WorldWideScience

Sample records for s-type granitoid rocks

  1. A-type and I-type granitoids and mylonitic granites of Hassan Salaran area of SE Saqqez, Kurdistan, Iran

    Science.gov (United States)

    Abdullah, Fakhraddin Mohammad; Saeed Ahmad, Sheler

    2014-05-01

    The Hassan Salarn area is located 20km to southeast of Saqqez city in Kurdistan Province, western Iran. In this area there are two distinct granitic rock suites consisting A-type and I-type granites and also mylonitic granites. These A-type and I-type granites have various petrological and geochemical characteristics. They also have different origins and petrogenesis. A-type granitoids comprise alkali feldspar granite, syenogranite and quartz alkali feldspar syenite, whereas I-type granitoids are composed of monzogranite, granodiorite and tonalite. Geochemically, A-type granitoids are peralkaline and acmite-normative but I-type granitoids are subalkaline (calc-alkaline), metaluminous and diopside-normative. A-type granitoids are also ferroan alkali and ferroan alkali-calcic whereas I-type granitoids are magnesian and calcic. A-type granitoids resemble to within plate granites and post-orogenic granites whereas I-type granitoids resemble to volcanic arc granites. A-type granitoids contain higher concentrations of alkalies, Zr, Rb, Nb, Y, Th, Ce, high FeO/MgO ratios and lower concentrations of Mg, Ca and Sr, resembling post-orogenic A-type granites. It is possible that heat from a mantle-derived magma which intruded into the lower crust, and/or rapid crustal extension have been essential generation of approriate melts producing A-type granitoids. Thus we can conclude that A-type granitoids were generated from a mixed mantle-crust source. Negative Nb anomalies and low contents of Ti and P probably indicate a subduction-related origin for protolith of I-type granitoids. Negative Nb anomalies and enrichment in Ce relative to its adjacent elements can be related to involvement of continental crust in magmatic processes. I-type granitoids are also enriched in Rb, Ba, K, Th, Ce and depleted in Nb, Zr and Y, indicating that they have had interacted with crust. I-type granitoids may result from contamination of mantle-derived magmas by continental crust during a subduction

  2. Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated WSn mineralization and their tectonic setting

    Science.gov (United States)

    Zaw, Khin

    The granitoid rocks in Burma extend over a distance of 1450 km from Putao, Kachin State in the north, through Mogok, Kyaukse, Yamethin and Pyinmana in the Mandalay Division, to Tavoy and Mergui areas, Tenasserim Division, in the south. The Burmese granitoids can be subdivided into three N-S trending, major belts viz. western granitoid belt, central graniotoid belt and eastern granitoid belt. The Upper Cretaceous-Lower Eocene western belt granitoids are characterized by high-level intrusions associated with porphyry Cu(Au) related, younger volcanics; these plutonic and volcanic rocks are thought to have been emplaced as a magmatic-volcanic arc (inner magmatic-volcanic arc) above an east-dipping, but westwardly migrating, subduction zone related to the prolonged plate convergence which occurred during Upper Mesozoic and Cenozoic. The central granitoid belt is characterized by mesozonal, Mostly Upper Cretaceous to Lower Eocene plutons associated with abundant pegmalites and aplites, numerous vein-type W-Sn deposits and rare co-magmatic volcanics. The country rocks are structurally deformed, metamorphic rocks of greenschist to upper amphibolite facies ranging in age as early as Upper Precambrian to Upper Paleozoic and locally of fossiliferous, metaclastic rocks (Mid Jurassic to Lower Cretaceous). Available K/Ar radiometric data indicate significant and possibly widespread thermal disturbances in the central granitoid belt during the Tertiary (mostly Miocence). In this study, the distribution, lithological, textural and structural characteristics of the central belt granitoids are reviewed, and their mineralogical, petrological, and geochemical features are presented. A brief description of W-Sn ore veins associated with these granitoid plutons is also reported. Present geological, petrological and geochemical evidences demonstrate that the W-Sn related, central belt granitoids are mostly granodiorite and granite which are commonly transformed into granitoid gneisses

  3. Metasedimentary, granitoid, and gabbroic rocks from central Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    1997-01-01

    A NNE-NE trending strip, 3-8 km wide, extending from the Freshwater valley across Mt Rakeahua Table Hill, and Mt Allen to the northern end or the Tin Range was mapped at a scale of 1:12,500 to locate and investigate the boundary between the Median Tectonic Zone (MTZ) and Western Province on Stewart Island. A NNE-trending fault, herein termed the Escarpment Fault, separates predominantly ductily deformed rocks on its south side from essentially undeformed rocks to the north. North of the Escarpment Fault, a small (2-3 km 2 ) pluton of alkali-feldspar granite (Freds Camp) intruded gabbroic rocks tentatively considered to be associated with gabbro/anorthosite/diorite of the Rakeahua pluton, centred on Mt Rakeahua. Both units were subsequently intruded by I-type biotite granite of the South West Arm pluton. South of the Escarpment Fault the oldest intrusions are biotite tonalite-granite orthogneisses (Ridge and Table Hill plutons) intercalated with the sillimanite-cordierite-bearing Pegasus Group metasedimentary rocks, considered to represent the Western Province. They contain titanite, allanite, and magmatic epidote-bearing assemblages, implying affinities with I-type granitoids. These older granitoids have been affected by at least three phases of ductile deformation. Immediately south of the Escarpment Fault, the Escarpment pluton (hornblende, biotite, quartz, monzonite-quartz monzodiorite) only exhibit effects of the third phase of deformation. Minor gabbroic intrusives concordant with the S 3 fabric intrude the Pegasus Group and intercalated orthogneisses. Plutons of two-mica, garnet ±cordierite granite (Blaikies and Knob) and younger biotite-titanite-magmatic epidote granite (Campsite) cut fabrics associated with the third phase of ductile deformation. Preliminary U-Pb dating indicate Devonian-Carboniferous, Jurassic, and Early Cretaceous emplacement ages for Ridge Orthogneiss, Freds Camp pluton, South West Arm pluton, and Blaikies pluton, respectively. South

  4. DURATION OF GRANITOID MAGMATISM IN PERIPHERAL PARTS OF LARGE IGNEOUS PROVINCES (BASED ON 40AR/39AR ISOTOPIC STUDIES OF ALTAI PERMIAN-TRIASSIC GRANITOIDS

    Directory of Open Access Journals (Sweden)

    O. A. Gavryushkina

    2017-01-01

    Full Text Available In large igneous provinces (LIP of fold areas, granitoid rocks are dominant, while mantle-derivated rocks play a subordinate role in rock formation. If magma emissions are impulsive, it may take 25–30 million years for a LIP to form and take shape. In this paper, we present the results of 40Ar/39Ar isotopic studies of Permian-Triassic grani­toids in the Altai region, Russia, and clarify the evolution of this region located at the periphery of the Siberian LIP. These granitoids are very diverse and differ not only in their rock set, but also in the composition features. In the study region, the granodiorite-granite and granite-leucogranite association with the characteristics of I- and S-types as well rare metal ore-bearing leucogranites are observed along with gabbro- and syenite-granite series, including mafic and intermediate rocks with the A2-type geochemical features. The 40Ar/39Ar data obtained in our study suggest that most of the studied granitoids intruded within a short period of time, 254–247 Ma. This timeline is closely related to the formation of granitoids in theKuznetsk basin and dolerite dikes in the Terekta complex (251–248 and 255±5 Ma, respectively, as well as intrusions of lamproite and lamprophyre dikes of the Chuya complex (245–242 and 237–235 Ma. Thus, we conclude that the Altai Permian-Triassic granitoids are varied mainly due to the evolution of mafic magmatism.

  5. Using apatite to discriminate synchronous ore-associated and barren granitoid rocks: A case study from the Edong metallogenic district, South China

    Science.gov (United States)

    Duan, Deng-Fei; Jiang, Shao-Yong

    2018-06-01

    In order to find criteria to discriminate the synchronous ore-associated and barren granitoid rocks, we have determined apatite chemistry associated with ore-associated (Cu-Au) and barren granitoid rocks in the Edong district of the Middle and Lower Yangtze River metallogenic belt, South China. Both rock types give zircon U-Pb ages between 135.0 and 138.7 Ma. Apatite has a higher volatile and Li content (Cl: 0.19-0.57 wt%, average 0.35 wt%, SO3: 0.08-0.71 wt%, average 0.32 wt%, Li: 0.49-7.99 ppm, average 3.23 ppm) in ore-associated rocks than those in barren rocks (Cl: 0.09-0.31 wt%, average 0.16 wt%, SO3: 0.06-0.28 wt%, average 0.16 wt%, Li: 0.15-0.89 ppm, average 0.36 ppm). Apatite (La/Yb)N ratios and Eu/Eu* values are relatively high and show wider variation in ore-associated rocks than those in barren rocks. Apatite (La/Sm)N and (Yb/Sm)N show positive correlation in ore-associated rocks but negative in barren rocks. The higher volatile content occurs in ore-associated magma, favoring Cu-Au transportation and deposition. Furthermore, amphibole fractional crystallization in ore-associated magma further enriched the ore elements in the residual melt. Barren rocks may have undergone fluid exsolution before emplacement, which makes it barren in Cl, S and ore elements (Cu, S). These signatures emphases the significance of volatile and magma evolution in mineralization and indicate that analyses of magmatic apatite can serve to distinguish ore-associated from barren intrusions.

  6. Variscan thrusting in I- and S-type granitic rocks of the Tribeč Mountains, Western Carpathians (Slovakia: evidence from mineral compositions and monazite dating

    Directory of Open Access Journals (Sweden)

    Broska Igor

    2015-12-01

    Full Text Available The Tribeč granitic core (Tatric Superunit, Western Carpathians, Slovakia is formed by Devonian/Lower Carboniferous, calc-alkaline I- and S-type granitic rocks and their altered equivalents, which provide a rare opportunity to study the Variscan magmatic, post-magmatic and tectonic evolution. The calculated P-T-X path of I-type granitic rocks, based on Fe-Ti oxides, hornblende, titanite and mica-bearing equilibria, illustrates changes in redox evolution. There is a transition from magmatic stage at T ca. 800–850 °C and moderate oxygen fugacity (FMQ buffer to an oxidation event at 600 °C between HM and NNO up to the oxidation peak at 480 °C and HM buffer, to the final reduction at ca. 470 °C at ΔNN= 3.3. Thus, the post-magmatic Variscan history recorded in I-type tonalites shows at early stage pronounced oxidation and low temperature shift back to reduction. The S-type granites originated at temperature 700–750 °C at lower water activity and temperature. The P-T conditions of mineral reactions in altered granitoids at Variscan time (both I and S-types correspond to greenschist facies involving formation of secondary biotite. The Tribeč granite pluton recently shows horizontal and vertical zoning: from the west side toward the east S-type granodiorites replace I-type tonalites and these medium/coarse-grained granitoids are vertically overlain by their altered equivalents in greenschist facies. Along the Tribeč mountain ridge, younger undeformed leucocratic granite dykes in age 342±4.4 Ma cut these metasomatically altered granitic rocks and thus post-date the alteration process. The overlaying sheet of the altered granites is in a low-angle superposition on undeformed granitoids and forms “a granite duplex” within Alpine Tatric Superunit, which resulted from a syn-collisional Variscan thrusting event and melt formation ~340 Ma. The process of alteration may have been responsible for shifting the oxidation trend to the observed

  7. Petrography, geochemistry and tectonic setting of Rigi granitoid body (east of Lut Block, Central Iran)

    International Nuclear Information System (INIS)

    Ghonjalipour, R.; Biabangard, H.; Ahmadi, A.

    2016-01-01

    The Rigi Granitoid Mountain is located in 5 Km West of Dehsalm and 85 Km West of Nehbandan city, southeast of Birjand province and east of Lut Block. This granitoid with Eocene-Oligocene age was penetrated into sedimentary rocks (shale, limestone and sandstone) and changes theses rocks to skarn, hornfels and calcsilicate rocks. This granitoid consist of granodiorite, quartz monzonite and syenogranite with plagioclase, orthose, biotite, hornblende and quartz minerals. Sericite, chlorite, and Magnetite are secondary mineral in these rocks. Geochemical properties this pluton showes that it subalkaline and has metaluminous. Geochemical diagrams and presence of hornblende mineral in this pluton shows that belong to I-type granite. The rocks in granitoid pluton are enrichment LREE compare to HREE, high contents of LILE relative to HFSE and negative anomalies of Nb, Ti and P show it granitoid related to subduction zone. Also, tectonomagmatic diagrams improve that this pluton has belong to active continental margin.

  8. Oxygen isotope regional pattern in granitoids from the Cachoeirinha Belt, northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.

    1984-01-01

    Four groups of granitoids are present within the Cachoeirinha belt and in the adjacent migmatitic basement, between 37 0 and 40 0 W long. and 7 0 and 8 0 15' S lat., States of Pernambuco and Paraiba: a) K 2 O - enriched, very porphyritic; b) a calc-alkalic slightly porphyritic group; c) group with trondjemitic affinities; and d) peralkalic group. Petrology and oxygen isotope geochemistry for over 100 samples from these groups were studied. Almost all plutons for which 5 or more samples were analyzed, exhibit a total range of gamma 18 O less than 2% o. A broad range of mean oxygen isotope composition is observed, varying from 6.93 to 12.79% o. There is a systematic regional trend in which the calc-alkalic granitoids (conceicao-type) found within the Cachoeirinha space are the most 18 O - enriched rocks (10.6 to 12.9% o) while the lowest mean gamma 18 O values (4.5 to 9.7% o) are found in the K 2 O - enriched granitoids (Itaporanga-type). Intermediate gamma 18 O values were recorded in the bodies with trondhjemitic affinities (8.9 to 9.8% o) which intruded metasediments of the Salgueiro Group and in the peralkalic granitoids of Catingueira (8.1 to 9.8% o) which intruded Cachoeirinha metamorphics. Among the potassic granitoids, mean gamma 18 O increases from Bodoco to Itaporanga (from west to east). As a whole, the W.R. gamma 18 O of these plutons correlate with the type of grade of metamorphism of the host rocks and, therefore, with the tectonic framework, increasing from those which intruded the gneiss-migmatites to those which intruded the low-grade metamorphics of the Cachoeirinha Group. The possible origin of each rock group is discussed in light of the oxygen isotope geochemistry. (Author) [pt

  9. The geochemistry and geochronology of some proterozoic granitoid rocks from the Natal structural and metamorphic province, Southeastern Africa

    International Nuclear Information System (INIS)

    Kerr, A.; Milne, G.C.; Eglington, B.M.

    1987-01-01

    The Natal Structural and Metamorphic Province is thought to be an eastern extension of the Namaqua Metamorphic Province. Until recently few geochemical and isotopic data have been available on many of the rocks of this mobile belt. This paper presentes initial geochemical and geochronological information on the granitoids and associated rocks from three areas NSMP. Together, these areas provide a traverse through central and southern parts of the Mapumulo Group. Supracrustal gneisses, of uncertain age, are the oldest rocks in all areas, while the granitic intrusives range from 1,200-850 Ma, with a tendency for younger dates towards dates towards the south. Low initial 87 Sr/ 86 Sr ratios for these plutonic units suggest that the rocks were the products of partial melting of a relatively juvenile (circa 1,400 Ma) protolith. A type granites are common within the NSMP and give a range of ages, indicating that conditions suitable for their formation persited in this part of the African continent for an extended period of time. Economic deposits are lacking in eastern (Natal) sector of the mobile belt. Reconnaissance studies, however indicate that syn-tolate-Kinematic granitoids, intruded circa 1,000 Ma, are enriched in uranium and thorium irrespective of bulk chemistry, textural nature,mineralogy,structural setting, and isotopic characteristics. (author) [pt

  10. Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India

    Science.gov (United States)

    Goswami, Deepjyoti; Akkiraju, Vyasulu V.; Misra, Surajit; Roy, Sukanta; Singh, Santosh K.; Sinha, Amalendu; Gupta, Harsh; Bansal, B. K.; Nayak, Shailesh

    2017-08-01

    Reservoir triggered earthquakes have been occurring in the Koyna area, western India for the past five decades. Triaxial tests carried out on 181 core samples of Archaean granitoids underlying the Deccan Traps provide valuable constraints on rock strength properties in the Koyna seismogenic zone for the first time. The data include measurements on granite gneiss, granite, migmatitic gneiss and mylonitised granite gneiss obtained from boreholes KBH-3, KBH-4A, KBH-5 and KBH-7 located in the western and eastern margins of the seismic zone. Salient results are as follows. (i) Increase of rock strength with increasing confining pressure allow determination of the linearized failure envelopes from which the cohesive strength and angle of internal friction are calculated. (ii) Variable differential stresses at different depths are the manifestations of deformation partitioning in close association of fault zone(s) or localized fracture zones. (iii) Fractures controlled by naturally developed weak planes such as cleavage and fabric directly affect the rock strength properties, but the majority of failure planes developed during triaxial tests is not consistent with the orientations of pre-existing weak planes. The failure planes may, therefore, represent other planes of weakness induced by ongoing seismic activity. (iv) Stress-strain curves confirm that axial deformation is controlled by the varying intensity of pre-existing shear in the granitoids, viz., mylonite, granite gneiss and migmatitic gneiss. (v) Frequent occurrences of low magnitude earthquakes may be attributed to low and variable rock strength of the granitoids, which, in turn, is modified by successive seismic events.

  11. Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north Arabian-Nubian Shield (Egypt): Constraints from whole-rock geochemistry and Sr-Nd isotopes

    Science.gov (United States)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Mohamed, Haroun A.; Hauzenberger, Christoph; Ahmed, Awaad F.

    2018-04-01

    Mineral chemistry, whole-rock geochemical and Sr-Nd isotopic data are reported for the Abu-Diab granitoids in the northern Arabian-Nubian Shield (ANS) of Egypt, to investigate their petrogenesis and geodynamic significance. Gabal Abu-Diab constitute a multiphase pluton, consisting largely of two-mica granites (TMGs) enclosing microgranular enclaves and intruded by garnet bearing muscovite granites (GMGs) and muscovite granites (MGs). The granitoids are weakly peraluminous (A/CNK = 1.01-1.12) and show high SiO2 (>72.9 wt%) and alkali (K2O + Na2O = 8.60-9.13) contents. The geochemical features show that they are post-collisional and highly fractionated A-type granitoids. Compared to their host TMGs, the microgranular enclaves are strongly peraluminous (A/CNK = 1.18-1.24) with lower SiO2 and higher abundances of trace elements. The TMGs are depleted in Ba, Nb, P and Ti and are enriched in LREEs relative to HREEs with weakly negative Eu anomalies (Eu/Eu* = 0.45-0.64). In contrast, the GMGs and MGs are extremely depleted in Ba, Sr and Ti and have tetrad-type REE patterns (TE1-3 = 1.1-1.3) with strongly pronounced negative Eu anomalies (Eu/Eu* = 0.03-0.26), similar to rare metals bearing granites. The Ediacaran (585 ± 24 Ma) TMGs, are characterized by restricted and relatively low initial 87Sr/86Sr ratios (0.70337-0.70382) that suggests their derivation from a depleted mantle source, with little contamination from the older continental crust. In contrast, the GMGs and MGs have extremely high 87Rb/86Sr and 87Sr/86Sr ratios that reflect the disturbance of the Rb-Sr isotopic system and may give an indication for magmatic-fluid interaction. However, all the granitoids display positive εNd(t) (4.41-6.57) and depleted mantle model ages TDM2 between 777 and 956 Ma, which indicate their derivation from a Neoproterozoic juvenile magma sources and preclude the occurrence of pre-Neoproterozoic crustal rocks in the ANS. The microgranular enclaves represent globules of hot mafic

  12. A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic

    Science.gov (United States)

    Azizi, Hossein; Kazemi, Tahmineh; Asahara, Yoshihiro

    2017-07-01

    The Hasansalaran plutonic complex is one of the main intrusive bodies with a wide range of granite, monzonite, diorite and syenite that crop out in northwest Iran. This body includes Paleozoic granitoids that are surrounded and cut by Cretaceous granitoids. Zircon U-Pb age dating shows that the crystallization of this body occurred at 360 Ma ago in the Early Carboniferous. Whole rock compositions of the investigated intrusive body, show high contents of Ga (11.1-76.3 ppm), Zr (73.5-1280 ppm), Zn (43.7-358 ppm), Y(17.9-177 ppm), enrichment of rare earth elements (REEs) together with high Ga/Al ratios and a strong Eu negative anomaly, fairly consistent with typical A-type signature. The low εNd(t = 360 Ma) value (model for evolution of northwest Iran in the Late Paleozoic. Based on our model, the upwelling of a mantle plume, probably due to the proto-Tethys oceanic rollback activity beneath northern Gondwana, had a crucial role in the uplifting of the continental crust and resulted in the crystallization of A-type granitoids with some gabbroic rocks in northwest Iran.

