WorldWideScience

Sample records for saccharomyces

  1. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii.

    Science.gov (United States)

    Naumov, Gennadi I; Lee, Ching-Fu; Naumova, Elena S

    2013-01-01

    Genetic hybridization, sequence and karyotypic analyses of natural Saccharomyces yeasts isolated in different regions of Taiwan revealed three biological species: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Intraspecies variability of the D1/D2 and ITS1 rDNA sequences was detected among S. cerevisiae and S. kudriavzevii isolates. According to molecular and genetic analyses, the cosmopolitan species S. cerevisiae and S. kudriavzevii contain local divergent populations in Taiwan, Malaysia and Japan. Six of the seven known Saccharomyces species are documented in East Asia: S. arboricola, S. bayanus, S. cerevisiae, S. kudriavzevii, S. mikatae, and S. paradoxus.

  2. Saccharomyces Boulardii

    Science.gov (United States)

    Saccharomyces boulardii is a yeast, which is a type of fungus. Saccharomyces boulardii was previously identified as a unique species of ... be a strain of Saccharomyces cerevisiae (baker's yeast). Saccharomyces boulardii is used as medicine. Saccharomyces boulardii is most ...

  3. Karyotypes of Saccharomyces sensu lato species

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Nilsson-Tilgren, Torsten; Piskur, Jure

    1999-01-01

    An improved pulsed-field electrophoresis program was developed to study differently sized chromosomes within the genus Saccharomyces. The number of chromosomes in the type strains was shown to be nine in Saccharomyces castellii and Saccharomyces dairenensis, 12 in Saccharomyces servazzii...... and Saccharomyces unisporus, 16 in Saccharomyces exiguus and seven in Saccharomyces kluyveri. The sizes of individual chromosomes were resolved and the approximate genome sizes were determined by the addition of individual chromosomes of the karyotypes. Apparently. the genome of S. exiguus, which is the only...... Saccharomyces sensu late yeast to contain small chromosomes, is larger than that of Saccharomyces cerevisiae. On the other hand, other species exhibited genome sizes that were 10-25% smaller than that of S. cerevisiae. Well-defined karyotypes represent the basis for future genome mapping and sequencing projects...

  4. Ethanol production from Jerusalem artichoke by strains of Saccharomyces cheresiensis and Saccharomyces beticus

    Energy Technology Data Exchange (ETDEWEB)

    Pourrat, H.; Barthomeuf, C.; Regerat, F.; Carnat, A.P.; Carnat, A.

    1983-03-01

    Ethanol production from Jerusalem artichoke which is the most interesting autochtonous material has been studied. Two selected and acclimatised strains of Saccharomyces: Saccharomyces cheresiensis and Saccharomyces beticus were retained. The fermentation conditions, exactly definited, makes it possible to obtain in 4 days a theoric yield.

  5. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  6. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However......, other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...... and/or antimicrobial peptides on the early death of Lachancea thermotolerans during mixed culture fermentations with Saccharomyces cerevisiae. Using a specially designed double compartment fermentation system, we established that both cell-to-cell contact and antimicrobial peptides contribute...

  7. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.

    Science.gov (United States)

    García-Ríos, Estéfani; Querol, Amparo; Guillamón, José Manuel

    2016-09-02

    Temperature is one of the most important parameters to affect the duration and rate of alcoholic fermentation and final wine quality. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae, which was the case of cryotolerant yeasts Saccharomyces uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the proteomic landscape of these cryotolerant species grown at 12°C and 28°C, which we compared with the proteome of S. cerevisiae (poorly adapted at low temperature). Our results showed that the main differences among the proteomic profiling of the three Saccharomyces strains grown at 12°C and 28°C lay in translation, glycolysis and amino acid metabolism. Our data corroborate previous transcriptomic results, which suggest that S. kudriavzevii is better adapted to grow at low temperature as a result of enhanced more efficient translation. Fitter amino acid biosynthetic pathways can also be mechanisms that better explain biomass yield in cryotolerant strains. Yet even at low temperature, S. cerevisiae is the most fermentative competitive species. A higher concentration of glycolytic and alcoholic fermentation enzymes in the S. cerevisiae strain might explain such greater fermentation activity. Temperature is one of the main relevant environmental variables that microorganisms have to cope with and it is also a key factor in some industrial processes that involve microorganisms. However, we are still far from understanding the molecular and physiological mechanisms of adaptation at low temperatures. The results obtained in this study provided a global atlas of the proteome changes triggered by temperature in three different species of the genus Saccharomyces with different degree of cryotolerance. These results would facilitate a better understanding of mechanisms for how yeast could adapt at the low temperature of growth. Copyright © 2016

  8. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition.

    Science.gov (United States)

    Maturano, Yolanda Paola; Assof, Mariela; Fabani, María Paula; Nally, María Cristina; Jofré, Viviana; Rodríguez Assaf, Leticia Anahí; Toro, María Eugenia; Castellanos de Figueroa, Lucía Inés; Vazquez, Fabio

    2015-11-01

    During certain wine fermentation processes, yeasts, and mainly non-Saccharomyces strains, produce and secrete enzymes such as β-glucosidases, proteases, pectinases, xylanases and amylases. The effects of enzyme activity on the aromatic quality of wines during grape juice fermentation, using different co-inoculation strategies of non-Saccharomyces and Saccharomyces cerevisiae yeasts, were assessed in the current study. Three strains with appropriate enological performance and high enzymatic activities, BSc562 (S. cerevisiae), BDv566 (Debaryomyces vanrijiae) and BCs403 (Candida sake), were assayed in pure and mixed Saccharomyces/non-Saccharomyces cultures. β-Glucosidase, pectinase, protease, xylanase and amylase activities were quantified during fermentations. The aromatic profile of pure and mixed cultures was determined at the end of each fermentation. In mixed cultures, non-Saccharomyces species were detected until day 4-5 of the fermentation process, and highest populations were observed in MSD2 (10% S. cerevisiae/90% D. vanrijiae) and MSC1 (1% S. cerevisiae/99% C. sake). According to correlation and multivariate analysis, MSD2 presented the highest concentrations of terpenes and higher alcohols which were associated with pectinase, amylase and xylanase activities. On the other hand, MSC1 high levels of β-glucosidase, proteolytic and xylanolytic activities were correlated to esters and fatty acids. Our study contributes to a better understanding of the effect of enzymatic activities by yeasts on compound transformations that occur during wine fermentation.

  9. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Effect of Saccharomyces cerevisiae fermentation on the ... beetroot, fermentation, Saccharomyces cerevisiae, betalain compounds. ... by Saccharomyces cerevisiae strains (González et al., .... Both red and yellow pigments were influenced during S. .... in beverages such as white wine, grape fruit, and green.

  10. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.

    Science.gov (United States)

    Shekhawat, Kirti; Bauer, Florian F; Setati, Mathabatha E

    2017-03-01

    The sequential or co-inoculation of grape must with non-Saccharomyces yeast species and Saccharomyces cerevisiae wine yeast strains has recently become a common practice in winemaking. The procedure intends to enhance unique aroma and flavor profiles of wine. The extent of the impact of non-Saccharomyces strains depends on their ability to produce biomass and to remain metabolically active for a sufficiently long period. However, mixed-culture wine fermentations tend to become rapidly dominated by S. cerevisiae, reducing or eliminating the non-Saccharomyces yeast contribution. For an efficient application of these yeasts, it is therefore essential to understand the environmental factors that modulate the population dynamics of such ecosystems. Several environmental parameters have been shown to influence population dynamics, but their specific effect remains largely uncharacterized. In this study, the population dynamics in co-fermentations of S. cerevisiae and three non-Saccharomyces yeast species: Torulaspora delbrueckii, Lachancea thermotolerans, and Metschnikowia pulcherrima, was investigated as a function of oxygen availability. In all cases, oxygen availability strongly influenced population dynamics, but clear species-dependent differences were observed. Our data show that L. thermotolerans required the least oxygen, followed by T. delbrueckii and M. pulcherrima. Distinct species-specific chemical volatile profiles correlated in all cases with increased persistence of non-Saccharomyces yeasts, in particular increases in some higher alcohols and medium chain fatty acids. The results highlight the role of oxygen in regulating the succession of yeasts during wine fermentations and suggests that more stringent aeration strategies would be necessary to support the persistence of non-Saccharomyces yeasts in real must fermentations.

  11. Evaluation of different co-inoculation time of non-Saccharomyces/Saccharomyces yeasts in order to obtain reduced ethanol wines

    Directory of Open Access Journals (Sweden)

    Mestre María Victoria

    2016-01-01

    Full Text Available Decreasing ethanol content in wines has become one of the main objectives of winemakers in different areas of the world. The use of selected wine yeasts can be considered one of the most effective and simple tools. The aim of this study was to evaluate the effect of co-inoculation times of selected non-Saccharomyces/Saccharomyces yeasts on the reduction of ethanol levels in wines. Hanseniaspora uvarum BHu9, Starmerella bacillaris BSb55 and Candida membranaefasciens BCm71 were co-inoculate with Saccharomyces cerevisiae under fermentative conditions. Treatments assayed were: pure fermentations of S. cerevisiae BSc203 and non-Saccharomyces yeasts BHu9, BSb55 and BCm71; -co-fermentations: A-BHu9/BSc203; B-BSb55/BSc203 and C-BCm71/BSc203. These co-inoculations were carried out under mixed (simultaneous inoculation, and sequential conditions (non-Saccharomyces yeasts inoculated at initial time and S. cerevisiae at 48, 96 and 144 h. Lower fermentative efficiencies were registered when BHu9 and BSb55 remained pure more time. Conversely, the conversion efficiency was reduced in co-inocula of BCm71/BSc203, when both yeasts interact more time. Metabolites produced during all vinification processes were within acceptable concentration ranges according to the current legislations. Conclusion Time interaction during fermentation processes of non-Saccharomyces and Saccharomyces yeasts showed influence on ethanol production, and this effect would be dependent on the co-inoculated species.

  12. Saccharomyces eubayanus and Saccharomyces arboricola reside in North Island native New Zealand forests.

    Science.gov (United States)

    Gayevskiy, Velimir; Goddard, Matthew R

    2016-04-01

    Saccharomyces is one of the best-studied microbial genera, but our understanding of the global distributions and evolutionary histories of its members is relatively poor. Recent studies have altered our view of Saccharomyces' origin, but a lack of sampling from the vast majority of the world precludes a holistic perspective. We evaluate alternate Gondwanan and Far East Asian hypotheses concerning the origin of these yeasts. Being part of Gondwana, and only colonized by humans in the last ∼1000 years, New Zealand represents a unique environment for testing these ideas. Genotyping and ribosomal sequencing of samples from North Island native forest parks identified a widespread population of Saccharomyces. Whole genome sequencing identified the presence of S. arboricola and S. eubayanus in New Zealand, which is the first report of S. arboricola outside Far East Asia, and also expands S. eubayanus' known distribution to include the Oceanic region. Phylogenomic approaches place the S. arboricola population as significantly diverged from the only other sequenced Chinese isolate but indicate that S. eubayanus might be a recent migrant from South America. These data tend to support the Far East Asian origin of the Saccharomyces, but the history of this group is still far from clear. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Apoptosis - Triggering Effects: UVB-irradiation and Saccharomyces cerevisiae.

    Science.gov (United States)

    Behzadi, Payam; Behzadi, Elham

    2012-12-01

    The pathogenic disturbance of Saccharomyces cerevisiae is known as a rare but invasive nosocomial fungal infection. This survey is focused on the evaluation of apoptosis-triggering effects of UVB-irradiation in Saccharomyces cerevisiae. The well-growth colonies of Saccharomyces cerevisiae on Sabouraud Dextrose Agar (SDA) were irradiated within an interval of 10 minutes by UVB-light (302 nm). Subsequently, the harvested DNA molecules of control and UV-exposed yeast colonies were run through the 1% agarose gel electrophoresis comprising the luminescent dye of ethidium bromide. No unusual patterns including DNA laddering bands or smears were detected. The applied procedure for UV exposure was not effective for inducing apoptosis in Saccharomyces cerevisiae. So, it needs another UV-radiation protocol for inducing apoptosis phenomenon in Saccharomyces cerevisiae.

  14. Saccharomyces species in the Production of Beer

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2016-12-01

    Full Text Available The characteristic flavour and aroma of any beer is, in large part, determined by the yeast strain employed and the wort composition. In addition, properties such as flocculation, wort fermentation ability (including the uptake of wort sugars, amino acids, and peptides, ethanol and osmotic pressure tolerance together with oxygen requirements have a critical impact on fermentation performance. Yeast management between fermentations is also a critical brewing parameter. Brewer’s yeasts are mostly part of the genus Saccharomyces. Ale yeasts belong to the species Saccharomyces cerevisiae and lager yeasts to the species Saccharomyces pastorianus. The latter is an interspecies hybrid between S. cerevisiae and Saccharomyces eubayanus. Brewer’s yeast strains are facultative anaerobes—they are able to grow in the presence or absence of oxygen and this ability supports their property as an important industrial microorganism. This article covers important aspects of Saccharomyces molecular biology, physiology, and metabolism that is involved in wort fermentation and beer production.

  15. The ecology and evolution of non-domesticated Saccharomyces species.

    Science.gov (United States)

    Boynton, Primrose J; Greig, Duncan

    2014-12-01

    Yeast researchers need model systems for ecology and evolution, but the model yeast Saccharomyces cerevisiae is not ideal because its evolution has been affected by domestication. Instead, ecologists and evolutionary biologists are focusing on close relatives of S. cerevisiae, the seven species in the genus Saccharomyces. The best-studied Saccharomyces yeast, after S. cerevisiae, is S. paradoxus, an oak tree resident throughout the northern hemisphere. In addition, several more members of the genus Saccharomyces have recently been discovered. Some Saccharomyces species are only found in nature, while others include both wild and domesticated strains. Comparisons between domesticated and wild yeasts have pinpointed hybridization, introgression and high phenotypic diversity as signatures of domestication. But studies of wild Saccharomyces natural history, biogeography and ecology are only beginning. Much remains to be understood about wild yeasts' ecological interactions and life cycles in nature. We encourage researchers to continue to investigate Saccharomyces yeasts in nature, both to place S. cerevisiae biology into its ecological context and to develop the genus Saccharomyces as a model clade for ecology and evolution. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  16. Effect of Saccharomyces, Non-Saccharomyces Yeasts and Malolactic Fermentation Strategies on Fermentation Kinetics and Flavor of Shiraz Wines

    Directory of Open Access Journals (Sweden)

    Heinrich du Plessis

    2017-12-01

    Full Text Available The use of non-Saccharomyces yeasts to improve complexity and diversify wine style is increasing; however, the interactions between non-Saccharomyces yeasts and lactic acid bacteria (LAB have not received much attention. This study investigated the interactions of seven non-Saccharomyces yeast strains of the genera Candida, Hanseniaspora, Lachancea, Metschnikowia and Torulaspora in combination with S. cerevisiae and three malolactic fermentation (MLF strategies in a Shiraz winemaking trial. Standard oenological parameters, volatile composition and sensory profiles of wines were investigated. Wines produced with non-Saccharomyces yeasts had lower alcohol and glycerol levels than wines produced with S. cerevisiae only. Malolactic fermentation also completed faster in these wines. Wines produced with non-Saccharomyces yeasts differed chemically and sensorially from wines produced with S. cerevisiae only. The Candida zemplinina and the one L. thermotolerans isolate slightly inhibited LAB growth in wines that underwent simultaneous MLF. Malolactic fermentation strategy had a greater impact on sensory profiles than yeast treatment. Both yeast selection and MLF strategy had a significant effect on berry aroma, but MLF strategy also had a significant effect on acid balance and astringency of wines. Winemakers should apply the optimal yeast combination and MLF strategy to ensure fast completion of MLF and improve wine complexity.

  17. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown t...

  18. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Full Length Research Paper. Effect of Saccharomyces cerevisiae fermentation on the ... 2003). Besides, several alcoholic beverages such as wine or liqueurs are obtained from fruit juices fermented by Saccharomyces ..... (2003). Kinetics of pigment release from hairy root cultures of Beta vulgaris under the ...

  19. Experience with Saccharomyces boulardii Probiotic in Oncohaematological Patients.

    Science.gov (United States)

    Sulik-Tyszka, Beata; Snarski, Emilian; Niedźwiedzka, Magda; Augustyniak, Małgorzata; Myhre, Thorvald Nilsen; Kacprzyk, Anna; Swoboda-Kopeć, Ewa; Roszkowska, Marta; Dwilewicz-Trojaczek, Jadwiga; Jędrzejczak, Wiesław Wiktor; Wróblewska, Marta

    2018-06-01

    Very few reports have been published to date on the bloodstream infections caused by Saccharomyces spp. in oncohaematological patients, and there are no guidelines on the use of this probiotic microorganism in this population. We describe the use of probiotic preparation containing Saccharomyces boulardii in a large group of oncohaematological patients. We retrospectively analysed the data from 32,000 patient hospitalisations at the haematological centre during 2011-2013 (including 196 haematopoietic stem cell transplant recipients) in a tertiary care university-affiliated hospital. During the study period, 2270 doses of Saccharomyces boulardii probiotic were administered to the oncohaematological patients. In total, 2816 mycological cultures were performed, out of which 772 (27.4%) were positive, with 52 indicating digestive tract colonisation by Saccharomyces spp., mainly in patients with acute myeloid leukaemia (AML), myelodysplastic syndrome (MDS) or multiple myeloma (MM). While colonised, they were hospitalised for 1683 days and 416 microbiological cultures of their clinical samples were performed. In the studied group of patients, there were six blood cultures positive for fungi; however, they comprised Candida species: two C. glabrata, one C. albicans, one C. krusei, one C. tropicalis and one C. parapsilosis. There was no blood culture positive for Saccharomyces spp. Our study indicates that despite colonisation of many oncohaematological patients with Saccharomyces spp., there were no cases of fungal sepsis caused by this species.

  20. Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia.

    Science.gov (United States)

    Rodríguez, M Eugenia; Pérez-Través, Laura; Sangorrín, Marcela P; Barrio, Eladio; Lopes, Christian A

    2014-09-01

    Mudai is a traditional fermented beverage, made from the seeds of the Araucaria araucana tree by Mapuche communities. The main goal of the present study was to identify and characterize the yeast microbiota responsible of Mudai fermentation as well as from A. araucana seeds and bark from different locations in Northern Patagonia. Only Hanseniaspora uvarum and a commercial bakery strain of Saccharomyces cerevisiae were isolated from Mudai and all Saccharomyces isolates recovered from A. araucana seed and bark samples belonged to the cryotolerant species Saccharomyces eubayanus and Saccharomyces uvarum. These two species were already reported in Nothofagus trees from Patagonia; however, this is the first time that they were isolated from A. araucana, which extends their ecological distribution. The presence of these species in A. araucana seeds and bark samples, led us to postulate a potential role for them as the original yeasts responsible for the elaboration of Mudai before the introduction of commercial S. cerevisiae cultures. The molecular and genetic characterization of the S. uvarum and S. eubayanus isolates and their comparison with European S. uvarum strains and S. eubayanus hybrids (S. bayanus and S. pastorianus), allowed their ecology and evolution us to be examined. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.

    Science.gov (United States)

    Domizio, Paola; Romani, Cristina; Lencioni, Livio; Comitini, Francesca; Gobbi, Mirko; Mannazzu, Ilaria; Ciani, Maurizio

    2011-06-30

    The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Genomic insights into the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Borneman, Anthony R; Pretorius, Isak S

    2015-02-01

    The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical "domestication" of these yeasts for baking, brewing, and winemaking. Copyright © 2015 by the Genetics Society of America.

  3. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    Directory of Open Access Journals (Sweden)

    Marcelo C. Appel-da-Silva

    2017-12-01

    Full Text Available Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administration without the need to replace the central venous line. Keywords: Saccharomyces, Probiotics, Fungemia, Critical illness, Clostridium difficile

  4. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...

  5. Saccharomyces genome database informs human biology

    OpenAIRE

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Hellerstedt, Sage T; Engel, Stacia R; Karra, Kalpana; Weng, Shuai; Sheppard, Travis K; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Cherry, J Michael

    2017-01-01

    Abstract The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and...

  6. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  7. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Directory of Open Access Journals (Sweden)

    Camila M.P.B.S. de Ponzzes-Gomes

    2014-06-01

    Full Text Available The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 x 10(5 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  8. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus

    Science.gov (United States)

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-01-01

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). PMID:26220934

  9. Metabolic Engineering of Probiotic Saccharomyces boulardii

    OpenAIRE

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N.; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E.; Rao, Christopher V.; Jin, Yong-Su

    2016-01-01

    Saccharomyces boulardii is a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae. Therefore, S. boulardii is an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for...

  10. Review of Saccharomyces boulardii as a treatment option in IBD

    DEFF Research Database (Denmark)

    Sivananthan, Kavitha; Petersen, Andreas Munk

    2018-01-01

    CONTEXT: Review of the yeast Saccharomyces boulardii as a treatment option for the inflammatory bowel diseases (IBD) ulcerative colitis and Crohn's disease. OBJECTIVE: IBD is caused by an inappropriate immune response to gut microbiota. Treatment options could therefore be prebiotics, probiotics......, antibiotics and/or fecal transplant. In this review, we have looked at the evidence for the yeast S. boulardii as a treatment option. MATERIAL AND METHODS: Searches in PubMed and the Cochrane Library with the MeSH words 'Saccharomyces boulardii AND IBD', 'Saccharomyces boulardii AND Inflammatory Bowel Disease....... Saccharomyces boulardii is, however, a plausible treatment option in the future, but more placebo-controlled clinical studies on both patients with ulcerative colitis and Crohn's disease are needed....

  11. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus.

    Science.gov (United States)

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-07-27

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Tolerance to winemaking stress conditions of Patagonian strains of Saccharomyces eubayanus and Saccharomyces uvarum.

    Science.gov (United States)

    Origone, A C; Del Mónaco, S M; Ávila, J R; González Flores, M; Rodríguez, M E; Lopes, C A

    2017-08-01

    Evaluating the winemaking stress tolerance of a set of both Saccharomyces eubayanus and Saccharomyces uvarum strains from diverse Patagonian habitats. Yeast strains growth was analysed under increasing ethanol concentrations; all of them were able to grow until 8% v/v ethanol. The effect of different temperature and pH conditions as well as at SO 2 and hexose concentrations was evaluated by means of a central composite experimental design. Only two S. uvarum strains (NPCC 1289 and 1321) were able to grow in most stress conditions. Kinetic parameters analysed (μ max and λ) were statistically affected by temperature, pH and SO 2 , but not influenced by sugar concentration. The obtained growth model was used for predicting optimal growth conditions for both strains: 20°C, 0% w/v SO 2 and pH 4·5. Strains from human-associated environments (chichas) presented the highest diversity in the response to different stress factors. Two S. uvarum strains from chichas demonstrated to be the most tolerant to winemaking conditions. This work evidenced the potential use of two S. uvarum yeast strains as starter cultures in wines fermented at low temperatures. Saccharomyces eubayanus was significantly affected by winemaking stress conditions, limiting its use in this industry. © 2017 The Society for Applied Microbiology.

  13. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2013-05-01

    Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance.

  14. Investigation of autonomous cell cycle oscillation in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Morten Skov

    2007-01-01

    Autonome Oscillationer i kontinuert kultivering af Saccharomyces cerevisiae Udgangspunktet for dette Ph.d. projekt var at søge at forstå, hvad der gør det muligt at opnå multiple statiske tilstande ved kontinuert kultivering af Saccharomyces cerevisiae med glukose som begrænsende substrat...

  15. Saccharomyces boulardii CNCM I-745 in different clinical conditions.

    Science.gov (United States)

    Dinleyici, Ener Cagri; Kara, Ates; Ozen, Metehan; Vandenplas, Yvan

    2014-11-01

    Saccharomyces boulardii is a well-known probiotic worldwide, and there are numerous studies including experimental and clinical trials in children and adults by the use of S. boulardii. The objective of the present report is to provide an update on the evidence for the efficacy of S. boulardii CNCM I-745 in different clinical conditions. Saccharomyces boulardii is one of the best-studied probiotics in acute gastroenteritis (AGE) and is shown to be safe and to reduce the duration of diarrhea and hospitalization by about 1 day. Saccharomyces boulardii is one of the recommended probiotics for AGE in children by European Society of Paediatric Infectious Diseases and European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). Saccharomyces boulardii is also a recommended probiotic for the prevention of antibiotic-associated diarrhea (AAD), and a recent study showed promising results for the treatment of AAD in children. There is insufficient evidence to recommend the long-term use of S. boulardii in patients with irritable bowel syndrome. Although some clinical studies showed positive effects of S. boulardii on inflammation, there is no clinical evidence that S. boulardii is useful in inflammatory bowel disease. Saccharomyces boulardii could be used in patients needing Helicobacter pylori eradication because the S. boulardii improves compliance, decreases the side effects and moderately increases the eradication rate. There are new promising results (improving feeding tolerance, shorten the course of hyperbilirubinemia), but we do still not recommend the routine use of S. boulardii in newborns. Saccharomyces boulardii CNCM I-745 is a good example for the statement that each probiotic needs to be taxonomically characterized and its efficacy and safety should be documented individually in different clinical settings.

  16. Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Langkjær, Rikke Breinhold; Hvidtfeldt, J.

    2002-01-01

    Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii mitochon......Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii...... mitochondrial molecules (mtDNA) carrying point mutations, which confer antibiotic resistance, behaved in genetic crosses as the corresponding point mutants of S. cerevisiae. While S. castellii generated spontaneous petite mutants in a similar way as S. cerevisiae, the petites exhibited a different inheritance...... pattern. In crosses with the wild type strains a majority of S. castellii petites was neutral, and the suppressivity in suppressive petites was never over 50%. The two yeasts also differ in organisation of their mtDNA molecules. The 25,753 bp sequence of S. castellii mtDNA was determined and the coding...

  17. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    OpenAIRE

    Appel-da-Silva, Marcelo C.; Narvaez, Gabriel A.; Perez, Leandro R.R.; Drehmer, Laura; Lewgoy, Jairo

    2017-01-01

    Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administrat...

  18. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  19. [Effects of non-saccharomyces albicans metabolic products on the proliferation of human umbilical vein endothelial cell ECV304].

    Science.gov (United States)

    Chen, Bin; Che, Tuanjie; Bai, Decheng; He, Xiangyi

    2013-04-01

    To evaluate the effects of non-Saccharomyces albicans metabolic products on the cell cycle distribution and proliferation of human umbilical vein endothelial cell ECV304 cells in vitro. The parallel dilution supernatant of Saccharomyces tropicalis, Saccharomyces krusei and Saccharomyces glabrata were prepared, and 1, 4, 16-fold(s) diluted concentration and control group were set up. The line of human umbilical vein endothelial cell ECV304 was cultured in vitro and treated by non-Saccharomyces albicans supernatant. The proliferous effect of ECV304 induced by non-Saccharomyces albicans supernatant after 24, 48, 72 h was detected by the methods of MTT, and the changes of cell density and cycle after 48 h were investigated by inverted microscope and flow cytometry. At the 24th hour, all of the higher concentration (1-fold) of non-Saccharomyces albicans supernatant and the 4-folds diluted Saccharomyces krusei could promote ECV304 proliferation(P Saccharomyces albicans supernatant at 48h and 72th hour, Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant significantly increased proliferation rate of ECV304, while Saccharomyces tropicalis supernatant group showed no significant change no matter which concentration was tested. At 48th hour after adding the non-Saccharomyces albicans supernatant, the ECV304 cells density treated by Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant were significantly higher under the inverted microscope. The G0/G1 population of ECV304 cells decreased while cell proliferation index (PI) increased after incubated with Saccharomyces krusei supernatant and Saccharomyces glabrata supernatant for 48 hours (P Saccharomyces tropicalis group showed no significant change (P > 0.05). The metabolic products of Sacharoymces krusei and Saccharomyces glabrata could induce proliferation of ECV304 cell, which suggests non-Saccharomyces albicans should be undergone more attention clinically in detection and treatment.

  20. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation

    Directory of Open Access Journals (Sweden)

    Aitor Balmaseda

    2018-03-01

    Full Text Available This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB, especially Oenococcus oeni, the main species carrying out the malolactic fermentation (MLF. The emphasis has been placed on non-Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non-Saccharomyces. Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae, but non-Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non-Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non-Saccharomyces. According to the stimulatory effects, the use of non-Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non-Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.

  1. Non-Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation.

    Science.gov (United States)

    Balmaseda, Aitor; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2018-01-01

    This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB), especially Oenococcus oeni , the main species carrying out the malolactic fermentation (MLF). The emphasis has been placed on non- Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non- Saccharomyces . Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae , but non- Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs) produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non- Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non- Saccharomyces . According to the stimulatory effects, the use of non- Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non- Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.

  2. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  3. Review of Saccharomyces boulardii as a treatment option in IBD.

    Science.gov (United States)

    Sivananthan, Kavitha; Petersen, Andreas Munk

    2018-05-17

    Review of the yeast Saccharomyces boulardii as a treatment option for the inflammatory bowel diseases (IBD) ulcerative colitis and Crohn's disease. IBD is caused by an inappropriate immune response to gut microbiota. Treatment options could therefore be prebiotics, probiotics, antibiotics and/or fecal transplant. In this review, we have looked at the evidence for the yeast S. boulardii as a treatment option. Searches in PubMed and the Cochrane Library with the MeSH words 'Saccharomyces boulardii AND IBD', 'Saccharomyces boulardii AND Inflammatory Bowel Disease', 'Saccharomyces boulardii AND ulcerative colitis' and 'Saccharomyces boulardii AND Crohn's disease' gave total a total of 80 articles. After exclusions because of irrelevance, articles in other languages and some articles that were not available, 16 articles were included in this review. Three of the clinical trials showed a positive effect of S. boulardii in IBD patients (two Crohn's disease, one ulcerative colitis), while there was one trial that didn't prove any effect (Crohn's disease). Included Animal trials and cell assays describes different anti-inflammatory mechanisms of S. boulardii supporting a possible effect when treating IBD patients. The number of studies of S. boulardii as treatment for IBD is limited. Furthermore, the existing trials have small populations and short duration. We do not have enough evidence to prove the effect of S. boulardii in IBD. Saccharomyces boulardii is, however, a plausible treatment option in the future, but more placebo-controlled clinical studies on both patients with ulcerative colitis and Crohn's disease are needed.

  4. Distribution patterns of Saccharomyces species in cultural landscapes of Germany.

    Science.gov (United States)

    Brysch-Herzberg, Michael; Seidel, Martin

    2017-08-01

    The distribution patterns of the three Saccharomyces species, Saccharomyces paradoxus, S. uvarum and S. cerevisiae, were investigated by a culture-dependent approach in order to understand better how these species propagate in the cultural landscape of Germany. Saccharomyces paradoxus, the closest relative of S. cerevisiae, is shown to be a true woodland species. It was frequently found in the soil under conifers indicating that S. paradoxus is an autochthonous member of the microbial community in this habitat. Physiological characteristics of the species like the Crabtree effect and high tolerance against ethanol suggest that the species is adapted to regular supply with considerable amounts of sugars. Additionally, a high proportion of the S. paradoxus strains isolated in this study are shown to have the rare ability to ferment melezitose. For these reasons, it is hypothesized that S. paradoxus may be closely associated with the honeydew system in forests. Saccharomyces cerevisiae was rare in most habitats and only exceeded the frequency of S. paradoxus in habitats characterized by modern agricultural mass production of fruit. Both the landscape structure and the agricultural system heavily influence the frequencies of Saccharomyces species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Science.gov (United States)

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  6. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  7. Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    Science.gov (United States)

    Gonçalves, Paula; Valério, Elisabete; Correia, Cláudia; de Almeida, João M. G. C. F.; Sampaio, José Paulo

    2011-01-01

    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces. PMID:21674061

  8. Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance

    Directory of Open Access Journals (Sweden)

    Bijender K. Bajaj

    2010-06-01

    Full Text Available Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.

  9. Thermal resistance of Saccharomyces yeast ascospores in beers.

    Science.gov (United States)

    Milani, Elham A; Gardner, Richard C; Silva, Filipa V M

    2015-08-03

    The industrial production of beer ends with a process of thermal pasteurization. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeasts used to produce top and bottom fermenting beers, respectively. In this research, first the sporulation rate of 12 Saccharomyces strains was studied. Then, the thermal resistance of ascospores of three S. cerevisiae strains (DSMZ 1848, DSMZ 70487, Ethanol Red(®)) and one strain of S. pastorianus (ATCC 9080) was determined in 4% (v/v) ethanol lager beer. D60 °C-values of 11.2, 7.5, 4.6, and 6.0 min and z-values of 11.7, 14.3, 12.4, and 12.7 °C were determined for DSMZ 1848, DSMZ 70487, ATCC 9080, and Ethanol Red(®), respectively. Lastly, experiments with 0 and 7% (v/v) beers were carried out to investigate the effect of ethanol content on the thermal resistance of S. cerevisiae (DSMZ 1848). D55 °C-values of 34.2 and 15.3 min were obtained for 0 and 7% beers, respectively, indicating lower thermal resistance in the more alcoholic beer. These results demonstrate similar spore thermal resistance for different Saccharomyces strains and will assist in the design of appropriate thermal pasteurization conditions for preserving beers with different alcohol contents. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  11. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  12. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    Science.gov (United States)

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  13. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Clinical Efficacy Comparison of Saccharomyces Boulardii and Lactic Acid as Probiotics in Acute Pediatric Diarrhea.

    Science.gov (United States)

    Asmat, Shakila; Shaukat, Fouzia; Asmat, Raheela; Bakhat, Hafiz Faiq Siddique Gul; Asmat, Tauseef M

    2018-03-01

    To compare the efficacy of Saccharomyces boulardii and lactic acid producing probiotics in addition to usual treatment regimen to cure diarrhea among children (6 months to 5 years of age). Randomized controlled trial. Department of Pediatrics, Sheikh Zayed Hospital, Lahore, from February to July 2015. Children suffering from acute diarrhea were orally administered Saccharomyces boulardii and lactic acid producing probiotics for 5 days. The efficacy of administered probiotics was monitored. Patients were given Saccharomyces boulardii and lactic acid producing probiotics randomly to remove the bias. Two hundred patients randomly selected for trials; out of which, 100 were treated with Saccharomyces boulardii while the other 100 were supplemented with lactic acid concomitantly along with conventional diarrhea treatment. Results indicated that Saccharomyces boulardii treatment group has significantly higher efficacy rate (45%) compared to lactic acid producing probiotics (26%). This study concluded that Saccharomyces boulardii has a better efficacy compared to lactic acid and may be adopted as a probiotic of choice.

  15. Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiae × S. kudriavzevii hybrids.

    Science.gov (United States)

    Peris, D; Pérez-Través, L; Belloch, C; Querol, A

    2016-02-01

    Wine fermentation and innovation have focused mostly on Saccharomyces cerevisiae strains. However, recent studies have shown that other Saccharomyces species can also be involved in wine fermentation or are useful for wine bouquet, such as Saccharomyces uvarum and Saccharomyces paradoxus. Many interspecies hybrids have also been isolated from wine fermentation, such as S. cerevisiae × Saccharomyces kudriavzevii hybrids. In this study, we explored the genetic diversity and fermentation performance of Spanish S. kudriavzevii strains, which we compared to other S. kudriavzevii strains. Fermentations of red and white grape musts were performed, and the phenotypic differences between Spanish S. kudriavzevii strains under different temperature conditions were examined. An ANOVA analysis suggested striking similarity between strains for glycerol and ethanol production, although a high diversity of aromatic profiles among fermentations was found. The sources of these phenotypic differences are not well understood and require further investigation. Although the Spanish S. kudriavzevii strains showed desirable properties, particularly must fermentations, the quality of their wines was no better than those produced with a commercial S. cerevisiae. We suggest hybridization or directed evolution as methods to improve and innovate wine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Roy, Kamalika; Lahiri, Susanta; Sinha, P.

    2006-01-01

    Authors have reported preconcentration of 152 Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  17. Use of non-saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing

    Directory of Open Access Journals (Sweden)

    Tataridis Panagiotis

    2013-01-01

    Full Text Available Selected Saccharomyces yeast strains have been used for more than 150 years in brewing and for several decades in winemaking. They are necessary in brewing because of the boiling of the wort, which results in the death of all yeast cells, with the exception of some Belgian style beers (ex. Lambic, where the wort is left to be colonized by indigenous yeast and bacteria from the environment and ferment naturally. In winemaking their use is also pertinent because they provide regular and timely fermentations, inhibit the growth of indigenous spoilage microorganisms and contribute to the desired sensory characters. Even though the use of selected Saccharomyces strains provides better quality assurance in winemaking in comparison to the unknown microbial consortia in the must, it has been debated for a long time now whether the use of selected industrial Saccharomyces strains results in wines with less sensory complexity and “terroir” character. In previous decades, non-Saccharomyces yeasts were mainly considered as spoilage/problematic yeast, since they exhibited low fermentation ability and other negative traits. In the last decades experiments have shown that there are some non-Saccharomyces strains (Candida, Pichia, Kluyveromyces, Torulaspora, etc which, even though they are not able to complete the fermentation they can still be used in sequential inoculation-fermentation with Saccharomyces to increase sensory complexity of the wines. Through fermentation in a laboratory scale, we have observed that the overall effects of selected Torulaspora delbrueckii yeast strains, is highly positive, leading to products with pronounced sensory complexity and floral/fruity aroma in winemaking and brewing.

  18. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Directory of Open Access Journals (Sweden)

    Antoine Gobert

    2017-11-01

    Full Text Available Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available. We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for

  19. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  20. Mitochondrial genome evolution in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Ruan, Jiangxing; Cheng, Jian; Zhang, Tongcun; Jiang, Huifeng

    2017-01-01

    Exploring the evolutionary patterns of mitochondrial genomes is important for our understanding of the Saccharomyces sensu stricto (SSS) group, which is a model system for genomic evolution and ecological analysis. In this study, we first obtained the complete mitochondrial sequences of two important species, Saccharomyces mikatae and Saccharomyces kudriavzevii. We then compared the mitochondrial genomes in the SSS group with those of close relatives, and found that the non-coding regions evolved rapidly, including dramatic expansion of intergenic regions, fast evolution of introns and almost 20-fold higher rearrangement rates than those of the nuclear genomes. However, the coding regions, and especially the protein-coding genes, are more conserved than those in the nuclear genomes of the SSS group. The different evolutionary patterns of coding and non-coding regions in the mitochondrial and nuclear genomes may be related to the origin of the aerobic fermentation lifestyle in this group. Our analysis thus provides novel insights into the evolution of mitochondrial genomes.

