WorldWideScience

Sample records for safe disposal methods

  1. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  2. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    Science.gov (United States)

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  3. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    Science.gov (United States)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  4. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  5. Progress and future direction for the interim safe storage and disposal of Hanford high level waste (HLW)

    International Nuclear Information System (INIS)

    Wodrich, D.D.

    1996-01-01

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the US DOE and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described

  6. EUROSAFE forum 2013. Safe disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The proceedings of the EUROSAFE forum 2013 - safe disposal of nuclear waste include contributions to the following topics: Nuclear installation safety - assessment; nuclear installation safety - research; waste and decommissioning - dismantling; radiation protection, 3nvironment and emergency preparedness; security of nuclear installations and materials.

  7. Method for the conditioning of high level radioactive wastes for their safe storage and disposal

    International Nuclear Information System (INIS)

    Geel, J. van; Eschrich, H.; Detilleux, E.

    1976-01-01

    A method is described for the treatment of solidified high level radioactive wastes to enable them to be safely stored or disposed of in an approved manner. The solidified waste is embedded in a matrix of pure metals or metal alloys. The metals may be Pb, Pb/Sb alloys, Pb/Sn alloys, Pb/Bi alloys, Pb/Zn alloys, or mixtures of these, or Al, Al/Si alloys, Al/Mg alloys, Al/Cu alloys, or mixtures. The matrix is clad with non-corrosive material, selected from stainless steel, Ti, Pb, Pb alloys, Al, Al alloys, or mixtures of same. A non-corrosive container is filled with the solidified waste and is heated to above the melting temperature of the metallic matrix material used to embed the waste. The matrix material is then added and the container is cooled. The container may then be degassed. The solidified waste feed may be in the form of a vitreous material containing the high level waste; this vitreous material may consist of a lead borosilicate or a mixture of non-lead borosilicates and phosphate glasses, and the method of preparing it is described. (U.K.)

  8. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  9. A nuclear waste deposit in space - the ultimate solution for low-cost and safe disposal

    International Nuclear Information System (INIS)

    Ruppe, H.O.; Hayn, D.; Braitinger, M.; Schmucker, R.H.

    1980-01-01

    The disposal of nuclear high-active waste (HAW) is representative for the problem of burdening the environment with highly active or toxic waste products at present and in the future. Safe disposal methods on Earth are technically very difficult to achieve and the costs of establishment and maintenance of such plants are extremely high. Furthermore the emotionally based rejection by a wide sector of the population gives sufficient reason to look for new solutions. Here, space technology can offer a real alternative - a waste deposit in space. With the Space Transportation System, which shall soon be operative, and the resulting high flight frequencies it will be possible to transport all future HAW into space at economical casts. (orig.) [de

  10. Weapons-grade nuclear material - open questions of a safe disposal

    International Nuclear Information System (INIS)

    Closs, K.D.; Giraud, J.P.; Grill, K.D.; Hensing, I.; Hippel, F. von; Holik, J.; Pellaud, B.

    1995-01-01

    There are suitable technologies available for destruction of weapons-grade uranium and plutonium. Weapons-grade uranium, consisting to 90% of the isotope U-235, can be diluted with the uranium isotope U-238 to make it non-weapons-grade, but it will then still be a material that can be used as a fuel in civil nuclear reactors. For safe plutonium disposal, several options are under debate. There is for instance a process called ''reverse reprocessing'', with the plutonium being blended with high-level radioactive fission products and then being put into a waste form accepted for direct ultimate disposal. The other option is to convert weapons-grade plutonium into MOX nuclear fuel elements and then ''burn'' them in civil nuclear power reactors. This is an option favoured by many experts. Such fuel elements should stay for a long time in the reactor core in order to achieve high burnups, and should then be ready for ultimate disposal. This disposal pathway offers essential advantages: the plutonium is used up or depleted as a component of reactor fuel, and thus is no longer available for illegal activities, and it serves as an energy source for power generation. (orig./HP) [de

  11. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  12. A study on characterization and evaluation methodologies of radioactive waste forms for safe disposal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. C.; Lee, G. S.; Kim, G. J.; Nam, H.; Seok, J. H. [Yonsei Univ., Seoul (Korea, Republic of)

    2004-02-15

    The contents and scope of the study are summarized as follows : elicitation of significant items for characteristic assessment about stability analysis of radioactive waste forms for safe disposal, compressive strength, free water, leaching rate, and weatherability. Suggestion of assessment methods through the characteristic test of waste forms, comparison of assessment methods and suggestion of suitable testing methods about the above stated 4 items. Assessment modeling development for long-term stability of radioactive waste forms, weatherometric test of waste forms, expectation modeling development through VOM(Valance-Oxygen Model). Suggestion of determination standard together assessment testing methods and description about the standard. Explanation to be suitable guideline and regulation of waste handling and acceptance.

  13. Regulatory approaches in the United States of America for safe management and disposal of long-lived radionuclides

    International Nuclear Information System (INIS)

    Greeves, J.T.; Bell, M.J.; Nelson, R.A.

    1998-01-01

    Regulation of the safe management and disposal of commercial, man-made, long-lived radioactive wastes in the United States is the responsibility of the US Nuclear Regulatory Commission (NRC). In some instances, state regulatory authorities have entered into agreements with the NRC to exercise regulatory authority over management and disposal of low-level radioactive wastes and uranium mill tailings within their borders. The legal and regulatory framework employed to achieve safe management and disposal of long-lived radioactive wastes in the US regulatory system is quite detailed, and in many cases the requirements are considerably prescriptive. The NRC has undertaken an initiative to move in the direction of adopting risk-informed, performance-based and risk-informed, less-prescriptive regulations. The current status and future direction of the legal and regulatory framework for management and disposal of commercial long-lived radioactive waste in the US is described. (author)

  14. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    Science.gov (United States)

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  15. Safe disposal of surplus plutonium

    Science.gov (United States)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  16. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    Science.gov (United States)

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  17. Safe Disposal of Pesticides

    Science.gov (United States)

    ... Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science ... or www.earth911.com . Think before disposing of extra pesticides and containers: Never reuse empty pesticide containers. ...

  18. 48 CFR 2845.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Disposal methods. 2845.603 Section 2845.603 Federal Acquisition Regulations System DEPARTMENT OF JUSTICE Contract Management GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 2845.603 Disposal methods...

  19. 48 CFR 945.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Disposal methods. 945.603 Section 945.603 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 945.603 Disposal methods. ...

  20. Method for the safe disposal of alkali metal

    International Nuclear Information System (INIS)

    Johnson, T.R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam--CO 2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps. 5 claims, 1 figure

  1. Safe handling of radiation sources

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    This chapter discussed the subjects related to the safe handling of radiation sources: type of radiation sources, method of use: transport within premises, transport outside premises; Disposal of Gamma Sources

  2. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  3. 48 CFR 245.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Disposal methods. 245.603 Section 245.603 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractor Inventory 245.603 Disposal methods. ...

  4. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Results: Safe injection procedures regarding final waste disposal were sufficiently adopted, while measures regarding disposable injection equipment, waste containers, hand hygiene, as well as injection practices were inadequately carried out. Lack of job aid posters that promote safe injection and safe disposal of ...

  5. Safe disposal of radioactive waste. Post-closure safety assessment of permanent repository in Novi han

    International Nuclear Information System (INIS)

    Mateeva, M.

    2007-01-01

    A presented material is the third part of the monograph with title 'Safe disposal of radioactive waste. Post-closure safety assessment of the permanent repository in Novi Han'. This part deals with review of the scenario selection procedure. The process system of permanent repository for radioactive waste is describing in details for different levels. Preliminary screening process of features, events and processes is presented here. Interaction matrixes for basic disposal system components are constructed. Final selection and grouping between the included features, events and processes is done. Selected and defined scenarios for post-closure safety assessment are presented too. Key words: post-closure safety assessment, scenario generation procedure, process system, process influence diagram, and interaction matrix

  6. 48 CFR 45.604-1 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Disposal methods. 45.604-1 Section 45.604-1 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Reutilization, and Disposal 45.604-1 Disposal methods. (a) Except as provided...

  7. Two-phase anaerobic digestion of partially acidified sewage sludge: a pilot plant study for safe sludge disposal in developing countries.

    Science.gov (United States)

    Passio, Luca; Rizzoa, Luigi; Fuchs, Stephan

    2012-09-01

    The unsafe disposal of wastewater and sludge in different areas of developing countries results in significant environmental pollution, particularly for groundwater, thus increasing the risk of waterborne diseases spreading. In this work, a two-phase anaerobic digestion process for post-treatment of partially acidified sewage sludge was investigated to evaluate its feasibility as a safe sludge disposal system. Pilot tests showed that an effective sludge stabilization can be achieved (total volatile solids content <65%, organic acid concentration <200 mg/L at flow rate = 50 L/d and hydraulic residence time = 18 d) as well as a relative low faecal coliform density (<1000 most probable number per g total solids), showing that land application of the sludge without restrictions is possible according to US Environmental Protection Agency criteria for safe sludge disposal. A biogas production as high as 390 L/d with a 60% methane content by volume was achieved, showing that energy production from biogas may be achieved as well.

  8. Patients’ Knowledge and Attitude toward the Disposal of Medications

    Directory of Open Access Journals (Sweden)

    Aeshah AlAzmi

    2017-01-01

    Full Text Available Background. Safe disposal of medications is of high concern as malpractice may lead to harmful consequences such as undesirable effects, prescription drug abuse, overstocking, self-medication, accidental overdose, and even death. There is a lack of uniform and nationwide guidance on how patients should safely dispose their leftover medications. This study aims to assess patients’ knowledge and attitude regarding the disposal of medications. Method. This research is a cross-sectional study. A self-administered questionnaire was used to collect data from various outpatient pharmaceutical services in King Abdulaziz Medical City (KAMC, Jeddah. Results. The study revealed that 73% of the respondents throw the medications in the trash, 14% return the medications to a pharmacy, 5% never dispose them, and 3% donate the medications to a friend or charity centers. More than 80% of the respondents never received any information or advice from healthcare providers about safe and proper disposal of medications. Conclusion. Our findings suggest that there is an immediate requirement for the establishment of collaborative and uniform guidelines for the safe disposal of leftover medications. A policy for drug donation needs to be included in routine patient education as well as educational and collective programs for the public.

  9. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  10. A Comparison of Distillery Stillage Disposal Methods

    OpenAIRE

    V. Sajbrt; M. Rosol; P. Ditl

    2010-01-01

    This paper compares the main stillage disposal methods from the point of view of technology, economics and energetics. Attention is paid to the disposal of both solid and liquid phase. Specifically, the following methods are considered: a) livestock feeding, b) combustion of granulated stillages, c) fertilizer production, d) anaerobic digestion with biogas production and e) chemical pretreatment and subsequent secondary treatment. Other disposal techniques mentioned in the literature (electro...

  11. Safe, secure, and clean disposal of final nuclear wastes using 'PyroGreen' strategies

    International Nuclear Information System (INIS)

    Jung, HyoSook; Choi, Sungyeol; Hwang, Il Soon

    2011-01-01

    Spent nuclear fuels (SNFs) present global challenges that must be overcome to pave way for safe, secure, peaceful and clean nuclear energy. As one of innovative solutions, we have proposed an innovative partitioning, transmutation, and disposal approach named as 'PyroGreen' that is designed to eliminate the need for high-level waste repositories. A flowsheet of pyrochemical partitioning process with technically achievable values of decontamination factors on long-living radionuclides has been established to enable all the final wastes to be disposed of as low and intermediate level wastes. The long-term performance of a geological repository was assessed by SAFE-ROCK code for the final wastes from the PyroGreen processing of entire 26,000 MTHM of SNFs arising from lifetime operation of 24 pressurized water reactors. The assessment results agree well with an earlier study in the fact that most harmful radionuclides dominating groundwater migration risk are shown to be long-living fission products including C-14, Cl-36, Se-79, I-129, and Cs-135, whereas most actinides including U, Pu, Np, Am, and Cm are shown to remain near the repository. It is shown that the final wastes can meet the radiological dose limit of current Korean regulation on the low and intermediate level waste repository. Long-living actinide concentration in wastes is comparable with those in wastes in Waste Isolation Pilot Plant that has proved adequately low risk of human intrusion. Overall decontamination factors required for PyroGreen are finally determined as 20,000 for uranium and all transuranic elements whereas much lower values in the range of 10-50 are required for important fission products including Se, Tc, I, Sr, and Cs in order to eliminate the need for any high-level waste repository. It has been shown that experimentally demonstrated recovery rate data for key process steps positively support the feasibility of PyroGreen. SAFE-ROCK code was used to evaluate the long-term performance

  12. When is a medicine unwanted, how is it disposed, and how might safe disposal be promoted? Insights from the Australian population.

    Science.gov (United States)

    Bettington, Emilie; Spinks, Jean; Kelly, Fiona; Gallardo-Godoy, Alejandra; Nghiem, Son; Wheeler, Amanda J

    2017-12-19

    Objective The aim of the present study was to explore disposal practices of unwanted medicines in a representative sample of Australian adults, compare this with previous household waste surveys and explore awareness of the National Return and Disposal of Unwanted Medicines (RUM) Project. Methods A 10-min online survey was developed, piloted and conducted with an existing research panel of adult individuals. Survey questions recorded demographics, the presence of unwanted medicines in the home, medicine disposal practices and concerns about unwanted medicines. Descriptive statistical analyses and rank-ordered logit regression were conducted. Results Sixty per cent of 4302 respondents reported having unwanted medicines in their household. Medicines were primarily kept just in case they were needed again and one-third of these medicines were expired. Two-thirds of respondents disposed of medicines with the household garbage and approximately one-quarter poured medicines down the drain. Only 17.6% of respondents had heard of the RUM Project, although, once informed, 91.7% stated that they would use it. Respondents ranked the risk of unintended ingestion as the most important public health message for future social marketing campaigns. Conclusions Respondents were largely unaware of the RUM Project, yet were willing to use it once informed. Limited awareness could lead to environmental or public health risks, and targeted information campaigns are needed. What is known about the topic? There is a growing international evidence base on how people dispose of unwanted medicines and the negative consequences, particularly the environmental effects of inappropriate disposal. Although insight into variation in disposal methods is increasing, knowledge of how people perceive risks and awareness of inappropriate disposal methods is more limited. What does this paper add? This study provides evidence of inappropriate medicines disposal and potential stockpiling of medicines in

  13. Safe disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-10-01

    Current strategies in most countries favour the immobilisation of high-level radioactive wastes in borosilicate glasses, and their burial in large, centralised, mined repositories. Strong public opposition has been encountered because of concerns over safety and socio-political issues. The author develops a new disposal strategy, based on immobilisation of wastes in an extremely resistant ceramic, SYNROC, combined with burial in an array of widely dispersed, very deep drill holes. It is demonstrated that the difficulties encountered by conventional disposal strategies can be overcome by this new approach.

  14. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  15. Safe Disposal of Medical and Plastic Waste and Energy Recovery Possibilities using Plasma Pyrolysis Technology

    International Nuclear Information System (INIS)

    Nema, S.K.; Mukherjee, S.

    2010-01-01

    Plasma pyrolysis and plasma gasification are emerging technologies that can provide complete solution to organic solid waste disposal. In these technologies plasma torch is used as a workhorse to convert electrical energy into heat energy. These technologies dispose the organic waste in an environment friendly manner. Thermal plasma provides extremely high temperature in oxygen free or controlled air environment which is required for pyrolysis or gasification reactions. Plasma based medical waste treatment is an extremely complex technology since it has to contend with extreme temperatures and corrosion-prone environment, complex pyro-chemistry resulting in toxic and dangerous products, if not controlled. In addition, one has to take care of complete combustion of pyrolyzed gases followed by efficient scrubbing to meet the emission standards set by US EPA and Central Pollution Control Board, India. In medical waste, high volume and low packing density waste with nonstandard composition consisting of a variety of plastics, organic material and liquids used to be present. The present paper describes the work carried out at Institute for Plasma Research, India, on plasma pyrolysis of (i) medical waste disposal and the results of emission measurement done at various locations in the system and (ii) energy recovery from cotton and plastic waste. The process and system development has been done in multiple steps. Different plasma pyrolysis models were made and each subsequent model was improved upon to meet stringent emission norms and to make the system energy efficient and user friendly. FCIPT, has successfully demonstrated up to 50 kg/ hr plasma pyrolysis systems and have installed plasma pyrolysis facilities at various locations in India . Plastic Waste disposal along with energy recovery in 15 kg/ hr model has also been developed and demonstrated at FCIPT. In future, this technology has great potential to dispose safely different waste streams such as biomass

  16. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were developed and input into the analysis. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. Total costs of each level of a standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, was calculated for each alternative standard. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis

  17. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  18. Way of thinking and method of promotion of disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1993-01-01

    It is decided that the high level waste separated from spent fuel is solidified with glass, stored for 30-50 years to cool it down, and the final disposal is done under the responsibility of the government. As to the final disposal of high level waste, the method of enclosing glass-solidified waste in robust containers and burying them in deep stable strata to isolate from human environment is considered to be the safest. The significance of fuel reprocessing is the proper and safe separation and control of high level waste besides the reuse of unburned uranium and newly formed plutonium in spent fuel. The features of the high level waste solids are that their amount to be generated is little, the radioactivity attenuates with the lapse of time, the heat generation decreases with the lapse of time, and they are hard to elute and move. In order to prevent radioactive substances from appearing in human environment by being dissolved in groundwater, those are isolated with the combination of natural and artificial barriers. The requirements for the barriers are discussed. The research and development are in progress on the establishment of stratum disposal technology, the evaluation of suitability of geological environment and the selection of expected disposal grounds. (K.I.)

  19. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  20. Design basis for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Lewi, J.; Kaluzny, Y.

    1990-01-01

    All radioactive waste disposal sites, regardless of disposal concept, are designed to isolate the radioactive substances contained in such waste for a period at least equal to the time it may remain potentially harmful. Isolation is achieved through the use of containment barriers. This paper summarises the function and limits of different types of barrier used in various disposal systems. For each type of barrier, the paper describes and comments on the site selection criteria and waste packaging requirements applicable in various countries. 13 refs., 1 fig [fr

  1. Program for responsible and safe disposal of spent fuel elements and radioactive wastes (National disposal program)

    International Nuclear Information System (INIS)

    2015-01-01

    The contribution covers the following topics: fundamentals of the disposal policy; amount of radioactive wastes and prognosis; disposal of radioactive wastes - spent fuel elements and wastes from waste processing, radioactive wastes with low heat production; legal framework of the nuclear waste disposal in Germany; public participation, cost and financing.

  2. Safe Management and disposal of nuclear waste. Volume 3

    International Nuclear Information System (INIS)

    1993-01-01

    These proceedings of the international conference Safewaste 93, volume 3 are divided into three poster sessions bearing on: poster session P-1: Radioactive waste management and actinide burning; poster session P-2: Safety aspects of radioactive waste disposal; poster session P-3: Transport and disposal

  3. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  4. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.; Queenan, C.J. III

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were evaluated both in absolute terms and also relative to a base case (current practice). Incremental costs of the standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, defined as the incremental cost per avoided health effect, was calculated for each alternative standard. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis. 15 references, 7 figures, 3 tables

  5. Selection of heat disposal methods for a Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Young, J.R.; Kannberg, L.D.; Ramsdell, J.V.; Rickard, W.H.; Watson, D.G.

    1976-06-01

    Selection of the best method for disposal of the waste heat from a large power generation center requires a comprehensive comparison of the costs and environmental effects. The objective is to identify the heat dissipation method with the minimum total economic and environmental cost. A 20 reactor HNEC will dissipate about 50,000 MWt of waste heat; a 40 reactor HNEC would release about 100,000 MWt. This is a much larger discharge of heat than has occurred from other concentrated industrial facilities and consequently a special analysis is required to determine the permissibility of such a large heat disposal and the best methods of disposal. It is possible that some methods of disposal will not be permissible because of excessive environmental effects or that the optimum disposal method may include a combination of several methods. A preliminary analysis is presented of the Hanford Nuclear Energy Center heat disposal problem to determine the best methods for disposal and any obvious limitations on the amount of heat that can be released. The analysis is based, in part, on information from an interim conceptual study, a heat sink management analysis, and a meteorological analysis

  6. Application of quality assurance to radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs.

  7. Application of quality assurance to radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs

  8. Guidelines for safe handling, use and disposal of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Amoabediny, G H; Rashedi, H [Department of Biotechnology, Faculty of Chemical Engineering, University of Tehran (Iran, Islamic Republic of)], E-mail: amoabedini@ut.ac.ir; Naderi, A [Department of Occupational Health, Faculty of Medical Science, University of Tarbiat Modares (Iran, Islamic Republic of); Malakootikhah, J [Nanotechnology Standardisation Committee, Iran Nanotechnology Initiative, Tehran (Iran, Islamic Republic of); Koohi, M K [Faculty of veterinary medicine, University of Tehran (Iran, Islamic Republic of); Mortazavi, S A [Department of Nanosafety, Research Centre for New Technology in life science Engineering, University of Tehran (Iran, Islamic Republic of); Naderi, M [University of Amirkabir (Iran, Islamic Republic of)

    2009-05-01

    situations, performing administrative means of control constitute other ways of limiaiting the occupational exposure risks. Accordingly, to minimize the risks from know and unknown health, safety and invironment hazards in research and occupational setting of the country, guideline for safe handling, use and disposal of manopractical has provided.

  9. Guidelines for safe handling, use and disposal of nanoparticles

    International Nuclear Information System (INIS)

    Amoabediny, G H; Rashedi, H; Naderi, A; Malakootikhah, J; Koohi, M K; Mortazavi, S A; Naderi, M

    2009-01-01

    situations, performing administrative means of control constitute other ways of limiaiting the occupational exposure risks. Accordingly, to minimize the risks from know and unknown health, safety and invironment hazards in research and occupational setting of the country, guideline for safe handling, use and disposal of manopractical has provided.

  10. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Manning, Mark R.; Gardner, Frederick W.

    1990-01-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  11. Hazardous waste management in pipeline terminal: a multi-pronged approach for safe disposal of tank bottom sludge

    Energy Technology Data Exchange (ETDEWEB)

    Ammanna, John [Indian Oil Corporation Limited (IOCL), Mumbai (India)

    2009-12-19

    Indian Oil Corporation Ltd., Pipeline Division owns and operates the 1850 Km long Salaya-Mathura Crude Oil Pipeline (SMPL) with installed capacity of 21 MMTPA. Almost 25 types of crude [90% imported and 10% indigenous] are received into 13 on-shore tanks at Vadinar (the Mother Station of SMPL) through 2 Nos. SPM's anchored in the Arabian Sea and located on the west coast of India in the Gulf of Kutch. Larger quantities of tank bottom sludge that gets generated in the terminal during tank M and I pose serious environmental hazards, as procedures for handling, treatment and disposal of hazardous waste are not well established. With increasingly stringent Environmental norms being enforced by Statutory / Regulatory Authorities, storage of hazardous solid waste in lagoons and its disposal through designated approved agencies within the specified time frame, becomes extremely difficult. This paper seeks to address this issue by putting forth an innovative approach to hazardous waste management in pipeline terminals having large crude oil tank farms that has been adopted at Indian Oil Corporation's Vadinar terminal of SMPL where a multi-pronged approach for safe disposal of tank bottom sludge has been successfully implemented. The terminal has since become a 'Zero sludge location'. (author)

  12. Safe injection practice among health care workers, Gharbiya, Egypt.

    Science.gov (United States)

    Ismail, Nanees A; Aboul Ftouh, Aisha M; El Shoubary, Waleed H

    2005-01-01

    A cross-sectional study was conducted in 25 health care facilities in Gharbiya governorate to assess safe injection practices among health care workers (HCWs). Two questionnaires, one to collect information about administrative issues related to safe injection and the other to collect data about giving injections, exposure to needle stick injuries, hepatitis B vaccination status and safe injection training. Practices of injections were observed using a standardized checklist. The study revealed that there was lack of both national and local infection control policies and lack of most of the supplies needed for safe injection practices. Many safe practices were infrequent as proper needle manipulation before disposal (41%), safe needle disposal (47.5%), reuse of used syringe & needle (13.2%) and safe syringe disposal (0%). Exposure to needle stick injuries were common among the interviewed HCWs (66.2%) and hand washing was the common post exposure prophylaxis measure (63.4%). Only 11.3% of HCWs had full course hepatitis B vaccination. Infection control -including safe injections- training programs should be afforded to all HCWs.

  13. A common framework for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.; Barraclough, I.

    2002-01-01

    Various industrial, research and medical activities give rise to waste that contain or are contaminated with radioactive material. In view of the potential radiological hazards associated with such waste they have to be managed and disposed of in such a way as to ensure that such potential hazards are adequately managed and controlled in compliance with the safety principles and criteria. Over the past few decades experience in radioactive waste management has led to the development of various options for radioactive waste management and has also led to the development of principles which the various waste management options should satisfy in order to achieve an acceptable level of safety. International consensus has evolved in respect of the principles. However, complete consensus in respect of demonstrating compliance with the requirements for managing and disposing of the whole range of waste types is still developing. This paper identifies the various waste types that have to be managed, the prevailing safety principles and the disposal options available. It discusses the development of a common framework which would enable demonstration that a particular disposal option would meet the safety principles and requirements for the disposal of a particular waste type. (author)

  14. Principal prerequisites and practice for using deep aquifers for disposal of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1977-01-01

    One of the most promising methods of safe disposal of liquid radioactive wastes in the USSR is the creation of storage places in deep aquifers in zones of stagnant regime or the slow exchange of underground water. The results of investigations and disposal practices testify to the safety and efficiency of such a method of final waste disposal which fulfils the main requirements for protecting the environment. Geological formations and stratum-collectors may be studied and selected to secure localization of liquid radioactive wastes injected into them for many tens and even hundreds of thousand years. The main requirements and criteria which must be met by geological structures and stratum-collectors to ensure safe disposal of wastes are formulated. Waste disposal is realized only after a thorough scientific appreciation of health and safety of present and future generations with regard to the regime of disposal and physico-chemical processes depending on the compatibility of the wastes with rocks and stratal waters as well as on the period of time of waste exposure up to the maximum permissible concentrations. Positive and negative factors of the method are analysed. Methods of preparing waste for disposal and chemical methods of restoring the response of the holes, ways of effective remote control of disposal and environment, etc., are briefly discussed. The results of 10-12 years experimental and industrial exploitation of storage places for liquid radioactive wastes of low- and medium-level activity are presented. The results of enlarged field tests on disposal of high-level activity liquid wastes are described. Preliminary prediction calculations are shown to be confirmed with sufficient accuracy by the data on exploitation. (author)

  15. MethodS of radioactive waste processing and disposal in the United Kingdom

    International Nuclear Information System (INIS)

    Tolstykh, V.D.

    1983-01-01

    The results of investigations into radioactive waste processing and disposal in the United Kingdom are discussed. Methods for solidification of metal and graphite radioactive wastes and radioactive slime of the Magnox reactors are described. Specifications of different installations used for radioactive waste disposal are given. Climatic and geological conditions in the United Kingdom are such that any deep storages of wastes will be lower than the underground water level. That is why dissolution and transport by underground waters will inevitably result in radionuclide mobility. In this connection an extended program of investigations into the main three aspects of disposal problem namely radionucleide release in storages, underground water transport and radionuclide migration is realized. The program is divided in two parts. The first part deals with retrival of hydrological and geochemical data on geological formations, development of specialized methods of investigations which are necessary for identification of places for waste final disposal. The second part represents theoretical and laboratory investigations into provesses of radionuclide transport in the system of ''sttorage-geological formation''. It is concluded that vitrification on the base of borosilicate glass is the most advanced method of radioactive waste solidification

  16. Community syringe collection and disposal policies in 16 states.

    Science.gov (United States)

    Turnberg, Wayne L; Jones, T Stephen

    2002-01-01

    To review laws, regulations, and guidelines that affect the collection and disposal of hypodermic needles, syringes, and lancets used outside of professional health care settings (hereafter referred to as "community syringes"). Law and policy analysis. Alabama, California, Florida, Georgia, Hawaii, Massachusetts, Michigan, Minnesota, New Jersey, New York, Ohio, Oregon, Rhode Island, South Carolina, Washington, and Wisconsin. Information on syringe collection and disposal in the community was gathered from federal and state records and state agency personnel. Legally permissible means of syringe collection and disposal available to persons in the community injecting medical treatments and injection drug users. Laws, regulations, or guidelines in 13 states allowed community syringes to be legally discarded in household trash; guidelines for in-trash disposal varied among the states. Only 6 states had laws or regulations that specifically addressed community syringe collection. In 10 states, infectious waste laws and regulations that apply to medical facilities such as clinics would also apply to community syringe collection sites. In the 16 states studied, laws, regulations, and guidelines relating to community syringe collection and disposal were somewhat inconsistent and confusing and presented potential barriers to safe disposal. States should consider amending laws, regulations, and guidelines to promote community syringe collection programs. A national effort is needed to achieve consistent community syringe collection and disposal laws and guidelines for all states. Pharmacists can aid in safe syringe disposal by counseling their patients about safe disposal, providing or selling sharps containers, and accepting used syringes for safe disposal. Pharmacists can join other interested groups in advocating clarification of disposal laws and regulations that favor community programs designed to keep syringes out of the trash so that they can be disposed of as

  17. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  18. Safe Injection Practices in Primary Health Care Settings of Naxalbari Block, Darjeeling District, West Bengal.

    Science.gov (United States)

    Chaudhuri, Sudip Banik; Ray, Kuntala

    2016-01-01

    Unsafe injection can transmit many diseases to patients, injection providers and healthy people of community. To find out critical steps whether executed according to recommended best practice methods, availability of equipments in health facilities for safe injection practices and some important steps of waste disposal methods. This facility-based cross-sectional observational study was conducted among 30 Auxiliary nurse midwives (ANM) & 27 nursing staffs (NS) to assess certain aspects of their practice while administrating injection and disposal of the disposables. Health facilities were also observed to asses necessary equipments of safe injection and waste disposal methods. Among the health workers 93.3% ANM and 100% NS took sterile syringe from sterile unopened packet, all of the study subjects washed hand before giving injection, 13.3% of ANMs and 8% of NS are fully vaccinated against Hep B, 53.3% of ANM and all NS are practices non recapping. Only 13.33% sub centres along with PHC & BPHC had at least one puncture resistant leak proof container, 86.7% sub centres, PHC are free from loose needles. Transport for off side treatment is the method of waste disposal in case of 73.3% cases sub centres, PHC & BPHC. There is need to educate, train and motivate service providers in proper methods of giving injection along with improve the adequacy of supply of required equipments.

  19. Execution techniques for high-level radioactive waste disposal. 2. Fundamental concept of geological disposal and implementing approach of disposal project

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Komada, Hiroya; Tsuchino, Susumu; Shiozaki, Isao; Kitayama, Kazumi; Akasaka, Hidenari; Inagaki, Yusuke; Kawamura, Hideki

    1999-01-01

    The making high activity of the high-level radioactive waste disposal business shall be fully started after establishing of the implementing organization which is planned around 2000. Considering each step of disposal business, in this study, the implementation procedure for a series of disposal business such as the selection of the disposal site, the construction and operation of the disposal facility, the closure and decommissioning of the disposal facility and the management after closure, which are carried forward by the implementation body is discussed in detail from the technical viewpoint and an example of the master schedule is proposed. Furthermore, we investigate and propose the concept of the geological disposal which becomes important in carrying forward to making of the business of the disposal, such as the present site selection smoothly, the fundamental idea of the safe securing for disposal, the basic idea to get trust to the disposal technique and the geological environmental condition which is the basic condition of this whole study for the disposal business making. (author)

  20. The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337

    International Nuclear Information System (INIS)

    Britten, Jay M.

    2013-01-01

    The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

  1. NRC perspective on alternative disposal methods

    International Nuclear Information System (INIS)

    Pittiglio, C.L.; Tokar, M.

    1987-01-01

    In this paper is discussed an NRC staff strategy for the development of technical criteria and procedures for the licensing of various alternatives for disposal of low-level radioactive waste. Steps taken by the staff to identify viable alternative disposal methods and to comply with the requirements of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985 are also discussed. The strategy proposed by the NRC staff is to focus efforts in FY 87 on alternative concepts that incorporate concrete materials with soil or rock cover (e.g., below ground vaults and earth-mounded concrete bunkers), which several State and State Compacts have identified as preferred disposal options. While the NRC staff believes that other options, such as above ground vaults and mined cavities, are workable and licensable, the staff also believes, for reasons addressed in the paper, that it is in the best interest of the industry and the public to encourage standardization and to focus limited resources on a manageable number of alternative options. Therefore, guidance on above ground vaults, which are susceptible to long-term materials degradation due to climatological effects, and mined cavities, which represent a significant departure from the current experience base for low-level radioactive waste disposal, will receive minimal attention. 6 references

  2. Shallow ground disposal of radioactive wastes. A guidebook

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations.

  3. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  4. No nuclear power. No disposal facility?

    Energy Technology Data Exchange (ETDEWEB)

    Feinhals, J. [DMT GmbH und Co.KG, Hamburg (Germany)

    2016-07-01

    Countries with a nuclear power programme are making strong efforts to guarantee the safe disposal of radioactive waste. The solutions in those countries are large disposal facilities near surface or in deep geological layers depending on the activity and half-life of the nuclides in the waste. But what will happen with the radioactive waste in countries that do not have NPPs but have only low amounts of radioactive waste from medical, industrial and research facilities as well as from research reactors? Countries producing only low amounts of radioactive waste need convincing solutions for the safe and affordable disposal of their radioactive waste. As they do not have a fund by an operator of nuclear power plants, those countries need an appropriate and commensurate solution for the disposal of their waste. In a first overview five solutions seem to be appropriate: (i) the development of multinational disposal facilities by using the existing international knowhow; (ii) common disposal with hazardous waste; (iii) permanent storage; (iv) use of an existing mine or tunnel; (v) extension of the borehole disposal concept for all the categories of radioactive wastes.

  5. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  6. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  7. Screening of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.J.; Thamer, B.J.; Christensen, D.E.; Wehmann, G.

    1978-10-01

    A systematic method for categorizing these disposal alternatives which provides assurance that no viable alternatives are overlooked is reported. Alternatives are categorized by (1) the general media in which disposal occurs, (2) by whether the disposal method can be considered as dispersal, containment or elimination of the wastes, and (3) by the applicability of the disposal method to the possible physical waste forms. A literature survey was performed and pertinent references listed for the various alternatives discussed. A bibliography is given which provides coverage of published information on low-level radioactive waste management options. The extensive list of disposal alternatives identified was screened and the most viable choices were selected for further evaluation. A Technical Advisory Panel met and reviewed the results. Suggestions from that meeting and other comments are discussed. The most viable options selected for further evaluation are: (1) improving present shallow land burial practices; (2) deeper depth burial; (3) disposal in cavities; (4) disposal in exposed or buried structures; and (5) ocean disposal. 42 references

  8. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  9. Unsafe Disposal of Child Faeces: A Community-based Study in a Rural Block in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Preeti PS

    2016-09-01

    Full Text Available Objectives A clean India is the responsibility of all Indians. One of the objectives of the Swachh Bharat Abhiyan (Clean India Initiative is to bring about behavioural changes regarding healthy sanitation practices. While large-scale programs in India have increased latrine coverage, they have to some extent failed to bring behavioural changes ensuring optimal latrine use, including the safe disposal of child faeces, which is a significant source of exposure to faecal pathogens. Hence, this study was done to explore child faeces disposal practices in rural West Bengal and to elicit the determinants of unhygienic faeces disposal. Methods Data collection was done using an interview method among the mothers of 502 under-5 children, following a pre-designed, semi-structured schedule during house-to-house visits in a set of villages in the Hooghly district of West Bengal. Results The prevalence of unsafe disposal of child faeces was 72.4%, and maternal education, per capita income, and water source were found to be significantly associated with unsafe child faeces disposal. Conclusions This study draws attention to the unsafe disposal of child faeces in this area of India and raises questions about the efficiency of sanitation campaigns in rural India that focus on expanding coverage rather than emphasizing behavioural changes, which are crucial to ensure the safe disposal of child faeces. Thus, it is urgently necessary to strengthen efforts focusing on behavioural changes regarding the safe disposal of child faeces in order to minimise adverse health outcomes.

  10. Safe injection practice among health-care workers in Gharbiya Governorate, Egypt.

    Science.gov (United States)

    Ismail, N A; Aboul Ftouh, A M; El-Shoubary, W H; Mahaba, H

    2007-01-01

    We assessed safe injection practices among 1100 health-care workers in 25 health-care facilities in Gharbiya Governorate. Questionnaires were used to collect information and 278 injections were observed using a standardized checklist. There was a lack of infection control policies in all the facilities and a lack of many supplies needed for safe injection. Proper needle manipulation before disposal was observed in only 41% of injections, safe needle disposal in 47.5% and safe syringe disposal in 0%. Reuse of used syringes and needles was reported by 13.2% of the health-care workers and 66.2% had experienced a needle-stick injury. Only 11.3% had received a full course of hepatitis B vaccination.

  11. Sodium cleaning and disposal methods in experimental facilities

    International Nuclear Information System (INIS)

    Rajan, K.K.; Gurumoorthy, K.; Rajan, M.; Kale, R.D.

    1997-01-01

    At Indira Gandhi Centre for Atomic Research, major sodium facilities are designed and operated at Engineering Development Group as a part of development programme towards experimental and Prototype Fast Reactor. After the test programme many equipment and components were removed from the sodium facilities and sodium removal and disposal was carried out. The experience gained in different cleaning methods and waste sodium disposal are discussed. (author)

  12. TECHNO – ECONOMIC ACCEPTABILITY ANALISYS OF WASTE DISPOSAL BY INJECTION INTO APPROPRIATE FORMATION

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2013-12-01

    Full Text Available During exploration and production of oil and natural gas, various types of waste must be disposed in a permanent and safe way. There is a range of methods for processing and disposal of waste, such as disposal into landfills, solidification, namely chemical stabilization, thermal processing, appropriate formation injections uncovered by a deep well, disposal into salt domes and bioremediation. The method of waste disposal into appropriate formations is a method where strict geological and technical criteria must be satisfied when applied. A fundamental scientific hypothesis has been formulated whereby economic acceptability of the waste injection method, as a main method for waste disposal, is to be shown by an economic evaluation. The results of this research are relevant since there has been an intention in Croatia and worldwide to abandon wells permanently due to oil and gas reservoirs depletion and therefore it is essential to estimate economic impacts of the waste injection method application. In that way, profitability of using existing wells for waste disposal in oil industry has been increased, leading to the improvement of petroleum company’s business activities (the paper is published in Croatian.

  13. Child feces disposal practices in rural Orissa: a cross sectional study.

    Directory of Open Access Journals (Sweden)

    Fiona Majorin

    Full Text Available BACKGROUND: An estimated 2.5 billion people worldwide lack access to improved sanitation facilities. While large-scale programs in some countries have increased latrine coverage, they sometimes fail to ensure optimal latrine use, including the safe disposal of child feces, a significant source of exposure to fecal pathogens. We undertook a cross-sectional study to explore fecal disposal practices among children in rural Orissa, India in villages where the Government of India's Total Sanitation Campaign had been implemented at least three years prior to the study. METHODS AND FINDINGS: We conducted surveys with heads of 136 households with 145 children under 5 years of age in 20 villages. We describe defecation and feces disposal practices and explore associations between safe disposal and risk factors. Respondents reported that children commonly defecated on the ground, either inside the household (57.5% for pre-ambulatory children or around the compound (55.2% for ambulatory children. Twenty percent of pre-ambulatory children used potties and nappies; the same percentage of ambulatory children defecated in a latrine. While 78.6% of study children came from 106 households with a latrine, less than a quarter (22.8% reported using them for disposal of child feces. Most child feces were deposited with other household waste, both for pre-ambulatory (67.5% and ambulatory (58.1% children. After restricting the analysis to households owning a latrine, the use of a nappy or potty was associated with safe disposal of feces (OR 6.72, 95%CI 1.02-44.38 though due to small sample size the regression could not adjust for confounders. CONCLUSIONS: In the area surveyed, the Total Sanitation Campaign has not led to high levels of safe disposal of child feces. Further research is needed to identify the actual scope of this potential gap in programming, the health risk presented and interventions to minimize any adverse effect.