  13. Indoor radon related to uranium in granitoids of the Central Bohemian plutonic complex

    International Nuclear Information System (INIS)

    Barnet, I.; Fojtikova, I.

    2004-01-01

    The study is based on the indoor radon data (one year measurements, Kodak LR 115 track etch detectors), vectorized geological maps 1:50000, vectorized coordinates of dwellings and uranium data for granitoid types of the Central Bohemian Plutonic Complex (CBPC). Using ArcGis 8.2 programme, the position of 16145 dwellings was linked to a geological database covering the CBPC (approx. 3200 km 2 ), and the type of underlying rock type was specified for each house. The resulting databases enabled us to calculate the mean EEC indoor Rn data for particular granitoid types and to study the relationship between the indoor Rn and the U concentrations. The petrogenetically variable CBPC was emplaced during Variscan orogenesis (330-350 Ma) and is among the most radioactive rock types within the Bohemian Massif. A long-term process of CBPC genesis resulted in more than 20 granitoid types, differing by their petrogenetic characteristics as well as mineralogical and chemical composition, including uranium concentration. The relation between the mean indoor radon values and uranium concentrations in particular rock types was examined. A positive regression between indoor Rn and uranium as the source of Rn soil gas clearly demonstrates how regional geology influences the indoor radon activity concentration in dwellings. The highest indoor Rn concentrations were observed in the Sedlcany granodiorite and Certovo bremeno syenite, where also the highest gamma dose rates (150-210 nGy.h -1 ) within all granitoid types in the Czech Republic were observed. The two rock types differ from other granitoids by a relatively high zircon concentration, which is the main source of U and subsequently of soil gas Rn being released from the bedrock. The lower indoor Rn values of Certovo bremeno syenite which do not correspond with the high U concentrations can be explained by a relatively low permeability of its clayey weathering crust. This feature was also observed for soil gas radon concentration

  14. The age of Male Karpaty Mts. granitoid rocks determined by Rb-Sr isochrone method

    International Nuclear Information System (INIS)

    Badgasaryan, G.P.; Gukasyan, R.Kh.; Veselsky, J.

    1982-01-01

    The results are presented of nuclear geochronological datings of Male Karpaty Mts. granitoids by Rb-Sr isochrone method. Using the method the age of Bratislava massif granitoids was established to be 347+-4 mil. y. at ( 87 Sr/ 86 Sr)=0.7076+-0.0013 and the age of Modra massif granitoids to be 324+-18 mil. y. at ( 87 Sr/ 86 Sr)=0.7075+-0.00032 (2σ). The relative agreement of age of both massifs as well as the agreement of the primary ratio ( 87 Sr/ 86 Sr) 0 not only testifies to their continuity in age but also in genesis. The same relations also confirm the genetic dependence of pegmatites and leucocratic granitoids on fundamental types of granitoids building up the Bratislava and Modra massifs. (author)

  15. Geochemistry and petrogenesis of the Kolah-Ghazi granitoid assemblage, south of Esfahan

    Directory of Open Access Journals (Sweden)

    Jamshid Ahmadian

    2018-04-01

    , andalusite and sillimanite, the predominance of ilmenite, A/CNK values (A/CNK >1, and crondom contents (more than 3% in norm suggest that the Kolah-Ghazi plutonic assemblage can be classified as S-type granitoids. Moreover, all of the Kolah-Ghazi samples plot on the S-type field of the granite classification diagrams (Whalen et al., 1987; Chappell and White, 1992 which is in good agreement with mineralogical evidences. The sedimentary source, mostly shale and greywacke, can be suggested for Kolah-Ghazi melts according to the Rb/Sr vs. Rb/Ba diagram (Sylvester, 1998. Several discrimination diagrams such as Rb vs. Ta+Yb (Pearce et al., 1984 and R1-R2 (Batchelor and Bowden, 1985 were used to determine the tectonic setting of the Kolah-Ghazi granitoids. The Kolah-Ghazi samples lied between the fields of magmatic arc and syn-collisional granitoids in the discrimination diagrams. The geochemistry of the studied samples suggest a syntectonic environment for the Kolah-Ghazi granitoids which may be related to the late Cimmerian orogenic phase. References Batchelor, R.A. and Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1: 43–55. Chappell, B.W. and White, A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh, Earth Sciences, 83: 1–2. Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4: 956–983. Sylvester, P.J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4: 29–44. Whalen, J.B., Currie, K.L. and Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4: 407–419.

  16. Evolution of Brasiliano-age granitoid types in a shear-zone environment, Umarizal-Caraubas region, Rio Grande do Norte, northeast Brazil

    Science.gov (United States)

    Galindo, A. C.; Dall'Agnol, R.; McReath, I.; Lafon, J. M.; Teixeira, N.

    1995-01-01

    A sequence of Brasiliano-age granitoid types is exposed in a small area near the cities of Umarizal and Caraúbas in Rio Grande do Norte State, Northeast Brazil. Porphyritic K-alkali-calcic monzogranite is an important facies of the oldest Caraúbas intrusion (RbSr whole rock isochron age of ca. 630 Ma), which suffered solid-state deformation due to movements on a major NE-trending shear zone. The intrusion of the Prado and part of the Quixaba bodies was probably controlled by the shear zone. These two bodies include mafic/intermediate rocks, some of which contain two pyroxenes, and have hybrid, partly alkaline and partly shoshonitic geochemical characteristics. Rock types and ages are similar to those of some Pan-African occurrences in southwestern Nigeria. The Tourão body, intruded at ca. 590 Ma, presents preferred mineral orientations which are probably largely magmatic, since little evidence is found for widespread solid-state deformation. On the other hand, its intrusion may have been facilitated by the presence of the shear-zone faults. The rocks form a monomodal felsic K-alkali-calcic suite. With the exception of the Quixaba body, all these earlier granitoids are magmatic epidote- and magnetite-bearing porphyritic monzogranites with trace element geochemical characteristics of modern syn-collisional granites. The latest intrusion at ca. 545 Ma is mainly represented by potassic quartz syenites and related rocks, some of which contain fayalite or ferrohypersthene. These rocks possess neither well developed mineral orientations of magmatic origin nor signs of solid-state deformation. They are mineralogically similar to, but younger than some of the "bauchites" of central Nigeria. Geochemical signatures are comparable with those of modern within-plate granites. All granitoids present high ( 87Sr/ 86Sr)i ratios which range from 0.708 to 0.712, and increase with decreasing age. Such ratios are compatible with important or dominant crustal contributions. On the

  17. Lithogeochemistry of rare-earth elements in the characterization of granitoids from the Cachoeirinha belt, Northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.

    1984-01-01

    Detailed rare-earth element study on about 40 samples from 14 granitic bodies distributed within and in adjacent areas of the Cachoeirinha belt, states of Pernambuco and Paraiba, between 37 0 and 40 0 W long. and 7 0 and 8 0 15' lat., was performed. These bodies include potassic, calc-alkalic, and peralkalic granitic associations, besides one with trondhjemitic affinities. The REE patterns for the potassic granitoids (Bodoco, Serra da Lagoinha and Itaporanga) which pierced basement migmatites, are strongly fractionated, mutually similar, LREE-enriched, and lack En anomaly. The calc-alkalic granitoids (Conceicao-type) intruded the low-grade metamorphics, and display strongly fractionated REE patterns, LREE-enriched relative to HREE, and exhibit a discrete, yet significative negative Eu anomaly. The granitoids with trondhjemitic affinities (Serrita-type) which intruded the Salgueiro schists, exhibit Σ REE much lower than in the previously mentioned granituids - REE patterns are strongly fractionated, LREE - enriched in relation to HREE, with discrete positive Eu anomaly and HREE approaching chondrite abundances. REE patterns of the peralkalic granitoids (Catingueira-type) ressemble those of rocks with trondhjemitic affinities and show a discrete positive Eu anomaly. The REE geochemistry agrees essentially with the major chemistry of the 4 granitoid associations, and is consistent with the 18 O/ 1 6O behavior which of ten varies sympathetically with Σ REE and S;O 2 . The presence of magmatic epidote, a high pressure phase, in three of these associations suggests that these rocks crystallized at a relatively great depth. (D.M.) [pt

  18. Petrology of Oligocene Ghaleh Yaghmesh granitoids in the west of Yazd province

    Directory of Open Access Journals (Sweden)

    Bahareh Fazeli

    2017-02-01

    Full Text Available Introduction The generation and evolution of granitic magmas has been a hot debated subject among petrologists. The diversity of their origin has led different authors to propose that these rocks are not simple in their origin and might be generated in more ways than one. In the past several decades, many petrologists used a variety characteristics to subdivide the granitoid rocks. Such proposals have of course been forward by Chappell and White (1974 for the granitoids of Eastern Australia. They divided these granitoids into two distinct types (I-and S-type granitic rocks, which they interpreted as being derived from igneous and sedimentary source rocks, respectively. The Ghaleh Yaghmesh plutonic massif is located in the most western part of Yazd and it forms a part of the Urumieh-Dokhtar magmatic belt. The belt is response to subduction of Neo-Tethyan oceanic crust beneath central Iran (Alavi, 1994. During Cretaceous-Late Tertiary, numerous granitoid bodies were exposed in this belt, many of which have been studied by a number of workers (e.g. Sepahi and Malvandi, 2008; Honarmand et al., 2013; Kananian et al., 2014. The massif composed of diorite, quartzdiorite, tonalite, granodiorite and granite (Oligocene intruded into the Eocene volcanic and pyroclastic rocks including rhyolite, rhyodacite, andesitic, rhyodacitic and rhyolitic tuff. The main purpose of the present paper is to describe the petrography, and whole rock geochemistry of the Ghaleh Yaghmish granitoids as well as discussing their petrogenetic and tectonic significance in the light of the regional geological framework of the study area. Materials and methods After field studies and sampling, fifty thin sections were prepared for petrographic study. Twenty-one fresh samples were selected for XRF chemical analysis performed at the Southern Methodist University (Dallas - USA. Thin polished sections of granodiorite rocks were prepared for composition determining and structure formula

  19. Geochemistry and petrogenesis of Mesoproterozoic A-type granitoids from the Danish island of Bornholm, southern Fennoscandia

    DEFF Research Database (Denmark)

    Johansson, Åke; Waight, Tod Earle; Andersen, Tom

    2016-01-01

    Granitoids and gneisses from the Danish island of Bornholm have been investigated using whole rock geochemistry, Sr and Nd isotope geochemistry and Hf isotopes in zircon. Recent U–Pb dating shows that the rocks were formed during a short time interval at 1.45 to 1.46 Ga, penecontemporaneous...

  20. Petrology, geochronology, geochemistry and petrogenesis of Bajestan granitoids, North of Ferdows, Khorasan Razvi Province

    Directory of Open Access Journals (Sweden)

    Reyhaneh Ahmadirouhani

    2017-02-01

    isotopic compositions were also determined for the same samples (i.e. U-Pb samples using the whole-rock method. The samples were analyzed in the Laboratório de Geologia Isotópica da Universidade de Aveiro, Portugal. Results Granitoids in the study area have mostly monzogranite (biotite monzogranite, hornblende biotite monzogranite and pyroxene hornblende biotite monzogranite, granite, and syenogranite composition. Granular, micro-granular, and porphyritic textures are common textures in these rocks. Common mafic minerals in these rocks include biotite, hornblende and pyroxene. Based on mineralogy, low values of magnetic susceptibility, high aluminum saturation index, and high initial 87Sr/86Sr ratios (> 0.710 of the study of granitoid rocks belong to the ilmenite-series of the reduced S-type granitoids. These magmas originated from the upper continental crust at a syncollosion zone. Furthermore, the rocks normalizing spider diagrams showed characteristics of a crustal environment. The age of the granitoids based on zircon U–Pb age dating was determined, including granite porphyry (79±1 Ma, syenogranite (76±1 Ma, biotite monzogranite (76±1 Ma, all of which belong to the Upper Cretaceous (Campanian, except pyroxene hornblende biotite monzogranite with 30.7±1 Ma, Oligocene age (Rupelian has a different age. The ranges of their initial 87Sr/86Sr and 143Nd/144Nd ratios for Upper Cretaceous granitoids are 0.710897–0.717908 and 0.511995–0.512186, respectively while they are 0.713292 and 0.512186 for Oligocene intrusion. The initial єNd isotope values for the syenogranite, biotite monzogranite, and granite porphyry are -10.65, -7.38 and -9.51, respectively. The initial єNd isotope value for pyroxene hornblende biotite monzogranite is -8.06. The values of the igneous rocks could be considered as representative of continental crust derived from magma, and melt derived from psammite rocks is considered to have been the source of the granitoids. Discussion Based on the U

  1. Petrology and Geochemistry of Shakh Sefid Granitoid and related skarn in the North of Rayen (southeastern of Kerman

    Directory of Open Access Journals (Sweden)

    Habib biabangard

    2017-11-01

    Full Text Available The Shakh Sefid Granitoid pluton and related Skarn are located 80 Km in the southeastern of Kerman and 20 Km north of Rayen. This area   is geologically located in the southeastern of the Lut block in the Central Iran. The Shakh Sefid Granitoid with Eocene-Oligocene age cuts the Cretaceous sedimentary rocks and led to the formation of Skarn. The granitoids are granite and granodiorite in composition composing of quartz, plagioclase, orthoclase, as primary minerals, biotite as minor and chlorite and sericite as secondary minerals. The sedimentary rocks are shale, sandstone, siltstone and limestone. Metamorphic rocks are marble and Skarns. The Skarn is calcic type. Garnet (grossular-andradite, tremolite and magnetite are the main minerals that are often accompanied with hematite, goethite and limonite. Pyrite, chalcopyrite and copper carbonate (malachite and azurite are the other minerals in Skarn. Geochemical studies show that the amount of major and minor elements of granitoid with increasing SiO2 content do not change due to the uniform mass, low dispersion of elements which result from heterogeneous textures and low alteration zone. Spider diagrams from minor elements normalized to Chondrite and primitive mantle show enrichment of all elements except for Ti, positive anomalies of Th, Pb and negative anomalies of Ti, P and Sr for the Sakh Sefid granitoids are probably due to crustal contamination. They are enriched in light rare earth elements (LREE between 10 to 100 times and heavy elements (HREE enrichment between 1 to 10 times compared to the reference (chondrite and regular pattern with approximately the same slope , the parallel trends indicate that the granitoid rocks share  a common source rock . The Shakh Sefid granitoid is I-type, metaluminous to peraluminous belonging to an active continental margin. Mineral and Mineralization in Kuh Shakh Sefid skarn is remarkably similar to iron skarn deposits. Minerals such as garnet and

  2. Distribution of natural radioactive elements in Western Carpathians granitoids

    International Nuclear Information System (INIS)

    Katlovsky, V.

    1979-01-01

    The content of natural radioactive elements was determined using the 1024-channel analyser NTA-512 B with NaI(Tl) scintillators or with a Ge(Li) detector. The following groups of samples were processed: 1. granitoids, pegmatites and weathered rocks in the Small Carpathians; 2. acid magmatites of exotic rocks of the klippen zone; 3. granitoids of the Western Carpathians. The results of the measurements are summed up. (Ha)

  3. Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon

    Science.gov (United States)

    Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.

    2017-01-01

    We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the

  4. Age of granitoids from the Kohut Veporic zone according to Rb-Sr isochrone analysis

    International Nuclear Information System (INIS)

    Cambel, B.; Bagdasaryan, G.P.; Gukasyan, R.K.; Dupej, J.

    1988-01-01

    Rb-Sr isochrone analyses of granitoid rocks from the southern part of the Veporic zone - the so-called Kohut zone - are presented. In this region, the Sinec (Rimavica) type of granitoids formerly considered to be Late Palaeozoic to Neoide, is found. The present isochrone research determines them as equivalents of granitoids of the Sihla type (387±27 m.y.). The Sinec (Rimavica) granite reaches an age of 392±5 m.y. This extended age must partly be attributed to additional processes which took place in the stage of retrograde alterations. The conclusions are of considerable importance in clarifying the metamorphic age and stratigraphy of the crystalline complex in the region of the southern Veporic zone. (author). 9 figs., 4 tabs., 38 refs

  5. Petrography and geochronology of the Sao Jose dos Quatro Marcos granitoids, southwestern Mato Grosso, Brazil

    International Nuclear Information System (INIS)

    Carneiro, M.A.; Ulbrich, H.H.G.J.; Kawashita, K.

    1989-01-01

    An area of about 400Km 2 was mapped in the region of Sao Jose dos Quatro Marcos, southwestern State of Mato Grosso, western Brazil. Various granitoid rocks were recognized, intrusive into basement gneisses, and mapped as two distinct units, one of massive late granitoids (mostly 3a and 3b granites) and one of foliated granitoids, with oriented mafic minerals, consisting mainly of tonalites and, to a lesser degree, of granodiorites. The sequence of intrusion is from tonalites to granodiorites to late granites. Magmatic textures are usually preserved in the rocks, with the exception of some clearly recrystallized samples. Field aspects, as well as petrography and mineralogy, suggest a genetic relationship between the various granitoid types, showing overall features commonly cited as typical of 'I' lineages. A Rb/Sr whole-rock isochron obtained from 3b granites (six points) shows an age of 1,472 +- 19 Ma, and Sr 87 86 initial ratio of 0.7037 +- 0.0004; a nine point isochron (adding two tonalites and one granodiorite) yelds similar results (age of 1,505 +- 20 Ma, initial ratio of 0.7029+- 0.0003). The obtained ages confirm the existence of a thermal-magmatic event at about 1,500 Ma at the southern border of the Amazon Craton. (author) [pt

  6. Rb-Sr isochrone dating of granitoids from Tribec Mts

    International Nuclear Information System (INIS)

    Bagdasaryan, G.P.; Gukasyan, R.Kh.; Cambel, B.; Broska, I.

    1990-01-01

    The results of Rb-Sr isochrone dating of granitoids from the Tribec-Zobor crystalline complex region are presented. Whole-rock Rb-Sr isochrone indicates an age of 352±5 m.y., the initial ratio being ( 87 Sr/ 86 Sr) 0 =0.70582±0.00008, which approaches the hitherto published initial ratios from the Tatric-Veporide part of the crystalline complex. This indicates a common source of granitoid rocks over the entire region studied. (author). 2 figs., 1 tab., 15 refs

  7. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    Science.gov (United States)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    relation between magmatism, metamorphism and deformations, accompanying formation of dome structure. Structural data also indicate the dome formation between two regional strike-slips. Strike-slip deformations of terminal stage of collision might have resulted in local zones of extensions [6, 8]. Intrusive contacts of studied granitoid plutons with already deformed host deposits indicate their postcollisional origin. Wide petrographical spectrum of granitoids, hornblende and biotite existence in granites, metaluminous high-K and shoshonite character, biotites compositions allow belonging them to high-K granites of I-type. Appearance of I-type granites in postcollisional setting is usually related to crustal anatexis under the influence of hot asthenospheric mantle due to delamination of lower parts of lithosphere. At the same time the processes of mingling of magmas of different composition, assimilation, fractional crystallization take place. Thus, in tectonic scenario of Alarmaut dome formation except dominating submergence of Chukotka microcontinent margin beneath the structures of North-Asian craton active margin we should assume slab-breakoff or delamination of lithospheric mantle which might have facilitated heat transfer, necessary for melting of granite magma. Aptian-Albian volcanism, localized in postcollisional extensional structures, confirms this assumption. Interrelations of major oxides in granitoids show that compositions of Alarmaut intermediate rocks fall in the fields of melts, experimentally obtained during partial melting of amphibolites, and compositions of granodiorites and granites, along the boundary zone of partial melts of greywackes and dacites, tonalites. Heterogeneity of granitoids source composition or different level of magma contamination by ancient crustal material is confirmed by Sr-Nd data. It is expressed in significant dispersal of ɛNd(Т) and 87Sr/86Sr values in granitoids. Work is carried out at the financial support of RFBR

  8. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile

    Science.gov (United States)

    Sial, A. N.; Toselli, A. J.; Saavedra, J.; Parada, M. A.; Ferreira, V. P.