  1. PRODUKSI ETANOL DARI TETES TEBU OLEH Saccharomyces cerevisiae PEMBENTUK FLOK (NRRL – Y 265 (Ethanol Production from Cane Molasses by Flocculant Saccharomyces cerevisiae (NRRL – Y 265

    Directory of Open Access Journals (Sweden)

    Agustin Krisna Wardani

    2013-08-01

    Full Text Available The potential use of sugar cane molasses by flocculant Saccharomyces cerevisiae in ethanol production was investigated. In order to minimize the negative effect of calcium on yeast growth, pretreated sugar cane molasses with dilute acid was performed. The influence of process parameters such as sugar concentration and inoculum concentration were evaluated for enhancing bioethanol production. Result showed that maximum ethanol concentration of 8,792% (b/v was obtained at the best condition of inoculum concentration 10% (v/v and sugar concentration 15% (b/v. Based on the experimental data, maximum yield of ethanol production of 65% was obtained. This result demonstrated the potential of molasses as promising biomass resources for ethanol production. Keywords: Ethanol, preteated cane molasses, flocculant Saccharomyces cerevisiae, fermentation   ABSTRAK Efisiensi produksi bioetanol diperoleh melalui ketepatan pemilihan jenis mikroorganisme, bahan baku, dan kontrol proses fermentasi. Alternatif proses untuk meminimalisasi biaya produksi etanol adalah dengan mengeliminasi tahap pemisahan sentrifugasi sel dari produk karena memerlukan biaya instalasi dan biaya perawatan yang tinggi. Proses sentrifugasi merupakan tahapan penting untuk memisahkan sel mikroba dari medium fermentasi pada produksi bioetanol. Untuk meminimalisir biaya produksi akibat proses tersebut digunakan inokulum Saccharomyces cerevisiae pembentuk flok dan tetes tebu sebagai sumber gula. Penelitian ini bertujuan untuk mendapatkan konsentrasi penambahan inokulum Saccharomyces cerevisiae pembentuk flok dan konsentrasi sumber gula dalam tetes tebu yang tepat dalam produksi etanol yang maksimum. Saccharomyces cerevisiae sebanyak 5%, 10%, dan 15% (v/v diinokulasikan pada medium tetes tebu hasil pretreatment dengan kandungan gula 15%, 20%, dan 25% (b/v pada pH 5. Fermentasi dilakukan pada suhu 30°C dan agitasi 100 rpm selama 72 jam. Etanol tertinggi didapat pada kondisi konsentrasi inokulum

  2. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    Directory of Open Access Journals (Sweden)

    Nadejda EFREMOVA

    2013-05-01

    Full Text Available It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein compared with other samples. Maximum increase of catalase activity with 50-60% compared to the reference sample was established in the case of hydrogen peroxide and menadione utilization in optimal concentrations of 15 and 10 mM. This research has been demonstrated the potential benefits of application of hydrogen peroxide and menadione as stimulatory factors of catalase activity in Saccharomyces yeasts.

  3. Genetic and phenotypic characterization of Saccharomyces spp. strains isolated in distillery plants.

    Science.gov (United States)

    Úbeda, Juan F; Chacón-Ocaña, Maria; Díaz-Hellín, Patricia; Ramírez-Pérez, Hector; Briones, Ana

    2016-06-01

    In this study, the biodiversity and some interesting phenotypic properties of Saccharomyces wild yeasts isolated in distilleries, at least 100 years old, located in La Mancha (Spain), were determined. Strains were genetically characterized by RFLP-mtDNA, which confirmed a great genetic biodiversity with 73% of strains with different mtDNA profiles, highlighting the large variability found in sweet and fermented piquette substrata. The predominant species identified was S. cerevisiae, followed by S. paradoxus and S. bayanus Due to the residual sugar-alcohol extraction process using warm water, a great number of thermophilic Saccharomyces strains with a great cell vitality were found to have potential use as starters in distillery plants. Interesting technological properties such as cell vitality and growth rate at different temperatures were studied. The thermal washing process for the extraction of alcohol and reducing sugars of some raw materials contributes to the presence of Saccharomyces strains with technologically interesting properties, especially in terms of vitality and resistance to high temperatures. Due to the fact that fermentation is spontaneous, the yeast biota of these environments, Saccharomyces and non-Saccharomyces, is very varied so these ecological niches are microbial reserves of undoubted biotechnological interest. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production.

    Science.gov (United States)

    Peris, David; Moriarty, Ryan V; Alexander, William G; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K; Libkind, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E; Fay, Justin C; Sato, Trey K; Hittinger, Chris Todd

    2017-01-01

    Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae . Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to

  5. ISOTERMAS DE ADSORÇÃO DE CÁDMIO POR Saccharomyces cerevisiae ISOTHERMS OF CADMIUM ADSORPTION BY Saccharomyces cerevisae

    Directory of Open Access Journals (Sweden)

    Silvana ALBERTINI

    2001-08-01

    Full Text Available Com o objetivo de determinar as isotermas de adsorção de cádmio por Saccharomyces cerevisiae, foram utilizados os sais cloreto e nitrato de cádmio nas concentrações de 5, 10, 20, 40, 60, 80 e 100mg L-1. A biomassa foi produzida a partir de uma cultura "starter"de Saccharomyces cerevisiae IZ 1904. Após o contato de 16h entre o microrganismo e as soluções em estudo, a biomassa foi separada por centrifugação e o teor de cádmio residual foi determinado no sobrenadante por espectrofotometria de absorção atômica. Para os dois sais empregados foi observado um acúmulo crescente de cádmio nas concentrações de 5, 10, 20 e 40mg L-1. Nas concentrações de 60, 80 e 100mg L-1 foi observado que a levedura acumulou teores menores do metal, evidenciando danos na parede celular, nem sempre acompanhados de iguais danos da membrana citoplasmática, tais alterações da parede visualizadas por microscopia eletrônica de varredura.With the objective of determining the isotherms of cadmium the adsorption by Saccharomyces cerevisiae, the chloride and nitrate salts were used in the concentrations of 5, 10, 20, 40, 60, 80, and 100mg L-1. The biomass was produced from a starter culture of Saccharomyces cerevisiae IZ 1904. After a 16h contact between the microrganism and solutions of study the biomass was separated by a centrifuge and the cadmium residue content was determined at the supernatant by atomic adsorption spectrophotometry. For the two salts used a growing accumulation of cadmium was observed at concentrations of 5, 10, 20, and 40mg L-1. In the concentrations of 60, 80 and 100mg L-1 a decreasing of the accumulation of the metal was observed, evidencing damages of the cellular wall, which they're not accompanied always by damages of the citoplasmatic membrane, visualized by scanning electron microscopy.

  6. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur.

    Science.gov (United States)

    Naseeb, Samina; James, Stephen A; Alsammar, Haya; Michaels, Christopher J; Gini, Beatrice; Nueno-Palop, Carmen; Bond, Christopher J; McGhie, Henry; Roberts, Ian N; Delneri, Daniela

    2017-06-01

    Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain.

  7. Study on biosorption of uranium by alginate immobilized saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang Baoe; Xu Weichang; Xie Shuibo; Guo Yangbin

    2005-01-01

    Saccharomyces cerevisiae has great capability of biosorption of uranium. The maxium uptake is 172.4 mg/g according to this study. To adapt to the application of the biomass in the field, the biosorption of uranium by cross-linked and alginate calcium immobilized Saccharomyces cerevisiae is studied. Results indicate the maxium uptake is 185.2 mg/g by formaldehyde cross-linked biomass, and it is 769.2 mg/g by alginate calcium immobilized biomass. (authors)

  8. The adsorption of Sr(II) and Cs(I) ions by irradiated Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yiming Tan; Jundong Feng; Liang Qiu; Zhentian Zhao; Xiaohong Zhang; Haiqian Zhang

    2017-01-01

    Adsorption behavior and mechanism of Sr(II) and Cs(I) in single and binary solutions using irradiated Saccharomyces cerevisiae was investigated. The effects of several environmental factors on Sr(II) and Cs(I) adsorption to irradiated Saccharomyces cerevisiae was determined. The equilibrium experimental data were simulated by different kinetic models and isotherm models. The combined effect of Sr(II) and Cs(I) on Saccharomyces cerevisiae is generally antagonistic. SEM and EDS analyses indicate that crystals formed on the cell surface are precipitate of Sr(II) and Cs(I), respectively. (author)

  9. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Tidemand, L.D.; Winther, J.R.

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter. As a refer......In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter...

  10. The Saccharomyces Genome Database Variant Viewer.

    Science.gov (United States)

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-04

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Repair of UV-damaged incoming plasmid DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Keszenman-Pereyra, David

    1990-01-01

    A whole-cell transformation assay was used for the repair of UV-damaged plasma DNA in highly-transformable haploid strains of Saccharomyces cerevisiae having different repair capabilities. The experiments described demonstrate that three epistasis groups (Friedberg 1988) are involved in the repair of UV-incoming DNA and that the repair processes act less efficiently on incoming DNA than they do on chromosomal DNA. The implications of these findings for UV repair in Saccharomyces cerevisiae are discussed. (author)

  12. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    van der Aa Kuhle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-01-01

    .6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1α decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli...... strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar......The probiotic potential of IS Saccharomyces cerevisiae strains used for production of foods or bevel-ages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Ox-all. Adhesion...

  13. Fatty acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    van Roermund, C. W. T.; Waterham, H. R.; IJlst, L.; Wanders, R. J. A.

    2003-01-01

    Peroxisomes are essential subcellular organelles involved in a variety of metabolic processes. Their importance is underlined by the identification of a large group of inherited diseases in humans in which one or more of the peroxisomal functions are impaired. The yeast Saccharomyces cerevisiae has

  14. Intracellular Signal Triggered by Cholera Toxin in Saccharomyces boulardii and Saccharomyces cerevisiae

    Science.gov (United States)

    Brandão, Rogelio L.; Castro, Ieso M.; Bambirra, Eduardo A.; Amaral, Sheila C.; Fietto, Luciano G.; Tropia, Maria José M.; Neves, Maria José; Dos Santos, Raquel G.; Gomes, Newton C. M.; Nicoli, Jacques R.

    1998-01-01

    As is the case for Saccharomyces boulardii, Saccharomyces cerevisiae W303 protects Fisher rats against cholera toxin (CT). The addition of glucose or dinitrophenol to cells of S. boulardii grown on a nonfermentable carbon source activated trehalase in a manner similar to that observed for S. cerevisiae. The addition of CT to the same cells also resulted in trehalase activation. Experiments performed separately on the A and B subunits of CT showed that both are necessary for activation. Similarly, the addition of CT but not of its separate subunits led to a cyclic AMP (cAMP) signal in both S. boulardii and S. cerevisiae. These data suggest that trehalase stimulation by CT probably occurred through the cAMP-mediated protein phosphorylation cascade. The requirement of CT subunit B for both the cAMP signal and trehalase activation indicates the presence of a specific receptor on the yeasts able to bind to the toxin, a situation similar to that observed for mammalian cells. This hypothesis was reinforced by experiments with 125I-labeled CT showing specific binding of the toxin to yeast cells. The adhesion of CT to a receptor on the yeast surface through the B subunit and internalization of the A subunit (necessary for the cAMP signal and trehalase activation) could be one more mechanism explaining protection against the toxin observed for rats treated with yeasts. PMID:9464394

  15. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    NARCIS (Netherlands)

    Rijswijck, van Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces

  16. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Science.gov (United States)

    2010-04-01

    ...) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  17. Regulation of trehalose metabolism in Saccharomyces

    International Nuclear Information System (INIS)

    Panek, A.D.; Costa-Carvalho, V.L.A.; Ortiz, C.H.D.; Dellamora-Ortiz, G.M.; Paschoalin, V.M.F.; Panek, A.C.

    1984-01-01

    The regulation of trehalose metabolism in Saccharomyces is studied by construction of mutants with specific lesions, cloning of genes involved in the regulation of trehalose synthase and of trehalase, as well as, isolation and purification of enzymes from the various mutants constructed. (M.A.C.) [pt

  18. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    Science.gov (United States)

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  19. Exploring Protein Function Using the Saccharomyces Genome Database.

    Science.gov (United States)

    Wong, Edith D

    2017-01-01

    Elucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs. Despite the large amount of research and biological data about S. cerevisiae, many proteins' functions remain unknown. Here, we explore ways to use the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org ) to predict the function of proteins and gain insight into their roles in various cellular processes.

  20. How did Saccharomyces evolve to become a good brewer?

    Science.gov (United States)

    Piskur, Jure; Rozpedowska, Elzbieta; Polakova, Silvia; Merico, Annamaria; Compagno, Concetta

    2006-04-01

    Brewing and wine production are among the oldest technologies and their products are almost indispensable in our lives. The central biological agents of beer and wine fermentation are yeasts belonging to the genus Saccharomyces, which can accumulate ethanol. Recent advances in comparative genomics and bioinformatics have made it possible to elucidate when and why yeasts produce ethanol in high concentrations, and how this remarkable trait originated and developed during their evolutionary history. Two research groups have shed light on the origin of the genes encoding alcohol dehydrogenase and the process of ethanol accumulation in Saccharomyces cerevisiae.

  1. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    Science.gov (United States)

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  2. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts.

    Science.gov (United States)

    Daenen, L; Saison, D; Sterckx, F; Delvaux, F R; Verachtert, H; Derdelinckx, G

    2008-02-01

    The aim of this study was to select and examine Saccharomyces and Brettanomyces brewing yeasts for hydrolase activity towards glycosidically bound volatile compounds. A screening for glucoside hydrolase activity of 58 brewing yeasts belonging to the genera Saccharomyces and Brettanomyces was performed. The studied Saccharomyces brewing yeasts did not show 1,4-beta-glucosidase activity, but a strain dependent beta-glucanase activity was observed. Some Brettanomyces species did show 1,4-beta-glucosidase activity. The highest constitutive activity was found in Brettanomyces custersii. For the most interesting strains the substrate specificity was studied and their activity was evaluated in fermentation experiments with added hop glycosides. Fermentations with Br. custersii led to the highest release of aglycones. Pronounced exo-beta-glucanase activity in Saccharomyces brewing yeasts leads to a higher release of certain aglycones. Certain Brettanomyces brewing yeasts, however, are more interesting for hydrolysis of glycosidically bound volatiles of hops. The release of flavour active compounds from hop glycosides opens perspectives for the bioflavouring and product diversification of beverages like beer. The release can be enhanced by using Saccharomyces strains with high exo-beta-glucanase activity. Higher activities can be found in Brettanomyces species with beta-glucosidase activity.

  3. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Weinert, Brian Tate; Iesmantavicius, Vytautas; Moustafa, Tarek

    2014-01-01

    Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation...

  4. Non-introgressive genome chimerisation by malsegregation in autodiploidised allotetraploids during meiosis of Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids.

    Science.gov (United States)

    Karanyicz, Edina; Antunovics, Zsuzsa; Kallai, Z; Sipiczki, M

    2017-06-01

    Saccharomyces strains with chimerical genomes consisting of mosaics of the genomes of different species ("natural hybrids") occur quite frequently among industrial and wine strains. The most widely endorsed hypothesis is that the mosaics are introgressions acquired via hybridisation and repeated backcrosses of the hybrids with one of the parental species. However, the interspecies hybrids are sterile, unable to mate with their parents. Here, we show by analysing synthetic Saccharomyces kudriavzevii x Saccharomyces uvarum hybrids that mosaic (chimeric) genomes can arise without introgressive backcrosses. These species are biologically separated by a double sterility barrier (sterility of allodiploids and F1 sterility of allotetraploids). F1 sterility is due to the diploidisation of the tetraploid meiosis resulting in MAT a /MAT α heterozygosity which suppresses mating in the spores. This barrier can occasionally be broken down by malsegregation of autosyndetically paired chromosomes carrying the MAT loci (loss of MAT heterozygosity). Subsequent malsegregation of additional autosyndetically paired chromosomes and occasional allosyndetic interactions chimerise the hybrid genome. Chromosomes are preferentially lost from the S. kudriavzevii subgenome. The uniparental transmission of the mitochondrial DNA to the hybrids indicates that nucleo-mitochondrial interactions might affect the direction of the genomic changes. We propose the name GARMe (Genome AutoReduction in Meiosis) for this process of genome reduction and chimerisation which involves no introgressive backcrossings. It opens a way to transfer genetic information between species and thus to get one step ahead after hybridisation in the production of yeast strains with beneficial combinations of properties of different species.

  5. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  6. Nitrogen Catabolite Repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hofman-Bang, H Jacob Peider

    1999-01-01

    In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Da180, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence S' GATAA 3'. Gln3...

  7. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    Science.gov (United States)

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  8. Produção de álcoois superiores por linhagens de Saccharomyces durante a fermentação alcoólica Production of higher alcohols by Saccharomyces strains during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    L.E. Gutierrez

    1993-12-01

    Full Text Available A produção de álcoois superiores pelas leveduras Saccharomyces cerevisiae M-300-A, Saccharomyces uvarum IZ-1904 e levedura de panificação (Saccharomyces cerevisiae foi estudada em diversas condições de temperatura, concentração de sacarose, pH, fontes de nitrogênio e com inibidor 2-4 dinitrofenol (DNP. Em todas as condições estudadas, a levedura Saccharomyces uvarum IZ-1904 apresentou a menor formação de álcoois superiores enquanto a levedura de panifícação apresentou os teores mais elevados. Com o aumento de temperatura e da concentração de sacarose ocorreu maior formação de álcool isoamílico pelas leveduras estudadas. Em pH 4,5 ocorreu menor produção de álcoois superiores do que em pH 3,0. Na presença do inibidor DNP ocorreu significativa redução (pThe production of higher alcohols by Saccharomyces cerevisiae M-300-A, Saccharomyces uvarum IZ-1904 and baker's yeast (5. cerevisiae was studied under several temperature conditions, sucrose level, pH, nitrogen sources and with 2-4 dinitrophenol (DNP. The yeast IZ-1904 showed lower production of higher alcohols than other yeasts in all conditions studied. With the increase of temperature and higher level of sucrose an increase of isoamyl alcohol production was observed. A lower formation of higher alcohols was observed at pH 4.5 than at pH 3.0. With the addition of DNP occurred a significant reduction in isoamyl alcohol content. The yeasts did not show the sanie production of higher alcohols in relation to urea and ammonium sulfate.

  9. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    Science.gov (United States)

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  10. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae.

    OpenAIRE

    Enyenihi, Akon H; Saunders, William S

    2003-01-01

    We have used a single-gene deletion mutant bank to identify the genes required for meiosis and sporulation among 4323 nonessential Saccharomyces cerevisiae annotated open reading frames (ORFs). Three hundred thirty-four sporulation-essential genes were identified, including 78 novel ORFs and 115 known genes without previously described sporulation defects in the comprehensive Saccharomyces Genome (SGD) or Yeast Proteome (YPD) phenotype databases. We have further divided the uncharacterized sp...

  11. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  12. Impact of adding Saccharomyces strains on fermentation, aerobic stability, nutritive value, and select lactobacilli populations in corn silage.

    Science.gov (United States)

    Duniere, L; Jin, L; Smiley, B; Qi, M; Rutherford, W; Wang, Y; McAllister, T

    2015-05-01

    Bacterial inoculants can improve the conservation and nutritional quality of silages. Inclusion of the yeast Saccharomyces in the diet of dairy cattle has also been reported to be beneficial. The present study assessed the ability of silage to be used as a means of delivering Saccharomyces strains to ruminants. Two strains of Saccharomyces cerevisiae (strain 1 and 3)and 1 strain of Saccharomyces paradoxus (strain 2) were inoculated (10(3) cfu/g) individually onto corn forage that was ensiled in mini silos for 90 d. Fermentation characteristics, aerobic stability, and nutritive value of silages were determined and real-time quantitative PCR (RT-qPCR) was used to quantify S. cerevisiae, S.paradoxus, total Saccharomyces, fungal, and bacterial populations. Fermentation characteristics of silage inoculated with S1 were similar to control silage. Although strain 3 inoculation increased ash and decreased OM contents of silage (P = 0.017), no differences were observed in nutrient composition or fermentation profiles after 90 d of ensiling. Inoculation with Saccharomyces had no detrimental effect on the aerobic stability of silage. In vitro DM disappearance, gas production, and microbial protein synthesis were not affected by yeast inoculation.Saccharomyces strain 1 was quantified throughout ensiling, whereas strain 2 was detected only immediately after inoculation. Saccharomyces cerevisiae strain 3 was quantified until d 7 and detectable 90 d after ensiling. All inoculants were detected and quantified during aerobic exposure. Inoculation with Saccharomyces did not alter lactobacilli populations. Saccharomycetales were detected by RT-qPCR throughout ensiling in all silages. Both S. cerevisiae and S. paradoxus populations increased during aerobic exposure, demonstrating that the density of these yeast strains would increase between the time that silage was removed from storage and the time it was fed.

  13. Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cherlys Infante J.

    2014-06-01

    Full Text Available Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4% as compared to mercury and nickel (69.7 and 47.8% respectively. When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.

  14. New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide.

    Science.gov (United States)

    Chasseriaud, Laura; Coulon, Joana; Marullo, Philippe; Albertin, Warren; Bely, Marina

    2018-04-01

    Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO 2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO 2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO 2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.

  15. Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts.

    Science.gov (United States)

    Sadoudi, Mohand; Tourdot-Maréchal, Raphaëlle; Rousseaux, Sandrine; Steyer, Damien; Gallardo-Chacón, Joan-Josep; Ballester, Jordi; Vichi, Stefania; Guérin-Schneider, Rémi; Caixach, Josep; Alexandre, Hervé

    2012-12-01

    There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Characterisation of Saccharomyces cerevisiae hybrids selected for ...

    African Journals Online (AJOL)

    Wine yeasts (Saccharomyces cerevisiae) vary in their ability to develop the full aroma potential of Sauvignon blanc wine due to an inability to release volatile thiols. Subsequently, the use of 'thiolreleasing' wine yeasts (TRWY) has increased in popularity. However, anecdotal evidence suggests that some commercially ...

  17. Hybridization of Palm Wine Yeasts ( Saccharomyces Cerevisiae ...

    African Journals Online (AJOL)

    Haploid auxotrophic strains of Saccharomyces cerevisiae were selected from palm wine and propagated by protoplast fusion with Brewers yeast. Fusion resulted in an increase in both ethanol production and tolerance against exogenous ethanol. Mean fusion frequencies obtained for a mating types ranged between 8 x ...

  18. Incorporating Protein Biosynthesis into the Saccharomyces cerevisiae Genome-scale Metabolic Model

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto

    Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been construc......Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been...

  19. Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts

    DEFF Research Database (Denmark)

    Jespersen, Lene; Kühle, Alis Van der Aa; Petersen, Kamilla M.

    2000-01-01

    -amplified intergenic transcribed spacer (ITS) regions. Chromosome length polymorphism (CLP) was evident among the Saccharomyces brewing contaminants with chromosome profiles typical of Saccharomyces sensu stricto. Based upon cluster analysis of their chromosome profiles the majority of the brewing contaminants could...... be grouped as either S. cerevisiae or S. pastorianus/S. bayanus. Further, the technique was able to differentiate between almost all brewing contaminants and to separate them from any specific lager brewing yeast. The diversity of the Saccharomyces brewing contaminants clearly demonstrated by their CLP...... in the SaccharomYces brewing contaminants indicate their adaptation to a maltose-enriched environment....

  20. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis.

    Science.gov (United States)

    Silveira, Marcelle Moura; Conceição, Fabricio Rochedo; Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Da Cunha, Carlos Eduardo Pouey; Conrad, Neida Lucia; Oliveira, Patrícia Diaz de; Hartwig, Daiane Drawanz; De Leon, Priscila Marques Moura; Moreira, Ângela Nunes

    2017-02-01

    Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-β were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (PSaccharomyces boulardii. The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.

  1. Saccharomyces cerevisiae metabolism in ecological context

    OpenAIRE

    Jouhten, Paula; Ponomarova, Olga; González García, Ramón; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype?metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype?phenotype relations may originate in the evolutionarily shaped cellular operating principles ...

  2. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    Science.gov (United States)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  3. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    OpenAIRE

    Rijswijck, van, Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces pastorianus. Recently, there is an increasing interest in unravelling features of non-conventional yeast species for beer innovation. In this thesis, features of yeast isolates belonging to the species: Cyberlindnera fabianii, Pichi...

  4. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  5. Biocuration at the Saccharomyces genome database.

    Science.gov (United States)

    Skrzypek, Marek S; Nash, Robert S

    2015-08-01

    Saccharomyces Genome Database is an online resource dedicated to managing information about the biology and genetics of the model organism, yeast (Saccharomyces cerevisiae). This information is derived primarily from scientific publications through a process of human curation that involves manual extraction of data and their organization into a comprehensive system of knowledge. This system provides a foundation for further analysis of experimental data coming from research on yeast as well as other organisms. In this review we will demonstrate how biocuration and biocurators add a key component, the biological context, to our understanding of how genes, proteins, genomes and cells function and interact. We will explain the role biocurators play in sifting through the wealth of biological data to incorporate and connect key information. We will also discuss the many ways we assist researchers with their various research needs. We hope to convince the reader that manual curation is vital in converting the flood of data into organized and interconnected knowledge, and that biocurators play an essential role in the integration of scientific information into a coherent model of the cell. © 2015 Wiley Periodicals, Inc.

  6. Novel feeding strategies for Saccharomyces cerevisiae DS2155 ...

    African Journals Online (AJOL)

    Administrator

    2007-05-02

    May 2, 2007 ... processes. The software also ensured the updating of the feed flow rate every 5 min for 24 h. The ... But, the exact location and amplitude ..... glucose effect in the Yeast Saccharomyces uvarum: involvement of short, and long ...

  7. Adaption of Saccharomyces cerevisiae expressing a heterologous protein

    DEFF Research Database (Denmark)

    Krogh, Astrid Mørkeberg; Beck, Vibe; Højlund Christensen, Lars

    2008-01-01

    Production of the heterologous protein, bovine aprotinin, in Saccharomyces cerevisiae was shown to affect the metabolism of the host cell to various extent depending on the strain genotype. Strains with different genotypes, industrial and laboroatory, respectively, were investigated. The maximal...

  8. Effect of Saccharomyces cerevisiae fermentation on the colorants of ...

    African Journals Online (AJOL)

    Effect of Saccharomyces cerevisiae fermentation on the colorants of heated red beetroot extracts. Hayet Ben Haj Koubaier, Ismahen Essaidi, Ahmed Snoussi, Slim Zgoulli, Mohamed Moncef Chaabouni, Phillipe Thonart, Nabiha Bouzouita ...

  9. Content of endogenous thiols and radioresistance of gemmating cells of Saccharomyces ellipsoideus and Saccharomyces cerevisiale yeasts

    International Nuclear Information System (INIS)

    Simonyan, N.V.; Avakyan, Ts.M.; Dzhanpoladyan, N.L.; Stepanyan, L.G.

    1983-01-01

    It has been shown that gemmating cells of ''wild type'' yeasts are more radioresistant and contain more endogenous thiols, than resting cells. Gemmating cells of Saccharomyces cerevisial yeasts, carrying the mutation rad 51, as to radioresistance and content of SH groups do not differ from resting cells. The results obtained testify to a connec-- tion between increased radioresistance of the yeast gemmating cells and increased content of endogenous thiols in them

  10. Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth.

    Science.gov (United States)

    Aslan, Abdullah; Can, Muhammed İsmail; Boydak, Didem

    2014-01-01

    Pomegranate juice has a number of positive effects on both human and animal subjects. Four groups were used in this study. i: Control group, ii: H2O2 group, iii: Pomegranate juice (PJ) group and iv: PJ + H2O2 group. Following the sterilization method for pomegranate juice (10%) and H2O2 (6% v/v), Saccharomyces cerevisiae cultures were added and the cultivation incubated at 35°C for 72 hours. Fatty acids and vitamin concentrations were measured using HPLC and GC and the total protein bands profile were determined by SDS-PAGE. According to our results statistically significant differences have been determined among the study groups in terms of fatty acids and vitamin (pPomegranate juice increased vitamins, fatty acids and total protein expression in Saccharomyces cerevisiae in comparison with the control. Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development.

  11. Ferrofluid modified Saccharomyces cerevisiae cells for biocatalysis

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Maděrová, Zdeňka; Šafařík, Ivo

    2009-01-01

    Roč. 42, - (2009), s. 521-524 ISSN 0963-9969 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk(CZ) OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : Saccharomyces cerevisiae * magnetic fluid * hydrogen peroxide Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.414, year: 2009

  12. Substrate Channelling and Energetics of Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Data collected during the high-cell-density cultivation of Saccharomyces cerevisiae DSM 2155 on glucose in a simulated five-phase feeding strategy of fed-batch process, executed on the Universal BIoprocess CONtrol (UBICON) system using 150L bioreactor over a period of 24h have been analysed. The consistency of the ...

  13. High-rate evolution of Saccharomyces sensu lato chromosomes

    DEFF Research Database (Denmark)

    Spirek, M.; Yang, J.; Groth, C.

    2003-01-01

    Forty isolates belonging to the Saccharomyces sensu lato complex were analyzed for one nuclear and two mitochondrial sequences, and for their karyotypes. These data are useful for description and definition of yeast species based on the phylogenetic species concept. The deduced phylogenetic...

  14. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America.

    Science.gov (United States)

    Charron, Guillaume; Leducq, Jean-Baptiste; Bertin, Chloé; Dubé, Alexandre K; Landry, Christian R

    2014-03-01

    We examined the northern limit of Saccharomyces cerevisiae and Saccharomyces paradoxus in northeast America. We collected 876 natural samples at 29 sites and applied enrichment methods for the isolation of mesophilic yeasts. We uncovered a large diversity of yeasts, in some cases, associated with specific substrates. Sequencing of the ITS1, 5.8S and ITS2 loci allowed to assign 226 yeast strains at the species level, including 41 S. paradoxus strains. Our intensive sampling suggests that if present, S. cerevisiae is rare at these northern latitudes. Our sampling efforts spread across several months of the year revealed that successful sampling increases throughout the summer and diminishes significantly at the beginning of the fall. The data obtained on the ecological context of yeasts corroborate what was previously reported on Pichiaceae, Saccharomycodaceae, Debaryomycetaceae and Phaffomycetaceae yeast families. We identified 24 yeast isolates that could not be assigned to any known species and that may be of taxonomic, medical, or biotechnological importance. Our study reports new data on the taxonomic diversity of yeasts and new resources for studying the evolution and ecology of S. paradoxus. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots.

    Science.gov (United States)

    Nally, M C; Pesce, V M; Maturano, Y P; Rodriguez Assaf, L A; Toro, M E; Castellanos de Figueroa, L I; Vazquez, F

    2015-07-02

    The aim of this study was to determine the putative modes of action of 59 viticultural yeasts (31 Saccharomyces and 28 non-Saccharomyces) that inhibited fungi isolated from sour and grey rot in grapes. Inhibition of fungal mycelial growth by metabolites, enzyme activities (laminarinases, chitinases), antifungal volatiles, competition for nutrients (siderophores, Niche Overlap Index (NOI)), inhibition of fungal spore germination and decreased germinal tube length and induction of resistance were assayed. Biofungicide yeasts were classified into "antifungal patterns", according to their mechanisms of action. Thirty isolates presented at least two of the mechanisms assayed. We propose that inhibition of fungal mycelial growth by metabolites, laminarinases, competition for nutrients, inhibition of fungal spore germination and decreased germinal tube length, and antifungal volatiles by Saccharomyces and non-Saccharomyces viticultural yeasts is used as putative biocontrol mechanisms against phytopathogenic fungi. Twenty-four different antifungal patterns were identified. Siderophore production (N)and a combination of siderophore production and NOI>0.92 (M)were the most frequent antifungal patterns observed in the biofungicide yeasts assayed. Elucidation of these mechanisms could be useful for optimization of an inoculum formulation, resulting in a more consistent control of grey and sour rot with Saccharomyces and non-Saccharomyces biocontrol yeasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Species Identification and Virulence Attributes of Saccharomyces boulardii (nom. inval.)

    Science.gov (United States)

    McCullough, Michael J.; Clemons, Karl V.; McCusker, John H.; Stevens, David A.

    1998-01-01

    Saccharomyces boulardii (nom. inval.) has been used for the treatment of several types of diarrhea. Recent studies have confirmed that S. boulardii is effective in the treatment of diarrhea, in particular chronic or recurrent diarrhea, and furthermore that it is a safe and well-tolerated treatment. The aim of the present study was to identify strains of S. boulardii to the species level and assess their virulence in established murine models. Three strains of S. boulardii were obtained from commercially available products in France and Italy. The three S. boulardii strains did not form spores upon repeated testing. Therefore, classical methods used for the identification of Saccharomyces spp. could not be undertaken. Typing by using the restriction fragment length polymorphisms (RFLPs) of the PCR-amplified intergenic transcribed spacer regions (including the 5.8S ribosomal DNA) showed that the three isolates of S. boulardii were not separable from authentic isolates of Saccharomyces cerevisiae with any of the 10 restriction endonucleases assessed, whereas 9 of the 10 recognized species of Saccharomyces could be differentiated. RFLP analysis of cellular DNA with EcoRI showed that all three strains of S. boulardii had identical patterns and were similar to other authentic S. cerevisiae isolates tested. Therefore, the commercial strains of S. boulardii available to us cannot be genotypically distinguished from S. cerevisiae. Two S. boulardii strains were tested in CD-1 and DBA/2N mouse models of systemic disease and showed intermediate virulence compared with virulent and avirulent strains of S. cerevisiae. The results of the present study show that these S. boulardii strains are asporogenous strains of the species S. cerevisiae, not representatives of a distinct and separate species, and possess moderate virulence in murine models of systemic infection. Therefore, caution should be advised in the clinical use of these strains in immunocompromised patients until

  17. Excision repair and mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kilbey, Brian

    1987-01-01

    This and succeeding letters discuss the James and Kilbey (1977 and 1978) model for the initiation of u.v. mutagenesis in Saccharomyces cerevisiae and its application to include a number of chemical mutagens. The Baranowska et al (1987) results indicating the role of DNA replication, the differing mechanisms in Escherichia coli, are all discussed. (UK)

  18. The efficiency of functional mitochondrial replacement in Saccharomyces species has directional character

    DEFF Research Database (Denmark)

    Sulo, P.; Spirek, M.; Soltesova, A.

    2003-01-01

    into mutants devoid of mitochondrial DNA (rho(0)). Recently we have reported that the mitochondria transferred from Saccharomyces paradoxus restored partially the respiration in Saccharomyces cerevisiae rho(0) mutants. Here we present evidence that the S. cerevisiae mitochondria completely salvage from...... respiration deficiency, not only in conspecific isolates but also in S. paradoxus. The respiratory capacity in less-related species can be recovered exclusively in the presence of S. cerevisiae chromosomes. The efficiency of the re-established oxidative phosphorylation did not rely on the presence of introns...

  19. Anti-Oxidant effects of pomegranate juice on Saccharomyces ...

    African Journals Online (AJOL)

    Conclusion: Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development. Key words: Pomegranate juice, SDS-PAGE, fatty acid, vitamin.

  20. Potential application of Saccharomyces cerevisiae strains for the ...

    African Journals Online (AJOL)

    This paper aimed at evaluating the fermentation behavior of selected Saccharomyces cerevisiae strains in banana pulp and they were compared with commercial yeast (baker's yeast) for subsequent production of distilled spirits. Five types of microorganisms were used: Four yeast strains obtained from accredited ...

  1. Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa

    International Nuclear Information System (INIS)

    Sarri, S.; Misaelides, P.; Papanikolaou, M.; Zamboulis, D.

    2009-01-01

    The sorption of uranium from acidic aqueous solutions (pH 4.5, C init = 10 to 1000 mg U/L) by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa was investigated using a batch technique. The U-sorption onto Saccharomyces cerevisiae and Debaryomyces hansenii followed a Langmuir, while that onto Kluyveromyces marxianus and Candida colliculosa a Freundlich isotherm. The results demonstrated that all investigated biomasses could effectively remove uranium from acidic aqueous solutions. From all sorbents, Saccharomyces cerevisiae appeared to be the most effective with a maximum sorption capacity of 127.7 mg U/g dry biomass. (author)

  2. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments...

  3. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  4. Study on extract dates syrup fermentation using Saccharomyces ...

    African Journals Online (AJOL)

    Customer

    2012-04-24

    Apr 24, 2012 ... conversion. A high fructose yield above 91% of the original fructose was obtained with ATCC 36858. In addition, the ethanol yield was found to be 63% of the theoretical. Key words: Saccharomyces cerevisiae, fructose, glucose, bioethanol, fermentation. INTRODUCTION. Sugars are carbohydrate materials ...

  5. Adsorption and Interfacial Electron Transfer of Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Boisen, Anja; Nielsen, Jens Ulrik

    2003-01-01

    We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein...

  6. Social wasps promote social behavior in Saccharomyces spp.

    Science.gov (United States)

    This commentary provides background and an evaluation of a paper to be published in the Proceedings of the National Academy of Sciences in which social wasps were found to harbor significant populations of two species of the yeast genus Saccharomyces. Apparently, the yeasts were acquired during feed...

  7. Purification of Arp2/3 complex from Saccharomyces cerevisiae

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary Much of cellular control over actin dynamics comes through regulation of actin filament initiation. At the molecular level, this is accomplished through a collection of cellular protein machines, called actin nucleation factors, which position actin monomers to initiate a new actin filament. The Arp2/3 complex is a principal actin nucleation factor used throughout the eukaryotic family tree. The budding yeast Saccharomyces cerevisiae has proven to be not only an excellent genetic platform for the study of the Arp2/3 complex, but also an excellent source for the purification of endogenous Arp2/3 complex. Here we describe a protocol for the preparation of endogenous Arp2/3 complex from wild type Saccharomyces cerevisiae. This protocol produces material suitable for biochemical study, and yields milligram quantities of purified Arp2/3 complex. PMID:23868593

  8. The effects of different concentrations of probiotic Saccharomyces ...

    African Journals Online (AJOL)

    In the present study, a yeast strain Saccharomyces cerevisia var. elipsoidous, acting as probiotic, was administered to rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fry during a period of 21 days and the effects of the yeast on improvement of growth and resistance against environmental stress were evaluated with ...