  14. Management of chemical disposal in BARC

    International Nuclear Information System (INIS)

    Shenoy, K.T.; Deolekar, Shailesh

    2017-01-01

    Most of the activities in BARC are of radiological in nature and are regulated as per Atomic Energy Act 1962. The radioactive waste generated is managed safely as per Atomic Energy (Safe Disposal of Radioactive Waste) Rules, 1987. However, many developmental activities related to nuclear fuel cycle and laboratories, which support the quality control aspects, generate inactive chemical waste. In addition, being multidisciplinary in nature, BARC carries out research in frontiers of chemical science for societal benefit and academic interest. All these scientific activities over the decades have resulted in accumulation of many partially used/surplus laboratory chemicals. These chemicals are in large varieties though small in terms of quantity. Although these chemicals do not have any further utility and commercial value, can add to potential hazards and hence require safe disposal. Considering this, BARC Safety Council(BSC) has re-constituted the 'Advisory Committee for Chemical Disposal (ACCD)' on March 18, 2016

  15. A Comparison of Distillery Stillage Disposal Methods

    Directory of Open Access Journals (Sweden)

    V. Sajbrt

    2010-01-01

    Full Text Available This paper compares the main stillage disposal methods from the point of view of technology, economics and energetics. Attention is paid to the disposal of both solid and liquid phase. Specifically, the following methods are considered: a livestock feeding, b combustion of granulated stillages, c fertilizer production, d anaerobic digestion with biogas production and e chemical pretreatment and subsequent secondary treatment. Other disposal techniques mentioned in the literature (electrofenton reaction, electrocoagulation and reverse osmosis have not been considered, due to their high costs and technological requirements.Energy and economic calculations were carried out for a planned production of 120 m3 of stillage per day in a given distillery. Only specific treatment operating costs (per 1 m3 of stillage were compared, including operational costs for energy, transport and chemicals. These values were determined for January 31st, 2009. Resulting sequence of cost effectiveness: 1. – chemical pretreatment, 2. – combustion of granulated stillage, 3. – transportation of stillage to a biogas station, 4. – fertilizer production, 5. – livestock feeding. This study found that chemical pretreatment of stillage with secondary treatment (a method developed at the Department of Process Engineering, CTU was more suitable than the other methods. Also, there are some important technical advantages. Using this method, the total operating costs are approximately 1 150 ??/day, i.e. about 9,5 ??/m3 of stillage. The price of chemicals is the most important item in these costs, representing about 85 % of the total operating costs.

  16. Radioactive waste storage and disposal: the challenge

    International Nuclear Information System (INIS)

    Prince, A.T.

    1978-03-01

    Solutions to waste management problems are available. After radium is removed, tailings from uranium ores can be disposed of safely in well-designed retention areas. Work is being done on the processing of non-fuel reactor wastes through incineration, reverse osmosis, and evaporation. Spent fuels have been stored safely for years in pools; dry storage in concrete cannisters is being investigated. Ultimate disposal of high-level wastes will be in deep, stable geologic formations. (LL)

  17. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  18. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  19. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  20. Fail-safe reactivity compensation method for a nuclear reactor

    Science.gov (United States)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    2018-01-23

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on the constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.

  1. The trends of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nomi, Mitsuhiko

    1977-01-01

    The disposal of radioactive wastes instead of their treatment has come to be important problem. The future development of nuclear fuel can not be expected unless the final disposal of nuclear fuel cycle is determined. Research and development have been made on the basis of the development project on the treatment of radioactive wastes published by Japan Atomic Energy Commission in 1976. The high level wastes produced by the reprocessing installations for used nuclear fuel are accompanied by strong radioactivity and heat generation. The most promising method for their disposal is to keep them in holes dug at the sea bottom after they are solidified. Middle or low level wastes are divided into two groups; one contains transuranium elements and the other does not. These wastes are preserved on the ground or in shallow strata, while the safe abandonment into the ground or the sea has been discussed about the latter. The co-operations among nations are necessary not only for peaceful utilization of atomic energy but also for radioactive waste disposal. (Kobatake, H.)

  2. Engineering for a disposal facility using the in-room emplacement method

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, P; Bilinsky, D M; Ates, Y; Read, R S; Crosthwaite, J L; Dixon, D A

    1996-06-01

    This report describes three nuclear fuel waste disposal vaults using the in-room emplacement method. First, a generic disposal vault design is provided which is suitable for a depth range of 500 m to 1000 m in highly stressed, sparsely fractured rock. The design process is described for all components of the system. The generic design is then applied to two different disposal vaults, one at a depth of 750 m in a low hydraulically conductive, sparsely fractured rock mass and another at a depth of 500 m in a higher conductivity, moderately fractured rock mass. In the in-room emplacement method, the disposal containers with used-fuel bundles are emplaced within the confines of the excavated rooms of a disposal vault. The discussion of the disposal-facility design process begins with a detailed description of a copper-shell, packed-particulate disposal container and the factors that influenced its design. The disposal-room generic design is presented including the detailed specifications, the scoping and numerical thermal and thermal mechanical analyses, the backfilling and sealing materials, and the operational processes. One room design is provided that meets all the requirements for a vault depth range of 500 to 1000 m. A disposal-vault layout and the factors that influenced its design are also presented, including materials handling, general logistics, and separation of radiological and nonradiological operations. Modifications to the used-fuel packaging plant for the filling and sealing of the copper-shell, packed-particulate disposal containers and a brief description of the common surface facilities needed by the disposal vault and the packaging plant are provided. The implementation of the disposal facility is outlined, describing the project stages and activities and itemizing a specific plan for each of the project stages: siting, construction, operation; decommissioning; and closure. (author). 72 refs., 15 tabs., 63 figs.

  3. Engineering for a disposal facility using the in-room emplacement method

    International Nuclear Information System (INIS)

    Baumgartner, P.; Bilinsky, D.M.; Ates, Y.; Read, R.S.; Crosthwaite, J.L.; Dixon, D.A.

    1996-06-01

    This report describes three nuclear fuel waste disposal vaults using the in-room emplacement method. First, a generic disposal vault design is provided which is suitable for a depth range of 500 m to 1000 m in highly stressed, sparsely fractured rock. The design process is described for all components of the system. The generic design is then applied to two different disposal vaults, one at a depth of 750 m in a low hydraulically conductive, sparsely fractured rock mass and another at a depth of 500 m in a higher conductivity, moderately fractured rock mass. In the in-room emplacement method, the disposal containers with used-fuel bundles are emplaced within the confines of the excavated rooms of a disposal vault. The discussion of the disposal-facility design process begins with a detailed description of a copper-shell, packed-particulate disposal container and the factors that influenced its design. The disposal-room generic design is presented including the detailed specifications, the scoping and numerical thermal and thermal mechanical analyses, the backfilling and sealing materials, and the operational processes. One room design is provided that meets all the requirements for a vault depth range of 500 to 1000 m. A disposal-vault layout and the factors that influenced its design are also presented, including materials handling, general logistics, and separation of radiological and nonradiological operations. Modifications to the used-fuel packaging plant for the filling and sealing of the copper-shell, packed-particulate disposal containers and a brief description of the common surface facilities needed by the disposal vault and the packaging plant are provided. The implementation of the disposal facility is outlined, describing the project stages and activities and itemizing a specific plan for each of the project stages: siting, construction, operation; decommissioning; and closure. (author)

  4. Comparison of monitoring technologies for CO2 storage and radioactive waste disposal

    International Nuclear Information System (INIS)

    Ryu, Jihun; Koh, Yongkwon; Choi, Jongwon; Lee, Jongyoul

    2013-01-01

    The monitoring techniques used in radioactive waste disposal have fundamentals of geology, hydrogeology, geochemistry etc, which could be applied to CO 2 sequestration. Large and diverse tools are available to monitoring methods for radioactive waste and CO 2 storage. They have fundamentals on geophysical and geochemical principles. Many techniques are well established while others are both novel and at an early stage of development. Reliable and cost-effective monitoring will be an important part of making geologic sequestration a safe, effective and acceptable method for radioactive waste disposal and CO 2 storage. In study, we discuss the monitoring techniques and the role of these techniques in providing insight in the risks of radioactive waste disposal and CO 2 sequestration

  5. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  6. Safe use of nanomaterials

    CERN Multimedia

    2013-01-01

    The use of nanomaterials  is on the increase worldwide, including at CERN. The HSE Unit has established a safety guideline to inform you of the main requirements for the safe handling and disposal of nanomaterials at CERN.   A risk assessment tool has also been developed which guides the user through the process of evaluating the risk for his or her activity. Based on the calculated risk level, the tool provides a list of recommended control measures.   We would therefore like to draw your attention to: Safety Guideline C-0-0-5 - Safe handling and disposal of nanomaterials; and Safety Form C-0-0-2 - Nanomaterial Risk Assessment   You can consult all of CERN’s safety rules and guidelines here. Please contact the HSE Unit for any questions you may have.   The HSE Unit

  7. METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

    2010-02-02

    Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior

  8. Radioactive waste disposal on a non-industrial scale

    International Nuclear Information System (INIS)

    1990-01-01

    A 13 minute videotape deals with the following points: 1) Exposure pathways for solid, liquid and gaseous effleunt; 2) Critical pathways; 3) Critical groups; 4) Controlling authorities; 5) Principles of disposal, including a) concentrate and contain or b) delay and decay or c) dilute and disperse and 6) record keeping. The possible effects on Man and the Environment, of the release of radioactive wastes are discussed, and the principles underlying safe disposal of such wastes are explained. There are illustrations of procedures used in Imperial College for dealing with both high and low activity waste, and methods suitable for disposal of solid, liquid and gaseous forms are described. The programme gives a useful introduction to an important aspect of work with radioactive materials, but is only intended as a supplement to practical training. (author)

  9. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  10. Disposal of olive mill wastewater with DC arc plasma method.

    Science.gov (United States)

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Evaluation of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.; Wehmann, G.; Thamer, B.J.; Card, D.H.

    1979-07-01

    A comparative analysis of the most viable alternatives for disposal of solid low-level radioactive wastes is presented to aid in evaluating national waste management options. Four basic alternative methods are analyzed and compared to the present practice of shallow land burial. These include deeper burial, disposal in mined cavities, disposal in engineered structures, and disposal in the oceans. Some variations in the basic methods are also presented. Technical, socio-political, and economic factors are assigened relative importances (weights) and evaluated for the various alternatives. Based on disposal of a constant volume of waste with given nuclear characteristics, the most desirable alternatives to shallow land burial in descending order of desirability appear to be: improving present practices, deeper burial, use of acceptable abandoned mines, new mines, ocean dumping, and structural disposal concepts. It must be emphasized that the evaluations reported here are generic, and use of other weights or different values for specific sites could change the conclusions and ordering of alternatives determined in this study. Impacts and costs associated with transportation over long distances predominate over differences among alternatives, indicating the desireability of establishing regional waste disposal locations. The impacts presented are for generic comparisons among alternatives, and are not intended to be predictive of the performance of any actual waste disposal facility

  12. Understanding sharps injuries in home healthcare: The Safe Home Care qualitative methods study to identify pathways for injury prevention.

    Science.gov (United States)

    Markkanen, Pia; Galligan, Catherine; Laramie, Angela; Fisher, June; Sama, Susan; Quinn, Margaret

    2015-04-11

    . Manufacturers and insurance providers can improve safety with more affordable and accessible sharps with injury prevention features for home users. Sharps disposal campaigns, free-of-charge disposal containers, and convenient disposal options remain essential. Sharps injuries are preventable through public health actions that promote needleless treatment methods, sharps with injury prevention features, and safe disposal practices. Communication about hazards regarding sharps is needed for all home healthcare stakeholders.

  13. Safely disposing and controlling the various forms of excess military plutonium

    International Nuclear Information System (INIS)

    Albright, D.

    1991-01-01

    The growing surplus of plutonium will continue to pose safety, health, and verification problems. Although long term storage and disposal of plutonium seems technically feasible, or at least comparable in technical difficulty to commercial spent fuel disposal, significant political obstacles within the government and the public, may make it difficult to solve this problem. Although options to build verifiable warhead dismantlement facilities or to recycle plutonium in reactors and thus convert separated plutonium into irradiated fuel are straight forward concepts, their realization remains difficult for economic and political reasons. The plutonium recycle option also raises additional proliferation concerns about its impact on civilian nuclear programs. In the absence of a long term solution, the United States can implement various storage or interim disposal options that involve minimal processing, but that ease verification problems and provide adequate safety and protection of public health

  14. Irreversibility and multiplicity: two criteria for the disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Rochlin, G.

    1976-01-01

    Two criteria are suggested for comparing waste management methods: technical irreversibility and site multiplicity. These criteria can be used to reduce future risk in the face of inherent uncertainty and to provide for safe disposal without requiring guaranteed future ability to recognize, detect or repair areas of failure

  15. Prediction of long-term crustal movement for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Tabei, Kazuto; Koide, Hitoshi; Tashiro, Toshiharu

    2000-01-01

    Long-term stability of the geological environment is essential for the safe geological disposal of radioactive waste, for which it is necessary to predict the crustal movement during an assessment period. As a case study, a numerical analysis method for the prediction of crustal movement in Japan is proposed. A three-dimensional elastic analysis by FEM for the geological block structure of the Kinki region and the Awaji-Rokko area is presented. Stability analysis for a disposal cavern is also investigated. (author)

  16. ICRP recommendations and the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Barraclough, I.M.

    1991-01-01

    There are some special difficulties in setting up and applying radiological protection principle to the disposal of solid radioactive wastes. These were recognized by the International Commission on Radiological Protection (ICRP). One difficulty is the uncertain or probabilistic nature of some of the events or processes that could occur and affect the integrity of a waste repository. The other feature of solid waste disposal that causes difficulty is the length of time period of concern. The practical problem is the difficulties in predicting future conditions and in making the useful estimate of long term radiation impact with sufficient confidence. In this paper, the proposals made by the ICRP to deal with the above difficulties are briefly reviewed. Some suggestions are made as to how the criteria might be clarified, and the necessary calculation made to match the criteria. The reappraisal of the criteria for assessing the radiological safety of waste repositories is needed. (K.I.)

  17. Panel session: Disposal of HLW - ready for implementation

    International Nuclear Information System (INIS)

    Heremans, R.; Come, B.; Barbreau, A.; Girardi, F.

    1986-01-01

    The paper is a report of a panel session at the European Community conference on radioactive waste management and disposal, Luxembourg 1985, concerning the safe and long-term disposal of high-activity and long-lived waste. The subjects discussed include: geological barriers including deep sea-bed sediments, engineered barriers, technological problems (repository construction, waste emplacement, backfilling and sealing), safety analysis, performance assessment of disposal system components, and finally institutional, legal and financial aspects of geological disposal. (U.K.)

  18. Siting Criteria for Low and Intermediate Level Radioactive Waste Disposal in Egypt (Proposal approach)

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media so that it does not result in undue radiation exposure to humans and the environment. The required degree of isolation can be obtained by implementing various disposal methods and suitable criteria. Near surface disposal method has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. Establishing site criteria is the first step in the sitting process to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  19. Assessment of concentration limit for the safe disposal of very low level wastes

    International Nuclear Information System (INIS)

    Nam, Yun Seog

    2008-02-01

    The large amounts of radionuclides are generated from the decommissioning of nuclear facilities (included the nuclear power plant). Because of this, countries or agencies using the nuclear power are one of considering issues for the effective disposal. Among decommissioning wastes, wastes have no or very limited radioactivity are disposed of in conventional landfill or recycled thought approval from regulatory control. And wastes like LILW (Low and Intermediate Level Wastes) or HLW (High Level Wastes) are sent the repository or the interim storage facilities. In order to solve the space problem of the LILW repository and reduce disposal costs, some LLW which are relatively lower than other LLW are classified as VLLW (Very Low Level Wastes). IAEA is added to the VLLW category of the radioactive waste classification and some countries are operating a VLLW disposal facility or will be operating. In this study, the VLLW acceptance criteria of each radionuclide are derived by considering the inadvertent human intrusion scenario applying to a study on the near-surface disposal (LILW). The effect of important parameter, especially, waste isolation period, dilution factor and food consumption rate, is considered. It is concluded that the concentration limits of radionuclides considering in this study are evaluated approximately between 1 and 100 Bq/g. These values are similar to the case of France and Spain and the IAEA's predicted values. Based on this study, acceptance criteria of VLLW disposal facilities are suggested. And this study is contributed to the public relations for the safety of the VLLW disposal facility

  20. Sharps disposal practices among diabetic patients using insulin ...

    African Journals Online (AJOL)

    ... disposal by the dispensing institutions. Patients should also be educated regarding health risks associated with used needles. The South African Metabolic and Endocrine (SEMDSA) Guidelines and the South African Standard Treatment Guidelines (STG) should also give clear guidance on the safe disposal of needles.

  1. Evaluation of very low-level waste disposal based on fuzzed method

    International Nuclear Information System (INIS)

    Wang Yongli; Ni Shijun; Duo Tianhui; Huang Zhigang

    2012-01-01

    This paper studies the geology conditions at a very low-level waste disposal site in southwest China, including geology, hydrogeology, and geologic hazards. On the basis of investigation this waste disposal site is evaluated using fuzzed method. Evaluation results prove that site A is better than site B. (authors)

  2. Method of safely operating nuclear reactor

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro.

    1976-01-01

    Purpose: To provide a method of safely operating an nuclear reactor, comprising supporting a load applied to a reactor container partly with secondary container facilities thereby reducing the load borne by the reactor container when water is injected into the core to submerge the core in an emergency. Method: In a reactor emergency, water is injected into the reactor core thereby to submerge the core. Further, water is injected into a gap between the reactor container and the secondary container facilities. By the injection of water into the gap between the reactor container and the secondary container facilities a large apparent mass is applied to the reactor container, as a result of which the reactor container undergoes the same vibration as that of the secondary container facilities. Therefore, the load borne by the reactor container itself is reduced and stress at the bottom part of the reactor container is released. This permits the reactor to be operated more safely. (Moriyama, K.)

  3. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level. 6 claims

  4. Primary Criteria for Near Surface Disposal Facility in Egypt Proposal approach

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media to protect human health and environment from the harmful effect of the ionizing radiation. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. The primary goal of the sitting process is to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  5. Knowledge and Self-Reported Practice of Insulin Injection Device Disposal among Diabetes Patients in Gondar Town, Ethiopia: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Abebe Basazn Mekuria

    2016-01-01

    Full Text Available Background. Incorrect sharp disposal practices may expose the public to needle-stick injuries. The present study aimed at assessing the knowledge and practice of diabetic patients towards insulin injection device disposal in Gondar town, Ethiopia. Methods. A cross-sectional study was employed on insulin requiring diabetes patients who visited the diabetes clinic at Gondar University Referral Hospital (GURH from February 1 to March 28, 2016. Frequencies, percentages, and ANOVA (analysis of variance and Student’s t-test were used to analyze variables. Results. About half of the participants (49.5% had poor knowledge towards safe insulin injection waste disposal. More than two-thirds (80.7% of respondents had poor practice and 64.3% of respondents did not put insulin needle and lancets into the household garbage. 31% of respondents threw sharps on street when they travel outside. Respondents living in urban areas had a higher mean of knowledge and practice score than those who live in rural area. Conclusions. This study revealed that knowledge and practice of diabetic patients were low towards safe insulin injection waste disposal in study area. Healthcare providers should also be aware of safe disposing system and counsel patients on appropriate disposal of used syringes.

  6. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  7. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    Energy Technology Data Exchange (ETDEWEB)

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert ' Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill

  8. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    International Nuclear Information System (INIS)

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold; Elliott, Robert 'Dan'; Durham, Lisa

    2013-01-01

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill

  9. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  10. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  11. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  12. Engineering, environmental and economic planning for tailings disposal

    International Nuclear Information System (INIS)

    Poellot, J.H.

    1982-01-01

    There are two principal points made in this paper. First, mining waste materials, or tailings, are geotechnical materials. Their behavior follows the principles of soil mechanics and is predictable by these principles. Second, proper disposal, meaning safe, environmentally sound and economical disposal, requires planning and recognizing waste disposal as part of the total mining system and process. In the development of these two principles, planning, design, and economic considerations of mine tailings are discussed

  13. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  14. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  15. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  16. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  17. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  18. Treatment/Disposal Plan for Drummed Waste from the 300-FF-1 Operable Unit, 618-4 Burial Ground

    International Nuclear Information System (INIS)

    Lerch, J.A.

    1999-01-01

    The objective of this plan is to support selection of a safe, environmentally responsible, and cost-effective treatment and disposal method for drums containing depleted uranium metal chips submerged in oil that have been and will be excavated from the 618-4 Burial Ground. Remediation of the 300-FF-1 Operable Unit, 618-4 Burial Ground was initiated in fiscal year (FY) 1998 as an excavation and removal operation. Routine processes were established to excavate and ship contaminated soil and debris to the Environmental Restoration Disposal Facility (ERDF) for disposal

  19. Alternative methods for disposal of low-level radioactive wastes. Task 2c: technical requirements for earth mounded concrete bunker disposal of low-level radioactive waste. Volume 4

    International Nuclear Information System (INIS)

    Miller, W.O.; Bennett, R.D.

    1985-10-01

    The study reported herein contains the results of Task 2c (Technical Requirements for Earth Mounded Concrete Bunker Disposal of Low-Level Radioactive Waste) of a four-task study entitled ''Criteria for Evaluating Engineered Facilities''. The overall objective of this study is to ensure that the criteria needed to evaluate five alternative low-level radioactive waste (LLW) disposal methods are available to potential license applicants. The earth mounded concrete bunker disposal alternative is one of several methods that may be proposed for disposal of low-level radioactive waste. The name of this alternative is descriptive of the disposal method used in France at the Centre de la Manche. Experience gained with this method at the Centre is described, including unit operations and features and components. Some improvements to the French system are recommended herein, including the use of previous backfill around monoliths and extending the limits of a low permeability surface layer. The applicability of existing criteria developed for near-surface disposal (10 CFR Part 61 Subpart D) to the earth mounded concrete bunker disposal method, as assessed in Task 1, are reassessed herein. With minor qualifications, these criteria were found to be applicable in the reassessment. These conclusions differ slightly from the Task 1 findings

  20. Groundwater flow analysis using mixed hybrid finite element method for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Aoki, Hiroomi; Shimomura, Masanori; Kawakami, Hiroto; Suzuki, Shunichi

    2011-01-01

    In safety assessments of radioactive waste disposal facilities, ground water flow analysis are used for calculating the radionuclide transport pathway and the infiltration flow rate of groundwater into the disposal facilities. For this type of calculations, the mixed hybrid finite element method has been used and discussed about the accuracy of ones in Europe. This paper puts great emphasis on the infiltration flow rate of groundwater into the disposal facilities, and describes the accuracy of results obtained from mixed hybrid finite element method by comparing of local water mass conservation and the reliability of the element breakdown numbers among the mixed hybrid finite element method, finite volume method and nondegenerated finite element method. (author)

  1. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  2. Analysis of Methods of Determining the Safe Ship Trajectory

    Directory of Open Access Journals (Sweden)

    Jozef Lisowski

    2016-07-01

    Full Text Available The paper describes six methods of optimal and game theory and artificial neural network for synthesis of safe control in collision situations at sea. The application of optimal and game control algorithms to determine the own ship safe trajectory during the passing of other encountered ships in good and restricted visibility at sea is presented. The comparison of the safe ship control in collision situation: multi-step matrix non-cooperative and cooperative games, multi-stage positional non-cooperative and cooperative games have been introduced. The considerations have been illustrated with examples of computer simulation of the algorithms to determine safe of own ship trajectories in a navigational situation during passing of eight met ships.

  3. Waste disposal into the ground

    Energy Technology Data Exchange (ETDEWEB)

    Mawson, C A

    1955-07-01

    The establishment of an atomic energy project is soon followed by the production of a variety of radioactive wastes which must be disposed of safely, quickly and cheaply. Experience has shown that much more thought has been devoted to the design of plant and laboratories than to the apparently dull problem of what to do with the wastes, but the nature of the wastes which will arise from nuclear power production calls for a change in this situation. We shall not be concerned here with power pile wastes, but disposal problems which have occurred in operation of experimental reactors have been serious enough to show that waste disposal should be considered during the early planning stages. (author)

  4. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  5. Study of classification and disposed method for disused sealed radioactive source in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl; Lee, Seung Hee [FNC Technology Co., Ltd.,Yongin (Korea, Republic of)

    2016-09-15

    In accordance with the classification system of radioactive waste in Korea, all the disused sealed radioactive sources (DSRSs) fall under the category of EW, VLLW or LILW, and should be managed in compliance with the restrictions for the disposal method. In this study, the management and disposal method are drawn in consideration of half-life of radionuclides contained in the source and A/D value (i.e. the activity A of the source dividing by the D value for the relevant radionuclide, which is used to provide an initial ranking of relative risk for sources) in addition to the domestic classification scheme and disposal method, based on the characteristic analysis and review results of the management practices in IAEA and foreign countries. For all the DSRSs that are being stored (as of March 2015) in the centralized temporary disposal facility for radioisotope wastes, applicability of the derivation result is confirmed through performing the characteristic analysis and case studies for assessing quantity and volume of DSRSs to be managed by each method. However, the methodology derived from this study is not applicable to the following sources; i) DSRSs without information on the radioactivity, ii) DSRSs that are not possible to calculate the specific activity and/or the source-specific A/D value. Accordingly, it is essential to identify the inherent characteristics for each of DSRSs prior to implementation of this management and disposal method.

  6. Study of applicable methods on safety verification of disposal facilities and waste packages

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Three subjects about safety verification on the disposal of low level radioactive waste were investigated in FY. 2012. For radioactive waste disposal facilities, specs and construction techniques of covering with soil to prevent possible destruction caused by natural events (e.g. earthquake) were studied to consider verification methods for those specs. For waste packages subject to near surface pit disposal, settings of scaling factor and average radioactivity concentration (hereafter referred to as ''SF'') on container-filled and solidified waste packages generated from Kashiwazaki Kariwa Nuclear Power Station Unit 1-5, setting of cesium residual ratio of molten solidified waste generated from Tokai and Tokai No.2 Power Stations, etc. were studied. Those results were finalized in consideration of the opinion from advisory panel, and publicly opened as JNES-EV reports. In FY 2012, five JNES reports were published and these have been used as standards of safety verification on waste packages. The verification method of radioactive wastes subject to near-surface trench disposal and intermediate depth disposal were also studied. For radioactive wastes which will be returned from overseas, determination methods of radioactive concentration, heat rate and hydrogen generation rate of CSD-C were established. Determination methods of radioactive concentration and heat rate of CSD-B were also established. These results will be referred to verification manuals. (author)

  7. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  8. Methods of Disposing Of High-Level Radioactive Waste: A Review

    International Nuclear Information System (INIS)

    Abumurade, K.

    2002-01-01

    High level nuclear waste from both commercial reactors and defense industry presents a difficult problem to the scientific community as well as the public. The solutions to this problem is still debatable both technically and ethically. There are few methods proposed for disposing of high level waste. Each method has its own advantages and disadvantages. However, the very deep underground geologic repository is the best choice for disposing of high-level radioactive wastes. The cost benefit equation of nuclear power production and its waste is discussed. However, the public should be educated about this matter to minimize the gap between them and the nuclear power community including scientists industry, and governments. (Author) 15 refs., 4 tabs., 1 fig

  9. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  10. Computer-aided evaluation of waste disposal cavern construction methods. ISBN 3-9801713-0-2.

    International Nuclear Information System (INIS)

    Knissel, W.; Fahlbusch, M.

    1991-01-01

    The disposal of hazardous radioactive and toxic wastes in deep geological formations is considered the safest solution in many countries. The Federal Republic of Germany prefers salt formations for underground disposal on account of the special advantages of the rock salt. Calculation methods are presented for the mathematical description of mining techniques for the construction of waste disposal salt caverns. The developed calculation model allows one to evaluate different construction methods with regard to expenses and time. (orig./DG) [de

  11. Novel Emplacement Device for a Very Deep Borehole Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Heui-joo; Lee, Jong Yul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There is a worldwide attempt of HLW disposal into a very deep borehole of around 3-5 km depth with the advancement of an underground excavation technology recently. As it goes into deeper underground, the rock becomes more uniform and flawless. And then the underground water circulation system at 3-5 km depth is almost disconnected with near groundwater circulation system. The canister integrity is less important in this very deep borehole disposal system unlike a general geologic disposal system at 500 m. In the deep borehole disposal procedures, one SNF (Spent Nuclear Fuel) assembly is stored in one disposal canister (D30-40cm, H4.7-5.0m), and approximately 10-40 disposal canisters are connected axially, which parade length can leach to around 200m in maximum. The connected canister parade is lowered through a very deep borehole (D40-50cm) by emplacement devices. Therefore the connections between canisters and canister to lowering joint are very important for the safe operation of it. The well-known connection method between canisters is Threaded Coupled Connection method, in which releasing of the connection is almost impossible after thread fastening in the borehole. The novel joint device suggested in this paper can accommodate a canister emplacement and retrieval in the borehole disposal process. The joint can be lowered by bound to a drilling pipe, or high tension cable along 3-5 km distance. This novel device can cope with an accidental event easily without any joint head change. When canisters are damaged or stuck on the borehole wall during their descending, the canisters in trouble can be retrieved simply by the control of a lifting speed.

  12. Technologies for immobilization and disposal of tritium

    International Nuclear Information System (INIS)

    Coppari, N.R.

    1996-01-01

    This study was done within a program one of whose objectives was to know the state of the technology development for tritium separation in the moderator circuit at HWR and to define the possible technologies to be applied to the Argentine nuclear power plants. Within this framework the strategies adopted by each country and the available technologies for a safe disposal of tritium, not only in its gaseous state tritium but also as tritiated water were analyzed. It is considered that if the selected separation method is such that the tritium is in its gaseous state, the hydride formation for long periods of immobilization should be studied. whereas if it were triated water immobilization should be studied to choose the technology between cementation and drying agents, in both cases the final disposal site will have to be selected. (author). 8 refs

  13. From non-disposable to disposable, treatment of pyrophoric or gas forming waste forms for disposal - Thermal treatment of pyrophoric or gas-forming metals

    International Nuclear Information System (INIS)

    Oesterberg, Carl; Lindberg, Maria

    2014-01-01

    In order to dispose of waste in either a deep geological disposal or in a shallower repository there are several demands that the waste and its package must fulfil, one is that it is not to react with oxygen or the waste package or backfill in the repository, i.e. concrete or grout. The waste forms that do not fulfil this particular criterion must be treated in some way to render the waste non-reactive. One of these waste are metallic uranium. Metallic uranium is not only an issue originating from the nuclear industry, as old types of fuel, it is also present in, for example, transport flasks and as samples used in schools, which all has to be disposed of sooner or later. Another waste that arise is magnesium doped with thorium, originating from the aviation, aerospace and missile industry. These alloys are now being replaced with others without thorium so they are in need of handling and possibly treatment before disposal. Magnesium metal is also pyrophoric, in particular in molten or powder form. In order to evaluate thermally treating these metals in a very controlled environment, such as a pyrolysis vessel, experimental work has been performed. The aim of the thermal treatment is to oxidise the metals and obtain an oxide with low leachability. Inactive trials were performed, first using small amount of magnesium tape followed by using Cerium instead of uranium, to check the ability of controlling the process. After the process had been deemed safe the next step was to test the process first with metallic uranium and thereafter with magnesium thorium alloy. The first results show that the oxidation process can be totally controlled and safe. The results show that the metals are oxidised and no longer reactive and can in principle be disposed of. The test will continue and further results will be reported. (authors)

  14. From dispensing to disposal: the role of student pharmacists in medication disposal and the implementation of a take-back program.

    Science.gov (United States)

    Gray-Winnett, Misty D; Davis, Courtney S; Yokley, Stephanie G; Franks, Andrea S

    2010-01-01

    To decrease the amount of pharmaceuticals present in our community's water supply, reduce the accidental and intentional ingestion of pharmaceuticals, and increase awareness of proper medication disposal. Knoxville, TN, from November 2008 to November 2009. Medication and thermometer collection events were held at various community retail establishments. Community officials and students collaborated to plan advertising, implementation, and appropriate medication and thermometer disposal. Event volunteers set up easily accessible tents and tables in high-traffic areas to collect unused medications, mercury thermometers, and recyclable medication bottles. Student pharmacists worked cooperatively with community partners to collect unused medications and exchange thermometers. Pounds of recyclables collected, pounds of medications collected, and number of thermometers exchanged. The events increased community awareness of appropriate medication disposal and pharmacists' roles in safe use of medications. From November 2008 to November 2009, more than 1,100 pounds of unwanted medications were collected through events and the drop box. Additionally, more than 470 pounds of recyclable packaging material was collected and 535 mercury thermometers exchanged. Student pharmacists can partner with community officials and businesses to provide safe and appropriate medication and mercury thermometer disposal.

  15. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  16. An approach to criteria, design limits and monitoring in nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, G R; Baumgartner, P; Bird, G A; Davison, C C; Johnson, L H; Tamm, J A

    1994-12-01

    The Nuclear Fuel Waste Management Program has been established to develop and demonstrate the technology for safe geological disposal of nuclear fuel waste. One objective of the program is to show that a disposal system (i.e., a disposal centre and associated transportation system) can be designed and that it would be safe. Therefore the disposal system must be shown to comply with safety requirements specified in guidelines, standards, codes and regulations. The components of the disposal system must also be shown to operate within the limits specified in their design. Compliance and performance of the disposal system would be assessed on a site-specific basis by comparing estimates of the anticipated performance of the system and its components with compliance or performance criteria. A monitoring program would be developed to consider the effects of the disposal system on the environment and would include three types of monitoring: baseline monitoring, compliance monitoring, and performance monitoring. This report presents an approach to establishing compliance and performance criteria, limits for use in disposal system component design, and the main elements of a monitoring program for a nuclear fuel waste disposal system. (author). 70 refs., 9 tabs., 13 figs.

  17. An approach to criteria, design limits and monitoring in nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.; Bird, G.A.; Davison, C.C.; Johnson, L.H.; Tamm, J.A.

    1994-12-01

    The Nuclear Fuel Waste Management Program has been established to develop and demonstrate the technology for safe geological disposal of nuclear fuel waste. One objective of the program is to show that a disposal system (i.e., a disposal centre and associated transportation system) can be designed and that it would be safe. Therefore the disposal system must be shown to comply with safety requirements specified in guidelines, standards, codes and regulations. The components of the disposal system must also be shown to operate within the limits specified in their design. Compliance and performance of the disposal system would be assessed on a site-specific basis by comparing estimates of the anticipated performance of the system and its components with compliance or performance criteria. A monitoring program would be developed to consider the effects of the disposal system on the environment and would include three types of monitoring: baseline monitoring, compliance monitoring, and performance monitoring. This report presents an approach to establishing compliance and performance criteria, limits for use in disposal system component design, and the main elements of a monitoring program for a nuclear fuel waste disposal system. (author). 70 refs., 9 tabs., 13 figs

  18. Grimsel test site. Research on safe geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2010-07-01

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  19. Grimsel test site. Research on safe geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  20. Method of ground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1991-01-01

    Rock bases are drilled to form a disposal hole, an overhanging hole and a burying hole each as a shaft. An appropriate number of canisters prepared by vitrification of high level radioactive wastes are charged in the disposal hole with a gap to the inner wall of the hole. Shock absorbers each made of bentonite are filled between each of the canisters and between the canister and the inner wall of the disposal hole, and the canisters are entirely covered with the layer of the shock absorbers. Further, plucking materials having water sealing property such as cement mortar are filled thereover. With such a constitution, in a case if water should intrude into the overhung portion, since the disposal hole is covered with the large flange portion in addition to the water sealing performance of the plucking, the shock absorbers and the canisters undergo no undesirable effects. Further, in a case if water should intrude to the disposal hole, the shock absorber layers are swollen by water absorption, to suppress the intrusion of water. (T.M.)

  1. Method and apparatus for disposing a radioactive waste container to submarine bottom

    International Nuclear Information System (INIS)

    Shibata, Kiyoshi; Yoshida, Shoichi.

    1980-01-01

    Purpose: To completely eliminate a danger occurred by the rolling of a hull in the ocean in a method and apparatus for disposing radioactive waste container to submarine bottom by independently handling the radioactive waste containers when loading the container in a compartment carried on a barge and sinking the containers together with the compartment to the submarine bottom at its disposing time. Method: Radioactive waste containers are carried into a compartment loaded on a barge floating completely, and the barge is then applied with external force thereto by a ship or the like and sailed to the marine disposal area. Then, water is filled in the ballast tank of the barge to submerge the barge, the compartment is floated and separated from the containers, and water is charged into the compartment to sink the compartment. (Aizawa, K.)

  2. A new integrated approach to demonstrate the safe disposal of high-level radioactive waste and spent nuclear fuel in a geological repository

    International Nuclear Information System (INIS)

    Mueller-Hoeppe, N.; Krone, J.; Niehues, N.; Raitz von Frentz, R.

    2000-01-01

    Multi-barrier systems are accepted as the basic approach for long term environmental safe isolation of radioactive waste in geological repositories. Assessing the performance of natural and engineered barriers is one of the major difficulties in producing evidence of environmental safety for any radioactive waste disposal facility, due to the enormous complexity of scenarios and uncertainties to be considered. This paper outlines a new methodological approach originally developed basically for a repository in salt, but that can be transferred with minor modifications to any other host rock formation. The approach is based on the integration of following elements: (1) Implementation of a simple method and efficient criteria to assess and prove the tightness of geological and engineered barriers; (2) Using the method of Partial Safety Factors in order to assess barrier performance at certain reasonable level of confidence; (3) Integration of a diverse geochemical barrier in the near field of waste emplacement limiting systematically the radiological consequences from any radionuclide release in safety investigations and (4) Risk based approach for the assessment of radionuclide releases. Indicative calculations performed with extremely conservative assumptions allowed to exclude any radiological health consequences from a HLW repository in salt to a reference person with a safety level of 99,9999% per year. (author)

  3. Conditioning of Radioactive Wastes Prior to disposal; Segregation and Repackaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Kim, Ki Hong; Hong, Dae Seok; Lee, Bum Chul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We stored several types of radioactive wastes at interim storage facility of KAERI ; the combustible wastes (cloths, decontamination paper and vinyls) from Hanaro multipurpose research reactor, nuclear fuel cycle facility, RI production facility and laboratories, and the non-combustible wastes (metals and glass) dismantled and discarded from the apparatus of laboratories which deteriorated, and also the miscellaneous wastes (spent air-filters). After a segregation of these wastes as the same type, they were treated by using a proper method in order to meet both the national regulation and the waste acceptance criteria of Kyung-ju disposal site. For a safe disposal of waste drums, the waste characterization system including a scaling factor which is hard to measure special radionuclides is established completely. All data of those repackaged drums were input into an ANSIM system so that we could manage them clearly and effectively such like an easy transparent traceability. Through a decontamination of empty drums generated in a repackaging process of the stored drums, these drums can be reused or compressed to reduce their volume reduction for disposal. As a result, the space to store radioactive waste drums are secured more than before, and also the interim storage facility are maintained in a good state. The combustible wastes, which stored at the interim storage facility of KAERI, are managed safely in compliance with the specifications of the national regulations and disposal site. Through the classification and repackage of them, the storage space of drums at RWTF was secured more than before, and the storage facility was kept in a good state, and also the disposal cost of all stored waste drums of KAERI will be reduced due to the reduction of waste volume. Base on the experiences, the non-combustible wastes will be treated soon.