    1999-03-01

    Magmatic epidote (mEp)-bearing granitoids from five Neoproterozoic tectonostratigraphic terranes in Northeastern (NE) Brazil, Early Palaeozoic calc-alkalic granitoids in Northwestern (NW) Argentina and from three batholiths in Chile have been studied. The elongated shape of some of these plutons suggests that magmas filled fractures and that dyking was probably the major mechanism of emplacement. Textures reveal that, in many cases, epidote underwent partial dissolution by host magma and, in these cases, may have survived dissolution by relatively rapid upward transport by the host magma. In plutons where such a mechanism is not evident, unevenly distributed epidote at outcrop scale is armoured by biotite or near-solidus K-feldspar aggregates, which probably grew much faster than epidote dissolution, preventing complete resorption of epidote by the melt. Al-in-hornblende barometry indicates that, in most cases, amphibole crystallized at P≥5 kbar. Kyanite-bearing thermal aureoles surrounding plutons that intruded low-grade metamorphic rocks in NE Brazil support pluton emplacement at intermediate to high pressure. mEp show overall chemical variation from 20 to 30 mol% (mole percent) pistacite (Ps) and can be grouped into two compositional ranges: Ps 20-24 and Ps 27-30. The highest Ps contents are in epidotes of plutons in which hornblende solidified under Pcorrosion of individual epidote crystals included in plagioclase in high-K calc-alkalic granitoids in NE Brazil, emplaced at 5-7 kbar pressure, yielded estimates of magma transport rate from 70 to 350 m year -1. Most of these plutons lack Fe-Ti oxide minerals and Fe +3 is mostly associated with the epidote structure. Consequently, magnetic susceptibility (MS) in the Neoproterozoic granitoids in NE Brazil, as well as Early Palaeozoic plutons in Argentina and Late Palaeozoic plutons in Chile, is usually low (3.0×10 -3 SI, typical of magnetite-series granitoids crystallized under higher oxygen fugacity. In NE

  9. Petrology and isotope systematics of magma mushes: some porphyritic granitoids of northeastern Brazil

    International Nuclear Information System (INIS)

    McMurry, J.; Long, L.E.; Sial, A.N.

    1987-01-01

    More than 80 coarsely porphyritic granitoid plutons with K-feldspar megacrysts (Itaporanga-type granites) intrude metamorphic rocks of Northeastern Brazil. Textural evidence for filter pressing and flow foliation indicates that these bodies were emplaced as viscous, crystal-laden mushes. A representative Itaporanga-type pluton, the Monte das Gameleiras intrusion, consists of a variety of rock types with SiO 2 ranging from 49.5 to 71.6 weight percent. Chemically and petrographically, this hornblende-bearing pluton has I-type characteristics with some S-type affinities. Whole-rock oxygen isotope data are in keeping with the distribution of δO 18 , for unaltered granitic rocks. Similarly, REE data suggest a single magmatic process, at least for the more felsic rock types, without post-intrusive effects. A 5-point, whole-rock Rb-Sr isochron for the Monte das Gameleiras pluton gives t = 511 ± 26 Ma andan initial, 87 Sr/ 86 Sr = 0.7099 ± 0.0004. This is contrasted with disparate ages calculated from texturally similar bodies such as the Fazenda Nova pluton, for which a 5-point whole-rock isochron gives t = 630 ± 24 Ma with initial 87 Sr/ 86 Sr = 0.7065 ± 0.0005, and the type locality Itaporanga pluton, for which a 6-point isochron gives t= 625 ± 22 Ma. (author) [pt

  10. Semi-brittle flow of granitoid fault rocks in experiments

    Science.gov (United States)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée.; Drury, Martyn

    2016-03-01

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have performed an experimental study on synthetic granitoid fault rocks exploring a broad parameter space (temperature, T = 300, 400, 500, and 600°C, confining pressure, Pc ≈ 300, 500, 1000, and 1500 MPa, shear strain rate, γṡ ≈ 10-3, 10-4, 10-5, and 10-6 s-1, to finite shear strains, γ = 0-5). The experiments have been carried out using a granular material with grain size smaller than 200 µm with a little H2O added (0.2 wt %). Only two experiments (performed at the fastest strain rates and lowest temperatures) have failed abruptly right after reaching peak strength (τ ~ 1400 MPa). All other samples reach high shear stresses (τ ~ 570-1600 MPa) then weaken slightly (by Δτ ~ 10-190 MPa) and continue to deform at a more or less steady state stress level. Clear temperature dependence and a weak strain rate dependence of the peak as well as steady state stress levels are observed. In order to express this relationship, the strain rate-stress sensitivity has been fit with a stress exponent, assuming γ˙ ∝ τn and yields high stress exponents (n ≈ 10-140), which decrease with increasing temperature. The microstructures show widespread comminution, strain partitioning, and localization into slip zones. The slip zones contain at first nanocrystalline and partly amorphous material. Later, during continued deformation, fully amorphous material develops in some of the slip zones. Despite the mechanical steady state conditions, the fabrics in the slip zones and outside continue to evolve and do not reach a steady state microstructure below γ = 5. Within the slip zones, the fault rock material progressively transforms from a crystalline solid to an amorphous material. We

  11. Rb-Sr isochronous age of Vepor pluton granitoids

    International Nuclear Information System (INIS)

    Bagdasaryan, G.P.; Gykasyan, R.Kh.; Cambel, B.

    1986-01-01

    The result are presented of geochronological investigations of the Vepor pluton granitoids by the Rb-Sr isochronous method. The results prove the Variscan age of granodiorite magmatism of the Sihla type (387±27 m.y.) and the Early Variscan age of leucocratic granitoids of the Vepor and the Ipel types (284±22 m.y.). Since the initial ratio of 87 Sr/ 86 Sr in granitoids of the Sihla type is 0.7054 and of the Vepor type 0.7060, it can be assumed that during the formation of the granitoids of veporides there was an increased supply of matter from the main source affecting genesis of granitoids. The results prove a polyphase character of the Variscan granitoids of Veporicum. (author)

  12. Diversity, origin and tectonic significance of the Mesoarchean granitoids of Ourilândia do Norte, Carajás province (Brazil)

    Science.gov (United States)

    da Silva, Luciano Ribeiro; de Oliveira, Davis Carvalho; dos Santos, Maria Nattânia Sampaio

    2018-03-01

    This study investigates the diversity, origin and tectonic significance of the Ourilândia do Norte Mesoarchean granitoids, emplaced near Rio Maria-Carajás domains boundary, southeastern Amazonian Craton (Brazil). In this area, previous works has identified sanukitoids (∼2.87 Ga), (quartz) diorites of BADR affinity and undifferentiated leucogranites, with charnockites cross-cutting the other granitoids. New geological mapping data allowed to differentiate three new groups of granitoids: (i) biotite monzogranites (BMzG); (ii) epidote-biotite granodiorites (EBGd); and (iii) porphyritic granitoids (pGrt). Thus, this paper aims to define their classification, nature, formation processes and deformation aspects, and discuss the relations between plutonism and deformation for the Ourilandia do Norte granitoids. The petrographic data showed that each one of these groups can be subdivided into two facies. The BMzG is differentiated into equigranular (eBMzG) and heterogranular (hBMzG) and the EBGd into heterogranular (hEBGd) and sparsely porphyritic (spTEBGd). These granitoids constitute two batholiths separated by a rock strip of sanukitoid and BADR affinities. Both are largely dominated by BMzG rocks, with less abundant EBGd lenses. The pGrt is individualized in porphyritic granodiorites (pBHGd) and trondhjemites (pEBTd), which occur as smaller bodies. Structurally, the central portions these plutons represent lower strain domains, while their borders are marked by large-scale shear zones, where occur submagmatic and mylonitic fabrics of ENE-WSW main direction and subvertical dip, respectively. The meso- and microstructural data indicate that the rocks studied are syn-to late-tectonic and were affected by high temperature deformation (>500 °C) and low differential stress, in a sinistral transpression regime, indicating that both fabrics are related to the a same deformational event. Geochemically, except the pEBTd facies that has sodic affinity, the Ourilândia do

  13. Petrochemical and Tectonogenesis of Granitoids in the Wuyo-Gubrunde Horst, Northeastern Nigeria: Implication for Uranium Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Bolarinwa, Anthony Temidayo, E-mail: atbola@yahoo.com; Bute, Saleh Ibrahim [University of Ibadan, Department of Geology (Nigeria)

    2016-06-15

    The Wuyo-Gubrunde Horst in the northeastern Nigeria consists of migmatite gneiss, unaltered, altered, and sheared porphyritic granites, pegmatites, aplites, basalts, and sandstone. Uranium has been reported in rhyolite, sheared rocks, and sandstone within the area. The petrogenesis of the granitoids and associated rocks in the area was evaluated in the light of new geochemical data, which showed that the U content of altered porphyritic granite is highest and hydrothermal-related. The granitoids are metaluminous, sub-alkaline, and S-type granite, and have evolved by partial melting of crustal material emplaced at moderate depth of 20–30 km in a syn-to late-collisional within-plate tectonic setting. The negative Eu/Eu* anomaly and high (La/Yb){sub N} ratio of the granitoids indicate magma fractionation. The low SiO{sub 2} (<53%) and high Fe{sub 2}O{sub 3} (10%) of the altered porphyritic granite compared to other similar rock units suggest pervasive alteration. The associated basalts are tholeiitic, emplaced within continental plate tectonic setting, and enriched in Ni, V, Nb, Sr, and light rare earth elements, and they have SiO{sub 2}, Fe{sub 2}O{sub 3}, V, Th, and Co contents that are similar to those of the altered porphyritic granites. The U occurrence in the Wuyo-Gubrunde Horst is believed to be sourced from the adjoining Bima sandstone in the Benue Trough, which locally contains carbonaceous zones with anomalously high concentrations of U. The Fe{sup 2+}/Fe{sup 3+} redox fronts formed by alteration of the iron-rich basalts provided the requisite geochemical barrier for U-bearing hydrothermal fluid, causing enrichment of U leached and mobilized from the sandstone through fractures in the rocks.

  14. SHRIMP zircon dating of granitoids from Myanmar: constraints on the tectonic evolution of Southeast Asia

    International Nuclear Information System (INIS)

    Barley, M.E.; Pickard, A.L.; Zaw, K.; University of Tasmania, Hobart, TAS

    1999-01-01

    Full text: Situated south of the eastern syntaxis of the Himalayas, Myanmar occupies a key position in the tectonic evolution of Southeast Asia. However, there is almost no modern geochronology for this region. In this contribution we present new SHRIMP zircon dates for granitoids from the Shan Scarp (Mogok Metamorphic Belt), Taninthayi (Tenasserim) Region in the Myeik (Mergui) Archipelago and Central Valley (Western Myanmar) regions of Myanmar. The oldest ages obtained were from Jurassic granitoids, gneisses and amphibolites interlayered with marbles that were metamorphosed and deformed during the Eocene-Oligiocene and Miocene in the Mogok Metamorphic Belt. The occurrence of mid-Jurassic metamorphosed igneous rocks in the Mogok Metamorphic Belt is similar to that in the Hunza Karakoram and confirms interpretations that the southern margin of Asia became an Andean-type convergent margin at that time. Ages between 120 and 80 Ma for l-type granitoids intruding the Mogok Metamorphic Belt, Myeik Archipelago and Western Myanmar confirm that an up to 200km wide mid Cretaceous magmatic belt extended along the Eurasian margin from Tibet to Sumatra. Fractionated l-Type granitoids, that locally host Sn-W mineralisation, were emplaced in the Myeik Archipelago (and adjacent Thailand) in the latest Cretaceous to Early Eocene (80 to 50 Ma). These granitoids formed a wide convergent margin magmatic belt as the Indian plate rapidly approached Eurasia. Deformation and high-grade metamorphism occurred in the Mogok Metamorphic Belt during the Eocene-Oligiocene as the collision between India and Eurasia initiated crustal thickening prior to extrusion, or rotation, of Indochina and northward movement of Western Myanmar. Arc magmatism continued in Western Myanmar with emplacement of granitoids in the Central Valley. Deformation, extensional uplift and further granitoid magmatism occurred in the Mogok Metamorphic Belt during the Early Miocene northward movement of Western Myanmar

  15. Transformation of juvenile Izu-Bonin-Mariana oceanic arc into mature continental crust: An example from the Neogene Izu collision zone granitoid plutons, Central Japan

    Science.gov (United States)

    Saito, Satoshi; Tani, Kenichiro

    2017-04-01

    Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the

  16. Geochemical characteristics of granitoids and related mafic granulites from the Pan-African Dahomeyide belt, southeastern Ghana

    International Nuclear Information System (INIS)

    Aidoo, F.

    2012-07-01

    The Dahorneyide orogenic belt marks the southeastern limit of the West Africa craton (WAC). The belt consists of three structural units which include the deformed eastern edge of the WAC with its cover rocks made up of the Togo and the Buern Structural Units (external nappes), a suture zone assemblage of mafic and ultramafic rocks, and granitoid gneiss-rnigmatite assemblages (east of the suture zone). Geochemical and petrographic characteristics of the granitoids from the external nappes and mafic and ultramafic granulites roeks from the suture zone have been studied with the objective of inferring their petrogenesis and tectonic setting in which they were formed. Twenty five (25) representative samples were selected for petrographic studies and fifteen samples for major and trace elements composition using ICP-AES and ICP-MS respectively. The granitoids gneisses are mainly biotite muscovite gneisses, migmatites and granodiorites made up of quartz (25-68%), biotite (7-30%), plagioclase (8-40%), muscovite (4-20%) with some few pyroxene, sericite and calcite observed in some oF the samples. Within these rocks is an amphibole rich gneiss composed of about 45% amphiboles. The granitoid gneisses contain SiO 2 content of 40.60-68.90 wt. % with low Mg# of 36-46. Geochernically, they are classified as I-type, mctaluminous to peraluminous, magnessian to ferroan, calcic to calc alkali granitoids. They exhibit fractionated REE patterns with (La/Sm) N = 1.80-5.85 and (La/Yb) N = 3.76-76.30, and negative to positive Eu anomalies (Eu/Eu*'' = 0.68-2.10. The primitive mantle-normalised, trace element patterns show that the granitoid gneisses are characterised by enrichment in LILE relative to HFSE and in LREE relative HREE. They display subduction-related trace element characteristics of positive Ba and negative Ti, Ta, Nb and Hf anomalies. The mafic granulites are composed of quartz (16-43%), hornblende (12-45%), plagioclase (13-23%), pyroxene (13-17%), garnet (4

  17. Metallogenetic characterization of granitoid rocks through geochemical prospection: the Lagoa Real example related to uranium mineralization in Bahia state, Brazil; Caracterizacao metalogenetica de corpos gratinoides atraves de prospeccao geoquimica: o exemplo da suite intrusiva Lagoa Real relacionada a mineralizacoes de uranio no Estado da Bahia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.E., E-mail: cprmsa@bahianet.com.br [Servico Geologico do Brasil (GEREMI/SUREG/SA/CPRM), Salvador, BA (Brazil)

    2011-07-01

    Within a broad metallogenetic evaluation program carried out by CPRM - Geological Survey of Brazil in covenant with the CBPM - Companhia Baiana de Pesquisa Mineral in the central part of the Sao Francisco Craton, the Lagoa Real granitoid rocks was one of the selected targets. The work included geochemical exploration supplemented by follow-in survey and integrated 1:200.000 scale geochemical cartography. The Lagoa Real granitoid was recognized with composition ranging from monzogranitic to alcaligranitic type. The geochemical surveying led to the definition of the metallogenetic specialization of the granitoid rock, with characteristic geochemical and mineralogic associations. These associations are related to uranium mineralization. The genetic model using stream sediment and pan concentrate data, show similarity with the metallogenetic model of zonal partitioning proposed by Routhier (1963), for plutonogenic lode deposits with potential for Sn, W, Nb, Be, REE, Au, and U. In this work emphasis is given to the importance of the integrated use of different prospective methods toward the evaluation of granitoid systems, particularly the combination of geochemical surveying methods with results for a better understanding of the geologic and metallogenetic settings. (author)

  18. Age, geochemical affinity and geodynamic setting of granitoids and felsic volcanics in the basement of Wrangel Island

    Science.gov (United States)

    Luchitskaya, Marina; Moiseev, Artem; Sokolov, Sergey; Tuchkova, Marianna; Sergeev, Sergey

    2016-04-01

    volcanics have high contents of alkalis (K2O= 4.15-5.79%, Na2O= 2.28-3.78%) and belong to high-K calc-alkaline series. In TAS classification granites and gneisses, mylonitic ones are classed with granites and felsic volcanic, with rhyolites. In the Frost et al., 2001 classification granites and felsic volcanics are classed with magnesian (Fe*=FeO*/(FeO*+ MgO)=0.71-0.79), calc-alkalic and alkali-calcic (MALI=Na2O+K2O-CaO=6.92-7.68) and peraluminous (ASI=1.13-1.35) granitoids. Spidergrams of granites and felsic volcanics are enriched in LILEs in respect to HFSE, show negative anomalies of Ba, Nb, Ta, LREE, Sr, Ti and positive anomaly for Pb. On FeO*/MgO vs (Zr+Nb+Ce+Y) and Zr vs 104Ga/Al (Whalen et al., 1987) diagrams, muscovite granites and granitic gneisses fall in the field of I- and S-types granites, mylonitic granites and felsic volcanics, on the line between I-, S-granites and A-type granites fields or in the A-type granites field. Conclusions. 1. U-Pb zircon data indicate two stages of felsic magmatic activity in Wrangel complex at ~700 and ~600 Ma. 2. Granitoids of Wrangel complex belong to highly fractionated peraluminous I-type granites; felsic volcanics have similarity to A-type granites. 3. Granitoids of the 600 Ma stage may be derivates of I-types granites of Andian continental margin or postcollisional ones; felsic volcanics are part of bymodal rift-related assemblage, associated with extention setting. The latter is confirmed by rifting nature of spatially associated basalts (Moiseev et. al, 2009; Moiseev et al., 2015). This work was supported by Rosneft' company, Russian Fund of Basic Researches (projects № 16-05-00146, 14-05-00031), and Scientific school (NSh-9581.2016.5).

  19. Interaction between felsic granitoids and basic dykes in ...

    Indian Academy of Sciences (India)

    37

    Many workers gave detailed petrographical and geochemical data of the ... greenstone complex (Malviya et al., 2006; Kumar et al., 2013; Singh and ...... Mafic rock shows lobate shape pointing towards granitoids (marked by the white arrows);.

  20. Multiple sources of magmatism. granitoids from southeast Kohistan, NW Himalayas, Pakistan

    International Nuclear Information System (INIS)

    Khan, M. A.; Qazi, M. S.

    2005-01-01

    The Kohistan island arc terrane in the northwestern Himalayas of N. Pakistan is sandwiched between the Indian and Karakoram plated. The base of the arc is occupied by a major stratiform ultramafic-gabbroic complex (the Sapat-Babusar complex), which overrides the crust of the Indian plate along the Indus suture (i.e., the Main Mantle Thrust; MMT). It was intruded into the base of a thick pile of metavolcanics (the Kamila belt), which comprise a tectonic collage of MORB-type tholeiitic basalts, island-arc tholeiites and calc-alkaline andesites. The Chilas complex, comprising ultramafic and gabbronorite rocks, is also intrusive into the Kamila belt, it is emplaced onto the top rather than the base of the Kamila belt. A sizeable proportion of granitoid rocks are present in the south-eastern part of Kohistan, which intruded the Kamila amphibolites. These are predominantly dioritic in composition, but include gabbros, granodiorites, granites and trondhjemites. The granitoids occur in two types. (1) large sheet-like lenticular masses, and (2) minor intrusives in the form of veints, sills or dykes. Three large sheets like bodies are mapped. All these bodies are composite, comprising gabbros, diorite/tonalite, granodiorite and granite. The minor intrusion of granitic and trondhjemitic composition are abundantly present in the form of veins, sills and dykes; and are characterized by variation in distribution. Strong shearing transformed the rocks into blastomylonite gneisses. The mineral assemblage consists of quartz, plagioclase, emphibole, epidote, chlorite, biotite, muscovite, sphene, magnetite and apatite. (author)

  1. Multiple sources of magmatism: granitoids from southeast kohistan, nw himalayas Pakistan

    International Nuclear Information System (INIS)

    Sayab, M.; Qazi, M.S.

