, high-altitude research aircraft, is seen here framed against the moon and sky during a research mission at the Dryden Flight Research Center, Edwards, California in August 1994. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  9. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    Science.gov (United States)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  10. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    SHAPIRO, S.M.; ZALIZNYAK, I.A.

    2002-01-01

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  11. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  12. A Method to Identify Flight Obstacles on Digital Surface Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min; LIN Xinggang; SUN Shouyu; WANG Youzhi

    2005-01-01

    In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. The relationship between an isolated obstacle size and the intervals of vertical- and cross-section in the DSM model is established. The definition and classification of isolated obstacles are proposed, and a method for determining such isolated obstacles in the DSM model is given. The simulation of a typical urban district shows that when the vertical- and cross-section DSM intervals are between 3 m and 25 m, the threat to terrain-following flight at low-altitude is reduced greatly, and the amount of data required by the DSM model for monitoring in real time a flying vehicle is also smaller. Experiments show that the optimal results are for an interval of 12.5 m in the vertical- and cross-sections in the DSM model, with a 1:10 000 DSM scale grade.

  13. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    Science.gov (United States)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  14. When Safe Proved Risky: Commercial Paper during the Financial Crisis of 2007-2009

    OpenAIRE

    Marcin Kacperczyk; Philipp Schnabl

    2010-01-01

    Commercial paper is a short-term debt instrument issued by large corporations. The commercial paper market has long been viewed as a bastion of high liquidity and low risk. But twice during the financial crisis of 2007-2009, the commercial paper market nearly dried up and ceased being perceived as a safe haven. Major interventions by the Federal Reserve, including large outright purchases of commercial paper, were eventually used to support both issuers of and investors in commercial paper. W...

  15. Conceptual design report for tank farm restoration and safe operations, project W-314

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  16. Control and Non-Payload Communications Generation 1 Prototype Radio Flight Test Report

    Science.gov (United States)

    Shalkhauser, Kurt A.; Young, Daniel P.; Bretmersky, Steven C.; Ishac, Joseph A.; Walker, Steven H.; Griner, James H.; Kachmar, Brian A.

    2014-01-01

    regularity of flight. Only recently has radiofrequency (RF) spectrum been allocated by the International Telecommunications Union specifically for commercial UA C2, LOS communication (L-Band: 960 to 1164 MHz, and C-Band: 5030 to 5091 MHz). The safe and efficient integration of UA into the NAS requires the use of protected RF spectrum allocations and a new data communications system that is both secure and scalable to accommodate the potential growth of these new aircraft. Data communications for UA-referred to as control and non-payload communications (CNPC)-will be used to exchange information between a UA and a ground station (GS) to ensure safe, reliable, and effective UA flight operation. The focus of this effort is on validating and allocating new RF spectrum and data link communications to enable civil UA integration into the NAS. Through a cost-sharing cooperative agreement with Rockwell Collins, Inc., the NASA Glenn Research Center is exploring and performing the necessary development steps to realize a prototype UA CNPC system. These activities include investigating signal waveforms and access techniques, developing representative CNPC radio hardware, and executing relevant testing and validation activities. There is no intent to manufacture the CNPC end product, rather the goals are to study, demonstrate, and validate a typical CNPC system that will allow safe and efficient communications within the L-Band and C-Band spectrum allocations. The system is addressing initial "seed" requirements from RTCA, Inc., Special Committee 203 (SC-203) and is on a path to Federal Aviation Administration certification. This report provides results from the flight testing campaign of the Rockwell Collins Generation 1 prototype radio, referred hereafter as the "radio." The radio sets operate within the 960- to 977-MHz frequency band with both air and ground radios using identical hardware. Flight tests involved one aircraft and one GS. Results include discussion of aircraft flight

  17. Study protocol. IDUS - Instrumental delivery & ultrasound: a multi-centre randomised controlled trial of ultrasound assessment of the fetal head position versus standard care as an approach to prevent morbidity at instrumental delivery.

    LENUS (Irish Health Repository)

    Murphy, Deirdre J

    2012-01-01

    Instrumental deliveries are commonly performed in the United Kingdom and Ireland, with rates of 12 - 17% in most centres. Knowing the exact position of the fetal head is a pre-requisite for safe instrumental delivery. Traditionally, diagnosis of the fetal head position is made on transvaginal digital examination by delineating the suture lines of the fetal skull and the fontanelles. However, the accuracy of transvaginal digital examination can be unreliable and varies between 20% and 75%. Failure to identify the correct fetal head position increases the likelihood of failed instrumental delivery with the additional morbidity of sequential use of instruments or second stage caesarean section. The use of ultrasound in determining the position of the fetal head has been explored but is not part of routine clinical practice.

  18. Feasibility of Determining Aerodynamic Coefficients for a NASA Apollo Body With the Use of Telemetry Data From Free Flight Range Testing

    National Research Council Canada - National Science Library

    Topper, Benjamin; Brown, T. G; Bukowski, Edward; Davis, Bradford S; Hall, Rex A; Muller, Peter C; Vong, Timothy T; Brandon, Fred J

    2007-01-01

    ... s) Langley Research Center to perform a free-flight experiment with telemetry (TM) instrumented sub-scaled re-entry vehicle in order to determine the feasibility of using TM to obtain aerodynamic coefficients...

  19. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    Science.gov (United States)

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  20. Data acquisition system for a positron tomograph using time-of-flight information

    International Nuclear Information System (INIS)

    Bertin, Francois.

    1981-12-01

    Progress in nuclear instrumentation has led to the development of scintillators much faster than the NaI crystal traditionally used in nuclear medicine. As a result it is now possible to measure time-of-flight, i.e. the time between the arrival of two γ rays emitted in coincidence on two detectors. With this extra information the β + annihilation site may be located. The introduction of time-of-flight in tomographic techniques called for research along two lines: - ''theoretical'' research leading to the creation of a new image reconstruction algorithm taking into account time-of-flight information - applied research leading to the development of an efficient measurement line and sophisticated data acquisition and processing electronics. This research has been carried out at LETI and is briefly outlined in chapter I. Chapter II shows how the introduction of time-of-flight and the modification of the reconstruction algorithm complicate the electronic and informatic equipment of the tomograph. Several acquisition and processing strategies are proposed, then the need to use an intermediate mass storage and hence to design a complex acquisition operator is demonstrated. Chapter III examines the structure of the acquisition operator and the resulting block diagram is presented in detail in chapter IV [fr

  1. Radiation measurement of civil air flight

    International Nuclear Information System (INIS)

    Winter, M.