  4. Determining the future for irradiated graphite disposal

    International Nuclear Information System (INIS)

    Neighbour, G.B.; Wickham, A.J.; Hacker, P.J.

    2000-01-01

    In recent years, proposals have been made for the long-term treatment of radioactive graphite waste which have ranged from sea dumping through incineration to land-based disposal, sometimes preceded by a variable period of 'safe storage' within the original reactor containment. Nuclear regulators are challenging the proposed length of 'safe storage' on the basis that essential knowledge may be lost. More recently, political constraints have further complicated the issue by eliminating disposal at sea and imposing a 'near-zero release' philosophy, while public opinion is opposed to land-based disposal and has induced a continual drive towards minimizing radioactivity release to the environment from disposal. This paper proposes that, despite various international agreements, it is time to review technically all options for disposal of irradiated graphite waste as a framework for the eventual decision-making process. It is recognized that the socio-economic and political pressures are high and therefore, given that all currently identified options satisfy the present safety limits, the need to minimize the objective risk is shown to be a minor need in comparison to the public's want of demonstrable control, responsiveness and ability to reverse/change the disposal options in the future. Further, it is shown that the eventual decision-making process for a post-dismantling option for graphite waste must optimize the beneficial attributes of subjective risk experienced by the general public. In addition, in advocating and preferred option to the general public, it is recommended that the industry should communicate at a level commensurate with the public understanding and initiate a process of facilitation which enables the public to arrive at their own solution and constituting a social exchange. Otherwise it is concluded that if the indecision over disposal options is allowed to continue then, by default, graphite will remain in long-term supervised storage. (author)

  5. Safe management of waste from health-care activities

    International Nuclear Information System (INIS)

    Pruess, A.; Giroult, E.; Rushbrook, P.

    1999-01-01

    The waste produced in the course of health-care activities, from contaminated needles to radioactive isotopes, carries a greater potential for causing infection and injury than any other type of waste, and inadequate or inappropriate management is likely to have serious public health consequences and deleterious effects on the environment. This handbook - the result of extensive international consultation and collaboration - provides comprehensive guidance on safe, efficient, and environmentally sound methods for the handling and disposal of health-care wastes. The various categories of waste are clearly defined and the particular hazards that each poses are described. Considerable prominence is given to the careful planning that is essential for the success of waste management; workable means of minimizing waste production are outlined and the role of reuse and recycling of waste is discussed. Most of the text, however, is devoted to the collection, segregation, storage, transport, and disposal of wastes. Details of containers for each category of waste, labelling of waste packages, and storage conditions are provided, and the various technologies for treatment of waste and disposal of final residues are discussed at length. Advice is given on occupational safety for all personnel involved with waste handling, and a separate chapter is devoted to the closely related topic of hospital hygiene and infection control. The handbook pays particular attention to basic processes and technologies that are not only safe but also affordable, sustainable, and culturally appropriate. For health-care settings in which resources are severely limited there is a separate chapter on minimal programmes; this summarizes all the simplest and least costly techniques that can be employed for the safe management of health-care wastes. The guide is aimed at public health managers and policy-makers, hospital managers, environmental health professionals, and all administrators with an

  6. Feasibility of deep ocean disposal of heat generating waste. V.1

    International Nuclear Information System (INIS)

    Hemming, C.R.

    1988-06-01

    This report summarises the research performed in the UK during the period 1977 to 1987 as part of the international programme investigating the feasibility of ocean disposal of heat generating radioactive waste. This study has involved: (i) the definition of the disposal operations needed to meet the minimum requirements for safely emplacing waste on or under the floor of the deep ocean; (ii) the identification and characterisation of areas of the deep ocean that might be suitable for containing heat generating waste; (iii) a study of the processes by which radionuclides might migrate through the multiple barriers that isolate the waste from man's environment; and (iv) a calculation of the radiological impact of the conceptual deep ocean repository. It is concluded that, from a technical and scientific viewpoint, disposal of heat generating waste in the deep ocean could provide a safe, economic and feasible alternative to deep disposal on land. (author)

  7. Disposal of low and intermediate level solid radioactive waste

    International Nuclear Information System (INIS)

    Kanwar Raj

    1998-01-01

    Radioactive waste disposal facility is a very important link in the nuclear fuel cycle chain. Being at the end of the back-end of the fuel cycle, it forms an interface between nuclear industry and the environment. Therefore, the effectiveness of the disposal facility for safe isolation of radioactive waste is vital. This is achieved by following a systematic approach to the disposal system as a whole. Conditioned waste, engineered barriers, back-fill and surrounding geosphere are main components of the disposal system. All of them play complementary role in isolating the radioactivity contained in the waste for extended period of time

  8. Surface disposal of low-level and medium-level short-lived waste. How safe is the disposal facility in Dessel in the long term?

    International Nuclear Information System (INIS)

    2014-01-01

    A disposal facility for the disposal of low-level and medium-level short-lived waste is planned to be built on a site located in the community of Dessel (Belgium). The facility will consist of 34 modules, corresponding to a storage volume capacity of approximately 70,000 m3. The disposal concept includes waste containers that are encapsulated in a concrete box which is filled with mortar. Approximately 900 of these blocks, or monoliths, fit inside each module. The article discusses the Research and Development programme that has been conducted at the Belgian Nuclear Research Center SCK-CEN in conjunction with the development of this facility. Main emphasis is on the models that have been developed for predicting the long-term containment of the disposal facility.

  9. Management of radioactive fuel wastes: the Canadian disposal program

    International Nuclear Information System (INIS)

    Boulton, J.

    1978-10-01

    This report describes the research and development program to verify and demonstrate the concepts for the safe, permanent disposal of radioactive fuel wastes from Canadian nuclear reactors. The program is concentrating on deep underground disposal in hard-rock formations. The nature of the radioactive wastes is described, and the options for storing, processing, packaging and disposing of them are outlined. The program to verify the proposed concept, select a suitable site and to build and operate a demonstration facility is described. (author)

  10. Preliminary study of radioactive waste disposal in granitic underground caves

    International Nuclear Information System (INIS)

    Carvalho, J.F. de; Carajilescov, P.

    1984-01-01

    To date, the disposal of radioactive wastes is one of the major problems faced by the nuclear industry. The utilization of granitic underground caves surrounded by a clay envelope is suggested as a safe alternative for such disposal. A preliminary analysis of the dimensions of those deposits is done. (Author) [pt

  11. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  12. Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Jeremiah Matthew; Boyle, Timothy J.; Dean, Christopher J.

    2013-06-01

    This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.

  13. Hydraulic fracturing as a method for the disposal of volatile radioactive wastes

    International Nuclear Information System (INIS)

    Shaffer, J.H.; Blomeke, J.O.

    1979-08-01

    This report proposed the further development of the hydrofracture process at the Oak Ridge National Laboratory for the permanent disposal of volatile radioactive wastes. The assessment of this method has included the disposal of 129 I, 14 C, 85 Kr, and tritium. It is recommended that additional studies be made of the feasibility of injecting krypton, as an admixture with xenon, directly into the hydrofracture grout stream for disposal in deep, impermeable shale formations. The annual production of 85 Kr from reprocessing 1500 metric tons of fuel would create a void of less than or equal to 1% when injected into the grout mixture used in a typical hydrofracture operation

  14. The safe disposal of radioactive wastes in geologic salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.; Proske, R.

    Geologic salt formations appear to be particularly suitable for final storage. Their existance alone - the salt formations in Northern Germany are more than 200 million years old - is proof of their stability and of their isolation from biological cycles. In 1967 the storage of LAW and later, in 1972, of MAW was started in the experimental storage area Asse, south-east of Braunschweig, after the necessary technical preparations had been made. In more than ten years of operation approx. 114,000 drums of slightly active and 1,298 drums of medium-active wastes were deposited without incident. Methods have been developed for filling the available caverns with wastes and salt to ensure the security of long term disposal without supervision. Tests with electric heaters for simulation of heat-generating highly active wastes confirm the good suitability of salt formations for storing these wastes. Safety analyses for the operating time as well as for the long term phase after closure of the final storage area, which among others also comprise the improbable ''greatest expected accident'', namely break through of water, are carried out and confirm the safety of ultimate storage of radioactive wastes in geological salt formations. (orig./HP) [de

  15. Study on blood compatibility of the radiation sterilized disposable burette transfusion apparatus

    International Nuclear Information System (INIS)

    Chen Guochong; Liu Wen; Liu Qingfang

    2011-01-01

    The blood compatibility of the radiation sterilized disposable burette transfusion apparatus was investigated to provide evidence for the safety of radiation sterilized medical devices. The initial bacteria burden of the disposable burette transfusion apparatus was examined according to the ISO11737 standard, and the whole blood clotting time, prothrombin time, partial thromboplastin time and hemolysis rate of the samples were determined. There was no significant difference between the radiation sterilized samples and negative controls on WBCT, PT and PTT (p>0.05). Haemolysis test showed that the haemolysis rate of the sample sterilized by irradiation was 1.38%, which was coincidence with the criteria of the medical devices. After sterilization by irradiation, disposable burette transfusion apparatus show good blood compatibility, which could be considered that radiation sterilization is a biologically safe method for the medical apparatus. (authors)

  16. Summary of EPA's risk assessment results from the analysis of alternative methods of low-level waste disposal

    International Nuclear Information System (INIS)

    Bandrowski, M.S.; Hung, C.Y.; Meyer, G.L.; Rogers, V.C.

    1987-01-01

    Evaluation of the potential health risk and individual exposure from a broad number of disposal alternatives is an important part of EPA's program to develop generally applicable environmental standards for the land disposal of low-level radioactive wastes (LLW). The Agency has completed an analysis of the potential population health risks and maximum individual exposures from ten disposal methods under three different hydrogeological and climatic settings. This paper briefly describes the general input and analysis procedures used in the risk assessment for LLW disposal and presents their preliminary results. Some important lessons learned from simulating LLW disposal under a large variety of methods and conditions are identified

  17. HLW disposal dilemma

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.

    2003-01-01

    The radioactive waste is an inevitable residue from the use of radioactive materials in industry, research and medicine, and from the operation of generating electricity nuclear power stations. The management and disposal of such waste is therefore an issue relevant to almost all countries. Undoubtedly the biggest issue concerning radioactive waste management is that of high level waste. The long-lived nature of some types of radioactive wastes and the associated safety implications of disposal plans have raised concern amongst those who may be affected by such facilities. For these reasons the subject of radioactive waste management has taken on a high profile in many countries. Not one Member State in the European Union can say that their high level waste will be disposed of at a specific site. Nobody can say 'that is where it is going to go'. Now, there is a very broad consensus on the concept of geological disposal. The experts have little, if any doubt that we could safely dispose of the high level wastes. Large sectors of the public continue to oppose to most proposals concerning the siting of repositories. Given this, it is increasingly difficult to get political support, or even political decisions, on such sites. The failure to advance to the next step in the waste management process reinforces the public's initial suspicion and resistance. In turn, this makes the political decisions even harder. In turn, this makes the political decisions even harder. The management of spent fuel from nuclear power plant became a crucial issue, as the cooling pond of the Romanian NPP is reaching saturation. During the autumn of 2000, the plant owner proceeded with an international tendering process for the supply of a dry storage system to be implemented at the Cernavoda station to store the spent fuel from Unit 1 and eventually from Unit 2 for a minimum period of 50 years. The facility is now in operation. As concern the disposal of the spent fuel, the 'wait and see

  18. BOSS: Borehole Disposal of Disused Sealed Sources. A Technical Manual

    International Nuclear Information System (INIS)

    2011-01-01

    The management of disused radioactive sources is the responsibility of individual Member States. Accordingly, interest in technologies to allow the safe, secure and sustainable management of disused sealed radioactive sources is growing. This publication is a technical summary on preparing and planning predisposal and disposal activities with regard to the BOSS (borehole disposal of disused sealed sources) system, a safe, simple and cost effective solution for the management of disused sealed radioactive sources. It advises potential implementers and decision makers on the implementation of BOSS, which is expected to provide Member States with a successful tool to contribute to the safety and security of current and future generations.

  19. Overview on the Multinational Collaborative Waste Storage and Disposal Solutions

    International Nuclear Information System (INIS)

    MARGEANU, C.A.

    2013-01-01

    The main drivers for a Safe, Secure and Global Energy future become clear and unequivocal: Security of supply for energy sources, Low-carbon electricity generation and Extended nuclear power assuring economic nuclear energy production, safe nuclear facilities and materials, safe and secure radioactive waste management and public acceptance. Responsible use of nuclear power requires that – in addition to safety, security and environmental protection associated with NPPs operation – credible solutions to be developed for dealing with the radioactive waste produced and especially for a responsible long term radioactive waste management. The paper deals with the existing multinational initiative in nuclear fuel cycle and the technical documents sustaining the multinational/regional disposal approach. Meantime, the paper far-reaching goal is to highlight on: What is offering the multinational waste storage and disposal solutions in terms of improved nuclear security ‽

  20. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  1. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  2. Annual Summary of the Integrated Disposal Facility Performance Assessment 2012

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, R. [INTERA, Austin, TX (United States); Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-12-27

    An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1;2 and DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste.

  3. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    International Nuclear Information System (INIS)

    2003-08-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a high potential risk to workers and to the public. The IAEA has received numerous requests for assistance from Member States faced with the problem of safely managing disused sealed sources. The requests have related to both technical and safety aspects. Particularly urgent requests have involved emergency situations arising from unsafe storage conditions and lost sources. There is therefore an important requirement for the development of safe and cost-effective final disposal solutions. Consequently, a number of activities have been initiated by the IAEA to assist Member States in the management of disused sealed sources. The objective of this report is to address safety issues relevant to the disposal of disused sealed sources, and other limited amounts of radioactive waste, in borehole facilities. It is the first in a series of reports aiming to provide an indication of the present issues related to the use of borehole disposal facilities to safely disposal

  4. Selection of appropriate conditioning matrices for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Vance, E.R.

    2002-01-01

    The selection of appropriate solid conditioning matrices or wasteforms for the safe disposal of radioactive waste is dictated by many factors. The overriding issue is that the matrix incorporating the radionuclides, together with a set of engineered barriers in a near-surface or deep geological repository, should prevent significant groundwater transport of radionuclides to the biosphere. For high-level waste (HLW) from nuclear fuel reprocessing, the favored matrices are glasses, ceramics and glass-ceramics. Borosilicate glasses are presently being used in some countries, but there are strong scientific arguments why ceramics based on assemblages of natural minerals are advantageous for HLW. Much research has been carried out in the last 40 years around the world, and different matrices are more suitable than others for a given waste composition. However a major stumbling block for HLW immobilisation is the mall number of approved geological repositories for such matrices. The most appropriate matrices for Intermediate and low-level wastes are contentious and the selection criteria are not very well defined. The candidate matrices for these latter wastes are cements, bitumen, geopolymers, glasses, glass-ceramics and ceramics. After discussing the pros and cons of various candidate matrices for given kinds of radioactive wastes, the SYNROC research program at ANSTO will be briefly surveyed. Some of the potential applications of this work using a variety of SYNROC derivatives will be given. Finally the basic research program at ANSTO on radioactive waste immobilisation will be summarised. This comprises mainly work on solid state chemistry to understand ionic valences and co-ordinations for the chemical design of wasteforms, aqueous durability to study the pH and temperature dependence of solid-water reactions, radiation damage effects on structure and solid-water reactions. (Author)

  5. Survey of waste disposal methods in Awka metropolis | Bill | Journal ...

    African Journals Online (AJOL)

    Waste disposal methods commonly practiced in Awka metropolis, Anambra state were investigated from August to October, 2013. Data was analyzed with both descriptive statistics of frequency and percentages, and alternate hypotheses were tested using Analysis of Variance (ANOVA) at a significance level of 0.05.

  6. Disposal of children's stools and its association with childhood diarrhea in India.

    Science.gov (United States)

    Bawankule, Rahul; Singh, Abhishek; Kumar, Kaushalendra; Pedgaonkar, Sarang

    2017-01-05

    Children's stool disposal is often overlooked in sanitation programs of any country. Unsafe disposal of children's stool makes children susceptible to many diseases that transmit through faecal-oral route. Therefore, the study aims to examine the magnitude of unsafe disposal of children's stools in India, the factors associated with it and finally its association with childhood diarrhea. Data from the third round of the National Family Health Survey (NFHS-3) conducted in 2005-06 is used to carry out the analysis. The binary logistic regression model is used to examine the factors associated with unsafe disposal of children's stool. Binary logistic regression is also used to examine the association between unsafe disposal of children's stool and childhood diarrhea. Overall, stools of 79% of children in India were disposed of unsafely. The urban-rural gap in the unsafe disposal of children's stool was wide. Mother's illiteracy and lack of exposure to media, the age of the child, religion and caste/tribe of the household head, wealth index, access to toilet facility and urban-rural residence were statistically associated with unsafe disposal of stool. The odds of diarrhea in children whose stools were disposed of unsafely was estimated to be 11% higher (95% CI: 1.01-1.21) than that of children whose stools were disposed of safely. An increase in the unsafe disposal of children's stool in the community also increased the risk of diarrhea in children. We found significant statistical association between children's stool disposal and diarrhea. Therefore, gains in reduction of childhood diarrhea can be achieved in India through the complete elimination of unsafe disposal of children's stools. The sanitation programmes currently being run in India must also focus on safe disposal of children's stool.

  7. Application of GIS in site selection for nuclear waste disposal facility

    International Nuclear Information System (INIS)

    Sheng, G.; Luginaah, I.N.; Sorrell, J.

    1996-01-01

    Whether designing a new facility or investigating, potential contaminant migration at an existing site, proper characterization of the subsurface conditions and their interaction with surface features is critical to the process. The Atomic Energy Control Board, states in its regulatory document R-104 that, open-quotes For the long-term management of radioactive wastes, the preferred approach is disposal, a permanent method of management in which there is no intention of retrieval and which, ideally uses techniques and designs that do not rely for their success on long-term institutional control beyond a reasonable period of timeclose quotes. Thus although storage is safe, eventually disposal is necessary to avoid long-term reliance on continuing care and attention, such as monitoring and maintenance. In Canada, the concept being proposed by Atomic Energy of Canada Limited (AECL) involves disposal in deep underground repositories in intrusive igneous rock. The aim of this concept as a disposal method is to build multiple barriers that would protect humans and the natural environment from contaminants in the radioactive waste. The multiple barriers include the geosphere, which consists of the rock, any sediments overlying the rock, and the groundwater. Nevertheless, immediate, as well as long-term, consequences, including, risk involved with technological systems and the inherent uncertainty of any forecast, make the prediction and analysis tasks of increasing importance. This uncertainty in the area of nuclear waste disposal is leading to growing concerns about nuclear waste site selection

  8. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  9. Deep borehole disposal of plutonium

    International Nuclear Information System (INIS)

    Gibb, F. G. F.; Taylor, K. J.; Burakov, B. E.

    2008-01-01

    Excess plutonium not destined for burning as MOX or in Generation IV reactors is both a long-term waste management problem and a security threat. Immobilisation in mineral and ceramic-based waste forms for interim safe storage and eventual disposal is a widely proposed first step. The safest and most secure form of geological disposal for Pu yet suggested is in very deep boreholes and we propose here that the key to successful combination of these immobilisation and disposal concepts is the encapsulation of the waste form in small cylinders of recrystallized granite. The underlying science is discussed and the results of high pressure and temperature experiments on zircon, depleted UO 2 and Ce-doped cubic zirconia enclosed in granitic melts are presented. The outcomes of these experiments demonstrate the viability of the proposed solution and that Pu could be successfully isolated from its environment for many millions of years. (authors)

  10. Defence nuclear waste disposal in Russia. International perspective

    International Nuclear Information System (INIS)

    Stenhouse, M.J.; Kirko, V.I.

    1998-01-01

    Significant amounts of liquid and solid radioactive waste have been generated in Russia during the production of nuclear weapons, and there is an urgent need to find suitable ways to manage these wastes in a way that protects both the current population and future generations. This book contains contributions from pure and applied scientists and other representatives from Europe, North America, and Russia, who are, or have been, actively involved in the field of radioactive waste management and disposal. First-hand experience of specific problems associated with defence-related wastes in the USA and the Russian Federation is presented, and current plans are described for the disposal of solid wastes arising from civilian nuclear power production programmes in other countries, including Belgium, Bulgaria, Canada, Germany and the UK. The book provides a good insight into ongoing research at local and national level within Russia, devoted to the safe disposal of defence-related radioactive waste. It also demonstrates how existing expertise and technology from civilian nuclear waste management programmes can be applied to solving the problems created by nuclear defence programmes. Contributions address methods of immobilisation, site selection methodology, site characterisation techniques and data interpretation, the key elements of safety/performance assessments of planned deep (geological) repositories for radioactive waste, and radionuclide transport modelling. Concerns associated with certain specific nuclear waste disposal concepts and repository sites are also presented. refs

  11. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  12. COMPARISON OF THE ENVIRONMENTAL IMPACT OF DIFFERENT METHODS OF MINING WASTE DISPOSAL TECHNOLOGY USING AHP METHOD

    Directory of Open Access Journals (Sweden)

    Justyna Kubicz

    2016-05-01

    Full Text Available Exploitation of tailing ponds sites for storing all types of waste materials creates multiple problems concerning waste disposal and the environmental impact of the waste. Tailing ponds waste may comprise e.g. flotation tailings from ore enrichment plants. Despite the fact that companies / corporations use state-of-the-art methods of extraction and processing of copper ore, and introduce modern systems of organization and production management, the area located closest to the reservoir is exposed to its negative effects. Many types of waste material are a valuable source of secondary raw materials which are suitable for use by various industries. Examples of such materials are mining waste (flotation tailings, usually neutral to the environment, whose quantities produced in the process of exploitation of minerals is sizeable. The article compares different technological methods of mining waste disposal using AHP method and their environmental impact.

  13. Windrow composting as an option for disposal and utilization of dead birds

    Directory of Open Access Journals (Sweden)

    G. Vinodkumar

    2014-06-01

    Full Text Available Aim: The present study was undertaken to ascertain the feasibility of windrow composting as an environmentally safe and bio-secure disposal method of poultry manure and mortalities. Materials and Methods: Poultry dead birds and cage layer manure were collected from the commercial poultry farms and coir pith was obtained from coir fiber extraction unit. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated. Two treatment windrow groups (T1- Dead birds + Cage layer manure + Coir pith, T2- Cage layer manure + Coir pith in replication were fabricated. Physical chemical and biological parameters of compost were analyzed. Results: Temperature profile ensured maximum pathogen and parasite reduction. Reduction in moisture content, weight, volume, total organic carbon, and progressive increase in total ash, calcium, phosphorus and potassium content as the composting proceeded, were indicative of organic matter degradation and mineralization. Favourable C:N ratio and germination index indicated compost maturity and absence of any phytotoxins in finished compost. The finished compost had undetectable level of Salmonella. There was no odour and fly menace throughout the composting experiment. Conclusion: Windrow composting of poultry waste can be considered as a biologically and environmentally safe disposal option with recycling of nutrients in the form of compost.

  14. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  15. Site-selection studies for final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.; Aeikaes, T.

    1984-02-01

    In the management of waste by the Industrial Power Company Ltd. (TVO) preparations are being made for the final disposal of unprocessed spent fuel into the Finnish bedrock. The site selection program will advance in three phases. The final disposal site must be made at the latest by the end of the year 2000, in accordance with a decision laid down by the Finnish Government. In the first phase, 1983-85, the main object is to find homogeneous stable bedrock blocks surrounded by fracture zones located at a safe distance from the planned disposal area. The work usually starts with a regional structural analysis of mosaics of Landsat-1 winter and summer imagery. Next an assortment of different maps, which cover the whole country, is used. Technical methods for geological and hydrogeological site investigations are being developed during the very first phase of the studies, and a borehole 1000 meters deep will be made in southwestern Finland. Studies for the final disposal of spent fuel or high-level reprocessing waste have been made since 1974 in Finland. General suitability studies of the bedrock have been going on since 1977. The present results indicate that suitable investigation areas for the final disposal of highly active waste can be found in Finland

  16. Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hu-Chen [School of Management, Hefei University of Technology, Hefei 230009 (China); Department of Industrial Engineering and Management, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Wu, Jing [Department of Public Management, Tongji University, Shanghai 200092 (China); Li, Ping, E-mail: yiwuchulp@126.com [Shanghai Pudong New Area Zhoupu Hospital, No. 135 Guanyue Road, Shanghai 201318 (China); East Hospital Affiliated to Tongji University, No. 150 Jimo Road, Shanghai 200120 (China)

    2013-12-15

    Highlights: • Propose a VIKOR-based fuzzy MCDM technique for evaluating HCW disposal methods. • Linguistic variables are used to assess the ratings and weights for the criteria. • The OWA operator is utilized to aggregate individual opinions of decision makers. • A case study is given to illustrate the procedure of the proposed framework. - Abstract: Nowadays selection of the appropriate treatment method in health-care waste (HCW) management has become a challenge task for the municipal authorities especially in developing countries. Assessment of HCW disposal alternatives can be regarded as a complicated multi-criteria decision making (MCDM) problem which requires consideration of multiple alternative solutions and conflicting tangible and intangible criteria. The objective of this paper is to present a new MCDM technique based on fuzzy set theory and VIKOR method for evaluating HCW disposal methods. Linguistic variables are used by decision makers to assess the ratings and weights for the established criteria. The ordered weighted averaging (OWA) operator is utilized to aggregate individual opinions of decision makers into a group assessment. The computational procedure of the proposed framework is illustrated through a case study in Shanghai, one of the largest cities of China. The HCW treatment alternatives considered in this study include “incineration”, “steam sterilization”, “microwave” and “landfill”. The results obtained using the proposed approach are analyzed in a comparative way.

  17. Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method

    International Nuclear Information System (INIS)

    Liu, Hu-Chen; Wu, Jing; Li, Ping

    2013-01-01

    Highlights: • Propose a VIKOR-based fuzzy MCDM technique for evaluating HCW disposal methods. • Linguistic variables are used to assess the ratings and weights for the criteria. • The OWA operator is utilized to aggregate individual opinions of decision makers. • A case study is given to illustrate the procedure of the proposed framework. - Abstract: Nowadays selection of the appropriate treatment method in health-care waste (HCW) management has become a challenge task for the municipal authorities especially in developing countries. Assessment of HCW disposal alternatives can be regarded as a complicated multi-criteria decision making (MCDM) problem which requires consideration of multiple alternative solutions and conflicting tangible and intangible criteria. The objective of this paper is to present a new MCDM technique based on fuzzy set theory and VIKOR method for evaluating HCW disposal methods. Linguistic variables are used by decision makers to assess the ratings and weights for the established criteria. The ordered weighted averaging (OWA) operator is utilized to aggregate individual opinions of decision makers into a group assessment. The computational procedure of the proposed framework is illustrated through a case study in Shanghai, one of the largest cities of China. The HCW treatment alternatives considered in this study include “incineration”, “steam sterilization”, “microwave” and “landfill”. The results obtained using the proposed approach are analyzed in a comparative way

  18. Retrievable disposal - opposing views on ethics

    International Nuclear Information System (INIS)

    Selling, H.A.

    2000-01-01

    In the previous decades many research programmes on the disposal of radioactive waste have been completed in the Netherlands. The experts involved have reconfirmed their view that deep underground disposal in suitable geological formations would ensure a safe and prolonged isolation of the waste from the biosphere. Both rock salt and clay formations are considered to qualify as a suitable host rock. In 1993 the government in a position paper stated that such a repository should be designed in a way that the waste can be retrieved from it, should the need arise. In an attempt to involve stakeholders in the decision-making process, a research contract was awarded to an environmental group to study the ethical aspects related to retrievable disposal of radioactive waste. In their report which was published in its final form in January 2000 the authors concluded that retrievable disposal is acceptable from an ethical point of view. However, this conclusion was reached in the understanding that this situation of retrievability would be permanent. From the concept of equity between generations, each successive generation should be offered equal opportunities to decide for itself how to dispose of the radioactive waste. Consequently, the preferred disposal option is retrievable disposal (or long term storage) in a surface facility. Although this view is not in conformity with the ''official'' position on radioactive waste disposal, there is a benefit of having established a dialogue between interested parties in a broad sense. (author)

  19. Is nuclear power safe enough

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, A F [Institutt for Atomenergi, Kjeller (Norway)

    1979-01-01

    The lecture formed a commentary on the report of the Norwegian Government's Commission on Nuclear power Safety which was published in October 1978. It was introductorily pointed out that 'safe' and 'safety' are not in themselves meaningful terms and that the probability of an occurrence is the real measure. The main items in the Commission's report have been core meltdown, releases during reprocessing, waste disposal, plutonium diversion and environmental impacts. The 21 members of the Commission were unanimous in 7 of the 8 chapters. In chapter 2, 'Summary and Conclusions', 3 members dissented from the majority opinion, that, subject to certain conditions, nuclear power was a safe and acceptable source of energy.

  20. Process for environmentally safe disposal of used fluorescent lamp potted ballast assemblies with component part reclamation and/or recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nardella, A.; Norian, B.

    1993-07-27

    A process is described for the environmentally safe and economical disposal of used fluorescent lamp potted ballast housing assemblies comprising removing from the housing the potted assembly with its embedded electrical component assemblies including a component capacitor containing environmentally hazardous material PCB's; after or before such removing, immersing the potted assembly in a cryogenic bath and freezing the same to reader the potting sufficiently brittle to fragment into small pieces upon being impacted; impacting the potting thoroughly to crush and fragment the same into small pieces and to cleanly remove substantially all traces of the potting from all the electrical components and parts embedded therein and without imparting damage to the components and parts; disconnecting the component containing the environmentally hazardous material; and incinerating only the component containing the environmentally hazardous material, leaving all other components and parts including the housing and potting fragments for salvage, re-use and/or recycling.

  1. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  2. Important issues in disposal of L/ILW

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    Today waste disposal is a challenging technical and political issue. In many countries the acceptance of nuclear power has been tied formally or informally to the convincing demonstration that we can dispose of all radioactive wastes with a very high degree of safety exceeding the expected for other toxic or hazardous wastes. The importance of the public acceptance aspects and the more obviously striking characteristics of high-level wastes (HLW) - in particular their high initial radiation, their heat emission and their long decay times - led to an early concentration of effort on planning and analyzing HLW disposal. On the other hand, the problems of disposing of low- and inter-mediate-level wastes (L/ILW) are in many ways more immediate. These wastes are arising today in quantities which can make continued storge troublesome; accordingly increased effort is being expended in many countries on organizing the safe, final disposal of L/ILW. Some of the technical issues of importance which arise in the corresponding planning and analysis of repository projects for L/ILW are discussed in this paper

  3. Choice of method - evaluation of strategies and systems for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    2010-10-01

    This report deals with the question of how the Swedish spent nuclear fuel is to be disposed of. What are the requirements? What are the alternatives? In the main chapter of the report, an evaluation is made of the KBS-3 method compared with other strategies and systems for final disposal of spent nuclear fuel. An appendix to the report presents in general terms how the KBS-3 method has developed from the end of the 1970s up to today. The report is one of a number of supporting documents for SKB's applications for construction and operation of the final repository for spent nuclear fuel. In parallel with and as a basis for the present report, SKB has prepared the reports Principer, strategier och system foer slutligt omhaendertagande av anvaent kaernbraensle ('Principles, strategies and systems for final disposal of spent nuclear fuel') /Grundfelt 2010a/, Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutlig foervaring av anvaent kaernbraensle ('Comparison between the KBS-3 method and deposition in deep boreholes for final disposal of spent nuclear fuel') /Grundfelt 2010b/ and Utvecklingen av KBS-3- metoden. Genomgaang av forskningsprogram, saekerhetsanalyser, myndighetsgranskningar samt SKB:s internationella forskningssamarbete ('Development of the KBS-3 method. Review of research programmes, safety assessments, regulatory reviews and SKB's international research cooperation') /SKB 2010a/. The reports are in Swedish, but contain summaries in English. The first report is an update of the comprehensive account of alternative methods presented by SKB in 2000. The second report presents a comparison between the KBS-3 method and the Deep Boreholes concept, plus a status report on research and development in the area of Deep Boreholes. The last report describes how the KBS-3 method has been developed from the end of the 1970s up to today. It further describes how the method has been further developed and refined over the years, but also what the

  4. Choice of method - evaluation of strategies and systems for disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    This report deals with the question of how the Swedish spent nuclear fuel is to be disposed of. What are the requirements? What are the alternatives? In the main chapter of the report, an evaluation is made of the KBS-3 method compared with other strategies and systems for final disposal of spent nuclear fuel. An appendix to the report presents in general terms how the KBS-3 method has developed from the end of the 1970s up to today. The report is one of a number of supporting documents for SKB's applications for construction and operation of the final repository for spent nuclear fuel. In parallel with and as a basis for the present report, SKB has prepared the reports Principer, strategier och system foer slutligt omhaendertagande av anvaent kaernbraensle ('Principles, strategies and systems for final disposal of spent nuclear fuel') /Grundfelt 2010a/, Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutlig foervaring av anvaent kaernbraensle ('Comparison between the KBS-3 method and deposition in deep boreholes for final disposal of spent nuclear fuel') /Grundfelt 2010b/ and Utvecklingen av KBS-3- metoden. Genomgaang av forskningsprogram, saekerhetsanalyser, myndighetsgranskningar samt SKB:s internationella forskningssamarbete ('Development of the KBS-3 method. Review of research programmes, safety assessments, regulatory reviews and SKB's international research cooperation') /SKB 2010a/. The reports are in Swedish, but contain summaries in English. The first report is an update of the comprehensive account of alternative methods presented by SKB in 2000. The second report presents a comparison between the KBS-3 method and the Deep Boreholes concept, plus a status report on research and development in the area of Deep Boreholes. The last report describes how the KBS-3 method has been developed from the end of the 1970s up to today. It further describes how the method has been further developed and

  5. Geotechnical engineering for ocean waste disposal. An introduction

    Science.gov (United States)

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  6. Selection of disposal contractor by multi criteria decision making methods

    Directory of Open Access Journals (Sweden)

    Cenker Korkmazer

    2016-08-01

    Full Text Available Hazardous waste is substance that threaten people and environment in case of improper storage, disposal and transport due to its concentration, physical and chemical properties. Companies producing hazardous waste as a result of several activities mostly do not have any own disposal facilities. In addition, they do not pay attention enough to determine the right contractor as a disposal facility. On the other hand, there are various qualitative and quantitative criteria affecting the selection of the contractor and conflicting with each other. The aim of the performed study is to assist one of these companies producing hazardous waste in the selection of the best contractor that eliminates hazardous waste economic and harmless way. In the study, contractor weights in percentage is calculated by using Analytic Network Process (ANP as one of the multi-criteria decision making (MCDM methods and widely used in the literature which considers both qualitative and quantitative criteria. In the next step, by the help of the mathematical model, contractors that will be given which type of hazardous waste are identified. This integrated approach can be used as a guide for similar firms.

  7. Radwaste disposal strategy in Bangladesh: Present status and future trends

    International Nuclear Information System (INIS)

    Jalil, A.; Rabbani, G.

    2002-01-01

    Significant amounts of radioactive solid liquid and mixed wastes are generated in Bangladesh from peaceful uses of atomic energy including disused sealed sources and spent fuel from the research reactor and other hot laboratories in the country. At present these wastes are being collected, segregated, labeled and stored in an interim safe storage. A Central Waste Processing and Storage Facility (CWPSF) is fast nearing completion in the Atomic Energy Research Establishment (AERE), Savar campus where the TRIGA Research Reactor, Isotope Production Laboratory, 14 MeV Neutron Generator, 37 x 10 2 TBq commercial irradiator and other hot facilities are situated. A national strategy exists for the management and disposal of various types of radioactive wastes. Gaseous and liquid wastes are discharged in the environment in a controlled manner following delay decay procedure. Short-lived low and intermediate level wastes (SL-LILW) and disused/spent sealed radioactive sources are being stored in an interim storage before storage in the CWPSF following short treatment and conditioning. As regards their disposal, the currently preferred option is engineered near surface repository. Site investigation work has progressed far enough toward the goal of establishing a demonstration repository at AERE, Savar by the year 2010. For small amount of long-lived highly active problem wastes including spent radium needles and disused radioactive sources, the safe management option is a long-term storage in the CWPSF after conditioning and treatment. But this is not considered as a sustainable solution. The real emphasis is placed on the development of inexpensive disposal methods and availing regional/international repositories. (author)

  8. Phytoextraction crop disposal--an unsolved problem

    International Nuclear Information System (INIS)

    Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Krynski, K.

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound. - Methods of contaminated crop disposal are described and evaluated

  9. Examination on rational disposal concept, layout, and methods of molding and settling for high level radioactive waste

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1998-01-01

    As for the concept of disposing high level radioactive waste in the place of disposal, the method of securing safety by isolating the waste from human environment with the combination of artificial barriers and natural barriers has been adopted. At present in Japan, Power Reactor and Nuclear Fuel Development Corporation has considered the concept of disposal, but it is considered to be necessary to review it from the viewpoints of the uncertainty in safety characteristics, the possibility of realizing construction and settlement, economical efficiency and others. Recently, the investigation of the rational disposal concept has been advanced jointly with Dr. McKinley. The conditions to be considered for artificial barriers at the time of reviewing the disposal concept are described on bentonite buffer and carbon steel overpack enclosing glass-solidified body. As the disposal concept, the private plan of Toyota and that of Toyota and McKinley are shown. Also the layout for settling two modules each in horizontal adits on both sides of the connecting tunnel is proposed. The methods of molding and settling the engineered barrier system are explained. This disposal concept can reduce uncertainty, heighten safety and reduce the cost. (K.I.)

  10. Disposal and utilization of broiler slaughter waste by composting

    Directory of Open Access Journals (Sweden)

    N Bharathy

    2012-12-01

    Full Text Available Aim: To know the feasibility of hygienic and environmentally safe method of disposal of broiler slaughter house waste with coir pith and caged layer manure. Materials and Methods: Compost bins (4 feet x 4 feet x 4 feet were established with concrete blocks with air holes to facilitate aerobic composting. The broiler slaughter waste and coconut coir pith waste were collected from the local market, free of cost. The caged layer manure available from poultry farms were utilized as manure substrate. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated (USDA-NRCS, 2000. Two control bins were maintained simultaneously, using caged layer manure with coir pith waste and water in a ratio of 0.8:3:1.2 (T and another one bin using caged layer manure alone(T . 2 3 Results: At the end of composting, moisture content, weight and the Volume of the compost were reduced significantly (P<0.01, pH, EC, TDS, total organic carbon and total nitrogen content were also significantly (P<0.01 reduced at the finishing of composting. Calcium, phosphorous and potassium content was progressively increased during composting period. The finished compost contains undetectable level of salmonella. Cowpea and sorghum seeds showed positive germination percentage when this finished compost was used. It indicated that all of the finished compost was free from phytotoxin substances. Conclusion: The results indicated that, composting of slaughter waste combined with coir pith waste may be a hygienic and environmentally safe method of disposal of broiler slaughter house waste [Vet. World 2012; 5(6.000: 359-361

  11. Handbook supplement to the Alberta private sewage treatment and disposal regulations

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This manual was prepared to assist in the selection and installation of private sewage treatment and disposal systems which are best suited to location, water and soil conditions in a safe and efficient manner. The manual covers piping, frost protection, pumps, septic tanks and sewage holding tanks, soil tests and water softeners, disposal fields, treatment mounds, open discharge, and lagoons.