    2005-01-01

    The Kohistan island arc terrane in the northwestern Himalayas of N. Pakistan is sandwiched between the Indian and Karakoram plates. The base of the arc is occupied by a major stratiform ultramafic-gabbroic complex (the Sapat-Babusar complex). which overrides the crust of the Indian plate along the Indus suture (i. e., the Main Mantle Thrust; MMT). It was intruded into the base of a thick pile of metavolcanics (the Kamila belt), which comprise a tectonic collage of MORB-type tholeiitic basalts, island-arc tholeiites and calc-alkaline andesites. The Chilas complex, comprising ultramafic and gabbronorite rocks, is also intrusive into the Kamila belt. It is emplaced onto the top rather than the base of the Kamila belt. A sizeable proportion of granitoid rocks are present in the south-eastern part of Kohistan. Which intruded the Kamila amphibolites. These are predominantly dioritic in composition but include gabbros, granodiorites, granites and trondhjemites. The granitoids occur in two types: (I) large sheet-like lenticular masses, and (2) minor intrusives in the form of veins sills or dykes. Three large sheets like bodies are mapped. All these bodies are composite, comprising gabbros, diorite/tonalite. granodiorite and granite. The minor intrusions of granitic and trondhjemitic composition are abundantly present in the form of veins, sills and dykes and are characterized by variation in distribution. Strong shearing transformed the rocks into blastomylonite gneisses. The mineral assemblage consists of quartz, plagioclase, Amphibole, epidote, chlorite, biotite, muscovite, sphene, magnetite and apatite. (author)

  2. Behaviour of {sup 238}U, {sup 234}U, {sup 228}Ra and {sup 226}Ra in rock alterations: study of Morungaba granitoids, SP-Brazil and ground water in its fractures; Comportamento de {sup 238}U, {sup 234}U, {sup 228}Ra e {sup 226}Ra na alteracao de rochas: estudo dos granitoides de Morungaba (SP) e aguas subterraneas de suas fraturas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rosana N. dos [Pontificia Univ. Catolica de Sao Paulo, SP (Brazil). Dept. de Fisica]. E-mail: rosana@pucsp.br; Marques, Leila S. [Sao Paulo Univ., SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas. Dept. de Geofisica]. E-mail: leila@iag.usp.br

    2005-07-01

    This work presents the first results obtained on the investigation of the behavior of uranium and radium radioisotopes in the processes of weathering and rock-water interaction of Morungaba granitoids belonging to Meridional Pluton (Valinhos Town-SP-Brazil). Specific activities of {sup 238}U, {sup 234}U, {sup 228}Ra and {sup 226}Ra were determined in non altered granitoids (Group A), as well as in those affected by different degrees of weathering (Groups B, C and D). The uranium specific activities were determined by alpha spectrometry method, whereas for the determination of radium isotopes high resolution gamma-ray spectrometry technique was employed. The data indicate that {sup 238}U and {sup 234}U are in radioactive equilibrium in the fresh analyzed granitoids, but show a slight depletion of {sup 234}U in relation to {sup 238}U in the weathered rocks. The ({sup 226}Ra/{sup 238}U) and ({sup 226}Ra/{sup 234}U) activity ratios of all investigated rocks are similar, showing a significant {sup 226}Ra depletion, which is probably caused by its preferential leaching. These results indicate that even samples macroscopically classified as fresh rocks, their systems have been opened for some geochemical changes. The high ({sup 234}U/{sup 238}U) activity ratios of groundwaters which are found in the fractures of these granitoids suggest their prolonged residence times in the aquifer and/or their percolation by other rocks presenting different geochemical properties. (author)

  3. Rb-Sr isochronous dating of granitoids of Dumbier zone of Low Tatras (Western Carpathians)

    International Nuclear Information System (INIS)

    Bagdasaryan, G.P.; Gukasyan, R.Kh.; Cambel, B.; Vesel'skij, J.

    1985-01-01

    The results are discussed of isotopic-geochronological research and age determination of characteristic samples of granitoid rocks, obtained by the Rb/Sr isochronous method. The samples were biotite granodiorites and granites taken from various parts of the Dumbier massif and small granite bodies of the Kralicka type. Rb/Sr isochrones of the rock samples show identical age values: 362+-21 m.y. for the Dumbier massif and 365+-17 m.y. correspnding to the Middle - Upper Devonian. Initial 87 Sr/ 86 Sr ratios equal to 0.7079 and 0.7157, respectively, allow to make a presumption that the rocks of the Dumbier massif may have been derived both from crustal and from mantle sources while granites of the Kralicka type are close to the rocks of the crustal origin

  4. Petrological mineralogical and geochemical characterization of the granitoids and fracture fillings developed in Ratones Mines (Spain)

    International Nuclear Information System (INIS)

    Buil Gutierrez, B.

    2002-01-01

    The petrological, mineralogical and geochemical characterisation of the granitoids and fracture fillings developed in the Ratones Mine (Caceres, Spain) has been done in order to understand rock-water interaction processes which control water geochemical parameters. Special interest has been devoted to the analysis and interpretation of REE patterns in the solid phase (granitoids and fracture fillings) because they constitute geochemical tracers in water-rock interaction process. Moreover, REE are considered as actinide analogues. In order to characterise the solid phase (granitoids and fracture fillings) several investigation scales (system, outcrop, whole rock, mineral and geochemical components) have been considered and different types of samples have been analysed. These factors control the methodological approach used in this investigation. The analytical methods we have used in this investigation are microscope, qualitative and semi-quantitative methods (XRD, SEM,EDAX) and quantitative methods (ICP-MS, XRF, EM, LAM-IC-MS). The bulk of the granitoids located around the Ratones Mine Belongs to the alkaline feldspar granite-sienogranite lihotype and they show a peraluminous and subalkaline pattern. From the mineralogical point of view, they are composed by quartz, K-feldspar (Or>90%), showing sericitation, moscovitization and turmolinization altherations, alkaline plagioclase (An-=-3%), usually altered to sericite, saussirite and less frequently affected by moscovitization processes, Fe-Al biotite, frequently affected by chloritization processes and sometimes replaced by muscovite, and finally muscovite (>2% celadonite and <4% paragonite) both of primary and secondary origin. The differences observed between the different lithotypes are related with the modal proportion of the principal minerals,with the presence or absence of certain accessory minerals ( turmaline, cordierite), with specific textural patterns, grain size and also with the richness in specific

  5. Geología de la parte sur de la Sierra de San Luis y granitoides asociados, Argentina

    Directory of Open Access Journals (Sweden)

    Llambías, E. J.

    1992-12-01

    Full Text Available The lower Palaeozoic basement of the southern part of Sierra de San Luis, Argentina, is made up of metamorphic rocks, granitoids and ultramafic rocks. The metamorphic grade ranges from the lower limit of greenschist facies through the upper limit of amphibolite facies, in apparent transition. The lower grade metamorphic rocks include slates, metavolcanics, metaconglomerates, quartzites and phyllites. Rocks with intermediate metamorphism are biotite-quartz-oligoclase schists with abundant pegmatoid veins. The higher grade metamorphism is represented by gneisses, amphibolites and migmatites, to which mafic and ultramafic bodies are associated. Three deformation phases have been recognized, being the last one (D3, of ordovician age, responsible of the most marked structures.The granitoids were grouped into pre-, syn- and post-kynematic bodies respect to D3. The pre-kynematic granitoids are located within the belt of lower grade metamorphic rocks and are composed of tonalites, granodiorites and monzogranites, strongly deformed. Their age is unknown. The syn-kynematic bodies are mainly garnet-moscovite-bearing leucogranodiorites. They show low thermal and rheological contrasts respect to the country rocks, and the age is 454 ± 21 m.a. The post-kynematic granitoids are mainly monzogranites with K-feldspar megacrysts and abundant sphene. They are subcircular and discordant, and are associated with an extensional regime. Their age is comprised between 423 and 320 m.a., and corresponds to the end of the Famatinian cycle.El basamento cristalino de la parte sur de la Sierra de San Luis, de edad Paleozoico Inferior, está constituido por rocas metamórficas, granitoides y rocas ultramáficas. El grado de metamorfismo varía desde la parte baja de esquistos verdes hasta la parte alta de la facies anfibolita, siendo sus relaciones de aparente transicionalidad. Las rocas con menor grado metamórfico consisten en pizarras, metavolcanitas, metaconglomerados

  6. U-Th-Pb systematics of some granitoids from the northeastern Yilgarn Block, Western Australia and implications for uranium source rock potential

    Energy Technology Data Exchange (ETDEWEB)

    Stuckless, J S; Nkomo, I T [Geological Survey, Denver, CO (USA); Bunting, J A [Geological Survey of Western Australia, Perth

    1981-11-01

    The Mount Boreas-type granite and spatially associated syenitic granitoid of Western Australia yield Pb-Pb ages of 2370 +- 100 Ma and 2760 +- 210 Ma, respectively. Th-Pb ages, although less precise, are concordant with these ages, and therefore the apparent ages are interpreted to be the crystallisation ages for these two units. U-Pb ages are variable and for the most part anomalously old, which suggests a Cainozoic uranium loss. However, this loss is generally small (3..mu..g/g); therefore, neither granitoid in its fresh state provides a good source for nearby calcrete-hosted uranium deposits. The possibility remains that the Mount Boreas-type granite that has been completely weathered during the Tertiary could have been a source for the calcrete-type uranium deposits in W.A. Although the Mount Boreas-type granite is highly fractionated, it does not bear a strong geochemical imprint of a sedimentary precursor. This feature contrasts it with apparently fresh granitoids from other parts of the world that have lost large amounts of uranium (approx. 20..mu..g/g) and are associated with large roll-type and other low temperature-type uranium deposits.

  7. Electron probe micro analyser chemical zircon ages of the Khetri granitoids, Rajasthan, India: records of widespread late palaeoproterozoic extension-related magmatism

    International Nuclear Information System (INIS)

    Kaur, Parampreet; Chaudhri, Naveen; Biju-Sekhar, S.; Yokoyama, K.

    2006-01-01

    A number of granitoid plutons were emplaced in the northernmost entity of the Aravalli craton, the Khetri Copper Belt (KCB). We report here Th-U-Pb electron probe micro analyser chemical ages for zircon and monazite from two granitoid plutons of the north KCB, the Biharipur and Dabla. Zircons occurring in the granitoids depict well-developed magmatic zoning and are chronologically unzoned. Both the plutons and their diverse granitoid facies are coeval and provide ages around 1765-1710 Ma. Geochemical attributes of the studied plutons are typical of A-type within-plate granites and consistent with an extensional tectonic environment. Our new age data are comparable to the petrologically similar A-type granitoids of the Alwar region, which have provided zircon chemical ages around 1780-1710 Ma. These analogous ages imply a widespread late palaeoproterozoic extension-related plutonism in the northern part of the Aravalli craton. The monazites, which were recovered only from the mafic magmatic rocks of the Biharipur pluton, yielded an isochron age of 910 ±10 Ma, signifying an over- print of a younger neoproterozoic thermal event in the region. (author)

  8. INTERACTIONS BETWEEN GABBROID AND GRANITOID MAGMAS DURING FORMATION OF THE PREOBRAZHENSKY INTRUSION, EAST KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    S. V. Khromykh

    2017-01-01

    Full Text Available The paper reports on studies of the Preobrazhensky gabbro‐granitoid intrusion, East Kazakhstan, com‐ posed of the rocks that belong to four phases of intrusion, from quartz monzonites and gabbroids to granite‐ leucogranites. Specific relationships between basite and granitoid rocks are usually classified as the result of interac‐ tions and mixing of liquid magmas, i.e. magma mingling and mixing. Basite rocks are represented by a series from biotite gabbros to monzodiorites. Granitoids rocks are biotite‐amphibole granites. Porphyric granosyenites, com‐ bining the features of both granites and monzodiorites, are also involved in mingling. It is established that the primary granitoid magmas contained granosyenite/quartz‐monzonite and occurred in the lower‐medium‐crust conditions in equilibrium with the garnet‐rich restite enriched with plagioclase. Monzodiorites formed during fractionation of the parent gabbroid magma that originated from the enriched mantle source. We propose a magma interaction model describing penetration of the basite magma into the lower horizons of the granitoid source, which ceased below the viscoplastic horizon of granitoids. The initial interaction assumes the thermal effect of basites on the almost crystal‐ lized granitic magma and saturation of the boundary horizons of the basite magma with volatile elements, which can change the composition of the crystallizing melt from gabbroid to monzodiorite. A ‘boundary’ layer of monzodiorite melt is formed at the boundary of the gabbroid and granitoid magmas, and interacts with granitoids. Due to chemical interactions, hybrid rocks – porphyric granosyenites – are formed. The heterogeneous mixture of monzodiorites and granosyenites is more mobile in comparison with the overlying almost crystallized granites. Due to contraction frac‐ turing in the crystallized granites, the heterogeneous mixture of monzodiorites and granosyenites penetrate into the

  9. THE GEOCHEMISTRY AND AGES OF ROCKS IN THE FOOTWALL OF THE BUTULIYN-NUR AND ZAGAN METAMORPHIC CORE COMPLEXES (NORTH MONGOLIA – WESTERN TRANSBAIKALIA

    Directory of Open Access Journals (Sweden)

    T. V. Donskaya

    2014-01-01

    Full Text Available This article reviews data on ages of rocks in the footwall of the Butuliyn-Nur and Zagan metamorphic core complexes (MCC and provides new data on the geochemistry of the rock complexes. It is noted that the oldest rocks are mylonitized gneisses on rhyolites (554 Ma in the footwall of the Butuliyn-Nur MCC. The Late Permian – Triassic (249–211 Ma igneous rocks are ubiquitous in the footwall of the Butuliyn-Nur and Zagan MCC. The youngest rocks in the studied MCC are the Jurassic granitoids (178–152 Ma of the Naushki and Verhnemangirtui massifs. In the footwall of the Butuliyn-Nur and Zagan MCC, the most common are granitoids and felsic volcanic rocks (249–211 Ma with many similar geochemical characteristics, such as high alkalinity, high contents of Sr and Ba, moderate and low concentrations of Nb and Y. Considering the contents of trace elements and REE, the granitoids and the felsic volcanic rocks are similar to I-type granites. Specific compositions of these rocks suggest that they might have formed in conditions of the active continental margin of the Siberian continent over the subducting oceanic plate of the Mongol-Okhotsk Ocean. The granitoids of the Naushki and Verhnemangirtui massifs, which are the youngest of the studied rocks (178–152 Ma, also have similar geochemical characteristics. In both massif, granitoids are ferriferous, mostly alkaline rocks. By contents of both major and trace elements, they are comparable to A-type granites. Such granitoids formed in conditions of intracontinental extension while subduction was replaced by collision. Based on ages and geochemical characteristics of the rocks in the footwall of the Butuliyn-Nur and Zagan MCC, a good correlation is revealed between the studied rocks  and the rock complexes of the Transbaikalian and North-Mongolian segments of the Central Asian fold belt (CAFB, and it can thus be suggested that the regions under study may have a common evolutionary history.

  10. Ordovician A-type granitoid magmatism on the Ceará Central Domain, Borborema Province, NE-Brazil

    Science.gov (United States)

    Castro, Neivaldo A.; Ganade de Araujo, Carlos E.; Basei, Miguel A. S.; Osako, Liliane S.; Nutman, Alan A.; Liu, Dunyi

    2012-07-01

    We present field relationships, major and trace element geochemistry and U-Pb SHRIMP and ID-TIMS geochronology of the A-type Ordovician Quintas pluton located in the Ceará Central Domain of the Borborema Province, in northeastern Brazil. This pluton presents a concentric geometry and is composed mainly of syenogranite, monzogranite, quartz syenite to quartz monzodiorite, monzogabbro and diorite. Its geochemical characteristics [SiO2 (52-70%), Na2O/K2O (1.55-0.65), Fe2O3/MgO (2.2-7.3), metaluminous to sligthly alkaline affinity, post-collisional type in (Y + Nb) × Rb diagram, and A-type affinity (Ga > 22 ppm, Nb > 20 ppm, Zn > 60 ppm), REE fractioned pattern with negative Eu anomaly] are coherent with post-collisional A2-type granitoids. However, the emplacement of this pluton is to some extent temporally associated with the deposition of the first strata of the Parnaíba intracratonic basin, attesting also to a purely anorogenic character (A1-type granitoid). The emplacement of this pluton is preceded by one of the largest known orogenesis of the planet (Neoproterozoic Pan-African/Brasiliano) and, if it is classified as an A2-type granitoid, it provides interesting constraints about how long can last A2-type magmatic activity after a major collisional episode, arguably triggered by disturbance of the underlying mantle, a topic extensively debated in the geoscience community.

  11. Sr-Nd isotope systematics of xenoliths in Cenozoic volcanic rocks from SW Japan

    International Nuclear Information System (INIS)

    Kagami, Hiroo; Iwata, Masatoshi; Iizumi, Shigeru; Nureki, Terukazu.

    1993-01-01

    Based on new and previously published Sr and Nd isotope data, we examined the petrogenetic relationship between deep crust- and upper mantle-derived xenoliths contained in Cenozoic volcanic rocks and Cretaceous-Paleogene granitoid rocks in SW Japan. The deep crust- and upper mantle-derived mafic to ultramafic xenoliths contained in Cenozoic volcanic rocks from SW Japan have comparable initial Sr and Nd isotope ratios to the Cretaceous-Paleogene granitoid rocks in their respective districts. This may suggest that these xenoliths were genetically related to the Cretaceous-Paleogene granitoid rocks in SW Japan, and that regional variations in Sr and Nd isotope ratios observed in the granitoid rocks are attributed to differences in the geochemistry of the magma sources. (author)

  12. Some genetic aspects of hydrothermal uranium deposits in the Bakulja granitoide (Serbia)

    International Nuclear Information System (INIS)

    Jelenkovic, Rade

    1998-01-01

    This paper discusses the influence of temperature and the way of hydrothermal fluids flow in function of both the degree of tectonized granitoid and the origin of solutions, and partly the processes accompanying mineralization expressed through physico-chemical, mineralogical and mechanical alterations of the mother rock. It has been concluded that heat energy exchange is in function of: 1) petrochemical characteristic of a rock the hydrothermal fluids flow through; 2) degree of tectonization of the surrounding mineralized rocks; 3) volume and morphology of the fissured-porous space; 4) form of uranium bonding in mineral carriers; 5) degree of uranium leaching in hydrothermal solutions; 6) the way of hydrothermal fluids flow, and 7) coefficient of heat exchange expressed by distribution of heat energy within a fluid-rock system. It has also been established that contraction of granite volume results from physico-chemical processes that take place within a granitoid-hydrothermal fluid system and its quantification has been carried out. (Author)

  13. [Analysis of X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry of Pangxidong Composite Granitoid Pluton and Its Implications for Magmatic Differentiation].

    Science.gov (United States)

    Zeng, Chang-yu; Ding, Ru-xin; Li, Hong-zhong; Zhou, Yong-zhang; Niu, Jia; Zhang, Jie-tang

    2015-11-01

    Pangxidong composite granitoid pluton located in the southwestern margin of Yunkai massif. The metamorphic grade of this pluton increases from outside to inside, that is, banded-augen granitic gneisses, gneissoid granites and granites distribute in order from edge to core. X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry are conducted to study the geochemical characteristics of the three types of rocks. The result shows that all the three types of rocks are peraluminous rocks and their contents of main elements and rare earth elements change gradually. From granitic gneisses to granites, the contents of Al₂O₃, CaO, MgO, TiO₂, total rare earth elements and light rare earth elements increase, but the contents of SiO₂ and heavy rare earth elements decrease. It is suggested that the phylogenetic relationship exists between granitic gneisses, gneissoid granites and granites during the multi-stage tectonic evolution process. Furthermore, the remelting of metamorphosed supracrustal rocks in Yunkai massif is probably an important cause of granitoid rocks forming. The evolutionary mechanism is probably that SiO₂ and heavy rare earth elements were melt out from the protolith and gradually enriched upward, but Al₂O₃, CaO, MgO, TiO₂ and light rare earth elements enriched downward.

  14. An isotopic study of granitoids in the Litchfield Block, Northern Territory

    International Nuclear Information System (INIS)

    Page, R.W.; Bower, M.J.; Guy, D.B.