  9. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  10. Saccharomyces cerevisiae boulardii transient fungemia after intravenous self-inoculation

    OpenAIRE

    Cohen, Lola; Ranque, Stéphane; Raoult, Didier

    2013-01-01

    We report the case of a young psychotic intravenous drug user injecting herself with Saccharomyces cervisiae (boulardii). She experienced a 24 h fever, resolving spontaneously confirming, quasi experimentally, the inocuity of this yeast in a non-immunocompromised host.

  11. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    Science.gov (United States)

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-02

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Saccharomyces boulardii lietošanas un aprites apskats Rīgas aptiekā 2016. gadā

    OpenAIRE

    Mahaheja, Irina

    2017-01-01

    Probiotiķi tiek definēti kā dzīvi mikroorganismi, kas dod veselības ieguvumus tā uzņēmējam. Rauga šūnas Saccharomyces boulardii tika konstatētas kā efektīvs probiotiķis vairākos dubultaklajos klīniskajos pētījumos. Bakalaura darba mērķis bija veikt Saccharomyces boulardii saturošo preparātu aprites analīzi Rīgas aptiekā 2016. gadā un noskaidrot iedzīvotāju informētību par Saccharomyces boulardii preparātiem. Darba gaitā tika konstatēts, ka cilvēki zina, kas ir probiotikas, un vairums uzskata,...

  13. Effects of dietary L-threonine and Saccharomyces cerevisiae on ...

    African Journals Online (AJOL)

    threonine (0, 2.5, 5 and 7.5 g/kg) with or without Saccharomyces cerevisiae (SC) on performance, carcass characteristics, intestinal morphology and immune system of broiler chickens. A total of 360 1-d-old male broiler chicks were randomly ...

  14. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  15. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; De Hulster, E.; Almering, M.J.; Luttik, M.A.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  16. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures

    NARCIS (Netherlands)

    Mendes, F.; Sieuwerts, S.; Hulster, de E.; Almering, M.J.; Luttik, M.A.H.; Pronk, J.T.; Smid, E.J.; Baron, P.A.; Daran-Lapujade, P.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp.

  17. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    Science.gov (United States)

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  19. Reducing the genetic complexity of glycolysis in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Solis Escalante, D.

    2015-01-01

    Glycolysis, a biochemical pathway that oxidizes glucose to pyruvate, is at the core of sugar metabolism in Saccharomyces cerevisiae (bakers’ yeast). Glycolysis is not only a catabolic route involved in energy conservation, but also provides building blocks for anabolism. From an applied perspective,

  20. Novel feeding strategies for Saccharomyces cerevisiae DS2155 ...

    African Journals Online (AJOL)

    The dual behavior of Saccharomyces cerevisiae on glucose feed as function of the dilution rate near the critical specific growth rate (ì=0.25) is a bottleneck in industrial production, hence the need for more efficient feeding strategies. In this work novel feeding strategies have been generated and evaluated. For each feeding ...

  1. Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces.

    Science.gov (United States)

    Alexander, William G; Peris, David; Pfannenstiel, Brandon T; Opulente, Dana A; Kuang, Meihua; Hittinger, Chris Todd

    2016-04-01

    Saccharomyces interspecies hybrids are critical biocatalysts in the fermented beverage industry, including in the production of lager beers, Belgian ales, ciders, and cold-fermented wines. Current methods for making synthetic interspecies hybrids are cumbersome and/or require genome modifications. We have developed a simple, robust, and efficient method for generating allotetraploid strains of prototrophic Saccharomyces without sporulation or nuclear genome manipulation. S. cerevisiae×S. eubayanus, S. cerevisiae×S. kudriavzevii, and S. cerevisiae×S. uvarum designer hybrid strains were created as synthetic lager, Belgian, and cider strains, respectively. The ploidy and hybrid nature of the strains were confirmed using flow cytometry and PCR-RFLP analysis, respectively. This method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids to be used for basic research in evolutionary genetics and genome stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    Science.gov (United States)

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  3. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  4. Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries.

    Science.gov (United States)

    Zhang, Hanyao; Richards, Keith D; Wilson, Sandra; Lee, Soon A; Sheehan, Hester; Roncoroni, Miguel; Gardner, Richard C

    2015-04-01

    We present a genetic characterization of 65 isolates of Saccharomyces uvarum isolated from wineries in New Zealand, along with the complete nucleotide sequence of a single sulfite-tolerant isolate. The genome of the New Zealand isolate averaged 99.85% nucleotide identity to CBS7001, the previously sequenced strain of S. uvarum. However, three genomic segments (37-87 kb) showed 10% nucleotide divergence from CBS7001 but 99% identity to Saccharomyces eubayanus. We conclude that these three segments appear to have been introgressed from that species. The nucleotide sequence of the internal transcribed spacer (ITS) region from other New Zealand isolates were also very similar to that of CBS7001, and hybrids showed complete genetic compatibility for some strains, with tetrads giving four viable progeny that showed 2:2 segregations of marker genes. Some strains showed high tolerance to sulfite, with genetic analysis indicating linkage of this trait to the transcription factor FZF1, but not to SSU1, the sulfite efflux pump that it regulates in order to confer sulfite tolerance in Saccharomyces cerevisiae. The fermentation characteristics of selected strains of S. uvarum showed exceptionally good cold fermentation characteristics, superior to the best commercially available strains of S. cerevisiae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mead features fermented by Saccharomyces cerevisiae (lalvin k1 ...

    African Journals Online (AJOL)

    Eduardo Morales

    Full Length Research Paper. Mead features fermented by Saccharomyces cerevisiae. (lalvin k1-1116). Eduardo Marin MORALES1*, Valmir Eduardo ALCARDE2 and Dejanira de Franceschi de. ANGELIS1. 1Department of Biochemistry and Microbiology, Institute of Biosciences, UNESP - Univ Estadual Paulista, Av. 24-A,.

  6. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura

    2014-01-01

    than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the S1278b background and found 71 genes that were essential for biofilm development. Quantitative...

  7. Treatment of diarrhea-predominant irritable bowel syndrome with mesalazine and/or Saccharomyces boulardii.

    Science.gov (United States)

    Bafutto, Mauro; Almeida, José Roberto de; Leite, Nayle Vilela; Costa, Michelle Bafutto Gomes; Oliveira, Enio Chaves de; Resende-Filho, Joffre

    2013-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disease characterized by abdominal pain and altered intestinal habits. The pathophysiology of IBS remains unclear. Recent studies have demonstrated that some IBS patients, especially in diarrhea-predominant IBS (IBS-D), display persistent signs of minor mucosal inflammation and a modified intestinal microflora. The mesalazine has known intestinal anti-inflammatory properties. Saccharomyces boulardii is a probiotic used for a long time in treatment of diarrhea, including infectious diarrhea. Evaluate the effects of mesalazine alone, combined therapy of mesalazine with liophylised Saccharomyces boulardii or alone on symptoms of IBS-D patients. Based on Rome III criteria, 53 IBS-D patients (18 year or more) were included. To exclude organic diseases all patients underwent colonoscopy, stool culture, serum anti-endomisium antibody, lactose tolerance test and ova and parasite exam. Patients were divided in three groups: mesalazine group (MG) - 20 patients received mesalazine 800 mg t.i.d. for 30 days; mesalazine and Saccharomyces boulardii group (MSbG) - 21 patients received mesalazine 800 mg t.i.d. and Saccharomyces boulardii 200 mg t.i.d. for 30 days and; Saccharomyces boulardii group (SbG) - 12 patients received Sb 200 mg t.i.d. for 30 days. Drugs that might have any effect on intestinal motility or secretion were not allowed. Symptom evaluations at baseline and after treatment were performed by means of a 4-point likert scale including: stool frequency, stool form and consistency (Bristol scale), abdominal pain and distension. Paired t test and Kruskal-Wallis test were used for statistical analyses. Compared to baseline, there were statistically significant reduction of symptom score after 30 th day therapy in all three groups: MG (PSaccharomyces boulardii alone or combined treatment with mesalasine and Saccaromyces boulardii improved IBS-D symptoms. The improvement of the symptom score was greater with mesalazine

  8. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    Science.gov (United States)

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness.

  9. Comportamento celular e resposta antioxidante diferenciados de Saccharomyces cerevisiae e de Saccharomyces chevalieri ao metavanadato de amónio Different cellular behaviour and antioxidant response of Saccharomyces cerevisiae and Saccharomyces chevalieri growing in presence of ammonium metavanadate

    Directory of Open Access Journals (Sweden)

    R. Ferreira

    2007-01-01

    Full Text Available A fermentação do vinho é um processo microbiológico complexo que requere a presença de leveduras adaptadas a condições de stresse. No ambiente celular de organismos aeróbios ocorrem naturalmente espécies reactivas de oxigénio (ROS como subprodutos da respiração mitocondrial. A elevada reactividade destas espécies químicas pode gerar danos moleculares que, em alguns casos, levam à morte celular. Em condições fisiológicas normais ou como resposta ao stresse oxidativo, a célula pode desencadear respostas adaptativas que envolvem mecanismos antioxidantes como os enzimas glutationo redutase (GR; EC 1.6.4.2 e catalases T (CAT T; EC 1.11.1.6 e A (CAT A; EC 1.11.1.6. O vanádio, um metal pesado presente em alguns fitofármacos, pode também com portar-se como um gerador de ROS, alterando o estado redox intracelular e exercendo efeitos nocivos em leveduras expostas a quantidade excessiva deste elemento. O principal objectivo deste trabalho foi comparar o efeito do metavanadato de amónio (NH4VO3, um sal pentavalente de vanádio, na viabilidade celular e nas actividades enzimáticas GR, CAT T e CAT A das leveduras vínicas Saccharomyces cerevisiae UE-ME3 e Saccharomyces chevalieri UE-ME1. Os resultados obtidos mostram que S. chevalieri UE-ME1 revelou menor tolerância ao NH4VO3 do que S. cerevisiae UE-ME3, uma vez que culturas de S. chevalieri não sobreviveram para valores de concentração do sal de vanádio superiores a 7,5 mM enquanto que células de S. cerevisiae mantiveram-se viáveis em presença de metavanadato de amónio 75 mM. As actividades enzimáticas estudadas apresentaram em S. chevalieri valores muito inferiores aos que foram determinados em S. cerevisiae embora em ambas as espécies de levedura o NH4VO3 pareça comportarse como um indutor de stresse oxidativo ao provocar um decréscimo significativo da actividade GR (PThe fermentation of wine is a complex microbiological process which requires yeast adaptation to stress

  10. Engineering of aromatic amino acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Vuralhan, Z.

    2006-01-01

    Saccharomyces cerevisiae is a popular industrial microorganism. It has since long been used in bread, beer and wine making. More recently it is also being applied for heterologous protein production and as a target organism for metabolic engineering. The work presented in this thesis describes how

  11. Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation.

    Science.gov (United States)

    Amaya-Delgado, L; Herrera-López, E J; Arrizon, Javier; Arellano-Plaza, M; Gschaedler, A

    2013-05-01

    Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts.

  12. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines.

    Science.gov (United States)

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Suárez-Lepe, Jose Antonio; Han, Shunyu; Benito, Santiago

    2018-02-01

    Today, many non-Saccharomyces strains have been verified can be positive for the development of wine anthocyanin and aroma in different fermentation scenarios. Moreover, oenological tannins are widely used in wine industry to improve the colour profile and aroma complexity. The aim of this work is to analyze the fermentation characters of non-Saccharomyces strains and investigate the effects of pre-fermentative addition of oenological tannins on the wine components as well as sensory properties. For this purpose, five selected non-Saccharomyces strains and grape seed tannin were used to carry out the different fermentation trials. As a result, the grape seed tannin were less likely to influence growth kinetics of non-Saccharomyces strains. Schizosaccharomyces pombe has been proved can be effective to reduce the malic acid content while increase the level of vinylphenolic pyranoanthocyanin, which is positive for wine colour stability. Pre-fermentative use of oenological tannin was verified could be beneficial for the wines fermented with non-Saccharomyces regarding the improvement of wine colour, anthocyanin composition and the complexity of volatile compounds. Nevertheless, sensory analysis showed that oenological tannin could be less effective to modify the aroma impression of non-Saccharomyces wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sequential fermentation using non-Saccharomyces yeasts for the reduction of alcohol content in wine

    Directory of Open Access Journals (Sweden)

    Ciani Maurizio

    2014-01-01

    Full Text Available Over the last few decades there has been a progressive increase in wine ethanol content due to global climate change and modified wine styles that involved viticulture and oenology practices. Among the different approaches and strategies to reduce alcohol content in wine we propose a sequential fermentation using immobilized non-Saccharomyces wine yeasts. Preliminary results showed that sequential fermentations with Hanseniaspora osmophila, Hanseniaspora uvarum, Metschnikowia pulcherrima, Starmerella bombicola and Saccharomyces cerevisiae strains showed an ethanol reduction when compared with pure S. cerevisiae fermentation trials.

  14. The effects of Saccharomyces cerevisiae on the morphological and biomechanical characteristics of the tibiotarsus in broiler chickens

    Directory of Open Access Journals (Sweden)

    B. Suzer

    2017-12-01

    Full Text Available The aim of this study is to examine the effects of different levels of the feed supplement Saccharomyces cerevisiae, a yeast metabolite, on broiler tibiotarsus traits and to reduce leg problems by identifying the pathological changes in leg skeletal system. Thus, reducing leg disorders due to the skeletal system, the cause of significant economic losses in our country (Turkey, was investigated by the supplementation of Saccharomyces cerevisiae in broiler feed. In the study, 300 male day-old, Ross 308 broiler chicks were used. Experiment groups were designed as follows: control; 0.1 % Saccharomyces cerevisiae; 0.2 % Saccharomyces cerevisiae; 0.4 % Saccharomyces cerevisiae. The experimental diets were chemically analyzed according to the methods of the Association of Official Analytical Chemists. Twelve groups were obtained, including three replicates for each experimental group. Each replicated group was comprised of 25 chicks, and thus 75 chicks were placed in each experimental group. After 42 days, broiler chickens were slaughtered. Tibiotarsi were weighed with a digital scale, and the lengths were measured with a digital caliper after the drying process. Cortical areas were measured with the ImageJ Image Processing and Analysis Program. A UTEST Model-7014 tension and compression machine and a Maxtest software were used to determine the bone strength of the tibiotarsus. The severity of the tibial dyschondroplasia lesion was evaluated as 0, +1, +2 and +3. Crude ash, calcium and phosphorus analyses were performed to determine the inorganic matter of tibiotarsi. For radiographic evaluations of epiphyseal growth plates, tibiotarsi from the right legs were photographed in lateral and craniocaudal positions and examined. Statistical analyses were performed with the SPSS statistics program. It was observed that the use of Saccharomyces cerevisiae as a feed supplement led to an increase in the bone traits of broiler chickens. Optimum

  15. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, van der A.R.; Bouwmeester, H.J.; Beekwilder, M.J.

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a

  16. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes

    DEFF Research Database (Denmark)

    Albergaria, Helena; Arneborg, Nils

    2016-01-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and...

  17. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

    DEFF Research Database (Denmark)

    Scalcinati, Gionata; Otero, José Manuel; Van Vleet, Jennifer R. H.

    2012-01-01

    Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose s...

  18. TREATMENT OF DIARRHEA-PREDOMINANT IRRITABLE BOWEL SYNDROME WITH MESALAZINE AND/OR SACCHAROMYCES BOULARDII

    Directory of Open Access Journals (Sweden)

    Mauro BAFUTTO

    2013-12-01

    Full Text Available Context Irritable bowel syndrome (IBS is a functional bowel disease characterized by abdominal pain and altered intestinal habits. The pathophysiology of IBS remains unclear. Recent studies have demonstrated that some IBS patients, especially in diarrhea-predominant IBS (IBS-D, display persistent signs of minor mucosal inflammation and a modified intestinal microflora. The mesalazine has known intestinal anti-inflammatory properties. Saccharomyces boulardii is a probiotic used for a long time in treatment of diarrhea, including infectious diarrhea. Objective Evaluate the effects of mesalazine alone, combined therapy of mesalazine with liophylised Saccharomyces boulardii or alone on symptoms of IBS-D patients. Methods Based on Rome III criteria, 53 IBS-D patients (18 year or more were included. To exclude organic diseases all patients underwent colonoscopy, stool culture, serum anti-endomisium antibody, lactose tolerance test and ova and parasite exam. Patients were divided in three groups: mesalazine group (MG - 20 patients received mesalazine 800 mg t.i.d. for 30 days; mesalazine and Saccharomyces boulardii group (MSbG - 21 patients received mesalazine 800 mg t.i.d. and Saccharomyces boulardii 200 mg t.i.d. for 30 days and; Saccharomyces boulardii group (SbG – 12 patients received Sb 200 mg t.i.d. for 30 days. Drugs that might have any effect on intestinal motility or secretion were not allowed. Symptom evaluations at baseline and after treatment were performed by means of a 4-point likert scale including: stool frequency, stool form and consistency (Bristol scale, abdominal pain and distension. Paired t test and Kruskal-Wallis test were used for statistical analyses. Results Compared to baseline, there were statistically significant reduction of symptom score after 30 th day therapy in all three groups: MG (P<0.0001; MSbG (P<0.0001 and in SbG (P = 0.003. There were statistically significant differences in the symptom score at 30 th day

  19. Antibiotic effective against Saccharomyces produced by Aspergillus oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, H.; Sakai, T.; Takeda, M.; Tsukahara, T.

    1980-01-01

    Production of an antibiotic effective against Saccharomyces cerevisiae was investigated in 85 strains of Aspergillus oryzae, isolated from commercial koji molds. The antibiotic was produced by 50 strains. A. oryzae was cultivated at 30 degrees for 15-20 days in koji extract. The crude preparation was obtained by precipitation from the culture filtrate with EtOH, MeOH, or Me/sub 2/CO.

  20. Beneficial properties of probiotic yeast Saccharomyces boulardii

    OpenAIRE

    Tomičić Zorica M.; Čolović Radmilo R.; Čabarkapa Ivana S.; Vukmirović Đuro M.; Đuragić Olivera M.; Tomičić Ružica M.

    2016-01-01

    Saccharomyces boulardii is unique probiotic and biotherapeutic yeast, known to survive in gastric acidity and it is not adversely affected or inhibited by antibiotics or does not alter or adversely affect the normal microbiota. S. boulardii has been utilized worldwide as a probiotic supplement to support gastrointestinal health. The multiple mechanisms of action of S. boulardii and its properties may explain its efficacy and beneficial effects in acute and chronic gastrointestinal diseases th...

  1. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    OpenAIRE

    Badotti, Fernanda; Dário, Marcelo G; Alves, Sergio L; Cordioli, Maria Luiza A; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U

    2008-01-01

    Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucro...

  2. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  3. Metabolic Engineering of Probiotic Saccharomyces boulardii.

    Science.gov (United States)

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E; Rao, Christopher V; Jin, Yong-Su

    2016-04-01

    Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Gong, Han Sheng; Jiang, Xiao Man; Zhao, Yu Ping

    2014-12-01

    This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Bro, Christoffer; Piskur, Jure

    2002-01-01

    Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only...... distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h(-1) the metabolism was purely respiratory, and at dilution rates above 0.5 h-1 the metabolism was respiro-fermentative. The dilution rate...... a delay of 20-50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition....

  6. Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts

    NARCIS (Netherlands)

    Gorter de Vries, A.R.; Pronk, J.T.; Daran, J.G.

    2017-01-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have

  7. Creation of a synthetic xylose-inducible promoter for Saccharomyces cerevisiae

    Science.gov (United States)

    Saccharomyces cerevisiae is currently used to produce ethanol from glucose, but it cannot utilize five-carbon sugars contained in the hemicellulose component of biomass feedstocks. S. cerevisiae strains engineered for xylose fermentation have been made using constitutive promoters to express the req...

  8. Evidence against a photoprotective component of photoreactivation in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    MacQuillan, A.M.; Green, G.; Perry, W.G.

    1981-01-01

    Photoreactivation-deficient (phr - ) mutants of Saccharomyces cerevisiae were shown to lack in vitro DNA-photolyase activity. A phr - mutant was then compared with a phr + strain for near-UV induced photoprotection from far-UV irradiation. Neither strain exhibited a photoprotective effect. (author)

  9. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an

  10. Controlled mixed fermentation at winery scale using Zygotorulaspora florentina and Saccharomyces cerevisiae.

    Science.gov (United States)

    Lencioni, Livio; Romani, Cristina; Gobbi, Mirko; Comitini, Francesca; Ciani, Maurizio; Domizio, Paola

    2016-10-03

    Over the last few years the use of multi-starter inocula has become an attractive biotechnological practice in the search for wine with high flavour complexity or distinctive characters. This has been possible through exploiting the particular oenological features of some non-Saccharomyces yeast strains, and the effects that derive from their specific interactions with Saccharomyces. In the present study, we evaluated the selected strain Zygotorulaspora florentina (formerly Zygosaccharomyces florentinus) in mixed culture fermentations with Saccharomyces cerevisiae, from the laboratory scale to the winery scale. The scale-up fermentation and substrate composition (i.e., white or red musts) influenced the analytical composition of the mixed fermentation. At the laboratory scale, mixed fermentation with Z. florentina exhibited an enhancement of polysaccharides and 2-phenylethanol content and a reduction of volatile acidity. At the winery scale, different fermentation characteristics of Z. florentina were observed. Using Sangiovese red grape juice, sequential fermentation trials showed a significantly higher concentration of glycerol and esters while the sensorial analysis of the resulting wines showed higher floral notes and lower perception of astringency. To our knowledge, this is the first time that this yeasts association has been evaluated at the winery scale indicating the potential use of this mixed culture in red grape varieties. Copyright © 2016. Published by Elsevier B.V.

  11. Protein expression of saccharomyces cerevisiae in response to uranium exposure

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Nankawa, Takuya; Kozai, Naofumi; Ohnuki, Toshihiko; Fujii, Tsutomu; Iefuji, Haruyuki; Francis, A.J.

    2007-01-01

    Protein expression of Saccharomyces cerevisiae grown in the medium containing 238 U (VI) and 233 U (VI) was examined by two-dimensional gel electrophoresis. Saccharomyces cerevisiae of BY4743 was grown in yeast nitrogen base medium containing glucose and glycerol 2-phosphate and 238 U of 0, 2.0, and 5.0 x 10 -4 M or 233 U of 2.5 x 10 -6 M (radioactivity was higher by 350 times than 2.0 x 10 -4 M 238 U) and 5.0 x 10 -6 M for 112 h at 30 degC. The growth of Saccharomyces cerevisiae was monitored by measuring OD 600 at 112 h after the inoculation. Uranium concentrations in the media also were measured by radiometry using a liquid scintillation counter. The growths of the yeast grown in the above media were in the following order: control>2.5 x 10 -6 M 233 U>2.0 x 10 -4 M 238 U>5.0 x 10 -6 M 233 U>5.0 x 10 -4 M 238 U. This result indicated that not only radiological but also chemical effect of U reduced the growth of the yeast. The concentrations of U in the medium containing 238 U or 233 U decreased, suggesting U accumulation by the yeast cells. The 2-D gel electrophoresis analysis showed the appearance of several spots after exposure to 238 U or to 233 U but not in the control containing no uranium. These results show that the yeast cells exposed to U express several specific proteins. (author)

  12. Removal of Pyrimethanil and Fenhexamid from Saccharomyces cerevisiae Liquid Cultures

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2011-01-01

    Full Text Available The capacity for the removal of pyrimethanil and fenhexamid, two fungicides commonly used for the control of Botrytis cinerea in vineyards, has been evaluated during an alcoholic fermentation process in batch system. Commercial and wild strains of Saccharomyces cerevisiae were used. Batch fermentations were carried out in yeast extract-malt extract medium (YM with 18.0 % (by mass glucose, and the fungicides were added separately at three concentrations: 0.1, 1.0 and 10.0 mg/L. The removal capacity of yeast strains was also examined in stationary phase cultures of Saccharomyces cerevisiae. Stationary assays were performed with yeast biomass harvested from the stationary phase of an anaerobic fermentation process, with separate additions of 0.1, 1.0 and 10.0 mg/L of both fungicides. Removal studies with stationary phase cells were performed with viable and non-viable cells inactivated with sodium azide. This study clearly shows that both Saccharomyces cerevisiae strains were able to remove fenhexamid and pyrimethanil in stationary and fermentative assays. The removal potential is shown to be strain dependent in stationary but not in fermentative assays. However, the removal potential is dependent on the type of fungicide in both stationary and fermentative assays. In stationary phase cultures no significant difference in fungicide removal potential between viable and non-viable cells was observed, indicating that both pesticides were not degraded by metabolically active cells. However, the presence of both pesticides influenced fermentation kinetics and only pyrimethanil at 10.0 mg/L increased the production of volatile acidity of both strains.

  13. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions.

    Science.gov (United States)

    Ghorbani-Choboghlo, Hassan; Zahraei-Salehi, Taghi; Ashrafi-Helan, Javad; Yahyaraeyat, Ramak; Pourjafar, Hadi; Nikaein, Donya; Balal, Asad; Khosravi, Ali-Reza

    2015-12-01

    Probiotic yeasts are used in production of functional foods and pharmaceutical products. They play an important role in promoting and maintaining human health. Until now, little work has been published on improving the survival of Saccharomyces in stimulated gastrointestinal condition. In this study the exposure of the yeast in the capsulate and free forms to artificial gastrointestinal conditions was assessed and the number of viable Saccharomyces cerevisiae cells during 0 to 120 mines in these conditions was evaluated by a pour plate method using sabouraud dextrose agar. Results showed the shape of the beads was generally spherical, sometimes elliptical with a mean diameter of about 50-90 μm. Also count of viable probiotic cells obtained for all the microcapsules were above the recommended levels for a probiotic food. Also decrease of approximately 4 logs was noted in the number of free cells after 2 h of incubation at pH 2 and 8, when compared to decreases of about 2 logs in the all microencapsulated S. cerevisiae under similar conditions. It is concluded that microencapsulation process was significantly able to increase the survival rate of Saccharomyces in a simulated gastrointestinal condition (p<0.05)..

  14. Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Schoondermark-Stolk, Sung A.; Jansen, Michael; Verkleij, Arie J.; Verrips, C. Theo; Euverink, Gert-Jan W.; Dijkhuizen, Lubbert; Boonstra, Johannes

    2006-01-01

    The yeast Saccharomyces cerevisiae is widely used as aroma producer in the preparation of fermented foods and beverages. During food fermentations, secondary metabolites like 3-methyl-1-butanol, 4-methyl-2-oxopentanoate, 3-methyl-2-oxobutanoate and 3-methylbutyrate emerge. These four compounds have

  15. Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vernis, L.; Piskur, Jure; Diffley, J.F.X.

    2003-01-01

    The budding yeast Saccharomyces cerevisiae is unable to incorporate exogenous nucleosides into DNA. We have made a number of improvements to existing strategies to reconstitute an efficient thymidine salvage pathway in yeast. We have constructed strains that express both a nucleoside kinase as well...

  16. Ability for anaerobic growth is not sufficient for development of the petite phenotype in Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Olsson, Lisbeth; Piskur, Jure

    2001-01-01

    Saccharomyces cerevisiae is a petite-phenotype-positive ("petite-positive") yeast, which can successfully grow in the absence of oxygen. On the other hand, Kluyveromyces lactis as well as many other yeasts are petite negative and cannot grow anaerobically. In this paper, we show that Saccharomyces...... kluyveri can grow under anaerobic conditions, but while it can generate respiration-deficient mutants, it cannot generate true petite mutants. From a phylogenetic point of view, S. kluyveri is apparently more closely related to S. cerevisiae than to K. lactis. These observations suggest that the progenitor...... of the modern Saccharomyces and Kluyveromyces yeasts, as well as other related genera, was a petite-negative and aerobic yeast. Upon separation of the K. lactis and S. kluyveri-S. cerevisiae lineages, the latter developed the ability to grow anaerobically. However, while the S. kluyveri lineage has remained...

  17. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  18. Dynamics of Storage Carbohydrates Metabolism in Saccharomyces cerevisiae

    OpenAIRE

    Suarez-Mendez, C.A.

    2015-01-01

    Production of chemicals via biotechnological routes are becoming rapidly an alternative to oil-based processes. Several microorganisms including yeast, bacteria, fungi and algae can transform feedstocks into high-value molecules at industrial scale. Improvement of the bioprocess performance is a key factor for making this technology economically feasible. Despite the vast knowledge on microbial metabolism, some gaps still remain open. In Saccharomyces cerevisiae, metabolism of storage carbohy...

  19. Effect of the use of commercial Saccharomyces strains in a newly established winery in Ronda (Málaga, Spain).

    Science.gov (United States)

    Clavijo, Almudena; Calderón, Isabel L; Paneque, Patricia

    2011-03-01

    An ecological study of the yeasts present in a spontaneous and an inoculated fermentation in red wine was carried out in 2005 vintage in a winery located in the Denomination of Origin "Sierras de Málaga" (Málaga, southern of Spain). The winery operated by the first time with the 2003 vintage and since then, has used commercial yeast inocula to start alcoholic fermentation. Yeast isolates were identified by PCR-RFLP analysis of the 5.8S-ITS region from the ribosomal DNA and by mitochondrial DNA RFLP analysis. Except for non-Saccharomyces yeasts found in the fresh must before fermentation, all the isolates were found to be commercial Saccharomyces cerevisiae strains employed by the winery during the successive vintages; thus, no indigenous Saccharomyces yeasts were isolated during fermentation. The same four restriction patterns were found in non inoculated and inoculated vats, although with different frequencies. The use of commercial yeast starter in a new established winery seems to have prevented the development of a resident indigenous Saccharomyces flora.

  20. On cycles in the transcription network of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Berman Piotr

    2008-01-01

    Full Text Available Abstract Background We investigate the cycles in the transcription network of Saccharomyces cerevisiae. Unlike a similar network of Escherichia coli, it contains many cycles. We characterize properties of these cycles and their place in the regulatory mechanism of the cell. Results Almost all cycles in the transcription network of Saccharomyces cerevisiae are contained in a single strongly connected component, which we call LSCC (L for "largest", except for a single cycle of two transcription factors. The fact that LSCC includes almost all cycles is well explained by the properties of a random graph with the same in- and out-degrees of the nodes. Among different physiological conditions, cell cycle has the most significant relationship with LSCC, as the set of 64 transcription interactions that are active in all phases of the cell cycle has overlap of 27 with the interactions of LSCC (of which there are 49. Conversely, if we remove the interactions that are active in all phases of the cell cycle (25% of interactions to transcription factors, the LSCC would have only three nodes and 5 edges, many fewer than expected. This subgraph of the transcription network consists mostly of interactions that are active only in the stress response subnetwork. We also characterize the role of LSCC in the topology of the network. We show that LSCC can be used to define a natural hierarchy in the network and that in every physiological subnetwork LSCC plays a pivotal role. Conclusion Apart from those well-defined conditions, the transcription network of Saccharomyces cerevisiae is devoid of cycles. It was observed that two conditions that were studied and that have no cycles of their own are exogenous: diauxic shift and DNA repair, while cell cycle and sporulation are endogenous. We claim that in a certain sense (slow recovery stress response is endogenous as well.

  1. Crystallization and preliminary X-ray diffraction analysis of motif N from Saccharomyces cerevisiae Dbf4

    International Nuclear Information System (INIS)

    Matthews, Lindsay A.; Duong, Andrew; Prasad, Ajai A.; Duncker, Bernard P.; Guarné, Alba

    2009-01-01

    To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. The Cdc7–Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7–Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 Å resolution and structure determination is currently under way

  2. Influence of Two Inocula Levels of Saccharomyces bayanus on ...

    African Journals Online (AJOL)

    pc

    2012-04-02

    Apr 2, 2012 ... The influence of two inocula levels of the yeast Saccharomyces bayanus, ... Wine is usually made through fermentation of grape juice. ... strain of the yeast and the level of yeast inoculated are .... culture of S. cerevisiae and Williopsis saturnus and ... have acid taste index values of two to three and dry white.

  3. Silver Uptake and Reuse of Biomass by Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Studies were carried out on the recovery of bound silver and reuse of Chlorella emersonii and Saccharomyces cerevisiae biomass for further silver uptake after they were placed in contact with 20mg/l silver for 30 minutes to allow for maximum binding. It was found that 0.16M nitric acid gave the best recovery rates of silver.

  4. Hydrogen peroxide removal with magnetically responsive Saccharomyces cerevisiae cells

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Maděrová, Zdeňka; Šafaříková, Miroslava

    2008-01-01

    Roč. 56, - (2008), s. 7925-7928 ISSN 0021-8561 R&D Projects: GA MPO 2A-1TP1/094; GA MŠk OC 157 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetic alginate beads * catalase * magnetic separation * Saccharomyces cerevisiae cells * hydrogen peroxide Subject RIV: GM - Food Processing Impact factor: 2.562, year: 2008

  5. Kinetics of formation of induced mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chepurnoj, A.I.; Levkovich, N.V.; Mikhova-Tsenova, N.; Mel'nikova, L.A.

    1990-01-01

    UV and γ-radiation mutagenic effect an various strains of Saccharomyces cerevisiae was studied by analyzing formation kinetics of induced mutants at the period of postirradiation incubation. Mechanisms of induced reverse formation was suggested. The presented analysis is considered to be differential taking account of more subtle aspects of induced mutagenesis. 8 refs.; 10 figs.; 3 tabs

  6. Glucose repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. © FEMS 2015.

  7. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  8. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kang, Hyun-Woo; Kim, Yule [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., LTD, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea)

    2010-08-15

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v{sup -1}) total sugar in a 5 l lab scale jar fermenter at 32 C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 {+-} 0.13 g l{sup -1}, a volumetric ethanol productivity of 1.38 {+-} 0.13 g l{sup -1} h{sup -1}, and a theoretical yield of 94.2 {+-} 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes. (author)

  9. Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus

    International Nuclear Information System (INIS)

    Choi, Gi-Wook; Um, Hyun-Ju; Kang, Hyun-Woo; Kim, Yule; Kim, Mina; Kim, Yang-Hoon

    2010-01-01

    Fusion hybrid yeast, CHFY0321, was obtained by protoplast fusion between non-flocculent-high ethanol fermentative Saccharomyces cerevisiae CHY1011 and flocculent-low ethanol fermentative Saccharomyces bayanus KCCM12633. The hybrid yeast was used together with the parental strains to examine ethanol production in batch fermentation. Under the conditions tested, the fusion hybrid CHFY0321 flocculated to the highest degree and had the capacity to ferment well at pH 4.5 and 32 o C. Simultaneous saccharification and fermentation for ethanol production was carried out using a cassava (Manihot esculenta) powder hydrolysate medium containing 19.5% (w v -1 ) total sugar in a 5 l lab scale jar fermenter at 32 o C for 65 h with an agitation speed of 2 Hz. Under these conditions, CHFY0321 showed the highest flocculating ability and the best fermentation efficiency for ethanol production compared with those of the wild-type parent strains. CHFY0321 gave a final ethanol concentration of 89.8 ± 0.13 g l -1 , a volumetric ethanol productivity of 1.38 ± 0.13 g l -1 h -1 , and a theoretical yield of 94.2 ± 1.58%. These results suggest that CHFY0321 exhibited the fermentation characteristics of S. cerevisiae CHY1011 and the flocculent ability of S. bayanus KCCM12633. Therefore, the strong highly flocculent ethanol fermentative CHFY0321 has potential for improving biotechnological ethanol fermentation processes.

  10. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii.

    Science.gov (United States)

    Oliveira, Bruno M; Barrio, Eladio; Querol, Amparo; Pérez-Torrado, Roberto

    2014-01-01

    During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased V max of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD(+)/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.

  11. Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Pedersen, Mette Louise; Krogh, Berit Olsen

    2012-01-01

    Combinatorial genetic libraries are powerful tools for diversifying and optimizing biomolecules. The process of library assembly is a major limiting factor for library complexity and quality. Gap repair by homologous recombination in Saccharomyces cerevisiae can facilitate in vivo assembly of DNA...

  12. Rekayasa Glukosa Dari Tandan Kosong Kelapa Sawit Melalui Proses Fermentasi Dengan Saccharomyces cerevisiae Menjadi Bioetanol

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2013-06-01

    Full Text Available This research aims to study the performance of Saccharomyces cerevisiae in glucose engineering into bioethanol. Glucose comes from palm oil empty fruit bunches that had been pretreated by delignification and fermentation. Glucose solution result from hydrolysis for each treatment of 500 ml was fermented with Saccharomyces cerevisiae (2, 4, 6 and 8 g, fermentation time (4, 6, 8 and 10 days. Result of fermentation was distilled at 75°C ± 5°C for 60 minutes. Bioethanol produced were tested including: specific gravity by using picnometer and acidity was tested by volumetric methods. The analysis showed that the best bioethanol produced in this experiment, followed by laboratory tests obtained from the interaction between treatments for time of hydrolysis by Aspergillus niger for 6 days, with 4 grams of Saccharomyces cerevisiae fermentation for 6 days. Based on the test results of bioethanol obtained density 0.9873 g/cm3, percentage of bioethanol 9.2889% (v/v and acid number value 1.820 mg/L.ABSTRAKPenelitian ini bertujuan untuk mempelajarai kinerja Saccharomyces cerevisiae  merekayasa glukosa menjadi bioetanol. Glukosa berasal dari tandan kosong kelapa sawit yang telah dilakukan pretreatment dengan cara delignifikasi dan fermentasi. Larutan glukosa hasil hidrolisis untuk masing-masing perlakuan sebanyak 500 mL difermentasi dengan S. cerevisiae (2; 4; 6 dan 8 g, waktu fermentasi (4; 6; 8 dan 10 hari. Hasil fermentasi didestilasi pada suhu 75oC ± 5oC selama 60 menit. Bioetanol yang dihasilkan diuji yang meliputi : berat jenis dengan mengunakan piknometer dan keasaman diuji dengan metode volumetri. Hasil analisis menunjukkan bioetanol yang terbaik berdasarkan hasil percobaan yang dilanjutkan dengan uji laboratorium didapatkan dari interaksi antar perlakuan untuk waktu hidrolisis dengan Aspergilus niger selama 6 hari, fermentasi dengan 4 gram Saccharomyces cerevisiae selama 6 hari. Berdasarkan hasil uji bioetanol untuk berat jenis 0,9873 g/cm3

  13. Ethanol production from corn cobs by co-culture of Saccharomyces ...

    African Journals Online (AJOL)

    Saccharomyces cerevisiae and Aspergillus niger were used in a co-culture for the simultaneous saccharification and fermentation (SSF) of 1% and 10% (w/v) dry pre-treated corn cobs to ethanol. Positive controls of glucose of same concentrations in a synthetic medium were also fermented. At 1% substrate concentration, ...