  12. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  13. Method and device for marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Tsuda, Shigeo.

    1978-01-01

    Purpose: To provide the subject method and device wherein a unit thrown away can body formed by firmly tying a several drum vessels is thrown away in seawater thereby carrying out a throw-away operation rapidly, safely and highly efficiently. Method: In the hatch is stacked in multistage a unit throw-away can body formed by firmly tying four drums. A self-travelling suspended bedplate with a thrown away rail device runs on rails, and is fixed to a necessary position. An accomodation and throwing away operation control chamber applied with radiation protection is attached to this self-travelling suspended bedplate to perform surveillance of the interior of the chamber, and accommodation and throwing away operation is carried out by a picture image sent from a television camera and safe and accurate operations. (Nakamura, S.)

  14. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  15. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  16. A numerical study on the structural behavior of underground rock caverns for radioactive waste disposal

    International Nuclear Information System (INIS)

    Kim, Sun Hoon; Choi, Kyu Sup; Lee, Kyung Jin; Kim, Dae Hong

    1991-01-01

    In order to design safe and economical underground disposal structures for radioactive wastes, understanding the behavior of discontinuous rock masses is essential. This study includes discussions about the computational model for discontinuous rock masses and the structural analysis method for underground storage structures. Then, based on an engineering judgement a suitable selection and slight modifications on computational models and analysis methods have been made in order to analyze and understand the structural behavior of the rock cavern with discontinuities

  17. Efficiency analyses of the CANDU spent fuel repository using modified disposal canisters for a deep geological disposal system design

    International Nuclear Information System (INIS)

    Lee, J.Y.; Cho, D.K.; Lee, M.S.; Kook, D.H.; Choi, H.J.; Choi, J.W.; Wang, L.M.

    2012-01-01

    Highlights: ► A reference disposal concept for spent nuclear fuels in Korea has been reviewed. ► To enhance the disposal efficiency, alternative disposal concepts were developed. ► Thermal analyses for alternative disposal concepts were performed. ► From the result of the analyses, the disposal efficiency of the concepts was reviewed. ► The most effective concept was suggested. - Abstract: Deep geological disposal concept is considered to be the most preferable for isolating high-level radioactive waste (HLW), including nuclear spent fuels, from the biosphere in a safe manner. The purpose of deep geological disposal of HLW is to isolate radioactive waste and to inhibit its release of for a long time, so that its toxicity does not affect the human beings and the biosphere. One of the most important requirements of HLW repository design for a deep geological disposal system is to keep the buffer temperature below 100 °C in order to maintain the integrity of the engineered barrier system. In this study, a reference disposal concept for spent nuclear fuels in Korea has been reviewed, and based on this concept, efficient alternative concepts that consider modified CANDU spent fuels disposal canister, were developed. To meet the thermal requirement of the disposal system, the spacing of the disposal tunnels and that of the disposal pits for each alternative concept, were drawn following heat transfer analyses. From the result of the thermal analyses, the disposal efficiency of the alternative concepts was reviewed and the most effective concept suggested. The results of these analyses can be used for a deep geological repository design and detailed analyses, based on exact site characteristics data, will reduce the uncertainty of the results.

  18. Radwaste disposal by incorporation in matrix

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    A process of safe disposal, handling, or storae of radwaste associated with nuclear power productin is described. A feature of the invention is to incorporate the radwaste in a hardenable, matrix-forming mass employing a cement-type binding agent to which alkali or alkaline-earth silicate is added, among other things, to increase liquid absorption. 9 claims

  19. Study on evaluation method for potential effect of natural phenomena on a HLW disposal system

    International Nuclear Information System (INIS)

    Kawamura, Makoto; Makino, Hitoshi; Umeda, Koji; Osawa, Hideaki; Seo, Toshihiro; Ishimaru, Tsuneaki

    2005-01-01

    Evaluation for the potential effect of natural phenomena on a HLW disposal system is an important issue in safety assessment. A scenario construction method for the effects on a HLW disposal system condition and performance has been developed for two purposes: the first being effective elicitation and organization of information from investigators of natural phenomena and performance assessor and the second being, maintenance of traceability of scenario construction processes with suitable records. In this method, a series of works to construct scenarios is divided into pieces to facilitate and to elicit the features of potential effect of natural phenomena on a HLW disposal system and is organized to create reasonable scenarios with consistency, traceability and adequate conservativeness within realistic view. (author)

  20. Composting as a biosecure disposal method for PEDv-infected pig carcasses

    Science.gov (United States)

    Porcine epidemic diarrhea virus (PEDV), an enteric disease of swine, has emerged as a worldwide threat to swine health and production. Little is known about virus persistence in PEDV-infected carcasses and effective disposal methods thereof. Two studies were conducted to quantify the persistence of ...

  1. Review on waste inventory, waste characteristics and candidate site for LLW disposal in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Punnachaiya, M.; Danladkaew, K.

    1997-01-01

    It is a worldwide practice that radioactive waste has to be kept under control to be ensured of low potential impact on man and his environment. In Thailand, the OAEP is responsible for all radioactive waste management activities, both operation and the competent authority. The radioactive waste in Thailand consists of low level wastes from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. A plan for central disposal site has been set up. The near surface disposal method is chosen for this aspect because of its simple, inexpensive and adequate safe and very well know process. 8 refs., 6 tabs

  2. Heat transfer analyses for grout disposal of radioactive double-shell slurry and customer wastes

    International Nuclear Information System (INIS)

    Robinson, S.M.; Gilliam, T.M.; McDaniel, E.W.

    1987-04-01

    Grout immobilization is being considered by Rockwell Hanford Operations (Rockwell Hanford) as a permanent disposal method for several radioactive waste streams. These include disposal of customer and double-shell slurry wastes in earthen trenches and in single-shell underground waste storage tanks. Heat transfer studies have previously been made to determine the maximum heat loading for grout disposal of various wastes under similar conditions, but a sensitivity analysis of temperature profiles to input parameters was needed. This document presents the results of heat transfer calculations for trenches containing grouted customer and double-shell slurry wastes and for in situ disposal of double-shell wastes in single-shell, domed concrete storage tanks. It discusses the conditions that lead to maximum grout temperatures of 250 0 F during the curing stage and 350 0 F thereafter and shows the dependence of these temperatures on input parameters such as soil and grout thermal conductivity, grout specific heat, waste loading, and disposal geometries. Transient heat transfer calculations were made using the HEATING6 computer code to predict temperature profiles in solidified low-level radioactive waste disposal scenarios at the Rockwell Hanford site. The calculations provide guidance for the development of safe, environmentally acceptable grout formulas for the Transportable Grout Facility. 11 refs

  3. Evaluation of disposal methods for oxidized FGD sludge

    International Nuclear Information System (INIS)

    Yu, W.C.

    1992-01-01

    The implementation of wet flue gas desulfurization - in response to the Clean Air Act of 1990 - will cause many power generators and state regulatory personnel to face important decisions on the disposal of large volumes of resultant solid waste. Even with the selection of forced oxidation technology, it is widely recognized that the vast majority of flue gas desulfurization by-products will be disposed. This paper analyzes the water quality issues associated with gypsum stacking, macroencapsulation of gypsum, and the stabilization/fixation of gypsum. Water quality issues include leachate quality, leachate generation, runoff management, and groundwater impact. The following analysis uses both field and literature data to measure the environmental impact of the three most discussed disposal options

  4. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  5. Policies on radioactive waste disposal in the Netherlands

    International Nuclear Information System (INIS)

    Selling, H.A.

    1999-01-01

    An outline is given of the policy in the Netherlands on radioactive waste management, with an emphasis on the preferred disposal strategies. A description is given of the siting and licensing process for the waste treatment and storage facility of COVRA, which is in many respects expected to be comparable with that for a disposal site in due course. Immediate disposal of radioactive waste is not envisaged. Instead, the government has opted for long term interim storage in an engineered facility until sufficient confidence has been obtained on the safety performance of a geological repository over long time periods. In the previous decade research has mostly focused on the exploration of the suitability of existing salt formations in the northern part of the country as host rock for a radioactive waste repository. Although so far no in situ research was carried out, it could be demonstrated by utilising values of the relevant parameters from other rock salt formations that, in principle, deep underground disposal of radioactive waste is safe. This assessment was made by comparing both with common radiation protection criteria and with risk criteria over long periods of time. However, a decision to proceed with in situ research was postponed in view of the strong opposition from the local population against underground disposal. Instead, the scope of the research was extended to other host rock materials (clay). Additionally, from a sustainability point of view it was demanded that disposal should be conceived as an irreversible process. This means that the waste should be disposed of in such a way that it is retrievable in case better processing methods for the waste would become available. This demand of retrievability derives from the general waste policy to close the life-cycles of raw materials in order not to deprive future generations from their benefits. Consequently, much of the sequential research is now focused on the safety and financial impact of

  6. Financing of radioactive waste disposal. Finanzierung der nuklearen Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP).

  7. DOE SNF technology development necessary for final disposal

    International Nuclear Information System (INIS)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E.

    1996-01-01

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes

  8. Code of practice for the disposal of radioactive waste by the user

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Code is to recommend practices for the Safe disposal of small quantities of radioactive waste so that the exposure of persons to radiation is as low as reasonably achievable and below prescribed limits. The areas covered are: radiological hazard assessments; waste forms; responsibilities of statutory authorities, users and tip and incinerator operators; transport of radioactive waste; mechanisms of disposal, including municipal tips, incineration, sewerage, disposal to the atmosphere and interim storage. Guidelines are given for the packaging and transport of radioactive waste

  9. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    Science.gov (United States)

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  10. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    International Nuclear Information System (INIS)

    1980-01-01

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available

  11. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-15

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  12. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    Science.gov (United States)

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.

  13. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R B; Barnard, J W; Bird, G A [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  14. Licensing of alternative methods of disposal of low-level radioactive waste: Branch technical position, Low-Level Waste Licensing Branch

    International Nuclear Information System (INIS)

    Higginbotham, L.B.; Dragonette, K.S.; Pittiglio, C.L. Jr.

    1986-12-01

    This branch technical position statement identifies and describes specific methods of disposal currently being considered as alternatives to shallow land burial, provides general guidance on these methods of disposal, and recommends procedures that will improve and simplify the licensing process. The statement provides answers to certain questions that have arisen regarding the applicability of 10 CFR 61 to near-surface disposal of waste, using methods that incorporate engineered barriers or structures, and other alternatives to conventional shallow land burial disposal practices. This position also identifies a recently published NRC contractor report that addresses the applicability of 10 CFR 61 to a range of generic disposal concepts and which provides technical guidance that the staff intends to use for these concepts. This position statement combined with the above-mentioned NRC contractor report fulfills the requirements of Section 8(a) of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985

  15. The disposal of intermediate-level radioactive liquid waste by hydraulic fracturing process

    International Nuclear Information System (INIS)

    Chen Ruilin; Zhou Hanchen; Gao Yuzhu; Qiao Wen; Wang Wentao

    1993-01-01

    The hydraulic fracturing process is characterized by combination of the treatment with the disposal of ILLW (intermediate-level liquid waste). It is of cement solidification in deep geology stratum. First of all, it is necessary to select a suitable disposal site with detailed information on geology and hydrogeology. The process has such advantages as simple, low cost, large capacity of disposal, safe and reliable in technology. It is an attractive process of ILLW. Since 1980's, the research and the concept design of the hydraulic fracturing process have been initiated for disposal of ILLW. It is demonstrated by the field tests. The authors considered that the geological structure near Sichuan Nuclear Fuel Plant fits the disposal of ILLW by the hydraulic fracturing process

  16. The disposal of intermediate-level radioactive liquid waste by hydraulic fracturing process

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Chen; Hanchen, Zhou; Yuzhu, Gao; Wen, Qiao; Wentao, Wang [Beijing Inst. of Nuclear Engineering (China)

    1994-12-31

    The hydraulic fracturing process is characterized by combination of the treatment with the disposal of ILLW (intermediate-level liquid waste). It is of cement solidification in deep geology stratum. First of all, it is necessary to select a suitable disposal site with detailed information on geology and hydrogeology. The process has such advantages as simple, low cost, large capacity of disposal, safe and reliable in technology. It is an attractive process of ILLW. Since 1980`s, the research and the concept design of the hydraulic fracturing process have been initiated for disposal of ILLW. It is demonstrated by the field tests. The authors considered that the geological structure near Sichuan Nuclear Fuel Plant fits the disposal of ILLW by the hydraulic fracturing process.

  17. The disposal of Canada's nuclear fuel waste: postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; McConnell, D.B.; Andres, T.H.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste is based on a vault located deep in plutonic rock of the Canadian Shield. We document in this report a method to assess the long-term impacts of a disposal facility for nuclear fuel waste. The assessment integrates relevant information from engineering design studies, site investigations, laboratory studies, expert judgment and detailed mathematical analyses to evaluate system performance in terms of safety criteria, guidelines and standards. The method includes the use of quantitative tools such as the Systems Variability Analysis computer Code (SYVAC) to deal with parameter uncertainty and the use of reasoned arguments based on well-established scientific principles. We also document the utility of the method by describing its application to a hypothetical implementation of the concept called the reference disposal system. The reference disposal system generally conforms to the overall characteristics of the concept, except we have made some specific site and design choices so that the assessment would be more realistic. To make the reference system more representative of a real system, we have used the geological observations of the AECL's Whiteshell Research Area located near Lac du Bonnet, Manitoba, to define the characteristics of the geosphere and the groundwater flow system. This research area has been subject to more than a decade of geological and hydrological studies. The analysis of the reference disposal system provides estimates of radiological and chemical toxicity impacts on members of a critical group and estimates of possible impacts on the environment. The latter impacts include estimates of radiation dose to nonhuman organisms. Other quantitative analyses examine the use of derived constraints to improve the margin of safety, the effectiveness of engineered and natural barriers, and the sensitivity of the results to influential features, events, and processes of the reference disposal

  18. Nuclear waste disposal: two social criteria

    International Nuclear Information System (INIS)

    Rochlin, G.I.

    1977-01-01

    Two criteria--technical irreversibility and site multiplicity--have been suggested for use in establishing standards for the disposal of nuclear wastes. They have been constructed specifically to address the reduction of future risk in the face of inherent uncertainty concerning the social and political developments that might occur over the required periods of waste isolation, to provide for safe disposal without the requirement of a guaranteed future ability to recognize, detect, or repair errors and failures. Decisions as to how to apply or weigh these criteria in conjunction with other waste management goals must be made by societies and their governments. The purpose of this paper was not to preempt this process, but to construct a framework that facilitates consideration of the ethical and normative components of the problem of nuclear waste disposal. The minimum ethical obligation of a waste disposal plan is to examine most thoroughly the potential consequences of present actions, to acknowledge them openly, and to minimize the potential for irremediable harm. An ethically sound waste management policy must reflect not only our knowledge and skills, but our limitations as well

  19. Feasibility of safe terminal disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nilsson, B.; Papp, T.

    1980-01-01

    The results of the KBS study indicate that safe terminal storage of spent nuclear fuel in crystalline rock is feasible with the technology available today and at a safety level that is well within the limitations recommended by the ICRP. This statement is not only based on the fact that the doses calculated in the KBS study were acceptably low, but even more on the freedom to choose the dimensions of the engineered barriers as well as depth of the repository and to some degree the quality of the host rock

  20. Methods of characterization of salt formations in view of spent fuel final disposal

    International Nuclear Information System (INIS)

    Diaconu, Daniela; Balan, Valeriu; Mirion, Ilie

    2002-01-01

    Deep disposal in geological formations of salt, granite and clay seems to be at present the most proper and commonly adopted solution for final disposal of high-level radioactive wastes and spent fuel. Disposing such wastes represents the top-priority issue of the European research community in the field of nuclear power. Although seemingly premature for Romanian power system, the interest for final disposal of spent fuel is justified by the long duration implied by the studies targeting this objective. At the same time these studies represent the Romanian nuclear research contribution in the frame of the efforts of integration within the European research field. Although Romania has not made so far a decision favoring a given geological formation for the final disposal of spent fuel resulting from Cernavoda NPP, the most generally taken into consideration appears the salt formation. The final decision will be made following the evaluation of its performances to spent fuel disposal based on the values of the specific parameters of the geological formation. In order to supply the data required as input parameters in the codes of evaluation of the geological formation performances, the INR Pitesti initiated a package of modern and complex methodologies for such determinations. The studies developed so far followed up the special phenomenon of salt convergence, a phenomenon characteristic for only this kind of rock, as well as the radionuclide migration. These studies allow a better understanding of these processes of upmost importance for disposal's safety. The methods and the experimental installation designed and realized at INR Pitesti aimed at determination of thermal expansion coefficient, thermal conductivity, specific heat, which are all parameters of high specific interest for high level radioactive waste or spent fuel disposal. The paper presents the results of these studies as well as the methodologies, the experimental installations and the findings

  1. Comparison between the KBS-3 method and the deep borehole for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Grundfelt, Bertil

    2010-09-01

    In this report a comparison is made between disposal of spent nuclear fuel according to the KBS-3 method with disposal in very deep boreholes. The objective has been to make a broad comparison between the two methods, and by doing so to pinpoint factors that distinguish them from each other. The ambition has been to make an as fair comparison as possible despite that the quality of the data of relevance is very different between the methods

  2. Records, Markers and People: For the Safe Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Pescatore, Claudio; Mays, Claire

    2009-12-01

    The timescales over which the hazard exists from radioactive waste (as well as from other wastes) are much longer than just a few thousands of years, and it must be accepted that the current generation's capacity to ensure continued integrity of the disposal facility cannot be projected indefinitely into the future, but rather diminishes with time. At the same time there is a common understanding that we should not 'walk away' from these facilities or conceal them, even when we think they will be safe. In fact, the sense of safety will come from continuing, over time, some element of familiarity and control - hence the need to conceptualise a 'rolling future' in which each generation takes responsibility to ensure continuity and safety for the succeeding several generations, including a need for flexibility and adaptability to circumstances as they change. The issue of archives and markers that last as long as possible (the technological approach) continues to be a topical one. However, physical markers and archives may be complemented by - or integrated within - a cultural tradition that could be sustained over time starting with the planning of a repository and continuing through its implementation and beyond its closure. The mandated need to install 'permanent' records and markers can only be fulfilled if one acknowledges that these will evolve over time. Namely, they will become part of the local, subsequent cultures, and they will (or ideally should) be renewed as their materials are degraded, or as their significance evolves. Because a radioactive waste management repository and site will be a permanent presence in a host community for a very long time, a fruitful, positive relationship must be established with those residing there, now and in the future. Simply put, designers have to make the radioactive waste management facility and site to suit people's present needs, ambitions and likings, and to provide for evolution to match at reasonable cost the needs

  3. Records, Markers and People: For the Safe Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pescatore, Claudio; Mays, Claire (OECD Nuclear Energy Agency, 12, bd des Iles, F-92130 Issy-les-Moulineaux (France))

    2009-12-15

    The timescales over which the hazard exists from radioactive waste (as well as from other wastes) are much longer than just a few thousands of years, and it must be accepted that the current generation's capacity to ensure continued integrity of the disposal facility cannot be projected indefinitely into the future, but rather diminishes with time. At the same time there is a common understanding that we should not 'walk away' from these facilities or conceal them, even when we think they will be safe. In fact, the sense of safety will come from continuing, over time, some element of familiarity and control - hence the need to conceptualise a 'rolling future' in which each generation takes responsibility to ensure continuity and safety for the succeeding several generations, including a need for flexibility and adaptability to circumstances as they change. The issue of archives and markers that last as long as possible (the technological approach) continues to be a topical one. However, physical markers and archives may be complemented by - or integrated within - a cultural tradition that could be sustained over time starting with the planning of a repository and continuing through its implementation and beyond its closure. The mandated need to install 'permanent' records and markers can only be fulfilled if one acknowledges that these will evolve over time. Namely, they will become part of the local, subsequent cultures, and they will (or ideally should) be renewed as their materials are degraded, or as their significance evolves. Because a radioactive waste management repository and site will be a permanent presence in a host community for a very long time, a fruitful, positive relationship must be established with those residing there, now and in the future. Simply put, designers have to make the radioactive waste management facility and site to suit people's present needs, ambitions and likings, and to provide for

  4. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  5. [Blending powdered antineoplastic medicine in disposable ointment container].

    Science.gov (United States)

    Miyazaki, Yasunori; Uchino, Tomonobu; Kagawa, Yoshiyuki

    2014-01-01

    On dispensing powdered antineoplastic medicines, it is important to prevent cross-contamination and environmental exposure. Recently, we developed a method for blending powdered medicine in a disposable ointment container using a planetary centrifugal mixer. The disposable container prevents cross-contamination. In addition, environmental exposure associated with washing the apparatus does not arise because no blending blade is used. In this study, we aimed to confirm the uniformity of the mixture and weight loss of medicine in the blending procedure. We blended colored lactose powder with Leukerin(®) or Mablin(®) powders using the new method and the ordinary pestle and mortar method. Then, the blending state was monitored using image analysis. Blending variables, such as the blending ratio (1:9-9:1), container size (35-125 mL), and charging rate (20-50%) in the container were also investigated under the operational conditions of 500 rpm and 50 s. At a 20% charging rate in a 35 mL container, the blending precision of the mixtures was not influenced by the blending ratio, and was less than 6.08%, indicating homogeneity. With an increase in the charging rate, however, the blending precision decreased. The possible amount of both mixtures rose to about 17 g with a 20% charging rate in a 125 mL container. Furthermore, weight loss of medicines with this method was smaller than that with the pestle and mortar method, suggesting that this method is safer for pharmacists. In conclusion, we have established a precise and safe method for blending powdered medicines in pharmacies.

  6. Remotely controlled large container disposal methodology

    International Nuclear Information System (INIS)

    Amir, S.J.

    1994-09-01

    Remotely Handled Large Containers (RHLC), also called drag-off boxes, have been used at the Hanford Site since the 1940s to dispose of large pieces of radioactively contaminated equipment. These containers are typically large steel-reinforced concrete boxes, which weigh as much as 40 tons. Because large quantities of high-dose waste can produce radiation levels as high as 200 mrem/hour at 200 ft, the containers are remotely handled (either lifted off the railcar by crane or dragged off with a cable). Many of the existing containers do not meet existing structural and safety design criteria and some of the transportation requirements. The drag-off method of pulling the box off the railcar using a cable and a tractor is also not considered a safe operation, especially in view of past mishaps

  7. Transuranic advanced disposal systems: preliminary 239Pu waste-disposal criteria for Hanford

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for 239 Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for 239 Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables

  8. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  9. The management and disposal of radioactive wastes - safety principles and guidelines

    International Nuclear Information System (INIS)

    Linsley, G.; Bell, M.; Saire, D.

    1991-01-01

    This paper describes the current plans for the establishment of the Radioactive Waste Safety Standards (RADWASS), a new series of IAEA documents in the Safety Series category intended to set out internationally agreed approaches to the safe management and disposal or radioactive waste. RADWASS is being implemented to document the harmonization which exists in the approaches to establishing safety in the field of radioactive waste management and disposal at the international level. (au)

  10. Disposal phase experimental program plan

    International Nuclear Information System (INIS)

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes

  11. Assessment of the properties of disused sealed radioactive sources for disposal in a borehole facility

    International Nuclear Information System (INIS)

    Adjepong, K.

    2015-01-01

    Radioactive wastes arise from applications in which radioactive materials are used. Medicine, industries and agriculture are examples of areas where radioactive materials are used. Most of the radioactive materials used in nuclear applications are in the form of sealed radioactive sources (SRS). After a number of usages, the SRS may no longer be useful enough for its original purpose and will be considered as a disused sealed radioactive source (DSRS). DSRS are potentially dangerous to human health and the environment, and therefore important to manage them safely. Currently in Ghana, DSRS are collected and stored awaiting a final disposal option. There are ongoing plans to implement the Borehole Disposal of Disused Sealed Sources (BOSS) system in Ghana as a final disposal option. There are, however, concerns about the number of DSRS disposal packages that can safely be disposed in a narrow borehole underground in a long term without posing any harm to people and the environment. It is therefore necessary to assess the properties of DSRS that need to be placed into the borehole to determine the safety of this disposal option. For this study, 160 DSRS were selected from the DSRS inventory. The present activity, volume, A/D ratio and thermal output of all the DSRS were determined. The SIMBOD database tool was used to determine the number of capsules and disposal packages that will be required with respect to the DSRS registered into it. Also, verification measurements to confirm the DSRS inventory data were conducted. The assessment have shown that DSRS used in this study would require a total of seven (7) capsules. The estimated total activity of the disposal packages were below the waste acceptance criteria and the thermal output for each disposal package were also below the 50W limit. One borehole with an estimated length of 57 m will be safe to dispose the DSRS used in this study. The verification measurements confirmed the confirmed the DSRS inventory data. It

  12. Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method.

    Science.gov (United States)

    Liu, Hu-Chen; Wu, Jing; Li, Ping

    2013-12-01

    Nowadays selection of the appropriate treatment method in health-care waste (HCW) management has become a challenge task for the municipal authorities especially in developing countries. Assessment of HCW disposal alternatives can be regarded as a complicated multi-criteria decision making (MCDM) problem which requires consideration of multiple alternative solutions and conflicting tangible and intangible criteria. The objective of this paper is to present a new MCDM technique based on fuzzy set theory and VIKOR method for evaluating HCW disposal methods. Linguistic variables are used by decision makers to assess the ratings and weights for the established criteria. The ordered weighted averaging (OWA) operator is utilized to aggregate individual opinions of decision makers into a group assessment. The computational procedure of the proposed framework is illustrated through a case study in Shanghai, one of the largest cities of China. The HCW treatment alternatives considered in this study include "incineration", "steam sterilization", "microwave" and "landfill". The results obtained using the proposed approach are analyzed in a comparative way. Copyright © 2013. Published by Elsevier Ltd.

  13. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    Science.gov (United States)

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  14. Progress report on disposal concept for TRU waste in Japan

    International Nuclear Information System (INIS)

    2000-03-01

    The object of this report is to contribute towards establishing a national TRU waste disposal program by integrating the results of research and development work carried out by JNC and the electricity utilities and summarizing the findings concerning safe methods for TRU waste disposal. The report consists of 5 chapters: the first describes the boundary conditions for the review of the TRU waste disposal concept (including geological conditions) and the basic concept adopted; the second describes the generation and characteristics of TRU waste and the third outlines the disposal technology; the fourth gives the key of the safety assessment and the fifth presents the conclusions of the report and lists issues for future consideration. The geological environment of Japan is simply classified into crystalline and sedimentary rock types (in terms of groundwater flow properties and rock strength) and a set of target conditions/properties for each rock type is then established. Based on this, a case which represents the basis for performance assessment (the reference case) will be defined. Alternatives to the reference case are studied to investigate the flexibility of the disposal concept. Under the conditions assumed in this study, the perturbing events considered showed no significant effects on the dose at the 100 meter evaluation point, owing to the relatively high efficiency of the natural barrier. However, the significant effect of these events on nuclide from the EBS shows that, in the case of a less efficient natural barrier, their effects could influence resulting dose. (S.Y.)

  15. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  16. A Study on Optimized Management Options for the Wolsong Low- and Intermediate - Level Waste Disposal Center in Korea - 13479

    Energy Technology Data Exchange (ETDEWEB)

    Park, JooWan; Kim, DongSun; Choi, DongEun [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)

    2013-07-01

    The safe and effective management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Currently, for permanent disposal of low- and intermediate-level waste (LILW), the Wolsong LILW Disposal Center (WLDC) is under construction. It will accommodate a total of 800,000 drums at the final stage after stepwise expansion. As an implementing strategy for cost-effective development of the WLDC, various disposal options suitable for waste classification schemes would be considered. It is also needed an optimized management of the WLDC by taking a countermeasure of volume reduction treatment. In this study, various management options to be applied to each waste class are analyzed in terms of its inventory and disposal cost. For the volume reduction and stabilization of waste, the vitrification and plasma melting methods are considered for combustible and incombustible waste, respectively. (authors)

  17. Comparison of Two Educational Methods on Nurses' Adoption of Safe Patient Handling Techniques

    Science.gov (United States)

    Folami, Florence

    2010-01-01

    Musculoskeletal injuries caused by patient lifting and transfers are a concern to health care workers. The Safe Patient Handling Act calls for all health care organizations to move to mechanical assistance from previous manual methods of transfers. This research analyzed two different educational programs that addressed safe patient handling for…

  18. Low level radioactive waste disposal in Kozloduy NPP in Bulgaria

    International Nuclear Information System (INIS)

    Stanchev, V.

    2001-01-01

    Kozloduy NPP is the biggest power plant in the Republic of Bulgaria. It is in operation since 1974 and for the past 25 years it has generated over 263 billion kWh electric power. The NPP share in the total electric production in 1998 was about 50%. It has six units in operation - four WWER 440 B-230 and two WWER 1000 B-320. In the nuclear reactor operation the generation of radioactive waste (RAW) is an inevitable process. The waste must be conditioned, stored and disposed of in a safe manner. There are no national radioactive waste disposal facilities, for waste generated by an NPP, in Bulgaria to the moment. This situation necessitates the storage of operational RAW to be carried out on site for a long period of time (30 to 50 years). Following the principle for protection of human health and environment now and in the future, Kozloduy NPP adopted the concept for conditioning the RAW to a stable solid form and placing the waste in a package which should keep its features for a sufficiently long term so that the package can be safely transported to the disposal site. (author)

  19. Nuclear energy's dilemma: disposing of hazardous radioactive waste safely. Report to the congress

    International Nuclear Information System (INIS)

    1977-01-01

    The unsolved problem of radioactive waste disposal threatens the future of nuclear power in the United States. Nuclear critics, the public, business leaders, and Government officials concur that a solution to the disposal problem is critical to the continued growth of nuclear energy. The Energy Research and Development Administration has begun a program to demonstrate by the mid-1980s the feasibility and safety of placing radioactive wastes in deep geological formations. GAO points out that not only has progress been negligible to date, but that future program goals are overly optimistic because the Energy Research and Development Administration faces many unsolved social, regulatory, and geological obstacles. GAO also discusses the progress and problems the Energy Research and Development Administration faces in managing its radioactive waste and how the Nuclear Regulatory Commission is handling the problem of large amounts of spent nuclear fuel now accumulating at nuclear power plants, and makes a number of recommendations for regulatory and program management changes

  20. Method for disposing of hazardous wastes

    Science.gov (United States)

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  1. TECHNICAL NOTE LIQUID WASTE DISPOSAL IN URBAN LOW ...

    African Journals Online (AJOL)

    In the ideal case the liquid waste can safely be disposed of in a properly designed and integrated network of pipes, which collect and transmit the liquid waste into a treatment plant. However, such a system is costly and needs a substantial amount of initial investment to start operating and subsequently to maintain.

  2. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  3. Nuclear waste disposal technology for Pacific Basin countries

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; Brothers, G.W.

    1981-01-01

    Safe long-term disposal of nuclear wastes is technically feasible. Further technological development offers the promise of reduced costs through elimination of unnecessary conservatism and redundance in waste disposal systems. The principal deterrents to waste disposal are social and political. The issues of nuclear waste storage and disposal are being confronted by many nuclear power countries including some of the Pacific Basin nuclear countries. Both mined geologic and subseabed disposal schemes are being developed actively. The countries of the Pacific Basin, because of their geographic proximity, could benefit by jointly planning their waste disposal activities. A single repository, of a design currently being considered, could hold all the estimated reprocessing waste from all the Pacific Basin countries past the year 2010. As a start, multinational review of alterntive disposal schemes would be beneficial. This review should include the subseabed disposal of radwastes. A multinational review of radwaste packaging is also suggested. Packages destined for a common repository, even though they may come from several countries, should be standardized to maximize repository efficiency and minimize operator exposure. Since package designs may be developed before finalization of a repository scheme and design, the packages should not have characteristics that would preclude or adversely affect operation of desirable repository options. The sociopolitical problems of waste disposal are a major deterrent to a multinational approach to waste disposal. The elected representatives of a given political entity have generally been reluctant to accept the waste from another political entity. Initial studies would, nevertheless, be beneficial either to a common solution to the problem, or to aid in separate solutions

  4. Burying uncertainty: Risk and the case against geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.S.

    1996-01-01

    The author of this book asserts that moral and ethical issues must be considered in the development of nuclear waste disposal policies. The book develops this theme showing that to date no technology has provided a fool-proof method of isolating high-level nuclear wastes and that technological advances alone will not increase public acceptance. She supports a plan for the federal government to negotiate construction of MRS facilities that would safely house high-level nuclear waste for about 100 years, providing a temporary solution and a moral and ethical alternative to permanent storage

  5. Challenges associated with extending spent fuel storage until reprocessing or disposal

    International Nuclear Information System (INIS)

    Carlsen, Brett; Saegusa, Toshiari; Wasinger, Karl; Grahn, Per; Wolff, Dietmar; Waters, Michael; Bevilacqua, Arturo

    2014-01-01

    Existing spent fuel storage (SFS) practices are the result of the past presumptions that an end point, e.g. sufficient reprocessing and/or disposal capacity, would be available within the short term (approximately 50 years). Consequently, long term storage (between approximately 50 and 100 years) considerations have not been included in planning the back end of the nuclear fuel cycle. The present reality shows that no country has yet neither licensed nor built nor operated a deep geological repository for spent fuel (SF) and/or high level waste (HLW). Further, present and projected SF generation rates - more than 10 000 metric tons of heavy metal (MTHM) a year - far exceed the current capacity for disposal - 0 MTHM - or reprocessing - 4 800 MTHM a year - and will continue to do so for the rest of this decade. As a result, the SFS periods will extend. Moreover, as the SFM end point - reprocessing and/or disposal - is not presently defined with certainty in most countries, SFS periods will extend over periods within or beyond the long term in those countries. The IAEA has started in October 2010 a programmatic activity to consider challenges associated with extending SFS durations. After four consultants meetings and two technical meetings, a need has been identified for a SFS framework based on renewable storage periods - with as many renewals as may be needed - to ensure safe and secure SFS until sufficient reprocessing and/or disposal capacity is implemented. Over the course of the technical meetings, the consultants have worked with delegates of 36 Member States and 2 International Organizations to emphasize the importance of establishing programs that can provide sufficient confidence that age-related degradation will be recognized and addressed to effectively prevent unacceptable consequences. This paper considers a number of topics from the perspective of assuring safe and effective SFS as storage periods extend including: SFS concepts, packaging of SF

  6. 9+ years of disposal experience at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Rempe, Norbert T.; Nelson, Roger A.

    2008-01-01

    With almost a decade of operating experience, the Waste Isolation Pilot Plant (WIPP) has established an enviable record by clearly demonstrating that a deep geologic repository for unconditioned radioactive waste in rock salt can be operated safely and in compliance with very complex regulations. WIPP has disposed of contact-handled transuranic (TRU) waste since 1999 and remote-handled TRU waste since 2007. Emplacement methods range from directly stacking unshielded 0.21-4.5 m 3 containers inside disposal rooms to remotely inserting highly radioactive 0.89 m 3 canisters into horizontally drilled holes (shield plugs placed in front of canisters protect workers inside active disposal rooms). More than 100 000 waste containers have been emplaced, and one-third of WIPP's authorized repository capacity of 175,000 m 3 has already been consumed. Principal surface operations are conducted in the waste handling building, which is divided into CH and RH waste handling areas. Four vertical shafts extend from the surface to the disposal horizon, 655 m below the surface in a 1000 m thick sequence of Permian bedded salt. The waste disposal area of about 0.5 km 2 is divided into ten panels, each consisting of seven rooms. Vertical closure (creep) rates in disposal rooms range up to 10 cm per year. While one panel is being filled with waste, the next one is being mined. Mined salt is raised to the surface in the salt shaft, and waste is lowered down the waste shaft. Both of these shafts also serve as principal access for personnel and materials. Underground ventilation is divided into separate flow paths, allowing simultaneous mining and disposal. A filter building near the exhaust shaft provides the capability to filter the exhaust air (in reduced ventilation mode) through HEPA filters before release to the atmosphere. WIPP operations have not exposed employees or the public to radiation doses beyond natural background variability. They consistently meet or exceed regulatory

  7. Current researches on safety assessment of radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Tasaka, Hiroshi; Kiyose, Ryohei

    1980-01-01

    Recently, the problem of safe disposal of radioactive waste generated from nuclear fuel cycle becomes more important in Japan. On the other hand, many researches on shallow land burial of low-level wastes and geologic isolation of high-level wastes have been carried out in the United States of America. In this report, the researches on the safety assessment of radioactive waste disposal in the United States of America were briefly introduced with emphasis on the studies on behavior and migration of radionuclide from disposed waste in geosphere. (author)

  8. Regulations for the safe management of radioactive wastes and spent nuclear fuel

    International Nuclear Information System (INIS)

    Voica, Anca

    2007-01-01

    The paper presents the national, international and European regulations regarding radioactive waste management. ANDRAD is the national authority charged with nation wide coordination of safe management of spent fuel and radioactive waste including their final disposal. ANDRAD's main objectives are the following: - establishing the National Strategy concerning the safety management of radioactive waste and spent nuclear fuel; - establishing the national repositories for the final disposal of the spent nuclear fuel and radioactive waste; - developing the technical procedures and establishing norms for all stages of management of spent nuclear fuel and radioactive waste, including the disposal and the decommissioning of the nuclear and radiologic facilities

  9. Reversibility and retrievability in geologic disposal of radioactive waste. A new Nea report

    International Nuclear Information System (INIS)

    Brown, P.A.; Pascatore, C.; Sumerling, T.

    2001-01-01

    Radioactive waste needs to be managed responsibly to ensure public safety and the protection of the environment, as well as security from unauthorized interference, now and in the future. One of the most challenging tasks is the management of long-lived radioactive waste that must be isolated from the human environment for many thousands, or even hundreds of thousands, of years. There is a consensus among the engaged technical community that engineered geologic disposal provides a safe and ethical method for the long term management of such waste. This method is also cited in the national policies of several countries as either a promising or appropriate method for dealing with long-lived radioactive waste. Engineered geologic disposal means emplacement of waste in repositories constructed deep underground in suitable geologic media. Thus the waste is contained, and safety assured by passive barriers with multiple safety functions, so that there is no need for any further actions by future generations. Primary principles of the engineered geologic disposal concept are that waste will only be emplaced in a repository when there is high confidence in the ultimate long-term safety, and that the long-term safety must not rely on actions following the closure of the repository. This does not mean, however, that actions cannot be taken. Most repository development programmes include the possibility of post-closure activities for security and monitoring purposes. (authors)

  10. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  11. Oceanography related to deep sea waste disposal

    International Nuclear Information System (INIS)

    1978-09-01

    In connection with studies on the feasibility of the safe disposal of radioactive waste, from a large scale nuclear power programme, either on the bed of the deep ocean or within the deep ocean bed, preparation of the present document was commissioned by the (United Kingdom) Department of the Environment. It attempts (a) to summarize the present state of knowledge of the deep ocean environment relevant to the disposal options and assess the processes which could aid or hinder dispersal of material released from its container; (b) to identify areas of research in which more work is needed before the safety of disposal on, or beneath, the ocean bed can be assessed; and (c) to indicate which areas of research can or should be undertaken by British scientists. The programmes of international cooperation in this field are discussed. The report is divided into four chapters dealing respectively with geology and geophysics, geochemistry, physical oceanography and marine biology. (U.K.)