    1984-01-01

    The Litchfield Block contains a variety of granitoids, gneissic rocks, and migmatites that are intrusive into metasediments of probable Early Proterozoic age at the western margin of the Pine Creek Inlier. Isotopic data, which include U-Pb measurements on cogenetic zircon and xenotime and Rb-Sr total-rock measurements on the least metamorphosed granodiorites, show that these rocks crystallised from mantle-derived melts between 1840 Ma and 1850 Ma ago. Radiogenic Pb was lost from zircon in the early Palaeozoic (about 435 Ma), but xenotime remained a closed system until recent time. Many granitoids in the Litchfield Block have a gneissic fabric imposed during greenschist to amphibolite-grade regional metamorphism. This disturbance allowed partial isotopic re-equilibration of Rb-Sr total-rock systems, at about 1770 +- 16 Ma. As this igneous and metamorphic evolution is mirrored in other parts of the Pine Creek Inlier, the Halls Creek Inlier, and many other orogenic belts in northern Australia, its recognition and isotopic definition in the Litchfield Block further emphasise the magnitude and chronological integrity of this early Proterozoic tectonic event

  15. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil; Evolucao geologica da porcao centro-sul do escudo das Guianas com base no estudo geoquimico, geocronologico e isotopico dos granitoides paleoproterozoicos do sudeste de Roraima, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Marcelo Esteves

    2006-07-01

    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  16. Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids

    Science.gov (United States)

    Stouraiti, C.; Baziotis, I.; Asimow, P. D.; Downes, H.

    2017-11-01

    The Late Miocene (11.6-9.5 Ma) granitoid intrusion on the island of Serifos (Western Cyclades, Aegean Sea) is composed of syn- to post-tectonic granodiorite with quartz monzodiorite enclaves, cut by dacitic and aplitic dikes. The granitoid, a typical I-type metaluminous calcic amphibole-bearing calc-alkaline pluton, intruded the Cycladic Blueschists during thinning of the Aegean plate. Combining field, textural, geochemical and new Sr-Nd-O isotope data presented in this paper, we postulate that the Serifos intrusion is a single-zoned pluton. The central facies has initial 87Sr/86Sr = 0.70906 to 0.7106, ɛNd(t) = - 5.9 to - 7.5 and δ18Οqtz = + 10 to + 10.6‰, whereas the marginal zone (or border facies) has higher initial 87Sr/86Sr = 0.711 to 0.7112, lower ɛ Nd(t) = - 7.3 to - 8.3, and higher δ18Οqtz = + 10.6 to + 11.9‰. The small range in initial Sr and Nd isotopic values throughout the pluton is paired with a remarkable uniformity in trace element patterns, despite a large range in silica contents (58.8 to 72 wt% SiO2). Assimilation of a crustally derived partial melt into the mafic parental magma would progressively add incompatible trace elements and SiO2 to the evolving mafic starting liquid, but the opposite trend, of trace element depletion during magma evolution, is observed in the Serifos granodiorites. Thermodynamic modeling of whole-rock compositions during simple fractional crystallization (FC) or assimilation-fractional crystallization (AFC) processes of major rock-forming minerals—at a variety of pressure, oxidation state, and water activity conditions—fails to reproduce simultaneously the major element and trace element variations among the Serifos granitoids, implying a critical role for minor phases in controlling trace element fractionation. Both saturation of accessory phases such as allanite and titanite (at SiO2 ≥ 71 wt%)(to satisfy trace element constraints) and assimilation of partial melts from a metasedimentary component (to

  17. Geochemistry Petrography, thermobarometry and investigation of magmatic series in Mirabad- Chehel Khane granitoid body (east of Bouin– Miandasht, Isfahan province

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Tabatabaei Manesh

    2017-11-01

    Full Text Available On the base of petrology, the Mirabad- Chehel Khane granitoid, east of Bouin-Miandasht, dominantly consists of syenogranite, monzogranite, alkali granite and granodiorites. The main minerals of these rocks are quartz, alkali feldspar (Orthoclase, plagioclase (Albite - Oligoclase, biotite, ± amphibole with minor amount of allanite, zircon, titanite, apatite, ± tourmaline.  The biotite from the granites are Fe-rich type (annite and primary magmatic in origin. The composition of the biotites studied principally falls in the calc-alkaline subduction related I-type granite on the tectonomagmatic discrimination diagrams, which stand on their major element oxides. Which is consistent with the nature of their host rocks. The studied amphiboles are classified as calcic (ferro-hornblende which points to the I-type nature of the granitoid.  The tourmaline composition plots on the schorl - foitite field. The temperature for the alteration, on the base of chlorite composition from the syenogranite, is estimated around 350°C and from the monzogranite rocks about 341°C.  Based on the application of Al-in amphibole, a 3 Kbar pressure was determined for the syenogranite unit corresponding to the depth of 8-11 Km for the emplacement of the pluton. Hornblende- plagioclase thermometer shows 694 to 700°C for the equilibrium of these two minerals.

  18. Rare earth element lithogeochemistry of granitoid mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.P.; Fryer, B.J. (Memorial Univ. of Newfoundland, St. John' s (Canada). Dept. of Earth Sciences)

    1983-12-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl/sup -/ complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F/sup -/ and CO/sub 3//sup 2 -/ become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl/sup -/ versus F/sup -/ versus CO/sub 3//sup 2 -/ in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F/sup -/ and CO/sub 3//sup 2 -/ in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution.

  19. Rare earth element lithogeochemistry of granitoid mineral deposits

    International Nuclear Information System (INIS)

    Taylor, R.P.; Fryer, B.J.

    1983-01-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl - complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F - and CO 3 2- become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl - versus F - versus CO 3 2- in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F - and CO 3 2- in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution

  20. Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids, North China Craton

    Science.gov (United States)

    Wang, Wei; Cawood, Peter A.; Liu, Shuwen; Guo, Rongrong; Bai, Xiang; Wang, Kang

    2017-09-01

    Accretionary orogens are major sites of modern continental growth, yet their role in the development of Archean continental crust remains enigmatic. Diverse granitoid suites from tonalite-trondhjemite-granodiorite (TTG) to potassic granitoids appeared during late Archean, representing a period of major continental formation and stabilization. In this study, whole-rock geochemical and zircon U-Pb and Lu-Hf isotopic data are reported for Neoarchean granitoid gneisses from the Northern Liaoning Terrane, northeastern North China Craton (NCC). Older granitoid gneisses ( 2592-2537 Ma) define three magmatic zones migrating from southeast to northwest, each showing a common magmatic evolution from high-pressure TTGs to medium-/low-pressure TTGs and potassic granitoids. They have depleted zircon ƐHf(t) of +0.5 to +8.7. Younger 2529-2503 Ma potassic granitoids and TTGs occur throughout the terrane, which are marked by variable zircon ƐHf(t) of -4.7 to +8.1, and are coeval with regional high-grade metamorphism. Petrogenetic modeling and changing Sr/Y and (La/Yb)N of the granitoids suggest that the crust experienced episodic thickening and thinning and became progressively evolved through development of potassic granitoids and sedimentary successions. The metavolcanic basement to the granitoids display tholeiitic to calc-alkaline affinities, together with the top-to-the-northwest thrusting and associated volcanogenic massive sulfide-type Cu-Zn deposits, suggesting cyclic crustal formation of Northern Liaoning within an accretionary orogen with a SE-dipping subduction polarity. Cyclic crustal thickening and thinning is related to tectonic switching from advancing to retreating relations between the downgoing and overriding plate. After 2530 Ma, this accretionary system accreted to the ancient continental nucleus of NCC (Anshan-Benxi Terrane), signifying final lithosphere stabilization.

  1. The W (Sn-Mo)-specialized catinga suite and other granitoids of the Brusque Group, neo proterozoic of the state of Santa Catarina, Southern Brazil

    International Nuclear Information System (INIS)

    Castro, Neivaldo Araujo de; Crosta, Alvaro Penteado; Basei, Miguel Angelo Stipp

    1999-01-01

    The petrographic, geochemical and isotopic data on the granitoids intrusive in the Brusque Group, State of Santa Catarina, southern Brazil, are presented in this paper. These are late-to post-tectonic rocks, being the most evolved ones those that constitute the Catinga Suite. The granitoids intrusive in the southern domain of the Brusque Group are grayish rocks, in which biotite (when present) is practically the only mafic mineral. They are rather reduced, slightly alkalic, transitional between meta-and peraluminous. An acid subvolcanic pluton, the Ribeirao da Velha pluton, has similar petrographic and geochemical characteristics, and seems to be genetically related to these granitoids. LREE fractionation relative to HREE is incipient for the Catinga suite, and the REE patterns showing strong negative Eu anomaly. Initial 87 Sr/ 86 Sr ratios, from the literature for these granitoids are around 0.721 (Sao Joao Batista granitoid) and the only available t DM model age (Valsungana granitoid) points to a genesis from a continental crust of ca. 2020 Ma old. Gneiss-migmatitic rocks such as those that occur in the eastern portion of Brusque Group domain and as enclaves in the Nova Italia granitoid are strong candidates for protoliths of these granitoids. Little available information on the granitoids intrusive in the northern domain of the Brusque Group reports the presence of pink K-feldspar hornblende granitoids (Faxinal pluton) and light pink K-feldspar biotite granitoid (Guabiruba pluton). These granitoids are more enriched in K and more oxidized than those in the southern domain, and the LREE fractionation relative to HREE is strong, with the REE patterns showing incipient negative Eu anomaly. It is suggested that part of the Au concentrations found in the northern domain may be genetically associated with the granitoids, since they present characteristics favorable to promote Au mineralizations than the granitoids in the southern domain. Distinct protoliths and

  2. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil

    International Nuclear Information System (INIS)

    Almeida, Marcelo Esteves

    2006-01-01

    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  3. Granitoides paleozoicos de la Sierra de Narváez, Sistema de Famatina, Argentina: Hibridización de magmas en un margen continental activo

    Directory of Open Access Journals (Sweden)

    Cisterna, C. E.

    1992-12-01

    Full Text Available The granitoids from the Sierra de Narváez were investigated for their geochemical and petrographical characteristics. They are composed of calc-alkaline granites, granodiorites and tonalites, similar to the other paleozoic granitoids of the Famatina System. These rocks are intrusive in the Las Planchadas (volcanic rocks and Suri (sedimentary rocks Formations, which are probably cogenetic with the granitoids within the same magmatic cycle.The study of the granitoids reveals the close relationship between their composition and the abundance of the enclosed magmatic inclusions. The latter represent rocks and granodioritic tonalitic and diorite composition, and have a great number of mineralogical characteristic that suggest the presence of two magmas, mafic and felsic for the origin of such enclaves.The close chemical relationship existing between the inclusions and their host rocks shows that the mafic and felsic components are compositionally modified and that the granitoids are more or less hybridized.Trace elements discrimination diagrams have been used as a tools for fingerprinting the tectonic setting of the Sierra de Narváez granitoids. The geochemistry as well as the geologic relations of the granitoids with the roughly coeval ordovician vulcanism indicate a volcanic arc environment.Las rocas que afloran en el extremo septentrional de la Sierra de Narváez están representadas por una asociación de monzogranitos, granodioritas y tonalitas que definen una serie calcoalcalina, de características similares a las de otros intrusivos del Paleozoico del Sistema de Famatina. Estos granitoides se hallan intruyendo las Formaciones Las Planchadas y Suri, representadas por vulcanitas y metasedimentitas, respectivamente, y corresponderían a un mismo evento magmático del Paleozoico Inferior.Los granitoides estudiados presentan abundantes inclusiones ígneas de composición granodiorítica o tonalítica y diorítica. La estrecha relación que

  4. Petrological mineralogical and geochemical characterization of the granitoids and fracture fillings developed in Ratones Mines (Spain); Caracterizacion petrologica, mineralogica, geoquimica y evaluacion del comportamiento geoquimico de las REE en la fase solida (granitoides y rellenos fisurales) del sistema de interaccion agua-roca delentorno de la Mina Ratones

    Energy Technology Data Exchange (ETDEWEB)

    Buil Gutierrez, B [Ciemat. Madrid (Spain)

    2002-07-01

    The petrological, mineralogical and geochemical characterisation of the granitoids and fracture fillings developed in the Ratones Mine (Caceres, Spain) has been done in order to understand rock-water interaction processes which control water geochemical parameters. Special interest has been devoted to the analysis and interpretation of REE patterns in the solid phase (granitoids and fracture fillings) because they constitute geochemical tracers in water-rock interaction process. Moreover, REE are considered as actinide analogues. In order to characterise the solid phase (granitoids and fracture fillings) several investigation scales (system, outcrop, whole rock, mineral and geochemical components) have been considered and different types of samples have been analysed. These factors control the methodological approach used in this investigation. The analytical methods we have used in this investigation are microscope, qualitative and semi-quantitative methods (XRD, SEM,EDAX) and quantitative methods (ICP-MS, XRF, EM, LAM-IC-MS). The bulk of the granitoids located around the Ratones Mine Belongs to the alkaline feldspar granite-sienogranite lihotype and they show a peraluminous and subalkaline pattern. From the mineralogical point of view, they are composed by quartz, K-feldspar (Or>90%), showing sericitation, moscovitization and turmolinization altherations, alkaline plagioclase (An-=-3%), usually altered to sericite, saussirite and less frequently affected by moscovitization processes, Fe-Al biotite, frequently affected by chloritization processes and sometimes replaced by muscovite, and finally muscovite (>2% celadonite and <4% paragonite) both of primary and secondary origin. The differences observed between the different lithotypes are related with the modal proportion of the principal minerals,with the presence or absence of certain accessory minerals ( turmaline, cordierite), with specific textural patterns, grain size and also with the richness in specific

  5. The differentiation process of the I-type granitoids in southwest Japan and New South Wares in Australia

    Science.gov (United States)

    Kawakatsu, K.; Iwamoto, Y.; Ebisu, S.; Hasegawa, M.; Hiraiwa, N.; Kawakatsu, T.; Kitano, A.; Masuta, T.; Ootsubo, H.; Wakazono, R.

    2013-12-01

    Cretaceous-Paleogene Granitoids in the inner zone of southwest Japan have been divided into two series: the magnetite series that is distributed mainly in the San-in belt and the ilmenite series that is distributed mainly in San-yo belt. For 8 years, we have been investigating the two series to clear their processes of magmatic differentiation. Recently, we discovered oscillatory zoned structure, exsolution lamellae of amphibole, and relics of pyroxene left in the core of amphibole from Harima granodiorite, Nunobiki granodiorite (San-yo belt) and Daito-Yokota quartz diorite (San-in belt). The amphibole that has microstructure coexists with magnetite, ilmenite and pyrrhotite. We compared the two series for crystallization and re-equilibrium by ion substitution using the microstructure of the amphibole as 'time measure' during the differentitation process of acidic magma. While magnetites and ilmenites coexist with the core of the amphiboles, the oxygen fugacity of the San-yo belt magma was low until the later stage of magmatic differentiation where H2S from the Earth's crust mixed with it. In the subsolidus process, hydrothermal solutions circulated. On the other hand, the oxygen fugacity of the San-in belt magma began to rise in the early stage of magmatic differentiation. In the later stage, mafic magma was contaminated with SO2. The rims of amphiboles coexist with pyrrhotites in both of belts. Furthermore, the re-equilibrium of minerals underwent progressive oxidation and hydrothermal fluid circulated actively in the subsolidus process. Bingie Bingie Point at New South Wares (Eurobodalla National Park) is a peninsula about a meter around. The plutonic rocks were formed in the Devonian period and belong to the magnetite series. They are classified I-type granitoids such as those found in the inner zone of southwest Japan. They have only trace amounts of oxide minerals and pyrrhotite. The amphiboles of the granitoids have oscillatory zoned structures at pale green

  6. Ams Fabric and Deformation of The Jawornik Granitoids In The Zloty Stok - Skrzynka Deformation Zone (sudetes, SW Poland)- Preliminary Interpretations.

    Science.gov (United States)

    Werner, T.; Bialek, D.

    Jawornik granitoids comprise the NE-SW trending sequences of the 1cm up to 1 km thick granitoid veins surrounded by schists and gneisses of the Zloty Stok - Skrzynka deformation zone in Eastern Sudetes (SW Poland). According to conflicting theories granitoids are of magmatic origin or were formed from blastomylonitic rocks that underwent multiphase deformation. AMS studies were performed for the 53 sites lo- calized within granitoid veins and within the surrounding gneisses. AMS foliations for granitoid veins of various thickness as well as for gneisses dip at moderate to steep an- gles to N-NW. AMS lineations in the surrounding gneisses plunge subhorizontally to NE-SW that reflects the regional NE-SW shearing components. Magnetic lineations for sites within wider veins of granitoids plunge at low angles (mostly from S to W) but with more varying trends between sites. Mezoscopic tectonic foliations are record- able only in 50% of sites. They show good correlation with AMS planar fabric on the site scale. The uniformity of AMS fabric on the site scale and high AMS anisotropy within all sites (P of 1.05-1.30, T of 0.3-0.6 on average) suggest syntectonic gener- ation of granitoids. Further interpretations of the AMS and tectonic fabrics will be performed when microtectonic studies and chemical analyses results are available.

  7. Abundances of chemical elements in granitoids of different geological ages and their characteristics in China

    Directory of Open Access Journals (Sweden)

    Changyi Shi

    2011-04-01

    Full Text Available Actual granitoid analytical data of 767 composited samples are presented here. The data source is 6080 samples collected mainly from 750 large- to middle-sized granitoid bodies across China. Data from the composited samples, which includes that of 70 elements, is analyzed according to geological age — Archeozoic (Ar, Proterozoic (Pt, Eopaleozoic (Pz1, Neopaleozoic (Pz2, Mesozoic (Mz, and Cenozoic (Cz — and three major compositional varieties, e.g. alkali-feldspar granite, syenogranite and adamellite. Petrochemical parameters, trace-element content and rare-earth element (REE distributions of the different rock types and geological ages are characterized, and change tendencies through Archean to Cenozoic time are recorded. The comprehensive analytical data presented here has not been previously published. This significant data set can be used as fundamental information in studies of basic China geology, magma petrogenesis, ore exploration and geochemistry.

  8. Genesis of Neoproterozoic granitoid magmatism in the Eastern Aracuai Fold Belt, eastern Brazil: field, geochemical and Sr-Nd isotopic evidence

    International Nuclear Information System (INIS)

    Celino, Joil Jose; Botelho, Nilson Francisquini; Pimentel, Marcio Martins

    2000-01-01

    The Neoproterozoic granitoid magmatism of the Aracuai Fold Belt (AFB) is an important element for the discussion of the evolution of this belt and its relationships with the African counterpart, the West Congo Belt. In the eastern part of the AFB, four different granitoid suites were recognized. The Nanuque Suite (NQS) comprises syn-tectonic peraluminous cordierite-bearing monzogranites. The Sao Paulinho Suite (SPS) consists of Th-rich peraluminous two mica or biotite-only granitoids. Calc-alkalic granitoids with magmatic epidote were grouped into the Itagimirim Suite (ITS) and post-tectonic charnockitic rocks were grouped into the Salomao Suite (SLS). Sm-Nd mineral isochron and Rb- isochron yielded ages of yielded ages of respectively 761 Ma and 714 Ma for the Nanuque and Sao Paulino suites. The general Sr-Nd isotopic characteristics of the granitoid suites and some country rocks indicate that the parental magmas were mostly the product of melting of the Paraiba do Sul metasediments. The chronological and genetic evolution the Neoproterozoic plutonism can be envisaged in a model of est-dipping subduction zone, followed by a continental collision between the Brasiliano/Pan-African (Brazil) and Congo (Africa cratons and final episodes of uplift and collapse. (author)

  9. Uranium distributions in the mineral constituents of granitoid rocks and the associated pegmatites at Wadi Abu Had, north eastern desert, Egypt

    International Nuclear Information System (INIS)

    Nossair, L.M.; Moharem, A.F.; Abdel Warith, A.