    1999-01-01

    In order to aquire knowledge of the radiation exposure of civil aircrew members in common flight altitudes, it was necessary to develop a practicable measurement system. Radiation exposure was hereby estimated by using the ACREM-System, which is patented by the Austrian Research Centres Seibersdorf (OEFZS). Total Equivalent Dose could be estimated in a simple way by combining a measured component of the radiation field in flight altitudes and the results of simulation with LUIN 94 particle transport code (Keran O'Brian). To verify the results of the measurement system, a tissue equivalent proportional counter (TEPC) was used. Because of the difficult measurement conditions in cargo airplanes, special attention had to be taken to make the measurement equipment easy to use and transport. Special software has been developed to automate the measurement and the evaluation of the large amount of collected data. Measurements in standard calibration photon fields for the characterization of the equipment could be performed at the Primary Dosimetry Laboratory for Austria at the Austrian Research Centre (OEFZS) in Seibersdorf. Additional measurements were performed at Physikalisch Technische Bundesanstalt Braunschweig (PTB, Germany) and Paul Scherer Institute (PSI, Switzerland) to determine the reponse of the instruments to high energy photon and standard neutron fields. (author)

  2. Our experience with a new instrument for laparoscopic gallbladder extraction, the "Bergetrokar".

    Science.gov (United States)

    Höferlin, A; Höhle, K D

    1993-01-01

    Laparoscopic cholecystectomy has become a standardized technique within the last years. However, the extraction of the stone-filled gallbladder often becomes a time-consuming and difficult part of the operation. We have developed a new instrument for quick and safe extraction of the stone-filled gallbladder. The instrument, called "Bergetrokar", is a trocar cannula with a trumpet valve and cone-shaped tip which can be spread. The application of this device is simple. After using the "Bergetrokar" in about 180 cases we have not observed any perforation of the gallbladder or loss of stones. Extraction times were reduced.

  3. Development of grazing incidence devices for space-borne time of flight mass spectrometry

    Science.gov (United States)

    Cadu, A.; Devoto, P.; Louarn, P.; Sauvaud, J.-A.

    2012-04-01

    Time of flight mass spectrometer is widely used to study space plasmas in planetary and solar missions. This space-borne instrument selects ions in function of their energy through an electrostatic analyzer. Particles are then post-accelerated to energies in the range of 20 keV to cross a carbon foil. At the foil exit, electrons are emitted and separated from ion beam in the time of flight section. A first detector (a Micro-Channel Plate or MCP) emits a start signal at electron arrival and a second one emits a stop signal at incident ion end of path. The time difference gives the speed of the particle and its mass can be calculated, knowing its initial energy. However, current instruments suffer from strong limitations. The post acceleration needs very high voltage power supplies which are heavy, have a high power consumption and imply technical constraints for the development. A typical instrument weighs from 5 to 6 kg, includes a 20 kV power supply, consumes a least 5 W and encounters corona effect and electrical breakdown problems. Moreover, despite the particle high energy range, scattering and straggling phenomena in the carbon foil significantly reduce the instrument overall resolution. Some methods, such as electrostatic focus lenses or reflectrons, really improve mass separation but global system efficiency remains very low because of the charge state dependence of such devices. The main purpose of our work is to replace carbon foil by grazing incidence MCP's - also known as MPO's, for Micro Pore Optics - for electron emission. Thus, incident particles would back-scatter onto the channel inner surface with an angle of a few degrees. With this solution, we can decrease dispersion sources and lower the power supplies to post accelerate ions. The result would be a lighter and simpler instrument with a substantial resolution improvement. We have first simulated MPO's behavior with TRIM and MARLOWE Monte-Carlo codes. Energy scattering and output angle computed

  4. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    , which are all tightly linked to the UAV flight controller hardware and software. The lack of standardization of flight controller architectures and the use of proprietary closed-source flight controllers on many UAV platforms, however, complicates this work: solutions developed for one flight controller...... may be difficult to port to another without substantial extra development and testing. Using open-source flight controllers mitigates some of these challenges and enables other researchers to validate and build upon existing research. This paper presents a survey of the publicly available open...

  5. Lessons Learned: Mechanical Component and Tribology Activities in Support of Return to Flight

    Science.gov (United States)

    Handschuh, Robert F.; Zaretsky, Erwin V.

    2017-01-01

    The February 2003 loss of the Space Shuttle Columbia resulted in NASA Management revisiting every critical system onboard this very complex, reusable space vehicle in a an effort to Return to Flight. Many months after the disaster, contact between NASA Johnson Space Center and NASA Glenn Research Center evolved into an in-depth assessment of the actuator drive systems for the Rudder Speed Brake and Body Flap Systems. The actuators are CRIT 1-1 systems that classifies them as failure of any of the actuators could result in loss of crew and vehicle. Upon further evaluation of these actuator systems and the resulting issues uncovered, several research activities were initiated, conducted, and reported to the NASA Space Shuttle Program Management. The papers contained in this document are the contributions of many researchers from NASA Glenn Research Center and Marshall Space Flight Center as part of a Lessons Learned on mechanical actuation systems as used in space applications. Many of the findings contained in this document were used as a basis to safely Return to Flight for the remaining Space Shuttle Fleet until their retirement.

  6. Safe Grid

    Science.gov (United States)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  7. On the Transition and Migration of Flight Functions in the Airspace System

    Science.gov (United States)

    Morris, Allan Terry; Young, Steve D.

    2012-01-01

    Since 400 BC, when man first replicated flying behavior with kites, up until the turn of the 20th century, when the Wright brothers performed the first successful powered human flight, flight functions have become available to man via significant support from man-made structures and devices. Over the past 100 years or so, technology has enabled several flight functions to migrate to automation and/or decision support systems. This migration continues with the United States NextGen and Europe s Single European Sky (a.k.a. SESAR) initiatives. These overhauls of the airspace system will be accomplished by accommodating the functional capabilities, benefits, and limitations of technology and automation together with the unique and sometimes overlapping functional capabilities, benefits, and limitations of humans. This paper will discuss how a safe and effective migration of any flight function must consider several interrelated issues, including, for example, shared situation awareness, and automation addiction, or over-reliance on automation. A long-term philosophical perspective is presented that considers all of these issues by primarily asking the following questions: How does one find an acceptable level of risk tolerance when allocating functions to automation versus humans? How does one measure or predict with confidence what the risks will be? These two questions and others will be considered from the two most-discussed paradigms involving the use of increasingly complex systems in the future: humans as operators and humans as monitors.

  8. Instrument development for materials science research at WNR

    International Nuclear Information System (INIS)

    Eckert, J.; Silver, R.N.; Soper, A.; Vergamini, P.J.; Goldstone, J.; Larson, A.; Seeger, P.A.; Yarnell, J.

    1980-01-01

    The neutron scattering program at the Los Alamos spallation neutron source is based on the operational WNR facility which provides up to 11 μA of 800 MeV protons to a target in pulse widths up to 8 μs at 120 Hz. The immediate goals of the program are: to gain experience with neutron instrumentation at spallation neutron sources; and to explore the scientific potential for condensed matter research at these sources. The proton storage ring (PSR) funded for construction will provide 100 μA in 0.27 μs pulses at 12 Hz, therefore greatly improving intensity, time-of-flight (TOF) resolution, and repetition rate. The initial emphasis, given limited manpower and resources, has been placed on developing a set of prototype instruments which are relatively easy to implement and which take advantage of the unique characteristics of the present WNR when compared with reactor neutron sources

  9. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  10. Predictor Development and Pilot Testing of a Prototype Selection Instrument for Army Flight Training

    Science.gov (United States)

    2007-02-01

    called the Automated Pilot Examination System, or "APEX") during the preliminary validation reserach . The current version of the ASTB includes subtests... methodology described in this report will be used to produce a scientifically sound instrument to predict the likelihood that individuals will successfully

  11. Planck early results. III. First assessment of the Low Frequency Instrument in-flight performance

    DEFF Research Database (Denmark)

    Poutanen, T.; Lähteenmäki, A.; León-Tavares, J.