  14. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  15. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  16. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae

    OpenAIRE

    Duan, Lijin; Ding, Wentao; Liu, Xiaonan; Cheng, Xiaozhi; Cai, Jing; Hua, Erbing; Jiang, Huifeng

    2017-01-01

    Background Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. Methods In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. Results First...

  17. Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes.

    Science.gov (United States)

    Bellon, Jennifer R; Yang, Fei; Day, Martin P; Inglis, Debra L; Chambers, Paul J

    2015-10-01

    To remain competitive in increasingly overcrowded markets, yeast strain development programmes are crucial for fermentation-based food and beverage industries. In a winemaking context, there are many yeast phenotypes that stand to be improved. For example, winemakers endeavouring to produce sweet dessert wines wrestle with fermentation challenges particular to fermenting high-sugar juices, which can lead to elevated volatile acidity levels and extended fermentation times. In the current study, we used natural yeast breeding techniques to generate Saccharomyces spp. interspecific hybrids as a non-genetically modified (GM) strategy to introduce targeted improvements in important, wine-relevant traits. The hybrids were generated by mating a robust wine strain of Saccharomyces cerevisiae with a wine isolate of Saccharomyces bayanus, a species previously reported to produce wines with low concentrations of acetic acid. Two hybrids generated from the cross showed robust fermentation properties in high-sugar grape juice and produced botrytised Riesling wines with much lower concentrations of acetic acid relative to the industrial wine yeast parent. The hybrids also displayed suitability for icewine production when bench-marked against an industry standard icewine yeast, by delivering icewines with lower levels of acetic acid. Additionally, the hybrid yeast produced wines with novel aroma and flavour profiles and established that choice of yeast strain impacts on wine colour. These new hybrid yeasts display the desired targeted fermentation phenotypes from both parents, robust fermentation in high-sugar juice and the production of wines with low volatile acidity, thus establishing their suitability for wine styles that are traditionally troubled by excessive volatile acidity levels.

  18. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  19. Data on dynamic study of cytoophidia in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-09-01

    Full Text Available The data in this paper are related to the research article entitled “Filamentation of metabolic enzymes in Saccharomyces cerevisiae” Q.J. Shen et al. (2016 [1]. Cytoophidia are filamentous structures discovered in fruit flies (doi:10.1016/S1673-8527(0960046-1 J.L. Liu (2010 [2], bacteria (doi:10.1038/ncb2087 M. Ingerson-Mahar et al. (2010 [3], yeast (doi:10.1083/jcb.201003001; doi:10.1242/bio.20149613 C. Noree et al. (2010 and J. Zhang, L. Hulme, J.L. Liu (2014 [4,5] and human cells (doi:10.1371/journal.pone.0029690; doi:10.1016/j.jgg.2011.08.004 K. Chen et al. (2011 and W.C. Carcamo et al. (2011 ( [6,7]. However, there is little research on the motility of the cytoophidia. Here we selected cytoophidia formed by 6 filament-forming proteins in the budding yeast S. cerevisiae, and performed living-cell imaging of cells expressing the proteins fused with GFP. The dynamic features of the six types of cytoophidia were analyzed. In the data, both raw movies and analysed results of the dynamics of cytoophidia are presented. Keywords: Saccharomyces cerevisiae, CTP synthase, Cytoophidium, Metabolism, Filamentation

  20. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  1. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study

    NARCIS (Netherlands)

    Surawicz, C. M.; Elmer, G. W.; Speelman, P.; McFarland, L. V.; Chinn, J.; van Belle, G.

    1989-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, has been widely used in Europe to prevent antibiotic-associated diarrhea (AAD). We performed a prospective double-blind controlled study to investigate AAD in hospitalized patients and to evaluate the effect of S. boulardii, a living yeast, given in

  2. Investigation of the effect of water exposed to nonequilibrium contact plasma onto saccharomyces cerevisiae yeast

    Directory of Open Access Journals (Sweden)

    S. Mykolenko

    2015-05-01

    Full Text Available Introduction. Additional treatment of water by nonequilibrium contact plasma allows improving consumer characteristics of bakery goods considerably. Determination of the effect of plasma-chemically activated water on morphological, cultural and physiological properties of Saccharomyces cerevisiae yeast is important from the technological point of view. Materials and Methods. Experimental investigations were carried out in the conditions of bacteriological laboratory by seeding the culture of yeasts of ТМ “Lvivski” and “Kryvorizki” on Sabouraud dense liquid nutrient media. The quantity of viable cells of microorganisms was determined by the method of Gould sector seeds. Morphology of the yeast was investigated by phase-contrast microscopy. Biotechnological properties of yeasts were determined on Giss media. Results. The paper establishes the effect of water exposed to nonequilibrium contact plasma on the sensitivity of Saccharomyces cerevisiae and shows absence of suppressive action of treated water with regard to cultural properties of microorganisms. The experiments prove that with the use of plasma-chemically activated water morphological characteristics and biochemical properties of bakery yeasts produced by Lviv and Kryvyi Rig yeast plants are preserved. Culturing of Saccharomyces cerevisiae yeast on the nutrient media prepared with the use of water exposed to nonequilibrium contact plasm resulted in 6,5–15 times’ increase in quantity of viable microorganisms compared with the control on the mains drinking water. Conclusions. Physiological properties of Saccharomyces cerevisiae yeast improved owing to use water exposed to nonequilibrium contact plasma. Results of investigations are recommended for using in yeast production and bread making.

  3. Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production

    Directory of Open Access Journals (Sweden)

    Esther Gamero-Sandemetrio

    2018-01-01

    Full Text Available Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidative stress response of non-Saccharomyces wine yeasts and their potential impact on ADY production. In this study we analyzed the oxidative stress response in several non-Saccharomyces yeast species by measuring the activity of reactive oxygen species (ROS scavenging enzymes, e.g., catalase and glutathione reductase, accumulation of protective metabolites, e.g., trehalose and reduced glutathione (GSH, and lipid and protein oxidation levels. Our data suggest that non-canonical regulation of glutathione and trehalose biosynthesis could cause poor fermentative performance after ADY production, as it corroborates the corrective effect of antioxidant treatments, during biomass propagation, with both pure chemicals and food-grade argan oil.

  4. [Protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease].

    Science.gov (United States)

    Liu, Y T; Li, Y Q; Wang, Y Z

    2016-12-20

    Objective: To investigate the protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease (NAFLD). Methods: A total of 36 healthy male Sprague-Dawley rats with a mean body weight of 180±20 g were randomly divided into control group, model group, and treatment group, with 12 rats in each group, after adaptive feeding for 1 week. The rats in the control group were given basic feed, and those in the model group and treatment group were given high-fat feed. After 12 weeks of feeding, the treatment group was given Saccharomyces boulardii (75×10 8 CFU/kg/d) by gavage, and those in the control group and model group were given isotonic saline by gavage. At the 20th week, blood samples were taken from the abdominal aorta to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), intestinal fatty acid binding protein (IFABP), tumor necrosis factor-α (TNF-α), and endotoxins. The liver pathological changes, intestinal histopathological changes, and expression of occludin in the intestinal mucosa were observed. Fecal samples were collected to measure the changes in Escherichia coli and Bacteroides. A one-way analysis of variance and the SNK test were used for comparison between multiple groups, and the rank sum test was used as the non-parametric test. Results: Compared with the control group, the model group had significantly higher body weight, liver mass, and liver index ( P 0.05). Compared with the control group, the model group had significant increases in the levels of endotoxin, TNF-α, and IFABP ( P Saccharomyces boulardii can reduce body weight and improve hepatocyte steatosis. Saccharomyces boulardii can reduce endotoxemia in NAFLD rats and thus alleviate inflammatory response. Saccharomyces boulardii can also adjust the proportion of Escherichia coli and Bacteroides in the intestine of NAFLD rats.

  5. Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Khatri, Indu; Akhtar, Akil; Kaur, Kamaldeep; Tomar, Rajul; Prasad, Gandham Satyanarayana; Ramya, Thirumalai Nallan Chakravarthy; Subramanian, Srikrishna

    2013-10-22

    The yeast Saccharomyces boulardii is used worldwide as a probiotic to alleviate the effects of several gastrointestinal diseases and control antibiotics-associated diarrhea. While many studies report the probiotic effects of S. boulardii, no genome information for this yeast is currently available in the public domain. We report the 11.4 Mbp draft genome of this probiotic yeast. The draft genome was obtained by assembling Roche 454 FLX + shotgun data into 194 contigs with an N50 of 251 Kbp. We compare our draft genome with all other Saccharomyces cerevisiae genomes. Our analysis confirms the close similarity of S. boulardii to S. cerevisiae strains and provides a framework to understand the probiotic effects of this yeast, which exhibits unique physiological and metabolic properties.

  6. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways

    Energy Technology Data Exchange (ETDEWEB)

    DeLoache, William [Univ. of California, Berkeley, CA (United States); Russ, Zachary [Univ. of California, Berkeley, CA (United States); Samson, Jennifer [Univ. of California, Berkeley, CA (United States); Dueber, John [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The peroxisome of Saccharomyces cerevisiae was targeted for repurposing in order to create a synthetic organelle that provides a generalizable compartment for engineered metabolic pathways. Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk, improving pathway efficiency, and ultimately modifying the chemical environment to be distinct from that of the cytoplasm. We focused on the Saccharomyces cerevisiae peroxisome, as this organelle is not required for viability when grown on conventional media. We identified an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly importing non-native cargo proteins. Additionally, we performed the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay and characterized the size dependency of metabolite trafficking. Finally, we applied these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titer. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.

  7. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity.

    Science.gov (United States)

    Rinaldi, Maurizio; Perricone, Roberto; Blank, Miri; Perricone, Carlo; Shoenfeld, Yehuda

    2013-10-01

    Saccharomyces cerevisiae is best known as the baker's and brewer's yeast, but its residual traces are also frequent excipients in some vaccines. Although anti-S. cerevisiae autoantibodies (ASCAs) are considered specific for Crohn's disease, a growing number of studies have detected high levels of ASCAs in patients affected with autoimmune diseases as compared with healthy controls, including antiphospholipid syndrome, systemic lupus erythematosus, type 1 diabetes mellitus, and rheumatoid arthritis. Commensal microorganisms such as Saccharomyces are required for nutrition, proper development of Peyer's aggregated lymphoid tissue, and tissue healing. However, even the commensal nonclassically pathogenic microbiota can trigger autoimmunity when fine regulation of immune tolerance does not work properly. For our purposes, the protein database of the National Center for Biotechnology Information (NCBI) was consulted, comparing Saccharomyces mannan to several molecules with a pathogenetic role in autoimmune diseases. Thanks to the NCBI bioinformation technology tool, several overlaps in molecular structures (50-100 %) were identified when yeast mannan, and the most common autoantigens were compared. The autoantigen U2 snRNP B″ was found to conserve a superfamily protein domain that shares 83 % of the S. cerevisiae mannan sequence. Furthermore, ASCAs may be present years before the diagnosis of some associated autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who became affected by Crohn's disease years later. Our results strongly suggest that ASCAs' role in clinical practice should be better addressed in order to evaluate their predictive or prognostic relevance.

  8. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Science.gov (United States)

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  9. CULTIVO EXPERIMENTAL DEL CLADOCERO Moina sp ALIMENTADO CON Ankistrodesmus sp y Saccharomyces cereviseae

    Directory of Open Access Journals (Sweden)

    Martha Prieto

    2006-05-01

    Full Text Available Saccharomyces cereviseae. Materiales y métodos. Fueron realizados cultivos experimentales de la cepade cladóceros Moina sp en el laboratorio de Alimento Vivo de la Universidad de Córdoba, bajo condicionescontroladas de temperatura (22oC, pH (7.6, intensidad lumínica (2000 lux y aireación. Se emplearondos dietas de alimento como tratamiento (Ankistrodesmus y Ankistrodesmus mas Saccharomyces cereviseaeen concentración de 40 x 105 cel.ml-1 cada uno, para determinar su efecto sobre el desempeño de lapoblación. Diariamente se registró la densidad poblacional y celular. Resultados. Se obtuvieron diferenciassignificativas para el efecto de las dietas sobre el crecimiento poblacional de los cladóceros, los individuosalimentados con Ankistrodesmus sp + Saccharomyces cereviseae alcanzaron una densidad de 12.3a±0.30 org/ml-1 presentando mayor tasa instantánea de crecimiento (K 0.36 ± 0.002, el menor tiempode duplicación (td 1.94 ± 0.012 y el mayor rendimiento (r 1,1 ± 0.07 clad.ml-1.día-1. Conclusión. Loscladóceros por sus características de crecimiento en cultivo, presentan adaptación favorable a lascondiciones de manejo para la producción de biomasas potencialmente útiles como partícula nutritivacon fines acuícolas.

  10. UV inactivation: Combined effects of UV radiation and xenobiotics in two strains of Saccharomyces

    International Nuclear Information System (INIS)

    Lochmann, E.R.; Lochmann, G.

    1997-01-01

    The effects of eight chemicals on the inactivation rate of ultraviolet radiation on the colony building capabilities of two strains of Saccharomyces cervisae - a wild type strain and a mutant deficient in excision repair - were studied. The insecticide methoxychlor, the herbicide 2,4-dichlorophenoxyacetic acid, the fungicide pentachlorophenol and its metabolite tetrachlorohydroquinone, as well as the chemicals acrylonitrile and 2,3-dichloro-1-propene have no significant impact on the effects of UV radiation in Saccharomyces cerevisae. Depending on the concentration, trichloroethylene increases the sensitivity to UV radiation. The herbicide paraquat provides efficient protection against UV radiation at concentrations where a toxic effect cannot be observed even without UV. The results were rather similar for both strains. (orig.) [de

  11. Degradation of pyrimidines in Saccharomyces kluyveri: transamination of beta-alanine

    DEFF Research Database (Denmark)

    Schnackerz, K D; Andersen, G; Dobritzsch, D

    2008-01-01

    Beta-alanine is an intermediate in the reductive degradation of uracil. Recently we have identified and characterized the Saccharomyces kluyveri PYD4 gene and the corresponding enzyme beta -alanine aminotransferase ((Sk)Pyd4p), highly homologous to eukaryotic gamma-aminobutyrate aminotransferase ...

  12. Saccharomyces boulardii fungaemia in an intensive care unit patient treated with caspofungin

    Science.gov (United States)

    Lolis, Nikolaos; Veldekis, Dimitrios; Moraitou, Hellen; Kanavaki, Sofia; Velegraki, Aristea; Triandafyllidis, Charis; Tasioudis, Chronis; Pefanis, Angellos; Pneumatikos, Ioannis

    2008-01-01

    We describe a case of Saccharomyces boulardii fugaemia in a critically ill patient with septic shock treated with a probiotic agent containing this yeast. We attributed this fugaemia to gut translocation. Our use of caspofugin yielded excellent results. PMID:18423057

  13. Prevention of Clostridium difficile Infection with Saccharomyces boulardii: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jennifer M Tung

    2009-01-01

    Full Text Available BACKGROUND: Clostridium difficile is a major cause of antibioticassociated diarrhea within the hospital setting. The yeast Saccharomyces boulardii has been found to have some effect in reducing the risk of C difficile infection (CDI; however, its role in preventive therapy has yet to be firmly established.

  14. The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations.

    Science.gov (United States)

    Bohlscheid, J C; Fellman, J K; Wang, X D; Ansen, D; Edwards, C G

    2007-02-01

    To study the impact of assimilable nitrogen, biotin and their interaction on growth, fermentation rate and volatile formation by Saccharomyces. Fermentations of synthetic grape juice media were conducted in a factorial design with yeast assimilable nitrogen (YAN) (60 or 250 mg l(-1)) and biotin (0, 1 or 10 microg l(-1)) as variables. All media contained 240 g l(-1) glucose + fructose (1 : 1) and were fermented using biotin-depleted Saccharomyces cerevisiae strains EC1118 or UCD 522. Both strains exhibited weak growth and sluggish fermentation rates without biotin. Increased nitrogen concentration resulted in higher maximum fermentation rates, while adjusting biotin from 1 to 10 microg l(-1) had no effect. Nitrogen x biotin interactions influenced fermentation time, production of higher alcohols and hydrogen sulfide (H(2)S). Maximum H(2)S production occurred in the medium containing 60 mg l(-1) YAN and 1 microg l(-1) biotin. Nitrogen x biotin interactions affect fermentation time and volatile production by Saccharomyces depending on strain. Biotin concentrations sufficient to complete fermentation may affect the organoleptic impact of wine. This study demonstrates the necessity to consider nutrient interactions when diagnosing problem fermentations.

  15. No evidence for extrinsic post-zygotic isolation in a wild Saccharomyces yeast system.

    Science.gov (United States)

    Charron, Guillaume; Landry, Christian R

    2017-06-01

    Although microorganisms account for the largest fraction of Earth's biodiversity, we know little about how their reproductive barriers evolve. Sexual microorganisms such as Saccharomyces yeasts rapidly develop strong intrinsic post-zygotic isolation, but the role of extrinsic isolation in the early speciation process remains to be investigated. We measured the growth of F 1 hybrids between two incipient species of Saccharomyces paradoxus to assess the presence of extrinsic post-zygotic isolation across 32 environments. More than 80% of hybrids showed either partial dominance of the best parent or over-dominance for growth, revealing no fitness defects in F 1 hybrids. Extrinsic reproductive isolation therefore likely plays little role in limiting gene flow between incipient yeast species and is not a requirement for speciation. © 2017 The Author(s).

  16. Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xiangling

    2005-01-01

    [1]Brunelli, J. P., Pall, M. L., A series of yeast vectors for expression of cDNAs and other DNA sequences, Yeast, 1993, 9: 1299―1308.[2]Sikorski, R. S., Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 1989, 122: 19―27.[3]Bonneaud, N., Ozier-Kalogerogoulos, O., Li, G. et al., A family of low and high copy replicative, integrative and single-stranded S. cerevisiae /E. coli shuttle vector, Yeast, 1991, 7: 609―615.[4]Huo, K. K., Yu, L. L., Chen, X. J., Li, Y. Y., A stable vector for high-level expression and secretion of human interferon alpha A in yeast, Science in China, Ser. B, 1993, 36(5): 557―567.[5]Zhou, Z. X., Yuan, H. Y., He, W. et al., Expression of the modified HBsAg gene SA-28 directed by a constitutive promoter, Journal of Fudan university (Natural Science), 2000, 39(3): 264―268.[6]Paques, F., Haber, J. E., Multiple pathways of recombination induces by double-strand breaks in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, 1999, 63(2): 349―404.[7]Martin, K., Damage-induced recombination in the yeast Saccharomyces cerevisiae, Mutation Research, 2000, 451: 91―105.[8]Alira, S., Tomoko, O., Homologous recombination and the roles of double-strand breaks, TIBS, 1995, 20: 387―391.[9]Patrick, S., Kelly, M. T., Stephen, V. K., Recombination factor of Saccharomyces cerevisiae, Mutation Research, 2000, 451: 257―275.[10]Manivasakam, P., Weber, S. C., McElver, J., Schiestl, R. H., Micro-homology mediated PCR targeting in Saccharomyces cerevisiae, Nucleic Acids Res., 1995, 23(14): 2799―2800.[11]Baudin, A., Lacroute, F., Cullin, C., A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 1993, 21(14): 3329―3330.[12]Hua, S. B., Qiu, M., Chan, E., Zhu, L., Luo, Y., Minimum length of sequence homology required for in vivo cloning by homolo-gous recombination in yeast, Plasmid, 1997, 38

  17. Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of L-Arabinose

    NARCIS (Netherlands)

    Wisselink, H.W.; Toirkens, M.J.; Del Rosario Franco Berriel, M.; Winkler, A.A.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2007-01-01

    For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the

  18. Prokaryotic diversity of the Saccharomyces cerevisiae Atx1p-mediated copper pathway.

    NARCIS (Netherlands)

    Bakel, H. van; Huynen, M.A.; Wijmenga, C.

    2004-01-01

    MOTIVATION: Several genes involved in the cellular import of copper and its subsequent incorporation into the high-affinity iron transport complex in Saccharomyces cerevisiae are known to be conserved between eukaryotes and prokaryotes. However, the degree to which these genes share their functional

  19. Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Sicard, Delphine; Legras, Jean-Luc

    2011-03-01

    Yeasts of the Saccharomyces sensu stricto species complex are able to convert sugar into ethanol and CO(2) via fermentation. They have been used for thousands years by mankind for fermenting food and beverages. In the Neolithic times, fermentations were probably initiated by naturally occurring yeasts, and it is unknown when humans started to consciously add selected yeast to make beer, wine or bread. Interestingly, such human activities gave rise to the creation of new species in the Saccharomyces sensu stricto complex by interspecies hybridization or polyploidization. Within the S. cerevisiae species, they have led to the differentiation of genetically distinct groups according to the food process origin. Although the evolutionary history of wine yeast populations has been well described, the histories of other domesticated yeasts need further investigation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Oligoadenylate is present in the mitochondrial RNA of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yuckenberg, P.D.; Phillips, S.L.

    1982-01-01

    The authors examined Saccharomyces cerevisiae mitochondrial RNA for polyadenylate. Using hybridization to [/sup 3/H]polyuridylate as the assay for adenylate sequences, they found adenylate-rich oligonucleotides approximately 8 residues long. Longer polyadenylate was not detected. Most of the adenylate-rich sequence is associated with the large mitochondrial rRNA. The remainder is associated with the 10-12S group of transcripts

  1. Quality control of fifteen probiotic products containing Saccharomyces boulardii.

    Science.gov (United States)

    Vanhee, L M E; Goemé, F; Nelis, H J; Coenye, T

    2010-11-01

    The yeast Saccharomyces boulardii is used as a probiotic for the prevention and treatment of diarrhoea. In this study, the quality of 15 probiotic products containing S. boulardii was verified. Using microsatellite typing, the identity of all Saccharomyces strains in the products was confirmed as S. boulardii. Additionally, solid-phase cytometry (SPC) and a plate method were used to enumerate S. boulardii cells. SPC was not only able to produce results more rapidly than plating (4h compared to 48h) but the cell counts obtained with SPC were significantly higher than the plate counts. Finally, we found that boulardii cells survived 120min in gastric conditions and storage for 3months at 40°C with 75% relative humidity. We developed a SPC method for the quantification of viable S. boulardii cells in probiotics. Additionally, we demonstrated that gastric conditions and storage have a marked effect on the viability of the yeast cells.   To our knowledge, this is the first time SPC is used for the quality control of probiotics with S. boulardii. Additionally, we demonstrated the need for gastric protection and accurate storage. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  2. PROBİYOTİK MAYA : SACCHAROMYCES BOULARDİİ

    OpenAIRE

    Alkan, Rezan

    2013-01-01

    Probiyotikler uygun miktarlarda kullanıldığında konakçı sağlığı üzerinde yararları olan, bağırsakta canlı kalabilen ,sindirime dirençli bakteri ve maya gibi canlı mikroorganizmalar olarak tanımlanmaktadır. Saccharomyces boulardii  patojen olmayan bir maya olup, tedavi edici olarak kullanılmaktadır. Kontrollü olarak yapılan klinik çalışmalarda S.boulardii’nin çeşitli bağırsak hastalıklarının önlenmesi ve ...

  3. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  4. Saccharomyces cerevisiae of palm wine-enhanced ethanol production by using mutagens

    International Nuclear Information System (INIS)

    Uma, V.; Polasa, H.

    1990-01-01

    The newly isolated Saccharomyces cerevisiae of palm wine produced enhanced amounts of ethanol when cells were UV-irradiated and treated with N-methyl-N-nitro-N-nitrosoguanidine. A further increase of ethanol was observed in yeast extract, peptone, dextrose medium fortified with yeast extract, skimmed milk and soya flour. (author). 9 refs

  5. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations

    DEFF Research Database (Denmark)

    Møller, Kasper; Sharif, M.Z.; Olsson, Lisbeth

    2004-01-01

    Heterologous protein production by the yeast Saccharomyces kluyveri was investigated under aerobic glucose-limited conditions. alpha-Amylase from Aspergillus oryzae was used as model protein and the gene was expressed from a S. cerevisiae 2 mu plasmid. For comparison, strains of both S. kluyveri ...

  6. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts.

    Science.gov (United States)

    Chang, Shang-Lin; Leu, Jun-Yi; Chang, Tien-Hsien

    2015-08-01

    Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double-stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co-evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co-evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species. © 2015 John Wiley & Sons Ltd.

  7. Catheter-related Saccharomyces cerevisiae Fungemia Following Saccharomyces boulardii Probiotic Treatment: In a child in intensive care unit and review of the literature

    Directory of Open Access Journals (Sweden)

    Serkan Atıcı

    2017-03-01

    Full Text Available Although Saccharomyces boulardii is usually a non-pathogenic fungus, in rare occasions it can cause invasive infection in children. We present the case of an 8-year-old patient in pediatric surgical intensive care unit who developed S. cerevisiae fungemia following probiotic treatment containing S. boulardii. Caspofungin was not effective in this case and he was treated with amphotericin B. We want to emphasize that physicians should be careful about probiotic usage in critically ill patients.

  8. Catheter-related Saccharomyces cerevisiae Fungemia Following Saccharomyces boulardii Probiotic Treatment: In a child in intensive care unit and review of the literature.

    Science.gov (United States)

    Atıcı, Serkan; Soysal, Ahmet; Karadeniz Cerit, Kıvılcım; Yılmaz, Şerife; Aksu, Burak; Kıyan, Gürsu; Bakır, Mustafa

    2017-03-01

    Although Saccharomyces boulardii is usually a non-pathogenic fungus, in rare occasions it can cause invasive infection in children. We present the case of an 8-year-old patient in pediatric surgical intensive care unit who developed S. cerevisiae fungemia following probiotic treatment containing S. boulardii . Caspofungin was not effective in this case and he was treated with amphotericin B. We want to emphasize that physicians should be careful about probiotic usage in critically ill patients.

  9. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural

    OpenAIRE

    Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin?Ho; Kim, Kyoung Heon

    2016-01-01

    Summary Furfural, one of the most common inhibitors in pre?treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on y...

  10. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    Science.gov (United States)

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Milne, N.; Luttik, M.A.H.; Cueto Rojas, H.F.; Wahl, A.; Van Maris, A.J.A.; Pronk, J.T.; Daran, J.G.

    2015-01-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential

  12. Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Plate, Iben; Albertsen, Line; Lisby, Michael

    2008-01-01

    Rad52 is essential for all homologous recombination and DNA double strand break repair events in Saccharomyces cerevisiae. This protein is multifunctional and contains several domains that allow it to interact with DNA as well as with different repair proteins. However, it has been unclear how Rad...

  13. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali; Maury, Jerome; Patil, Kiran Raosaheb

    2009-01-01

    A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framework...

  14. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains.

    Science.gov (United States)

    Monerawela, Chandre; James, Tharappel C; Wolfe, Kenneth H; Bond, Ursula

    2015-03-01

    Lager yeasts, Saccharomyces pastorianus, are interspecies hybrids between S. cerevisiae and S. eubayanus and are classified into Group I and Group II clades. The genome of the Group II strain, Weihenstephan 34/70, contains eight so-called 'lager-specific' genes that are located in subtelomeric regions. We evaluated the origins of these genes through bioinformatic and PCR analyses of Saccharomyces genomes. We determined that four are of cerevisiae origin while four originate from S. eubayanus. The Group I yeasts contain all four S. eubayanus genes but individual strains contain only a subset of the cerevisiae genes. We identified S. cerevisiae strains that contain all four cerevisiae 'lager-specific' genes, and distinct patterns of loss of these genes in other strains. Analysis of the subtelomeric regions uncovered patterns of loss in different S. cerevisiae strains. We identify two classes of S. cerevisiae strains: ale yeasts (Foster O) and stout yeasts with patterns of 'lager-specific' genes and subtelomeric regions identical to Group I and II S. pastorianus yeasts, respectively. These findings lead us to propose that Group I and II S. pastorianus strains originate from separate hybridization events involving different S. cerevisiae lineages. Using the combined bioinformatic and PCR data, we describe a potential classification map for industrial yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  15. Magnetically altered ethanol fermentation capacity of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Galonja-Corghill Tamara

    2009-01-01

    Full Text Available We studied the effect of static magnetic fields on ethanol production by yeast Saccharomyces cerevisiae 424A (LNH-ST using sugar cane molasses during the fermentation in an enclosed bioreactor. Two static NdFeB magnets were attached to a cylindrical tube reactor with their opposite poles (north to south, creating 150 mT magnetic field inside the reactor. Comparable differences emerged between the results of these two experimental conditions. We found ethanol productivity to be 15% higher in the samples exposed to 150 mT magnetic field.

  16. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has

  17. Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Eijsma, B.; Hofstra, H.; Huis in 't Veld, J.H.J.; Vossen, J.M.B.M. van der

    1996-01-01

    Discrimination of strains within the species Saccharomyces cerevisiae was demonstrated by the use of four different techniques to type 15 strains isolated from spoiled wine and beer. Random amplified polymorphic DNA with specific oligonucleotides and PCR fingerprinting with the microsatellite

  18. Novel Pathway for Alcoholic Fermentation of 8-Gluconolactone in the Yeast Saccharomyces bulderi

    NARCIS (Netherlands)

    Dijken, van J.P.; Tuijl, van A.; Luttik, M.A.H.; Middelhoven, W.J.; Pronk, J.T.

    2002-01-01

    Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments -gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for -gluconolactone fermentation operates in this yeast. In this pathway, -gluconolactone is first reduced to glucose via an NADPH-dependent

  19. mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stevens, A.

    1980-01-01

    By use of [ 3 H]methyl-5'-capped [ 14 C]mRNA from yeast as a substrate, a decapping enzyme activity has been detected in enzyme fractions derived from a high salt wash of ribosomes of Saccharomyces cerevisiae. The product of the decapping reaction is [ 3 H]m 7 GDP. That the enzyme is not a non-specific pyrophosphatase is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed

  20. Pathways for Holliday Junction Processing during Homologous Recombination in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ashton, Thomas M; Mankouri, Hocine W; Heidenblut, Anna

    2011-01-01

    The Saccharomyces cerevisiae Rmi1 protein is a component of the highly conserved Sgs1-Top3-Rmi1 complex. Deletion of SGS1, TOP3, or RMI1 is synthetically lethal when combined with the loss of the Mus81-Mms4 or Slx1-Slx4 endonucleases, which have been implicated in Holliday junction (HJ) resolutio...

  1. Identification and regulation of genes involved in anaerobic growth of Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Snoek, Isidora Sophia Ishtar

    2007-01-01

    Saccharomyces cerevisiae is one of the few yeast species that can grow equally well without molecular oxygen (anaerobic) as with this compound present (aerobic). This property has made it one of the most abundantly used yeasts in industry, since anaerobic incubation plays a major part in alcohol and

  2. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.

    Science.gov (United States)

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  3. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  4. Characterization of an MMS sensitive mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.S.

    1979-01-01

    We have characterized a methyl methanesulfonate sensitive mutant of the yeast Saccharomyces cerevisiae in order to learn more about DNA repair and mutagenesis in this organism. The mutation, designated mms3-1, also confers sensitivity to ultraviolet light and to ethyl methanesulfonate in both haploids and homozygous diploids. Its effect on γ-ray sensitivity, however, is a function of the ploidy of the cell and its effect on induced mutation is a function of both the ploidy of the cell and the nature of the inducing agent. Our major findings are discussed. Our data indicate that: (1) Saccharomyces cerevisiae has an error prone pathway for the repair of uv damage controlled by the MMS3 gene product operating in and only in, and possibly induced by conditions present only in, a/α diploids; (2) in diploids, at least, there exists at least one step in the error prone repair of uv induced damage which is different from a step in the error prone repair of EMS induced damage; (3) a/α mms3-1/mms3-1 diploids may be defective in a step common to the repair of mutagenic lesions following uv irradiation and lethal lesions following γ irradiation; and (4) there are steps in the repair of MMS induced lethal damage that are different from steps in the repair of EMS induced lethal damage

  5. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  6. Bioethanol production from starchy biomass by direct fermentation using saccharomyces diastaticus in batch free and immobilized cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilonzo, P.M.; Margaritis, A. [University of Western Ontario, London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Yu, J.; Ye, Q. [East China Univ. of Science and Technology, Shanghai (China). Biochemical Engineering Research Inst. and State Key Lab

    2006-07-01

    The feasibility of using amylolytic yeasts for the direct fermentation of starchy biomass to ethanol was discussed. Although amylolytic yeasts such as Saccharomycopsis, Lipomyces, and Schwaniomyces secrete both {alpha}-amylase and glucoamylase enzymes that synergistically enhance starch degradation, they are not suitable for industrial bio-ethanol production because of low tolerance for ethanol and slow fermentation rate. For that reason, this study examined the direct ethanol fermentation of soluble starch or dextrin with the amylolytic yeast Saccharomyces diastaticus in batch free and immobilized cells systems. Saccharomyces diastaticus secretes glucoamylase and can therefore assimilate and ferment starch and starch-like biomass. The main focus of the study was on parameters leading to higher ethanol yields from high concentration of dextrin and soluble starch using batch cultures. A natural attachment method was proposed in which polyurethane foam sheets were used as the carrier for amylolytic yeasts immobilization in ethanol fermentations. The support was chosen because it was inexpensive, autoclavable, pliable and could be tailored to suit process requirements regarding net surface charge, shape and size. It was found that Saccharomyces diastaticus was very efficient in terms of fermentation of high initial concentrations of dextrin or soluble starch. Higher concentrations of ethanol were produced. In batch fermentations, the cells fermented high dextrin concentrations more efficiently. In particular, in batch fermentation, more than 92 g-L of ethanol was produced from 240 g-L of dextrin, at conversion efficiency of 90 per cent. The conversion efficiency decreased to 60 per cent but a higher final ethanol concentration of 147 g/L was attained with a medium containing 500 g/L of dextrin. In an immobilized cell bioreactor, Saccharomyces diastaticus produced 83 g/L of ethanol from 240 g/L of dextrin, corresponding to ethanol volumetric productivity of 9.1 g

  7. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    DEFF Research Database (Denmark)

    Sanchez, R.G.; Karhumaa, Kaisa; Fonseca, C.

    2010-01-01

    Background: Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. Results: Evolutionary engineering was used...... to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate...... of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed...

  8. Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress

    Czech Academy of Sciences Publication Activity Database

    Pérez-Torrado, R.; Oliveira, B. M.; Zemančíková, Jana; Sychrová, Hana; Querol, A.

    2016-01-01

    Roč. 7, Mar 31 (2016), s. 435 ISSN 1664-302X R&D Projects: GA ČR(CZ) GA15-03708S EU Projects: European Commission(XE) 264717 - CORNUCOPIA Institutional support: RVO:67985823 Keywords : Saccharomyces * stress tolerance * glycerol * gene expression Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  9. Intracellular pH distribution as a cell health indicator in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Aabo, Thomas; Glückstad, Jesper; Siegumfeldt, Henrik

    2011-01-01

    .d.(pHint)) to describe the internal pH distributions. The cellular pH distributional response to external stress such as heat has not previously been determined. In this study, the intracellular pH (pHi) and the s.d.(pHint) of Saccharomyces cerevisiae cells exposed to supralethal temperatures were measured using...

  10. Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species.

    Science.gov (United States)

    Peris, David; Arias, Armando; Orlić, Sandi; Belloch, Carmela; Pérez-Través, Laura; Querol, Amparo; Barrio, Eladio

    2017-03-01

    Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae.

    Science.gov (United States)

    Strope, Pooja K; Kozmin, Stanislav G; Skelly, Daniel A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-12-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    Science.gov (United States)

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  13. Amperometric Biosensor for Monitoring Respiration Activity of Saccharomyces cerevisiae in the Presence of Cobalt and Zinc

    Directory of Open Access Journals (Sweden)

    Miroslav Mikšaj

    2002-01-01

    Full Text Available For efficient control of heavy metal concentrations electrochemical methods, such as polarography and related techniques, are applied. Their advantages are simplicity, short analysis time and small quantities of samples needed. The presence of some heavy metals, such as zinc and cobalt, accelerates the growth of yeast. For the measurements of concentration changes, amperometric biosensor containing yeast Saccharomyces cerevisiae was used. The influence of zinc and cobalt on respiratory activity of the yeast Saccharomyces cerevisiae was estimated by measuring oxygen in the solution that was earlier enriched with cobalt or zinc. Measurements were performed using modified Clark’s oxygen electrode and the investigated concentrations of cobalt and zinc were up to 100 mg/L.

  14. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    Science.gov (United States)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  15. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    Science.gov (United States)

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  16. Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts.

    Science.gov (United States)

    Schnierda, T; Bauer, F F; Divol, B; van Rensburg, E; Görgens, J F

    2014-05-01

    The impact of different nitrogen and carbon sources on biomass production of the non-Saccharomyces wine yeast species Lachancea thermotolerans, Metschnikowia pulcherrima and Issatchenkia orientalis was assessed. Using a molasses-based medium, yeast extract and corn steep liquor as well as ammonium sulphate and di-ammonium phosphate (DAP) as nitrogen sources were compared in shake-flask cultures. A medium with 20 g l⁻¹ sugar (diluted molasses) and 500 mg l⁻¹ total yeast assimilable nitrogen, from yeast extract, gave the highest biomass concentrations and yields. Invertase pretreatment was required for cultures of M. pulcherrima and I. orientalis, and respective biomass yields of 0.7 and 0.8 g g⁻¹ were achieved in aerobic bioreactor cultures. The absence of ethanol production suggested Crabtree-negative behaviour by these yeasts, whereas Crabtree-positive behaviour by L. thermotolerans resulted in ethanol and biomass concentrations of 5.5 and 11.1 g l⁻¹, respectively. Recent studies demonstrate that non-Saccharomyces yeasts confer positive attributes to the final composition of wine. However, optimal process conditions for their biomass production have not been described, thereby limiting commercial application. In this study, industrial media and methods of yeast cultivation were investigated to develop protocols for biomass production of non-Saccharomyces yeast starter cultures for the wine industry. © 2014 The Society for Applied Microbiology.

  17. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for the industrial wine production

    Directory of Open Access Journals (Sweden)

    Mariana eTristezza

    2016-05-01

    Full Text Available In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of

  18. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  19. [A prospective control study of Saccharomyces boulardii in prevention of antibiotic-associated diarrhea in the older inpatients].