  12. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  13. Technical and socio-political issues in radioactive waste disposal 1986. Vol. 1

    International Nuclear Information System (INIS)

    Parker, F.L.; Kasperson, R.E.; Andersson, T.L.; Parker, S.A.

    1987-11-01

    The purpose of the study was to provide an integrated technical and socio-political analysis of how six countries (Federal Republic of Germany, France, Sweden, Switzerland, United Kingdom and the United States of America) have responded to four key issues in radioactive waste management: a) What constitutes 'safe' or 'absolutely safe' disposal, b) site selection processes, c) timing and type of interim storage. (orig./HP)

  14. Evaluation of the long-term performance of six alternative disposal methods for LLRW

    Energy Technology Data Exchange (ETDEWEB)

    Kossik, R.; Sharp, G. [Golder Associates, Inc., Redmond, WA (United States); Chau, T. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States)

    1995-12-31

    The State of New York has carried out a comparison of six alternative disposal methods for low-level radioactive waste (LLRW). An important part of these evaluations involved quantitatively analyzing the long-term (10,000 yr) performance of the methods with respect to dose to humans, radionuclide concentrations in the environment, and cumulative release from the facility. Four near-surface methods (covered above-grade vault, uncovered above-grade vault, below-grade vault, augered holes) and two mine methods (vertical shaft mine and drift mine) were evaluated. Each method was analyzed for several generic site conditions applicable for the state. The evaluations were carried out using RIP (Repository Integration Program), an integrated, total system performance assessment computer code which has been applied to radioactive waste disposal facilities both in the U.S. (Yucca Mountain, WIPP) and worldwide. The evaluations indicate that mines in intact low-permeability rock and near-surface facilities with engineered covers generally have a high potential to perform well (within regulatory limits). Uncovered above-grade vaults and mines in highly fractured crystalline rock, however, have a high potential to perform poorly, exceeding regulatory limits.

  15. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    International Nuclear Information System (INIS)

    1980-01-01

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded

  16. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  17. Final disposal of nuclear waste. An investigated issue

    International Nuclear Information System (INIS)

    Palmu, J.; Nikula, A.

    1996-01-01

    Since 1978, the nuclear power companies have co-ordinated joint studies of nuclear waste disposal through the Nuclear Waste Commission of Finnish Power Companies. The studies are done primarily to gather basic data, with a view to implementing nuclear waste management in a safe, economical and timely way. The power companies' research, development and design work with regard to nuclear waste has been progressing according to the schedule set by the Government, and Finland has received international recognition for its advanced nuclear waste management programme. Last year, the nuclear power companies set up a joint company, Posiva Oy, to manage the final disposal of spent uranium fuel. (orig.)

  18. Nuclear techniques and the disposal of non-radioactive solid wastes

    International Nuclear Information System (INIS)

    Landsberger, S.; Buchholz, B.

    1993-01-01

    One of the most vital and persistent public health challenges facing local, state, and national governments is the disposal of solid waste produced from industrial, utility, and municipal sources. There is a growing interest in the monitoring, control, and safe disposal of the chemical constituents arising from these sources. For instance, it is now well known that the release of by products from coal-fired power plants - namely airborne particulates, bottom ash, and fly ash - can have adverse effects on air and water quality. It is therefore important that reliable chemical analytical techniques are readily available to assess the impact of widespread disposal practices of organic and inorganic chemicals. The use of nuclear and nuclear-related analytical techniques - such as neutron activation analysis, energy dispersive x-ray fluorescence and particle induced X-ray emission - have become widespread in major areas of science and technology. These methods and techniques have important applications in such work since they can be used for both the determination of specific individual pollutants (e.g. toxic heavy metals) and multi-elemental analyses for source identification and apportionment purposes. Other nuclear techniques, such as isotope tracers, have also had wide acceptance in characterizing diffusion patterns for metals in soil and aqueous environments and water pollution flows. 1 graph., 1 tab

  19. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  20. Implementation of project Safe in Amber. Verification study for SFR 1 SAR-08

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Gavin; Herben, Martin; Lloyd, Pam; Rose, Danny; Smith, Chris; Barraclough, Ian (Enviros Consulting Ltd (GB))

    2008-03-15

    This report documents an exercise in which AMBER has been used to represent the models used in Project SAFE, a safety assessment undertaken on SFR 1. (AMBER is a flexible, graphical-user-interface based tool that allows users to build their own dynamic compartmental models to represent the migration, degradation and fate of contaminants in an environmental system. AMBER allows the user to assess routine, accidental and long-term contaminant release.) AMBER has been used to undertake assessment calculations on all of the disposal system, including all disposal tunnels and the Silo, the geosphere and several biosphere modules. The near-field conceptual models were implemented with minimal changes to the approach undertaken previously in Project SAFE. Model complexity varied significantly between individual disposal facilities increasing significantly from the BLA to the BTF and BMA tunnels and Silo. Radionuclide transport through the fractured granite geosphere was approximated using a compartment model approach in AMBER. Several biosphere models were implemented in AMBER including reasonable biosphere development, which considered the evolution of the Forsmark area from coastal to lacustrine to agricultural environments in response to land uplift. Parameters were sampled from distributions and simulations were run for 1,000 realisations. In undertaking the comparison of AMBER with the various codes and calculation tools used in Project SAFE it was necessary to undertake a detailed analysis of the modelling approach previously adopted, with particular focus given to the near-field models. As a result some discrepancies in the implementation of the models and documentation were noted. The exercise demonstrates that AMBER is fully capable of representing the features of the SFR 1 disposal system in a safety assessment suitable for SAR-08

  1. Implementation of project Safe in Amber. Verification study for SFR 1 SAR-08

    International Nuclear Information System (INIS)

    Thomson, Gavin; Herben, Martin; Lloyd, Pam; Rose, Danny; Smith, Chris; Barra clough, Ian

    2008-03-01

    This report documents an exercise in which AMBER has been used to represent the models used in Project SAFE, a safety assessment undertaken on SFR 1. (AMBER is a flexible, graphical-user-interface based tool that allows users to build their own dynamic compartmental models to represent the migration, degradation and fate of contaminants in an environmental system. AMBER allows the user to assess routine, accidental and long-term contaminant release.) AMBER has been used to undertake assessment calculations on all of the disposal system, including all disposal tunnels and the Silo, the geosphere and several biosphere modules. The near-field conceptual models were implemented with minimal changes to the approach undertaken previously in Project SAFE. Model complexity varied significantly between individual disposal facilities increasing significantly from the BLA to the BTF and BMA tunnels and Silo. Radionuclide transport through the fractured granite geosphere was approximated using a compartment model approach in AMBER. Several biosphere models were implemented in AMBER including reasonable biosphere development, which considered the evolution of the Forsmark area from coastal to lacustrine to agricultural environments in response to land uplift. Parameters were sampled from distributions and simulations were run for 1,000 realisations. In undertaking the comparison of AMBER with the various codes and calculation tools used in Project SAFE it was necessary to undertake a detailed analysis of the modelling approach previously adopted, with particular focus given to the near-field models. As a result some discrepancies in the implementation of the models and documentation were noted. The exercise demonstrates that AMBER is fully capable of representing the features of the SFR 1 disposal system in a safety assessment suitable for SAR-08

  2. Management and disposal of radioactive waste from clean-up operations

    International Nuclear Information System (INIS)

    Lehto, J.

    1997-01-01

    Clean-up of large contaminated areas may create enormous amounts of radioactive waste which need to be safely disposed of. Disposal of the waste may include pre-treatment and transportation to a final repository. There is much experience of the removal and disposal of large amounts of radioactive contaminated material from uranium mill tailings sites. For example, in Salt Lake City, USA, two million tons of radium-containing waste was transported 140 km by rail to a disposal site. In Port Hope, Canada, 70,000 cubic meters of similar waste were moved by road to a disposal site 350 km away. The disposal of the uranium mill tailings can be pre-planned, but an accident situation is quite different. In an emergency, decisions on how to deal with the waste from the clean-up may have to be made rapidly and disposal options may be limited. After the Chernobyl accident, large amounts of contaminated material (mainly soil and trees) were disposed of in shallow pits and surface mounds. Overall, approximately 4x10 6 m 3 of waste were distributed between about 800 disposal sites. Because the amounts of waste after a major nuclear accident could be large, their final disposal may require large human and capital resources. Depending on the scale it is possible that the wastes will have to be placed in several final disposal sites. These are likely to be pits or surface mounds. Such repositories may need clay or concrete liners to prevent migration of the radionuclides from the disposal sites. (EG)

  3. Status of commercial nuclear high-level waste disposal. Special report

    International Nuclear Information System (INIS)

    Dau, G.J.; Williams, R.F.

    1976-09-01

    The results of this review, presented in the form of a functional description of high level waste management system, shows that technology is available to dispose of nuclear waste safely by several different processes. The most attractive alternative in terms of available technology and shortness of time to demonstrate it at commercial scale is a system that converts the waste to a solid by immobilizing the radioactive elements in a glass matrix. Brief comments are also given on international efforts in high level waste management and advanced disposal concepts

  4. Method for the disposal of laundry drain by inverse osmosis method

    International Nuclear Information System (INIS)

    Sugimoto, Yoshikazu; Yusa, Hideo; Kamiya, Kunio; Ebara, Katsuya.

    1976-01-01

    Purpose: To effectively obtain clean water of high purity from laundry waste from work clothes or the like worn in the atomic power plant and to increase the concentration factor of the impurities. Constitution: The laundry drain is supplied to a forestage condensation tank through a supply pipe, via a control valve controlled by a level gage so as to always maintain the liquid level constant, and the liquid within the tank is increased in pressure by the fore-stage high pressure pump and supplied to the fore-stage inverse osmosis module. There occurs a phenomenon of inverse osmosis so that water in disposed liquid is urged through a film and discharged from a osmosed water discharge pipe. In this case, the concentration of a surface active agent in the disposed liquid is detected by a flow meter depending on the quantity of osmosed water, and when the concentration exceeds a predetermined level to decrease the quantity of osmosed water, the opening of the control valve is increased and the liquid is discharged from the discharge pipe into the final tank for disposal in substantially similar manner. (Yoshihara, H.)

  5. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro

    2001-01-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  6. Public acceptability of risk of radioactive waste disposal

    International Nuclear Information System (INIS)

    Millerd, W.H.

    1977-01-01

    A ''public interest'' viewpoint is presented on the disposal of radioactive wastes. Criteria for the development of disposal methods are needed. The current program to develop disposal sites and methods has become an experiment. The advantages and disadvantages of radwaste disposal as an ongoing experiment are discussed briefly

  7. Safety disposal studies of radioactive and hazardous wastes using cement

    International Nuclear Information System (INIS)

    Aly, M.M.E.

    2000-01-01

    radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials applications, agriculture and medicine. the important of safe management of radioactive waste for the protection of human health and the environment has long been recognized. conditioning of radioactive waste is the transform of radioactive waste into a suitable form for storage and disposal. common immobilization methods include solidification of low radioactive waste in cement or bitumen.in order to improve cement properties to decrease the release of liquid radioactive waste into the environment and its dispersion to a level where the risks to individuals, population and the environment

  8. Determining how much mixed waste will require disposal

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1990-01-01

    Estimating needed mixed-waste disposal capacity to 1995 and beyond is an essential element in the safe management of low-level radioactive waste disposal capacity. Information on the types and quantities of mixed waste generated is needed by industry to allow development of treatment facilities and by states and others responsible for disposal and storage of this type of low-level radioactive waste. The design of a mixed waste disposal facility hinges on a detailed assessment of the types and quantities of mixed waste that will ultimately require land disposal. Although traditional liquid scintillation counting fluids using toluene and xylene are clearly recognized as mixed waste, characterization of other types of mixed waste has, however, been difficult. Liquid scintillation counting fluids comprise most of the mixed waste generated and this type of mixed waste is generally incinerated under the supplemental fuel provisions of the Resource Conservation and Recovery Act (RCRA) Because there are no Currently operating mixed waste land disposal facilities, it is impossible to make projections of waste requiring land disposal based on a continuation of current waste disposal practices. Evidence indicates the volume of mixed waste requiring land disposal is not large, since generators are apparently storing these wastes. Surveys conducted to date confirm that relatively small volumes of commercially generated mixed waste volume have relied heavily oil generators' knowledge of their wastes. Evidence exists that many generators are confused by the differences between the Atomic Energy Act and the Resource Conservation and Recovery Act (RCRA) on the issue of when a material becomes a waste. In spite of uncertainties, estimates of waste volumes requiring disposal can be made. This paper proposes an eight-step process for such estimates

  9. Design of an integrated information management system for safe management of radioactive waste

    International Nuclear Information System (INIS)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il

    2003-05-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as: the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal

  10. Design of an integrated information management system for safe management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)] (and others)

    2003-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as: the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal.

  11. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  12. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  13. Status of disposal techniques for spent fuel in Germany: Results of demonstration tests for direct disposal

    International Nuclear Information System (INIS)

    Engelmann, H.J.; Filbert, W.

    1993-01-01

    According to the Atomic Energy Act (1985) the Federal Government is responsible for establishing facilities to indemnify and dispose radioactive waste. According to Art. 9b of the Atomic Energy Act (1986) the construction and operation of such a repository requires approval of a plan. According to safety criteria applicable for disposing radioactive waste in mines, construction and operation of repository mines require application of acknowledged rules of technology, laws, ordinances and other regulations to protect operating staff and population from radiation damages. Shaft hoisting equipment for the transportation of radioactive waste in a repository mine must satisfy normal operational tasks and meet special safety-requirements. Its failure may result in danger for persons, release of radioactive substances into the plant and environment. That means, shaft hoisting equipment must be designed to satisfy the necessary safety requirements and be state of the art of science and technology. The aim of these demonstration tests is verification of technical feasibility of a shaft hoisting equipment with a payload of 85 t, underground for drift disposal of POLLUX-casks, and essential machine and mine-technical systems and components. The demonstration also includes safe radiation protection during transport and disposal operations. Investigations assume that radioactive waste is transported in containers that satisfy transport requirements for dangerous goods and have a type-B-certificate

  14. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  15. How NOT to Dispose of NORM/TENORM-bearing Wastes: A Case Study

    International Nuclear Information System (INIS)

    Karam, P. A.

    2002-01-01

    The Ashtabula River in northern Ohio contains a large amount of sediment containing quantities of NORM and TENORM from previous industrial activities at nearby mineral processing plants. Due to PCB contamination, these sediments were to be dredged and isolated in a landfill to be constructed by the responsible parties. Unfortunately, the State of Ohio has determined that these wastes may not be disposed of in this manner, and this determination has resulted in delaying the remediation project. Computer models performed using the RESRAD computer code indicate that isolating these wastes in this manner will reduce dose to the nearby population because the NORM/TENORM will be safely buried beneath a compacted clay cover and isolated from all sources of exposure. In fact, radiation doses (including radon emanation) from these wastes in a properly maintained landfill are significantly lower than in the present condition, and the reduction is even more marked for NORM/TENORM in tailings piles. This suggests that, in many cases, disposal of NORM/TENORM wastes in on-site landfills may be a cost-effective and dose-conscious method of disposal, if regulatory issues can be resolved

  16. Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454

    Energy Technology Data Exchange (ETDEWEB)

    Poling, Jeanne; Arnold, Pat [National Security Technologies, LLC (NSTec), P.O. Box 98521, Las Vegas, NV 89193-8521 (United States); Saad, Max [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); DiSanza, Frank [E. Frank DiSanza Consulting, 2250 Alanhurst Drive, Henderson, NV 89052 (United States); Cabble, Kevin [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, P.O. Box 98518, Las Vegas, NV 89193-8518 (United States)

    2013-07-01

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

  17. Classified Component Disposal at the Nevada National Security Site (NNSS) - 13454

    International Nuclear Information System (INIS)

    Poling, Jeanne; Arnold, Pat; Saad, Max; DiSanza, Frank; Cabble, Kevin

    2013-01-01

    The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012. (authors)

  18. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  19. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  20. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  1. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  2. Alternatives for future land disposal of radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.

    1982-01-01

    Shallow land burial incorporating improvements to facilitate stabilization and decommissioning will continue to be the primary method of disposing of low level waste in areas where conditions are suitable for this type of disposal. The existing disposal sites should be closely monitored to assure that continued acceptance of this method of disposal. Plans for the decommissioning of the existing sites should be closely reviewed to assure that the planning is adequate and that adequate resources will be available to implement the decommissioning plan. For these areas where geological conditions are not suitable for shallow land burial and in situations where a higher degree of containment is desired, alternative disposal methods should be considered. Technology exists or is readily attainable to provide engineered disposal facilities which provide a higher degree of containment and can be readily decommissioned. The cost of disposal using these methods can be competitive with shallow land burial when the cost of environmental and hydrogeologic investigations and decommissioning are included. Disposal of radioactive waste having low activity in secure sanitary landfills could significantly reduce the transportation and disposal requirements for low level waste

  3. Practical and safe implementation of disposal with prefabricated EBS modules

    International Nuclear Information System (INIS)

    Kawamura, Hideki; McKinley, Ian G.; Neall, Fiona B.

    2008-01-01

    The use of prefabricated EBS modules ('PEMs') to minimise the problems involved with handling compacted bentonite and ensuring that it is emplaced to established quality levels has been investigated in various national programmes for disposal of both HLW and SF. To date, however, this has tended to be decoupled from studies of related operational aspects such as assessing / minimising the consequences of use of concrete for support structures, ensuring ease of tele-operated reversal of waste packages during emplacement (e.g. in the event of operational disturbances) / retrieval at a later time, logistical optimisation (especially for programmes with large waste inventories) and cost minimisation. It is clear that specific aspects of operational safety and practicality can be considerably enhanced if designs are modified with a focus on them. It is trickier to provide optimised solutions, which simultaneously address all these critical points. Nevertheless, with a bit of lateral thinking, it appears possible to devise options that may not only ease the operational phase, but may also actually improve post-closure safety case robustness - although improved, more realistic performance assessment codes and databases will be needed to demonstrate this rigorously. To illustrate this approach, an example will be presented based of disposal of vitrified HLW in a fractured hard rock; the general principles involved are, however, also applicable to other higher activity wastes and other host rocks. Key aspects of the design are: Optimisation of PEM design for both short-term and long-term performance; Development of a rail emplacement system which eases remote handled emplacement / recovery; Large diameter, lined emplacement tunnels to ensure operational robustness; Use of multi-package overpacks (e.g. 6 HLW containers in each PEM) and short tunnels to ease emplacement logistics; and Backfilling with a non-swelling sacrificial pH buffer (eases handling and improves

  4. Evaluation on radioactive waste disposal amount of Kori Unit 1 reactor vessel considering cutting and packaging methods

    International Nuclear Information System (INIS)

    Choi, Yu Jong; Lee, Seong Cheol; Kim, Chang Lak

    2016-01-01

    Decommissioning of nuclear power plants has become a big issue in South Korea as some of the nuclear power plants in operation including Kori unit 1 and Wolsung unit 1 are getting old. Recently, Wolsung unit 1 received permission to continue operation while Kori unit 1 will shut down permanently in June 2017. With the consideration of segmentation method and disposal containers, this paper evaluated final disposal amount of radioactive waste generated from decommissioning of the reactor pressure vessel in Kori unit 1 which will be decommissioned as the first in South Korea. The evaluation results indicated that the final disposal amount from the top and bottom heads of the reactor pressure vessel with hemisphere shape decreased as they were cut in smaller more effectively than the cylindrical part of the reactor pressure vessel. It was also investigated that 200 L and 320 L radioactive waste disposal containers used in Kyung-Ju disposal facility had low payload efficiency because of loading weight limitation

  5. Commercial processing and disposal alternatives for very low levels of radioactive waste in the United States

    International Nuclear Information System (INIS)

    Benda, G.A.

    2005-01-01

    The United States has several options available in the commercial processing and disposal of very low levels of radioactive waste. These range from NRC licensed low level radioactive sites for Class A, B and C waste to conditional disposal or free release of very low concentrations of material. Throughout the development of disposal alternatives, the US promoted a graded disposal approach based on risk of the material hazards. The US still promotes this approach and is renewing the emphasis on risk based disposal for very low levels of radioactive waste. One state in the US, Tennessee, has had a long and successful history of disposal of very low levels of radioactive material. This paper describes that approach and the continuing commercial options for safe, long term processing and disposal. (author)

  6. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  7. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  8. Nuclear Waste Disposal in Space: BEP's Best Hope?

    International Nuclear Information System (INIS)

    Coopersmith, Jonathan

    2006-01-01

    The best technology is worthless if it cannot find a market Beam energy propulsion (BEP) is a very promising technology, but faces major competition from less capable but fully developed conventional rockets. Rockets can easily handle projected markets for payloads into space. Without a new, huge demand for launch capability, BEP is unlikely to gain the resources it needs for development and application. Launching tens of thousands of tons of nuclear waste into space for safe and permanent disposal will provide that necessary demand while solving a major problem on earth. Several options exist to dispose of nuclear waste, including solar orbit, lunar orbit, soft lunar landing, launching outside the solar system, and launching into the sun

  9. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another new

  10. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    International Nuclear Information System (INIS)

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another new

  11. Technologies for immobilization and disposal of tritium; Tecnologias para inmobilizacion y disposicion de tritio

    Energy Technology Data Exchange (ETDEWEB)

    Coppari, N R [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Reactores y Centrales Nucleares

    1997-12-31

    This study was done within a program one of whose objectives was to know the state of the technology development for tritium separation in the moderator circuit at HWR and to define the possible technologies to be applied to the Argentine nuclear power plants. Within this framework the strategies adopted by each country and the available technologies for a safe disposal of tritium, not only in its gaseous state tritium but also as tritiated water were analyzed. It is considered that if the selected separation method is such that the tritium is in its gaseous state, the hydride formation for long periods of immobilization should be studied. whereas if it were triated water immobilization should be studied to choose the technology between cementation and drying agents, in both cases the final disposal site will have to be selected. (author). 8 refs.

  12. Reversed mining and reversed-reversed mining: the irrational context of geological disposal of nuclear waste

    Science.gov (United States)

    van Loon, A. J.

    2000-06-01

    Man does not only extract material from the Earth but increasingly uses the underground for storage and disposal purposes. One of the materials that might be disposed of this way is high-level nuclear waste. The development of safe disposal procedures, the choice of suitable host rocks, and the design of underground facilities have taken much time and money, but commissions in several countries have presented reports showing that — and how — safe geological disposal will be possible in such a way that definite isolation from the biosphere is achieved. Political views have changed in the past few years, however, and there is a strong tendency now to require that the high-level waste disposed of will be retrievable. Considering the underlying arguments for isolation from the biosphere, and also considering waste policy in general, this provides an irrational context. The development of new procedures and the design of new disposal facilities that allow retrieval will take much time again. A consequence may be that the high-active, heat-generating nuclear waste will be stored temporarily for a much longer time than objectively desirable. The delay in disposal and the counterproductive requirement of retrievability are partly due to the fact that earth-science organisations have failed to communicate in the way they should, possibly fearing public (and financial) reactions if taking a position that is (was?) considered as politically incorrect. Such an attitude should not be maintained in modern society, which has the right to be informed reliably by the scientific community.

  13. Siting of geological disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. This Safety Guide defines the process to be used and guidelines to be considered in selecting sites for deep geological disposal of radioactive wastes. It reflects the collective experience of eleven Member States having programmes to dispose of spent fuel, high level and long lived radioactive waste. In addition to the technical factors important to site performance, the Safety Guide also addresses the social, economic and environmental factors to be considered in site selection. 3 refs

  14. New linkage of P and T (Partitioning and Transmutation) treatment with methodology of geologic disposal. A possible breakthrough for nuclear technology in tomorrow

    International Nuclear Information System (INIS)

    Kitamoto, Asashi

    1999-01-01

    A possibility of a safe, reliable, transparent and economical high-level radioactive waste disposal method is proposed by combining partitioning of waste materials and transmutation of long-life nuclides with geologic disposal. The paper first discusses the environment surrounding nuclear energy and the conditions for social acceptance of nuclear energy. Then, the paper talks about the soundness of geologic disposal as most extensively studied method of radioactive waste, including environment, safety assessment model, unpredictable uncertainty, and macro image and its problems. Thirdly, the paper describes partitioning and transmutation, the latter being reduction of the lives of long-life nuclides by nuclear fission and conversion and the former being methodology to achieve it by rational means. Radionuclides are separated into six groups by three selection rules of transmutation and two selection rules of geologic disposal. The separation can greatly reduce the decay-heat and weight of the waste materials. The paper last explains the new concept of fuel cycle with some comments on important points in developing the new process (M.M.)

  15. Safe disposal of cytotoxic waste: an evaluation of an air-tight system.

    Science.gov (United States)

    Craig, Gemma; Wadey, Charlotte

    2017-09-07

    A 3-month evaluation was undertaken at the Kent Oncology Centre's chemotherapy day unit (CDU) to trial an air-tight sealing disposal system for cytotoxic waste management. Research has identified the potential risk to staff who handle waste products that are hazardous to health. Staff safety was a driving force behind a trial of a new way of working. This article provides an overview of the evaluation of the Pactosafe system in one clinical area, examining reviews by oncology healthcare workers, the practicalities in the clinical setting, training, cost effectiveness and the environmental benefits.

  16. An overview of commercial low-level radioactive waste disposal technology

    International Nuclear Information System (INIS)

    Plummer, T.L.; Morreale, B.J.

    1991-01-01

    The primary objective of low-level radioactive (LLW) waste management is to safely dispose of LLW while protecting the health of the public and the quality of the environment. LLW in the United States is generated through both Department of Energy (DOE) and commercial activities. In this paper, waste from commercial activities will be referred to as ''commercial LLW.'' The DOE waste will not be discussed in this paper. Commercial LLW is waste that is generated by Nuclear Regulatory Commission (NRC) designated licensees or Agreement States. Commercial LLW is generated by nuclear power reactors, hospitals, universities, and manufacturers. This paper will give an overview of the current disposal technologies planned by selected States' for disposing of their LLW and the processes by which those selections were made. 3 refs

  17. Disposal practices of unused and expired pharmaceuticals among general public in Kabul

    Directory of Open Access Journals (Sweden)

    Mohammad Bashaar

    2017-01-01

    Full Text Available Abstract Background Most of the medicine users remain unaware about the disposal of unused or expired medicines. The aim of this study was to know the disposal practices of unused and expired medicines among the general public in Kabul. Methods This was a descriptive, cross-sectional survey, conducted through face-to-face interviews using prevalidated structured questionnaire. Returned questionnaires were double-checked for accuracy. Statistical Package for Social Science (SPSS version 23 was used for statistical analysis. Results Total of 301 valid questionnaires were returned with a response rate of 100% in which 73.4% men and 26.6% women participated. More than half of the respondents were university graduates. Interestingly, 83.4% of the interviewees purchased medicines on the prescription of which 47.2% were university graduates, while 14.6% purchased medicine over the counter. Among the respondents, 46.5/100 purchased antibiotics and the remaining purchased NSAIDs, anti-hypertensive and anti-diabetic medicines. Significantly, 97/100 checked the expiry date of medicine before buying. Majority (95.3% of the respondents’ stored medicines at home. 77.7% of the respondents discarded the expired medicines in household trash. Majority of respondents held government responsible for creation of awareness for proper medicine disposal. Almost entire sample (98% felt that improper disposal of unused and expired medicines can affect the environment and health. Conclusion Gaps exist in practices, therefore robust, safe and cost-effective pharmaceutical waste management program supported with media campaign is needed. Healthcare practitioners and community pharmacists should offer training to educate customers on standard medicine disposal practices.

  18. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    International Nuclear Information System (INIS)

    Swita, W.R.

    1998-01-01

    This document provides a summary of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost), developed to demonstrate Readiness-to-Proceed (RTP) in support of the TWRS Phase 1B mission. This Updated Baseline is the proposed TWRS plan to execute and measure the mission work scope. This document and other supporting data demonstrate that the TWRS Project Hanford Management Contract (PHMC) team is prepared to fully support Phase 1B by executing the following scope, schedule, and cost baseline activities: Deliver the specified initial low-activity waste (LAW) and high-level waste (HLW) feed batches in a consistent, safe, and reliable manner to support private contractors' operations starting in June 2002; Deliver specified subsequent LAW and HLW feed batches during Phase 1B in a consistent, safe, and reliable manner; Provide for the interim storage of immobilized HLW (IHLW) products and the disposal of immobilized LAW (ILAW) products generated by the private contractors; Provide for disposal of byproduct wastes generated by the private contractors; and Provide the infrastructure to support construction and operations of the private contractors' facilities

  19. Hydrogeological aspects of radioactive waste disposal into surface formations

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1980-01-01

    Safe disposal is discussed of radioactive wastes in geological surface formations and basic criteria are shown of the radiological protection of population from possible effects of radioactive materials diffused in the environment. Main principles are listed governing the selection of suitable localities with respect to possible interactions of the locality and the storage site with the environment. (author)

  20. Waste Isolation Pilot Plant disposal phase: Draft supplemental Environmental Impact Statement

    International Nuclear Information System (INIS)

    1996-11-01

    Purpose of this SEIS-II is to provide information on environmental impacts regarding DOE's proposed disposal operations at WIPP. To that end, SEIS-II was prepared to assess the potential impacts of continuing the phased development of WIPP as a geologic repository for the safe disposal of transuranic (TRU) waste. SEIS-II evaluates a Proposed Action, three Action Alternatives, and two No Action Alternatives. The Proposed Action describes the treatment and disposal of the Basic Inventory of TRU waste over a 35-year period. SEIS-II evaluates environmental impacts resulting from the various treatment options; transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with implementation of the alternatives are discussed

  1. Shielding design of disposal container for disused sealed radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of)

    2017-06-15

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised.

  2. Shielding design of disposal container for disused sealed radioactive source

    International Nuclear Information System (INIS)

    Kim, Suk Hoon; Kim, Ju Youl

    2017-01-01

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised

  3. A safe inexpensive method to isolate high quality plant and fungal ...

    African Journals Online (AJOL)

    The most commonly used plant DNA isolation methods use toxic and hazardous chemicals (phenol, chloroform), which require special equipment to minimize exposure and may limit their use in certain environments. Commercial DNA extraction kits are convenient and usually safe, but their availability to certain developing ...

  4. Novel Technique for Safe Primary Trocar Insertion in Laparoscopy: Chou's Method

    Directory of Open Access Journals (Sweden)

    Pan-Hsin Chou

    2005-06-01

    Conclusion: The results with this novel method incorporating the unique concept of directly holding the fascia suggest it to be relatively safe, simple, and economic. The risk of major vascular injury was decreased to nil by this technique and the chance of visceral injury was also minimal.

  5. Retrievability in the Belgian deep disposal concept in clay

    International Nuclear Information System (INIS)

    Preter, P. de

    2000-01-01

    While radioactive waste disposal implies that there is no intention to retrieve the waste, retrievability refers to the potential to retrieve the waste. So, retrievability can be an integrated element of a disposal solution. The different reasons for considering retrievability in the development of a disposal solution are discussed. Amongst them, the precautionary principle takes an important place. The development of a disposal solution should be in the first place safety-driven. The use of robust, high-integrity waste containers or overpacks contributes directly to safety, but also to the enhancement of the retrievability. Indeed, as long as the first barrier is intact, safe waste retrieval is in principle possible. By extending the period of easy access to the waste, i.e. by keeping the repository open during a longer period than needed for waste disposal operations, safety and retrievability goals can become contradictory. Indefinitely postponing the decision to close the repository enhances the risk of unforeseen perturbations of the disposal system and the risk of abandonment. This pleads of course for limiting the duration of the open phase to a reasonable period of time. Otherwise, the advantage of a prolonged open repository, as a means to prolong retrievability of the waste, is cancelled by the increasing risks of a system whose safety relies on societal, political and decisional stability, and not on a robust, passive multi-barrier system. (author)

  6. The uncertain future for nuclear graphite disposal: Crisis or opportunity?

    International Nuclear Information System (INIS)

    Wickham, A.J.; Neighbour, G.B.; Dubourg, M.

    2001-01-01

    Over the last twenty years, numerous proposals have been made for the long-term treatment of radioactive graphite waste. These plans have ranged from sea dumping through incineration to land-based disposal, sometimes preceded by a variable period of 'safe-storage' within the original reactor containment, to allow for the decay of shorter-lived isotopes ahead of dismantling. A number of novel chemical or physical pre-treatments of the graphite, with the objective of facilitating its subsequent disposal or improving the environmental consequences of the chosen disposal route, have also been suggested. There are patents issued on systems for transmutation of long-lived isotopes to reduce the radiological consequences of disposal of intact graphite, and for separation of certain isotopes such as carbon-14 from the matrix in an incineration process. Although these far-reaching proposals are not apparently cost-effective, scope for cost-recovery does exist, i.e., in terms of disposal of the separated carbon-14 in cements used for immobilisation of other radioactive solid waste materials. More recently, political and environmental factors have further complicated the issue. Nuclear regulators are challenging the proposed length of 'safe-storage' schemes on the basis that essential knowledge on the reactor materials may be lost in the interim. International agreements such as OSPAR have effectively eliminated the possibility for disposal at sea, whilst public opinion is strongly expressed against any expansion of existing land-based disposal sites or the creation of new ones. As a particular example, the United Kingdom authorities recently denied to the official body charged with the development of a deep repository the necessary planning consents to develop an exploratory rock-structure laboratory on the most favoured site. The current drive towards minimising or eliminating any radioactivity release to the environment has the unintended consequence of causing the waste

  7. Radioactive waste and special waste disposal in salt domes - phoney waste management solutions

    International Nuclear Information System (INIS)

    Grimmel, E.

    1990-01-01

    The paper tries to make aware of the fact that an indefinite safe disposal of anthropogeneous wastes in underground repositories is impossible. Suspicion is raised that the Gorleben-Rambow salt dome has never been studied for its suitability as a repository, but that it was simply taken for granted. Safety analyses are meant only to conceal uncertainty. It is demanded to immediately opt out of the ultimate disposal technique for radioactive and special wastes in salt caverns. (DG) [de

  8. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    1992-07-01

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  9. 36 CFR 228.57 - Types of disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Types of disposal. 228.57... Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as provided... qualified bidder after formal advertising and other appropriate public notice; (b) Sale by negotiated...

  10. Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach.

    Science.gov (United States)

    Kraegeloh, Annette; Suarez-Merino, Blanca; Sluijters, Teun; Micheletti, Christian

    2018-04-14

    Manufactured nanomaterials (MNMs) are regarded as key components of innovations in various fields with high potential impact (e.g., energy generation and storage, electronics, photonics, diagnostics, theranostics, or drug delivery agents). Widespread use of MNMs raises concerns about their safety for humans and the environment, possibly limiting the impact of the nanotechnology-based innovation. The development of safe MNMs and nanoproducts has to result in a safe as well as functional material or product. Its safe use, and disposal at the end of its life cycle must be taken into account too. However, not all MNMs are similarly useful for all applications, some might bear a higher hazard potential than others, and use scenarios could lead to different exposure probabilities. To improve both safety and efficacy of nanotechnology, we think that a new proactive approach is necessary, based on pre-regulatory safety assessment and dialogue between stakeholders. On the basis of the work carried out in different European Union (EU) initiatives, developing and integrating MNMs Safe-by-Design and Trusted Environments (NANoREG, ProSafe, and NanoReg2), we present our point of view here. This concept, when fully developed, will allow for cost effective industrial innovation, and an exchange of key information between regulators and innovators. Regulators are thus informed about incoming innovations in good time, supporting a proactive regulatory action. The final goal is to contribute to the nanotechnology governance, having faster, cheaper, effective, and safer nano-products on the market.

  11. Decontamination and disposal of radioactive wastes from nuclear facilities

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1978-01-01

    A survey and characteristics are given of the main sources of wastes from the operation of nuclear installations. The amounts are compared of liquid and gaseous wastes from PWR and BWR reactors. The main trends of radioactive waste processing in the world are described. In Czechoslovakia, two methods of waste fixation have been developed: vacuum cementation and bituminization. The demands are summed up on radioactive waste storage sites and it is stated that there are a number of suitable localities, namely abolished granite quarries with a very deep ground water level and a low-permeable overburden and exhausted quarries of kaolinitic clays, which meet all criteria and secure the safe disposal of wastes from Czechoslovak nuclear power plants up to the year 2020. (Z.M.)

  12. Final disposal of spent nuclear fuel - basis for site selection

    International Nuclear Information System (INIS)

    Anttila, P.

    1995-05-01

    International organizations, e.g. IAEA, have published several recommendations and guides for the safe disposal of radioactive waste. There are three major groups of issues affecting the site selection process, i.e. geological, environmental and socioeconomic. The first step of the site selection process is an inventory of potential host rock formations. After that, potential study areas are screened to identify sites for detailed investigations, prior to geological conditions and overall suitability for the safe disposal. This kind of stepwise site selection procedure has been used in Finland and in Sweden. A similar approach has been proposed in Canada, too. In accordance with the amendment to the Nuclear Energy Act, that entered into force in the beginning of 1995, Imatran Voima Oy has to make preparations for the final disposal of spent fuel in the Finnish bedrock. Relating to the possible site selection, the following geological factors, as internationally recommended and used in the Nordic countries, should be taken into account: topography, stability of bedrock, brokenness and fracturing of bedrock, size of bedrock block, rock type, predictability and natural resources. The bedrock of the Loviisa NPP site is a part of the Vyborg rapakivi massif. As a whole the rapakivi granite area forms a potential target area, although other rock types or areas cannot be excluded from possible site selection studies. (25 refs., 7 figs.)

  13. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    Science.gov (United States)

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  14. Gamma sterilization of disposable medical products (DMP's)

    International Nuclear Information System (INIS)

    Brinston, R.M.

    1990-01-01

    Ten million cubic meters (361 million cubic feet) of disposable medical products (DMP) and related health care items are estimated to be sterilized in the world. In this paper, current conditions and perspectives of gamma sterilization is discussed in comparison with ethylene oxide gas and electron beams. Of the total sterilization estimates for DMP, 2.8 million cubic meters (99 million cubic feet) are sterilized with gamma radiation, with a market share of 27%. Gamma radiation is becoming increased from both general market growth and the introduction of new products, as well as the conversion of product from ethylene oxide gas to cobalt-60. Regulatory pressures, legal considerations, and increasing publicity surrounding ethylene oxide usage are encouraging manufactures to switch to gamma radiation. Gamma's performance features include: no temperature change during the sterilization, high penetration, even through hermetically sealed packages, no residues, and no post-sterilization treatment or quarantine period. Gamma sterilization is economically beneficial in large volumes of product. Cost saving to the end user of gamma sterilization has meant lower minimum dose levels than 25 KGy. Despite of an increasingly accepted gamma radiation, there are still four factors to be considered, including cobalt-60 availability, price, transportation, and disposal. The price of cobalt-60 is based on neutron cost. In the future, cobalt-60 price is expected to be flat and enables gamma processing to become even more competitive with other sterilization methods. Gamma radiation using cobalt-60 has been proven as a safe, effective, and cost-competitive sterilization method for treating DMP and related health care items. It's wide use and many processing advantages will continue to make it a preferred sterilization method. (N.K.)