    2011-01-01

    The scientific performance of the Planck Low Frequency Instrument (LFI) after one year of in-orbit operation is presented. We describe the main optical parameters and discuss photometric calibration, white noise sensitivity, and noise properties. A preliminary evaluation of the impact of the main...

  12. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    Science.gov (United States)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  13. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  14. Implementasi Prototype Alat Uji Flight Control Actuator Pesawat Berbasis Mikrokontroller Arduino Uno

    Directory of Open Access Journals (Sweden)

    NANDANG TARYANA

    2017-07-01

    Full Text Available ABSTRAKFlight control system merupakan suatu sistem di pesawat udara yang digunakan untuk manuver dari satu kondisi terbang ke kondisi terbang lainnya. Alat uji flight control actuator pesawat ini dirancang berupa prototype yang dikendalikan dengan menggunakan mikrokontroller arduino uno, yang terdiri dari input dan output. Input tersebut adalah sensor load cell yang berfungsi untuk mengetahui beban yang diterima dari aktuator pesawat, serta input sensor ping berfungsi untuk mengetahui jarak ataupun sudut dari pergerakan aktuator pesawat. Sedangkan output yang dihasilkan berupa data dari hasil pembacaan sensor load cell dan sensor ping. Alat uji flight control sistem aktuator pesawat yang telah direalisasikan mampu menggerakkan 2 buah double acting cylinder untuk bekerja naik dan turun secara bergantian serta mampu menggerakkan motor servo dengan jarak pergerakkan 3 cm – 4 cm.Kata kunci: Flight control system, Arduino Uno, double acting cylinder, Sensor Ping, Load Cell, Motor ServoABSTRACTFlight control system is a system in which aircraft are used to maneuver from one condition to fly to other flight conditions. Testing instruments aircraft flight control actuator designed a prototype of which is controlled by using microcontroller arduino uno, which consists of input and output. The input is a load cell sensor that serves to determine the load received from aircraft actuators, as well as ping sensor input is used to determine the distance or angle of the aircraft actuator movement . While the output of the data from the load cell sensor readings and sensor ping . Test equipment aircraft flight control actuator system that has been realized is able to move two pieces of double acting cylinder to work up and down alternately and able to drive the servo motor with the movement distance of 3 cm – 4 cm . Keywords: Flight control system , Arduino Uno , double acting cylinder , Ping Sensor, Load Cell, Servo Motor 

  15. Radiation protection and safety guide no. GRPB-G-5: safe use of x-rays

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1998-01-01

    If properly utilized, the use of x-rays can be instrumental in the improvement of the health and welfare of the public. This regulatory guide was developed to assist and encourage registrants in the safe and constructive use of x-rays and to prohibit and prevent exposure to ionizing radiation in amounts which are or may be detrimental to health. The present guide applies to the use of x-rays for diagnostic, therapeutic, and non medical purposes

  16. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  17. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    Science.gov (United States)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    , and sends the command to the GCE at 5 Hz. This command contains the number of gimbals steps for that ACS cycle, the direction of motion, the spacing of the steps, and the delay before taking the first step. The AIA and HMI instruments are sensitive to spacecraft jitter. Pre-flight analysis showed that jitter from the motion of the HGAs was a cause of concern. Three jitter mitigation techniques were developed to overcome the effects of jitter from different sources. The first method is the random step delay, which avoids gimbal steps hitting a cadence on a jitter-critical mode by pseudo-randomly delaying the first gimbal step in an ACS cycle. The second method of jitter mitigation is stagger stepping, which forbids the two antennas from taking steps during the same ACS cycle in order to avoid constructively adding jitter from two antennas. The third method is the inclusion of an instrument No Step Request (NSR), which allows the instruments to request a stoppage in gimbal stepping during the times when they are taking images. During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft. Various sources of jitter, such as the reaction wheels, the High Gain Antenna motors, and the motion of the instrument filter wheels, were examined to determine the level of their effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. These jitter levels are compared with the gimbal jitter allocations for each instrument. Additionally, the jitter test provided insight into a readback delay that exists with the GCE. Pre-flight analysis suggested that gimbal steps scheduled to occur during the later portion of an ACS cycle would not be read during that cycle, resulting in a delay in the telemetered current gimbal position. Flight data from the jitter test confirmed this expectation. Analysis is

  18. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Roth, S.V.; Zirkel, A.; Neuhaus, J.; Petry, W.; Bossy, J.; Peters, J.; Schober, H.

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid 4 He for the two respective (q,ω) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  19. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    CERN Document Server

    Roth, S V; Neuhaus, J; Petry, W; Bossy, J; Peters, J; Schober, H

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid sup 4 He for the two respective (q,omega) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  20. Conduction cooled compact laser for chemcam instrument

    Science.gov (United States)

    Faure, B.; Saccoccio, M.; Maurice, S.; Durand, E.; Derycke, C.

    2017-11-01

    A new conduction cooled compact laser for Laser Induced Breakdown Spectroscopy (LIBS) on Mars is presented. The laser provides pulses with energy higher than 30mJ at 1μm of wavelength with a good spatial quality. Three development prototypes of this laser have been built and functional and environmental tests have been done. Then, the Qualification and Flight models have been developed and delivered. A spare model is now developed. This laser will be mounted on the ChemCam Instrument of the NASA mission MSL 2009. ChemCam Instrument is developed in collaboration between France (CESR and CNES) and USA (LANL). The goal of this Instrument is to study the chemical composition of Martian rocks. A laser source (subject of this presentation) emits a pulse which is focused by a telescope. It creates a luminous plasma on the rock; the light of this plasma is then analysed by three spectrometers to obtain information on the composition of the rock. The laser source is developed by the French company Thales Laser, with a technical support from CNES and CESR. This development is funded by CNES. The laser is compact, designed to work in burst mode. It doesn't require any active cooling.

  1. Examination of Frameworks for Safe Integration of Intelligent Small UAS into the NAS

    Science.gov (United States)

    Logan, Michael J.

    2012-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper briefly examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine "classes" of platforms and operations. A framework for categorization of the "intelligence" level of the UAS is postulated for purposes of NAS integration. Finally, constraints on the intelligent systems are postulated to ensure their ease of integration into the NAS.

  2. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  3. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  4. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    Science.gov (United States)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  5. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  6. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  7. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed

  8. Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance

    Science.gov (United States)

    Ratnayake, Nalin A.