    2007-01-01

    Wadi Abu Had area is located at the northern part of the Eastern Desert of Egypt. It covers about 55 km2 of the crystalline basement rocks stretching between latitudes 28o 15'- 28o 25' N and longitudes 32o 25' - 32o 35' E. Abu Had younger granites are fertile (uraniferous) granites as they possess U-contents greater than 11 ppm. Their associated pegmatites show higher U-contents than those of granitoid rocks and hosting secondary uranium minerals. Numerous unzoned and zoned pegmatite pockets are associated with the marginal parts of granodiorite and within younger granites. Zoned pegmatites are the most radioactive ones. They are composed of extremely coarse-grained milky quartz core, intermediate zone of mica and wall zone of feldspars. An alteration zone with secondary uranium minerals (uranophane and beta-uranophane) is found at the contact between quartz core and the intermediate zone.

  10. Mineral chemistry and geochemistry of the Late Neoproterozoic Gabal Abu Diab granitoids, Central Eastern Dessert, Egypt: Implications for the origin of rare metal post-orogenic A-type granites

    Science.gov (United States)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Ahmed, Awaad F.; Mohamed, Haroun A.

    2015-04-01

    within A-type granite worldwide. According to Zhang et al., 2012, the garnet crystallized at the expense of biotite from the MnO-rich evolved melt after fractionation of biotite, plagioclase, K-feldspar, zircon, apatite, and ilmenite. The granitoids are alkali feldspar granites showing distinct geochemical features and most likely, belong to the post-orogenic younger Egyptian granitoids. They are peraluminous A-type alkaline rocks but they have lower Fe2O3, MgO, MnO, CaO, TiO2, P2O5, Sr, Ba, V, and higher SiO2, Na2O, K2O, Nb, Ta, U, Zr, Th, Ga/Al and Rb than the typical rocks of this type. The positive correlation between Ba and Sr, and the negative correlation between Rb and K/Rb reveal fractional crystallization of alkali feldspar. The similarity in most geochemical characteristics suggests that Abu Diab granitoids are genetically related to each other and extremely enrichment in incompatible elements such as Nb and Ta, indicating that they crystallized from extremely differentiated magmas. References: Zhang, J., Ma, C. and She, Z., 2012. An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. Geoscience Frontiers 3 (5), 635-646.

  11. Review of the geochemistry and metallogeny of approximately 1.4 Ga granitoid intrusions of the conterminous United States

    Science.gov (United States)

    du Bray, Edward A.; Holm-Denoma, Christopher S.; Lund, Karen; Premo, Wayne R.

    2018-03-27

    The conterminous United States hosts numerous volumetrically significant and geographically dispersed granitoid intrusions that range in age from 1.50 to 1.32 billion years before present (Ga). Although previously referred to as A-type granites, most are better described as ferroan granites. These granitoid intrusions are distributed in the northern and central Rocky Mountains, the Southwest, the northern midcontinent, and a swath largely buried beneath Phanerozoic cover across the Great Plains and into the southern midcontinent. These intrusions, with ages that are bimodally distributed between about 1.455–1.405 Ga and 1.405–1.320 Ga, are dispersed nonsystematically with respect to age across their spatial extents. Globally, although A-type or ferroan granites are genetically associated with rare-metal deposits, most U.S. 1.4 Ga granitoid intrusions do not contain significant deposits. Exceptions are the light rare-earth element deposit at Mountain Pass, California, and the iron oxide-apatite and iron oxide-copper-gold deposits in southeast Missouri.Most of the U.S. 1.4 Ga granitoid intrusions are composed of hornblende ± biotite or biotite ± muscovite monzogranite, commonly with prominent alkali feldspar megacrysts; however, modal compositions vary widely. These intrusions include six of the eight commonly identified subtypes of ferroan granite: alkali-calcic and calc-alkalic peraluminous subtypes; alkalic, alkali-calcic, and calc-alkalic metaluminous subtypes; and the alkalic peralkaline subtype. The U.S. 1.4 Ga granitoid intrusions also include variants of these subtypes that have weakly magnesian compositions. Extreme large-ion lithophile element enrichments typical of ferroan granites elsewhere are absent among these intrusions. Chondrite-normalized rare-earth element patterns for these intrusions have modest negative slopes and moderately developed negative europium anomalies. Their radiogenic isotopic compositions are consistent with mixing involving

  12. Plutonic rocks of the Median Batholith in southwest Fiordland, New Zealand : field relations, geochemistry, and correlation

    International Nuclear Information System (INIS)

    Allibone, A.H.; Turnbull, I.M.; Tulloch, A.J.; Cooper, A.F.

    2007-01-01

    This paper provides a first description of all major plutonic rock units between Resolution Island and Lake Poteriteri in southwest Fiordland. Plutonic rocks, of which c. 95% are granitoids, comprise c. 60% of the basement in southwest Fiordland. Approximately 50% of the plutonic rocks were emplaced between c. 355 and 348 Ma, 5% at c. 164 Ma, 25% between c. 140 and 125 Ma, and 20% between c. 125 and 110 Ma. These episodes of plutonism occurred in response to terrane amalgamation, continental thickening, and subduction along the convergent margin of Gondwana. Correlatives of Devonian plutonic rocks which occur in Nelson are absent from the area described here. A wide variety of plutonic rocks were emplaced at c. 355-348 Ma. These include relatively small plutons of K- and Rb-rich gabbro-diorite and members of at least three distinct suites of granitoids. Plutons of two-mica ± garnet granodiorite, granite, and minor tonalite share affinities with the S-type Ridge Suite and are the most widespread c. 355-348 Ma old granitoids in southern Fiordland. Plutons rich in Ca, Fe and Zr, depleted in K and Na, and containing quartz diorite, tonalite, and minor granodiorite with the unusual assemblage red-brown biotite, garnet ± hornblende ± clinopyroxene also occur widely in southern Fiordland. These plutons are similar to peraluminous A-type granitoids, indicating A as well as I and S-type plutonism occurred in the Western Province at this time. The Newton River and Mt Evans Plutons have no correlatives amongst c. 355-348 Ma granitoids in southern Fiordland, but their chemistry is similar to that of the older Karamea Suite. Three regional-scale metasedimentary units - locally fossiliferous Fanny Bay Group Buller Terrane rocks in southern Fiordland, Edgecumbe and Cameron Group Takaka Terrane rocks in south-central Fiordland, and undifferentiated Deep Cove Gneiss high-grade metasedimentary rocks of western Fiordland - are all stitched by c. 355-348 Ma old plutons, indicating

  13. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting

    Science.gov (United States)

    Mao, Jingwen; Xiong, Bikang; Liu, Jun; Pirajno, Franco; Cheng, Yanbo; Ye, Huishou; Song, Shiwei; Dai, Pan

    2017-08-01

    The Yangchuling W-Mo deposit, located in the Jiangnan porphyry-skarn (JNB) tungsten ore belt, is the first recognized typical porphyry W-Mo deposit in China in the 1980's. Stockworks and disseminated W-Mo mineralization occur in the roof pendant of a 0.3 km2 monzogranitic porphyry stock that intruded into a granodiorite stock, hosted by Neoproterozoic phyllite and slate. LA-ICPMS zircon U-Pb analyses suggest that of the monzogranitic porphyry and granodiorite were formed at 143.8 ± 0.5 Ma and 149.8 ± 0.6 Ma, respectively. Six molybdenite samples yielded a Re-Os weighted mean age of 146.4 ± 1.0 Ma. Geochemical data show that both granodiorite and monzogranitic porphyry are characterized by enrichment of large ion lithophile elements (LILE) relative to high field strength elements (HFSE), indicating a peraluminous nature (A/CNK = 1.01-1.08). Two granitoids are characterized by a negative slope with significant light REE/heavy REE fractionation [(La/Yb)N = 8.38-23.20] and negative Eu anomalies (Eu/Eu* = 0.69-0.76). The P2O5 contents of the Yangchuling granitoids range from 0.12% to 0.17% and exhibit a negative correlation with SiO2, reflecting that they are highly fractionated I-type. They have high initial 87Sr/86Sr ratios (0.7104-0.7116), low negative εNd(t) (- 5.05 to - 5.67), and homogeneous εHf(t) between - 1.39 and - 2.17, indicating similar sources. Additionally, two-stage Nd model ages (TDM2) of 1.3-1.4 Ga and two-stage Hf model ages (TDM2) of 1.2-1.3 Ga are consistent, indicating that Neoproterozoic crustal rocks of the Shuangqiaoshan Group could have contributed to form the Yangchuling magmas. Considering the two groups of parallel Late Mesozoic ore belts, namely the Jiangnan porphyry-skarn tungsten belt (JNB) in the south and the Middle-Lower Yangtze River porphyry-skarn Cu-Au-Mo-Fe ore belt (YRB) in the north, the Nanling granite-related W-Sn ore belt (NLB) in the south, the neighboring Qin-Hang porphyry-skarn Cu-Mo-hydrothermal Pb-Zn-Ag ore belt (QHB

  14. A study of the Eocene S-type granites of Chapedony metamorphic core complex (northeast of Yazd province, Central Iran)

    International Nuclear Information System (INIS)

    Zakipour, A.; Torabi, Gh.

    2016-01-01

    The Eocene Chapedony metamorphic core complex, is located in western part of the Posht-e-Badam block. This complex is consisting of migmatite, gneiss, amphibolite, marble, micaschist and various types of granitoids. In middle part of this complex (Kalut-e-Chapedony), an Eocene granitic rock unit cross cuts the other rocks. The minerals of this granite are plagioclase (An 9 Ab 8 7O r 4), potassium feldspars (orthoclase), quartz, euhedral garnet (Alm 7 7Sps 1 3Prp 9 Grs 1 ), zircon, apatite, fibrolitic sillimanite and muscovite. Petrology and geochemical studies reveal calc-alkaline, peraluminous and S-type nature of the studied granites. Chondrite-normalized REE patterns represent evident negative anomaly of Eu and low values of the REEs. Continental crust and North American shale composite (NASC) - normalized multi-elements spider diagrams indicate trace elements depletion. These granites are formed by melting of continental crust sedimentary rocks, resulted by emplacement of mantle-derived magma at the bottom of continental crust which formed the Chapedony metamorphic core complex. The source rock of these granites should be a clay-rich sedimentary rock with low amount of plagioclase and CaO/Na 2 O ratio.

  15. Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA

    Science.gov (United States)

    Volkert, R.A.; Feigenson, M.D.; Patino, L.C.; Delaney, J.S.; Drake, Avery A.

    2000-01-01

    Voluminous late Mesoproterozoic monzonite through granite of the Vernon Supersuite underlies an area of approximately 1300 km2 in the Highlands of northern New Jersey. The Vernon Supersuite consists of hastingsite ?? biotite-bearing granitoids of the Byram Intrusive Suite (BIS) and hedenbergite-bearing granitoids of the Lake Hopatcong Intrusive Suite (LHIS). These rocks have similar major and trace element abundances over a range of SiO2 from 58 to 75 wt.%, are metaluminous to weakly peraluminous, and have a distinctive A-type chemistry characterized by high contents of Y, Nb, Zr, LREE, and Ga/Al ratios, and low MgO, CaO, Sr and HREE. Whole-rock Rb-Sr isochrons of BIS granite yield an age of 1116 ?? 41 Ma and initial 87Sr/86Sr ratio of 0.70389, and of LHIS granite an age of 1095 ?? 9 Ma and initial 87Sr/86Sr ratio of 0.70520. Both suites have similar initial 143Nd/144Nd ratios of 0.511267 to 0.511345 (BIS) and 0.511359 to 0.511395 (LHIS). Values of ??(Nd) are moderately high and range from +1.21 to +2.74 in the BIS and +2.24 +2.95 in the LHIS. Petrographic evidence, field relationships, geochemistry, and isotopic data support an interpretation of comagmatism and the derivation of both suites from a mantle-derived or a juvenile lower crustal parent with little crustal assimilation. Both suites crystallized under overlapping conditions controlled by P-T-f(H(2)O). Lake Hopatcong magma crystallized at a liquidus temperature that approached 900??C and a pressure of about 6 kbar, and remained relatively anhydrous throughout its evolution. Initial P-T conditions of the Byram magma were ??? 850??C and about 5.5 kbar. BIS magma was emplaced contemporaneous with, or slightly preceding LHIS magma, and both magmas were emplaced during a compressional tectonic event prior to granulite facies metamorphism that occurred in the Highlands between 1080 and 1030 Ma. (C) 2000 Elsevier Science B.V. All rights reserved.

  16. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain

    Science.gov (United States)

    Siegesmund, S.; Mosch, S.; Scheffzük, Ch.; Nikolayev, D. I.

    2008-10-01

    The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.

  17. Ar-Ar dating and petrogenesis of the Early Miocene Taşkapı-Mecitli (Erciş-Van) granitoid, Eastern Anatolia Collisional Zone, Turkey

    Science.gov (United States)

    Oyan, Vural

    2018-06-01

    The Early Miocene Taşkapı-Mecitli granitoid that is located in the northern section of the Eastern Anatolia Collision Zone has typical I-type, metaluminous and calk-alkaline characteristics. It also contains mafic microgranular / magmatic enclaves (MMEs). New Ar-Ar dating results show that the age of the Taşkapı-Mecitli granitoid is ∼23 Ma and it crystallised in the Early Miocene, in contrast to its previously known Cretaceous age. Identical crystallisation ages (∼23 Ma), similar mineral assemblages and geochemical compositions, and indistinguishable isotopic compositions of MMEs and host rocks imply that the MMEs are most consistent with a cumulate origin formed at earlier stages of the same magmatic system that produced the Taşkapı-Mecitli granitoid. MELTS modelling suggests that magma of the Taşkapı-Mecitli granitoid was the result of fractionation under a crustal pressure of 4 kbar, with a H2O content of 1.5%. EC-AFC model calculation reveals that the Taşkapı-Mecitli granitoid includes from 0.5% to 2% crustal assimilation rates. These rates indicate that crustal contamination can be negligible when compared to fractional crystallisation in the evolution of the magma beneath the Taşkapı-Mecitli granitoid. The partial melting model calculations and MORB-normalised trace element concentrations of the least evolved samples of the Taşkapı-Mecitli granitoid are consistent with those of mafic melts obtained from partial melting of interacting mantle- lower crust with a melting degree of 18%. The age (23 Ma) of the post- or syn-collisional Taşkapı-Mecitli granitoid suggests that the collision between Arabian and Eurasian plates could be before/around ∼23 Ma (Late Oligocene to Early Miocene).

  18. Crustal evolution of granitoids and gneisses from the Cambaizinho belt, southern Brazil: Review zircon Pb-Pb evaporation ages and Pb-Nd-Sr isotopes

    International Nuclear Information System (INIS)

    Remus, M.V.D; Macambira, M.B; Hartmann, L.A.; Beilfuss, M

    2001-01-01

    Deformed granitoids and gneisses from the Cambai Complex (900-700 Ma) along Cambaizinho Creek and in the Vila Nova do Sul region, state of Rio Grande do Sul, Brazil, were formed in a remarkably short time, about 10 m.y., between 704±13 and 697±3 Ma. The data base of this work includes eighteen zircon Pb/Pb evaporation analyses, five Pb isotope in feldspar and whole rock. The oldest known rocks in the region are polydeformed dioritic gneisses dated by conventional U-Pb zircon at 704±13 Ma. New Pb-Pb zircon evaporation data on the late transcurrent, less deformed and more evolved granitoids (Sanga do Jobim Granitoids) yield a 697± Ma age and indicates that the evolution of the plutonic magmatism in the area was nearly contemporaneous. These data contrast with previous interpretations based on Rb-Sr data which considered that these rock associations were formed during a longer time period (700-640 Ma). All these granitoids intruded the supracrustal sequence. These granitoids yield a minimum age of about 700 Ma for the formation of the supracrustal sequence and its regional dynamothermal metamorphism. Lead isotope composition of K-feldspar from Sanga do Jobim Granitoids plot close to, but slightly below the lead isotope evolution curve of orogeny in the Zartmann and Doe model (1981). This indicates that the setting for these granitoids was that of a juvenile magmatic arc. These new data plus previous data in the region also corroborate that the crustal evolution involved juvenile crust accreted between 760-700 Ma. In contrast, the Cacapava and Sao Sepe Granites intruded the supracrustal sequences along the eastern side of the Sao Gabriel Block at 562 Ma and 550 Ma, respectively, and show Pb and Nd isotope signatures from an old basement. This evidence suggests that the juvenile terrane was thrusted over the older basement situated along the eastern part of the shield during the Dom Feliciano collisional orogeny at about 620-590 Ma (au)

  19. Tectonic implications of U-Pb (zircon) Geochronology of Chor Granitoids of the Lesser Himalaya, Himachal Pradesh, NW Himalaya

    Science.gov (United States)

    Singh, P.; Bhakuni, S. S.

    2017-12-01

    Granitoids of various ages ranging from Proterozoic to Tertiary occur throughout the Himalayan fold-thrust belt. The occurrence of the Neoproterozoic granitoids are very less in the Himalayan orogen. One of the best example of Neoproterozoic granitoids is Chor granitoids, which are the intrusive granite bodies in the Paleoproterozoic of the Lesser Himalayan Crystallines of the Jutogh Group. In the central part these granites are non-foliated homogeneous that are porphyritic and peraluminous in nature (Singh et al., 2002; Bhargava et al., 2014, 2016), whereas in the peripheral part these are foliated showing south directed shear sense of movement. In this work we present the U-Pb (zircon) geochronology of two different granites samples of the Chor granitoids of Himachal Pradesh, NW Himalaya. The Jutogh Group of rocks is thrust over the Lesser Himalayan Sequence along the Jutogh Thrust or MCT. The geochronology of the Chor Granitoids and Lesser Himalayan Crystallines and their relationship with each other, including with the Indian shield are sparsely obscure. U-Pb zircon geochrnological age populations from these granitoids yield ages between 780 and 980 Ma. One sample gives the prominent age spectra for 206Pb/238U with weighted mean age of 908.3 ± 6.7 Ma (2σ) MSWD = 2.4 (n = 18). Similarly another sample gives the age of crystallization with weight mean age of 917 ± 17 Ma (2σ) MSWD = 3 (n = 11) and Th/U ratios of both samples are >0.1, indicating their magmatic origin. As a result of ductile shearing of granites along the MCT during the Cenozoic Himalayan Orogeny, the age has reduced to 780 Ma. The Neoproterozoic age of Chor granite matches with the Neoproterozoic detrital zircon age (800 to 1000 Ma by Parrish and Hodges 1996, Decelles et al., 2000) of the HHC. On the basis of U-Pb (zircon) geochronological ages, it is revealed that the source of zircons of the Chor granite and HHC rocks was the northern margin of the Pan-African orogen. The Chor granitoids was

  20. New monazite U-Pb age constraints on the evolution of the Paleoproterozoic Vaasa granitoid batholith, western Finland

    Directory of Open Access Journals (Sweden)

    A.K. Kotilainen

    2016-09-01

    Full Text Available The Vaasa batholith, western Finland, is a large, peraluminous granitoid pluton that crystallized at 1.88–1.87 Ga during the culmination of the Svecofennian orogeny. The batholith has gradual contacts, through metatexites and diatexites, with the enveloping metasedimentary rocks of the Bothnian Belt. We present ID-TIMS U-Pb age data on monazite from granitoids and xenoliths of the Vaasa batholith and combine these with published U–Pb zircon ages in order to shed further light on the evolution of the Vaasa batholith. The apparent monazite ages for seven of the examined samples are 1870–1863 Ma, and 1855±3 Ma for one further sample from the southern part of the batholith. Combined with pre-existing data, the monazite ages of the granitoids are 9 to 18 Ma (face values or 3 to 9 Ma (external errors considered younger than the U–Pb zircon crystallization ages from respective samples. Our new data suggest slow cooling for the Vaasa batholith – the closure/saturation temperature of the monazite U–Pb system was probably reached in ~10 m.y. after the crystallization of magmatic zircon in the examined rocks.

  1. Permian alkali granitoids of the transbaikal region (new Rb-Sr dates)

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, M K; Ryakhovskij, V M; Abramov, A V

    1984-01-01

    Rubidium-strontium isotopic investigations of granitoids from Khorinsk and Middle Oninsk massifs were conducted. Isochrones for two chief-modifications of rocks - subalkaline syenites and alkaline granites-were constructed. The age of syenites is determined to be (293 + 20) x 10/sup 6/ at (/sup 87/Sr//sup 86/Sr)/sub 0/=0.7044 +- 0.0106 that of alkaline granites - (253 +- 3) x 10/sup 6/ at (/sup 87/Sr//sup 86/Sr)/sub 0/=0.7077 +- 0.0033. Analytical data for determination of rubidium-strontium age of rocks of the mentioned massits are presented as well.