    Science.gov (United States)

    Zhang, D M; Xu, B B; Yu, L; Zheng, L F; Chen, L P; Wang, W

    2017-06-01

    Objective: To study the value of Saccharomyces boulardii for the prevention of antibiotic-associated diarrhea in older inpatients. Methods: A total of 163 older patients who were treated with wide-spectrum antibiotics at least three days during January 2014 to December 2015 were randomly divided into control and study group. In study group, 81 patients were administrated with oral Saccharomyces boulardii 500 mg twice a day for 21 days. The control group was of no intervention. Morbidity rate of antibiotic-associated diarrhea and Clostridium difficile -associated diarrhea, frequency and duration of diarrhea were recorded. Results: The incidence of antibiotic-associated diarrhea in study group was significantly lower than that in control group [14.8%(12/81) vs 28.0%(23/82), P 0.05] in two groups. The frequency and duration of diarrhea in the study group were significantly lower and shorter than those in control group[(4.3±1.7) times/day vs (6.9±2.0) times/day; (3.0±1.1) days vs (5.7±1.8) days, both P Saccharomyces boulardii may reduce the incidence of antibiotic-associated diarrhea therefore improving the symptom of diarrhea in older inpatients.

  20. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  1. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Science.gov (United States)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  2. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Al-Saryi, Nadal A.; Al-Hejjaj, Murtakab Y.; van Roermund, Carlo W. T.; Hulmes, Georgia E.; Ekal, Lakhan; Payton, Chantell; Wanders, Ronald J. A.; Hettema, Ewald H.

    2017-01-01

    In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid beta-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the

  3. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    NARCIS (Netherlands)

    Jamalzadeh, E.; Verheijen, P.J.; Heijnen, J.J.; Van Gulik, W.M.

    2011-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a

  4. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion

    Science.gov (United States)

    Saccharomyces physiology and fermentation related properties vary broadly among industrial strains. In this study, six industrial strains of varied genetic background were engineered to ferment xylose. Aerobic growth rates on xylose were 0.040 h**-1 to 0.167 h**-1. Fermentation of xylose, glucose/xy...

  5. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    Science.gov (United States)

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  6. Pretreatment with Saccharomyces boulardii does not prevent the experimental mucositis in Swiss mice.

    Science.gov (United States)

    Maioli, Tatiani Uceli; de Melo Silva, Brenda; Dias, Michelle Nobre; Paiva, Nivea Carolina; Cardoso, Valbert Nascimento; Fernandes, Simone Odilia; Carneiro, Cláudia Martins; Dos Santos Martins, Flaviano; de Vasconcelos Generoso, Simone

    2014-04-11

    The antimetabolite chemotherapy 5-Fluorouracil is one of the most commonly prescribed drugs in clinical cancer treatment. Although this drug is not specific for cancer cells and also acts on healthy cells, it can cause mucositis, a common collateral effect. Dysbiosis has also been described in 5-fluorouracil-induced mucositis and is likely to contribute to the overall development of mucositis. In light of this theory, the use of probiotics could be a helpful strategy to alleviate mucositis. So the aim of this study was evaluate the impact of the probiotic Saccharomyces boulardii in a model of mucositis. After induced of mucositis, mice from the Mucositis groups showed a decrease in food consumption (p Saccharomyces boulardii did not reverse this effect (p > 0.05). Mucositis induced an increase in intestinal permeability and intestinal inflammation (p  0.05) in mice pretreated with S. boulardii. S. boulardii was not able to prevent the effects of experimental mucositis induced by 5- Fluorouracil.

  7. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Lages, Nuno; Oldiges, M.

    2009-01-01

    to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH...... oxidation by introducing NADH oxidase or alternative oxidase, its ATP-mediated conversion to NADPH using NADH kinase as well as the interconversion of NADH and NADPH independent of ATP by the soluble, non-proton-translocating bacterial transhydrogenase. Decreasing cytosolic NADH level lowered glycerol...

  8. Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production.

    Science.gov (United States)

    Cao, Tian-Shu; Chi, Zhe; Liu, Guang-Lei; Chi, Zhen-Ming

    2014-01-01

    It has been reported that trehalose plays an important role in stress tolerance in yeasts. Therefore, in order to construct a stably recombinant Saccharomyces sp. W0 with higher ethanol tolerance, the TPS1 gene encoding 6-phosphate-trehalose synthase cloned from Saccharomycopsis fibuligera A11 was ligated into the 18S rDNA integration vector pMIRSC11 and integrated into chromosomal DNA of Saccharomyces sp. W0. The transformant Z8 obtained had the content of 6.23 g of trehalose/100 g of cell dry weight, while Saccharomyces sp. W0 only contained 4.05 g of trehalose/100 g of cell dry weight. The transformant Z8 also had higher ethanol tolerance (cell survival was 25.1 % at 18 ml of ethanol/100 ml of solution) and trehalose-6-phosphate synthase (Tps1) activity (1.3 U/mg) and produced more ethanol (16.4 ml of ethanol/100 ml of medium) than Saccharomyces sp. W0 (cell survival was 12.1 % at 18 ml of ethanol/100 ml of solution, Tps1 activity was 0.8 U/mg and the produced ethanol concentration was 14.2 ml of ethanol/100 ml of medium) under the same conditions. The results show that trehalose indeed can play an important role in ethanol tolerance and ethanol production by Saccharomyces sp. W0.

  9. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Background: The limited xylose utilizing ability of native Saccharomyces cerevisiae has been a major obstacle for efficient cellulosic ethanol production from lignocellulosic materials. Haploid laboratory strains of S. cerevisiae are commonly used for genetic engineering to enable its xylose utiliza...

  10. Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae.

    OpenAIRE

    Solimene, R; Guerrini, A M; Donini, P

    1980-01-01

    Short-chain acid-soluble polyphosphates were extracted from growing cultures of Saccharomyces cerevisiae, and the changes in the levels of these compounds were determined. The production of acid-soluble polyphosphates correlated with the mitochondrial activities since it occurred in two bursts in respiration-competent yeast cells and in only one burst in respiration-deficient yeast cells. The possible role of these compounds is discussed.

  11. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    International Nuclear Information System (INIS)

    Zhang Yunsong; Liu Weiguo; Zhang Li; Wang Meng; Zhao Maojun

    2011-01-01

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption capacity of the EMS for the heavy metal ions increased with increasing solution pH, and the maximum adsorption capacity (88.16 mg/g for Pb 2+ , 40.72 mg/g for Cd 2+ ) at 10 deg. C was found to occur at pH 5.5 and 6.0, respectively. The adsorption process followed the Langmuir isotherm model. The regeneration experiments revealed that the EMS could be successfully reused.

  12. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis

    Czech Academy of Sciences Publication Activity Database

    Laun, P.; Pichová, Alena; Madeo, F.; Fuchs, J.; Ellinger, A.; Kohlwein, S.; Dawes, I.; Fröhlich, K. U.; Breitenbach, M.

    2001-01-01

    Roč. 39, č. 5 (2001), s. 1166-1173 ISSN 0950-382X R&D Projects: GA ČR GA204/97/0541 Institutional research plan: CEZ:AV0Z5020903 Keywords : Saccharomyces cerevisiae * genetic changes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.398, year: 2001

  13. Induction and catabolite repression of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis

    NARCIS (Netherlands)

    Wijk, R. van; Ouwehand, J.; Bos, T. van den; Koningsberger, V.V.

    1969-01-01

    1. 1. Kinetic data on the repression, the derepression and the induction of α-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis suggested that some site other than the stereospecific site for the induction by maltose was involved in the repression by glucose. 2. 2. A study of the

  14. Growth rate-regulated expression of the hexose transporter HXT5 in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Verwaal, René

    2003-01-01

    Glucose, which is the most preferred carbon source for the yeast Saccharomyces cerevisiae, is transported across the plasma membrane into cells by hexose transporter (Hxt) proteins. The Hxt proteins are encoded by a multigene family consisting of 20 members. It was shown previously that HXT1-4 and

  15. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawai, Shigeyuki; Urban, Jörg; Piccolis, Manuele; Panchaud, Nicolas; De Virgilio, Claudio; Loewith, Robbie

    2011-10-01

    TORC1-dependent phosphorylation of Saccharomyces cerevisiae Sch9 was dramatically reduced upon exposure to a protonophore or in respiration-incompetent ρ(0) cells but not in respiration-incompetent pet mutants, providing important insight into the molecular mechanisms governing interorganellar signaling in general and retrograde signaling in particular.

  16. Survival of Saccharomyces cerevisiae after treatment with the restriction endonuclease Alu I

    International Nuclear Information System (INIS)

    Winckler, K.; Bach, B.; Obe, G.

    1988-01-01

    Treatment of yeast cells proficient in the repair of radiation damage (Saccharomyces cervisiae) with the restriction endonuclease Alu I leads to a positive dose-effect relationship between inactivation level and enzyme concentration. The data suggest an uptake of the active restriction enzyme into the cells and a relationship between induction of DNA double-strand breaks and cell killing. (author)

  17. Saccharomyces cerevisiae strains tor second-generation ethanol production : from academie exploration to industrial implementation

    NARCIS (Netherlands)

    Jansen, Mickel L.A.; Bracher, J.M.; Papapetridis, I.; Verhoeven, M.D.; de Bruijn, J.A.; de Waal, P.; van Maris, A.J.A.; Klaassen, P; Pronk, J.T.

    2017-01-01

    The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these

  18. A synthetic hybrid promoter for xylose-regulated control of gene expression in Saccharomyces yeasts

    Science.gov (United States)

    Metabolism of non-glucose carbon sources is often highly regulated at the transcriptional and post-translational levels. This level of regulation is lacking in Saccharomyces cerevisiae strains engineered to metabolize xylose. To better control transcription in S. cerevisiae, the xylose-dependent, DN...

  19. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  20. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    Science.gov (United States)

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Truncation of Gal4p explains the inactivation of the GAL/MEL regulon in both Saccharomyces bayanus and some Saccharomyces cerevisiae wine strains.

    Science.gov (United States)

    Dulermo, Rémi; Legras, Jean-Luc; Brunel, François; Devillers, Hugo; Sarilar, Véronique; Neuvéglise, Cécile; Nguyen, Huu-Vang

    2016-09-01

    In the past, the galactose-negative (Gal(-)) phenotype was a key physiological character used to distinguish Saccharomyces bayanus from S. cerevisiae In this work, we investigated the inactivation of GAL gene networks in S. bayanus, which is an S. uvarum/S. eubayanus hybrid, and in S. cerevisiae wine strains erroneously labelled 'S. bayanus'. We made an inventory of their GAL genes using genomes that were either available publicly, re-sequenced by us, or assembled from public data and completed with targeted sequencing. In the S. eubayanus/S. uvarum CBS 380(T) hybrid, the GAL/MEL network is composed of genes from both parents: from S. uvarum, an otherwise complete set that lacks GAL4, and from S. eubayanus, a truncated version of GAL4 and an additional copy of GAL3 and GAL80 Similarly, two different truncated GAL4 alleles were found in S. cerevisiae wine strains EC1118 and LalvinQA23. The lack of GAL4 activity in these strains was corrected by introducing a full-length copy of S. cerevisiae GAL4 on a CEN4/ARS plasmid. Transformation with this plasmid restored galactose utilisation in Gal(-) strains, and melibiose fermentation in strain CBS 380(T) The melibiose fermentation phenotype, formerly regarded as characteristic of S. uvarum, turned out to be widespread among Saccharomyces species. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens

    2004-01-01

    was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  3. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  4. Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Zara, Severino; Gross, Michael K; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T

    2010-06-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids.

  5. Screening of β-Glucosidase and β-Xylosidase Activities in Four Non-Saccharomyces Yeast Isolates.

    Science.gov (United States)

    López, María Consuelo; Mateo, José Juan; Maicas, Sergi

    2015-08-01

    The finding of new isolates of non-Saccharomyces yeasts, showing beneficial enzymes (such as β-glucosidase and β-xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non-Saccharomyces yeasts. Four isolates were selected because of their both high β-glucosidase and β-xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB-medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β-glucosidase and β-xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β-glucosidase and β-xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3-folds) when wines were treated with non-Saccharomyces isolates. In detail, terpineol, 4-vinyl-phenol and 2-methoxy-4-vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2-phenyl ethanol than those inoculated with other yeasts. © 2015 Institute of Food Technologists®

  6. Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid.

    Science.gov (United States)

    Wang, X D; Bohlscheid, J C; Edwards, C G

    2003-01-01

    To understand the impact of assimilable nitrogen and pantothenic acid on fermentation rate and synthesis of volatile compounds by Saccharomyces under fermentative conditions. A 2 x 3 factorial experimental design was employed with the concentrations of yeast assimilable nitrogen (YAN) (60 and 250 mg l(-1)) and pantothenic acid (10, 50 and 250 microg l(-1)) as variables. In media containing 250 microg l(-1) pantothenic acid, H2S production by two different species of Saccharomyces decreased when YAN was increased from 60 to 250 mg l(-1). Conversely, H2S production was significantly higher when the concentration of assimilable nitrogen was increased if pantothenic acid was deficient (10 or 50 microg l(-1)). Yeast synthesis of other volatile compounds were impacted by both assimilable nitrogen and pantothenic acid. While growth and fermentative rate of Saccharomyces was more influenced by nitrogen than by pantothenic acid, complicated interactions exist between these nutrients that affect the synthesis of volatile compounds including H2S. This study has important implications for the winemaking industry where a better understanding of the nutritional requirements of Saccharomyces is necessary to reduce fermentation problems and to improve final product quality.

  7. Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Skrekas, Christos; Nielsen, Jens

    2018-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) technology has greatly accelerated the field of strain engineering. However, insufficient efforts have been made toward developing robust multiplexing tools in Saccharomyces cerevisiae. Here, we exploit the RNA processing capacity...

  8. [Saccharomyces cerevisiae infections].

    Science.gov (United States)

    Souza Goebel, Cristine; de Mattos Oliveira, Flávio; Severo, Luiz Carlos

    2013-01-01

    Saccharomyces cerevisiae is an ubiquitous yeast widely used in industry and it is also a common colonizer of the human mucosae. However, the incidence of invasive infection by these fungi has significantly increased in the last decades. To evaluate the infection by S. cerevisiae in a hospital in southern Brazil during a period of 10 years (2000-2010). Review of medical records of patients infected by this fungus. In this period, 6 patients were found to be infected by S. cerevisiae. The age range of the patients was from 10 years to 84. Urine, blood, ascitic fluid, peritoneal dialysis fluid, and esophageal biopsy samples were analyzed. The predisposing factors were cancer, transplant, surgical procedures, renal failure, use of venous catheters, mechanical ventilation, hospitalization in Intensive Care Unit, diabetes mellitus, chemotherapy, corticosteroid use, and parenteral nutrition. Amphotericin B and fluconazole were the treatments of choice. Three of the patients died and the other 3 were discharged from hospital. We must take special precautions in emerging infections, especially when there are predisposing conditions such as immunosuppression or patients with serious illnesses. The rapid and specific diagnosis of S. cerevisiae infections is important for therapeutic decision. Furthermore, epidemiological and efficacy studies of antifungal agents are necessary for a better therapeutic approach. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  9. Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae : Xylose Isomerase as a Key Component

    NARCIS (Netherlands)

    Van Maris, A.J.A.; Winkler, A.A.; Kuyper, M.; De Laat, W.T.; Van Dijken, J.P.; Pronk, J.T.

    2007-01-01

    Metabolic engineering of Saccharomyces cerevisiae for ethanol production from d-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment d-xylose, the ketoisomer d-xylulose can be metabolised slowly.

  10. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  11. Pengaruh jenis inokulum Aspergillus niger, Saccharomyces cereviseae dan lama fermentasi terhadap komposisi nutrisi ampas Putak (Corypha gebanga

    Directory of Open Access Journals (Sweden)

    Daniel Soares

    2018-03-01

    Full Text Available The experiment was to determine the composition of putak waste nutrein to increase through fermentation by Aspergillus niger, Saccharomyces cereviseae and its combinations. The experiment method used laboratory experimental method by applying Nested Plot Random Design. The first factor is inoculum (P: Aspergillus niger, Saccharomyces cereviseae and their combination on the level of 1,5% and the incubation time length (W: 0, 24, 48, 72 hours as the second factor. Variables measured of putak waste fiber component analysis. The results showed that the type of inoculum effect on fiber component (Neutral Detergent Fiber / NDF, Hemicellulose and Lignin is very significantly influence (P0,05 to ADF, Hemicellulose, Cellulose and Lignin.

  12. A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers.

    Science.gov (United States)

    Mertens, Stijn; Steensels, Jan; Saels, Veerle; De Rouck, Gert; Aerts, Guido; Verstrepen, Kevin J

    2015-12-01

    Lager beer is the most consumed alcoholic beverage in the world. Its production process is marked by a fermentation conducted at low (8 to 15°C) temperatures and by the use of Saccharomyces pastorianus, an interspecific hybrid between Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. Recent whole-genome-sequencing efforts revealed that the currently available lager yeasts belong to one of only two archetypes, "Saaz" and "Frohberg." This limited genetic variation likely reflects that all lager yeasts descend from only two separate interspecific hybridization events, which may also explain the relatively limited aromatic diversity between the available lager beer yeasts compared to, for example, wine and ale beer yeasts. In this study, 31 novel interspecific yeast hybrids were developed, resulting from large-scale robot-assisted selection and breeding between carefully selected strains of S. cerevisiae (six strains) and S. eubayanus (two strains). Interestingly, many of the resulting hybrids showed a broader temperature tolerance than their parental strains and reference S. pastorianus yeasts. Moreover, they combined a high fermentation capacity with a desirable aroma profile in laboratory-scale lager beer fermentations, thereby successfully enriching the currently available lager yeast biodiversity. Pilot-scale trials further confirmed the industrial potential of these hybrids and identified one strain, hybrid H29, which combines a fast fermentation, high attenuation, and the production of a complex, desirable fruity aroma. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  14. Photoreactivity in Saccharomyces cerevisiae cells after irradiation with 25 MeV electrons

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Seleva, N.G.; Myasnik, M.N.; Kabakova, N.M.

    1986-01-01

    Significant photoreactivation was noted in radio- and UV-sensitive rad-mutants of Saccharomyces cerevisiae cells exposed to 25 MeV electrons. In order to make the photoreactivable damage be manifest anoxic conditions of irradiation should be chosen as optimal ones. It was shown that the low oxygen effect was partially associated with the photoreactivable damage involved in the lethal effect of ionizing radiation

  15. Ethanol-Independent Biofilm Formation by a Flor Wine Yeast Strain of Saccharomyces cerevisiae▿

    Science.gov (United States)

    Zara, Severino; Gross, Michael K.; Zara, Giacomo; Budroni, Marilena; Bakalinsky, Alan T.

    2010-01-01

    Flor strains of Saccharomyces cerevisiae form a biofilm on the surface of wine at the end of fermentation, when sugar is depleted and growth on ethanol becomes dependent on oxygen. Here, we report greater biofilm formation on glycerol and ethyl acetate and inconsistent formation on succinic, lactic, and acetic acids. PMID:20435772

  16. Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Yu, Jing; Jiang, Jiaxi; Ji, Wangming; Li, Yuyang; Liu, Jianping

    2011-01-01

    Using inulin (polyfructose) obtained from Jerusalen artichokes, we have produced fructose free of residual glucose using a recombinant inulinase-secreting strain of Saccharomyces cerevisiae in a one-step fermentation of Jerusalem artichoke tubers. For producing fructose from inulin, a recombinant inulinase-producing Saccharomyce cerevisiae strain was constructed with a deficiency in fructose uptake by disruption of two hexokinase genes hxk1 and hxk2. The inulinase gene introduced into S. cerevisiae was cloned from Kluyveromyces cicerisporus. Extracellular inulinase activity of the recombinant hxk-mutated S. cerevisiae strain reached 31 U ml(-1) after 96 h growth. When grown in a medium containing Jerusalem artichoke tubers as the sole component without any additives, the recombinant yeast accumulated fructose up to 9.2% (w/v) in the fermentation broth with only 0.1% (w/v) glucose left after 24 h.

  17. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yunsong [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China); Liu Weiguo [Agronomy College, Sichuan Agricultural University, Wenjiang 611130 (China); Zhang Li; Wang Meng [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China); Zhao Maojun, E-mail: yaanyunsong@yahoo.com.cn [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China)

    2011-09-15

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption capacity of the EMS for the heavy metal ions increased with increasing solution pH, and the maximum adsorption capacity (88.16 mg/g for Pb{sup 2+}, 40.72 mg/g for Cd{sup 2+}) at 10 deg. C was found to occur at pH 5.5 and 6.0, respectively. The adsorption process followed the Langmuir isotherm model. The regeneration experiments revealed that the EMS could be successfully reused.

  18. Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed in Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Grossmann, Q.; Opekarová, Miroslava; Nováková, L.; Stolz, J.; Tanner, W.

    2006-01-01

    Roč. 5, č. 6 (2006), s. 945-953 ISSN 1535-9778 R&D Projects: GA MŠk LC545 Institutional research plan: CEZ:AV0Z50200510 Keywords : saccharomyces cerevisiae * plant transport protein * hup1 Subject RIV: EE - Microbiology, Virology Impact factor: 3.707, year: 2006

  19. Physiological impact and context dependency of transcriptional responses : A chemostat study in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Tai, S.L.

    2007-01-01

    This thesis is a compilation of a four-year PhD project on bakers' yeast (Saccharomyces cerevisiae). Since the entire S. cerevisiae genome sequence became available in 1996, DNA-microarray analysis has become a popular high-information-density tool for analyzing gene expression in this important

  20. High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces.

    Science.gov (United States)

    Alexander, William G; Doering, Drew T; Hittinger, Chris Todd

    2014-11-01

    Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus. Copyright © 2014 by the Genetics Society of America.

  1. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine

    Science.gov (United States)

    Contreras, A.; Hidalgo, C.; Henschke, P. A.; Chambers, P. J.; Curtin, C.

    2014-01-01

    Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in

  2. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Silljé, H H; Paalman, J W; ter Schure, E G; Olsthoorn, S Q; Verkleij, A J; Boonstra, Johannes; Verrips, C T

    Trehalose and glycogen accumulate in Saccharomyces cerevisiae when growth conditions deteriorate. It has been suggested that aside from functioning as storage factors and stress protectants, these carbohydrates may be required for cell cycle progression at low growth rates under carbon limitation.

  3. Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Naesby, Michael; Mortensen, Uffe Hasbro

    2013-01-01

    production in easily fermentable and genetically engineerable organisms, such as Saccharomyces cerevisiae and Escherichia coli are desirable. Rubrofusarin is an orange polyketide pigment that is a common intermediate in many different fungal biosynthetic pathways. RESULTS: In this study, we established...

  4. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae

    OpenAIRE

    Wang, Shi-An; Li, Fu-Li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  5. Benchmark data for identifying N6-methyladenosine sites in the Saccharomyces cerevisiae genome

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-12-01

    Full Text Available This data article contains the benchmark dataset for training and testing iRNA-Methyl, a web-server predictor for identifying N6-methyladenosine sites in RNA (Chen et al., 2015 [15]. It can also be used to develop other predictors for identifying N6-methyladenosine sites in the Saccharomyces cerevisiae genome.

  6. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Novák, Jan; Strašák, Luděk; Fojt, Lukáš; Slaninová, I.; Vetterl, Vladimír

    2007-01-01

    Roč. 70, č. 1 (2007), s. 115-121 ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) IAA4004404; GA AV ČR(CZ) IBS5004107 Institutional research plan: CEZ:AV0Z50040702 Keywords : low-frequency electromagnetic field * yeast * Saccharomyces cerevisiae Subject RIV: BO - Biophysics Impact factor: 2.992, year: 2007

  7. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Keywords: Metabolic engineering, Fatty acid biosynthesis, Fatty acid derivatives, Saccharomyces cerevisiae

  8. The Use of Mixed Populations of Saccharomyces cerevisiae and S. kudriavzevii to Reduce Ethanol Content in Wine: Limited Aeration, Inoculum Proportions, and Sequential Inoculation

    Directory of Open Access Journals (Sweden)

    Javier Alonso-del-Real

    2017-10-01

    Full Text Available Saccharomyces cerevisiae is the most widespread microorganism responsible for wine alcoholic fermentation. Nevertheless, the wine industry is currently facing new challenges, some of them associate with climate change, which have a negative effect on ethanol content and wine quality. Numerous and varied strategies have been carried out to overcome these concerns. From a biotechnological point of view, the use of alternative non-Saccharomyces yeasts, yielding lower ethanol concentrations and sometimes giving rise to new and interesting aroma, is one of the trendiest approaches. However, S. cerevisiae usually outcompetes other Saccharomyces species due to its better adaptation to the fermentative environment. For this reason, we studied for the first time the use of a Saccharomyces kudriavzevii strain, CR85, for co-inoculations at increasing proportions and sequential inoculations, as well as the effect of aeration, to improve its fermentation performance in order to obtain wines with an ethanol yield reduction. An enhanced competitive performance of S. kudriavzevii CR85 was observed when it represented 90% of the cells present in the inoculum. Furthermore, airflow supply of 20 VVH to the fermentation synergistically improved CR85 endurance and, interestingly, a significant ethanol concentration reduction was achieved.

  9. Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory

    DEFF Research Database (Denmark)

    Otero, José Manuel; Cimini, Donatella; Patil, Kiran Raosaheb

    2013-01-01

    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought......-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals....

  10. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione.

    OpenAIRE

    Jamieson, D J

    1992-01-01

    Treatment of Saccharomyces cerevisiae cells with low concentrations of either hydrogen peroxide or menadione (a superoxide-generating agent) induces adaptive responses which protect cells from the lethal effects of subsequent challenge with higher concentrations of these oxidants. Pretreatment with menadione is protective against cell killing by hydrogen peroxide; however, pretreatment with hydrogen peroxide is unable to protect cells from subsequent challenge with menadione. This suggests th...

  11. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Timson, David J; Annapure, Uday S

    2017-07-01

    Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Saccharomyces boulardii probiotic-associated fungemia: questioning the safety of this preventive probiotic's use.

    Science.gov (United States)

    Martin, Isabella W; Tonner, Rita; Trivedi, Julie; Miller, Heather; Lee, Richard; Liang, Xinglun; Rotello, Leo; Isenbergh, Elena; Anderson, Jennifer; Perl, Trish; Zhang, Sean X

    2017-03-01

    We report a case of fungemia in an immunocompetent patient after administration of probiotic containing Saccharomyces boulardii. We demonstrated the strain relatedness of the yeast from the probiotic capsule and the yeast causing fungal infection using genomic and proteomic typing methods. Our study questions the safety of this preventative biotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Nijland, Jeroen G; Shin, Hyun Yong; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    AIMS: Optimizing D-xylose transport in Saccharomyces cerevisiae is essential for efficient bioethanol production from cellulosic materials. We have used a gene shuffling approach of hexose (Hxt) transporters in order to increase the affinity for D-xylose. METHODS AND RESULTS: Various libraries were

  14. Exploration of genetic and phenotypic diversity within Saccharomyces uvarum for driving strain improvement in winemaking.

    Science.gov (United States)

    Verspohl, Alexandra; Solieri, Lisa; Giudici, Paolo

    2017-03-01

    The selection and genetic improvement of wine yeast is an ongoing process, since yeast strains should match new technologies in winemaking to satisfy evolving consumer preferences. A large genetic background is the necessary starting point for any genetic improvement programme. For this reason, we collected and characterized a large number of strains belonging to Saccharomyces uvarum. In particular, 70 strains were isolated from cold-stored must samples: they were identified and compared to S. uvarum strains originating from different collections, regarding fermentation profile, spore viability and stress response. The results demonstrate a large biodiversity among the new isolates, with particular emphasis to fermentation performances, genotypes and high spore viability, making the isolates suitable for further genetic improvement programmes. Furthermore, few of them are competitive with Saccharomyces cerevisiae and per se, suitable for wine fermentation, due to their resistance to stress, short lag phase and fermentation by-products.

  15. Suppression by Saccharomyces boulardii of toxigenic Clostridium difficile overgrowth after vancomycin treatment in hamsters.

    Science.gov (United States)

    Elmer, G W; McFarland, L V

    1987-01-01

    Saccharomyces boulardii prevented the development of high counts of Clostridium difficile, high titers of toxin B, and positive latex agglutination tests after cessation of vancomycin treatment for hamsters. The protocol used was designed to stimulate relapse of human C. difficile-associated colitis. S. boulardii was protective in this model. PMID:3566236

  16. Improvement of ethanol-tolerance of haploid Saccharomyces diastaticus

    International Nuclear Information System (INIS)

    Song, S.H.; Kim, K.; Lee, M.W.

    1994-01-01

    Several mutation procedures have been compared to obtain an ethanol-tolerant Saccharomyces diastaticus strain secreting glucoamylase. These procedures include spontaneous mutation, EMS treatment, UV irradiation, and combination of EMS treatment and UV irradiation. All these methods were followed by adaptation of the yeast cells to gradually higher ethanol concentration. Among these procedures, the combined method of EMS treatment and UV irradiation gave the promising result, i.e. the ethanol tolerance of the yeast increased from 11.5%(v/v) to 14.0%(v/v). Respiratory deficient petite mutants of industrial and ethanol-tolerant yeast strains have been isolated and hybridized with haploid S. diastaticus strains. The resulting hybrids showed increased ethanol tolerance and starch-fermentability

  17. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Grotkjær, Thomas; Winther, Ole

    2006-01-01

    Growth rate is central to the development of cells in all organisms. However, little is known about the impact of changing growth rates. We used continuous cultures to control growth rate and studied the transcriptional program of the model eukaryote Saccharomyces cerevisiae, with generation time...

  18. Studies of the Saccharomyces cerevisiae Cultivation under Oscillatory Mixing Conditions

    Directory of Open Access Journals (Sweden)

    M?ris Rikmanis

    2005-12-01

    Full Text Available Saccharomyces cerevisiae was cultivated under non-aerated conditions in a 5 l laboratory bioreactor. Using the experimental data and the regression analysis method, some mathematical correlations for stirrer rotational speed oscillation frequency and the reaction of the yeast were established. It has been found that different growth parameters are influenced variously by stirrer rotational speed and stirrer rotational speed oscillation frequency. Stirring oscillations can be among the methods for stimulation of biotechnological processes. The obtained results can be used for designing bioreactors and optimizing working conditions.

  19. A special cell morphology of saccharomyces cerevisiae induced by low-temperature plasma

    International Nuclear Information System (INIS)

    Ling Dajun; Cao Jinxiang

    2003-01-01

    A special cell morphology, cavity-like cells, was found in posterities of Saccharomyces cerevisiae treated by low-temperature air plasma with different powers. The feature of the special morphology indicates that the cavity-like cells may be formed by cellular mutation effect induced by the plasma, instead of direct cellular damage by the plasma. The results suggest that the cellular mutation effect of the low-temperature plasma is a complex process

  20. Excessive by-product formation : A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains

    NARCIS (Netherlands)

    Milne, N.S.W.; Wahl, S.A.; Van Maris, A.J.A.; Pronk, J.T.; Daran, J.M.

    2016-01-01

    It is theoretically possible to engineer Saccharomyces cerevisiae strains in which isobutanol is the predominant catabolic product and high-yielding isobutanol-producing strains are already reported by industry. Conversely, isobutanol yields of engineered S. cerevisiae strains reported in the

  1. Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor

    DEFF Research Database (Denmark)

    Poulsen, Peter; Gaber, Richard F.; Kielland-Brandt, Morten

    2008-01-01

    The Saccharomyces cerevisiae integral membrane protein Ssy1p functions with Ssy5p and Ptr3p to sense extracellular amino acids. Signal transduction leads to processing and nuclear localization of Stp1p and Stp2p, transcriptional activators of many amino acid transporter genes. Ssy1p is structural...

  2. An in vitro assay for (1-->6)-beta-D-glucan synthesis in Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    Vink, E.; Rodriguez-Suarez, R.J.; Gerard-Vincent, M.; Ribas, J.C.; de Nobel, J.G.; van den Ende, H.; Duran, A.; Klis, F.M.; Bussey, H.

    2004-01-01

    (1 --> 6)-beta-D-glucan is a key cell wall component of Saccharomyces cerevisiae and Candida albicans. Many genes are known to affect the levels or structure of this glucan, but their roles and a molecular description of the synthesis of (1 --> 6)-beta-D-glucan remain to be established and a method

  3. In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: Metabolic fluxes and metabolite levels

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2001-01-01

    The dynamics of galactose metabolism in Saccharomyces cerevisiae was studied by analyzing the metabolic response of the CEN.PK 113-7D wild-type strain when exposed to a galactose pulse during aerobic growth in a galactose-limited steady-state cultivation at a dilution rate of 0.097 h(-1). A fast...

  4. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose

    Science.gov (United States)

    Haiying Ni; Jose M. Laplaza; Thomas W. Jeffries

    2007-01-01

    Saccharomyces cerevisiae L2612 transformed with genes for xylose reductase and xylitol dehydrogenase (XYL1 and XYL2) grows well on glucose but very poorly on D-xylose. When a gene for D-xylulokinase (XYL3 or XKS1) is overexpressed, growth on glucose is unaffected, but growth on xylose is blocked. Spontaneous or chemically induced mutants of this engineered yeast that...

  5. Clinical Saccharomyces cerevisiae isolates cannot cross the epithelial barrier in vitro

    DEFF Research Database (Denmark)

    Pérez-Torrado, Roberto; Llopis, Silvia; Jespersen, Lene

    2012-01-01

    Saccharomyces cerevisiae is generally considered to be a safe organism and is essential to produce many different kinds of foods as well as being widely used as a dietary supplement. However, several isolates, which are genetically related to brewing and baking yeasts, have shown virulent traits,...

  6. Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in saccharomyces pastorianus lager brewing yeast

    NARCIS (Netherlands)

    Brickwedde, A.; van den Broek, M.A.; Geertman, Jan Maarten A.; Magalhães, Frederico; Kuijpers, Niels G.A.; Gibson, Brian; Pronk, J.T.; Daran, J.G.

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S.

  7. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production

    OpenAIRE

    Bautista-Rosales, Pedro Ulises; Ragazzo-Sánchez, Juan Arturo; Ruiz-Montañez, Gabriela; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (

  8. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates : Transcriptome analysis of anaerobic retentostat cultures

    NARCIS (Netherlands)

    Boender, L.G.M.; Van Maris, A.J.A.; De Hulster, E.A.F.; Almering, M.J.H.; Van der Klei, I.J.; Veenhuis, M.; De Winde, J.H.; Pronk, J.T.; Daran-Lapujade, P.A.S.

    2011-01-01

    Extremely low specific growth rates (below 0.01 h?1) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at

  9. Utilización de tres niveles de Saccharomyces cerevisiae como prebiótico de origen natural en la dieta de pollos parrilleros

    OpenAIRE

    Cajamarca Huayllazaca, William Mauricio

    2015-01-01

    Esta investigación consiste en evaluar el impacto de la utilización de tres niveles de Saccharomyces cerevisiae incluidos al balanceado comercial, como fuente de alimento para pollos de engorde. Con el fin de mejorar los parámetros productivos como ganancia de peso, conversión alimenticia y que permita obtener una mejor rentabilidad en la producción. This research is to evaluate the impact of using three levels of Saccharomyces cerevisiae included at commercial balanced feed to broilers. I...

  10. Production of volatile and sulfur compounds by ten Saccharomyces cerevisiae strains inoculated in Trebbiano must

    Directory of Open Access Journals (Sweden)

    Francesca ePatrignani

    2016-03-01

    Full Text Available In wines, the presence of sulphur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of Saccharomyces cerevisiae. In addition, the production of sulphur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the ten strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulphur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.

  11. A Gondwanan Imprint on Global Diversity and Domestication of Wine and Cider Yeast Saccharomyces uvarum

    Science.gov (United States)

    Almeida, Pedro; Gonçalves, Carla; Teixeira, Sara; Libkind, Diego; Bontrager, Martin; Masneuf-Pomarède, Isabelle; Albertin, Warren; Durrens, Pascal; Sherman, David; Marullo, Philippe; Hittinger, Chris Todd; Gonçalves, Paula; Sampaio, José Paulo

    2016-01-01

    In addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents. South American isolates contain more genetic diversity than that found in the Northern Hemisphere. Moreover, coalescence analyses suggest that a Patagonian sub-population gave rise to the Holarctic population through a recent bottleneck. Holarctic strains display multiple introgressions from other Saccharomyces species, those from S. eubayanus being prevalent in European strains associated with human-driven fermentations. These introgressions are absent in the large majority of wild strains and gene ontology analyses indicate that several gene categories relevant for wine fermentation are overrepresented. Such findings constitute a first indication of domestication in S. uvarum. PMID:24887054

  12. Impaired Uptake and/or Utilization of Leucine by Saccharomyces cerevisiae Is Suppressed by the SPT15-300 Allele of the TATA-Binding Protein Gene

    DEFF Research Database (Denmark)

    Baerends, RJ; Qiu, Jin-Long; Rasmussen, Simon

    2009-01-01

    Successful fermentations to produce ethanol require microbial strains that have a high tolerance to glucose and ethanol. Enhanced glucose/ethanol tolerance of the laboratory yeast Saccharomyces cerevisiae strain BY4741 under certain growth conditions as a consequence of the expression of a dominant...... us to examine the effect of expression of the SPT15-300 allele in various yeast species of industrial importance. Expression of SPT15-300 in leucine-prototrophic strains of S. cerevisiae, Saccharomyces bayanus, or Saccharomyces pastorianus (lager brewing yeast), however, did not improve tolerance...... to ethanol on complex rich medium (yeast extract-peptone-dextrose). The enhanced growth of the laboratory yeast strain BY4741 expressing the SPT15-300 mutant allele was seen only on defined media with low concentrations of leucine, indicating that the apparent improved growth in the presence of ethanol...

  13. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains.

    Science.gov (United States)

    Hernandez-Lopez, M J; Prieto, J A; Randez-Gil, F

    2003-01-01

    The response of Saccharomyces cerevisiae and freeze-tolerant Torulaspora delbrueckii strains to osmotic stress and their CO2 production capacity in sweet and frozen-sweet dough has been examined. T. delbrueckii strains, IGC5321 and IGC5323 showed higher leavening ability than Saccharomyces, specially after exposure to hyperosmotic stress of bread dough containing 20% sucrose and 2% salt added. In addition, Torulaspora and especially T. delbrueckii IGC5321 exhibited no loss of CO2 production capacity during freeze-thaw stress. Overall, these results appeared to indicate that Torulaspora cells are more tolerant than Saccharomyces to osmotic stress of bread dough. This trait correlated with a low invertase activity, a slow rate of trehalose mobilisation and the ability to respond rapidly to osmotic stress. Growth behaviour on high osmotic synthetic media was also examined. Cells of the IGC5321 strain showed intrinsic osmotolerance and ion toxicity resistance. However, T. delbrueckii IGC5323 exhibited a clear phenotype of osmosensitivity. Hence, this characteristic may not be essential or the only determinant for leavening ability in salted high-sugar dough.