    2009-01-01

    Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of

  9. Flying the Needles: Flight Deck Automation Erodes Fine-Motor Flying Skills Among Airline Pilots.

    Science.gov (United States)

    Haslbeck, Andreas; Hoermann, Hans-Juergen

    2016-06-01

    The aim of this study was to evaluate the influence of practice and training on fine-motor flying skills during a manual instrument landing system (ILS) approach. There is an ongoing debate that manual flying skills of long-haul crews suffer from a lack of flight practice due to conducting only a few flights per month and the intensive use of automation. However, objective evidence is rare. One hundred twenty-six randomly selected airline pilots had to perform a manual flight scenario with a raw data precision approach. Pilots were assigned to four equal groups according to their level of practice and training by fleet (short-haul, long-haul) and rank (first officer, captain). Average ILS deviation scores differed significantly in relation to the group assignments. The strongest predictor variable was fleet, indicating degraded performance among long-haul pilots. Manual flying skills are subject to erosion due to a lack of practice on long-haul fleets: All results support the conclusion that recent flight practice is a significantly stronger predictor for fine-motor flying performance than the time period since flight school or even the total or type-specific flight experience. Long-haul crews have to be supported in a timely manner by adequate training tailored to address manual skills or by operational provisions like mixed-fleet flying or more frequent transitions between short-haul and long-haul operation. © 2016, Human Factors and Ergonomics Society.

  10. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Science.gov (United States)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  11. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  12. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  13. Een helpende hand bij snelhedenbeleid gericht op veiligheid en geloofwaardigheid : eerste aanzet voor een beslissingsondersteunend instrument voor veilige snelheden en geloofwaardige snelheidslimieten.

    NARCIS (Netherlands)

    Aarts, L.T. & Nes, C.N. van

    2008-01-01

    One of the Dutch regions asked SWOV to help with the development of a decision-support instrument for safe speeds and credible speed limits, hence abbreviated to SSCS. This report describes an initial impetus to the functioning of this instrument which is yet to be developed: the SSCS model. The

  14. Academic Training Lectures | Instrumentation | 12-14 November

    CERN Multimedia

    2014-01-01

    Instrumentation (1, 2 & 3) by Rhodri Jones (CERN)   Wednesday 12, Thursday 13 and Friday 14 November from 11:00 to 12:00 at CERN (40-S2-A01 - Salle Anderson) Description: The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades. ...

  15. Haptic-Multimodal Flight Control System Update

    Science.gov (United States)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2011-01-01

    The rapidly advancing capabilities of autonomous aircraft suggest a future where many of the responsibilities of today s pilot transition to the vehicle, transforming the pilot s job into something akin to driving a car or simply being a passenger. Notionally, this transition will reduce the specialized skills, training, and attention required of the human user while improving safety and performance. However, our experience with highly automated aircraft highlights many challenges to this transition including: lack of automation resilience; adverse human-automation interaction under stress; and the difficulty of developing certification standards and methods of compliance for complex systems performing critical functions traditionally performed by the pilot (e.g., sense and avoid vs. see and avoid). Recognizing these opportunities and realities, researchers at NASA Langley are developing a haptic-multimodal flight control (HFC) system concept that can serve as a bridge between today s state of the art aircraft that are highly automated but have little autonomy and can only be operated safely by highly trained experts (i.e., pilots) to a future in which non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform a variety of missions. This paper reviews the motivation and theoretical basis of the HFC system, describes its current state of development, and presents results from two pilot-in-the-loop simulation studies. These preliminary studies suggest the HFC reshapes human-automation interaction in a way well-suited to revolutionary ease-of-use.

  16. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    Jorgensen, J.D.

    1994-01-01

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  17. Time lens for high-resolution neutron time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Baumann, K.; Gaehler, R.; Grigoriev, P.; Kats, E.I.

    2005-01-01

    We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time magnification, the evolution of the phase-space element, the gain factor, and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time-of-flight instruments from pinhole to imaging configuration in time, thus enhancing intensity and/or time resolution. Further fields of application for high-resolution spectrometry may be opened

  18. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Thomas, Ken [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  19. The development of a time of flight diffractometer, FIONA

    International Nuclear Information System (INIS)

    Goodyear, A.G.; Miller, R.J.R.

    1975-11-01

    A neutron diffractometer, FIONA, has been built at AWRE in order to study structure and equation of state data of materials at high pressures and elevated temperatures. It is required that the sample should be subjected to pressures up to 60 kbar and temperatures up to 800 0 K. There is a further requirement that the diffractometer should have a multi-detector system to make the maximum use of the neutrons available from the 5 MW HERALD reactor. Both these requirements can be met by using a time of flight diffractometer. The instrument is described. (author)

  20. The Consequences of Subsequent Exposures of Mild and Moderate Hypoxia on the Flight Profile

    Science.gov (United States)

    2016-12-15

    separate occasions, experiencing a different exposure profile each visit. Visits were scheduled a minimum of 48 hours apart in order to ensure that...One of the main limitations that complicated interpretation of our results was the fact that our counterbalancing scheme was altered due to...Workman, A., Evans, R., & Dillon, N. (2009). The effects of sleep deprivation on flight performance, instrument scanning, and physiological arousal

  1. Testing the Solar Probe Cup, an Instrument Designed to Touch the Sun

    Science.gov (United States)

    Whittlesey, Phyllis L.; Case, Anthony W.; Kasper, Justin Christophe; Wright, Kenneth H., Jr.; Alterman, Ben; Cirtain, Jonathan W.; Bookbinder, Jay; Korreck, Kelly E.; Stevens, Michael Louis

    2014-01-01

    Solar Probe Plus will be the first, fastest, and closest mission to the sun, providing the first direct sampling of the sub-Alfvenic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  2. The 5th questionnaire report of safety control on instrument in nuclear medicine laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The questionnaire was done every three years from 1986 for the ultimate purpose of safe medical examinations and this 5th one was performed in May, 1998 for the period of April, 1995-March, 1998. Subjects were 1,258 nuclear medicine facilities and answers were obtained in 81.6%. Questionnaire concerned the personnel involved in nuclear medical examinations, instruments, accidents occurred, matters possibly leading to accident, improvement in safety control, serious trouble and breakage of the instrument, request for the instrument manufacturers and so on. Summaries were: numbers of medical radiology technicians were increased, in vitro tests were decreased, SPECT instruments came into wide use, in accident and improvement cases, examination beds were arousing much interest, concerns to examine were further required, communication with the manufacturers was insufficient, and problems for Y2K were pointed out to be resolved. (K.H.)

  3. A new approach for accurate mass assignment on a multi-turn time-of-flight mass spectrometer.

    Science.gov (United States)

    Hondo, Toshinobu; Jensen, Kirk R; Aoki, Jun; Toyoda, Michisato

    2017-12-01

    A simple, effective accurate mass assignment procedure for a time-of-flight mass spectrometer is desirable. External mass calibration using a mass calibration standard together with an internal mass reference (lock mass) is a common technique for mass assignment, however, using polynomial fitting can result in mass-dependent errors. By using the multi-turn time-of-flight mass spectrometer infiTOF-UHV, we were able to obtain multiple time-of-flight data from an ion monitored under several different numbers of laps that was then used to calculate a mass calibration equation. We have developed a data acquisition system that simultaneously monitors spectra at several different lap conditions with on-the-fly centroid determination and scan law estimation, which is a function of acceleration voltage, flight path, and instrumental time delay. Less than 0.9 mDa mass errors were observed for assigned mass to charge ratios ( m/z) ranging between 4 and 134 using only 40 Ar + as a reference. It was also observed that estimating the scan law on-the-fly provides excellent mass drift compensation.