  15. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The study of the ''Admissible thermal loading in geological formations and its consequence on radioactive waste disposal methods'' comprises four volumes: Volume 1. ''Synthesis report'' (English/French text). Volume 2. Granite formations (French text). Volume 3. Salt formations (German text). Volume 4. Clay formations (French text). The present ''synthesis report'' brings together the formation produced by the three specific studies dealing with granite, salt and clay

  16. Study on the collection and disposal of hospital solid wastes in Karaj City (Iran)

    International Nuclear Information System (INIS)

    Farzadkia, M.; Sabily, M.; Ghanbary, S.

    2009-01-01

    Hospitals and other health care institutions generate waste day in and day out which may be a potential health hazard to the health care workers, the general public and, the flora and fauna of that area. Safe and effective management of hospital waste is not only a legal necessity but also a social responsibility. Many of hospitals in Iran neither have a satisfactory waste disposal system nor a waste management and disposal policy. (Author)

  17. Research and development of technologies for safe and environmentally optimal recovery and disposal of explosive wastes. Task 2, Preliminary impact assessment for environment, health and safety (EIA)

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F. [Risoe (Denmark); Larsen, S.G. [DEMEX A/S (Denmark)

    1998-09-01

    As described in the project proposal `Research and Development of Technologies for Safe and Environmentally optimal recovery and Disposal of Explosive Wastes`, dated 31. May 1996, the objective of Task 2, Preliminary Impact Assessment for Environment, Health and Safety, is to: Analyse the environmental impact of noise and emissions to air, water and soil; Assess the risk of hazards to workers` health and safety and to the public. Task 2, Preliminary Impact Assessment for Environment, Health and Safety (EIA), has been performed from August 1997 to September 1998. First, a methodology has been established, based on Multi-Criteria Decision Analysis (MCDA), to select the `best` technology on the basis of clearly defined objectives, including minimal impacts on environment, health and safety. This included a review of different types of explosive waste with a focus on the environment implications, identifying the issues relevant to defining the criteria or objectives with respect to environment and safety in the framework of explosive waste, as well as the preliminary definition of objectives for the final impact assessment. Second, the previously identified recovery and disposal technologies (Task 1) have been qualitatively assessed on the basis of the relevant objectives. This qualitative assessment includes also economic considerations and an attempt to rank the technologies in an MCDA framework. (au)

  18. German concept and status of the disposal of spent fuel elements from German research reactors

    International Nuclear Information System (INIS)

    Komorowski, K.; Storch, S.; Thamm, G.

    1995-01-01

    Eight research reactors with a power ≥ 100 kW are currently being operated in the Federal Republic of Germany. These comprise three TRIGA-type reactors (power 100 kW to 250 kW), four swimming-pool reactors (power 1 MW to 10 MW) and one DIDO type reactor (power 23 MW). The German research reactors are used for neutron scattering for basic research in the field of solid state research, neutron metrology, for the fabrication of isotopes and for neutron activation analysis for medicine and biology, for investigating the influence of radiation on materials and for nuclear fuel behavior. It will be vital to continue current investigations in the future. Further operation of the German research reactors is therefore indispensable. Safe, regular disposal of the irradiated fuel elements arising now and in future operation is of primary importance. Furthermore, there are several plants with considerable quantities of spent fuel, the safe disposal of which is a matter of urgency. These include above all the VKTA facilities in Rossendorf and also the TRIGA reactors, where disposal will only be necessary upon decommissioning. The present paper report is concerned with the disposal of fuel from the German research reactors. It briefly deals with the situation in the USA since the end of 1988, describes interim solutions for current disposal requirements and then mainly concentrates on the German disposal concept currently being prepared. This concept initially envisages the long-term (25--50 years) dry interim storage of fuel elements in special containers in a central German interim store with subsequent direct final disposal without reprocessing of the irradiated fuel

  19. Conceptual model to determine maximum activity of radioactive waste in near-surface disposal facilities

    International Nuclear Information System (INIS)

    Iarmosh, I.; Olkhovyk, Yu.

    2016-01-01

    For development of the management strategy for radioactive waste to be placed in near - surface disposal facilities (NSDF), it is necessary to justify long - term safety of such facilities. Use of mathematical modelling methods for long - term forecasts of radwaste radiation impact and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of radwaste to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chornobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of "9"0 Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed

  20. Safe transport of radioactive materials in Egypt

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    1994-01-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the gained experience. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the canal from 1963 and 1991 and their nationalities are also discussed. The protective measures are mentioned. A review of the present situation of the radioactive wastes storage facilities at the Atomic Energy site at Inshas is given along with the regulation for safe transportation and disposal of radioactive wastes. (Author)

  1. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  2. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  3. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  4. Development and design of an integrated information management system for safe management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2004-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as; the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections In safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal.

  5. Development and design of an integrated information management system for safe management of radioactive waste

    International Nuclear Information System (INIS)

    Son, Dong Chan; Hong, Suk Young; An, Kyoung Il

    2004-05-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Objectives can be summarized as; the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized. Public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information. Ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management). The system can compensate for the imperfections In safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control. Re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal

  6. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  7. Environmentally sound disposal of wastes: Multipurpose offshore islands offer safekeeping, continuous monitoring of hazardous, nuclear wastes

    International Nuclear Information System (INIS)

    Tengelsen, W.E.

    1995-01-01

    Solid wastes have become a health threat to all municipalities and safe disposal costs are increasing for coastal cities. Onland dumps have become a continuing source of pollution, existing landfill sites should be eliminated. Ocean dumping is rules out because of the threat to aquatic resources but pollutants deep-sixed in the past should be isolated from the ocean environment before they further harm the aquatic food chain. And there are still no totally satisfactory solutions for nuclear waste disposal, especially for high-level wastes. A practical answer to our waste disposal problem is to build waterproof storage vault islands offshore to safely contain all past and futuer solid wastes so they would not mix with the ocean waters. Contaminated dredged spoil and construction materials can be safely included, in turn providing free shielding for nuclear waste stored in special vault chambers. Offshore islands can be built to ride out erthquakes and the ocean's waters provide a stable temperature environment. Building modular structures in large quantities reduces per-unit costs; implementing these islands creates quality jobs and an economic stimulus. The island's tops become valuable waterfront property for commercial, institutional, educational, infrastructural, and recreational uses; tenants and users provide the revenues that make this island concept self-supporting

  8. Measurement method of the distribution coefficient on the sorption process. Basic procedure of the method relevant to the barrier materials used for the deep geological disposal: 2006

    International Nuclear Information System (INIS)

    2006-08-01

    This standard was approved by Atomic Energy Society of Japan after deliberation of the Subcommittee on the Radioactive Waste Management, the Nuclear Cycle Technical Committee and the Standard Committee, and after obtaining about 600 comments from specialists of about 30 persons. This document defines the basic measurement procedure of the distribution coefficient (hereafter referred as Kd) to judge the reliability, reproducibility and applications and to provide the requirements for inter-comparison of Kd for a variety of barrier materials used for deep geological disposal of radioactive wastes. The basic measurement procedure of Kd is standardized, following the preceded standard, 'Measurement Method of the Distribution Coefficient on the Sorption Process - Basic Procedure of Batch Method Relevant to the Barrier Materials Used for the Shallow Land Disposal: 2002 (hereafter referred as Standard for the Shallow Land Disposal)', and considering recent progress after its publication and specific issues to the deep geological disposal. (J.P.N.)

  9. The disposal of Canada's nuclear fuel waste: engineered barriers alternatives

    International Nuclear Information System (INIS)

    Johnson, L.H.; Tait, J.C.; Shoesmith, D.W.; Crosthwaite, J.L.; Gray, M.N.

    1994-01-01

    iron, carbon steel, stainless steels, nickel-based alloys, titanium alloys and copper is reviewed in detail, with reference to their potential performance in a disposal vault in the Canadian Shield. The strategy for sealing a disposal vault and the materials for this application are presented. Both clay-based and cement-based materials are discussed, and the method of designing these materials for their particular application is illustrated through examination of the method of selecting reference buffer, backfill and grouting materials. Designs are presented for shaft, tunnel and exploration borehole seals, and methodologies for emplacing them are described. The materials and designs presented give us confidence that disposal of nuclear fuel waste can be safely achieved using a number of approaches. Final selection of materials and design would be established on the basis of site specific investigations, vault engineering studies, and feedback from system performance assessment. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  10. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

    Science.gov (United States)

    Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

    2016-02-08

    Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

  11. Site evaluation for disposal facilities in salt

    International Nuclear Information System (INIS)

    Brewitz, W.

    1982-01-01

    Although the various geoscientific investigations are not finished yet, the results so far show that the Konrad mine has some outstanding geological features as required for a safe disposal of radioactive wastes. The iron ore formation is extremely dry. Seepage water is no threat to the waste disposal operation and the repository itself. The construction of stable underground storage rooms which are sufficiently seized in volume is possible. Galleries containing wastes in drums or contaminated components can be refilled and sealed efficiently as well as the rest of the mine including the two shafts. Thereafter the geological containment with its favourable structure and ideal petrology will be an effective barrier against the contamination of the biosphere. As investigated this applies in particular to the low-active wastes with their specific nuclide inventory and the short decay time. (orig.)

  12. Nuclear waste disposal: Technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1984-01-01

    The authors have arrived at what appears to be a comforting conclusion--that the ultimate disposal of nuclear wastes should be technically feasible and very safe. They find that the environment and health impacts will be negligible in the short-term, being due to the steps that precede the emplacement of the wastes in the repository. Disposal itself, once achieved, offers no short-term threat--unless an unforseen catastrophe of very low probability occurs. The risks appear negligible by comparison with those associated with earlier stages of the fuel cycle. Ultimately -- millinnia hence -- a slow leaching of radionuclides to the surface might begin. But it would be so slow that great dilution of each nuclide will occur. This phase is likely to be researched somewhere in the period 100,000 to 1,000,000 years hence

  13. Summary of the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    1994-01-01

    This is the Summary of the Environmental Impact Statement (EIS) prepared by Atomic Energy of Canada Limited (AECL) on the concept for disposal of Canada's nuclear fuel waste. The proposed concept is a method for geological disposal, based on a system of natural and engineered barriers. The EIS provides information requested by the Environmental Assessment Panel reviewing the disposal concept and presents AECL's case for the acceptability of the concept. The introductory chapter of this Summary provides background information on several topics related to nuclear fuel waste, including current storage practices for used fuel, the need for eventual disposal of nuclear fuel waste, the options for disposal, and the reasons for Canada's focus on geological disposal. Chapter 2 describes the concept for disposal of nuclear fuel waste. Because the purpose of implementing the concept would he to protect human health and the natural environment far into the future, we discuss the long-term performance of a disposal system and present a case study of potential effects on human health and the natural environment after the closure of a disposal facility. The effects and social acceptability of disposal would depend greatly on how the concept was implemented. Chapter 3 describes AECL's proposed approach to concept implementation. We discuss how the public would be involved in implementation; activities that would be undertaken to protect human health, the natural environment, and the socio-economic environment; and a case study of the potential effects of disposal before the closure of a disposal facility. The last chapter presents AECL's Conclusion, based on more than 15 years of research and development, that implementation of the disposal concept represents a means by which Canada can safely dispose of its nuclear fuel waste. This chapter also presents AECL's recommendation that Canada progress toward disposal of its nuclear fuel waste by undertaking the first stage of concept

  14. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  15. The disposal of radioactive wastes in Brazil with special emphasis on rocks

    International Nuclear Information System (INIS)

    Enokihara, Cyro Teiti

    1983-01-01

    The disposal of radioactive wastes in geological formations seems to be the most appropriate solution for the nuclear waste problem. The disposal sites must provide the maximum safety for the radionuclides during its decay period. The study presents a general analysis of three types rocks: salt, granite and basalt. In our analysis we have dealt with the following aspects: geology, tectonics, seismicity, hydrogeology , mineral resources, geomorphology, population and access. The studied regions were: Sergipe-Alagoas and Reconcavo Basins, Northeastern and Southeastern Folded Regions and Parana Basin. Our study contains the macro-analysis needed for the selection of a safe site for radioactive waste disposal. We believe this work will be useful as a first step for further micro-analysis of selected sites. (author)

  16. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  17. RD and D-Programme 2004. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    SKB (the Swedish Nuclear Fuel and Waste Management Co), which is owned by the companies that operate the Swedish nuclear power plants, has been assigned the task of managing and disposing of the spent nuclear fuel from the reactors. The Nuclear Activities Act requires a programme of comprehensive research and development and other measures that are needed to manage and dispose of nuclear waste in a safe manner and to decommission and dismantle the nuclear power plants. SKB is now presenting RD and D-Programme 2004 in fulfilment of this requirement. The programme describes SKB's plans for the period 2005-2010. The period of immediate concern is 2005-2007. The level of detail for the three subsequent years is naturally lower.The programme provides a basis for designing systems for safe management and disposal of the radioactive waste from the nuclear power plants. SKB's plan is to implement deep disposal of the spent fuel in accordance with the KBS-3 method. In the RD and D-Programme we describe our activities and planning for this line of action and the work that is being conducted on alternative methods. Review of the programme can contribute valuable outside viewpoints. The regulatory authorities and the Government can clarify how they look upon different parts of the programme and stipulate guidelines for the future. Municipalities and other stakeholders can, after studying the programme, offer their viewpoints to SKB, the regulatory authorities or the Government.The goal for the period up to the end of 2008 is to be able to submit permit applications for the encapsulation plant and the deep repository. This RD and D-Programme therefore differs from the preceding ones in that it concentrates on questions relating to technology development for these facilities. The programmes for safety assessment and research on the long-term processes that take place in the deep repository are then linked together with the programmes for technology development. Another

  18. SAFE-AXISYM, Stress Analysis of Axisymmetric Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.

    1967-01-01

    1 - Nature of physical problem solved: SAFE-AXISYM is a program for the analysis of multi-material axisymmetric composite structures. It is designed for the analysis of heterogeneous structures such as reinforced and/or prestressed concrete vessels. The structure is assumed to be linearly elastic, and only bodies of revolution subjected to axisymmetric loading can be treated. 2 - Method of solution: SAFE-AXISYM uses a finite element method with a modified Gauss-Seidel iteration scheme. A reference grid subdivides the structure into ring-like small, finite elements, the vertices of which are called nodes. The grid may be generated by hand, by the computer or by a combination of the two methods. Each node has two degrees of freedom, translation in the and in the axial direction. Both zero and non-zero fixed displacement constraints may be assumed, and the loading condition may be mechanical and/or thermal. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodes = 475. Maximum number of elements = 1100

  19. A safe radiation environment. Environmental Objective 13

    International Nuclear Information System (INIS)

    1999-01-01

    A safe radiation environment is one of the 15 environmental quality objectives that form the basis for developing a ecologically sustainable society within one generation. These objectives have been adopted by the Swedish parliament, and in the present report, the five different targets for reaching Objective 13 are defined. They are: (by year 2010) 1. The emissions of radioactive substances should be low enough to protect human beings, and the ecological diversity. 2. A generally accepted method for managing and disposing of spent nuclear fuels and radioactive waste should be available, that does not impose any risks for human beings and for the environment. 3. Hazards to the society, human beings or the environment from radiological accidents should be eradicated, or at least severely minimized. 4. Hazards from electromagnetic fields should be understood and, if necessary, actions planned for improving the e-m field environment. 5. The number of skin cancers in year 2020 from solar radiation should not exceed those in year 2000

  20. Disposal of Draeger Tubes at Savannah River Site

    International Nuclear Information System (INIS)

    Malik, N.P.

    2000-01-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed

  1. Savannah River Site - Salt-stone Disposal Facility Performance Assessment Update

    International Nuclear Information System (INIS)

    Newman, J.L.

    2009-01-01

    The Savannah River Site (SRS) Salt-stone Facility is currently in the midst of a Performance Assessment revision to estimate the effect on human health and the environment of adding new disposal units to the current Salt-stone Disposal Facility (SDF). These disposal units continue the ability to safely process the salt component of the radioactive liquid waste stored in the underground storage tanks at SRS, and is a crucial prerequisite for completion of the overall SRS waste disposition plan. Removal and disposal of low activity salt waste from the SRS liquid waste system is required in order to empty tanks for future tank waste processing and closure operations. The Salt-stone Production Facility (SPF) solidifies a low-activity salt stream into a grout matrix, known as salt-stone, suitable for disposal at the SDF. The ability to dispose of the low-activity salt stream in the SDF required a waste determination pursuant to Section 3116 of the Ronald Reagan National Defense Authorization Act of 2005 and was approved in January 2006. One of the requirements of Section 3116 of the NDAA is to demonstrate compliance with the performance objectives set out in Subpart C of Part 61 of Title 10, Code of Federal Regulations. The PA is the document that is used to ensure ongoing compliance. (authors)

  2. Development and use of a remote waste handling system for disposal of greater confinement wastes

    International Nuclear Information System (INIS)

    Williams, R.E.

    1985-01-01

    This paper discusses the design and development of a remotely controlled waste handling system (RWHS) for use in radioactive waste disposal operations. A RWHS was developed at the US Department of Energy's (DOE) Nevada Test Site for use in the Greater Confinement Disposal Test (GCDT). The RWHS consists of a remote control console and the following remotely operated features: a crane, a grapple/manipulator module which is suspended by the crane hoist hook, and closed-circuit television cameras. The RWHS was used to safely place high-specific-activity radioactive waste in greater confinement disposal. Between December 15, 1983, and February 23, 1984, five encapsulated sources were open-air transferred from shielded shipping casks and placed 30 m down a 3-m-dia augered shaft using the RWHS. These sources contained approximately 460 kCi of 90 Sr, 21 kCi of 137 Cs, and 390 Ci of 60 Co. Each source was transferred safely and efficiently and operational personnel did not receive any recordable doses. 3 references, 5 figures

  3. Demonstration of safety for geologic disposal

    International Nuclear Information System (INIS)

    Taylor, E.C.; Ramspott, L.D.; Sprecher, W.M.

    1994-01-01

    The US Department of Energy (DOE) is developing a nuclear waste management system that will accept high-level radioactive waste, transport it, store it, and ultimately emplace it in a deep geologic repository. The key activity now is determining whether Yucca Mountain, Nevada is suitable as a site for the repository. If so, the crucial technological advance will be the demonstration that disposal of nuclear waste will be safe for thousands of years after closure. This paper assesses the impact of regulatory developments, legal developments, and scientific developments on such a demonstration

  4. Strategies and challenges for safe injection practice in developing countries.

    Science.gov (United States)

    Gyawali, Sudesh; Rathore, Devendra Singh; Shankar, P Ravi; Kumar, Kc Vikash

    2013-01-01

    Injection is one of the important health care procedures used globally to administer drugs. Its unsafe use can transmit various blood borne pathogens. This article aims to review the history and status of injection practices, its importance, interventions and the challenges for safe injection practice in developing countries. The history of injections started with the discovery of syringe in the early nineteenth century. Safe injection practice in developed countries was initiated in the early twentieth century but has not received adequate attention in developing countries. The establishment of "Safe Injection Global Network (SIGN)" was an milestone towards safe injection practice globally. In developing countries, people perceive injection as a powerful healing tool and do not hesitate to pay more for injections. Unsafe disposal and reuse of contaminated syringe is common. Ensuring safe injection practice is one of the greatest challenges for healthcare system in developing countries. To address the problem, interventions with active involvement of a number of stakeholders is essential. A combination of educational, managerial and regulatory strategies is found to be effective and economically viable. Rational and safe use of injections can save many lives but unsafe practice threatens life. Safe injection practice is crucial in developing countries. Evidence based interventions, with honest commitment and participation from the service provider, recipient and community with aid of policy makers are required to ensure safe injection practice.

  5. Some Questions on the Fixation of Radioisotopes in Connexion with the Problem of their Safe Burial

    Energy Technology Data Exchange (ETDEWEB)

    Zimakov, P. V.; Kulichenko, V. V.

    1960-07-01

    For the safe disposal of radioactive wastes it is essential that they be securely fixed in a suitable material for a long period. This is true regardless of the place or medium chosen for disposal. The chief source of danger in any given 'burial ground' is the threat of possible leakage resulting in the buried radioisotopes being dispersed in the environment. In recent times attention has been primarily directed to the question of disposing of the fission-produced radioisotopes which are formed in large quantities in many-countries during the release of energy through the fission of heavy nuclei in various nuclear power units (reactors). The present paper will discuss certain questions connected with the processing and disposal of wastes containing fission-produced isotopes.

  6. Pregnancy termination in Matlab, Bangladesh: trends and correlates of use of safer and less-safe methods.

    Science.gov (United States)

    DaVanzo, Julie; Rahman, Mizanur

    2014-09-01

    Menstrual regulation (MR), a relatively safe form of pregnancy termination, is legal in Bangladesh during the early stages of pregnancy. However, little is known about the factors associated with whether women who terminate pregnancies choose this method or a less-safe one. Data from the Matlab Demographic Surveillance System on 122,691 pregnancies-5,221 (4.3%) of which were terminated-were used to examine trends between 1989 and 2008 in termination and in use of safer methods (MR or dilation and curettage) and less-safe (all other) methods of pregnancy termination. Logistic and multinomial logistic regressions were used to assess factors associated with whether women terminate pregnancies and whether they use safer methods. Sixty-seven percent of pregnancy terminations were by safer methods and 33% by less-safe means. The proportion of pregnancies that were terminated increased between 1989 and 2008; this increase was entirely due to increased use of safer methods. Women younger than 18 and those 25 or older were more likely than women aged 20-24 to terminate their pregnancies (odds ratios ranged from 1.5 among women aged 16-17 or 25-29 to 26.1 among those aged 45 or older). Among women who terminated their pregnancies, those aged 25-44 were more likely than those aged 20-24 to use a safer method. Compared with women who had no formal education, those with some education were more likely to terminate their pregnancies and to do so using safer methods. A growing proportion of pregnancies in Matlab are terminated, and these terminations are increasingly done using safer methods.

  7. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    Science.gov (United States)

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations

  8. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  9. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  10. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  11. International co-operation with regard to regional repositories for radioactive waste disposal

    International Nuclear Information System (INIS)

    Bredell, P.J.; Fuchs, H.D.

    1997-01-01

    The feasibility of an international waste management system for high level radioactive waste (HLW) and spent nuclear fuel (SNF), based on common interim storage, conditioning and final disposal facilities has been investigated. The approach adopted in this investigation was first, to establish the need for an international waste management facility of this kind; second, to define the system concept; third, to evaluate the concept in terms of its technical, economic, financial, institutional and ethical aspects; fourth, to examine the potential benefits of the system; and finally, to propose typical stakeholder profiles for participants in the system. The system concept appears to be entirely feasible from the point of view of a group of countries, each of which is generating HLW and SNF in such quantities as to render individual domestic final disposal facilities unrealistic, wishing to dispose of this material in a common safe and viable disposal facility provided by one of the participating countries. (author)

  12. Long term evolution of waste disposal sites: scenario selection and methods

    International Nuclear Information System (INIS)

    Peaudecerf, P.; Blanc, P.L.

    1990-01-01

    The safety analysis of long term radioactive waste disposal projects must take into account the evolution of the sites natural environment. The present paper aims at reassessing some questions relating to the methods and to some lack of knowledge which may appear when we try to forecast such evolutions and their results, and to some solutions that can be considered. We will particularly discuss the advantages and drawbacks of the deterministic approaches and the construction and working out of scenarios. The presentation is illustrated by reference to recent examples. 5 refs., 6 figs [fr

  13. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  14. Experience in selection and characterization of sites for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1997-12-01

    An important matter in the development of a geological repository for disposal radioactive waste is the selection of a site that has characteristics that are favorable for isolation. A number of Member States have had national programmes under way for several decades to investigate sites to gather the geological information needed to design and construct a safe repository. The purpose of this report is to document this experience and to summarize what has been learned about the site selection and investigation process. It is hoped it will be of interest to scientists and engineers working in national disposal programmes by providing them information and key references regarding the disposal programmes in other countries. It may also be of interest to members of the public and to decision makers wanting an overview of the worldwide status of programmes to select and characterize geological disposal sites for radioactive waste

  15. A Method of Erasing Data Using Random Number Generators

    OpenAIRE

    井上,正人

    2012-01-01

    Erasing data is an indispensable step for disposal of computers or external storage media. Except physical destruction, erasing data means writing random information on entire disk drives or media. We propose a method which erases data safely using random number generators. These random number generators create true random numbers based on quantum processes.

  16. The United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating ground waters for hundreds of thousands of years. The long-term stability of each site under thermal loading must then be demonstrated by sophisticated rock mechanic analyses. Therefore, it can be expected that the sites that are chosen will effectively isolate the waste for a very long period of time. However, to help provide answers on the mechanisms and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is studied. The overall objective of this program is an assessment of the safety associated with the long-term disposal of high-level radioactive waste in a geologic formation. This objective will be achieved by developing methods and generating data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sites. It is expected that no one particular model will suffice. Both deterministic and probabilistic approaches will be used, and the entire spectrum of phenomena that could influence geologic isolation will be considered

  17. Safety assessment of near surface radioactive waste disposal facilities: Model intercomparison using simple hypothetical data (Test Case 1). First report of NSARS. Part of the co-ordinated research programme on the safety assessment of near surface radioactive waste disposal facilities (NSARS)

    International Nuclear Information System (INIS)

    1995-11-01

    In many countries near surface disposal is the preferred option for the comparatively large volumes of low and intermediate level wastes which arise during nuclear power plant operations, nuclear fuel reprocessing and also for the wastes arising from radionuclide applications in hospitals and research establishments. Near surface disposal is also widely practised in the case of hazardous wastes from chemical industries. It is obviously necessary to show that waste disposal methods are safe and that both man and the environment will be adequately protected. Following a previous related Co-ordinated Research Programme (CRP) on ''Migration and Biological Transfer of Radionuclides from Shallow Land Burial'' during 1985 to 1989 (IAEA-TECDOC-579, Vienna, 1990), the issue of reliability of safety assessments was identified as an important topic for further support and development. A new CRP was formulated with the acronym NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study). This technical document is the first report of from the CRP and contains the intercomparison of results of the first test exercise (Test Case 1) on modelling of potential radiation exposures as a result of near surface disposal. Test Case 1 is based on entirely hypothetical data and includes consideration of exposures due to leaching and as a result of human intrusion into the site. Refs, figs and tabs

  18. Safety assessment of near surface radioactive waste disposal facilities: Model intercomparison using simple hypothetical data (Test Case 1). First report of NSARS. Part of the co-ordinated research programme on the safety assessment of near surface radioactive waste disposal facilities (NSARS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    In many countries near surface disposal is the preferred option for the comparatively large volumes of low and intermediate level wastes which arise during nuclear power plant operations, nuclear fuel reprocessing and also for the wastes arising from radionuclide applications in hospitals and research establishments. Near surface disposal is also widely practised in the case of hazardous wastes from chemical industries. It is obviously necessary to show that waste disposal methods are safe and that both man and the environment will be adequately protected. Following a previous related Co-ordinated Research Programme (CRP) on ``Migration and Biological Transfer of Radionuclides from Shallow Land Burial`` during 1985 to 1989 (IAEA-TECDOC-579, Vienna, 1990), the issue of reliability of safety assessments was identified as an important topic for further support and development. A new CRP was formulated with the acronym NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study). This technical document is the first report of from the CRP and contains the intercomparison of results of the first test exercise (Test Case 1) on modelling of potential radiation exposures as a result of near surface disposal. Test Case 1 is based on entirely hypothetical data and includes consideration of exposures due to leaching and as a result of human intrusion into the site. Refs, figs and tabs.

  19. Regulating the disposal of cigarette butts as toxic hazardous waste.

    Science.gov (United States)

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  20. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  1. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1995-01-01

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  2. Nuclear waste management: storage and disposal aspects

    International Nuclear Information System (INIS)

    Patterson, B.D.; Dave, S.A.; O'Connell, W.J.

    1980-01-01

    Long-term disposal of nuclear wastes must resolve difficulties arising chiefly from the potential for contamination of the environment and the risk of misuse. Alternatives available for storage and disposal of wastes are examined in this overview paper. Guidelines and criteria which may govern in the development of methods of disposal are discussed

  3. Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research; Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research

    2016-08-01

    This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth of about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.

  4. Trends of radioactive waste management policy and disposal of LLW/ILW in the UK

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2003-01-01

    In 1997, the UK program for the deep disposal of radioactive waste was stopped with the refusal by the Secretary of State for the Environment to allow Nuclear Industry Radioactive Waste Executive, Ltd. (Nirex) to go ahead with its plans for an underground Rock Characterization Facility (RCF) at Sellafield, seen as the precursor of an underground repository for LLW/ILW. Department of Environment, Food and Rural Affairs (DEFRA) and the Developed Administrations published a white paper 'Managing Radioactive Waste Safety' Proposal for developing a policy for managing solid radioactive waste in the UK on 12 September 2001. The paper set out five-stage program of action for reaching decisions until 2007. It suggests their view can be sought via opinion polls, the Internet, workshops, citizens, juries, consensus conferences, stakeholder, local authority and community groups and research panels. With the exception of a disposal facility associated with the operation of the Dounreay site on the north coast of Scotland, essentially all LLW in the UK is disposed of at the Drigg site, near Sellafield. The site has been in operation since 1959. Until 1988, disposals were solely in trenches, cut into the glacial tills underlying the site. In 1988, an engineered concrete vault was brought into operation and is currently in use. Drigg only has a finite capacity in the currently area and may be full by about 2050, hence new arrangements will have to examine. This report describes the trends of radioactive waste management policy and disposal of LLW/ILW in the UK. These include: NDA(Nuclear Decommissioning Authority) organization plan, Feb. 2003; Encapsulation of LLW/ILW and safe store for ILW; Summary of LLW repository at the Drigg site; Nirex concept for underground storage/disposal of LLW/ILW. This information and new approach of the safe management of radioactive waste in the UK will prove helpful to the planning for future management and disposal of LLW in Japan. (author)

  5. Nuclear waste and a deep geological disposal facility

    International Nuclear Information System (INIS)

    Vokal, A.; Laciok, A.; Vasa, I.

    2005-01-01

    The paper presents a systematic analysis of the individual areas of research into nuclear waste and deep geological disposal with emphasis on the contribution of Nuclear Research Institute Rez plc to such efforts within international projects, specifically the EURATOM 6th Framework Programme. Research in the area of new advanced fuel cycles with focus on waste minimisation is based on EU's REDIMPACT project. The individual fuel cycles, which are currently studied within the EU, are briefly described. Special attention is paid to fast breeders and accelerator-driven reactor concepts associated with new spent fuel reprocessing technologies. Results obtained so far show that none even of the most advanced fuel cycles, currently under consideration, would eliminate the necessity to have a deep geological repository for a safe storage of residual radioactive waste. As regards deep geological repository barriers, the fact is highlighted that the safety of a repository is assured by complementary engineered and natural barriers. In order to demonstrate the safety of a repository, a deep insight must be gained into any and all of the individual processes that occur inside the repository and thus may affect radioactivity releases beyond the repository boundaries. The final section of the paper describes methods of radioactive waste conditioning for its disposal in a repository. Research into waste matrices used for radionuclide immobilisation is also highlighted. (author)

  6. Safe disposal of nuclear waste in rock formations - Geological conditions - What level of safety do we require and what can we attain

    International Nuclear Information System (INIS)

    Devell, L.

    1977-01-01

    Proceeding from the imprecise expressions 'completely safe', 'highest conceivable safety level' and 'highest possible safety level', the level of safety of the final disposal of radioactive wastes is discussed. The Scandinavian radiation protection authorities have established guidelines for the long-term collective radiation doses per MW(e)year, and already guidelines are becoming clear covering the whole nuclear power era. Aspects of risk analysis and cost-benefit analysis are also discussed. The concepts 'site multiplicity' and 'technical irreversibility' are introduced. Assuming that wastes are contained in glass, or in spent fuel rods, the potential risk indices as a function of time are presented. In the first 300 years Cs137 and Sr90 dominate. Threeafter Am241 until 3000 years, when Am243 and Pu239 take over. In the long term Ra226 becomes significant also. After 1000 years however, the potential risk is no greater than that of uranium ore, when accessibility becomes the dominant consideration. Factors which could lead to dispersal of the wastes are listed, and finally a rough calculation of the activity reaching a well from leaching of activities from glass in a ground water flow is presented. (JIW)

  7. International conference on safe decommissioning for nuclear activities: Assuring the safe termination of practices involving radioactive materials. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Thousands of operations involving the use of radioactive substances will end during the current century. While there is considerable regulatory experience in the 'front end' of the regulatory system for practices, the experience at the back end is more limited as fewer practices have actually been terminated. When a practice is terminated because the facility has reached the end of its useful life, action has to betaken to ensure the safe shutdown of the facility and allow the removal of regulatory controls. There are many issues involved in the safe termination of practices. These include setting criteria for the release of material and sites from regulatory control; determining the suitability of the various options for decommissioning nuclear facilities, managing the waste and material released from control (recycling, reuse or disposal), and the eventual remediation of the site. Some countries have put in place regulatory infrastructures and have developed programmes to manage the associated decommissioning and remediation activities. Other countries are at the stage of assessing what is involved in terminating such practices. The purpose of this Conference is to foster an information exchange on the safe an orderly termination of practices that involve the use of radioactive substances, including both decommissioning and environmental remediation, and to promote improved coherence internationally on strategies and criteria for the safe termination of practices.

  8. International conference on safe decommissioning for nuclear activities: Assuring the safe termination of practices involving radioactive materials. Contributed papers

    International Nuclear Information System (INIS)

    2002-01-01

    Thousands of operations involving the use of radioactive substances will end during the current century. While there is considerable regulatory experience in the 'front end' of the regulatory system for practices, the experience at the back end is more limited as fewer practices have actually been terminated. When a practice is terminated because the facility has reached the end of its useful life, action has to betaken to ensure the safe shutdown of the facility and allow the removal of regulatory controls. There are many issues involved in the safe termination of practices. These include setting criteria for the release of material and sites from regulatory control; determining the suitability of the various options for decommissioning nuclear facilities, managing the waste and material released from control (recycling, reuse or disposal), and the eventual remediation of the site. Some countries have put in place regulatory infrastructures and have developed programmes to manage the associated decommissioning and remediation activities. Other countries are at the stage of assessing what is involved in terminating such practices. The purpose of this Conference is to foster an information exchange on the safe an orderly termination of practices that involve the use of radioactive substances, including both decommissioning and environmental remediation, and to promote improved coherence internationally on strategies and criteria for the safe termination of practices

  9. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  10. New safety concept for geological disposal in Japan - -16339

    International Nuclear Information System (INIS)

    Kitayama, Kazumi

    2009-01-01

    This paper describes a new safety concept for the Japanese geological disposal program, which is a development of the conventional multi-barrier system concept. The Japanese government established the 'Nuclear Waste Management Organization of Japan' (NUMO) as an implementation body in 2000 based on the 'Final disposal act' following the publication of the 'H-12 Report', which confirmed the scientific and engineering feasibility of HLW geological disposal in Japan. Since then, NUMO has undertaken further technical developments aimed at achieving safe and efficient implementation of final disposal. The safety concept developed in the 'H-12 Report' provides sufficient safety on the basis of site-generic considerations. However, it is considered to be over-conservative and therefore does not represent the most probable performance of the engineered or natural barriers. Recently, concrete measures have been proposed requiring the safety case to be presented in terms of a realistic assessment of the most probable performance. This approach takes into account the safety functions of both engineered and natural barriers as well as the long-term static geochemical equilibrium. In particular, the evolution of the safety performance of engineered and natural barriers can be efficiently augmented by the realistic long-term geochemical equilibrium. (author)

  11. Borehole disposal design concept in Madagascar

    International Nuclear Information System (INIS)

    Randriamarolahy, J.N.; Randriantseheno, H.F.; Andriambololona, Raoelina

    2008-01-01

    Full text: In Madagascar, sealed radioactive sources are used in several socio-economic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become ionizing radiations waste and can be still dangerous because they can cause harmful effects to the public and the environment. 'Borehole disposal design concept' is needed for sitting up a safe site for storage of radioactive waste, in particular, sealed radioactive sources. Borehole disposal is an option for long-term management of small quantities of radioactive waste in compliance with the internationally accepted principles for radioactive waste management. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeology, geochemical, meteorological and demographic conditions. Two sites are most acceptable in Madagascar such as Ankazobe and Fanjakana. A Borehole will be drilled and constructed using standard techniques developed for water abstraction, oil exploration. At the Borehole, the sealed radioactive sources are encapsulated. The capsule is inserted in a container. This type of storage is benefit for the developing countries because it is technologically simple and economic. The construction cost depends on the volume of waste to store and the Borehole depth. The borehole disposal concept provides a good level of safety to avoid human intrusion. The future protection of the generations against the propagation of the ionizing radiations is then assured. (author)

  12. Thermal disposal of waste containing nanomaterials: first investigations on a methodology for risk management

    International Nuclear Information System (INIS)

    Ounoughene, G.; Joubert, A.; Le Coq, L.; LeBihan, O.; Debray, B.; Chivas-Joly, C.; Longuet, C.; Lopez-Cuesta, J-M.

    2017-01-01

    Considering the wide use and production of NMs since last two decades, these trendy nanomaterials (NMs) are expected to end up in thermal disposal and waste incineration plants (WIP). It seems relevant to assess the risks related to the thermal disposal and incineration of waste containing NMs (WCNMs). The objective of this work is to present a first approach to develop a preliminary methodology for risk management in order (1) to give insights on nanosafety of exposed operators and on potential environmental risks related to the incineration and thermal disposal of WCNMs, and (2) to eventually support decision-makers and incineration plant managers. Therefore, the main challenge is to find (a) key parameter(s) which would govern the decision related to risk management of NMs thermal disposal. On the one hand, we focused on the relevant literature studies about experimental works on incineration of NMs. On the other hand, we conducted an introductory discussion with a group of experts. The review of this literature highlights that the nano-object’s nanostructure destruction appears as a relevant indicator of the risks related to the NMs incineration. As a consequence, we defined a “temperature of nanostructure destruction” (TND) which would be the temperature from which the nanostructure will be destroyed. This parameter has been assumed to be a consistent indicator to develop a preliminary methodology. If the combustion chamber temperature is higher than the TND of the NM (or if they are close to each other), then the nanostructure will be destroyed and no risks related to NMs remain. If the TND of the NMs is higher than the combustion chamber temperature, then the nanostructure will not be destroyed and risks related to NMs have to be considered. As a result, five groups of NMs have been identified. WCNMs including carbonic NMs appear to be in good position to be destroyed safely in WIP. On the other hand, based on this criterion, there would be no

  13. Thermal disposal of waste containing nanomaterials: first investigations on a methodology for risk management

    Science.gov (United States)

    Ounoughene, G.; LeBihan, O.; Debray, B.; Chivas-Joly, C.; Longuet, C.; Joubert, A.; Lopez-Cuesta, J.-M.; Le Coq, L.