  14. Altering the Rate of Mitosis by Introducing Low-Gigahertz Radiation to Saccharomyces cerevisiae Cells

    Science.gov (United States)

    Garg, S.; Ashby, C.

    2017-12-01

    This experiment aims to assess the impact of low-frequency radiation (from common technological tools such as cell phones, scanners, and wifi) on the mitotic rates of cells. In particular, the focus of the study was on the growth and development of Saccharomyces cerevisiae cultures that were exposed to radio waves from a wifi router, which were then compared to a cohort of the same species without exposure. Though routers emit a low gigahertz frequency, they are categorized as Group 2B radiation (possibly carcinogenic) by the International Agency for Research on Cancer of the World Health Organization, signifying that constant exposure poses a potential risk to humans. Twelve agar dishes of active Saccharomyces cerevisiae solution were prepared, with six dishes acting as the control under no added radiation and six acting as the experimental group under 2.4 GHz of radiation due to their proximity to the router. Data on how many cultures proliferated in each dish was collected every three days, with the experiment running for a total of twelve days. All subjects experienced growth curves until day 9 when the experimental group's growth peaked with an average of 62 colonies/dish. Three of the six dishes in this group lost colonies in the following three days, leaving the experimental group with an average of 61 colonies/dish on day 12, while the control group was still increasing by day 12 with an average of 48 colonies/dish, with only one dish undergoing a loss of colonies. Exposing the Saccharomyces cerevisiae cells to low grade radiation resulted in accelerated mitosis, and though the experimental group faced colony death after nine days, the loss was likely due to overpopulation in the dish.

  15. Comparison of the performances of Hanseniaspora vineae and Saccharomyces cerevisiae during winemaking

    Directory of Open Access Journals (Sweden)

    Jessica eLleixa

    2016-03-01

    Full Text Available Interest in the use of non-Saccharomyces yeasts in winemaking has been increasing due to their positive contributions to wine quality. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good aromatic properties. However, little is known about the fermentation dynamics of H. vineae in natural must and its interaction with autochthonous yeasts.In the present study, we performed semi industrial fermentations of Macabeo and Merlot musts inoculated with either H. vineae or S. cerevisiae. The yeast population dynamics were monitored by plate culturing, qPCR, PCR-DGGE and massive sequencing techniques. The results obtained with these techniques show that H. vineae was able dominate the autochthonous microbiota in Macabeo must but not in Merlot must, which exhibited a larger, more diverse yeast population. The presence of H. vineae throughout most of the Macabeo fermentation resulted in more fruity and flowery wine, as indicated by the chemical analysis of the final wines, which demonstrated a strong presence of phenethyl acetate at concentrations higher than the threshold of perception and approximately 50 times more than that produced in wines fermented with S. cerevisiae. This compound is associated with fruity, floral and honey aromas.

  16. Looking for immunotolerance: a case of allergy to baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Pajno, G B; Passalacqua, G; Salpietro, C; Vita, D; Caminiti, L; Barberio, G

    2005-09-01

    We describe one case of baker's yeast true allergy in a boy with previously diagnosed mite-allergy and atopic dermatitis. At the age of 6, being atopic dermatitis and rhinitis well controlled by drugs, he began to experience generalized urticaria and asthma after eating pizza and bread, but only fresh from the oven. The diagnostic workup revealed single sensitization to baker's yeast (Saccharomyces cerevisiae), and a severe systemic reaction also occurred during the prick-by-prick procedure. After discussing with parents, no special dietary restriction was suggested but the use of autoinjectable adrenaline and on demand salbutamol. A diary of symptoms was recorded by means of a visual-analog scale. During the subsequent 2 years, the severity of symptoms was progressively reduced, and presently urticaria has disappeared. Only cough persists, invariantly after eating just-baked and yeast-containing foods. If bread, pizza and cakes are ate more than one hour after preparation, no symptom occur at all. Baker's yeast is a common component of everyday diet and it usually acts as an allergen only by the inhalatory route. We speculate that the continuous exposure to saccharomyces in foods may have lead to an immunotolerance with a progressive reduction of symptoms, whereas why the allergens is active only in ready-baked foods remains unexplained.

  17. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection.

    Science.gov (United States)

    Wu, Daichao; Teng, Da; Wang, Xiumin; Dai, Changsong; Wang, Jianhua

    2014-10-01

    Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.

  18. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kanchana R. Kildegaard

    2015-12-01

    Full Text Available Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP, a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17 g 3HP L−1 in 120 hours with an overall yield of 29±1% Cmol 3HP Cmol−1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose. Keywords: Metabolic engineering, Biorefineries, 3-hydroxypropionic acid, Saccharomyces cerevisiae, Xylose utilization

  19. The Efficiency of Inactive Saccharomyces Cerevisiae Biomass on Removing Arsenic from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MH Ehrampoush

    2014-05-01

    Methods:This experimental study was performed in laboratory scale and was performed on 243 synthetic samples in a batch system. In this study the effect of parameters such as contact time (5,15,30,60,120,min and 24 h, pH (5,7,9, fluoride concentration (100, 250, 500, 750,1000 µg/l and absorbent dosages (0.5,1,2/5,5g/l was evaluated. Finally biosorption kinetic and equilibrium isotherms of adsorbent was investigated. Results: The removal efficiency of inactive Saccharomyces cerevisiae was 89.49% at pH 5, adsorbent dose of 1g/L and initial metal concentration of 100 mg/L. Maximum uptake was observed after the Contact time of 60 minutes. In addition absorption isotherm followed pseudo-second order model with a maximum R2 = 0.999. Conclusion:The results of study showed that biosorption efficiency decreases with increase in pH of solution. Optimum pH of biosorption was 5. The Removal efficiency of arsenic enhanced with increase in mass of Saccharomyces cerevisiae up to 1 g/L, but The Removal efficiency decreased with increase in initial concentration of arsenic. Maximum absorption was observed in 15 minutes.

  20. Saccharomyces Boulardii in Helicobacter Pylori Eradication in Children: A Randomized Trial From Iran.

    Science.gov (United States)

    Namkin, Kokab; Zardast, Mahmood; Basirinejad, Fatemeh

    2016-02-01

    Helicobacter pylori infects around 50% of the human population and is asymptomatic in 70% of the cases. H. pylori eradication in childhood will not only result in peptic symptoms relief, but will also prevent late-term complications such as cancer. Today, probiotics are being increasingly studied in the treatment of gastrointestinal infections as an alternative or complement to antibiotics. In this study we aimed to assess the effect of S. boulardii supplementation on H. pylori eradication among children in our region. In this randomized double-blind placebo-controlled clinical trial 28 asymptomatic primary school children with a positive H. pylori stool antigen (HpSA) exam were randomly allocated into the study group, receiving Saccharomyces boulardii, and the control group receiving placebo capsules matched by shape and size, for one month. The children were followed up weekly and were reinvestigated four to eight weeks after accomplished treatment by HpSA testing. The significance level was set at P Saccharomyces boulardii has a positive effect on reducing the colonization of H. pylori in the human gastrointestinal system but is not capable of its eradication when used as single therapy.

  1. Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature.

    Directory of Open Access Journals (Sweden)

    María López-Malo

    Full Text Available Temperature is one of the most important parameters affecting the length and rate of alcoholic fermentation and final wine quality. Wine produced at low temperature is often considered to have improved sensory qualities. However, there are certain drawbacks to low temperature fermentations such as reduced growth rate, long lag phase, and sluggish or stuck fermentations. To investigate the effects of temperature on commercial wine yeast, we compared its metabolome growing at 12 °C and 28 °C in a synthetic must. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae. This is the case of the cryotolerant yeasts Saccharomyces bayanus var. uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the metabolome of these species growing at 12°C, which we compared with the metabolome of S. cerevisiae (not well adapted at low temperature at the same temperature. Our results show that the main differences between the metabolic profiling of S. cerevisiae growing at 12 °C and 28 °C were observed in lipid metabolism and redox homeostasis. Moreover, the global metabolic comparison among the three species revealed that the main differences between the two cryotolerant species and S. cerevisiae were in carbohydrate metabolism, mainly fructose metabolism. However, these two species have developed different strategies for cold resistance. S. bayanus var. uvarum presented elevated shikimate pathway activity, while S. kudriavzevii displayed increased NAD(+ synthesis.

  2. A novel esterase from Saccharomyces carlsbergensis, a possible function for the yeast TIP1 gene

    DEFF Research Database (Denmark)

    Horsted, M W; Dey, E S; Holmberg, S

    1998-01-01

    An extracellular esterase was isolated from the brewer's yeast, Saccharomyces carlsbergensis. Inhibition by diisopropyl fluorophosphate shows that the enzyme has a serine active site. By mass spectrometry, the molecular weight of the enzyme was 16.9 kDa. The optimal pH for activity was in the range...

  3. Crystallization and preliminary X-ray analysis of beta-alanine synthase from the yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Dobritzsch, D.; Gojkovic, Zoran; Andersen, Birgit

    2003-01-01

    In eukaryotes and some bacteria, the third step of reductive pyrimidine catabolism is catalyzed by beta-alanine synthase (EC 3.5.1.6). Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri were obtained using sodium citrate as a precipitant. The crystals belong to space group P2...

  4. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    Science.gov (United States)

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  6. Beneficial properties of probiotic yeast Saccharomyces boulardii

    Directory of Open Access Journals (Sweden)

    Tomičić Zorica M.

    2016-01-01

    Full Text Available Saccharomyces boulardii is unique probiotic and biotherapeutic yeast, known to survive in gastric acidity and it is not adversely affected or inhibited by antibiotics or does not alter or adversely affect the normal microbiota. S. boulardii has been utilized worldwide as a probiotic supplement to support gastrointestinal health. The multiple mechanisms of action of S. boulardii and its properties may explain its efficacy and beneficial effects in acute and chronic gastrointestinal diseases that have been confirmed by clinical trials. Caution should be taken in patients with risk factors for adverse events. Its potential application in various dairy foods could offer an alternative probiotic product to people suffering from antibiotic-associated diarrhea. This review discusses the evidence for efficacy and safety of S. boulardii as a probiotic for the prevention and therapy of gastrointestinal disorders in humans.

  7. [Influence of Saccharomyces boulardii Sachets combined with bismuth quadruple therapy for initial Helicobacter pylori eradication].

    Science.gov (United States)

    Zhu, X Y; Du, J; Wu, J; Zhao, L W; Meng, X; Liu, G F

    2017-08-08

    Objective: To evaluate the efficacy and safety of Saccharomyces boulardii Sachets combined with bismuth quadruple therapy for initial Helicobacter pylori ( H . pylori ) eradication. Methods: From March 2014 to March 2015, 240 participants from the third hospital of Hebei medical university with H . pylori infection were recruited and randomized into three groups: Quadruple therapy group received bismuth potassium citrate 220 mg bid + Rabeprazole 10 mg bid + amoxicillin 1 000 mg bid+ furazolidone 100 mg bid for 10 days. Short-term group and long-term group received the same quadruple therapy for 10 days as above, as well as Saccharomyces boulardii Sachets 500 mg bid for 14 days and 28 days, respectively. H . pylori eradication was confirmed by (13)C/(14)C-UBT at least 4 weeks after completion of therapy. And side effects were investigated during the therapy. Results: The H . pylori eradication rates in quadruple therapy, short-term and long-term group were 80%, 87.5% and 87.5% by ITT analysis ( P =0.321) and 92.8%, 94.6% and 95.9% by PP analysis ( P =0.717), respectively. The overall side effect rate and occurrence of diarrhea and abdominal distension were significantly lower in short-term or long-term group as compared with quadruple therapy group( P =0.007, 0.003, 0.004), but there was no significant difference between the two probiotics groups. Conclusions: Both short and long-term Saccharomyces boulardii Sachets reduced the overall side effect rate and occurrence of diarrhea or abdominal distension when combined with bismuth quadruple therapy for initial H . pylori eradication and no difference was observed in efficacy or safety between the two groups.

  8. Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System

    Czech Academy of Sciences Publication Activity Database

    Pilát, Zdeněk; Jonáš, A.; Ježek, Jan; Zemánek, Pavel

    2017-01-01

    Roč. 17, NOV (2017), s. 1-12, č. článku 2640. ISSN 1424-8220 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical trapping * microfluidics * phototoxicity * laser * Saccharomyces cerevisiae Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.677, year: 2016 http://www.mdpi.com/1424-8220/17/11/2640

  9. Genetic diversity and molecular characterization of Saccharomyces cerevisiae strains from winemaking environments

    OpenAIRE

    Schuller, Dorit Elisabeth

    2004-01-01

    Tese de doutoramento em Ciências The principal aim of the present work is to assess the genetic diversity of fermenting Saccharomyces cerevisiae strains found in vineyards belonging to the Vinho Verde Region in order to create a strain collection representing the region’s biodiversity wealth as a basis for future strain selection and improvement programs. Validation of molecular techniques for accurate genotyping is an indispensable prerequisite for biogeographical surveys. Molecular ty...

  10. Interaction among Saccharomyces cerevisiae pheromone receptors during endocytosis

    Directory of Open Access Journals (Sweden)

    Chien-I Chang

    2014-03-01

    Full Text Available This study investigates endocytosis of Saccharomyces cerevisiae α-factor receptor and the role that receptor oligomerization plays in this process. α-factor receptor contains signal sequences in the cytoplasmic C-terminal domain that are essential for ligand-mediated endocytosis. In an endocytosis complementation assay, we found that oligomeric complexes of the receptor undergo ligand-mediated endocytosis when the α-factor binding site and the endocytosis signal sequences are located in different receptors. Both in vitro and in vivo assays suggested that ligand-induced conformational changes in one Ste2 subunit do not affect neighboring subunits. Therefore, recognition of the endocytosis signal sequence and recognition of the ligand-induced conformational change are likely to be two independent events.

  11. Diversity of Saccharomyces strains on grapes and winery surfaces: analysis of their contribution to fermentative flora of Malbec wine from Mendoza (Argentina) during two consecutive years.

    Science.gov (United States)

    Mercado, L; Dalcero, A; Masuelli, R; Combina, M

    2007-06-01

    Spontaneous fermentations are still conducted by several wineries in different regions of Argentina as a common practice. Native Saccharomyces strains associated with winery equipment, grape and spontaneous fermentations of Malbec musts from "Zona Alta del Río Mendoza" region (Argentina) were investigated during 2001 and 2002 in the same cellar. Low occurrence of Saccharomyces on grapes and their limited participation during fermentation were confirmed. Strain sequential substitution during fermentation was observed. Between 30% and 60% of yeast population at the end of fermentation was coming from yeasts already present in the winery. A stable and resident Saccharomyces micro-flora in the winery was confirmed. It exhibited a dynamic behaviour during season and between years. Commercial strains were found during fermentation in different percentages, but their presence on winery equipment was low. The present work represents a first approach to winery yeast and spontaneous fermentation Saccharomyces population dynamics in an important viticultural region from Argentina that has never been characterized before. The results obtained have an important significance for the local industry, showing for the first time the real situation of the microbial ecology of alcoholic fermentation in an industrial winery from Mendoza, Argentina.

  12. Uracil and beta-alanine degradation in Saccharomyces Kluyveri - discovery of a novel catabolic pathway

    DEFF Research Database (Denmark)

    Andersen, Gorm

    2006-01-01

    ’en i gær og de genetiske forudsætninger for uracil og beta-alanine (BAL) katabolisme i S. kluyveri undersøgt. Evnen til at bruge uracil, dihydrouracil (DHU), beta-ureidopropionate (BUP) og BAL som nitrogenkilde blev studeret i 38 gær arter. Disse var udvalgt, så de dækkede “Saccharomyces komplekset...

  13. Saccharomyces cerevisiae and S. kudriavzevii Synthetic Wine Fermentation Performance Dissected by Predictive Modeling.

    Science.gov (United States)

    Henriques, David; Alonso-Del-Real, Javier; Querol, Amparo; Balsa-Canto, Eva

    2018-01-01

    Wineries face unprecedented challenges due to new market demands and climate change effects on wine quality. New yeast starters including non-conventional Saccharomyces species, such as S. kudriavzevii , may contribute to deal with some of these challenges. The design of new fermentations using non-conventional yeasts requires an improved understanding of the physiology and metabolism of these cells. Dynamic modeling brings the potential of exploring the most relevant mechanisms and designing optimal processes more systematically. In this work we explore mechanisms by means of a model selection, reduction and cross-validation pipeline which enables to dissect the most relevant fermentation features for the species under consideration, Saccharomyces cerevisiae T73 and Saccharomyces kudriavzevii CR85. The pipeline involved the comparison of a collection of models which incorporate several alternative mechanisms with emphasis on the inhibitory effects due to temperature and ethanol. We focused on defining a minimal model with the minimum number of parameters, to maximize the identifiability and the quality of cross-validation. The selected model was then used to highlight differences in behavior between species. The analysis of model parameters would indicate that the specific growth rate and the transport of hexoses at initial times are higher for S. cervisiae T73 while S. kudriavzevii CR85 diverts more flux for glycerol production and cellular maintenance. As a result, the fermentations with S. kudriavzevii CR85 are typically slower; produce less ethanol but higher glycerol. Finally, we also explored optimal initial inoculation and process temperature to find the best compromise between final product characteristics and fermentation duration. Results reveal that the production of glycerol is distinctive in S. kudriavzevii CR85, it was not possible to achieve the same production of glycerol with S. cervisiae T73 in any of the conditions tested. This result brings the

  14. Saccharomyces cerevisiae and S. kudriavzevii Synthetic Wine Fermentation Performance Dissected by Predictive Modeling

    Directory of Open Access Journals (Sweden)

    David Henriques

    2018-02-01

    Full Text Available Wineries face unprecedented challenges due to new market demands and climate change effects on wine quality. New yeast starters including non-conventional Saccharomyces species, such as S. kudriavzevii, may contribute to deal with some of these challenges. The design of new fermentations using non-conventional yeasts requires an improved understanding of the physiology and metabolism of these cells. Dynamic modeling brings the potential of exploring the most relevant mechanisms and designing optimal processes more systematically. In this work we explore mechanisms by means of a model selection, reduction and cross-validation pipeline which enables to dissect the most relevant fermentation features for the species under consideration, Saccharomyces cerevisiae T73 and Saccharomyces kudriavzevii CR85. The pipeline involved the comparison of a collection of models which incorporate several alternative mechanisms with emphasis on the inhibitory effects due to temperature and ethanol. We focused on defining a minimal model with the minimum number of parameters, to maximize the identifiability and the quality of cross-validation. The selected model was then used to highlight differences in behavior between species. The analysis of model parameters would indicate that the specific growth rate and the transport of hexoses at initial times are higher for S. cervisiae T73 while S. kudriavzevii CR85 diverts more flux for glycerol production and cellular maintenance. As a result, the fermentations with S. kudriavzevii CR85 are typically slower; produce less ethanol but higher glycerol. Finally, we also explored optimal initial inoculation and process temperature to find the best compromise between final product characteristics and fermentation duration. Results reveal that the production of glycerol is distinctive in S. kudriavzevii CR85, it was not possible to achieve the same production of glycerol with S. cervisiae T73 in any of the conditions tested

  15. Functional Analysis of the FZF1 Genes of Saccharomyces uvarum

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liu

    2018-02-01

    Full Text Available Being a sister species of Saccharomyces cerevisiae, Saccharomyces uvarum shows great potential regarding the future of the wine industry. The sulfite tolerance of most S. uvarum strains is poor, however. This is a major flaw that limits its utility in the wine industry. In S. cerevisiae, FZF1 plays a positive role in the transcription of SSU1, which encodes a sulfite efflux transport protein that is critical for sulfite tolerance. Although FZF1 has previously been shown to play a role in sulfite tolerance in S. uvarum, there is little information about its action mechanism. To assess the function of FZF1, two over-expression vectors that contained different FZF1 genes, and one FZF1 silencing vector, were constructed and introduced into a sulfite-tolerant S. uvarum strain using electroporation. In addition, an FZF1-deletion strain was constructed. Both of the FZF1-over-expressing strains showed an elevated tolerance to sulfite, and the FZF1-deletion strain showed the opposite effect. Repression of FZF1 transcription failed, however, presumably due to the lack of alleles of DCR1 and AGO. The qRT-PCR analysis was used to examine changes in transcription in the strains. Surprisingly, neither over-expressing strain promoted SSU1 transcription, although MET4 and HAL4 transcripts significantly increased in both sulfite-tolerance increased strains. We conclude that FZF1 plays a different role in the sulfite tolerance of S. uvarum compared to its role in S. cerevisiae.

  16. Probing the fungicidal property of CdS quantum dots on Saccharomyces cerevisiae and Candida utilis using MALDI-MS

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, Muthu; Wu, Hui-Fen, E-mail: hwu@faculty.nsysu.edu.tw [National Sun Yat-Sen University, Department of Chemistry (China)

    2013-07-15

    For the first time, we report the successful application of inhouse synthesized CdS quantum dots (QDs) with particle sizes between 1 and 7 nm exhibiting excellent fungicidal activity based on the interactions with Saccharomyces cerevisiae and Candida utilis. The growth curves and the growth rates of both fungi were established in the presence of three varying concentrations of CdS QDs. It was observed that the CdS QDs were highly inhibitory even at the lowest concentration of 10 mg/L used in this study, while the untreated control cells followed a normal growth pattern in the cases of both Saccharomyces and Candida. MALDI-MS was applied to substantiate the observations obtained by direct cell count method. It was observed that the trend observed in the case of Saccharomyces and Candida was well-represented in the MALDI-MS spectra. This study proposes a mechanism for the first time based on MALDI-MS results, that the CdS QDs interact with the extracellular polymeric substances (EPS) and remove small molecules from EPS layer; on the other hand, it was observed that CdS QDs at all concentrations lead to enrichment of protein signals in MALDI-MS. We have substantiated these results by quantifying the EPS in the control and treated cells and also using TEM to further confirm the results.

  17. Probing the fungicidal property of CdS quantum dots on Saccharomyces cerevisiae and Candida utilis using MALDI-MS

    International Nuclear Information System (INIS)

    Manikandan, Muthu; Wu, Hui-Fen

    2013-01-01

    For the first time, we report the successful application of inhouse synthesized CdS quantum dots (QDs) with particle sizes between 1 and 7 nm exhibiting excellent fungicidal activity based on the interactions with Saccharomyces cerevisiae and Candida utilis. The growth curves and the growth rates of both fungi were established in the presence of three varying concentrations of CdS QDs. It was observed that the CdS QDs were highly inhibitory even at the lowest concentration of 10 mg/L used in this study, while the untreated control cells followed a normal growth pattern in the cases of both Saccharomyces and Candida. MALDI-MS was applied to substantiate the observations obtained by direct cell count method. It was observed that the trend observed in the case of Saccharomyces and Candida was well-represented in the MALDI-MS spectra. This study proposes a mechanism for the first time based on MALDI-MS results, that the CdS QDs interact with the extracellular polymeric substances (EPS) and remove small molecules from EPS layer; on the other hand, it was observed that CdS QDs at all concentrations lead to enrichment of protein signals in MALDI-MS. We have substantiated these results by quantifying the EPS in the control and treated cells and also using TEM to further confirm the results

  18. Proinflammatory and anti-inflammatory cytokines present in the acute phase of experimental colitis treated with Saccharomyces boulardii.

    Science.gov (United States)

    Grijó, Nathália Nahas; Borra, Ricardo Carneiro; Sdepanian, Vera Lucia

    2010-09-01

    To study the proinflammatory and anti-inflammatory cytokines present in the acute phase of trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis treated with Saccharomyces boulardii. Thirty male Wistar rats were divided into three groups: (1) treated group--received Saccharomyces boulardii for 14 days; (2) non-treated group--received sodium chloride solution for 14 days; (3) control group. Colitis was induced on the seventh day of the study in the treated and the non-treated groups using TNBS (10 mg) dissolved in 50% ethanol. Quantification of cytokines, including interleukin (IL)-1beta (IL-1beta), IL-6, transforming growth factor-beta (TGF-beta), IL-10 and tumor necrosis factor-alpha (TNF-alpha), in the serum and colonic tissue collected on day 14 were carried out using an enzyme-linked immunosorbent assay (ELISA). The mean concentrations of TGF-beta in both the serum and the colonic tissue of the treated group were statistically higher than that of the control group. The mean concentration of TGF-beta in the colonic tissue of the non-treated group was also statistically higher than the control group. The group treated with Saccharomyces boulardii showed increased amounts of TGF-beta, an anti-inflammatory cytokine, during the acute phase of colitis. There were no differences in the amount of TNF-alpha, IL-1beta, IL-6, and IL-10 between the treated and the non-treated or the control groups during the acute phase of experimental colitis induced by TNBS.

  19. Phenotypic characterization of glucose repression mutants of Saccharomyce cerevisiae usinge experiments with C-13-labelled glucose

    DEFF Research Database (Denmark)

    Vijayendran, Raghevendran; Gombert, A.K.; Christensen, B.

    2004-01-01

    techniques, which do not provide information about the integrated response a specific genetic modification has on the cellular function. In this study we have performed phenotypic characterization of several mutants of the yeast Saccharomyces cerevisiae through the use of experiments with C-13-labelled...

  20. Ultraviolet-endonuclease activity in cell extracts of Saccharomyces cerevisiae mutants defective in excision of pyrimidine dimers

    International Nuclear Information System (INIS)

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1980-01-01

    Cell-free extracts of ultraviolet-sensitive mutants of Saccharomyces cerevisiae defective in excision of pyrimidine dimers, rad1, rad2, rad3, rad4, rad10, and rad16, as well as the extracts of the wild-type strain RAD+, display ultraviolet-endonuclease activity

  1. Effect of citrus pulp on the viability of Saccharomyces boulardii in the presence of enteric pathogens

    Science.gov (United States)

    Saccharomyces cerevisiae subtype boulardii is frequently used as a dietary supplement to promote intestinal health and reduce the impact of growth of enteric pathogens in livestock, including cattle and swine. Citrus by-products are also fed as dietary supplements that have the additional benefit o...

  2. A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae

    Science.gov (United States)

    Economically viable production of lignocellulosic ethanol requires efficient conversion of feedstock sugars to ethanol. Saccharomyces cerevisiae cannot ferment xylose, the main five-carbon sugars in biomass, but can ferment xylulose, an enzymatically derived isomer. Xylulose fermentation is slow rel...

  3. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Giulia Menconi

    2015-04-01

    Full Text Available In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TAn repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TAn repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in

  4. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Science.gov (United States)

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  5. Stereochemistry of Furfural Reduction by a Saccharomyces cerevisiae Aldehyde Reductase That Contributes to In Situ Furfural Detoxification

    Science.gov (United States)

    Ari1p from Saccharomyces cerevisiae, recently identified as an intermediate subclass short-chain dehydrogenase/reductase, contributes in situ to the detoxification of furfural. Furfural inhibits efficient ethanol production by the yeast, particularly when the carbon source is acid-treated lignocell...

  6. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    van Maris, A.J.A.; Bakker, B.M.; Brandt, M.; Boorsma, A.; Teixeira de Mattos, M.J.; Grivell, L.A.; Pronk, J.T.

    2001-01-01

    The tendency of Saccharomyces cerevisiae to favor alcoholic fermentation over respiration is a complication in aerobic, biomass-directed applications of this yeast. Overproduction of Hap4p, a positive transcriptional regulator of genes involved in respiratory metabolism, has been reported to

  7. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Douradinha, Bruno; Reis, Viviane C B; Rogers, Matthew B; Torres, Fernando A G; Evans, Jared D; Marques, Ernesto T A

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.

  8. A simple microfluidic platform to study age-dependent protein abundance and localization changes in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Cabrera, Margarita; Novarina, Daniele; Rempel, Irina L; Veenhoff, Liesbeth M; Chang, Michael

    2017-01-01

    The budding yeast Saccharomyces cerevisiae divides asymmetrically, with a smaller daughter cell emerging from its larger mother cell. While the daughter lineage is immortal, mother cells age with each cell division and have a finite lifespan. The replicative ageing of the yeast mother cell has been

  9. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    Science.gov (United States)

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  10. Role of DNA damage in ultraviolet (313 nm) inactivation of yeasts Saccharomyces cerevisial

    International Nuclear Information System (INIS)

    Pospelov, M.E.; Ivanova, Eh.V.; Frajkin, G.Ya.

    1984-01-01

    Relative contribution of photoinhibition of cell respiration and DNA damage to lethal effect, caused by ultraviolet (UV) radiation of 313 m in certain yeast strains Saccharomyces cerevisiae, has been studied. It is shown that cell inactivation is mainly conditioned by DNA photodamage. When studying photoreactivation it has been established, that dimers of pyrimidine bases are the main lethal photoproducts, formed in DNA Under the effect of UV-radiation of 313 nm

  11. Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling.

    Science.gov (United States)

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A

    2016-12-25

    This work focuses on the performance of ten commercial Saccharomyces yeast strains in the batch alcoholic fermentation of sugars contained in selected industrial wastewaters from the soft drink industry. Fermentation has been applied successfully to treat these effluents prior to their disposal. Although many strains were investigated, similar behaviour was observed between all of the Saccharomyces strains tested. When media were inoculated with 2gL -1 of yeast, all strains were able to completely consume the available sugars in less than 14h. Thus, any of the strains studied in this work could be used in non-conventional wastewater treatment processes based on alcoholic fermentation. However, ethanol production varied between strains, and these differences could be significant from a production point of view. Saccharomyces bayanus produced the most ethanol, with a mean yield of 0.44g ethanol g sugarconsumed -1 and an ethanol specific production rate of 5.96g ethanol (Lh) -1 . As the assayed soft drinks wastewaters contain about 105g sugar /L of fermentable sugars, the concentration of ethanol achieved after the fermentations process was 46.2g ethanol /L. A rigorous kinetic modelling methodology was used to model the Saccharomyces bayanus fermentation process. The kinetic model included coupled mass balances and a minimal number of parameters. A simple unstructured model based on the Andrews equation (substrate inhibition) was developed. This model satisfactorily described biomass growth, sugar consumption and bioethanol production. In addition to providing insights into the fermentative performance of potentially relevant strains, this work can facilitate the design of large-scale ethanol production processes that use wastewaters from the sugar-sweetened beverage industry as feedstock. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of topically applied Saccharomyces boulardii on the healing of acute porcine wounds: a preliminary study.

    Science.gov (United States)

    Partlow, Jessica; Blikslager, Anthony; Matthews, Charles; Law, Mac; Daniels, Joshua; Baker, Rose; Labens, Raphael

    2016-04-11

    Normal wound healing progresses through a series of interdependent physiological events: inflammation, angiogenesis, re-epithelialization, granulation tissue formation and extracellular matrix remodeling. Alterations in this process as well as the bacterial type and load on a wound may alter the wound healing rate. The purpose of this study was to evaluate the effect of topical Saccharomyces boulardii on the healing of acute cutaneous wounds, using a prospective, controlled, experimental study, with six purpose bred landrace pigs. All wounds healed without apparent complications. Comparison of the mean 3D and 2D wound surface area measurements showed no significant difference between treatment groups as wounds decreased similarly in size over the duration of the study. A significant reduction in wound surface area was identified sooner using 3D assessments (by day 9) compared to 2D assessments (by day 12) (P Saccharomyces boulardii does not hasten wound healing or change the wounds' microbiome under the conditions reported in this study.

  13. On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids.

    Science.gov (United States)

    Peris, David; Pérez-Torrado, Roberto; Hittinger, Chris Todd; Barrio, Eladio; Querol, Amparo

    2018-01-01

    Companies based on alcoholic fermentation products, such as wine, beer and biofuels, use yeasts to make their products. Each industrial process utilizes different media conditions, which differ in sugar content, the presence of inhibitors and fermentation temperature. Saccharomyces cerevisiae has traditionally been the main yeast responsible for most fermentation processes. However, the market is changing due to consumer demand and external factors such as climate change. Some processes, such as biofuel production or winemaking, require new yeasts to solve specific challenges, especially those associated with sustainability, novel flavours and altered alcohol content. One of the proposed solutions is the application of yeast hybrids. The lager beer market has been dominated by S. cerevisiae × S. eubayanus hybrids. However, several less thoroughly studied hybrids have been isolated from other diverse industrial processes. Here we focus on S. cerevisiae × S. kudriavzevii hybrids, which have been isolated from diverse industrial conditions that include wine, ale beer, cider and dietary supplements. Emerging data suggest an extended and complex story of adaptation of these hybrids to traditional industrial conditions. S. cerevisiae × S. kudriavzevii hybrids are also being explored for new industrial applications, such as biofuels. This review describes the past, present and future of S. cerevisiae × S. kudriavzevii hybrids. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Dual N- and C-terminal helices are required for endoplasmic reticulum and lipid droplet association of alcohol acetyltransferases in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jyun-Liang Lin

    Full Text Available In the yeast Saccharomyces cerevisiae two alcohol acetyltransferases (AATases, Atf1 and Atf2, condense short chain alcohols with acetyl-CoA to produce volatile acetate esters. Such esters are, in large part, responsible for the distinctive flavors and aromas of fermented beverages including beer, wine, and sake. Atf1 and Atf2 localize to the endoplasmic reticulum (ER and Atf1 is known to localize to lipid droplets (LDs. The mechanism and function of these localizations are unknown. Here, we investigate potential mechanisms of Atf1 and Atf2 membrane association. Segments of the N- and C-terminal domains of Atf1 (residues 24-41 and 508-525, respectively are predicted to be amphipathic helices. Truncations of these helices revealed that the terminal domains are essential for ER and LD association. Moreover, mutations of the basic or hydrophobic residues in the N-terminal helix and hydrophobic residues in the C-terminal helix disrupted ER association and subsequent sorting from the ER to LDs. Similar amphipathic helices are found at both ends of Atf2, enabling ER and LD association. As was the case with Atf1, mutations to the N- and C-terminal helices of Atf2 prevented membrane association. Sequence comparison of the AATases from Saccharomyces, non-Saccharomyces yeast (K. lactis and P. anomala and fruits species (C. melo and S. lycopersicum showed that only AATases from Saccharomyces evolved terminal amphipathic helices. Heterologous expression of these orthologs in S. cerevisiae revealed that the absence of terminal amphipathic helices eliminates LD association. Combined, the results of this study suggest a common mechanism of membrane association for AATases via dual N- and C-terminal amphipathic helices.

  15. Jeast (Saccharomyces cerevisial) mutants with enhanced induced mutagenesis

    International Nuclear Information System (INIS)

    Ivanov, E.L.; Koval'tsova, S.V.; Korolev, V.G.

    1987-01-01

    The influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae has been. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adeine-dependent mutations (ade, ade2) were induced more frequently (1.5-2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed than him1-1, him2-1, and himX mutations increase specifically the yield of transitions (AT-GC and GC→AT), whereas in the him3-1, strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction

  16. Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Chua, Jian-Yong; Lu, Yuyun; Liu, Shao-Quan

    2017-12-04

    Soy whey is a liquid waste stream generated from tofu and soy protein manufacturing, and is commonly disposed of into the drainage system in food industry. Instead of disposing of soy whey as a waste, it could be used to produce alcoholic beverages. This study investigated the feasibility of converting soy whey into soy alcoholic beverage using four commercial Saccharomyces cerevisiae strains as a zero-waste approach to tackle the soy whey disposal issue. The four Saccharomyces yeasts grew by approximately 2logCFU/mL and produced approximately 7-8% (v/v) of ethanol. Isoflavone glucosides were hydrolyzed and transformed into isoflavone aglycones, increasing the antioxidant capacity. New aroma-active volatiles, especially esters and higher alcohols, were produced and imparted fruity and floral notes to the soy alcoholic beverage. Therefore, alcoholic fermentation would serve as a solution toward zero-waste manufacturing by biotransforming soy whey into a world's first novel functional alcoholic beverage naturally enriched with free isoflavones. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain

    NARCIS (Netherlands)

    Vos, T.; De la Torre Cortes, P.; Van Gulik, W.M.; Pronk, J.T.; Daran-Lapujade, P.A.S.

    2015-01-01

    Introduction: Saccharomyces cerevisiae has become a popular host for production of non-native compounds. The metabolic pathways involved generally require a net input of energy. To maximize the ATP yield on sugar in S. cerevisiae, industrial cultivation is typically performed in aerobic,

  18. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural

    Science.gov (United States)

    An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...

  19. Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability

    NARCIS (Netherlands)

    Wanzek, Katharina; Schwindt, Eike; Capra, John A.; Paeschke, Katrin

    2017-01-01

    The regulation of replication is essential to preserve genome integrity. Mms1 is part of the E3 ubiquitin ligase complex that is linked to replication fork progression. By identifying Mms1 binding sites genome-wide in Saccharomyces cerevisiae we connected Mms1 function to genome integrity and

  20. Efficient ethanol production from beetle-killed lodgepole pine using SPORL technology and Saccharomyces cerevisiae without detoxification

    Science.gov (United States)

    Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn

    2011-01-01

    This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...

  1. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.

    Science.gov (United States)

    Ibáñez, Clara; Pérez-Torrado, Roberto; Morard, Miguel; Toft, Christina; Barrio, Eladio; Querol, Amparo

    2017-09-18

    Transcriptome analyses play a central role in unraveling the complexity of gene expression regulation in Saccharomyces cerevisiae. This species, one of the most important microorganisms for humans given its industrial applications, shows an astonishing degree of genetic and phenotypic variability among different strains adapted to specific environments. In order to gain novel insights into the Saccharomyces cerevisiae biology of strains adapted to different fermentative environments, we analyzed the whole transcriptome of three strains isolated from wine, flor wine or mezcal fermentations. An RNA-seq transcriptome comparison of the different yeasts in the samples obtained during synthetic must fermentation highlighted the differences observed in the genes that encode mannoproteins, and in those involved in aroma, sugar transport, glycerol and alcohol metabolism, which are important under alcoholic fermentation conditions. These differences were also observed in the physiology of the strains after mannoprotein and aroma determinations. This study offers an essential foundation for understanding how gene expression variations contribute to the fermentation differences of the strains adapted to unequal fermentative environments. Such knowledge is crucial to make improvements in fermentation processes and to define targets for the genetic improvement or selection of wine yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia.