  4. Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation

    Science.gov (United States)

    Wadhams, T. P.; Holden, M. S.; MacLean, M. G.; Campbell, Charles

    2010-01-01

    In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed

  5. Instrument calibration optimization at Bruce Power: ECI loops

    International Nuclear Information System (INIS)

    Chugh, V.; Angelova, M.; Ghias, S.; Parmar, R.; Wang, V.; Xie, H.; Higgs, J.; Schut, J.; Cruchley, I.

    2011-01-01

    Most instruments in a nuclear power plant are calibrated at regular intervals to ensure consistency with the assumptions in the plant Technical Specifications and/or Safe Operating Envelope (SOE) compliance limits (e.g., As-Found Tolerance). In the Instrument Uncertainty Calculations (IUC), As-Found Tolerance for instrument drift is estimated based on statistical analysis of As-Found and As-Left calibration data such as that carried out for Bruce NGS by EPRI (Electric Power Research Institute) in 1998. Bruce specific drift values were found to compare favorably with industry benchmarks. Recently a significant amount of work has been done by EPRI and IAEA (International Atomic Energy Agency) on extending calibration intervals of safety related instruments. Reduction in calibration frequency reduces time commitments on the part of Authorized Nuclear Operators and safety system qualified Control Maintenance Technicians, and allows more schedule flexibility. To establish the proof of concept, As-Left/As-Found tolerances and available margins have been evaluated for the Bruce B Emergency Coolant Injection (ECI) system instrument loops to determine whether an extension of the calibration period from one or two year to three years is justifiable on the basis that these loops will still be in compliance with SOE. The analysis showed that 60% of instruments in the ECI system are qualified for calibration interval extension up to three years. Sensitivity assessment of the effect of proposed changes in calibration intervals for 60% of the instruments on the ECI system unavailability has also been performed using the current Bruce Power ECI unavailability model. The results show that, the largest ECI Predicted Future Unavailability (PFU) is 9.2E-4 year/year for in-core LOCA accident. This value is still below the target unavailability of 1.0E-3 year/year. (author)

  6. Instrument calibration optimization at Bruce Power: ECI loops

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, V.; Angelova, M.; Ghias, S.; Parmar, R.; Wang, V.; Xie, H. [AMEC NSS, Toronto, Ontario (Canada); Higgs, J.; Schut, J.; Cruchley, I. [Bruce Power, Tiverton, Ontario (Canada)

    2011-07-01

    Most instruments in a nuclear power plant are calibrated at regular intervals to ensure consistency with the assumptions in the plant Technical Specifications and/or Safe Operating Envelope (SOE) compliance limits (e.g., As-Found Tolerance). In the Instrument Uncertainty Calculations (IUC), As-Found Tolerance for instrument drift is estimated based on statistical analysis of As-Found and As-Left calibration data such as that carried out for Bruce NGS by EPRI (Electric Power Research Institute) in 1998. Bruce specific drift values were found to compare favorably with industry benchmarks. Recently a significant amount of work has been done by EPRI and IAEA (International Atomic Energy Agency) on extending calibration intervals of safety related instruments. Reduction in calibration frequency reduces time commitments on the part of Authorized Nuclear Operators and safety system qualified Control Maintenance Technicians, and allows more schedule flexibility. To establish the proof of concept, As-Left/As-Found tolerances and available margins have been evaluated for the Bruce B Emergency Coolant Injection (ECI) system instrument loops to determine whether an extension of the calibration period from one or two year to three years is justifiable on the basis that these loops will still be in compliance with SOE. The analysis showed that 60% of instruments in the ECI system are qualified for calibration interval extension up to three years. Sensitivity assessment of the effect of proposed changes in calibration intervals for 60% of the instruments on the ECI system unavailability has also been performed using the current Bruce Power ECI unavailability model. The results show that, the largest ECI Predicted Future Unavailability (PFU) is 9.2E-4 year/year for in-core LOCA accident. This value is still below the target unavailability of 1.0E-3 year/year. (author)

  7. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts

  8. The ENVISAT Atmospheric Chemistry mission (GOMOS, MIPAS and SCIAMACHY) -Instrument status and mission evolution

    Science.gov (United States)

    Dehn, Angelika

    The ENVISAT ESA's satellite was launched on a polar orbit on March 2002. It carries on-board three atmospheric chemistry instruments: GOMOS, MIPAS and SCIAMACHY [1]. At the present time, although the mission expected lifetime of 5 years has been already exceeded, all the payload modules are in good to excellent status. The only limiting factor is the available fuel that is used for orbit control manoeuvre. A new strategy was proposed [2] that will allow to save fuel and to extend the mission up to 2013. Following this strategy, the altitude of the orbit will be lowered by 17 km starting from end of 2010 and the inclination will be allowed to drift. The new orbit scenario will result in a new repeating cycle with a variation of the Mean Local Solar Time (MLST). This will have an impact on both the in-flight operations, on the science data and on the mission. The simulations carried out for the atmospheric chemistry instruments show that the new orbit strategy will neither have a significant impact in the instrument operations nor on the quality of the science data. Therefore we expect that the atmospheric mission will continue nominally until the end of the platform life time, providing to the scientist a unique dataset of the most important geophysical parameters (e.g., trace gases, clouds, and aerosol) spanning a time interval of about 11 years. The aim of this paper is to review the overall ENVISAT atmospheric mission status for the past, present and future. The evolution of the instrument performances since launch will be analyzed with focus on the life-limited items monitoring. The tuning of the instrument in-flight operations decided to cope with instrument degradation or scientific needs will be described. The lessons learned on how to operate and monitor the instruments will be highlighted. Finally the expected evolution of the instrument performances until the ENVISAT end-of-life will be discussed. [1] H. Nett, J. Frerick, T. Paulsen, and G. Levrini, "The

  9. The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18

    Science.gov (United States)

    Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; hide

    1999-01-01

    This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.

  10. High Accuracy Tracking of Space-Borne Non-Cooperative Targets

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang

    for the spacecraft to navigate safely and autonomously towards the target. These methods are applied on three distinct study cases, which are based on the platform of the microASC instrument. In relation to the Mars2020 rover, a structured light system is used to navigate the PIXL instrument towards the Martian...... surface, whose objective is to seek evidence of ancient life in the form of chemical biosignatures. The structured light is a subsystem of the PIXL instrument consisting of two active lasers and an imager. The structured light makes use of active triangulation to support a safe approach towards...... team and processing of the captured data was recognized with two Group Achievement Awards from the National Aeronautics and Space Administration. With today's advancement in autonomy, the focus is set on in-flight tracking of a non-cooperative artificial satellite with the end goal of capturing...

  11. Are Detox Diets Safe?

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Are Detox Diets Safe? KidsHealth / For Teens / Are Detox Diets ... seguras las dietas de desintoxicación? What Is a Detox Diet? The name sounds reassuring — everyone knows that ...