    2017-06-01

    Considering the wide use and production of NMs since last two decades, these trendy nanomaterials (NMs) are expected to end up in thermal disposal and waste incineration plants (WIP). It seems relevant to assess the risks related to the thermal disposal and incineration of waste containing NMs (WCNMs). The objective of this work is to present a first approach to develop a preliminary methodology for risk management in order (1) to give insights on nanosafety of exposed operators and on potential environmental risks related to the incineration and thermal disposal of WCNMs, and (2) to eventually support decision-makers and incineration plant managers. Therefore, the main challenge is to find (a) key parameter(s) which would govern the decision related to risk management of NMs thermal disposal. On the one hand, we focused on the relevant literature studies about experimental works on incineration of NMs. On the other hand, we conducted an introductory discussion with a group of experts. The review of this literature highlights that the nano-object’s nanostructure destruction appears as a relevant indicator of the risks related to the NMs incineration. As a consequence, we defined a “temperature of nanostructure destruction” (TND) which would be the temperature from which the nanostructure will be destroyed. This parameter has been assumed to be a consistent indicator to develop a preliminary methodology. If the combustion chamber temperature is higher than the TND of the NM (or if they are close to each other), then the nanostructure will be destroyed and no risks related to NMs remain. If the TND of the NMs is higher than the combustion chamber temperature, then the nanostructure will not be destroyed and risks related to NMs have to be considered. As a result, five groups of NMs have been identified. WCNMs including carbonic NMs appear to be in good position to be destroyed safely in WIP. On the other hand, based on this criterion, there would be no

  14. SITEX, the European Network of Technical Expertise Organisation for Geological Disposal

    International Nuclear Information System (INIS)

    Pellegrini, D.; Rocher, M.; Bernier, F.; Detilleux, V.; Hériard Dubreuil, G.; Narkuniene, A.; Miksova, J.

    2016-01-01

    Objective: To identify and prioritize the needs for competence and skills development of the Expertise Function, at the international level. Commitments: − The SRA is developed by applying a transparent methodology; − The SRA addresses the needs associated with the different states of advancement of geological disposal (GD) programmes; The concerns of civil society are taken into consideration. Scope of the SRA: ‒ All the topics relevant to the Expertise Function to assess whether geological disposal facilities are developed and will be constructed, operated and closed in a safe manner. ‒ It encompasses all topics relevant to any waste type and spent fuel for which geological disposal is envisaged as a solution for its long-term management. ‒ The following types of activity are considered: • R&D activities; • exchanging on practices and developing common positions; • developing states of the art; • knowledge transfer (e.g. training or tutoring)

  15. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs.

  16. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs

  17. Can nuclear waste be stored safely at Yucca mountain?

    International Nuclear Information System (INIS)

    Whipple, C.G.

    1996-01-01

    In 1987 the federal government narrowed to one its long-term options for disposing of nuclear waste: storing it permanently in a series of caverns excavated out of the rock deep below Yucca mountain in southern Nevada. Whether it makes sense at this time to dispose permanently of spent fuel and radioactive waste in a deep geologic repository is hotly disputed. But the Nuclear Waste Policy Act amendements of 1987 decree that waste be consolidated in Yucca Mountain if the mountain is found suitable. Meanwhile the spent fuel continues to pile up across the country, and 1998 looms, adding urgency to the question: What can science tell us about the ability of the mountain to store nuclear waste safely? This paper discusses this issue and describes how studies of the mountain's history and geology can contribute useful insights but not unequivocal conclusions

  18. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  19. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    International Nuclear Information System (INIS)

    McLaughlin, T.J.

    1998-01-01

    This document is prepared in order to support the US Department of Energy's evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors

  20. Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides

    Science.gov (United States)

    Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.

    2018-04-01

    Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.

  1. Radioactive waste disposal in W.A

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1983-01-01

    Radioactive waste in Western Australia arises primarily from medical diagnosis and treatment and from scientific research mainly with a medical orientation. Waste is classified before disposal depending on its level and type of radioactivity and then disposed of either to municipal land fill sites, to the sewerage system or by incineration. The amounts of radioactive materials which may be disposed of to the sewers and air are set by the Radiation Safety Act (1975) Regulations, and the land fill operations are controlled to ensure isolation of the material. Other waste such as unwanted sources used in industrial applications are stored for future disposal. Discussions are being held between officers of the State and Australian Governments aimed at providing suitable disposal methods for sources of this kind

  2. Cost estimates and economic evaluations for conceptual LLRW disposal facility designs

    Energy Technology Data Exchange (ETDEWEB)

    Baird, R.D.; Chau, N. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States); Breeds, C.D. [SubTerra, Inc., Redmond, WA (United States)

    1995-12-31

    Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes). Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).

  3. Setting up a safe deep repository for long-lived HLW and ILW in Russia: Current state of the works

    International Nuclear Information System (INIS)

    Polyakov, Yu.D.; Porsov, A.Yu.; Beigul, V.P.; Palenov, M.V.

    2014-01-01

    The concept of RW disposal in Russia in accordance with the Federal Law 'On Radioactive Waste Management and Amendments to Specific Legal Acts of the Russian Federation' No. 190-FL dated 11 July 2011, is oriented at the ultimate disposal of waste, without an intent for their subsequent retrieval. The law 190-FL has it as follows: - A radioactive waste repository is a radioactive waste storage facility intended for disposal of the radioactive wastes without an intent for their subsequent retrieval. - Disposal of solid long-lived high-level waste and solid long-lived intermediate-level waste is carried out in deep repositories for radioactive waste. - Import into the Russian Federation of radioactive waste for the purpose of its storage, processing and disposal, except for spent sealed sources of ionising radiation originating from the Russian Federation, is prohibited. For safe final disposal of long-lived HLW and ILW, it is planned to construct a deep repository for radioactive waste (DRRW) in a low-pervious monolith rock massif in the Krasnoyarsk region in the production territory of the Mining and Chemical Combine (FSUE 'Gorno-khimicheskiy kombinat'). According to the IAEA recommendations and in line with the international experience in feasibility studies for setting up of HLW and SNF underground disposal facilities, the first mandatory step is the construction of an underground research laboratory. An underground laboratory serves the following purposes: - itemised research into the characteristics of enclosing rock mass, with verification of massive material suitability for safe disposal of long-lived HLW and ILW; - research into and verification of the isolating properties of an engineering barrier system; - development of engineering solutions and transportation and process flow schemes for construction and running of a future RW ultimate isolation facility. (authors)

  4. Advanced technology for disposal of low-level radioactive/waste

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1990-01-01

    New Low-Level Radioactive Waste (LLW) sites will be opened in this decade. These sites will replace the existing sites, and will be developed for waste generated at both commercial and governmental facilities. The design and operation of these facilities will include additional engineered provisions to further minimize the probability for any radioactive material release for upwards of 500 years following site closure. Chem-Nuclear Systems, Inc. (CNSI) has been selected by several state waste compacts to design, construct and operate new LLW disposal sites. These new sites will be located in Illinois, North Carolina and Pennsylvania. They will receive waste generated at commercial sites (power utilities, commercial processors, hospitals, etc.), with volumes ranging from 200,000 to 550,000 cubic feet per year. As currently planned, these facilities will be operational for from 20 to 50 years. The basis of the new designs is multiple engineered barriers which augments the natural features of the site and the solid form of the waste as shipped by the generator. The design concept is referred to as the Triple Safe concept, since it is composed of three distinct engineered barriers. This design has been adapted from disposal technology developed in France. This paper discusses aspects of the Triple Safe technology which CNSI is now developing for the new LLW sites. The designs, while not absolutely identical at each site, do have many common features. The author believes that these are representative of disposal technology to be used in the US in the 1990's and beyond. The current projection is that these sites will become operational in the 1993-97 time period

  5. Safe disposal of research reactor RA spent fuel-activities, problems and prospects

    International Nuclear Information System (INIS)

    Matausek, M.V.; Vukadin, Z.; Plecas, I.; Pavlovic, R.; Sotic, O.; Bulkin, S.; Sokolov, A.; Morduhai, A.

    2001-01-01

    In order to improve conditions in the existing temporary spent fuel storage pool, technology was elaborated and equipment was produced and applied for removal of sludge and other debris from the bottom of the pool, filtration of the pool water, sludge conditioning in cement matrix and disposal at the low and medium waste repository at Vinca site. Safety measures and precautions were determined. Subcriticality was proved under normal and/or possible abnormal conditions. In the frame of the joint Yugoslav-Russian project, the technology has been developed and the equipment has been manufactured, tested and applied for underwater inspection the state of spent fuel inside the aluminum barrels. Based on the results of this inspection, a procedure will be proposed for transferring spent fuel to a more reliable storage facility. (author)

  6. The legislation of nuclear disposal. Text booklet with an introduction

    International Nuclear Information System (INIS)

    Smeddinck, Ulrich

    2014-01-01

    The book on the legislation of nuclear waste disposal covers the following issues: Part A: Introduction in the site selection law. Part B: Set of regulations: Constitutional law of the Federal Republic of Germany (extract), Guideline 2011/70 EURATOM on the responsible and safe disposal of spent fuel elements, common agreement on the safety of spent fuel treatment and on the safety of radioactive waste conditioning, law on search and selection of final repository site for heat generating radioactive wastes (site selection law), law on the civil use of nuclear energy and the protection against its hazards (Atomic Law AtG), federal mining act (BBergG), law on environmental impact assessment (UVPG), Law on supplementary regulations and legal remedies in environmental matters according EU guideline 2003/35EG, law on the construction of a Federal authority for nuclear disposal (BfkEEG), regulation on the protection against ionizing radiation hazards (Strahlenschutzverordnung), regulation on the transport of radioactive wastes or spent fuel elements. Regulation on the commissioning processes of facilities according paragraph 7 Atomic law, regulation on the definition of a development freeze for site protection for a final disposal, regulation on the warranty of nuclear safety and radiation protection, implementing rule for the nuclear safety warranty, regulation on the advance financing for the construction of Federal facilities for safeguarding and final disposal of radioactive wastes. Cost regulation for the Atomic Law.

  7. Novel Sample Preparation Method for Safe and Rapid Detection of Bacillus anthracis Spores in Environmental Powders and Nasal Swabs

    OpenAIRE

    Luna, Vicki A.; King, Debra; Davis, Carisa; Rycerz, Tony; Ewert, Matthew; Cannons, Andrew; Amuso, Philip; Cattani, Jacqueline

    2003-01-01

    Bacillus anthracis spores have been used as a biological weapon in the United States. We wanted to develop a safe, rapid method of sample preparation that provided safe DNA for the detection of spores in environmental and clinical specimens. Our method reproducibly detects B. anthracis in samples containing

  8. 7 CFR 1955.116 - Requirements for sale of property not meeting decent, safe and sanitary (DSS) standards (housing).

    Science.gov (United States)

    2010-01-01

    ... flooring and floor joists in kitchen and bathroom. —Drill new well to provide for an adequate and potable... adequate, safe and operable * system. * Insert heating, plumbing, electrical and/or sewage disposal, etc...

  9. Cost effectiveness of below-threshold waste disposal at DOE sites

    International Nuclear Information System (INIS)

    Wickham, L.E.; Smith, C.F.; Cohen, J.J.

    1986-01-01

    Previous study has indicated the feasibility of establishing a threshold of concentration below which certain low-level (radioactive wastes) (LLW) could be safely handled and disposed of by conventional means such as landfills. Such below-threshold wastes have been synonymously termed de minimis or below regulatory concern (BRC) and can be deemed appropriate for management according to their nonradiological characteristics. The objective of this study was to determine the cost effectiveness for management and disposal of below-threshold waste at certain US Department of Energy sites. The sites selected for this study were the Idaho National Engineering Laboratory and Savannah River Laboratory. Cost-benefit analysis was used to determine the impacts, benefits, and potential cost advantages of establishing and implementing a threshold limit

  10. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    Science.gov (United States)

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  11. An overview of radioactive waste disposal procedures of a nuclear medicine department

    International Nuclear Information System (INIS)

    Ravichandran, R.; Binukumar, J.P.; Sreeram, Rajan; Arunkumar, L.S.

    2011-01-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the 131 I solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of 131 I- much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. (author)

  12. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  13. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  14. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    International Nuclear Information System (INIS)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-01-01

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  15. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  16. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1979-01-01

    The invention describes a method of disposing of alkali metals by forming a solid waste for storage. The method comprises preparing an aqueous disposal solution of at least 55 weight percent alkali metal hydroxide, heating the alkali metal to melting temperature to form a feed solution, and spraying the molten feed solution into the disposal solution. The alkali metal reacts with the water in the disposal solution in a controlled reaction which produces alkali metal hydroxide, hydrogen and heat and thereby forms a solution of alkali metal hydroxides. Water is added to the solution in amounts sufficient to maintain the concentration of alkali metal hydroxides in the solution at 70 to 90 weight percent, and to maintain the temperature of the solution at about the boiling point. Removing and cooling the alkali metal hydroxide solution thereby forms a solid waste for storage. The method is particularly applicable to radioactive alkali metal reactor coolant. (auth)

  17. Pyramiding tumuli waste disposal site and method of construction thereof

    Science.gov (United States)

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  18. Safety assessment and licensing issues of low level radioactive waste disposal facilities in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1997-12-31

    More than 90% of radioactive waste generated in the United Kingdom is classified as low level and is disposed of in near surface repositories. BNFL owns and operates the principal facility for the disposal of this material at Drigg in West Cumbria. In order to fully optimise the use of the site and effectively manage this `national` resource a full understanding and assessment of the risks associated with the performance of the repository to safely contain the disposed waste must be achieved to support the application for the site authorization for disposal. This paper describes the approaches adopted by BNFL to reviewing these risks by the use of systematic Safety and Engineering Assessments supported in turn by experimental programmes and computations models. (author). 6 refs., 1 tab., 4 figs.

  19. Safety assessment and licensing issues of low level radioactive waste disposal facilities in the United Kingdom

    International Nuclear Information System (INIS)

    Fearnley, I. G.

    1997-01-01

    More than 90% of radioactive waste generated in the United Kingdom is classified as low level and is disposed of in near surface repositories. BNFL owns and operates the principal facility for the disposal of this material at Drigg in West Cumbria. In order to fully optimise the use of the site and effectively manage this 'national' resource a full understanding and assessment of the risks associated with the performance of the repository to safely contain the disposed waste must be achieved to support the application for the site authorization for disposal. This paper describes the approaches adopted by BNFL to reviewing these risks by the use of systematic Safety and Engineering Assessments supported in turn by experimental programmes and computations models. (author). 6 refs., 1 tab., 4 figs

  20. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  1. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  2. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  3. Life cycle assessment of alternative sewage sludge disposal methods; Oekobilanz von Klaerschlammentsorgungsalternativen

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, H. [Institut fuer Energie- und Umweltforschung (ifeu), Heidelberg (Germany)

    1994-10-01

    At present there are three principal options for sewage sludge disposal in use or under discussion: agricultural utilisation - landfilling - cold pretreatment prior to disposal or utilisation (e.g., composting or fermentation) - thermal pretreatment prior to disposal or utilisation (e.g., monocombustion, co-combustion, pyrolysis, gasification). 10% of sewage sludge is currently combusted, 60% is landfilled, and 30% is used for agriculture. The ifeu Institute has carried out several studies which examine and compare the environmental impact of sewage sludge disposal options. [Deutsch] Zur Entsorgung bzw. Verwertung von Klaerschlamm stehen derzeit drei grundsaetzliche Optionen in Anwendung oder werden diskutiert: - Landwirtschaftliche Verwertung - Deponierung - kalte Vorbehandlung vor Deponierung oder Verwertung (z.B. Kompostierung oder Vergaerung) - thermische Vorbehandlung vorn Deponierung oder Verwertung (z.B. Mono- oder Mitverbrennung, Pyrolyse, Vergasung). Verbrannt werden gegenwaertig etwa 10%, 60% deponiert und 30% landwirschaftlich verwertet. Das ifeu-Institut hat in verschiedenen Arbeiten die Umweltauswirkungen von Klaerschlammentsorgungsoptionen untersucht und gegenuebergestellt. (orig./SR)

  4. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  5. Household's willingness to pay for arsenic safe drinking water in Bangladesh.

    Science.gov (United States)

    Khan, Nasreen Islam; Brouwer, Roy; Yang, Hong

    2014-10-01

    This study examines willingness to pay (WTP) in Bangladesh for arsenic (As) safe drinking water across different As-risk zones, applying a double bound discrete choice value elicitation approach. The study aims to provide a robust estimate of the benefits of As safe drinking water supply, which is compared to the results from a similar study published almost 10 years ago using a single bound estimation procedure. Tests show that the double bound valuation design does not suffer from anchoring or incentive incompatibility effects. Health risk awareness levels are high and households are willing to pay on average about 5 percent of their disposable average annual household income for As safe drinking water. Important factors influencing WTP include the bid amount to construct communal deep tubewell for As safe water supply, the risk zone where respondents live, household income, water consumption, awareness of water source contamination, whether household members are affected by As contamination, and whether they already take mitigation measures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cost calculation and financial measures for high-level waste disposal business

    International Nuclear Information System (INIS)

    Sekiguchi, Hiromasa.

    1987-01-01

    A study is made on the costs for disposal of high-level wastes, centering on financial problems involving cost calculation for disposal business and methods and systems for funding the business. The first half of the report is focused on calculation of costs for disposal business. Basic equations are shown to calculate the total costs required for a disposal plant and the costs for disposal of one unit of high-level wastes. A model is proposed to calculate the charges to be paid by electric power companies to the plant for disposal of their wastes. Another equation is derived to calculate the disposal charge per kWh of power generation in a power plant. The second half of the report is focused on financial measures concerning expenses for disposal. A financial basis should be established for the implementation of high-level waste disposal. It is insisted that a reasonable method for estimating the disposal costs should be set up and it should be decided who will pay the expenses. Discussions are made on some methods and systems for funding the disposal business. An additional charge should be included in the electricity bill to be paid by electric power users, or it should be included in tax. (Nogami, K.)

  7. DISPOSAL OF LOW AND INTERMEDIATE LEVEL WASTE IN HUNGARY

    Directory of Open Access Journals (Sweden)

    Bálint Nős

    2012-07-01

    Full Text Available There are two operating facilities for management of low and intermediate level radioactive waste in Hungary. Experience with radioactive waste has a relatively long history and from its legacy some problems are to be solved, like the question of the historical waste in the Radioactive Waste Treatment and Disposal Facility (RWTDF. Beside the legacy problems the current waste arising from the Nuclear Power Plant (NPP has to be dealt with a safe and economically optimized way.

  8. Projection of Environmental Pollutant Emissions From Different Final Waste Disposal Methods Based on Life Cycle Assessment Studies in Qazvin City

    Directory of Open Access Journals (Sweden)

    Javad Torkashvand

    2015-12-01

    Full Text Available In the current study, the life cycle assessment (LCA method was used to expect the emissions of different environmental pollutants through qualitative and quantitative analyses of solid wastes of Qazvin city in different final disposal methods. Therefore, four scenarios with the following properties considering physical analysis of Qazvin’s solid wastes, the current status of solid waste management in Iran, as well as the future of solid waste management of Qazvin were described. In order to detect the quantity of the solid wastes, the volume-weighted analysis was used and random sampling method was used for physical analysis. Of course, regarding the method of LCA, it contains all stages from solid wastes generation to its disposal. However, since the main aim of this study was final disposal stage, the emissions of pollutants of these stages were ignored. Next, considering the mixture of the solid waste, the amount of pollution stemming from each of final disposal methods from other cities having similar conditions was estimated. The findings of the study showed that weight combination of Qazvin solid wastes is entirely similar to that of other cities. Thus, the results of this study can be applied by decision makers around the country. In scenarios 1 and 2, emission of leachate containing high amounts of COD and BOD is high and also the highest content of nitrate, which can contaminate water and soil resulting in high costs for their management. In scenarios 3 and 4, the amounts of gaseous pollutants, particularly CO2, as well as nitrogen oxides are very high. In conclusion, the LCA methods can effectively contribute to the management of municipal solid wastes (MSW to control environmental pollutants with least expenses.

  9. Geology of high-level nuclear waste disposal: an introduction

    International Nuclear Information System (INIS)

    Roxbugh, I.S.

    1987-01-01

    Hazardous waste is produced by the nuclear fuel cycle from mining and milling of uranium ore, refinement and enrichment, reactor use, and during reprocessing of spent fuel. Waste can be classified according to origin, physical state, and levels of radioactivity and radiotoxicity. The method of the long-term waste disposal is based on the degree of the hazard and the length of time (1000 years to millions of years) for the waste to become safe. The International Atomic Energy Agency (IAEA) has classified radioactive waste into five categories (I-V) based on the amount of radioactivity and heat output of the waste. The text is concerned mainly with the two most hazardous categories (I and II). Disposal at various geological sites using proven mining, engineering, and deep drilling techniques has been proposed and studied. An ideal geological repository would have (1) minimum ground water movement, (2) geochemical and mineralogical properties to retard or immobilize the effects of the nuclear waste from reaching the biosphere, (3) thermochemical properties to allow for heat loading without damage, and (4) structural strength for the operational period. Types of geological environments (both undersea and on land) include evaporites, crystalline rocks, and argillaceous deposits. European and North American case histories are described, and there is a glossary and an extensive list of references in this concise review

  10. Hospital Workers' Awareness of Health and Environmental Impacts of Poor Clinical Waste Disposal in the Northwest Region of Cameroon

    DEFF Research Database (Denmark)

    Mochungong, Peter I K; Gulis, Gabriel; Sodemann, Morten

    2010-01-01

    a survey to evaluate hospital workers' awareness of health and environmental impacts of poor clinical waste disposal in Cameroon. We randomly distributed 500 questionnaires to hospital workers in three hospitals in the Northwest Region of Cameroon in April 2008. In addition, we observed collection......Due to the infectious nature of some clinical waste, poor disposal practices have sparked concern regarding the impact on public health and the environment. Lack of sufficient knowledge of the associated risks may be a strong factor contributing to inadequate disposal practices. We conducted......, segregation, transportation, and disposal of clinical waste at the three hospitals. Of 475 total respondents, most lacked sufficient awareness of any environmental or public health impacts of poor clinical waste disposal and had never heard of any policy--national or international--on safe clinical waste...

  11. A new assessment method for demonstrating the sufficiency of the safety assessment and the safety margins of the geological disposal system

    International Nuclear Information System (INIS)

    Ohi, Takao; Kawasaki, Daisuke; Chiba, Tamotsu; Takase, Toshio; Hane, Koji

    2013-01-01

    A new method for demonstrating the sufficiency of the safety assessment and safety margins of the geological disposal system has been developed. The method is based on an existing comprehensive sensitivity analysis method and can systematically identify the successful conditions, under which the dose rate does not exceed specified safety criteria, using analytical solutions for nuclide migration and the results of a statistical analysis. The successful conditions were identified using three major variables. Furthermore, the successful conditions at the level of factors or parameters were obtained using relational equations between the variables and the factors or parameters making up these variables. In this study, the method was applied to the safety assessment of the geological disposal of transuranic waste in Japan. Based on the system response characteristics obtained from analytical solutions and on the successful conditions, the classification of the analytical conditions, the sufficiency of the safety assessment and the safety margins of the disposal system were then demonstrated. A new assessment procedure incorporating this method into the existing safety assessment approach is proposed in this study. Using this procedure, it is possible to conduct a series of safety assessment activities in a logical manner. (author)

  12. Deep geological disposal system development; mechanical structural stability analysis of spent nuclear fuel disposal canister under the internal/external pressure variation

    Energy Technology Data Exchange (ETDEWEB)

    Kwen, Y. J.; Kang, S. W.; Ha, Z. Y. [Hongik University, Seoul (Korea)

    2001-04-01

    This work constitutes a summary of the research and development work made for the design and dimensioning of the canister for nuclear fuel disposal. Since the spent nuclear fuel disposal emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for spent fuel disposal should be securred. Usually this repository is expected to locate at a depth of 500m underground. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for spent nuclear fuel disposal in a deep repository in the crystalline bedrock, which entails an evenly distributed load of hydrostatic pressure from undergroundwater and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables array type of inner baskets and thicknesses of outer shell and lid and bottom are tried to be determined through the mechanical linear structural analysis, thicknesses of outer shell is determined through the nonlinear structural analysis, and the bentonite buffer analysis for the rock movement is conducted through the of nonlinear structural analysis Also the thermal stress effect is computed for the cast iron insert. The canister types studied here are one for PWR fuel and another for CANDU fuel. 23 refs., 60 figs., 23 tabs. (Author)

  13. Safety case development in the Japanese programme for geological disposal of HLW: Evolution in the generic stage

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Ishiguro, Katsuhiko; Takeuchi, Mitsuo; Fujihara, Hiroshi; Takeda, Seietsu

    2014-01-01

    In the Japanese programme for nuclear power generation, the safe management of the resulting radioactive waste, particularly vitrified high-level waste (HLW) from fuel reprocessing, has been a major concern and a focus of R and D since the late 70's. According to the specifications in a report issued by an advisory committee of the Japan Atomic Energy Commission (JAEC, 1997), the Second Progress Report on R and D for the Geological Disposal of HLW (H12 report) (JNC, 2000) was published after two decades of R and D activities and showed that disposal of HLW in Japan is feasible and can be practically implemented at sites which meet certain geological stability requirements. The H12 report supported government decisions that formed the basis of the 'Act on Final Disposal of Specified Radioactive Waste' (Final Disposal Act), which came into force in 2000. The Act specifies deep geological disposal of HLW at depths greater than 300 metres, together with a stepwise site selection process in three stages. Following the Final Disposal Act, the supporting 'Basic Policy for Final Disposal' and the 'Final Disposal Plan' were authorised in the same year. (authors)

  14. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  15. A new procedure for deep sea mining tailings disposal

    OpenAIRE

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal methods which exist in on-land mining and the coastal mining fields, a new tailings disposal procedure, i.e., the submarine–backfill–dam–reuse (SBDR) tailings disposal procedure, is proposed. It com...

  16. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  17. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  18. The Herfa-Neurode hazardous waste repository in bedded salt as an operating model for safe mixed waste disposal

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1991-01-01

    For 18 years, The Herfa-Neurode underground repository has demonstrated the environmentally sound disposal of hazardous waste in a former potash mine. Its principal characteristics make it an excellent analogue to the Waste Isolation Pilot Plant (WIPP). The Environmental Protection Agency has ruled in its first conditional no-migration determination that is reasonably certain that no hazardous constituents of the mixed waste, destined for the WIPP during its test phase, will migrate from the site for up to ten years. Knowledge of and reference to the Herfa-Neurode operating model may substantially improve the no-migration variance petition for the WIPP's disposal phase and thereby expedite its approval. 2 refs., 1 fig., 1 tab

  19. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Alison [USDOE Office of Environmental Management (EM), Washington, DC (United States); Barkley, Michelle [USDOE Office of Environmental Management (EM), Washington, DC (United States); Poppiti, James [USDOE Office of Environmental Management (EM), Washington, DC (United States)

    2017-07-01

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  20. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Moon, Alison; Barkley, Michelle; Poppiti, James

    2017-01-01

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  1. Environmental and ethical aspects of long-lived radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-01-01

    All countries engaged in nuclear production give special attention to the safe disposal of radioactive waste, particularly concerning long-term protection of humans and the environment. Many other countries using radioactive materials for medical, industrial or research purposes only are also concerned by this issue. Practically speaking, all countries are generally interested in keeping abreast of the development of radioactive waste management policies and of underlying technical and non-technical studies. These issues and their influence on the decision-making process were examined at a special workshop of the NEA Radioactive Waste Management Committee. This volume presents the full proceedings of that workshop, including papers and transcribed discussions, which sought to provide a broad basis for an in-depth reflection on long-term disposal issues. (authors). 79 refs., 1 tab

  2. Legal system of nuclear waste disposal. Das System der atomaren Entsorgungsregelung

    Energy Technology Data Exchange (ETDEWEB)

    Dauk, W

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering.

  3. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  4. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  5. The Future: Innovative Technologies for Radioactive Waste Processing and Disposal

    International Nuclear Information System (INIS)

    Bychkov, Alexander V.

    2014-01-01

    Safe, proliferation resistant and economically efficient nuclear fuel cycles that minimize waste generation and environmental impacts are key to sustainable nuclear energy. Innovative approaches and technologies could significantly reduce the radiotoxicity, or the hazard posed by radioactive substances to humans, as well as the waste generated. Decreasing the waste volume, the heat load and the duration that the waste needs to be isolated from the biosphere will greatly simplify waste disposal concepts

  6. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  7. Spent fuel waste disposal: analyses of model uncertainty in the MICADO project

    International Nuclear Information System (INIS)

    Grambow, B.; Ferry, C.; Casas, I.; Bruno, J.; Quinones, J.; Johnson, L.

    2010-01-01

    The objective was to find out whether international research has now provided sufficiently reliable models to assess the corrosion behavior of spent fuel in groundwater and by this to contribute to answering the question whether the highly radioactive used fuel from nuclear reactors can be disposed of safely in a geological repository. Principal project results are described in the paper

  8. Destruction and waste treatment methods used in a chemical agent disposal project. Memorandum report

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.; Fedor, V.; Kinderwater, T.

    1992-10-01

    This report describes the equipment and methods used to thermally decontaminate scrap metal and destroy stockpiles of nerve agents, mustard and lewisite chemical warfare agents. Mustard was destroyed by direct incineration whereas the nerve agents and lewisite were chemically neutralized. The arsenic waste from the lewisite neutralization process was chemically-fixated in concrete for final disposal by landfilling. The scrap metal was incinerated and rendered suitable for recycling into metal feedstock.

  9. Design considerations for sealing the shafts of a nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    Mortazavi, M.H.S.; Chan, H.T.; Radhakrishna, H.S.

    1985-05-01

    The shafts in an underground disposal system, which constitute potential pathways between the disposal vault and the biosphere, should be effectively sealed if the system is to perform as a hydrodynamic and geochemical barrier for the safe containment of nuclear fuel waste. In the design of the shaft backfill, consideration should be given to ensure that the backfill and the backfill/rock interface remain intact. Design-related problems, including critical pathways for the transport or radionuclides, configuration of shaft backfill and its functional requirements, the state of stress in a backfilled shaft with particular emphasis on the arching and load transfer phenomenon are discussed in this report

  10. Seabed disposal of high-level nuclear wastes: an alternative viewpoint

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1985-01-01

    Various comments on a published article on subseabed disposal of nuclear wastes are presented. These include the scale of the proposed operation, the technical problems of canister retrievability, the feasibility of the free-fall penetrometer disposal method, canister lifetime, the possible contravention of the 1972 London Dumping Convention and land-based geological repositories as an alternative method of disposal. (author)

  11. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h"-"1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  12. The legal basis for nuclear waste disposal in Switzerland

    International Nuclear Information System (INIS)

    Egloff, V.

    1981-10-01

    The legal authority for the peaceful use of nuclear energy in Switzerland is laid down in the Federal Act of 1959 on the peaceful uses of atomic energy and on protection against radiation, revised in 1978. With this revision the further development on nuclear energy has thus become dependent on fulfilment of the legal request for proof of safe and final disposal of nuclear wastes. This paper discusses in particular the obligations of nuclear waste producers in this respect. (NEA) [fr

  13. Strategic planning for waste management: Characterization of chemically and radioactively hazardous waste and treatment, storage, and disposal capabilities for diverse and varied multisite operations

    International Nuclear Information System (INIS)

    Jolley, R.L.; Rivera, A.L.; Fox, E.C.; Hyfantis, G.J.; McBrayer, J.F.

    1988-01-01

    Information about current and projected waste generation as well as available treatment, storage, and disposal (TSD) capabilities and needs is crucial for effective, efficient, and safe waste management. This is especially true for large corporations that are responsible for multisite operations involving diverse and complex industrial processes. Such information is necessary not only for day-to-day operations, but also for strategic planning to ensure safe future performance. This paper reports on some methods developed and successfully applied to obtain requisite information and to assist waste management planning at the corporate level in a nationwide system of laboratories and industries. Waste generation and TSD capabilities at selected US Department of Energy (DOE) sites were studied. 1 ref., 2 tabs

  14. Removing Hair Safely

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Removing Hair Safely Share Tweet Linkedin Pin it More sharing ... related to common methods of hair removal. Laser Hair Removal In this method, a laser destroys hair ...

  15. 2005 dossier. ANDRA's researches on the geological disposal of high-level and long-lived radioactive wastes. Results and perspectives

    International Nuclear Information System (INIS)

    2005-06-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in deep geologic formations (argilites and granites). Content: 1 - Research on deep disposal of radioactive waste: general interest task: Legislative framework, ANDRA scientific objectives, Inspections and assessments; 2 - Designing a safe and reversible disposal system: Repository safety, Reversibility: an essential requirement; 3 - Clay Research on a repository in a clay formation, A long research programme, Dossier 2005 Argile; 4 - Meuse/Haute-Marne site clay: Expected properties of the rock formation, Choice of argillite, Meuse/Haute-Marne site, Conclusions from 10 years of research at the Meuse/Haute-Marne site; 5 - Repository installations: Safe and reversible architecture, Disposal of B waste, Disposal of C waste, Possible disposal of spent fuel (CU); 6 - The disposal facility in operation: From waste packages reception to their disposal in cells, Stages of the progressive closure of engineered structures; 7 - Reversible management: Freedom of choice for future generations, Various closure stages; 8 - Long-term evolution of the repository: Apprehending the repository complexity Main evolutions expected, Slow and limited release of radioactive substances; 9 - Repository safety and impact on man: Several evolution scenarios, Normal evolution, Altered evolution; 10 - Granite Research on a repository in a granite formation: A global approach, Scientific co-operations, Dossier 2005 Granite; 11 - Characteristics of French granite formations: What properties are required for a repository?, Different types of granite formations; 12 - Repository installations: Repository design adapted to granite fractures, Clay seals to prevent water flows, Waste disposal packages ensuring long-term leak-tightness, Physical and chemical environment favourable for waste packages, Architecture

  16. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  17. Geochemistry of radioactive waste disposal

    International Nuclear Information System (INIS)

    Bird, G.W.

    1979-01-01

    Safe, permanent disposal of radioactive wastes requires isolation of a number of elements including Se, Tc, I, Sr, Cs, Pd, u, Np, Pu and Cm from the environment for a long period of time. The aquatic chemistry of these elements ranges from simple anionic (I - ,IO 3 - ) and cationic (Cs + ,Sr ++ ) forms to multivalent hydrolyzed complexes which can be anionic or cationic (Pu(OH) 2 + ,Pu(OH) 3 + , PuO 2 (CO 3 )(OH) - ,PuO 2 Cl - ,etc.) depending on the chemical environment. The parameters which can affect repository safety are rate of access and composition of grounwater, stability of the waste container, stability of the waste form, rock-water-waste interactons, and dilution and dispersion as the waste moves away from the repository site. Our overall research program on radioactive waste disposal includes corrosion studies of containment systems hydrothermal stability of various waste forms, and geochemical behaviour of various nuclides including solubilities, redox equilibria, hydrolysis, colloid fomation and transport ion exchange equilibria and adsorption on mineral surfaces and irreversible precipitation reactions. This paper discusses the geochemistry of I, Se, Tc, Cs, Sr and the actinide elements and potential mechanisms by which the mobility could be retarded if necessary

  18. Safe decommissioning of the Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Garlea, C.; Garlea, I.; Kelerman, C.; Rodna, A.

    2002-01-01

    The VVR-S Romania research reactor was operated between 1957-1997, at 2 MW nominal power, for research and radioisotopical production. The detailed decommissioning plan was developed between 1995-1998, in the frame of the International Atomic Energy Agency Technical assistance project ROM/9/017. The proposed strategy agreed by the counterpart as well as international experts was stage 1. In 1997, an independent analysis performed by European Commission experts, in the frame of PHARE project PH04.1/1994 was dedicated to the 'Study of Soviet Design Research Reactors', had consolidated the development of the project emphasizing technical options of safe management for radioactive wastes and VVR-S spent fuel. The paper presents the main technical aspects as well as those of social impact, which lead to the establishment of strategy for safe management of decommissioning. Technical analysis of the VVR-S reactor and associated radwaste facilities (Radioactive Waste Treatment Plant - Magurele and National Repository Baita-Bihor) proved the possibility of the classical method utilization for dismantling of the facility and treatment-conditioning-disposal of the arrised wastes in safe conditions. The decommissioning plan at stage 2 has been developed based on radiological safety assessment, evaluation of radwaste inventory (removed as well as preserved on site), cost analysis and environmental impact. Technical data were provided by the R and D programme including neutron calculations and experiments, radiological characterizing (for facility and its influence area), seismic analysis and environmental balance during the operation and after shut down of the reactor. A special chapter is dedicated to regulatory issues concerning the development of decommissioning under nuclear safety. Based on the Fundamental Norms of Radiological Safety, the Regulatory Body defined the clearance levels and safety criteria for the process. The development of National Norms for the

  19. Storage and final disposal of low and intermediate level radioactive waste materials in Europe

    International Nuclear Information System (INIS)

    Plecas, I.

    1997-01-01

    As of the end of 1995, 18 countries in Europe had electricity-generating nuclear power reactors in operation or under construction. There are currently 217 operating units, with a total capacity of about 165 GW e. In addition, there are 26 units under construction, which would bring the total electrical generating capacity to about 190 GW e.The management of radioactive waste is not a new concept. It has been safely practised for low and intermediate level wastes for almost 40 years. Today, after decades of research, development and industrial applications, it can be stated confidently that safe technological solutions for radioactive waste management exist. However, waste disposal as a whole waste management system is no longer a matter for scientists but requires co-operation with politicians, licensing authorities, industry and ultimately general public. The goal is unique: the protection of human health and the global environment against possible short term and (very) long term effects of radioactive materials. Disposal of waste materials in a repository without the intention of retrieval, whereas storage, as previously discussed, is done with the intention that the waste will be retrieved at a later time. If disposed waste is abandoned, the repository site is not abandoned, but surveillance should not be necessary beyond some expected period of institutional control. (author)

  20. Review of very low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Jinsheng; Guo Minli; Tian Hao; Teng Yanguo

    2005-01-01

    Very low level waste (VLLW) is a new type of radioactive wastes proposed recently. No widely acceptable definition and disposal rules have been established for it. This paper reviews the definition of VLLW in some countries where VLLW was researched early, as well as the disposal policies and methods of VLLW that the IAEA and these countries followed. In addition, the safety assessment programs for VLLW disposal are introduced. It is proved the research of VLLW is urgent and essential in china through the comparison of VLLW disposal between china and these counties. At last, this paper points out the future development of VLLW disposal research in China. (authors)

  1. Progress toward disposal of LLRW in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Charlesworth, D. H.

    1989-08-15

    Low-level radioactive wastes are managed in Canada currently by interim storage methods operated by the major generators of the wastes. The potential benefits of permanent disposal have led Atomic Energy of Canada Limited to undertake a development and demonstration program to make the transition from storage to disposal at its Chalk River Nuclear Laboratories. The first stages of the demonstration are based on an enhanced version of shallow land burial for the least hazardous wastes, and a unique design of a belowground concrete vault. The program includes the development and testing of the auxiliary equipment, processes and procedures necessary to support the disposal system, as well as the performance assessment methods and information needed to assure its safety.

  2. Progress toward disposal of LLRW in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1989-08-01

    Low-level radioactive wastes are managed in Canada currently by interim storage methods operated by the major generators of the wastes. The potential benefits of permanent disposal have led Atomic Energy of Canada Limited to undertake a development and demonstration program to make the transition from storage to disposal at its Chalk River Nuclear Laboratories. The first stages of the demonstration are based on an enhanced version of shallow land burial for the least hazardous wastes, and a unique design of a belowground concrete vault. The program includes the development and testing of the auxiliary equipment, processes and procedures necessary to support the disposal system, as well as the performance assessment methods and information needed to assure its safety

  3. Method of disposing of shut-down nuclear power plants

    International Nuclear Information System (INIS)

    Gaiser, H.