    Science.gov (United States)

    Rodríguez, Maria E; Pérez-Través, Laura; Sangorrín, Marcela P; Barrio, Eladio; Querol, Amparo; Lopes, Christian A

    2017-01-01

    Apple chicha is a fresh low alcoholic beverage elaborated by aboriginal communities of Andean Patagonia (Argentina and Chile). In the present work, we identified the yeast microbiota associated with this fermentation, and characterized genetically those belonging to the genus Saccharomyces. Both Saccharomyces cerevisiae and S. uvarum were found in the analyzed fermentations. Phylogenetic and population structure analyses based on genes sequence analysis were carried out for both S. cerevisiae and S. uvarum strains obtained in this study and a set of additional strains from diverse origins. The results demonstrate that S. cerevisiae strains from apple chicha belong to the big group of wine/European strains of this species, while S. uvarum strains were included in the Holartic population of this species. Additionally, some S. uvarum strains from chichas evidenced as an admixture of both pure Holartic and pure South American populations. Our results suggest that Holartic strains could have been introduced in South America together with the domestication of apple trees by Mapuche communities. This Holartic population suffered admixis with the naturally present South American population of this species, originating strains bearing genetic features from the two populations, detectable in both chichas and natural habitats. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. A study of aeration treatment of uranium-contained wastewater by saccharomyces cerevisiae-activated sludge

    International Nuclear Information System (INIS)

    Xia Liangshu; Chen Zhongqing

    2006-01-01

    Experiments of the aeration treatment of uranium-contained wastewater by saccharomyces cerevisiae-activated sludge were carried out. The experimental results indicate that, saccharomyces cerevisiae (S.C) can accumulate UO 2 2+ effectively from aqueous solution: the removal ratio of 100 mg·L -1 UO 2 2+ is 78.2% when S.C dosage is 10 g·L -1 , while with 8 g·L -1 activated sludge (A.S.) added in the solution the ratio has increased to 96.3%; then, 5-10 min effluent settling is clarified as a result of sludge flocculation; the optimum conditions of biosorption of U from wastewater by S.C.-A.S. are at pH 5, A.S concentration=8 g·L -1 , added dry weight of S.C.=10 g·L -1 , granularity of S.C=100-120 mesh; the quantity of U increases with the enhanced initial concentration of UO 2 2+ in the process of biosorption by S.C.-A.S., but the removal ratio decreases. The uptake of U could be described by the Freundlich and the Langmuir adsorption isotherms, which demonstrated that the adsorption was regarded as a physical adsorption. (authors)

  4. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae

    OpenAIRE

    Han, Yanming; Wilson, David B.; Lei, Xin gen

    1999-01-01

    Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an act...

  5. Saccharomyces cerevisiae UE-ME3 is a good strain for isoproturon biorremediation?

    OpenAIRE

    Candeias, M; Alves-Pereira, I; Ferreira, R

    2010-01-01

    Isoproturon, an herbicide of pre- and pos-emergence of Autumn-Winter crops, persists occasionally in soil, groundwater and biological systems at levels above those established by European Directives. Saccharomyces cerevisiae UE-ME3 exposed in stationary phase to 50 and 100 mM isoproturon exhibit growth rates higher than control or exposed cells to 5 and 25 mM of this phenylurea. However, in S.cerevisiae UE-ME3 grown in the presence of 5 mM isoproturon, were observed a decrease of ...

  6. Infecção por Saccharomyces cerevisae: uma infecção atípica em UTI Saccharomyces cerevisiae infection: an unusual pathogen in the ICU

    Directory of Open Access Journals (Sweden)

    Felipe Henriques Alves da Silva

    2011-03-01

    Full Text Available Descreve-se aqui o caso de infecção fúngica mista por leveduras em paciente de UTI: por Saccharomyces cerevisae - levedura conhecida e de larga utilização na panificação e produção de vinhos - e Candida albicans. As infecções fúngicas mistas possuem alta mortalidade em terapia intensiva. Discutimos neste artigo o caso de paciente idoso portador de doença pulmonar obstrutiva crônica, portador de tumor não tratado de bexiga, tabagista, admitido no Hospital com quadro diarréico, evoluindo para choque séptico, com isolamento em hemoculturas das duas leveduras supracitadas. Quadro grave, de evolução letal, possibilitando a discussão de um dos germes emergentes em unidade de terapia intensiva e apresentação atípica em terapia intensiva.A case of a mixed fungal yeast infection involving Saccharomyces cerevisiae - well known for its use in the bread and wine industries - and Candida albicans, is described in an intensive care unit patient. Mortality due to mixed fungal infections in the intensive care unit is high. An elderly smoker patient with chronic pulmonary obstructive disease and untreated bladder neoplasm was admitted to the hospital with diarrhea and progressed to septic shock. The above-mentioned yeasts were identified in blood cultures. This case with fatal outcome provides an opportunity to discuss one of the emergent germs found in the intensive care unit, in a case with an atypical presentation.

  7. [A multicenter randomized controlled study of Saccharomyces boulardii in the prevention of antibiotic-associated diarrhea in infants and young children].

    Science.gov (United States)

    Wan, C M; Yu, H; Liu, G; Xu, H M; Mao, Z Q; Xu, Y; Jin, Y; Luo, R P; Wang, W J; Fang, F

    2017-05-04

    Objective: To evaluate the efficacy and safety of Saccharomyces boulardii in the prevention of antibiotic-associated diarrhea (AAD) in infants and young children. Method: From November 2012 to September 2013, ten research units of large teaching hospitals or children's hospitals participated in this multicenter randomized controlled clinical trial. Hospitalized young children aged between 1 month and 3 years (nongastrointestinal infection and antibiotic therapy required)were involved in our study. The children were randomly divided into control group and prevention group by means of block random allocation method. The control group received antibiotic therapy and other conventional treatment. The prevention group was given additional Saccharomyces boulardii (250 mg/d) orally. Diarrhea rates of two groups were compared both during the usage of antibiotics and within 14 days after the antibiotics withdrawal. The adverse reactions of Saccharomyces boulardii were observed all through this study. The results were analyzed by χ(2) test or Kruskal-Wallis test or t test. Result: Totally 408 cases (213 cases in prevention group and 195 cases in control group) were enrolled. The age ranged from 1 month to 3 years, with an average age of 1.14 years. The basic diseases were parenteral infections: 368 cases with different kinds of respiratory tract infections or pneumonia, 10 cases of bacterial meningitis, 9 cases with septicemia or sepsis, 6 cases with pertussis or pertussis like syndrome, 5 cases with urinary infection, 5 cases with skin or subcutaneous tissue infections, 3 cases of Kawasaki disease, one with scarlet fever and one with congenital syphilis. During the administration of antibiotics, the incidence of AAD in prevention group was 10.3% (22 cases), which was significantly lower than that of control group (57 cases, 29.2%, χ(2)=23.296, P 1 year old); the risk of diarrhea was reduced by 86% (χ(2)=9.57, P 0.05). No adverse effects related with Saccharomyces

  8. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu.

    Science.gov (United States)

    Kajiwara, Yasuhiro; Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takegawa, Kaoru; Takashita, Hideharu

    2018-04-05

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. Copyright © 2018 Kajiwara et al.

  9. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury

    OpenAIRE

    Yu, Lei; Zhao, Xue-ke; Cheng, Ming-liang; Yang, Guo-zhen; Wang, Bi; Liu, Hua-juan; Hu, Ya-xin; Zhu, Li-li; Zhang, Shuai; Xiao, Zi-wen; Liu, Yong-mei; Zhang, Bao-fang; Mu, Mao

    2017-01-01

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii admin...

  10. Induction of mitotic recombination by UV and diepoxybutane and its enhancement by hydroxyurea in Saccharomyces cerevisae

    Energy Technology Data Exchange (ETDEWEB)

    Zaborowska, D.; Swietlinska, Z.; Zuk, J. (Polska Akademia Nauk, Warsaw. Inst. Biochemii i Biofizyki)

    1983-04-01

    Mitotic inter- and intra-genic recombination was induced by UV-irradiation and treatment with diepoxybutane (DEB) in 2 heteroallelic diploid strains of Saccharomyces cerevisiae SBTD and D7. Induction of the events tested was strongly potentiated by plating of mutagen-treated cells on growth media containing 0.03 M hydroxyurea (HU).

  11. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Oud, B.; Flores, C.L.; Gancedo, C.; Zhang, X.; Trueheart, J.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2012-01-01

    Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards

  12. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    NARCIS (Netherlands)

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  13. Sporulation in the Budding Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Neiman, Aaron M.

    2011-01-01

    In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae. PMID:22084423

  14. Higher-order structure of Saccharomyces cerevisiae chromatin

    International Nuclear Information System (INIS)

    Lowary, P.T.; Widom, J.

    1989-01-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure

  15. Sugar and Glycerol Transport in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bisson, Linda F; Fan, Qingwen; Walker, Gordon A

    2016-01-01

    In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.

  16. Modification of mutation frequency in Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Vashishat, R.K.; Kakar, S.N.

    1976-01-01

    In a reverse mutation system, using haploid, histidine-requirinq strain of Saccharomyces cerevisiae, the frequency of uv-induced prototrophs increased if the post-irradiation minimal medium was supplemented with limited amounts of histidine. Addition of natural amino acids or RNA bases in the post-irradiation minimal medium, with or without histidine, also increased the uv-induced mutation frequency. Thus, post-irradiation conditions favouring protein and RNA synthesis, are effective in increasing uv-induced mutations in yeast. As compared to uv light, nitrous acid was more effective in inducing reversions in this strain and the frequency increased if the treated cells were plated on minimal medium supplemented with limited amounts of histidine. However, the addition of amino acids or RNA bases decreased the number of revertants. An additional inclusion of histidine reversed the suppressive effect of these metabolites. The mutation induction processes are thus different or differently modifiable in uv and nitrous acid. (author)

  17. Social wasps are a Saccharomyces mating nest.

    Science.gov (United States)

    Stefanini, Irene; Dapporto, Leonardo; Berná, Luisa; Polsinelli, Mario; Turillazzi, Stefano; Cavalieri, Duccio

    2016-02-23

    The reproductive ecology of Saccharomyces cerevisiae is still largely unknown. Recent evidence of interspecific hybridization, high levels of strain heterozygosity, and prion transmission suggest that outbreeding occurs frequently in yeasts. Nevertheless, the place where yeasts mate and recombine in the wild has not been identified. We found that the intestine of social wasps hosts highly outbred S. cerevisiae strains as well as a rare S. cerevisiae×S. paradoxus hybrid. We show that the intestine of Polistes dominula social wasps favors the mating of S. cerevisiae strains among themselves and with S. paradoxus cells by providing a succession of environmental conditions prompting cell sporulation and spores germination. In addition, we prove that heterospecific mating is the only option for European S. paradoxus strains to survive in the gut. Taken together, these findings unveil the best hidden secret of yeast ecology, introducing the insect gut as an environmental alcove in which crosses occur, maintaining and generating the diversity of the ascomycetes.

  18. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21

    Energy Technology Data Exchange (ETDEWEB)

    Verma, G.; Singh, D.; Chaudhary, K. [CCS Haryana Agricultural Univ., Hisar (India). Dept. of Biotechnology and Molecular Biology; Nigam, P. [Ulster Univ., Coleraine, Northern Ireland (United Kingdom). School of Applied Biological and Chemical Sciences

    2000-05-01

    Ethanol production by a coculture of Saccharomyces diastaticus and Saccharomyces cerevisiae 21 was 24.8 g/l using raw unhydrolysed starch in a single-step fermentation. This was 48% higher than the yield obtained with the monoculture of S. diastaticus (16.8 g/l). The maximum ethanol fermentation efficiency was achieved (93% of the theoretical value) using 60 g/l starch concentration. In another coculture fermentation with E. capsularis and S. cerevisiae 21, maximum ethanol yield was 16.0 g/l, higher than the yield with the monoculture of Endomycopsis capsularis. In batch fermentations using cocultures maximum ethanol production occurred in 48 h of fermentation at 30{sup o}C using 60 g/l starch. Fermentation efficiency was found lower in a two-step process using {alpha}-amylase and glucoamylase-treated starch. (Author)

  19. Scientific Opinion on the substantiation of health claims related to Saccharomyces cerevisiae var. boulardii CNCM I-1079 and defence against pathogenic gastro-intestinal microorganisms (ID 913, further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    . boulardii CNCM I-1079 and defence against pathogenic gastro-intestinal microorganisms. The food constituent that is the subject of the health claim, Saccharomyces cerevisiae var. boulardii CNCM I-1079, is sufficiently characterised. The claimed effect, defence against pathogenic gastro......-intestinal microorganisms, is a beneficial physiological effect. The proposed target population is the general population. The Panel notes that the evidence provided is not sufficient to establish that the strains Saccharomyces cerevisiae var. boulardii CNCM I-1079 and Saccharomyces cerevisiae var. boulardii Hansen CBS...... relationship has not been established between the consumption of Saccharomyces cerevisiae var. boulardii CNCM I-1079 and defence against pathogenic gastro-intestinal microorganisms....

  20. Induction of mitotic recombination by UV and diepoxybutane and its enhancement by hydroxyurea in Saccharomyces cerevisae

    International Nuclear Information System (INIS)

    Zaborowska, D.; Swietlinska, Z.; Zuk, J.

    1983-01-01

    Mitotic inter- and intra-genic recombination was induced by UV-irradiation and treatment with diepoxybutane (DEB) in 2 heteroallelic diploid strains of Saccharomyces cerevisiae SBTD and D7. Induction of the events tested was strongly potentiated by plating of mutagen-treated cells on growth media containing 0.03 M hydroxyurea (HU). (orig.)

  1. Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Arévalo-Rodríguez, M; Calderón, I L; Holmberg, S

    1999-01-01

    The HOM3 gene of Saccharomyces cerevisiae encodes aspartate kinase, which catalyses the first step in the branched pathway leading to the synthesis of threonine and methionine from aspartate. Regulation of the carbon flow into this pathway takes place mainly by feedback inhibition of this enzyme ...

  2. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Madhavan, Anjali; Srivastava, Aradhana; Kondo, Akihiko; Bisaria, Virendra S

    2012-03-01

    Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.

  3. The influence of sucrose and maltose on Saccharomyces cerevisiae yeast multiplication

    Directory of Open Access Journals (Sweden)

    O. I. Ponomareva

    2016-01-01

    Full Text Available The data on the influence of fermentable carbohydrates concentration on yeast multiplication are widely represented in the literature. This study presents the results of experiments showing an influence of sucrose and maltose concentration on Saccharomyces cerevisiae yeast multiplication. The objects of this research are bakery, beer, wine and alcohol yeast that are widely used in fermentation industry. Beet molasses and malt wort were chosen as nutrient medium for yeast breeding. Their basic sugars are mainly represented by sucrose and maltose. The concentration of sugars was 9, 12, 16 and 20%. The intensity of yeast multiplication was evaluated based on yeast cells concentration during their cultivation and the specific growth rate. Sugar concentrations causing an intensive accumulation of examined yeast strains were determined. This paper presents the experimental data that were received describing the influence of sucrose and maltose concentration on the duration of a lag phase period for different yeast strains. Specific growth rates of researched strains were determined for nutrient mediums with different glucose and maltose concentrations. It was found that the Crabtree effect, that is caused by high carbohydrates concentration in culture medium, is most pronounced when yeast cells grow on a sucrose medium. Brewer’s and baker's yeast are more adapted to high concentrations of carbohydrates. The obtained experimental data could be utilized to develop flow charts of growing a pure culture of Saccharomyces cerevisiae yeast to use at fermentation plants, including low power ones.

  4. Prevalence and susceptibility of Saccharomyces cerevisiae causing vaginitis in Greek women.

    Science.gov (United States)

    Papaemmanouil, V; Georgogiannis, N; Plega, M; Lalaki, J; Lydakis, D; Dimitriou, M; Papadimitriou, A

    2011-12-01

    Saccharomyces cerevisiae is an ascomycetous yeast, that is traditionally used in wine bread and beer production. Vaginitis caused by S. cerevisiae is rare. The aim of this study was to evaluate the frequency of S. cerevisiae isolation from the vagina in two groups of women and determined the in vitro susceptibility of this fungus. Vaginal samples were collected from a total of 262 (asymptomatic and symptomatic) women with vaginitis attending the centre of family planning of General hospital of Piraeus. All blastomycetes that isolated from the vaginal samples were examined for microscopic morphological tests and identified by conventional methods: By API 20 C AUX and ID 32 C (Biomerieux). Antifungal susceptibility testing for amphotericin B,fluconazole itraconazole,voriconazole, posaconazole and caspofungin was performed by E -test (Ab BIODIKS SWEDEN) against S. cerevisiae. A total of 16 isolates of S. cerevisiae derived from vaginal sample of the referred women, average 6.10%. Susceptibility of 16 isolates of S. cerevisiae to a variety of antimycotic agents were obtained. So all isolates of S. cerevisiae were resistant to fluconazole, posaconazole and intraconazole, but they were sensitive to voriconazole caspofungin and Amphotericin B which were found sensitive (except 1/16 strains). None of the 16 patients had a history of occupational domestic use of baker's yeast. Vaginitis caused by S. cerevisiae occur, is rising and cannot be ignored. Treatment of Saccharomyces vaginitis constitutes a major challenge and may require selected and often prolonged therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913

    OpenAIRE

    Lima,Álvaro Silva; Alegre,Ranulfo Monte

    2009-01-01

    Surface-active compounds of biological origin are widely used for many industries (cosmetic, food, petrochemical). The Saccharomyces lipolytica CCT-0913 was able to grow and produce a biosurfactant on 5% (v/v) diesel-oil at pH 5.0 and 32ºC. The cell-free broth emulsified and stabilized the oil-in-water emulsion through a first order kinetics. The results showed that the initial pH value and temperature influenced the emulsifier stability (ES), which was the time when oil was separated. The bi...

  6. Regularities of ''rapid'' repair in radiosensitive mutants of diploid yeasts Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.; Kapul'tsevich, Yu.G.

    1982-01-01

    A study was made of ''rapid'' repair in radiosensitive mutants of diploid yeast Saccharomyces cerevisiae after irradiation with ν-quanta and α-particles. It was shown that the capacity of ''rapid'' repair does not always correlate with the ability of ''slow'' postirradiation repair of viability of yeast cells. A conclusion is made that ''rapid'' and ''slow'' repair are independent processes. It was found that ''rapid'' repair of the studied strains of diploid yeast is more effective after exposure to ν-quanta than α-particles

  7. Lack of cortical endoplasmic reticulum protein Ist2 alters sodium accumulation in Saccharomyces cerevisiae cells

    Czech Academy of Sciences Publication Activity Database

    Papoušková, Klára; Andršová, Markéta; Sychrová, Hana

    2017-01-01

    Roč. 17, č. 2 (2017), č. článku fox011. ISSN 1567-1356 R&D Projects: GA MŠk(CZ) LH14297 Institutional support: RVO:67985823 Keywords : Saccharomyces cerevisiae * Ist2 * alkali-metal- cation homeostasis * sodium tolerance * sodium uptake * alkali-metal- cation transporters Subject RIV: EE - Microbiology, Virology OBOR OECD: Mycology Impact factor: 3.299, year: 2016

  8. Expansion and contraction of the DUP240 multigene family in Saccharomyces cerevisiae populations.

    OpenAIRE

    Leh-Louis, Véronique; Wirth, Bénédicte; Potier, Serge; Souciet, Jean-Luc; Despons, Laurence

    2004-01-01

    The influence of duplicated sequences on chromosomal stability is poorly understood. To characterize chromosomal rearrangements involving duplicated sequences, we compared the organization of tandem repeats of the DUP240 gene family in 15 Saccharomyces cerevisiae strains of various origins. The DUP240 gene family consists of 10 members of unknown function in the reference strain S288C. Five DUP240 paralogs on chromosome I and two on chromosome VII are arranged as tandem repeats that are highl...

  9. Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae

    OpenAIRE

    Elbing, Karin; McCartney, Rhonda R.; Schmidt, Martin C.

    2006-01-01

    Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The identities of proteins associated with the Snf1-activating kinases were determined by peptide mass fingerpr...

  10. Quantification of Saccharomyces cerevisiae flocculation by contaminant bacteria from alcoholic fermentation

    OpenAIRE

    LUDWIG, K.M.; OLIVA-NETO, P.; ANGELIS, D.F. de

    2001-01-01

    O assentamento de células de leveduras no fundo das dornas e perdas de células nas centrífugas podem ser causadas por bactérias floculantes, contaminantes naturais da fermentação alcoólica industrial. Estes problemas levam a queda no rendimento e produtividade do etanol. O presente trabalho visa a caracterização da floculação de Saccharomyces cerevisiae por Lactobacillus fermentum CCT 1396. As células de leveduras e bactérias foram misturadas e a floculação das células quantificadas por espec...

  11. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Bonde, Ida; Herrgard, Markus

    2015-01-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces...... cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains...

  12. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats,

    OpenAIRE

    Sarvari Horvath, I; Franzén, C J; Taherzadeh, M J; Niklasson, C; Lidén, Gunnar

    2003-01-01

    Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual fur...

  13. Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications

    DEFF Research Database (Denmark)

    Beato, Felipe B.; Bergdahl, Basti; Rosa, Carlos A.

    2016-01-01

    Fourteen indigenous Saccharomyces cerevisiae strains isolated from the barks of three tree species located in the Atlantic Rain Forest and Cerrado biomes in Brazil were genetically and physiologically compared to laboratory strains and to strains from the Brazilian fuel ethanol industry. Although...

  14. CRISPR/Cas9 : A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Mans, R.; Van Rossum, H.M.; Wijsman, M.; Backx, A.; Kuijpers, N.G.A.; van den Broek, M.; Daran-Lapujade, P.A.S.; Pronk, J.T.; Van Maris, A.J.A.; Daran, J.G.

    2015-01-01

    A variety of techniques for strain engineering in Saccharomyces cerevisiae have recently been developed. However, especially when multiple genetic manipulations are required, strain construction is still a time-consuming process. This study describes new CRISPR/Cas9-based approaches for easy, fast

  15. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jared W Wenger

    2010-05-01

    Full Text Available Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.

  16. Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth.

    Science.gov (United States)

    Liu, Yen-Yu; Chen, Hung-Wei; Chou, Jui-Yu

    2016-01-01

    Phytohormone indole-3-acetic acid (IAA) is the most common naturally occurring and most thoroughly studied plant growth regulator. Microbial synthesis of IAA has long been known. Microbial IAA biosynthesis has been proposed as possibly occurring through multiple pathways, as has been proven in plants. However, the biosynthetic pathways of IAA and the ecological roles of IAA in yeast have not been widely studied. In this study, we investigated the variation in IAA production and its effect on the growth of Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus yeasts from diverse ecological sources. We found that almost all Saccharomyces yeasts produced IAA when cultured in medium supplemented with the primary precursor of IAA, L-tryptophan (L-Trp). However, when cultured in medium without L-Trp, IAA production was only detected in three strains. Furthermore, exogenous added IAA exerted stimulatory and inhibitory effects on yeast growth. Interestingly, a negative correlation was observed between the amount of IAA production in the yeast cultures and the IAA inhibition ratio of their growth.

  17. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  18. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments

    DEFF Research Database (Denmark)

    Santos, Maria Margarida M. dos; Vijayendran, Raghevendran; Kotter, P.

    2004-01-01

    The yeast Saccharomyces cerevisiae is an attractive cell factory, but in many cases there are constraints related with balancing the formation and consumption of redox cofactors. In this work, we studied the effect of having an additional source of NADPH in the cell. In order to do this, two...

  19. Role of anti-competitor toxins in the origin and maintenance of diversity in Saccharomyces yeast microbial populations

    NARCIS (Netherlands)

    Pieczynska, M.D.

    2015-01-01

    Abstract

    Saccharomyces cells occasionally carry cytoplasmic ds-RNA “killer” viruses coding for low-mass proteins, which upon secretion to the environment can kill related cells that do not carry the viral particles. Such killer viruses are not infectious,

  20. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cervisiae without detoxification

    Science.gov (United States)

    S. Tian; X.L. Luo; X.S. Yang; J.Y. Zhu

    2010-01-01

    This study reports an ethanol yield of 270 L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before...

  1. The Saccharomyces boulardii CNCM I-745 Strain Shows Protective Effects against the B. anthracis LT Toxin

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    2015-10-01

    Full Text Available The probiotic yeast Saccharomyces boulardii (S. boulardii has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  2. Heterologous expression of MlcE in Saccharomyces cerevisiae provides resistance to natural and semi-synthetic statins

    Directory of Open Access Journals (Sweden)

    Ana Ley

    2015-12-01

    Full Text Available Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme in cholesterol biosynthesis. Their extensive use in treatment and prevention of cardiovascular diseases placed statins among the best selling drugs. Construction of Saccharomyces cerevisiae cell factory for the production of high concentrations of natural statins will require establishment of a non-destructive self-resistance mechanism to overcome the undesirable growth inhibition effects of statins. To establish active export of statins from yeast, and thereby detoxification, we integrated a putative efflux pump-encoding gene mlcE from the mevastatin-producing Penicillium citrinum into the S. cerevisiae genome. The resulting strain showed increased resistance to both natural statins (mevastatin and lovastatin and semi-synthetic statin (simvastatin when compared to the wild type strain. Expression of RFP-tagged mlcE showed that MlcE is localized to the yeast plasma and vacuolar membranes. We provide a possible engineering strategy for improvement of future yeast based production of natural and semi-synthetic statins. Keywords: Polyketide, Statins, Saccharomyces cerevisiae, Transport, Cell factory, Resistance

  3. The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the B. anthracis LT toxin.

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-10-30

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  4. Effect of supplementing a diet with monensin sodium and Saccharomyces Cerevisiae on reproductive performance of Ghezel ewes.

    Science.gov (United States)

    Ahmadzadeh, Leila; Hosseinkhani, Ali; Daghigh Kia, Hossein

    2018-01-01

    Effect of supplementing a diet, in an attempt to enhance reproduction, with monensin sodium and Saccharomyces cerevisiae yeast on reproductive performance was investigated during the breeding season using 44 Ghezel ewes (body weight 56.97±7.47kg, age 2-5 years and body condition score (BCS) 2.5) which were allocated randomly in equal numbers to the four dietary treatments as follows: 1) Basal diet plus supplemental feed (450g/ewe/d) plus monensin sodium (30mg/ewe/d) (MS); 2) Basal diet plus supplemental feed (450 g/ewe/d) plus Saccharomyces cerevisiae yeast (4×10 9 CFU/ewe/d) (SC); 3) Basal diet plus supplemental feed (450g/ewe/d) (FG); 4) Basal diet (only grazing on pasture, Control; G). Estrous synchronization of all ewes was done using controlled internal drug release (CIDR) and all ewes were mated with purebred Ghezel rams after CIDR removal. The results indicated that MS and SC treatments with 15 lambs had greater number of lambs than ewes of the other two treatment groups. Ewes in MS group with 50% twining rate had the greatest value followed by the FG, SC and G treatment groups (Pewes in MS and SC groups were heavier in weight than those in FG and G treatments (Pewes in MS and SC groups had greater concentrations of 17β-estradiol (E2), progesterone (P4), blood urea nitrogen (Pewes of the other groups. These results indicated that using a diet for enhancing reproduction, including monensin sodium and Saccharomyces cerevisiae yeast in the breeding season could have beneficial effects on reproductive performance of Ghezel ewes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol

    Science.gov (United States)

    2014-01-01

    Background During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the organisms to stressful conditions. In addition, for lignocellulosic bioethanol production, conversion of both pentose and hexose sugars is a pre-requisite for fermentative organisms for efficient and complete conversion. All these factors are important to maximise industrial efficiency, productivity and profit margins in order to make second-generation bioethanol an economically viable alternative to fossil fuels for future transport needs. Results The aim of the current study was to assess Saccharomyces yeasts for their capacity to tolerate osmotic, temperature and ethanol stresses and inhibitors that might typically be released during steam explosion of wheat straw. Phenotypic microarray analysis was used to measure tolerance as a function of growth and metabolic activity. Saccharomyces strains analysed in this study displayed natural variation to each stress condition common in bioethanol fermentations. In addition, many strains displayed tolerance to more than one stress, such as inhibitor tolerance combined with fermentation stresses. Conclusions Our results suggest that this study could identify a potential candidate strain or strains for efficient second generation bioethanol production. Knowledge of the Saccharomyces spp. strains grown in these conditions will aid the development of breeding programmes in order to generate more efficient strains for industrial fermentations. PMID:24670111

  6. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  7. Phenotypic characterisation of Saccharomyces spp. for tolerance to 1-butanol.

    Science.gov (United States)

    Zaki, A M; Wimalasena, T T; Greetham, D

    2014-11-01

    Biofuels are expected to play a role in replacing crude oil as a liquid transportation fuel, and research into butanol has highlighted the importance of this alcohol as a fuel. Butanol has a higher energy density than ethanol, butanol-gasoline blends do not separate in the presence of water, and butanol is miscible with gasoline (Szulczyk, Int J Energy Environ 1(1):2876-2895, 40). Saccharomyces cerevisiae has been used as a fermentative organism in the biofuel industry producing ethanol from glucose derived from starchy plant material; however, it typically cannot tolerate butanol concentrations greater than 2 % (Luong, Biotechnol Bioeng 29 (2):242-248, 27). 90 Saccharomyces spp. strains were screened for tolerance to 1-butanol via a phenotypic microarray assay and we observed significant variation in response with the most tolerant strains (S. cerevisiae DBVPG1788, S. cerevisiae DBVPG6044 and S. cerevisiae YPS128) exhibiting tolerance to 4 % 1-butanol compared with S. uvarum and S. castelli strains, which were sensitive to 3 % 1-butanol. Response to butanol was confirmed using traditional yeast methodologies such as growth; it was observed that fermentations in the presence of butanol, when using strains with a tolerant background, were significantly faster. Assessing for genetic rationale for tolerance, it was observed that 1-butanol-tolerant strains, when compared with 1-butanol-sensitive strains, had an up-regulation of RPN4, a transcription factor which regulates proteasome genes. Analysing for the importance of RPN4, we observed that a Δrpn4 strain displayed a reduced rate of fermentation in the presence of 1-butanol when compared with the BY4741 background strain. This data will aid the development of breeding programmes to produce better strains for future bio-butanol production.

  8. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Sun

    Full Text Available At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  9. Effects of Saccharomyces cerevisiae or boulardii yeasts on acute stress induced intestinal dysmotility.

    Science.gov (United States)

    West, Christine; Stanisz, Andrew M; Wong, Annette; Kunze, Wolfgang A

    2016-12-28

    To investigate the capacity of Saccharomyces cerevisiae ( S. cerevisiae ) and Saccharomyces boulardii ( S. boulardii ) yeasts to reverse or to treat acute stress-related intestinal dysmotility. Adult Swiss Webster mice were stressed for 1 h in a wire-mesh restraint to induce symptoms of intestinal dysmotility and were subsequently killed by cervical dislocation. Jejunal and colon tissue were excised and placed within a tissue perfusion bath in which S. cerevisiae , S. boulardii , or their supernatants were administered into the lumen. Video recordings of contractility and gut diameter changes were converted to spatiotemporal maps and the velocity, frequency, and amplitude of propagating contractile clusters (PCC) were measured. Motility pre- and post-treatment was compared between stressed animals and unstressed controls. S. boulardii and S. cerevisiae helped to mediate the effects of stress on the small and large intestine. Restraint stress reduced jejunal transit velocity (mm/s) from 2.635 ± 0.316 to 1.644 ± 0.238, P boulardii helped to restore jejunal and colonic velocity towards the unstressed controls; 1.833 ± 0.688 to 2.627 ± 0.664, P boulardii or S. cerevisiae supernatants also helped to restore motility to unstressed values in similar capacity. There is a potential therapeutic role for S. cerevisiae and S. boulardii yeasts and their supernatants in the treatment of acute stress-related gut dysmotility.

  10. Biological methylation of inorganic mercury by Saccharomyces cerevisiae - a possible environmental process

    International Nuclear Information System (INIS)

    Reisinger, K.; Stoeppler, M.; Nuernberg, H.W.

    1983-01-01

    The biological methylation of inorganic mercury by S-adenosylmethione (SAM) was investigated by incubation experiments with Saccharomyces cerevisae (''bakers' yeast''). The methyl donor (methionine) and the acceptor (Hg 2+ as HgCl 2 ) were also applied in their labelled form (double labelling). Methylmercury as a result of a possibly biological methyl group transfer could not be detected. As reaction product only small amounts (0.01per mille yield) of elemental mercury (Hg 0 ) were found, while the overwhelming amount of HgCl 2 had not reacted. (orig.) [de

  11. Effective inactivation of Saccharomyces cerevisiae in minimally processed Makgeolli using low-pressure homogenization-based pasteurization.

    Science.gov (United States)

    Bak, Jin Seop

    2015-01-01

    In order to address the limitations associated with the inefficient pasteurization platform used to make Makgeolli, such as the presence of turbid colloidal dispersions in suspension, commercially available Makgeolli was minimally processed using a low-pressure homogenization-based pasteurization (LHBP) process. This continuous process demonstrates that promptly reducing the exposure time to excessive heat using either large molecules or insoluble particles can dramatically improve internal quality and decrease irreversible damage. Specifically, optimal homogenization increased concomitantly with physical parameters such as colloidal stability (65.0% of maximum and below 25-μm particles) following two repetitions at 25.0 MPa. However, biochemical parameters such as microbial population, acidity, and the presence of fermentable sugars rarely affected Makgeolli quality. Remarkably, there was a 4.5-log reduction in the number of Saccharomyces cerevisiae target cells at 53.5°C for 70 sec in optimally homogenized Makgeolli. This value was higher than the 37.7% measured from traditionally pasteurized Makgeolli. In contrast to the analytical similarity among homogenized Makgeollis, our objective quality evaluation demonstrated significant differences between pasteurized (or unpasteurized) Makgeolli and LHBP-treated Makgeolli. Low-pressure homogenization-based pasteurization, Makgeolli, minimal processing-preservation, Saccharomyces cerevisiae, suspension stability.

  12. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    Science.gov (United States)

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties. Copyright © 2015 John Wiley & Sons, Ltd.

  13. ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    López-Martínez, Gema; Margalef-Català, Mar; Salinas, Francisco; Liti, Gianni; Cordero-Otero, Ricardo

    2015-01-01

    Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.

  14. ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Gema López-Martínez

    Full Text Available Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.

  15. The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation.

    Science.gov (United States)

    Krasowska, Anna; Murzyn, Anna; Dyjankiewicz, Agnieszka; Łukaszewicz, Marcin; Dziadkowiec, Dorota

    2009-12-01

    The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans. We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans, i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.

  16. Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for full biotin prototrophy and identification of causal mutations

    NARCIS (Netherlands)

    Bracher, J.M.; de Hulster, A.F.; van den Broek, M.A.; Daran, J.G.; van Maris, A.J.A.; Pronk, J.T.

    2017-01-01

    Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free synthetic medium is

  17. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates

    Science.gov (United States)

    An industrial ethanol-producing Saccharomyces cerevisiae strain with genes needed for xylose-fermentation integrated into its genome was used to obtain haploids and diploid isogenic strains. The isogenic strains were more effective in metabolizing xylose than their parental strain (p < 0.05) and abl...

  18. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production

    Science.gov (United States)

    Ragazzo-Sánchez, Juan Arturo; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains. PMID:25506606

  19. Screening and identification of respiration deficiency mutants of yeasts (Saccharomyces Cerevisiae) induced by heavy ion irradiation

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Zhang Hong

    2006-01-01

    A screen of respiration deficiency mutants of Saccharomyces Cerevisiae induced by 5.19 MeV/u 22 Ne 5- ion irradiation is studied. Some respiration deficiency mutants, which are white colony phenotype in the selective culture of TTC medium, are obtained. The mutants are effectively identified by means of a new and simplified restriction analysis method. (authors)

  20. Modelling of Functional States during Saccharomyces cerevisiae Fed-batch Cultivation

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2005-04-01

    Full Text Available An implementation of functional state approach for modelling of yeast fed-batch cultivation is presented in this paper. Using of functional state modelling approach aims to overcome the main disadvantage of using global process model, namely complex model structure and big number of model parameters, which complicate the model simulation and parameter estimation. This approach has computational advantages, such as the possibility to use the estimated values from the previous state as starting values for estimation of parameters of a new state. The functional state modelling approach is applied here for fedbatch cultivation of Saccharomyces cerevisiae. Four functional states are recognised and parameter estimation of local models is presented as well.

  1. Four Saccharomyces species differ in their tolerance to various stresses though they have similar basic physiological parameters

    Czech Academy of Sciences Publication Activity Database

    Zemančíková, Jana; Kodedová, Marie; Papoušková, Klára; Sychrová, Hana

    2018-01-01

    Roč. 63, č. 2 (2018), s. 217-227 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA15-03708S Institutional support: RVO:67985823 Keywords : saccharomyces * stress tolerance * intracellular pH * membrane potential Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.521, year: 2016

  2. Decarboxilase activity and biosynthetic processes in Saccharomyces carlsbergenesis upon the action of light

    International Nuclear Information System (INIS)

    Chebotarev, L.N.; Shaburova, G.V.; Licyuk, G.M.

    1983-01-01

    It is established that visible light of 410-520 nm wave-- lengths stimulated decarboxylase activity, protein biosynthesis and increase in the number of cells in the Saccharomyces carlsbergenesis yeast culture. A limiting link of these yeast metabolism is decarboxylizing of pyuvate providing the formation of a substrate for functioning of the di- and pericarboxilic acid cycle. The light effect can activate this process thus eliminating substrate deficiency of the Krebs cycle which results in the increase of anabolic processes intensity

  3. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    OpenAIRE

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly ...

  4. Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX pretreated corn stover

    Science.gov (United States)

    Mingie Jin; Cory Sarks; Christa Gunawan; Benjamin D. Bice; Shane P. Simonett; Ragothaman Avanasi Narasimhan; Laura B. Willis; Bruce E. Dale; Venkatesh Balan; Trey K. Sato

    2013-01-01

    Simultaneous saccharification and co-fermentation (SSCF) process involves enzymatic hydrolysis of pretreated lignocellulosic biomass and fermentation of glucose and xylose in one bioreactor. The optimal temperatures for enzymatic hydrolysis are higher than the standard fermentation temperature of ethanologenic Saccharomyces cerevisiae. Moreover,...

  5. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield

    NARCIS (Netherlands)

    Papapetridis, I.; Goudriaan, M.; De Keijzer, Nikita A.; van den Broek, M.A.; van Maris, A.J.A.; Pronk, J.T.