  12. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  13. Safe management of radioactive waste in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2000-01-01

    The Ghana Atomic Energy Commission was established in 1963 by an Act of Parliament, Act 204 for the Promotion, Development and Peaceful Application of Nuclear Techniques for the Benefit of Ghana. As in many developing countries the use of nuclear application is growing considerably in importance within the national economy. The Radiation Protection Board was established as the national regulatory authority and empowered by the Radiation Protection Instrument LI 1559 (1993). The above regulations, Act 204 and LI 1559 provided a minimum legal basis for regulatory control of radioactive waste management as it deals with waste management issues in a very general way and is of limited practical use to the waste producer. Hence the National Radioactive Waste Management Centre was established in July 1995 to carry out waste safety operations in Ghana. This paper highlights steps that have been taken to develop a systemic approach for the safe management of radioactive waste in the future and those already in existence. (author)

  14. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    Science.gov (United States)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .tests, the point kinetics model was based on core thermal expansion via deflection measurements. It was found that core deflection was a strung function of how the SAFE-100 modules were fabricated and assembled (in terms of straightness, gaps, and other tolerances). To remove the added variable of how this particular core expands as compared to a different concept, it was decided to use a temperature based feedback model (based on several thermocouples placed throughout the core).

  15. Toward Direct Reaction-in-Flight Measurements

    Science.gov (United States)

    Wilhelmy, Jerry; Bredeweg, Todd; Fowler, Malcolm; Gooden, Matthew; Hayes, Anna; Rusev, Gencho; Caggiano, Joseph; Hatarik, Robert; Henry, Eugene; Tonchev, Anton; Yeaman, Charles; Bhike, Megha; Krishichayan, Krishi; Tornow, Werner

    2016-03-01

    At the National Ignition Facility (NIF) neutrons having energies greater than the equilibrium 14.1 MeV value can be produced via Reaction-in-Flight (RIF) interactions between plasma atoms and upscattered D or T ions. The yield and spectrum of these RIF produced neutrons carry information on the plasma properties as well as information on the stopping power of ions under plasma conditions. At NIF the yield of these RIF neutrons is predicted to be 4-7 orders of magnitude below the peak 14 MeV neutron yield. The current generation of neutron time of flight (nTOF) instrumentation has so far been incapable of detecting these low-yield neutrons primarily due to high photon backgrounds. To date, information on RIF neutrons has been obtained in integral activation experiments using reactions with high energy thresholds such as 169Tm(n,3n)167Tm and 209Bi(n,4n) 206Bi. Initial experiments to selectively suppress photon backgrounds have been performed at TUNL using pulsed monoenergetic neutron beams of 14.9, 18.5, 24.2, and 28.5 MeV impinging on a Bibenzyl scintillator. By placing 5 cm of Pb before the scintillator we were able to selectively suppress the photons from the flash occurring at the production target and enhance the n/_signal by ~6 times.

  16. A time-of-flight neutron reflectometer for surface and interfacial studies

    International Nuclear Information System (INIS)

    Penfold, J.; Ward, R.C.; Williams, W.G.

    1987-03-01

    A time-of-flight neutron reflectometer constructed for surface and interfacial studies, and installed at the ISIS pulsed neutron source, is described. One of its important design features is its inclined incident beam, since this allows both liquid and solid surface phenomena to be investigated. Measurements are presented to show the performance of the instrument, and new representative results, which include studies of liquid surfaces, Langmuir-Blodgett films, and thin film multilayers, are included as illustrations of the scientific potential of the method. (author)

  17. Electromagnetic Instrumentation for Exploration and the Environment: A Retrospective Look by Canada's Leading Manufacture

    Science.gov (United States)

    Catalano, M.

    2009-05-01

    Geonics Limited has a very rich and varied history. This talk will provide a historical perspective about how a few key individuals shaped the development of some of the world's most useful electromagnetic (EM) geophysical instrumentation. A brief review of these systems, including the science behind them, will showcase the evolution of each to the market place and emphasize how a combination of business savvy and a constant investment to research is what lead to a successful line of instrumentation. In 1950 a company called Aeromagnetic Surveys Ltd. was established that was considered "the largest and most diversified air- survey firm in the world" (FLIGHT, 1954), for its time. It employed Vaino Ronka and Alex Herz, young engineers, who patented several new EM technologies including an in-phase and quadrature towed bird helicopter EM system (the first commercial transistorized instrument). The two also set new standards for ground based horizontal loop EM systems and won several mining Blue Ribbon Awards. By the end of 1958, Mr. Ronka began offering independent design services for geophysical instruments and it became inevitable that one day he would form his own company. Geonics Limited was incorporated in 1962 by Vaino Ronka and Alex Herz and the EM-16 VLF receiver, first sold in 1965, became the first successful instrument. It's considered the best selling electrical geophysical tool of all-time and is still sold today by the same model name 44 years later. In 1974, the company was purchased by James Duncan McNeill, the former chief engineering physicist of Barringer Research Ltd. During his time as president of Geonics he was responsible for an explosion of new instruments from the 70's, 80's and into the 90's that permanently placed Geonics instruments in virtually every government environmental lab and consulting firm active in near-surface geophysics. His ability to foresee new problem areas and to define new roles that geophysical methods could play in a

  18. First Results of the aerogravity measurements during the geoscientific flight mission GEOHALO over Italy and the adjacent Mediterranean

    Science.gov (United States)

    Heyde, Ingo; Barthelmes, Franz; Scheinert, Mirko

    2013-04-01

    In June 2012 the first scientific flight mission was realized with the new German research aircraft HALO (High Altitude and Long Range Research Aircraft). For this geoscientific flight mission GEOHALO was equipped with geophysical-geodetic instrumentation to acquire data over the tectonically active region of Italy and the adjacent Medtiterranean. The Federal Institute for Geosciences and Resources (BGR) as a member of the "HALO geoscience group" operated the recently modernized KSS32-M aerogravity system. The instrumentation of the group partners consists of an additional gravimeter, vector and scalar magnetometers, a laser altimeter and GNSS equipment with zenith, sideward and nadir antennas. During four flights with duration of up to 10 hours, data along a total track length of 16150 kilometers were obtained. The mission flights started and ended at the special airfield Oberpfaffenhofen, near the compound of the German Aerospace Center (DLR). Eight parallel profiles running from north-west to south-east were flown in an altitude of about 3500 m. The length of each profile was about 1000 km with a line spacing of 40 km. The flight velocity on the survey lines amounted to approximately 450 km/h. Four crossing lines of about 300 km length and a profile at an altitude of about 10500 m along the same track as a line in the lower altitude completed the survey. The first results of the BGR aerogravity will be presented. To determine the free-air gravity anomalies from the measured gravimeter data a number of corrections have to be applied. For their calculation mainly high-precision position and velocity data are mandatory. The kinematic GPS data were combined with INS data. In addition to own GPS base station data from Oberpfaffenhofen, data of Italian GNSS stations were considered to improve the determination of the flight trajectory by differential GPS. The corrected gravity data are compared with the corresponding data from global gravity models. The free

  19. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  20. Safe Anesthesia For Every Tot

    DEFF Research Database (Denmark)

    Weiss, Markus; Vutskits, Laszlo; Hansen, Tom G

    2015-01-01

    PURPOSE OF REVIEW: The term 'safe use of anesthesia in children is ill-defined and requires definition of and focus on the 'safe conduct of pediatric anesthesia'. RECENT FINDINGS: The Safe Anesthesia For Every Tot initiative (www.safetots.org) has been set up during the last year to focus...... on the safe conduct of pediatric anesthesia. This initiative aims to provide guidance on markers of quality anesthesia care. The introduction and implementation of national regulations of 'who, where, when and how' are required and will result in an improved perioperative outcome in vulnerable children....... The improvement of teaching, training, education and supervision of the safe conduct of pediatric anesthesia are the main goals of the safetots.org initiative. SUMMARY: This initiative addresses the well known perioperative risks in young children, perioperative causes for cerebral morbidity as well as gaps...