    1984-01-01

    A shut-down atomic power plant or a section thereof, particularly the nuclear reactor, is disposed of by sinking it to below ground level by constructing a caisson with cutting edges from the foundations of said plant or section or by excavating a pit therebelow

  4. Estimation of Exposure Doses for Several Scenarios of the Landfill Disposal of NORM Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Tae; Ko, Nak Yul; Baik, Min Hoon [KAERI, Daejeon (Korea, Republic of); Yoon, Ki Hoon [Korea Institude of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-05-15

    The Act on safety control of radioactive materials around living environment was promulgated to protect citizen's health and environment in 2013. According to this Act, the integrated plan for radiation protection and the necessary safety guides for treatment, reuse, and disposal of NORM wastes have to be made. And NORM wastes have to be disposed in landfill sites by reducing the concentration of radionuclide, and they should not be reutilized. In this study, we estimated exposure doses for several scenarios for NORM (Naturally Occurring Radioactive Materials) waste disposal into a reference landfill site to check the radiological safety. Also, we estimated the amount of NORM wastes for different activity levels of important radionuclides in wastes to be disposed into a landfill site based on the exposure dose limits to support the establishment of technical bases for safety guide. We estimated the amount of NORM wastes for different activity levels of wastes containing U series, Th series, and {sup 40}K based on the exposure dose limits. The results of this study can be used as technical bases to support the establishment of a guide for the safe management of NORM waste disposal.

  5. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  6. Industrial rag cleaning process for the environmentally safe removal of petroleum-based solvents

    International Nuclear Information System (INIS)

    Fierro, J.V.

    1993-01-01

    A process for the cleaning of industrial rags contaminated with environmentally unsafe petroleum-based solvent is described, comprising the step of: (a) placing a load of the industrial rags in a mechanically driven rotary drum; (b) revolving the drum at a high speed sufficient to physically extract liquid petroleum-based solvent contaminate from the industrial rags; (c) routing the extracted petroleum-based solvent contaminate from the rotary drum to a waste solvent collection line for environmentally safe disposal; (d) revolving the rotary drum to cause a tumbling of the industrial rags while maintaining the temperature within the drum at below the flash point of the petroleum-based solvent; (e) intermittently forcing cold air and hot air through the rotary drum to vaporize solvent from the industrial rags; (f) routing the vaporized petroleum-based solvent contaminant from the rotary drum to a condenser wherein the petroleum-based solvent contaminate is condensed and thereafter further routing said condensed solvent to a waste collection line for environmentally safe disposal; and (g) cleaning the industrial rags in the presence of a dry cleaning solvent to remove residual petroleum-based solvents and soil

  7. Development of a Generic Environmental Safety Case for the Disposal of Higher Activity Wastes in the UK

    International Nuclear Information System (INIS)

    Bailey, Lucy; Hicks, Tim

    2016-01-01

    The UK generic ESC demonstrates safe disposal of higher activity wastes, by providing: • A demonstration of how environmental safety can be achieved by a variety of disposal concepts based on systems of multiple engineered and natural barriers, providing multiple safety functions; • An understanding of expected barrier performance and how conditions in a disposal system will evolve, based on research findings presented in RWM’s knowledge base; • An approach to safety assessment based on multiple lines of reasoning, involving both qualitative and quantitative analysis; • Complementary insight modelling and total system modelling used to develop understanding of how different components of the engineered and natural barrier system contribute to safety

  8. The modeling method of diffusion of radio activated materials in clay waste disposals

    International Nuclear Information System (INIS)

    Saberi, Reza; Sepanloo, Kamran; Alinejad, Majid; Mozaffari, Ali

    2017-01-01

    New nuclear power plants are necessary to meet today's and future challenges of energy supply. Nuclear power is the only large-scale energy source that takes full responsibility for all its wastes. Nuclear wastes are particularly hazardous and hard to manage relative to different toxic industrial wastes. Three methods are presented and analysed to model the diffusion of the waste from the waste disposal to the bottom surface. For this purpose three software programmes such as ABAQUS, Matlab coding, Geostudio and ArcGIS have been applied.

  9. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  10. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.1

    International Nuclear Information System (INIS)

    1981-01-01

    A summary is presented of a report in five volumes on possible disposal of radioactive waste in Denmark. The investigation was made by the Danish electric utilities ELKRAFT and ELSAM at the request of the Danish Government. The investigation proved it possible to consider two alternative designs for a disposal facility, one based on the deposition of waste in individual, deep holes, the other on placing the waste in mine galleries. A safety analysis was completed with the Mors dome as example. The purpose of the analysis was to prove whether safe disposal of high-level waste in Denmark was feasible. The utilities concluded that the results of the analysis were satisfactory and the report is now being assessed by the authorities. (BP)

  11. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  12. the ONDRAF/NIRAS safety strategy for the disposal of category B and C wastes

    International Nuclear Information System (INIS)

    Dierckx, A.; Cool, W.; Lalieux, P.; Preter, P. de; Smith, P.

    2008-01-01

    This presentation explained that the ONDRAF/NIRAS approach defines the safety strategy as the iterative process guiding the stepwise development of a geological repository and of its implementation procedures. The overall approach aims at developing a concept and design for the disposal of class B and class C (intermediate-level and high-level) radioactive waste in a geological repository, as well as procedures for repository implementation and measures to assemble evidence, arguments and analyses to show, through assessments, that disposal is both safe and feasible. The disposal concept provides a broad-brush description of the repository and its geological environment, along with describing the functions that they are intended to perform to protect the workforce during construction, operation and closure of the facility, and to protect the public and the environment in the longer term. (authors)

  13. Commercial disposal of High Integrity Containers (HICs) containing EPICOR-II prefilters from Three Mile Island

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Lynch, R.J.; Tyacke, M.J.

    1985-09-01

    This report describes the processes of loading, transporting, and commercially disposing of 45 High Integrity Containers (HICs), each containing an EPICOR-II prefilter. Also described are the improvements that were applied in the disposition of the 45 commercial EPICOR-II prefilters at the Idaho National Engineering Laboratory (INEL), versus those used for the demonstration unit. The significance of this effort was that the commercial disposal campaign involved the first-of-a-kind production use of a reinforced concrete HIC at the US Ecology, Inc. facility in the State of Washington. This allowed for safe disposal of high-specific-activity ion exchange material in EPICOR-II prefilters generated during the cleanup of the Unit-2 Auxiliary and Fuel Handling Building of the Three Mile Island Nuclear Power Station. 26 figs

  14. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  15. Responsibility for safe management of spent nuclear fuel - a legal perspective

    International Nuclear Information System (INIS)

    Cramer, Per; Stendahl, Sara; Erhag, Thomas

    2010-10-01

    This study analyzes, based on Section 10 of the Swedish Nuclear Activities Act, the legal structures surrounding the issue of responsibility for safe management and final disposal of spent nuclear fuel. The purpose is to shed light on the legal aspects that must be considered in the future licensing process and thereby contribute to a better understanding of the importance of the legal structures for the decisions about final disposal that lie ahead of us. The overall question is thus future-oriented: What interpretation is it reasonable to assume will be given to the requirements of the Nuclear Activities Act on 'safe management and final disposal' of the spent nuclear fuel in the coming licensing process? The approach we take to this question is in part traditionally jurisprudential and based on a study of the travaux preparatoires (drafting history) of the Act and other legal sources. In addition, a study of legal practice is included where previous licensing processes are studied. One conclusion that can be drawn from this study is that the Swedish regulation of nuclear activities creates a legal basis for exacting far-reaching industrial responsibility from the reactor owners, but also for an extensive and interventionist state influence over the activities. Of central importance in the model for division of responsibility that was established via the Nuclear Activities Act in 1984 is the RDandD programme (Research, Development and Demonstration). The RDandD programme reflects the political will that the requirement of 'safe management' should be met through research. The statutory forms for how the programme is to be organized reflect an ambition to place great responsibility for execution and financing on the industry, but also, and not least, an ambition to retain instruments of control and influence in the hands of the state. It is difficult to judge whether the hopes of the 1980s regarding the influence of the public over this process have been fulfilled

  16. Storage and disposal of medical cannabis among patients with cancer: Assessing the risk of diversion and unintentional digestion.

    Science.gov (United States)

    Sznitman, Sharon R; Goldberg, Victoria; Sheinman-Yuffe, Hedva; Flechter, Ezequiel; Bar-Sela, Gil

    2016-11-15

    Increasingly more jurisdictions worldwide are legalizing medical cannabis. Major concerns related to such policies are that improper storage and disposal arrangements may lead to the diversion and unintentional digestion of cannabis. These concerns are particularly acute among patients with cancer because they take home medical cannabis for extended periods and have high rates of treatment termination and mortality shortly after the onset of treatment with medical cannabis. Therefore, leftover cannabis is potentially particularly prevalent, and potentially improperly stored, in households of current and deceased patients with cancer. The current study investigated the risk of medical cannabis diversion and unintentional digestion among oncology patients treated with medical cannabis and caregivers of recently deceased patients who were treated with medical cannabis. A total of 123 oncology patients treated with medical cannabis and 37 caregivers of deceased oncology patients treated with medical cannabis were interviewed regarding practices and the information received concerning the safe storage and disposal of medical cannabis, as well as experiences of theft, diversion, and unintentional digestion. High rates of suboptimal storage were reported and caregivers were found to be particularly unlikely to have received information regarding the safe storage and disposal of medical cannabis. Few incidences of theft, diversion, and unintentional digestion were reported. Oncologists and other health care providers have an important, yet unfilled, role to play with regard to educating patients and caregivers of the importance of the safe storage and disposal of medical cannabis. Interventions designed to alert patients treated with medical cannabis and their caregivers to the problem of diversion, along with strategies to limit it, have the potential to limit diversion and unintentional exposure to medical cannabis. Cancer 2016;122:3363-3370. © 2016 American Cancer

  17. A program for evolution from storage to disposal of radioactive wastes at CRNL

    International Nuclear Information System (INIS)

    Dixon, D.F.

    1985-10-01

    This report reviews past and current radioactive waste management practices at the Chalk River Nuclear Laboratories (CRNL) and outlines the proposed future program. For nearly 40 years, radioactive wastes have been generated at CRNL and have also been received there on a continuing basis from hospitals, industries, universities and miscellaneous other sources across Canada. The solid wastes now at CRNL have been either stored or buried and their total consolidated volume is approaching 50 000 m 3 . Much of that waste will require disposal as will the future wastes of similar character. The waste management program plan describes the proposed development of safe disposal facilities which could be built on site to accommodate most, if not all, of the radioactive wastes for which CRNL has responsibility. Three reference disposal concepts, each potentially capable of accepting a portion of the wastes, are described. One of these, the intrusion-resistant shallow land burial (SLB) concept, could be suitable for disposal of most of the CRNL wastes. It is proposed that a prototype SLB facility be designed, constructed and operated on the CRNL property and filled by 1992 to provide a focus for disposal research and development programs and to accumulate experience in all aspects of waste management. 53 refs

  18. An overview of radioactive waste disposal procedures of a nuclear medicine department

    Science.gov (United States)

    Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.

    2011-01-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225

  19. An overview of radioactive waste disposal procedures of a nuclear medicine department

    Directory of Open Access Journals (Sweden)

    R Ravichandran

    2011-01-01

    Full Text Available Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  20. Aspects on the acceptance of waste for disposal in SFR

    International Nuclear Information System (INIS)

    Torstenfelt, Boerje

    2006-01-01

    When licensing a final repository for radioactive waste certain assumptions have to be made concerning the waste. These assumptions cover radionuclide inventory and nonradiological materials and its physical and chemical impact on the waste, the repository and on the environment. Development of new waste treatment systems and waste packages at the waste producer site aim at finding solutions and products that can be stored, transported and disposed of safely and are economically sound. This paper discusses some aspects concerning development of new or modified waste products. It highlights the importance of analysing the whole sequence in treatment, handling and disposing the waste. The process should be to find an optimal solution for the whole system, considering the fact that what is best in one step it not necessary best for the whole system, including the post closure issues. (author)

  1. Evaluation of waste disposal by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1976-02-01

    The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation

  2. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  3. A practical approach to the disposal of highly toxic and long-lived spent nuclear fuel waste between Venus and Earth

    International Nuclear Information System (INIS)

    Ehricke, K.A.

    1983-01-01

    Extraterrestrial disposal, while not the only alternative, nevertheless assures definite and irreversible removal of the most toxic and long-lived waste from the biosphere. The disposal 'site' should lie at minimum safe transfer energy level. Primary candidate is the space between Venus and Earth. The number of propulsion phases should be a minimum, preferably only one. Lunar gravity assist can be helpful to achieve higher inclination of the heliocentric orbit relative to the ecliptic. Solidified spent fuel isotopes and actinides, sufficient to reduce the residual terrestrial waste to the radiation level of natural uranium deposits after 30 to 40 yr instead of 1000 to 1500 yr, is deposited into heliocentric orbits. Transportation systems, requirements, costs and the associated socio-economic benefit potentials of an environmentally more benign and a more vigorous nuclear power generation program are presented. Prior to solidification, an interim storage of 10 yr, following removal from the reactor, may be required. The Shuttle, with one Orbiter modified as Nuclear Waste Carrying Orbiter and an out of near-Earth orbit booster, provides a safe and economic transportation system at disposal mission costs from surface to disposal orbit of less than 0.5 cents/kWhe or <= 0.1 cent/kWhe depending on level of orbital operations. Details are discussed. (author)

  4. Aware, motivated and striving for a 'safe tan': an exploratory mixed-method study of sun-protection during holidays.

    Science.gov (United States)

    Rodrigues, Angela M; Sniehotta, Falko F; Birch-Machin, Mark A; Araujo-Soares, Vera

    2017-01-01

    Background: This article presents an exploratory study, aiming to explore the correspondence between knowledge, motivation and sun-protection practices during holidays. Methods: Seventeen participants aged 21-62 years old, recruited from community settings took part in individual face-to-face semi-structured interviews, completed sun sensitivity questions and an objective assessment of sunscreen use. Holidaymakers' knowledge about sun-safe messages, intentions and perceptions of barriers and facilitators for sun-protection were assessed. Qualitative data were analysed using thematic analysis and integrated with quantitative data, using a pragmatic theory-informed approach to synthesise the findings. Results: Participants were well informed about sun-safe messages, highly motivated to protect themselves from solar UV radiation (UVR) and they perceived themselves as well protected. However, they did not seem to use effective protective practices. Sunscreen was the preferred method of sun-protection, but most participants used considerably less than the recommended amount and significantly overestimated the amount of time they could be safely exposed. Seeking shade was the least used method of sun-protection and covering-up strategies were mostly implemented as a partial protection (i.e. hats or sunglasses). The desire to reach an optimal balance between getting a tan and using sun-protection to avoid sunburns was preeminent. Several additional barriers and facilitators for sun-protection were identified. Conclusions: Holidaymakers might have a false sense of security when it comes to sun-exposure. They are aware of the need to protect from solar UVR, but the motive for a safe tan, the overreliance on sunscreen, the overestimation of the safe sun-exposure time for their skin type and the insufficient application of sunscreen leaves holidaymakers motivated to protect their skin at significant risk of overexposure, sunburn and skin cancer. Public health messages need to

  5. Present situation and perspective of China's geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Zhang, H.

    2005-01-01

    The theme of the conference, 'Political and Technical Progress of Geologic Repositories', has drawn world-wide attention and remains a challenging topic facing the nuclear industry. I am delighted to attend this important conference and have the opportunity to state our views. And I would like to express my gratitude to our host Sweden and IAEA. The development of nuclear science and technology and the peaceful uses of nuclear energy is one of the greatest achievements of the mankind in the 20. century. The development and progress of nuclear technology, from application of fission energy to the exploration of fusion energy, embodies the mankind's expectation to the future. It will be the major energy of final settlement of the issue of global sustainable development. The safe and effective treatment and disposal of nuclear waste are of vital importance to the peaceful uses of nuclear energy and technology. The most dangerous and long-lived waste has to be contained and isolated from the human living environment. Construction of geologic repository in appropriate geological formation for radioactive waste disposal is being accepted as a suitable solution and being studied widely. In the International Conference on Geological Repositories held in Denver, U.S.A., in November 1999, senior governmental representatives from more than 20 countries stated related policies and decisions of their respective countries, which caught world-wide attention. I am convinced that this conference, an event about geologic repository following the Denver conference, will produce positive results for the safe and effective disposal of nuclear waste. Now I would like to take this opportunity to brief you on China's current situation and perspectives of geologic disposal of high-level radioactive waste. (author)

  6. SAFE-PLANE, Stress Analysis of Planar Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Reich, Morris

    1967-01-01

    1 - Description of problem or function: SAFE-PLANE is applied to two- dimensional structures of arbitrary geometry under in-plane loads. Either plane stress or plane strain conditions may be imposed. Mechanical and thermal loads are permitted. 2 - Method of solution: The finite-element method is used to construct a mathematical model by assembling discrete elements. The total potential energy of the structure is determined and subsequently minimized by iteration on components of the displacement field until static equilibrium of the structure is attained. Strains and stresses are computed from the resulting displacements. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodal points = 675. Maximum number of elements = 1350

  7. Reprocessing and disposal of used lubricating and process materials. requirements, problems, and solution methods

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, U D

    1978-02-01

    A discussion covers West German laws concerning used oil disposal and re-refining (316,000 tons were reprocessed in 1976); disposal of sulfuric acid resins or tar and fuller's earth containing mineral oils by solidification (with added lime, alkali ash, clay, etc.) or pyrolysis; disposal of rolling mill scale and sludge containing oil and grease by rolling with a solid carbonaceous material and processing to high-grade sponge iron; and the breaking of oil-water emulsions.

  8. Evaluation of improved chemical waste disposal and recovery methods for N reactor fuel fabrication operations: 1984 annual report

    International Nuclear Information System (INIS)

    Stewart, T.L.; Hartley, J.N.

    1984-12-01

    Pacific Northwest Laboratory personnel identified and evaluated alternative methods for recovery, recycle, and disposal of waste acids produced during N Reactor fuel operations. This work was conducted under a program sponsored by UNC Nuclear Industries, Inc.; the program goals were to reduce the volume of liquid waste by rejuvenating and recycling acid solutions and to generate a residual waste low in nitrates, fluorides, and metals. Disposal methods under consideration included nitric acid reclamation, grout encapsulation of final residual waste, nitrogen fertilizer production, biodenitrifaction, chemical or thermal destruction of NO 3 , and short-term impoundment of liquid NO 3 /SO 4 wastes. Preliminary testing indicated that the most feasible and practicable of these alternatives were (1) nitric acid reclamation followed by grouting of residual waste and (2) nitrogen fertilizer production. This report summarizes the investigations, findings, and recommendations for the 1984 fiscal year

  9. Peristaltic pumps for waste disposal

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1992-09-01

    Laboratory robots are capable of generating large volumes of hazardous liquid wastes when they are used to perform chemical analyses of metal finishing solutions. A robot at Allied-Signal Inc., Kansas City Division, generates 30 gallons of acid waste each month. This waste contains mineral acids, heavy metals, metal fluorides, and other materials. The waste must be contained in special drums that are closed to the atmosphere. The initial disposal method was to have the robot pour the waste into a collecting funnel, which contained a liquid-sensing valve to admit the waste into the drum. Spills were inevitable, splashing occurred, and the special valve often didn't work well. The device also occupied a large amount of premium bench space. Peristaltic pumps are made to handle hazardous liquids quickly and efficiently. A variable-speed pump, equipped with a quick-loading pump head, was mounted below the robot bench near the waste barrel. The pump inlet tube was mounted above the bench within easy reach of the robot, while the outlet tube was connected directly to the barrel. During operation, the robot brings the waste liquid up to the pump inlet tube and activates the pump. When the waste has been removed, the pump stops. The procedure is quick, simple, inexpensive, safe, and reliable

  10. Procedure for the Disposal of Controlled Medication in the School Setting.

    Science.gov (United States)

    Kleinschmidt, Karen A

    2015-09-01

    The disposal of controlled medication left in the school nurse office is problematic for school nurses. Medications are left for a variety of reasons: students transfer out of the district, state, or country; parents and guardians lack transportation to pick up their child's medication; and some families simply forget. The medications of concern are controlled substances, primarily Schedule II medications including Adderall, Concerta, and methylphenidate. Over time, these medications begin to accumulate in a school nurse's office. Schools should establish procedures that address safe disposal of controlled medications as well as liability protection for the school nursing staff. This article will discuss a procedure created for the Christina School District in conjunction with a state board of pharmacy and subsequently shared with other school nurses in the State of Delaware. © 2015 The Author(s).

  11. Method and apparatus for extracting tritium and preparing radioactive waste for disposal

    Science.gov (United States)

    Heung, Leung K.

    1994-01-01

    Apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused.

  12. The modeling method of diffusion of radio activated materials in clay waste disposals

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Reza; Sepanloo, Kamran [NSTRI, Tehran (Iran, Islamic Republic of); Alinejad, Majid [Engineering Research Institute of Natural Hazard, Isfahan (Iran, Islamic Republic of); Mozaffari, Ali [KNT Univ. of Technology, Tehran (Iran, Islamic Republic of)

    2017-02-15

    New nuclear power plants are necessary to meet today's and future challenges of energy supply. Nuclear power is the only large-scale energy source that takes full responsibility for all its wastes. Nuclear wastes are particularly hazardous and hard to manage relative to different toxic industrial wastes. Three methods are presented and analysed to model the diffusion of the waste from the waste disposal to the bottom surface. For this purpose three software programmes such as ABAQUS, Matlab coding, Geostudio and ArcGIS have been applied.

  13. Performance assessment for a hypothetical low-level waste disposal facility

    International Nuclear Information System (INIS)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D.

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study

  14. Performance assessment for a hypothetical low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Rohe, M.J.; Ritter, P.D. [and others

    1997-01-01

    Disposing of low-level waste (LLW) is a concern for many states throughout the United States. A common disposal method is below-grade concrete vaults. Performance assessment analyses make predictions of contaminant release, transport, ingestion, inhalation, or other routes of exposure, and the resulting doses for various disposal methods such as the below-grade concrete vaults. Numerous assumptions are required to simplify the processes associated with the disposal facility to make predictions feasible. In general, these assumptions are made conservatively so as to underestimate the performance of the facility. The objective of this report is to describe the methodology used in conducting a performance assessment for a hypothetical waste facility located in the northeastern United States using real data as much as possible. This report consists of the following: (a) a description of the disposal facility and site, (b) methods used to analyze performance of the facility, (c) the results of the analysis, and (d) the conclusions of this study.

  15. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  16. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  17. The effect of young children's faeces disposal practices on child growth: evidence from 34 countries.

    Science.gov (United States)

    Bauza, Valerie; Guest, Jeremy S

    2017-10-01

    To characterize the relationship between child faeces disposal and child growth in low- and middle-income countries. We analysed caregiver responses and anthropometric data from Demographic and Health Surveys (2005-2014) for 202 614 children under five and 82 949 children under two to examine the association between child faeces disposal and child growth. Child faeces disposal in an improved toilet was associated with reduced stunting for children under five [adjusted prevalence ratio (aPR) = 0.90, 95% confidence interval (CI) 0.89-0.92] and a 0.12 increase in height-for-age z-score (HAZ; 95% CI: 0.10-0.15) among all households. Among households with improved sanitation access, practicing improved child faeces disposal was still associated with a decrease in stunting (aPR = 0.94, 95% CI: 0.91-0.96) and a 0.09 increase in HAZ (95% CI: 0.06-0.13). Improved child faeces disposal was also associated with reductions in underweight and wasting, and an increase in weight-for-age z-score (WAZ), but not an increase in weight-for-height z-score (WHZ). Community coverage level of improved child faeces disposal was also associated with stunting, with 75-100% coverage associated with the greatest reduction in stunting. Child faeces disposal in an unimproved toilet was associated with reductions in underweight and wasting, but not stunting. Improved child faeces disposal practices could achieve greater reductions in child undernutrition than improving toilet access alone. Additionally, the common classification of child faeces disposal as 'safe' regardless of the type of toilet used for disposal may underestimate the benefits of disposal in an improved toilet and overestimate the benefits of disposal in an unimproved toilet. © 2017 John Wiley & Sons Ltd.

  18. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    International Nuclear Information System (INIS)

    Radulesscu, G.; Tang, J.S.

    2000-01-01

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M andO [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M andO 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M andQ 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M andO 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this

  19. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  20. Preparation of Potentially Site Candidate of Radioactive Waste Disposal in Java Island and Its Surrounding Areas

    International Nuclear Information System (INIS)

    Budi Setiawan

    2008-01-01

    Introduction plan of NPP in Indonesia raised public attentions specially for its radwaste management and its disposal activity. In the next 5 year (2007-2011) will be provided some sites for radwaste disposal, both for near surface disposal and geological disposal systems with suitable and safely based on the IAEA standard. To find out a save and suitable location, field investigation programme is needed. Prior entering into investigation programme, preliminary activities are necessary to be arranged such as secondary data collecting: identification of host rock, interest areas, objectives and investigation programmes. Through desktop study with limited references hopefully information of some areas in Java Island with widely enough, thick and exposed into surface of clay deposit indication could be obtained. Objective of the activity is to prepare important supporting data before actualize as a field survey programme. Results showed that secondary data such as rock identification, interest areas, objectives and investigation programmes are found out. (author)

  1. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    CERN Document Server

    International Atomic Energ Agency. Vienna

    2003-01-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a ...

  2. An evaluation on the disposal alternatives for low- and intermediate- level radwaste (II)

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Han, Kyung Won; Hahn, Pil Soo; Lee, Han Soo; Cho, Won Jin; Lee, Jae Dwan; Park, Chung Kyun; Lee, Myung Joo; Choi, Heui Joo; Lee, Youn Myoung

    1988-02-01

    An evaluation on the radioactive waste disposal alternatives for the low-and intermediate level wastes being produced from nuclear power generation and radioisotope application was carried out in view of the radiological safety, socio-political aspects and repository construction economics. Three types of possible alternatives-sample shallow land disposal method, engineered shallow land disposal method and engineered rock cavern disposal method are investigated. The safety assessment consists of radiological dose calculation and nonradiological impacts which is expressed as total number of injuries and fatalities during construction, operation and transportation. The sociopolitical assessment is done in terms of site conditions including easiness for land acquisition, technical feasibility and public acceptance. The economic assessment is performed by cost comparison regarding land acquisition, construction, operation and closure for each alternatives. The evaluation shows that engineered rock cavern disposal method has remarkable favour in safety than others. And also an integrated evaluation using AHP results the engineered rock cavern disposal method as the most favorable option

  3. Packages for radiactive waste disposal

    International Nuclear Information System (INIS)

    Oliveira, R. de.

    1983-01-01

    The development of multi-stage type package for sea disposal of compactable nuclear wastes, is presented. The basic requirements for the project followed the NEA and IAEA recommendations and observations of the solutions adopted by others countries. The packages of preliminary design was analysed, by computer, under several conditions arising out of its nature, as well as their conditions descent, dumping and durability in the deep of sea. The designed pressure equalization mechanic and the effect compacting on the package, by prototypes and specific tests, were studied. These prototypes were also submitted to the transport tests of the 'Regulament for the Safe Transport of Radioactive Materials'. Based on results of the testes and the re-evaluation of the preliminary design, final indications and specifications for excuting the package design, are presented. (M.C.K.) [pt

  4. Phased reversibility under the current French disposal concept

    International Nuclear Information System (INIS)

    Hoorelbeke, J.-M.

    2000-01-01

    The French law of 30 December 1991 and the implementing decrees provide for taking into account the reversibility in the study of geological disposal. This takes place within the framework of a 15 year research program. The research in this field implies both the assessment of technological possibilities for retrieving waste packages safely from the repository and the assessment of the consequence of delaying the closure of the repositories on the long term safety. This research program aims at proposing to the decision makers, by the year 2006, an open range of relevant options with regards to reversibility. (author)

  5. Operational technology for greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Vollmer, A.T.; Hunter, P.H.

    1984-12-01

    Procedures and methods for the design and operation of a greater confinement disposal facility using large-diameter boreholes are discussed. It is assumed that the facility would be located at an operating low-level waste disposal site and that only a small portion of the wastes received at the site would require greater confinement disposal. The document is organized into sections addressing: facility planning process; facility construction; waste loading and handling; radiological safety planning; operations procedures; and engineering cost studies. While primarily written for low-level waste management site operators and managers, a detailed economic assessment section is included that should assist planners in performing cost analyses. Economic assessments for both commercial and US government greater confinement disposal facilities are included. The estimated disposal costs range from $27 to $104 per cubic foot for a commercial facility and from $17 to $60 per cubic foot for a government facility. These costs are based on average site preparation, construction, and waste loading costs for both contact- and remote-handled wastes. 14 figures, 22 tables

  6. Radioactive waste management policy in the UK of best practicable environmental options for waste disposal and storage

    International Nuclear Information System (INIS)

    Johnson, P.D.; Feates, F.S.

    1986-01-01

    The organisations which produce radioactive waste carry the direct responsibility for safe and effective management of the wastes and for meeting the costs. UK Nirex Ltd., the Nuclear Industry Radioactive Waste Executive, has been set up to develop and operate new disposal facilities. Individual producers of radioactive waste undertake research related to the treatment of their own wastes, and UK Nirex Ltd. commissions research related to the disposal facilities it wishes to develop. Whatever new disposal facilities are developed and used, UK Nirex Ltd. will have to show that any proposed facilities comply with the principles for assessment of proposals for the protection of the human environment issued by the Government Authorising Departments in 1984, and which incorporate basic radiological safety requirements

  7. Execution techniques and approach for high level radioactive waste disposal in Japan: Demonstration of geological disposal techniques and implementation approach of HLW project

    International Nuclear Information System (INIS)

    Kawanishi, M.; Komada, H.; Kitayama, K.; Akasaka, H.; Tsuchi, H.

    2001-01-01

    In Japan, the high-level radioactive waste (HLW) disposal project is expected to start fully after establishment of the implementing organization, which is planned around the year 2000 and to dispose the wastes in the 2030s to at latest in the middle of 2040s. Considering each step in the implementation of the HLW disposal project in Japan, this paper discusses the execution procedure for HLW disposal project, such as the selection of candidate/planned disposal sites, the construction and operation of the disposal facility, the closure and decommissioning of facilities, and the institutional control and monitoring after the closure of disposal facility, from a technical viewpoint for the rational execution of the project. Furthermore, we investigate and propose some ideas for the concept of the design of geological disposal facility, the validation and demonstration of the reliability on the disposal techniques and performance assessment methods at a candidate/planned site. Based on these investigation results, we made clear a milestone for the execution of the HLW disposal project in Japan. (author)

  8. Recent Trends In The Methods Of Safety Assessment Of Rad Waste Treatment And Disposal

    International Nuclear Information System (INIS)

    Mahmoud, N.S.

    2012-01-01

    Radioactive waste management system involves a huge variety of processes and activities. This includes; collection and segregation, pretreatment, treatment, conditioning, storage and finally disposal. To assure the safety of the different facility of each step in the waste management system, the operator should prepare a safety analysis report to be assessed by the national regulatory body. The content of the safety analysis report must include all data about the site, facility design, operational phase, waste materials, and safety assessment methodologies. Safety assessment methodologies are iterative processes involving site-specific, prospective modeling evaluations of the pre-operational, operational, and post-closure time in case of disposal facilities. The safety assessment focuses primarily on a decision about compliance with performance objectives, rather than the much more difficult problem of predicting actual radiological impacts on the public at far future times. The recent organization processes of the safety assessment are improved by the ISAM working group from IAEA for waste disposal site. These safety assessment methodologies have been modified within SADRWMS IAEA project for the establishment of safety methodologies for the pre-disposal facilities (treatment and storage facilities) and the disposal site.

  9. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  10. Perspective on methods to calculate a fee for disposal of defense high-level waste in combined (civilian/defense) repositories

    International Nuclear Information System (INIS)

    1986-12-01

    The Department of Energy intends to send the high-level waste from defense operations to combined civilian/defense repositories for disposal. The federal government must pay a fee to cover its fair share of the cost for the disposal system. This report provides an overview perspective on the defense high-level waste (DHLW) quantities and characteristics and on potential alternatives for calculation and payment of the disposal fee. Information on the DHLW expected from government sites includes the number of waste canisters, radioactivity, thermal decay power, mass of defense reactor fuel, and total electrical energy-equivalents. Ranges in quantities are shown where different operating scenarios are being considered. Several different fee determination methods are described and fees for different quantities of waste are estimated. Information is also included on possible payment alternatives, production and shipping schedules, and credits which could be applied to the fee

  11. The Swedish concept for disposal of waste arising from the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Carlsson, J.

    1996-01-01

    The Swedish nuclear power programme consists of 12 reactors producing 50% of the electricity in Sweden. It is stated by law that a waste producer has to make sure a safe handling and disposal of his radioactive waste. SKB is performing necessary activities on behalf of the waste producers. A system is in operation today that will manage all the radioactive waste produced in the country. The system consists of a transportation system, a final repository for operational waste and an interim storage facility for spent fuel. What remains to be built is an encapsulation plant for the spent fuel and a deep repository for final disposal of spent fuel and other long lived waste. All costs for managing and disposal of radioactive waste is paid by the owners of the nuclear power utilities. (author) 9 figs

  12. Methods for estimating on-site ambient air concentrations at disposal sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1987-01-01

    Currently, Gaussian type dispersion modeling and point source approximation are combined to estimate the ambient air concentrations of pollutants dispersed downwind of an areawide emission source, using the approach of virtual point source approximation. This Gaussian dispersion modeling becomes less accurate as the receptor comes closer to the source, and becomes inapplicable for the estimation of on-site ambient air concentrations at disposal sites. Partial differential equations are solved with appropriate boundary conditions for use in estimating the on-site concentrations in the ambient air impacted by emissions from an area source such as land disposal sites. Two variations of solution techniques are presented, and their predictions are compared

  13. Problems and prospects of refuse disposal in nigerian urban centres ...

    African Journals Online (AJOL)

    Refuse disposal is one of the major environmental problems that developing ... The problem of waste management has two parts, that of collection and that of disposal. ... Disposal methods such as dumping sites, incineration, recycling, shipping ... citizenry has roles to play in adopting more suitable solutions to this problem.

  14. Frequency of unsafe storage, use, and disposal practices of opioids among cancer patients presenting to the emergency department.

    Science.gov (United States)

    Silvestre, Julio; Reddy, Akhila; de la Cruz, Maxine; Wu, Jimin; Liu, Diane; Bruera, Eduardo; Todd, Knox H

    2017-12-01

    Approximately 75% of prescription opioid abusers obtain the drug from an acquaintance, which may be a consequence of improper opioid storage, use, disposal, and lack of patient education. We aimed to determine the opioid storage, use, and disposal patterns in patients presenting to the emergency department (ED) of a comprehensive cancer center. We surveyed 113 patients receiving opioids for at least 2 months upon presenting to the ED and collected information regarding opioid use, storage, and disposal. Unsafe storage was defined as storing opioids in plain sight, and unsafe use was defined as sharing or losing opioids. The median age was 53 years, 55% were female, 64% were white, and 86% had advanced cancer. Of those surveyed, 36% stored opioids in plain sight, 53% kept them hidden but unlocked, and only 15% locked their opioids. However, 73% agreed that they would use a lockbox if given one. Patients who reported that others had asked them for their pain medications (p = 0.004) and those who would use a lockbox if given one (p = 0.019) were more likely to keep them locked. Some 13 patients (12%) used opioids unsafely by either sharing (5%) or losing (8%) them. Patients who reported being prescribed more pain pills than required (p = 0.032) were more likely to practice unsafe use. Most (78%) were unaware of proper opioid disposal methods, 6% believed they were prescribed more medication than required, and 67% had unused opioids at home. Only 13% previously received education about safe disposal of opioids. Overall, 77% (87) of patients reported unsafe storage, unsafe use, or possessed unused opioids at home. Many cancer patients presenting to the ED improperly and unsafely store, use, or dispose of opioids, thus highlighting a need to investigate the impact of patient education on such practices.

  15. Waste disposal in the deep ocean: An overview

    International Nuclear Information System (INIS)

    O'Connor, T.P.; Kester, D.R.; Burt, W.V.; Capuzzo, J.M.; Park, P.K.; Duedall, I.W.

    1985-01-01

    Incineration at sea, industrial and sewage waste disposal in the surface mixing zone, and disposal of low-level nuclear wastes, obsolete munitions, and nerve gas onto the seafloor have been the main uses of the deep sea for waste management. In 1981 the wastes disposed of in the deep sea consisted of 48 X 10/sup 4/ t of liquid industrial wastes and 2 X 10/sup 4/ t of sewage sludge by the United States; 1.5 X 10/sup 4/ t (solids) of sewage sludge by the Federal Republic of German; 5300 t of liquid industrial wastes by Denmark; 99 t of solid industrial wastes by the United Kingdom; and 9400 t of low-level radioactive wastes by several European countries. Also in 1981 at-sea incineration of slightly more than 10/sup 5/ t of organic wastes from Belgium, France, the Federal Republic of Germany, the Netherlands, Norway, Sweden, and the United Kingdom was carried out in the North Sea. Unique oceanographic features of the deep sea include its large dilution capacity; the long residence time of deep-sea water (on the order of 10/sup 2/ y); low biological productivity in the surface water of the open ocean (≅50 g m/sup -2/ of carbon per year); the existence of an oxygen minimum zone at several hundred meters deep in the mid-latitudes; and the abyssal-clay regions showing sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay. Any deep-sea waste disposal strategy must take into account oceanic processes and current scientific knowledge in order to attain a safe solution that will last for centuries

  16. Radioactive waste management and disposal strategies in the European community

    International Nuclear Information System (INIS)

    Orlowski, S.

    1986-01-01

    This paper presents an overview of the various radioactive waste management strategies, as they are defined, or even envisaged, in the EC Member States committed to nuclear power. The two main components of these strategies are looked at: content and basic supporting choices; and schedule of implementation. Most EC Countries currently have in common a nuclear history of several decades. Early approaches and local practices are progressively replaced by centralised management systems and by strategies making the best use of many years of research and technological development. All these strategies are aiming at a safe management of all waste types up to, and including, their final disposal. The various management steps are well in hand and very similar in the EC Countries. However, the final step ''disposal'', has been implemented only for low-level waste, and remains to be demonstrated for long lived and high level waste (or spent fuel)

  17. Guidelines for the disposal of dangerous and toxic wastes so as to minimize or prevent environmental and water pollution

    CSIR Research Space (South Africa)

    Rudd, RT

    1978-01-01

    Full Text Available Modern society is producing ever increasing quantities of dangerous and/or toxic wastes, which require safe and effective disposal if they are not to pose a threat to our water supplies or the environment in general....

  18. Air-tight disposing device for solid radioactive waste

    International Nuclear Information System (INIS)

    Aoyama, Saburo.

    1976-01-01

    Object: In a construction for air-tightly connecting radioactive material handling equipment with a radioactive waste container through a vinyl bag, to use a multi-stage expansion tube to introduce the radioactive waste into the waste container in safe and positive manner. Structure: During normal operation in the radioactive material handling equipment, a multi-stage expansion cylinder is extended by operation of a remote shaft to suitably throw the waste in a state with a vinyl bag protected, whereas when the waste is disposed away from the equipment, the multi-stage expansion cylinder is contracted and received into a holder, and the vinyl bag is heated and sealed at a given position and cut, after which a cover of an outer container for disposal is closed and carried out. The vinyl bag remained on the side of the holder after sealed and cut is put into the waste container after a fresh vinyl bag, in which another waste container is received, has been secured to the holder. (Taniai, N.)

  19. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  20. Household Solid Waste Disposal in Public Housing Estates in Awka ...

    African Journals Online (AJOL)

    This paper presents the results of a study on household solid waste disposal in the public housing estates in Awka, Anambra State. The study identified solid waste disposal methods from the households in AHOCOL, Udoka, Iyiagu and Real Housing Estates with an intention to make proposals for better solid waste disposal.