    2018-01-01

    Background: Reduction or elimination of by-product formation is of immediate economic relevance in fermentation processes for industrial bioethanol production with the yeast Saccharomyces cerevisiae. Anaerobic cultures of wild-type S. cerevisiae require formation of glycerol to maintain the

  6. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  7. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    Science.gov (United States)

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  8. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vemuri, Goutham; Eiteman, M.A; McEwen, J.E

    2007-01-01

    effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation...... Crabtree effect.’’ The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely...... respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree...

  9. Mining for genotype-phenotype relations in Saccharomyces using partial least squares

    Directory of Open Access Journals (Sweden)

    Sæbø Solve

    2011-08-01

    Full Text Available Abstract Background Multivariate approaches are important due to their versatility and applications in many fields as it provides decisive advantages over univariate analysis in many ways. Genome wide association studies are rapidly emerging, but approaches in hand pay less attention to multivariate relation between genotype and phenotype. We introduce a methodology based on a BLAST approach for extracting information from genomic sequences and Soft- Thresholding Partial Least Squares (ST-PLS for mapping genotype-phenotype relations. Results Applying this methodology to an extensive data set for the model yeast Saccharomyces cerevisiae, we found that the relationship between genotype-phenotype involves surprisingly few genes in the sense that an overwhelmingly large fraction of the phenotypic variation can be explained by variation in less than 1% of the full gene reference set containing 5791 genes. These phenotype influencing genes were evolving 20% faster than non-influential genes and were unevenly distributed over cellular functions, with strong enrichments in functions such as cellular respiration and transposition. These genes were also enriched with known paralogs, stop codon variations and copy number variations, suggesting that such molecular adjustments have had a disproportionate influence on Saccharomyces yeasts recent adaptation to environmental changes in its ecological niche. Conclusions BLAST and PLS based multivariate approach derived results that adhere to the known yeast phylogeny and gene ontology and thus verify that the methodology extracts a set of fast evolving genes that capture the phylogeny of the yeast strains. The approach is worth pursuing, and future investigations should be made to improve the computations of genotype signals as well as variable selection procedure within the PLS framework.

  10. Adaptive answer to low ionizing radiation doses in Saccharomyces cerevisiae; Respuesta adaptativa a bajas dosis de radiacion ionizante en Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Jorge L. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Inst. Balseiro; Frati, Diego Libkind; Broock, Maria Van [Universidad Nacional del Comahue, Bariloche (Argentina). Centro Regional Universitario Bariloche; Gillette, Victor [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico

    2001-07-01

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells. It is known that low doses of ionizing radiation, called conditioning doses, may induce resistance in exposed organisms to higher doses, called challenging doses, which are applied after a period of time. The involved mechanisms in this phenomenon, called Adaptive Response, are diverse and complex. Among them, the most important are the activation of DNA-repair enzymes and nuclear recombination process. As the 'target' sample, it was utilized a 'wild type' strain of Saccharomyces cerevisiae in aqueous suspension. Adaptive Response was verified in a wide range of challenging doses. Conditioning doses, inductors of radio-resistance, were (0.44{+-}0.03) Gy and the waiting time between them and challenging doses was 2 hours at room temperature.(author)

  11. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions

    DEFF Research Database (Denmark)

    Branco, Patrícia; Francisco, Diana; Chambon, Christophe

    2014-01-01

    Saccharomyces cerevisiae plays a primordial role in alcoholic fermentation and has a vast worldwide application in the production of fuel-ethanol, food and beverages. The dominance of S. cerevisiae over other microbial species during alcoholic fermentations has been traditionally ascribed to its ...

  12. Pathways of ultraviolet mutability in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1977-01-01

    Non-allelic mutants of Saccharomyces cerevisiae with reduced capacity for ultraviolet light (UV)-induced forward mutation from CAN1 to can1 were assigned to seven distinct genetic loci, each with allele designations umr1-1, umr2-1, ..., umr7-1 to indicate UV mutation resistance. None conferred a great deal of UV sensitivity. When assayed on yeast extract-peptone-dextrose complex growth agar, umr1, umr3, and umr7 were the most UV-sensitive. When assayed on synthetic agar lacking arginine, however, umr3 was the most UV-sensitive. All strains carrying each of the seven umr genes exhibited varying degrees of defective UV mutability, compact with wild types. Normal UV revertibility of three different alleles was observed in strains carrying either umr4, umr5, umr6, or umr7. Five a/α homozygous umr diploids failed to sporulate. One of these, umr7, blocked normal secretion of alpha hormone in α segregants and could not conjugate with a strains. The phenotypes of umr mutants are consistent with the existence of branched UV mutation pathways of different specificity

  13. Improved ethanol production from whey Saccharomyces cerevisiae using permeabilized cells of Kluyveromyces marxianus

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Tomaska, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Kanuch, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Sturdik, E [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology

    1996-12-31

    Permeabilized cells of Kluyveromyces marxianus CCY eSY2 were tested as the source of lactase in the ethanol fermentation of concentrated deproteinized whey (65-70 g/l lactose) by Saccharomyces cerevisiae CCY 10-13-14. Rapid lactose hydrolysis by small amounts of permeabilized cells following the fermentation of released glucose and galactose by S. cerevisiae resulted in a twofold enhancement of the overall volumetric productivity (1.03 g/lxh), compared to the fermentation in which the lactose was directly fermented by K. marxianus. (orig.)

  14. Kinetics of volatile metabolites during alcoholic fermentation of cane molasses by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Cachot, T; Mueller, M; Pons, M N [Centre National de la Recherche Scientifique, 54 - Nancy (France). Lab. des Sciences du Genie Chimique

    1991-07-01

    The kinetics of ethanol, acetaldehyde, ethyl acetate and fusel alcohols during alcoholic fermentations on cane molasses by Saccharomyces cerevisiae have been obtained via an in-situ gas membrane sensor connected to a gas chromatograph. Various operation parameters have been investigated such as inoculum rate, molasses concentration, operation mode (batch, fed-batch). The modification of fusel alcohols kinetics in response to addition of amino acids has been studied as well as the assimilation of two intermediary aldehydes (isovaleraldehyde and isobutyraldehyde) in the fusel alcohol synthesis pathway. (orig.).

  15. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism

    DEFF Research Database (Denmark)

    Chen, Xiao; Nielsen, Kristian Fog; Borodina, Irina

    2011-01-01

    BACKGROUND: Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because...... of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. RESULTS: The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous...

  16. A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Barreto, L.; Canadell, D.; Petrezsélyová, Silvia; Navarrete, C.; Marešová, Lydie; Peréz-Valle, J.; Herrera, R.; Olier, I.; Giraldo, J.; Sychrová, Hana; Yenush, L.; Ramos, J.; Ariňo, J.

    2011-01-01

    Roč. 10, č. 9 (2011), s. 1241-1250 ISSN 1535-9778 R&D Projects: GA MŠk(CZ) LC531; GA AV ČR(CZ) IAA500110801 Institutional research plan: CEZ:AV0Z50110509 Keywords : Potassium homeostasis * Saccharomyces cerevisiae * genomewide screen Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.604, year: 2011

  17. Saccharomyces boulardii Stimulates Intestinal Immunoglobulin A Immune Response to Clostridium difficile Toxin A in Mice

    Science.gov (United States)

    Qamar, Amir; Aboudola, Samer; Warny, Michel; Michetti, Pierre; Pothoulakis, Charalabos; LaMont, J. Thomas; Kelly, Ciarán P.

    2001-01-01

    Saccharomyces boulardii is a nonpathogenic yeast that protects against antibiotic-associated diarrhea and recurrent Clostridium difficile colitis. The administration of C. difficile toxoid A by gavage to S. boulardii-fed BALB/c mice caused a 1.8-fold increase in total small intestinal immunoglobulin A levels (P = 0.003) and a 4.4-fold increase in specific intestinal anti-toxin A levels (P boulardii-mediated protection against diarrheal illnesses. PMID:11254650

  18. Fermentation of Saccharomyces cerevisiae - Combining kinetic modeling and optimization techniques points out avenues to effective process design.

    Science.gov (United States)

    Scheiblauer, Johannes; Scheiner, Stefan; Joksch, Martin; Kavsek, Barbara

    2018-09-14

    A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taking into account the main mechanisms of the fermentation process, allowing for continuous computation of key process variables, including the biomass concentration and the respiratory quotient (RQ). For model calibration and experimental validation, batch and fed-batch fermentations were carried out. Comparison of the model-predicted biomass concentrations and RQ developments with the corresponding experimentally recorded values shows a remarkably good agreement for both batch and fed-batch processes, confirming the adequacy of the model. Furthermore, sensitivity studies were performed, in order to identify model parameters whose variations have significant effects on the model predictions: our model responds with significant sensitivity to the variations of only six parameters. These studies provide a valuable basis for model reduction, as also demonstrated in this paper. Finally, optimization-based parametric studies demonstrate how our model can be utilized for improving the efficiency of Saccharomyces cerevisiae fermentations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Probiotic actions of Bacillus cereus var. toyoi and Saccharomyces boulardii in silver catfish (Rhamdia quelen larvae culture

    Directory of Open Access Journals (Sweden)

    Diego Moreira de Souza

    2012-03-01

    Full Text Available The objective of this study was to evaluate the use of Bacillus cereus var. toyoi and Saccharomyces boulardii as probiotics to improve Rhamdia quelen culture. Six hundred larvaes (0.16±0.07 g were divided in three replicate tanks (25-L recirculation, 20 ºC, photoperiod of 12 h light/12 h darkness per treatment and were randomly assigned to the following treatments: Bacillus cereus var. toyoi; Saccharomyces boulardii; B. toyoi and S. boulardii; and control (without probiotic addition for a period of 30 days. The fish were fed five times daily (56% crude protein - Supra alevino inicial® and the probiotics were applied in water once a day. The doses of probiotics were 5 × 10(8 and 2 × 10(9 CFU (colony forming unit/mL for B. cereus var. toyoi and S. boulardii, respectively. Both probiotics have an inhibitory effect in vitro against Vibrio carchariae and are able to grow in media prepared with fishery water; however, no effect was observed on growth parameters when they were administered to Rhamdia quelen larvae.

  20. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    Science.gov (United States)

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.

  1. "Desenvolvimento de produtos efervescentes adicionados dos probióticos Lactobacillus acidophilus e Saccharomyces boulardii"

    OpenAIRE

    Agnes Izumi Nagashima

    2010-01-01

    Probióticos são microrganismos vivos, que administrados em quantidades adequadas, conferem benefícios à saúde do hospedeiro, sendo sua influência benéfica sobre a microbiota intestinal humana, incluindo fatores como efeitos antagônicos, competição e efeitos imunológicos. Assim, este trabalho apresentou como objetivo desenvolver produtos efervescentes com os microrganismos probióticos Lactobacillus acidophilus e Saccharomyces boulardii (comprimido, pó e ingrediente), identificar a melhor formu...

  2. Effect of aeration on the fermentative activity of Saccharomyces cerevisiae cultured in apple juice

    OpenAIRE

    Estela-Escalante, W.; Rychtera, M.; Melzoch, K.; Hatta-Sakoda, B.

    2012-01-01

    The influence of aeration on the fermentative activity of Saccharomyces cerevisiaeRTVE V 15-1-416 was studied in order to evaluate the synthesis of fermentation by-products. To achieve this, the strain was cultured in Erlenmeyer flasks and bioreactor containing sterilized and aroma removed apple juice. The chemical compounds produced during fermentations in shaken (200 min-¹) and static (without agitation) flasks and bioreactor, all in batch mode, were determined by GC and HPLC. The results s...

  3. The 1.75 Å resolution structure of fission protein Fis1 from Saccharomyces cerevisiae reveals elusive interactions of the autoinhibitory domain

    International Nuclear Information System (INIS)

    Tooley, James E.; Khangulov, Victor; Lees, Jonathan P. B.; Schlessman, Jamie L.; Bewley, Maria C.; Heroux, Annie; Bosch, Jürgen; Hill, R. Blake

    2011-01-01

    A 1.75 Å resolution crystal structure of the Fis1 cytoplasmic domain from Saccharomyces cerevisiae is reported which adopts a tetratricopeptide-repeat fold. Fis1 mediates mitochondrial and peroxisomal fission. It is tail-anchored to these organelles by a transmembrane domain, exposing a soluble cytoplasmic domain. Previous studies suggested that Fis1 is autoinhibited by its N-terminal region. Here, a 1.75 Å resolution crystal structure of the Fis1 cytoplasmic domain from Saccharomyces cerevisiae is reported which adopts a tetratricopeptide-repeat fold. It is observed that this fold creates a concave surface important for fission, but is sterically occluded by its N-terminal region. Thus, this structure provides a physical basis for autoinhibition and allows a detailed examination of the interactions that stabilize the inhibited state of this molecule

  4. Attempt to stimulate cell division in Saccharomyces cerevisiae with weak ultraviolet light

    International Nuclear Information System (INIS)

    Quickenden, T.I.; Matich, A.J.; Pung, S.H.; Tilbury, R.N.

    1989-01-01

    Liquid cultures of the yeast Saccharomyces cerevisiae were irradiated with weak light having irradiances ranging from ca. 1 X 10(2) to 5 X 10(9) photons cm-2 s-1 and at wavelengths ranging from 200 to 700 nm. When particular care was taken to control the temperature of the cultures and the flow rate of oxygen, no evidence was obtained for stimulation of either yeast growth or division by the incident light. These results do not support the claims of early workers that very low intensity uv light can stimulate cell division in living organisms

  5. Division of labour in the yeast: Saccharomyces cerevisiae.

    Science.gov (United States)

    Wloch-Salamon, Dominika M; Fisher, Roberta M; Regenberg, Birgitte

    2017-10-01

    Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva

    2016-06-01

    The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. IMPROVEMENT OF BORASSUS AKEASSII WINES QUALITY BY CONTROLLED FERMENTATION USING SACCHAROMYCES CEREVISIAE STRAINS

    Directory of Open Access Journals (Sweden)

    TAPSOBA François

    2016-06-01

    Full Text Available Palm wine produced traditionally and consumed by many people around the world and specifically in Burkina Faso posed health risks because of questionable quality of wine produced by mix culture fermentation and the use of antiseptics for the stabilization. In order to improve its quality, Saccharomyces cerevisiae strains isolated from Borassus akeassii wines and identified by amplification and RFLP analysis of the 5-8S-ITS region were used for in vitro fermentation of unfermented palm sap. The physicochemical characteristics of the sap were measured before and after fermentation process by High-Performance Liquid Chromatography (HPLC and the microbiological quality were also performed. HPLC analysis showed that glucose and fructose concentration in palm sap were 37.0 and 27.6 g/L respectively, ethanol content was ranged between 2.76 and 5.31 % (g/mL for controlled fermentation and 2.20 % (g/mL for spontaneous fermentation. Lactic and acetic acids were ranged between 0.1 and 0.3 g/L and 1.5 and 1.6 g/L for controlled fermentation versus 2.5 and 3.1 g/L and the spontaneous fermentation respectively. Coliforms and Staphylococcus aureus were detected only in the unfermented palm sap and the wine fermented spontaneously. Principal component analysis showed a good separation between spontaneous and controlled fermentation. Sterilization and controlled fermentation of the unfermented sap with palm wine Saccharomyces cerevisiae strains led to the improvement of palm wine quality.

  8. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    Science.gov (United States)

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pizarra, Francisco J.; Jewett, Michael Christopher; Nielsen, Jens

    2008-01-01

    Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent environm......Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent...... environmental conditions and the organoleptic properties that they confer to wine. Here, we used a two-factor design to study the responses of a standard laboratory strain, CEN.PK113-7D, and an industrial wine yeast strain, EC1118, to growth temperatures of 15 degrees C and 30 degrees C in nitrogen......-limited, anaerobic, steady-state chemostat cultures. Physiological characterization revealed that the growth temperature strongly impacted the biomass yield of both strains. Moreover, we found that the wine yeast was better adapted to mobilizing resources for biomass production and that the laboratory yeast...

  10. Overexpression of (His)6-tagged human arginase I in Saccharomyces cerevisiae and enzyme purification using metal affinity chromatography

    Czech Academy of Sciences Publication Activity Database

    Zakalskiy, A. E.; Zakalska, O. M.; Rzhepetskyy, Y. A.; Potocka, N.; Stasyk, O. V.; Horák, Daniel; Gonchar, M. V.

    2012-01-01

    Roč. 81, č. 1 (2012), s. 63-68 ISSN 1046-5928 R&D Projects: GA ČR GA203/09/1242 Institutional research plan: CEZ:AV0Z40500505 Keywords : human arginase I * (His)6-tag * Saccharomyces cerevisiae Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.429, year: 2012

  11. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeira, Paulo Goncalves; Gossing, Michael

    2018-01-01

    Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce...... large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy...... PXA1 led to accumulation of  254 mg∙gCDW−1. The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species...

  12. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase

    DEFF Research Database (Denmark)

    Chen, Yun; Zhang, Yiming; Siewers, Verena

    2015-01-01

    Saccharomyces cerevisiae, acetyl-CoA is compartmentalized in the cytosol, mitochondrion, peroxisome and nucleus, and cannot be directly transported between these compartments. With the acetyl-carnitine or glyoxylate shuttle, acetyl-CoA produced in peroxisomes or the cytoplasm can be transported...

  13. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Science.gov (United States)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  14. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6

    NARCIS (Netherlands)

    Papapetridis, I.; van Dijk, M.; Dobbe, Arthur P A; Metz, B.; Pronk, J.T.; van Maris, A.J.A.

    2016-01-01

    Background: Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of

  15. Saccharomyces boulardii for prevention of necrotizing enterocolitis in preterm infants: a randomized, controlled study.

    Science.gov (United States)

    Demirel, Gamze; Erdeve, Omer; Celik, Istemi Han; Dilmen, Ugur

    2013-12-01

    To evaluate the efficacy of orally administered Saccharomyces boulardii (S. boulardii) for reducing the incidence and severity of necrotizing enterocolitis (NEC) in very low-birth-weight (VLBW) infants. A prospective, randomised controlled trial was conducted in infants with gestational age ≤32 weeks and birth weight ≤1500 g. The study group received S. boulardii supplementation, and the control group did not. The primary outcomes were death or NEC (Bell's stage ≥2), and secondary outcomes were feeding intolerance and clinical or culture-proven sepsis. A total of 271 infants were enrolled in the study, 135 in the study group and 136 in the control group. There was no significant difference in the incidence of death (3.7% vs. 3.6%, 95% CI of the difference, -5.20-5.25; p = 1.0) or NEC (4.4% vs. 5.1%, 95% CI, -0.65-5.12; p = 1.0) between the groups. However, feeding intolerance and clinical sepsis were significantly lower in the probiotic group compared with control. Although Saccharomyces boulardii supplementation at a dose of 250 mg/day was not effective at reducing the incidence of death or NEC in VLBW infants, it improved feeding tolerance and reduced the risk of clinical sepsis. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  16. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Coi, Anna Lisa; Legras, Jean-Luc; Zara, Giacomo; Dequin, Sylvie; Budroni, Marilena

    2016-09-01

    Flor yeasts of Saccharomyces cerevisiae have been extensively studied for biofilm formation, however the lack of specific haploid model strains has limited the application of genetic approaches such as gene knockout, allelic replacement and Quantitative Trait Locus mapping for the deciphering of the molecular basis of velum formation under biological ageing. The aim of this work was to construct a set of flor isogenic haploid strains easy to manipulate genetically. The analysis of the allelic variations at 12 minisatellite loci of 174 Saccharomyces cerevisiae strains allowed identifying three flor parental strains with different phylogenic positions. These strains were characterized for sporulation efficiency, growth on galactose, adherence to polystyrene, agar invasion, growth on wine and ability to develop a biofilm. Interestingly, the inability to grow on galactose was found associated with a frameshift in GAL4 gene that seems peculiar of flor strains. From these wild flor strains, isogenic haploid strains were constructed by deleting HO gene with a loxP-KanMX-loxP cassette followed by the removal of the kanamycin cassette. Haploid strains obtained were characterized for their phenotypic and genetic properties and compared with the parental strains. Preliminary results showed that the haploid strains represent new tools for genetic studies and breeding programs on biofilm formation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Ethanol from hydrolyzed whey permeate using Saccharomyces cerevisiae in a membrane recycle bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehaia, M A [King Saud Univ., Buriedah (Saudi Arabia). Dairy Technology Lab.; Cheryan, M [Illinois Univ., Urbana, IL (USA). Agricultural Bioprocess Lab.

    1990-02-13

    A diauxic fermentation was observed during batch fermentation of enzyme-hydrolyzed whey permeate to ethanol by Saccharomyces cerevisiae. Glucose was consumed before and much faster than galactose. In the continuous membrane recycle bioreactor (MRB), sugar utilization was a function of dilution rate and concentration of sugars. At a cell concentration of 160 kg/m{sup 3}, optimum productivity was 31 kg/(m{sup 3}.h) at ethanol concentration of 65 kg/m{sup 3}. Low levels of acetate (0.05-0.1 M) reduced cell growth during continuous fermentation, but also reduced galactose utilization. (orig.).

  18. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kang, Min-Kyoung; Zhou, Yongjin J.; Buijs, Nicolaas A.

    2017-01-01

    Background: Low catalytic activities of pathway enzymes are often a limitation when using microbial based chemical production. Recent studies indicated that the enzyme activity of aldehyde decarbonylase (AD) is a critical bottleneck for alkane biosynthesis in Saccharomyces cerevisiae. We therefore...... detected in other AD expressed yeast strains. Dynamic expression of SeADO and CwADO under GAL promoters increased alkane production to 0.20 mg/L/OD600 and no fatty alcohols, with even number chain lengths from C8 to C14, were detected in the cells. Conclusions: We demonstrated in vivo enzyme activities...

  19. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Roca, Christophe Francois Aime; Olsson, Lisbeth

    2003-01-01

    The influence of cell recycling of xylose-fermenting Saccharomyces cerevisiae TMB3001 was investigated during continuous cultivation on a xylose-glucose mixture. By using cell recycling at the dilution rate (D) of 0.05 h(-1), the cell-mass concentration could be increased from 2.2 g l(-1) to 22 g l...... ethanol productivity was in the range of 0.23-0.26 g g(-1) h(-1) with or without cell recycling, showing that an increased cell-mass concentration did not influence the efficiency of the yeast....

  20. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...... are often organized in enzyme complexes. In these complexes, partner NRPSs interact via communication-mediating domains (COM domains). In order to test whether functional interaction between separate NRPS modules is possible in yeast we constructed a yeast strain expressing two modules with compatible COM...

  1. Oxygen requirements for formation and activity of the squalene expoxidase in Saccharomyces cerevisiae

    Science.gov (United States)

    Jahnke, L.; Klein, H. P.

    1983-01-01

    The effect of oxygen on squalene epoxidase activity in Saccharomyces cerevisiae was investigated. In cells grown in standing cultures, the epoxidase was localized mainly in the 'mitochondrial' fraction. Upon aeration, enzyme activity increased and the newly formed enzyme was associated with the 'microsomal' fraction. At 0.03 percent (vol/vol) oxygen, epoxidase levels doubled, whereas the ergosterol level was only slightly increased. Cycloheximide inhibited the increase in epoxidase under these conditions. An apparent K sub m for oxygen of 0.38 percent (vol/vol) was determined from a crude particulate preparation for the epoxidase.

  2. Microsatellite analysis of Saccharomyces uvarum diversity.

    Science.gov (United States)

    Masneuf-Pomarede, Isabelle; Salin, Franck; Börlin, Marine; Coton, Emmanuel; Coton, Monika; Jeune, Christine Le; Legras, Jean-Luc

    2016-03-01

    Considered as a sister species of Saccharomyces cerevisiae, S. uvarum is, to a lesser extent, an interesting species for fundamental and applied research studies. Despite its potential interest as a new gene pool for fermenting agents, the intraspecific molecular genetic diversity of this species is still poorly investigated. In this study, we report the use of nine microsatellite markers to describe S. uvarum genetic diversity and population structure among 108 isolates from various geographical and substrate origins (wine, cider and natural sources). Our combined microsatellite markers set allowed differentiating 89 genotypes. In contrast to S. cerevisiae genetic diversity, wild and human origin isolates were intertwined. A total of 75% of strains were proven to be homozygotes and estimated heterozygosity suggests a selfing rate above 0.95 for the different population tested here. From this point of view, the S. uvarum life cycle appears to be more closely related to S. paradoxus or S. cerevisiae of natural resources than S. cerevisiae wine isolates. Population structure could not be correlated to distinct geographic or technological origins, suggesting lower differentiation that may result from a large exchange between human and natural populations mediated by insects or human activities. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Pectic enzymes secreted by two species of penicilium and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Younis, N.A.

    2005-01-01

    When allowing Penicillium italicum, Penicillium digitalum and Saccharomyces cerevisiae to grow on grounded peels of Mediterranean mandarin (Citrus reticulata) under solid state fermentation (SSF), percentage of reduction in viscosity of citrus pectin by polygalacturonase (PG) reached the maximum values of 82.1 , 54.9 , 53.9 , respectively, at 50 % substrate concentration after 15 days of incubation period for both Penicillium species and after 5 days at 1% substrate concentration for the yeast after one hour of reaction time for all. However, pectin methyl esterase (PME) was not detected in culture filtrate of both fungi and yeast at all substrate concentrations used in the study. After 8 days incubation period at 50 % substrate concentration, gamma rays at dose 0.1 KGy recorded maximum PG activity for Penicillium italicum after one hour of reaction time and PME could not be detected in culture filtrate of the irradiated fungus, while pectin lyase (PL) activity was increased with all doses used. As for Saccharomyces cerevisiae and, after 4 days incubation period at 1% substrate concentration, also the dose 0.1 KGy recorded maximum PG activity after one hour of reaction time and neither PME nor PL were found in the culture filtrate of the yeast after irradiation at all doses under investigation. Partial purification for PG secreted by Penicillium italicum was investigated through acetone precipitation and Sephadex G-100 and the peak of activity was occurred between fractions 11-13. The specific enzyme activity was 28.73 U / mg protein and the purification fold was 2.63. The purified enzyme could effectively hydrolyze citrus pectin and was stable up to 70 degree C with maximum value at 20 degree C and was stable in the ph range of 3-7 at 25 degree C

  4. Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum.

    Science.gov (United States)

    Varela, C; Sengler, F; Solomon, M; Curtin, C

    2016-10-15

    Production of quality wines with decreased alcohol concentration continues to be one of the major challenges facing wine producers. Therefore, there is considerable interest in the isolation or generation of wine yeasts less efficient at transforming grape sugars into ethanol. We recently demonstrated that Metschnikowia pulcherrima AWRI1149 and Saccharomyces uvarum AWRI2846 were both able to produce reduced alcohol wine when used in sequential inoculation with Saccharomyces cerevisiae. This effect is additive when both strains are co-inoculated in grape must. Here we describe the volatile flavour profile of Chardonnay and Shiraz wines produced with these two strains. Wines fermented with M. pulcherrima showed concentrations of ethyl acetate likely to affect negatively wine aroma. Wines fermented with S. uvarum and with a combination of M. pulcherrima and S. uvarum were characterised by increased concentrations of 2-phenyl ethanol and 2-phenylethyl acetate, both associated with positive sensory attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  6. Analysis of the secondary compounds produced by Saccharomyces cerevisiae and wild yeast strains during the production of "cachaça" Análise dos componentes secundários produzidos por Saccharomyces cerevisiae e leveduras selvagens durante a produção de cachaça

    Directory of Open Access Journals (Sweden)

    Maria Cecília Fachine Dato

    2005-03-01

    Full Text Available The aim of this study is to compare the composition of "cachaças" produced in 10 fermentation cycles by Saccharomyces cerevisiae (Sc and wild yeast strains [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 and Dekkera bruxelensis (Db], isolated from distilleries in Jaboticabal - SP, Brazil. The secondary components of the heart fraction were determined by gas chromatography. The levels of secondary components were influenced by the wine pH, which varied among yeast strains. S. cerevisiae showed slightly more secondary components, whereas wild strains produced more higher alcohols. Wild yeast strains were shown to be adequate for the production of a high quality "cachaça".O presente trabalho visou estabelecer uma comparação entre composição de cachaças produzidas por Saccharomyces cerevisiae (Sc e estirpes de leveduras selvagens [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 e Dekkera bruxelensis (Db], isoladas em destilarias da região de Jaboticabal-SP. Os componentes secundários da fração denominada coração foram determinados por cromatografia gasosa. Os níveis dos componentes secundários foram influenciados pelo pH dos respectivos vinhos, os quais dependem da estirpe de levedura empregada no processo fermentativo. A Saccharomyces cerevisiae apresentou valores ligeiramente superiores de componentes secundários, enquanto as estirpes selvagens produziram maiores teores de álcoois superiores. As estirpes selvagens de leveduras mostraram-se adequadas para obtenção de uma cachaça de boa qualidade.

  7. Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Aabo, Thomas; Perch-Nielsen, Ivan R.; Dam, Jeppe Seidelin

    2010-01-01

    The effect of a 1070-nm continuous and pulsed wave ytterbium fiber laser on the growth of Saccharomyces cerevisiae single cells is investigated over a time span of 4 to 5 h. The cells are subjected to optical traps consisting of two counterpropagating plane wave beams with a uniform flux along th...

  8. [Clinical effect of Saccharomyces boulardii powder combined with azithromycin sequential therapy in treatment of children with diarrhea secondary to Mycoplasma pneumoniae pneumonia].

    Science.gov (United States)

    Chen, Qi-Fen; Zhang, Yi-Wei

    2018-02-01

    To investigate the clinical effect of Saccharomyces boulardii powder combined with azithromycin sequential therapy in the treatment of children with diarrhea secondary to Mycoplasma pneumoniae pneumonia. A total of 88 children with diarrhea secondary to Mycoplasma pneumoniae pneumonia between June 2015 and March 2017 were divided into control group and study group using a random number table, with 44 children in each group. The children in the control group were given routine treatment combined with azithromycin sequential therapy, and those in the study group were given oral Saccharomyces boulardii powder in addition to the treatment in the control group until the end of azithromycin sequential therapy. After the treatment ended, the two groups were compared in terms of time to improvement of clinical symptoms, length of hospital stay, clinical outcome, defecation frequency before and after treatment, condition of intestinal dysbacteriosis, and incidence of adverse events. Compared with the control group, the study group had significantly shorter time to improvement of clinical symptoms and length of hospital stay (P0.05). In the treatment of children with diarrhea secondary to Mycoplasma pneumoniae pneumonia, Saccharomyces boulardii powder combined with azithromycin sequential therapy can improve clinical symptoms, shorten the length of hospital stay, reduce defecation frequency and the incidence of intestinal dysbacteriosis, and improve clinical outcomes, and does not increase the risk of adverse events.

  9. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Science.gov (United States)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  10. Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, P. kudriavzevii and Saccharomyces cerevisiae

    NARCIS (Netherlands)

    van Rijswijck, Irma M H; Dijksterhuis, Jan; Wolkers-Rooijackers, Judith C M; Abee, Tjakko; Smid, Eddy J

    Among fermentative yeast species, Saccharomyces cerevisiae is most frequently used as a model organism, although other yeast species may have special features that make them interesting candidates to apply in food-fermentation processes. In this study, we used three yeast species isolated from

  11. Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, P. kudriavzevii and Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Rijswijck, van I.M.H.; Dijksterhuis, J.; Wolkers-Rooijackers, J.C.M.; Abee, T.; Smid, E.J.

    2015-01-01

    Among fermentative yeast species, Saccharomyces cerevisiae is most frequently used as a model organism, although other yeast species may have special features that make them interesting candidates to apply in food-fermentation processes. In this study, we used three yeast species isolated from

  12. Expresión heteróloga de un péptido multiepitópico de células B de M. tuberculosis en Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    María de los Angeles García

    2007-08-01

    Full Text Available Saccharomyces cerevisiae ha sido ampliamente utilizada como sistema de expresión de proteínas heterólogas. El presente trabajo se encaminó hacia la expresión en Saccharomyces cerevisiae de un péptido de epitopes múltiples de M. tuberculosis. Con dicho propósito el péptido quimérico denominado B2 fue clonado en dos vectores de expresión de esta levadura con promotores regulables por galactosa y sulfato cúprico, respectivamente. Luego de los experimentos de inducción, la expresión del péptido B2 fue analizada mediante SDS/PAGE y Western blot. El análisis por Western blot confirmó la expresión del péptido B2, al hacerse la inducción con 100 mM de CuSO4 durante toda la noche. No ocurrió así en los experimentos donde se utilizó la galactosa como inductor con todas las condiciones ensayadas. Estos resultados muestran que la levadura Saccharomyces cerevisiae pudiera ser un buen hospedero alternativo para la expresión de péptidos multiepitópicos de M. tuberculosis.

  13. Crystallization and preliminary X-ray analysis of isomaltase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yamamoto, Keizo; Miyake, Hideo; Kusunoki, Masami; Osaki, Shigeyoshi

    2008-01-01

    The crystallization and preliminary X-ray analysis of isomaltase is reported. Isomaltase from Saccharomyces cerevisiae is an oligo-1,6-glucosidase that preferentially hydrolyzes isomaltose, with little activity towards isomaltotriose or longer oligosaccharides. An amino-acid sequence analysis of the isomaltase revealed that it belongs to glucoside hydrolase family 13. Recombinant isomaltase was purified and crystallized by the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant. The crystals belonged to space group C2, with unit-cell parameters a = 95.67, b = 115.42, c = 61.77 Å, β = 91.17°. X-ray diffraction data were collected to 1.35 Å resolution from a single crystal on a synchrotron-radiation source

  14. Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.

    1977-01-01

    Methyl methanesulfonate (MMS)-sensitive mutants of Saccharomyces cerevisiae belonging to four different complementation groups, when homozygous, increase the rate of spontaneous mitotic segregation to canavanine resistance from heterozygous sensitive (can/sup r//+) diploids by 13- to 170-fold. The mms8-1 mutant is MMS and x-ray sensitive and increases the rate of spontaneous mitotic segregation 170-fold. The mms9-1 and mms13-1 mutants are sensitive to x rays and uv, respectively, in addition to MMS, and increase the rate of spontaneous mitotic segregation by 13-fold and 85-fold, respectively. The mutant mms21-1 is sensitive to MMS, x rays and uv and increases the rate of spontaneous mitotic segregation 23-fold

  15. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile.

    Science.gov (United States)

    Zhang, Bo-Qin; Luan, Yu; Duan, Chang-Qing; Yan, Guo-Liang

    2018-01-01

    The use of selected Saccharomyces and non- Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii ( TD 12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC 45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC 45/ TD 12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/ TD 12 generated more C 6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non- Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which

  16. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile

    Directory of Open Access Journals (Sweden)

    Bo-Qin Zhang

    2018-04-01

    Full Text Available The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12, simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol, ethyl esters (ethyl decanoate and ethyl butanoate, terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol and acetate esters (ethyl acetate and isoamyl acetate. Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which

  17. Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile

    Science.gov (United States)

    Zhang, Bo-Qin; Luan, Yu; Duan, Chang-Qing; Yan, Guo-Liang

    2018-01-01

    The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which could provide

  18. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Moore, Destaye M; Karlin, Justin; González-Barrera, Sergio

    2009-01-01

    In the yeast Saccharomyces cerevisiae, the Rad1-Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1-Rad10 endonuclease cleaves 3' branches of DNA and aberrant 3' DNA ends that are refractory to other 3' processing enzymes. ...

  19. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.

    Science.gov (United States)

    Bely, Marina; Stoeckle, Philippe; Masneuf-Pomarède, Isabelle; Dubourdieu, Denis

    2008-03-20

    Conventional wine yeasts produce high concentrations of volatile acidity, mainly acetic acid, during high-sugar fermentation. This alcoholic fermentation by-product is highly detrimental to wine quality and, in some cases, levels may even exceed legal limits. In this study, a non-conventional species, Torulaspora delbrueckii, was used, in pure cultures and mixed with Saccharomyces cerevisiae yeast, to ferment botrytized musts. Fermentation rate, biomass growth, and the formation of volatile acidity, acetaldehyde, and glycerol were considered. This study demonstrated that T. delbrueckii, often described as a low acetic producer under standard conditions, retained this quality even in a high-sugar medium. Unlike S. cerevisiae, this species did not respond to the hyper-osmotic medium by increasing acetic production as soon as it is inoculated into the must. Nevertheless, this yeast produced low ethanol and biomass yields, and the fermentation was sluggish. As a result, T. delbrueckii fermentations do not reach the required ethanol content (14%vol.), although this species can survive at this concentration. A mixed culture of T. delbrueckii and S. cerevisiae was the best combination for improving the analytical profile of sweet wine, particularly volatile acidity and acetaldehyde production. A mixed T. delbrueckii/S. cerevisiae culture at a 20:1 ratio produced 53% less in volatile acidity and 60% less acetaldehyde than a pure culture of S. cerevisiae. Inoculating S. cerevisiae after 5 days' fermentation by T. delbrueckii had less effect on volatile acidity and acetaldehyde production and resulted in stuck fermentation. These results contribute to a better understanding of the behaviour of non-Saccharomyces and their potential application in wine industry.

  20. Probiotic yeast Saccharomyces boulardii (nom. nud.) modulates adhesive properties of Candida glabrata.

    Science.gov (United States)

    Tomičić, Zorica; Zupan, Jure; Matos, Tadeja; Raspor, Peter

    2016-11-01

    Following the widespread use of immunosuppressive therapy together with broad-spectrum antimycotic therapy, the frequency of mucosal and systemic infections caused by the pathogenic yeast Candida glabrata has increased in the past decades. Due to the resistance of C. glabrata to existing azole drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. In this study, we investigated the effect of the probiotic yeast Saccharomyces boulardii (nom. nud.) on C. glabrata adhesion at different temperatures, pH values, and in the presence of fluconazole, itraconazole and amphotericin B. We also studied the adhesion of C. glabrata co-culture with Candida krusei, Saccharomyces cerevisiae, two bacterial probiotics Lactobacillus rhamnosus and Lactobacillus casei The method used to assess adhesion was crystal violet staining. Our results showed that despite the nonadhesiveness of S. boulardii cells, this probiotic significantly affected the adherence ability of C. glabrata This effect was highly dependent on C. glabrata strain and was either antagonistic or synergistic. Regarding the extrinsic factors, temperature did not indicate any significant influence on this S. boulardii modulatory effect, while at high pH and at increased concentrations of antimycotics, S. boulardii did not manage to repress the adhesion of C. glabrata strains. The experiments of C. glabrata co-cultures with other species showed that the adhesiveness of two separate cultures could not be used to predict the adhesiveness of their co-culture. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.