  1. In-flight wind identification and soft landing control for autonomous unmanned powered parafoils

    Science.gov (United States)

    Luo, Shuzhen; Tan, Panlong; Sun, Qinglin; Wu, Wannan; Luo, Haowen; Chen, Zengqiang

    2018-04-01

    For autonomous unmanned powered parafoil, the ability to perform a final flare manoeuvre against the wind direction can allow a considerable reduction of horizontal and vertical velocities at impact, enabling a soft landing for a safe delivery of sensible loads; the lack of knowledge about the surface-layer winds will result in messing up terminal flare manoeuvre. Moreover, unknown or erroneous winds can also prevent the parafoil system from reaching the target area. To realize accurate trajectory tracking and terminal soft landing in the unknown wind environment, an efficient in-flight wind identification method merely using Global Positioning System (GPS) data and recursive least square method is proposed to online identify the variable wind information. Furthermore, a novel linear extended state observation filter is proposed to filter the groundspeed of the powered parafoil system calculated by the GPS information to provide a best estimation of the present wind during flight. Simulation experiments and real airdrop tests demonstrate the great ability of this method to in-flight identify the variable wind field, and it can benefit the powered parafoil system to fulfil accurate tracking control and a soft landing in the unknown wind field with high landing accuracy and strong wind-resistance ability.

  2. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    Science.gov (United States)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  3. Percutaneous nephrolithotomy is highly efficient and safe in infants and children under 3 years of age.

    Science.gov (United States)

    Guven, Selcuk; Istanbulluoglu, Okan; Ozturk, Ahmet; Ozturk, Bulent; Piskin, Mesut; Cicek, Tufan; Kilinc, Mehmet; Ozkardes, Hakan; Arslan, Mehmet

    2010-01-01

    We aimed to evaluate the efficacy and safety of percutaneous nephrolithotomy (PNL) in infants and small children (12-36 months). The PNL applications conducted in children PNL instrumentation was used in the first center, adult-size instrumentation was utilized in the second center. The complications were given according to the modified Clavien classification system. The mean age of the patients was 22.76 months (5-36 months) and the mean body weight was 11.51 kg (6-15 kg). In twelve renal units, pediatric instrumentation was used and among these, two had miniperc. In the other eight renal units, adult-size instrumentation was employed. Except for the patient with complex renal stones, all patients were stone free after the intervention and none required a conversion to open surgery. There were grade 1-2 complications in 3 patients. The postoperative hemoglobin drop was greater in the children who underwent PNL with adult-size instrumentation. In this young age group, in addition to standard PNL, simultaneous bilateral PNL, tubeless PNL and in urgent cases of renal failure, urgent PNL, are safe and effective treatment modalities provided patients are selected properly and the surgeon performing the procedure has the necessary experience. Copyright © 2010 S. Karger AG, Basel.

  4. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    Science.gov (United States)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  5. The third flight of the Colorado high-resolution echelle stellar spectrograph (CHESS): improvements, calibrations, and preliminary results

    Science.gov (United States)

    Kruczek, Nicholas; Nell, Nicholas; France, Kevin; Hoadley, Keri; Fleming, Brian; Kane, Robert; Ulrich, Stefan; Egan, Arika; Beatty, Dawson

    2017-08-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado HighResolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the third launch of the payload (CHESS-3). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) crossdispersing grating, and is designed to achieve a resolving power R > 100,000 over the bandpass λλ 1000-1600 Å. Results from final efficiency and reflectivity measurements for the optical components of CHESS-3 are presented. An important role of sounding rocket experiments is the testing and verification of the space flight capabilities of experimental technologies. CHESS-3 utilizes a 40mm-diameter cross-strip anode microchannel plate detector fabricated by Sensor Sciences LLC, capable of achieving high spatial resolution and a high global count rate (˜1 MHz). We present pre-flight laboratory spectra and calibration results, including wavelength solution and resolving power of the instrument. The fourth launch of CHESS (CHESS-4) will demonstrate a δ-doped CCD, assembled in collaboration with the Microdevices Laboratory at JPL and Arizona State University. In support of CHESS-4, the CHESS-3 payload included a photomultiplier tube, used as a secondary confirmation of the optical alignment of the payload during flight. CHESS-3 launched on 26 June 2017 aboard NASA/CU sounding rocket mission 36.323 UG. We present initial flight results for the CHESS-3 observation of the β1 Scorpii sightline.

  6. SuperAGILE onboard electronics and ground test instrumentation

    International Nuclear Information System (INIS)

    Pacciani, Luigi; Morelli, Ennio; Rubini, Alda; Mastropietro, Marcello; Porrovecchio, Geiland; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Lazzarotto, Francesco; Rapisarda, Massimo; Soffitta, Paolo

    2007-01-01

    In this paper we describe the electronics of the SuperAGILE X-ray imager on-board AGILE satellite and the instrumentation developed to test and improve the Front-End and digital electronics of the flight model of the imager. Although the working principle of the instrument is very well established, and the conceptual scheme simple, the budget and mechanical constraints of the AGILE small mission made necessary the introduction of new elements in SuperAGILE, regarding both the mechanics and the electronics. In fact the instrument is contained in a ∼44x44x16cm 3 volume, but the required performance is quite ambitious, leading us to equip a sensitive area of ∼1350cm 2 with 6144 Silicon μstrips detectors with a pitch of 121μm and a total length of ∼18.2cm. The result is a very light and power-cheap imager with a good sensitivity (∼15mCrab in 1 day in 15-45keV), high angular resolution (6arcmin) and gross spectral resolution. The test-equipment is versatile, and can be easily modified to test FEE based on self-triggered, data-driven and sparse-readout ASICs such as XA family chips

  7. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  8. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce Perry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  9. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  10. Progress towards a measurement of the UHE cosmic ray electron flux using the CREST Instrument

    Science.gov (United States)

    Musser, Jim; Wakely, Scott; Coutu, Stephane; Geske, Matthew; Nutter, Scott; Tarle, Gregory; Park, Nahee; Schubnell, Michael; Gennaro, Joseph; Muller, Dietrich

    2012-07-01

    Electrons of energy beyond about 3 TeV have never been detected in the flux of cosmic rays at Earth despite strong evidence of their presence in a number of supernova remnants (e.g., SN 1006). The detection of high energy electrons at Earth would be extremely significant, yielding information about the spatial distribution of nearby cosmic ray sources. With the Cosmic Ray Electron Synchrotron Telescope (CREST), our collaboration has adopted a novel approach to the detection of electrons of energies between 2 and 50 TeV which results in a substantial increase in the acceptance and sensitivity of the apparatus relative to its physics size. The first LDB flight of the CREST detector took place in January 2012, with a float duration of approximately 10 days. In this paper we describe the flight performance of the instrument, and progress in the analysis of the data obtained in this flight.