  2. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft

    Directory of Open Access Journals (Sweden)

    Jamal Rasouli

    2017-08-01

    samples and full matrix correction, the sum of all major oxides was equal to about 100 wt.%. The concentration of trace elements in the selected samples has been performed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS. The uncertainty is <10% for trace element contents higher than 2 ppm (except for Pb, <15% and <15% for all the other trace elements. Results The microstructures observed in thin sections in this study were grouped into three types: (i magmatic microstructures; (ii submagmatic microstructures and (iii mylonitic microstructures. Magmatic and submagmatic microstructures occurred simultaneously with the emplacement of granitoid complex and mylonitic microstructures that occurred after emplacement of granitoid complex. The magma nature of these rocks is sub-alkaline-(calc-alkaline, which fall into calc-alkaline series with high potassium in SiO2-K2O plots. The geochemical variation diagrams of major oxides, the continuous spectrum of rock compositions has been carried out which indicates the crystallization of magmatic differentiation and extensive appendices. Field observations, petrographic and geochemical studies suggest that the rocks in this area have type I and CAG subsections. Studying the geochemical diagrams of the rocks in the studied area indicates that these rocks have been formed in active continental margin tectononic settings. It seems that the Jebale-Barez granitoid Complex is located within a shear zone. Magma has been percolated through Mijan caldera and emplacement Forms of Sill along the shear zone during various periods and the structural setting of granitoid complex in the Jebale-Barez is extensional-shear fractures which are the product of transpression tectonic regime. Discussion The JBPC is calc-alkaline, high-K, subalkaline, and mostly metaluminous except granite and alkali-granite units which are slightly peraluminous and I type in character. These geochemical properties of the studied granitoids suggest subduction

  3. Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: New insights into their formation processes and rates

    Science.gov (United States)

    Scarciglia, Fabio; Critelli, Salvatore; Borrelli, Luigi; Coniglio, Sabrina; Muto, Francesco; Perri, Francesco

    2016-05-01

    In this paper we characterized several weathering profiles developed on granitoid rocks in the Sila Massif upland (Calabria, southern Italy), integrating detailed macro- and micromorphological observations with physico-mechanical field tests and petrographic, mineralogical and geochemical analyses. We focused our attention on the main weathering and pedogenetic processes, trying to understand apparent discrepancies between weathering grade classes based on field description and geomechanical properties, and two common weathering indices, such as the micropetrographic index (Ip) and the chemical index of alteration (CIA). Our results showed that sericite on plagioclase and biotite chloritization, that represent inherited features formed during late-stage hydrothermal alteration of granitoid rocks, may cause an overestimation of the real degree of weathering of primary mineral grains under meteoric conditions, especially in lower weathering grade classes. Moreover, the frequent identification of Fe-Mn oxides and clay coatings of illuvial origin (rather than or in addition to those formed in situ), both at the macro- and microscale, may also explain an overestimation of the weathering degree with respect to field-based classifications. Finally, some apparent inconsistencies between field geomechanical responses and chemical weathering were interpreted as related to physical weathering processes (cryoclastism and thermoclastism), that lead to rock breakdown even when chemical weathering is not well developed. Hence, our study showed that particular caution is needed for evaluating weathering grades, because traditional field and geochemical-petrographic tools may be biased by inherited hydrothermal alteration, physical weathering and illuvial processes. On the basis of chronological constraints to soil formation obtained from a 42 ka-old volcanic input (mixed to granite parent materials) detected in the soil cover of the Sila Massif upland, a first attempt to estimate

  4. Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina

    International Nuclear Information System (INIS)

    Rapela, C.W.

    1999-01-01

    Full text: Located on the Palaeozoic Pacific margin of Gondwana, at the opposite extreme to the Lachlan Fold Belt, the Sierras Pampeanas of central and NW Argentina also constitute a large granitic province displaying the coeval concurrence of I and S-type magmas. The Famatinian magmatic belt consists mostly of granitoids emplaced in Early Ordovician times, after Cambrian accretion of the Pampean terrane and before the Late Ordovician/Silurian accretion of the Precordillera terrane. New SHRIMP U-Pb zircon ages, isotope and geochemical data are used to interpret the petrogenesis of this belt. Three types of granitoid are recognized in the Famatinian belt, based on lithology and geochemical data. These are (a) a minor trondhjemite-tonalite-granodiorite (TTG) group, which occurs only in the Pampean foreland, (b) a metaluminous I-type gabbromonzogranite suite, and (c) S-type granites, which occur both as small cordieritic intrusions associated with l-type granodiorites and as large batholithic masses. Twelve new SHRIMP U-Pb zircon ages establish the contemporaneity of all three types in Early Ordovician times (mainly 470-490 Ma ago). Sr- and Nd-isotopic data suggest that, apart from some TTG plutons with asthenospheric characteristics, the remaining magmas were derived from a Proterozoic crust-lithospheric mantle section (Nd model ages of 1500-1700 Ma). Granulite xenoliths in Cretaceous alkalic rocks that have been described by other authors may represent samples of this source region. Trace element modelling suggests that the TTG and I-type gabbros originated by variable melting of a lithospheric gabbroid source at 10-12 kbar and ca. 5 kbar, respectively. The voluminous intermediate and acidic I-types, which show a trend to slightly more evolved isotopic signatures than the inferred source, probably represent hybridization of the most primitive magmas with lower and middle crustal melts. The highly peraluminous S-type granites have similar isotopic and inherited

  5. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    Science.gov (United States)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  6. Research into basic rocks types

    International Nuclear Information System (INIS)

    1993-06-01

    Teollisuuden Voima Oy (TVO) has carried out research into basic rock types in Finland. The research programme has been implemented in parallel with the preliminary site investigations for radioactive waste disposal in 1991-1993. The program contained two main objectives: firstly, to study the properties of the basic rock types and compare those with the other rock types under the investigation; secondly, to carry out an inventory of rock formations consisting of basic rock types and suitable in question for final disposal. A study of environmental factors important to know regarding the final disposal was made of formations identified. In total 159 formations exceeding the size of 4 km 2 were identified in the inventory. Of these formations 97 were intrusive igneous rock types and 62 originally extrusive volcanic rock types. Deposits consisting of ore minerals, industrial minerals or building stones related to these formations were studied. Environmental factors like natural resources, protected areas or potential for restrictions in land use were also studied

  7. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada

    Science.gov (United States)

    Yang, Xue-Ming; Lentz, David R.; Sylvester, Paul J.

    2006-07-01

    The abundance of gold and selected trace elements in magmatic sulfide and rock-forming minerals from Silurian-Devonian granitoids in southwestern New Brunswick were quantitatively analyzed by laser-ablation inductively coupled plasma mass-spectrometry. Gold is mainly hosted in sulfide minerals (i.e., chalcopyrite, pyrrhotite, and pyrite), in some cases perhaps as submicron inclusions (nanonuggets). Gold is below detection (caca % qGTbGaaeyzaiaabYgacaqG0baaaOGaeyypa0JaaGymaiaaiwdacaaI % WaGaeyySaeRaaGioaiaaiodacaGGSaGaaeiiaiaabggacaqGUbGaae % izaiaabccacaWGebWaa0baaSqaaiaabgeacaqG1baabaGaaeiCaiaa % bMhacaqGVaGaaeyBaiaabwgacaqGSbGaaeiDaaaakiabg2da9iaaio % dacaaI2aGaaGOmaiabgglaXkaaiMdacaaI2aaaaa!6E8F! D^{{{text{cpy/melt}}}}_{{{text{Au}}}}= 948 ± 269,{text{ }}D^{{{text{po/melt}}}}_{{{text{Au}}}} = 150 ± 83,{text{ and }}D^{{{text{py/melt}}}}_{{{text{Au}}}} = 362 ± 96. This result suggests that gold behavior in the granitoid systems is controlled by the conditions of sulfur saturation during magmatic evolution; the threshold of physiochemical conditions for sulfur saturation in the melts is a key factor affecting gold activity. Gold behaves incompatibly prior to the formation of sulfide liquids or minerals, but it becomes compatible at their appearance. Gold would be enriched in sulfur-undersaturated granitoid magmas during fractionation, partitioning into evolved magmatic fluids and favoring the formation of intrusion-related gold deposits. However, gold becomes depleted in residual melts if these melts become sulfur-saturated during differentiation, leading to gold precipitation in the early sulfide phases of a granitoid suite. Late-stage Cl-bearing magmatic-hydrothermal fluids with low pH and relatively high oxidation state derived from either progressively cooling magmas at depth or convective circulation of meteoric water buffered by reduced carbon-bearing sediments, may scavenge gold from early sulfide minerals. If a significant amount of gold produced in this

  8. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada

    Science.gov (United States)

    Dodge, F.C.W.; Kistler, R.W.

    1990-01-01

    Microgranular quartz diorite and diorite inclusions are widespread in central Sierra Nevada granitoid rocks and are almost exclusively restricted to hornblende-bearing rocks, most commonly felsic tonalites and mafic granodiorites. The Nd-Sm and Rb-Sr systematics indicate that most inclusions were in isotopic equilibrium with enclosing materials at the time of formation. Silica contents of inclusions and granitoids are contiguous, but inclusions generally contain less than, and granitoids more than, 60% SiO2. Ferric oxide and H2O+ trends relative to SiO2 suggests many inclusions formed as concentrations of hydrous mafic minerals. Variation of other major element oxides and trace elements support this inference. Most inclusions represent fragmented crystal accumulations of early-formed, near-liquidus minerals generated from these previously mixed magmas. -from Authors

  9. Granitoids of the Dry Valleys area, southern Victoria Land : geochemistry and evolution along the early Paleozoic Antarctic Craton margin

    International Nuclear Information System (INIS)

    Allibone, A.H.; Cox, S.C.; Smillie, R.W.

    1993-01-01

    Field relationships and geochemistry indicate granitoid plutons of the Dry Valleys area comprise at least three petrogenetically distinct suites. The older Dry Valleys 1a (DV1a) suite, comprising the Bonney, Catspaw, Denton, Cavendish, and Wheeler Plutons and hornblende-biotite orthogneisses, and Dry Valleys 1b (DV1b) suite, comprising the Hedley, Valhalla, St Johns, Dun, Calkin, and Suess Plutons, biotite granitoid dikes and biotite orthogneisses, were emplaced before prominent swarms of Vanda mafic and felsic dikes. Both the DV1a and DV1b suites are time transgressive, with older intrusions in each suite being emplaced during the later stages of deformation of the Koettlitz Group. Younger granitoids that postdate the majority of the Vanda dikes include: the Dry Valleys 2 (DV2) suite, comprising the Pearse and Nibelungen Plutons plus several smaller, unnamed plugs; and the Harker, Swinford, Orestes, and Brownworth Plutons with identical field relationships and enclaves but distinct chemistries. Chemical characteristics and limited Rb-Sr isotopic dating indicate plutonism before c. 500 Ma was dominated by the Cordilleran I-type DV1a suite, inferred to have developed during melting above a west-dipping subduction zone along the Antarctic Craton margin. The chemical characteristics of the DV1b suite indicate large-scale melting of a quartzo-feldspathic protolith lacking residual plagioclase, but containing refractory garnet. Potential DV1b suite source rocks include metamorphosed immature sediments, possibly underplated along the subduction zone associated with DV1a magmatism, or older granitoid orthogneisses. Major DV1b plutonism at 490 Ma marks the end of subduction-related plutonism in southern Victoria Land. Younger DV2 alkali-calcic, Caledonian I-type plutonism is inferred to have formed in response to uplift and extension between 480 and 455 Ma. Lack of DV2 suite correlatives and Vanda mafic and felsic dikes in northern Victoria Land suggests significantly

  10. Rb-Sr ages and initial 87Sr/86Sr ratios of late paleozoic granitic rocks from northern Chile

    International Nuclear Information System (INIS)

    Shibata, Ken; Ishihara, Shunso; Ulriksen, C.E.

    1984-01-01

    Rb-Sr whole-rock isochron ages were determined on three suites of so-called Paleozoic granitic rocks from northern coastal Chile. The granitic rocks from the Valparaiso and Ci Funcho areas are dated as 296.3 +- 5.4 Ma and 262.2 +- 4.6 Ma, respectively, which are in accord with geologically estimated age. The rocks from the Chanaral area is dated as 212.8 +- 8.6 Ma, which is correlated close to the Triassic-Jurassic boundary age. A K-Ar age of 196 +- 6 Ma was obtained on biotite in granite from Esmeralda between Ci Funcho and Chanaral. These age results demonstrate that no Precambrian plutonism occurred in the studied area, and that so-called Paleozoic granitic rocks in the Ci Funcho-Chanaral area are divided into Permian and early Mesozoic in age. Initial 87 Sr/ 86 Sr ratios of the ilmenite-series granitic rocks from the coastal region are 0.70641 (Valparaiso), 0.70635 (Ci Funcho) and 0.70455 (Chanaral). These relatively low ratios deny substantial crustal contribution to the granitoids. The initial ratios of magnetite-series granitoids from porphyry- and manto-type mineralized areas (Chiquicamata, El Salvador and Tocopilla) are as low as 0.70344 to 0.70464. (author)

  11. Geochronology, petrogenesis and metallogeny of Piaotang granitoids in the tungsten deposit region of South China

    International Nuclear Information System (INIS)

    He Zhenyu; Xu Xisheng; Wang Xudong; Yu Yao; Zou Haibo

    2010-01-01

    The tungsten deposit region of South China is well known as the world's leading tungsten (W) producer. The Piaotang tungsten deposit in the region is such a representative large-scale quartz vein type tungsten polymetallic deposit that is closely associated with granitoids. In the present study we present precise LA-ICP-MS zircon U-Pb dating and LA-MC-ICPMS zircon Hf isotopic data for the samples from exposed quartz diorite body and buried granite stock in the Piaotang tungsten deposit area. Zircon U-Pb dating results indicate that the quartz diorite body was formed in Early Paleozoic time at 439±2 Ma, whereas the granite body was emplaced in EarlyYanshanian time at 158±3 Ma. Both the quartz diorite and granite have negative ε Hf (t) values, with similar two-stage zircon Hf model ages ranging from 1.8 to 2.1 Ga. Through integration of our new data with the isotope data of Precambrian basement rocks in western Cathaysia, we suggest that the Paleoproterozoic Hf model ages (1.8-2.1 Ga) might be an average age which resulted from mixing of continental materials of different ages. Both the Piaotang Early Paleozoic quartz diorite and Early Yanshanian granite are produced by reworking of the heterogeneous Neoproterozoic crust. Our zircon ages, together with the geochemical data and geological features and ore-forming ages of this tungsten deposit, indicate that the buried Early Yanshanian granite, rather than the exposed quartz diorite, is genetically associated with tungsten mineralization. The distinct metallogeny difference between the Piaotang Early Paleozoic quartz diorite and Early Yanshanian granite can be ascribed to the different degrees of magma differentiation. The Early Yanshanian granite is highly differentiated rock and similar to the other W-Sn deposits generating granitoids in South China. The extents of magma differentiation depend on the tectonic setting and the mechanism of magma generation. On the basis of the relationship between two different

  12. The tardi-Pan-African granitoids of South-Westerner Anti-Atlas (Morocco: Evolution from magnesian to ferroan type. Example of the Ifni inlier

    Directory of Open Access Journals (Sweden)

    El Aouli, E. H.

    2007-06-01

    Full Text Available The study of the neoproterozoic granitoids in the Ifni Inlier and those of the other inliers in south-westerner Anti-Atlas shows that this magmatism evolves from magnesian to ferroan type. In the Ifni inlier, these granitoids outcrop within the sedimentary and volcanogenic formations of the Ouarzazate Super- Group SGO (615 to 540 My. They belong to two distinct magmatic episodes (i an early one composed of magnesian granitoids with alkali-calcic and metaluminous to slightly aluminous character (quartz bearing diorite, granodiorite and monzogranite intrusive in the lower formations of the SGO, and (ii a late episode associated to the summit of the SGO volcanites, which includes granites and sub-volcanic syenogranites of iron-bearing type and alkali-calcic to alkaline affinity. These magmatisms resulting from the partial melting of mixed material mark the end of the last Panafrican episode and would be set up in a transition from orogenic to anorogenic settings which announce the Paleozoic cycle. They would be contemporary to posterior with the exhumation of the extensive metamorphic domes of the Western Anti-Atlas.El estudio de los granitoides neoproterozoicos de la “boutonnière” (complejo plutono-metamórfico profundo con geometría subcircular de Ifni y de los de otras “boutonnières” del dominio suroccidental del Anti-Atlas, demuestra que este magmatismo evoluciona desde un tipo magnésico hacia un tipo férrico. En la “boutonnière” de Ifni, estos granitoides afloran en el interior de formaciones sedimentarias y volcano-sedimentarias del Supergrupo de Ouarzazate SGO (615 a 540 Ma. Pertenecen a dos episodios magmáticos diferentes (i un episodio precoz compuesto de granitoides magnésicos, calcoalcalinos y metaluminosos a poco aluminosos (dioritas con cuarzo, granodioritas y monzogranitos que intruyen en las formaciones inferiores del SGO, (ii un episodio tardío asociado con un vulcanismo terminal a techo del

  13. U-Pb SHRIMP data and geochemical characterization of granitoids intruded along the Coxixola shear zone, Provincia Borborema, NE Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Ignez de Pinho; Silva Filho, Adejardo Francisco da; Silva, Francis M.J.V. da, E-mail: ignez@ufpe.br [Universidade Federal de Pernanmbuco (UFPE), Recife, PE (Brazil). Dept. de Geologia; Armstrong, Richard [Australian National University (Australia)

    2011-07-01

    A large volume of granitic magmatism associated with large scale shear zone and metamorphism under high-T amphibolite facies conditions characterize the Brasiliano Orogeny in the Borborema Province, NE Brazil. Granitoids from two plutons and later dykes intruded along the Coxixola shear zone show distinct crystallization ages and geochemical signature. The oldest granitoids (618 ± 5 Ma), Serra de Inacio Pereira Pluton are coeval with the peak of regional metamorphism and they were probably originated by melting of a paleoproterozoic source. The granitoids from the Serra do Marinho Pluton show crystallization age of 563 ± 4 Ma and geochemical signature of post-collisional A-type granites. The later dykes have crystallization age of 526 ± 7 Ma, geochemical signature of A-type granitoids. (author)

  14. Devonian granitoids and their hosted mafic enclaves in the Gorny Altai terrane, northwestern Central Asian Orogenic Belt: crust-mantle interaction in a continental arc setting

    Science.gov (United States)

    Chen, Ming; Sun, Min

    2016-04-01

    Granitoids are a major component in the upper continental crust and hold key information on how did the continental crust grow and differentiate. This study focuses on the Yaloman intrusive complex from the Gorny Altai terrane, northwestern Central Asian Orogenic Belt (CAOB). The association of granitoids and mafic enclaves can provide important clues on the source nature, petrogenetic processes and geodynamic setting of the Yaloman intrusive complex, which in turn will shed light on the crustal evolution in the northwestern CAOB. Zircon U-Pb dating shows that the granitoids, including quartz diorites and granodiorites, were emplaced in ca. 389-387 Ma. The moderate Na2O + K2O contents and low A/CNK values indicate that these rocks belong to the sub-alkaline series with metaluminous to weakly peraluminous compositions. The granitoids yield two-stage zircon Hf model ages of ca. 0.79-1.07 Ga and whole-rock Nd model ages of ca. 0.90-0.99 Ga, respectively, implying that they were mainly sourced from Neoproterozoic juvenile crustal materials. The mafic enclaves show an almost identical crystallization age of ca. 389 Ma. The identification of coarse-grained xenocrysts and acicular apatites, together with the fine-grained texture, makes us infer that these enclaves are likely to represent magmatic globules commingled with the host magmas. The low SiO2 and high MgO contents of the mafic enclaves further suggest that substantial mantle-derived mafic melts were probably involved in their formation. Importantly, the SiO2 contents of the granitoids and mafic enclaves are well correlated with other major elements and most of the trace elements. Also a broadly negative correlation exists between the SiO2 contents and whole-rock epsilon Nd (390 Ma) values of the granitoids. Given the observation of reversely zoned plagioclases within the granitoids and the common occurrence of igneous mafic enclaves, we propose that magma mixing probably played an important role in the formation

  15. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet

    Science.gov (United States)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing

    2018-03-01

    Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an

  16. Petrogenesis of Jurassic granitoids at the northeastern margin of the North China Craton: New geochemical and geochronological constraints on subduction of the Paleo-Pacific Plate

    Science.gov (United States)

    Liu, Jin; Zhang, Jian; Liu, Zhenghong; Yin, Changqing; Zhao, Chen; Peng, Youbo

    2018-06-01

    At the junction between the North China Craton (NCC) and the Central Asian Orogenic Belt (CAOB), northern Liaoning province, NE China, there are widespread Jurassic igneous rocks. The tectonic setting and petrogenesis of these rocks are unresolved. Zircon U-Pb dating, whole-rock geochemistry, and Hf isotopic compositions of Jurassic granitoids were investigated to constrain their ages and petrogenesis in order to understand the tectonic evolution of the Paleo-Pacific Ocean along the northeastern margin of the NCC. Geochronological data indicate that magmatism occurred between the early and late Jurassic (180-156 Ma). Despite the wide range in ages of the intrusions, Jurassic granitoids were likely derived from a similar or common source, as inferred from their geochemical and Hf isotopic characteristics. Compared to the island arc andesite-dacite-rhyolite series, the Jurassic granitoids are characterized by higher SiO2, Al2O3, and Sr contents, and lower MgO, FeOT, Y, and Yb contents, indicating that the primary magmas show typical characteristics of adakitic magmas derived from partial melting of thickened lower crust. These findings, combined with their εHf(t) values (+1.4 to +5.4) and two-stage model ages (1515-1165 Ma), indicate the primary magmas originated from partial melting of juvenile crustal material accreted during the Mesoproterozoic. They are enriched in large-ion lithophile elements (e.g., Rb, K, Th, Ba, and U) and light rare-earth elements (REE), and depleted in high-field-strength elements (e.g., Nb, Ta, Ti, and P) and heavy REE. Based on these findings and previous studies, we suggest that the Jurassic adakitic granitoids (180-156 Ma) were formed in an active continental margin and compressive tectonic setting, related to subduction of the Paleo-Pacific Plate.