  11. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  12. The safe home project.

    Science.gov (United States)

    Arphorn, Sara; Jiraniratisai, Sopaphan; Rungtakul, Rungsri; Phutta, Nikom

    2011-12-01

    The Thai Health Promotion Foundation supported the Improvement of Quality of Life of Informal Workers project in Ban Luang District, Amphur Photaram, Ratchaburi Province. There were many informal workers in Ban Luang District. Sweet-crispy fish producers in Ban Luang were the largest group among the sweet-crispy fish producers in Thailand. This project was aimed at improving living and working conditions of informal workers, with a focus on the sweet-crispy fish group. Good practices of improved living and working conditions were used to help informal workers build safe, healthy and productive work environments. These informal workers often worked in substandard conditions and were exposed to various hazards in the working area. These hazards included risk of exposure to hot work environment, ergonomics-related injuries, chemical hazards, electrical hazards etc. Ergonomics problems were commonly in the sweet-crispy fish group. Unnatural postures such as prolonged sitting were performed dominantly. One hundred and fifty informal workers participated in this project. Occupational health volunteers were selected to encourage occupational health and safety in four groups of informal workers in 2009. The occupational health volunteers trained in 2008 were farmers, beauty salon workers and doll makers. The occupational health and safety knowledge is extended to a new informal worker group: sweet-crispy fish producer, in 2009. The occupational health and safety training for sweet-crispy fish group is conducted by occupational health volunteers. The occupational health volunteers increased their skills and knowledge assist in to make safe home and safe community through participatory oriented training. The improvement of living and working condition is conducted by using a modified WISH, Work Improvement for Safe Home, checklist. The plans of improvement were recorded. The informal workers showed improvement mostly on material handling and storage. The safe uses and safe

  13. A virtual reality instrument: near-future perspective of computer simulations of ion optics

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Pellin, Michael J.

    2004-01-01

    The method of accurate modeling of complex ion optical systems is presented. It combines using SIMION 3D (c) with external software generating input ion sets and processing results of ion trajectory simulations. This method was used to simulate time-of-flight (TOF) mass spectrometer of secondary neutrals SARISA (Surface Analysis by Resonance Ionization of Sputtered Atoms), and results of simulations were compared to results of the experiments. It is demonstrated that the accuracy of the presented modeling method is sufficient to reproduce experimental TOF (mass) spectra and dependencies of the instrument useful yield on sputtering and ionization conditions. A concept of 'virtual reality instrument' as a logical extension of the method is discussed

  14. Detection and quantification of neurotensin in human brain tissue by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Gobom, J; Kraeuter, K O; Persson, R

    2000-01-01

    A method was developed for mass spectrometric detection of neurotensin (NT)-like immunoreactivity and quantification of NT in human brain tissue. The method is based on immunoprecipitation followed by analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF......-MS). The identity of the major component of the immunoprecipitates as neurotensin was confirmed by fragment ion analysis on an electrospray ionization quadrupole time-of-flight instrument. MALDI-TOF-MS quantification of NT was achieved using stable-isotope-labeled NT as the internal standard, yielding an error...

  15. Future Flight Opportunities and Calibration Protocols for CERES: Continuation of Observations in Support of the Long-Term Earth Radiation Budget Climate Data Record

    Science.gov (United States)

    Priestley, Kory J.; Smith, George L.

    2010-01-01

    The goal of the Clouds and the Earth s Radiant Energy System (CERES) project is to provide a long-term record of radiation budget at the top-of-atmosphere (TOA), within the atmosphere, and at the surface with consistent cloud and aerosol properties at climate accuracy. CERES consists of an integrated instrument-algorithm validation science team that provides development of higher-level products (Levels 1-3) and investigations. It involves a high level of data fusion, merging inputs from 25 unique input data sources to produce 18 CERES data products. Over 90% of the CERES data product volume involves two or more instruments. Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals . Five CERES instruments have flown on three different spacecraft: TRMM, EOS-Terra and EOS-Aqua. In response, NASA, NOAA and NPOESS have agreed to fly the existing CERES Flight Model (FM-5) on the NPP spacecraft in 2011 and to procure an additional CERES Sensor with modest upgrades for flight on the JPSS C1 spacecraft in 2014, followed by a CERES follow-on sensor for flight in 2018. CERES is a scanning broadband radiometer that measures filtered radiance in the SW (0.3-5 m), total (TOT) (0.3-200 m) and WN (8-12 m) regions. Pre-launch calibration is performed on each Flight Model to meet accuracy requirements of 1% for SW and 0.5% for outgoing LW observations. Ground to flight or in-flight changes are monitored using protocols employing onboard and vicarious calibration sources. Studies of flight data show that SW response can change dramatically due to optical contamination. with greatest impact in blue-to UV radiance, where tungsten lamps are largely devoid of output. While science goals remain unchanged for ERB Climate Data Record, it is now understood

  16. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  17. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  18. Individual differences in strategic flight management and scheduling

    Science.gov (United States)

    Wickens, Christopher D.; Raby, Mireille

    1991-01-01

    A group of 30 instrument-rated pilots was made to fly simulator approaches to three airports under conditions of low, medium, and high workload conditions. An analysis is presently conducted of the difference in discrete task scheduling between the group of 10 highest and 10 lowest performing pilots in the sample; this categorization was based on the mean of various flight-profile measures. The two groups were found to differ from each other only in terms of the time when specific events were conducted, and of the optimality of scheduling for certain high-priority tasks. These results are assessed in view of the relative independence of task-management skills from aircraft-control skills.

  19. New Methodology for Optimal Flight Control Using Differential Evolution Algorithms Applied on the Cessna Citation X Business Aircraft – Part 1. Design and Optimization

    Directory of Open Access Journals (Sweden)

    Yamina BOUGHARI

    2017-06-01

    Full Text Available Setting the appropriate controllers for aircraft stability and control augmentation systems are complicated and time consuming tasks. As in the Linear Quadratic Regulator method gains are found by selecting the appropriate weights or as in the Proportional Integrator Derivative control by tuning gains. A trial and error process is usually employed for the determination of weighting matrices, which is normally a time consuming procedure. Flight Control Law were optimized and designed by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements for different flight conditions. Furthermore the design and the clearance of the controllers over the flight envelope were automated using a Graphical User Interface, which offers to the designer, the flexibility to change the design requirements. In the aim of reducing time, and costs of the Flight Control Law design, one fitness function has been used for both optimizations, and using design requirements as constraints. Consequently the Flight Control Law design process complexity was reduced by using the meta-heuristic algorithm.

  20. Invited Article: First Flight in Space of a Wide-field-of-view Soft X-Ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results

    Science.gov (United States)

    Collier, Michael; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chomay, Dennis J.; Cravens, Thomas E.; Galeazzi, Massiniliano; Keller, John; Koutroumpa, Dimitra

    2015-01-01

    We describe the development, launch into space, and initial results from a prototype wide eld-of-view (FOV) soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The Sheath Transport Observer for the Redistribution of Mass (STORM) is the rst instrument using this type of optics launched into space and provides proof-of-concept for future ight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the moon, and the solar wind interaction with planetary bodies like Venus and Mars.