  17. Petrotectonic framework of granitoids and associated granulites at ...

    Indian Academy of Sciences (India)

    tion that wraps around the feldspar augen. The sheared granitoid ..... 1987) has been used to classify the granitoids ... The data for all the analyses used in the diagrams are given in table 1. ..... Different stages of crystal-plastic deformation are.

  18. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    Science.gov (United States)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  19. Petrogenesis of shoshonitic granitoids, eastern India: Implications for the late Grenvillian post-collisional magmatism

    Directory of Open Access Journals (Sweden)

    B. Goswami

    2014-11-01

    Full Text Available Many elongated, lenticular plutons of porphyritic granitoids are distributed mainly near the southern and northern margin of the Chhotanagpur Gneissic Complex (CGC which belongs to the EW to ENE–WSW tending 1500 km long Proterozoic orogenic belt amalgamating the North and South Indian cratonic blocks. The late Grenvillian (1071 ± 64 Ma Raghunathpur porphyritic granitoid gneiss (PGG batholith comprising alkali feldspar granite, granite, granodiorite, tonalite, quartz syenite and quartz monzonite intruded into the granitoid gneisses of southeastern part of CGC in the Purulia district, West Bengal and is aligned with ENE–WSW trending North Purulia shear zone. Mineral chemistry, geochemistry, physical condition of crystallization and petrogenetic model of Raghunathpur PGG have been discussed for the first time. The petrographic and geochemical features (including major and trace-elements, mineral chemistry and 87Sr/86Sr ratio suggest these granitoids to be classified as the shoshonitic type. Raghunathpur batholith was emplaced at around 800 °C and at 6 kbar pressure tectonic discrimination diagrams reveal a post-collision tectonic setting while structural studies reveal its emplacement in the extensional fissure of North Purulia shear zone. The Raghunathpur granitoid is compared with some similar granitoids of Europe and China to draw its petrogenetic model. Hybridization of mantle-generated enriched mafic magma and crustal magma at lower crust and later fractional crystallization is proposed for the petrogenesis of this PGG. Mafic magma generated in a post-collisional extension possibly because of delamination of subducting slab. Raghunathpur batholith had emplaced in the CGC during the final amalgamation (∼1.0 Ga of the North and South Indian cratonic blocks. Granitoid magma, after its generation at depth, was transported to its present level along megadyke channel, ways within shear zones.

  20. A petrochemical investigation of a group of granitoids in the Cnydas area, West of Upington

    International Nuclear Information System (INIS)

    Jankowitz, J.A.C.

    1981-01-01

    Detailed mapping in the eastern Namaqualand Metamorphic Complex west of Upington, indicates that the Cnydas batholith can be divided into ten different granitoidal phases. The classification is based on the intrusive field relationships supported by variation in mineralogy, texture, petrography and geochemistry. A differentiation sequence from granodiorite through mesocratic granite to leucogranite is proposed on the basis of geochemical evidence. The chemistry and petrography suggests an I-type origin for these granitoids

  1. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  2. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan-Ganze terrane: An igneous response to the closure of the Paleo-Tethys ocean

    Science.gov (United States)

    Chen, Qiong; Sun, Min; Zhao, Guochun; Yang, Fengli; Long, Xiaoping; Li, Jianhua; Wang, Jun; Yu, Yang

    2017-10-01

    The Songpan-Ganze terrane is mainly composed of a Triassic sedimentary sequence and late Triassic-Jurassic igneous rocks. A large number of plutons were emplaced as a result of tectono-magmatic activity related to the late stages of Paleo-Tethys ocean closure and ensuing collision. Granitoids and their hosted mafic enclaves can provide important constraints on the crust-mantle interaction and continental crustal growth. Mesozoic magmatism of Songpan-Ganze remains enigmatic with regard to their magma generation and geodynamic evolution. The Tagong pluton (209 Ma), in the eastern part of the Songpan-Ganze terrane, consists mainly of monzogranite and granodiorite with abundant coeval mafic microgranular enclaves (MMEs) (ca. 208-209 Ma). The pluton comprises I-type granitoid that possesses intermediate to acidic compositions (SiO2 = 61.6-65.8 wt.%), high potassium (K2O = 3.2-4.1 wt.%), and high Mg# (51-54). They are also characterized by arc-type enrichment of LREEs and LILEs, depletion of HFSEs (e.g. Nb, Ta, Ti) and moderate Eu depletions (Eu/Eu* = 0.46-0.63). Their evolved zircon Hf and whole-rock Nd isotopic compositions indicate that their precursor magmas were likely generated by melting of old lower continental crust. Comparatively, the MMEs have lower SiO2 (53.4-58.2 wt.%), higher Mg# (54-67) and show covariation of major and trace elements, coupled with field and petrographic observations, such as the disequilibrium textures of plagioclase and amphibole, indicating that the MMEs and host granitoids were originated from different magma sources but underwent mafic-felsic magma mixing process. Geochemical and isotopic data further suggest that the precursor magma of the MMEs was formed in the continental arc setting, mainly derived from an ancient metasomatized lithospheric mantle wedge. The Triassic granitoids from the Songpan-Ganze terrane show remarkable temporal-spatial-petrogenetic affinities to the counterparts of subduction zones in the Yidun and Kunlun arc

  3. Geochronology of granitoids and gnaisses from the Rio Maria, Mata Geral farm and Itacaiunas river regions, southern Para, Brazil

    International Nuclear Information System (INIS)

    Montalvao, R.M.G. de; Tassinari, C.C.G.; Bezerra, P.E.L.; Prado, P.

    1984-01-01

    Granitoids and gneisses occurring at Rio Maria, Mata Geral farm and Itacaiunas river regions, southern Para, underwent radiometric age determinations by Rb/Sr method using conventional isochrons. Results obtained from the Rio Maria and Mata Geral farm regions allowed te establishment of a reference 2,600 my Rb/Sr isochron with an initial Sr 87 /Sr 86 ratio of 0.7009. This result resembles the one obtained for granitoids and gneisses hosting rocks of the Serra do Inaja greenstone belt, located some what south of this area, which yielded, in Rb/Sr isochron, a radiometric age of 2,696 + - 79 my with an initial Sr 87 /Sr 86 ratio of 0.701. Results obtained from the Itacaiunas river region allowed for the establishment of a Rb/Sr referential isochron of 2,480 + - 40 my wth an initial Sr 87 /.Sr 86 ratio of 0.7072. Due to low initial ratios, it is suggested that the rocks from the Rio Maria, Mata Geral farm and Serra do Inaja regions formed from Mafic crust or superior mantle reworking, while those from the Itacaiunas river region, due to a high initial ratio, result from reworking at high crustal levels. (Author) [pt

  4. Old inherited zircons in two synkinematic variscan granitoids: the 'granite du Pinet' and the 'Orthogneiss de Marvejols' (Southern French Massif Central)

    International Nuclear Information System (INIS)

    Pin, C.

    1981-01-01

    Two granitic bodies outcropping in the metamorphic basement of the Southern French Massif Central have been studied with the zircon U-Pb method: the Pinet granite (Rouergue area) and the Marvejols orthogneisses (Serie du Lot). It is shown that neither of them are pre-Variscan intrusions but that they were emplaced synkinematically, during the early stages of the Hercynian tectonometamorphic event. As numerous other S-type granitoids, both formations are characterized by an important inherited zircon component, whose apparent age is 1800 +- 200 m.y. Lower intersections with the Concordia curve allow to settle an emplacement age around 350-360 m.y., although the Pinet zircons display a complex pattern, owing both to heterogeneity of the inherited component and to late isotopic disturbances. Regional consequences of the synkinematic character of these S-type granitoids are outlined. It is shown that inherited zircons occurences often hinder accurate dating and the possible petrogenetic significance of the old proterozoic component is discussed. (orig.)

  5. Unusual Rb-Sr data on the age of two typical peralkaline granitoid plutons in West Transbeikalia

    International Nuclear Information System (INIS)

    Litvinovskij, B.A.; Posokhov, V.F.; Zanvilevich, A.N.

    1995-01-01

    Rb-Sr isotope study of two typical plutons in West Transbaikalia (Bryansk and Kharitonov) has been carried out. For alkaline and peralkaline suits of the Bryansk pluton the obtained data are 287 ± m.y., I Sx =0.7054 ± 3 and 285 ± 1 m.y., I Sr =0.7037 ± 3 respectively. Rb-Sr age of peralkaline syenites and granites from the Kharitonov pluton are in more or less consistency with those on the Malokunal pluton (233 ± 5 m.y.) and much less than the age of the Khorinsk pluton (253 ± 3 m.y.). Taking into account the K-Ar data on amphibole from the peralkaline granitoids it is concluded that probable age of these rocks span the interval 250-220 m.y. However results obtained from the Bryansk pluton suggest that within the Mongolia-Transbaikalia belt one more stage of peralkaline granitoid generation i.e. the Early Permian stage could be manifested as well. 20 refs.; 5 figs.; 3 tabs

  6. Geology and geochemistry of Massangana Granitoid Complex, Brazil, and its relation with tin mineralization

    International Nuclear Information System (INIS)

    Romanini, S.J.

    1982-01-01

    The geochemical and petroLogical characteristics of the Massangana Granitoid Complex, situated in the Rondonia Federal Territory, Brazil, aiming to discriminate the tin mineralized granitic rocks from the no mineralized ones. The collected samples consists of examples in tin mineralized and sterile phases. The elements traces were determined by x-ray fluorescence analysis, emission spectrography, molecular absorption spectrophotometry and atomic absorption spectrophotometry. The complex edifying evolved in four sucessive episodes called Massangana Phase, Bom Jardim Phase, Sao domingos Phase and Taboca Phase ordered stratigraphycally in this sequence. (author/M.C.K.) [pt

  7. Potassium-argon ages of two granitoids northwest of Kumasi, Ghana

    International Nuclear Information System (INIS)

    Agyei, E.K.

    1989-01-01

    Four granitic samples from two granitoids northwest of Kumasi,Ghana, have been dated using the conventional K-Ar method. Two samples NB1 NB2 from a road-cutting at Nyamebekyere village, located about 60 km from Kumasi on the Kumasi-Sunyani road gave biotite ages of 2144+/= 11 Ma and 2144+/=7 Ma, respectively. The biotite ages for two samples NTN1 and NTN2 from Kassardjan quarry, located about 3 km south of the Kumasi-Sunyani road at Ntensere village some 20 km northwest of Kumasi were 2070+/= 10 Ma and 2099+/=14 Ma, respectively. A hornblende age of 2169+/=26 Ma was obtained for NTN2 which suggests a slow cooling during the uplift of the granitoid. Although the biotite ages obtained here for the two G2 granitoids are older than most of the reported biotite ages which happen to be for G1 granites, it is too premature to generalize that G2 granitoids are older than G1 granitoids. (author). 21 refs. 1 fig. 1 tab

  8. A prolonged granitoid formation in Saglek Block, Labrador: Zonal growth and crustal reworking of continental crust in the Eoarchean

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Komiya

    2017-03-01

    We made a detailed sketch of a small outcrop in St. John's Harbour South (SJHS area, and classified the orthogneisses and mafic enclaves into seven generations based on the geologic occurrence. The first and second generations comprise mafic rocks and lack magmatic zircons. We conducted CL imaging and U-Pb dating of zircons from the third, sixth and seventh generation of the orthogneisses to estimate the protolith ages at 3902 ± 25, 3892 ± 33 and 3897 ± 33 Ma for each, supporting the presence of the over 3.9 Ga Iqaluk Gneiss. The geological occurrence that the mafic rocks occur as enclaves within the 3.9 Ga Iqaluk Gneiss indicates that they are the oldest supracrustal rocks in the world. Our geochronological and geological studies show the Uivak Gneiss is quite varied in lithology and age from 3.6 to >3.9 Ga, and tentatively classified into six groups based on their ages. The oldest Uivak Gneiss components including the Iqaluk Gneiss are present around the SJHS area, and the orthogneisses become young as it is away. The lines of evidence of overprinting of younger granitoid on older granitoid in small outcrops and geological-map scale as well as presence of inherited zircons even in the oldest suite suggests that crustal reworking played an important role on erasing the ancient crusts.

  9. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition

    Science.gov (United States)

    Wang, Xinyu; Yuan, Chao; Zhang, Yunying; Long, Xiaoping; Sun, Min; Wang, Lixing; Soldner, Jeremie; Lin, Zhengfan

    2018-03-01

    Voluminous Paleozoic intrusions occur in the Beishan Orogenic Collage (BOC) and their genesis and tectonic background are important to reconstruct the accretion-collision processes in the southernmost Altaids. Paleozoic is an important period for arc development in the BOC, where the Gongpoquan and Huaniushan arcs are located. There are two pulses of magmatism in the Huaniushan and Gongpoquan arcs, i.e., the ca. 470-423 Ma I-type and ca. 424-395 Ma S- and A-type granitoids. In this study, we focus on two peraluminous granitic plutons in the Gongpoquan arc, i.e., the Baitoushan muscovite granite and Haergen two-mica granite, aiming at unraveling their petrogenesis and tectonic background. Zircon LA-ICP-MS U-Pb dating yields emplacement ages of ca. 409-395 Ma and ca. 409 Ma for the Baitoushan and Haergen plutons, respectively. Both the granitic plutons are strongly peraluminous with A/CNK ratios of 1.10-1.20, indicative of S-type affinities. The rocks are characterized by high SiO2 and K2O contents with high CaO/Na2O ratios. Moreover, the rocks possess low MgO contents, Rb/Sr and Rb/Ba ratios, together with their relatively high initial 87Sr/86Sr ratios (0.7139-0.7152) and less radiogenic εNd(t) values (-3.15 to -5.17), implying a clay-poor and plagioclase-rich crustal source. Compared with earlier pulse of arc-related magmatism (ca. 470-423 Ma), the latter pulse of magmatism (ca. 424-395 Ma) consists mainly of "normal granite" characterized by higher SiO2 (>66%) and K2O contents, weaker fractionated REE patterns and lower δEu values, and gabbroic to dioritic intrusions are only sporadic. Moreover, the granitoids of the latter pulse show variable but more crust-like Sr-Nd isotopic compositions ((87Sr/86Sr)0 = 0.7038-0.7327; εNd(t) = -6.70 to +0.33) than the earlier ones ((87Sr/86Sr)0 = 0.7024-0.7080; εNd(t) = -2.56 to +8.86), indicating that the Early Devonian (ca. 424-395 Ma) experienced extensive crustal melting with minor involvement of mantle materials

  10. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: evidence for magma mingling

    Science.gov (United States)

    Arvin, M.; Dargahi, S.; Babaei, A. A.

    2004-10-01

    Mafic microgranular enclaves (MME) are common in the Early to Middle Miocene Chenar granitoid stock, northwest of Kerman, which is a part of Central Iranian Eocene volcanic belt. They occur individually and in homogeneous or heterogeneous swarms. The MME form a number of two-dimensional structural arrangements, such as dykes, small rafts, vortices, folded lens-shapes and late swarms. The enclaves are elongated, rounded to non-elongated and subrounded in shape and often show some size-sorting parallel to direction of flow. Variation in the elongation of enclaves could reflect variations in the viscosity of the enclave, the time available for enclave deformation and differential strain during flow of the host granitoid magma. The most effective mechanism in the formation of enclave swarms in the Chenar granitoid stock was velocity gradient-related convection currents in the granitoid magma chamber. Gravitational sorting and the break-up of heterogeneous dykes also form MME swarms. The MME (mainly diorite to diorite gabbro) have igneous mineralogy and texture, and are marked by sharp contacts next to their host granitoid rocks. The contact is often marked by a chilled margin with no sign of solid state deformation. Evidence of disequilibrium is manifested in feldspars by oscillatory zoning, resorbed rims, mantling and punctuated growth, together with overgrowth of clinopyroxene/amphibole on quartz crystals, the acicular habit of apatites and the development of Fe-Ti oxides along clinopyroxene cleavages. These observations suggest that the MMEs are derived from a hybrid-magma formed as a result of the intrusion of a mafic magma into the base of a felsic magma chamber. The density contrast between hybrid-magma and the overlying felsic magma was reduced by the release of dissolved fluids and the ascent of exsolved gas bubbles from the mafic magma into the hybrid zone. Further convection in the magma chamber dispersed the hybridized magma as globules in the upper parts of

  11. Geotectonic evolution of granitoid-greenstone belts from Crixas, Guarinos, Pilar de Goias - Hidrolina (Goias), Brazil

    International Nuclear Information System (INIS)

    Montalvao, R.M.G. de.

    1985-01-01

    The area in discussion, in a geologic context, constitutes one of the most interesting and complex, within the South American Platform, in Brazilian territory, over which granitoid-greenstone belts are outstanding. The Goiano Complex is the oldest unit in the geologic column herein adopted and composed largely of granitoids, gneiss and migmatites, in the amphibolite facies. Dated samples of the complex have shown two isochrones of Rb/Sr reference, the oldest one is 2.926 +- 65 m.y. and the 87 Sr/ 86 Sr initial ratio of 0.7001 and the youngest on of 2.471 + 20 m.y. and 87 Sr/ 86 Sr initial ratio of 0.701. Although the initial ratios data of the Rb/Sr isochron, as well as the parameters in the Pb/Pb analyses may indicate material of mantle source, it may be interpreted, with the help of field data, that the youngest values may indicate the reworking of crustal sialic rocks formed 2.925 +- 65 m.y. ago (oldest isochron), with primitive material contribution. Before such reworking volcanic-sedimentary sequence was deposited over the already formed sialic crust, and it is denominated Pilar de Goias Supergroup which characterizes the Greenstone Belts in the region. The Archean age for the supergroup was evident through the age results of its ultramafic rocks, showing 2.600 m.y. isochron age, with Sm/Nd methods. Besides the geochronology and field studies, basic information for the construction of the geologic column herein presented, there has been done petrographic and litho geochemical studies, both in the Goiano Complex and Pilar de Goias Supergroup, as for the Pilar de Goias Supergroup, the studies were concentrated on its mafic-ultramafic rocks. (author)

  12. Rb-Sr geochronology of leucocratic granitoid rocks from the Spissko-Gemerske Rudohorie Mts. and Veporicum

    International Nuclear Information System (INIS)

    Cambel, B.; Veselsky, J.

    1989-01-01

    Information is given on new Rb-Sr data from leucocratic types of rocks occurring in the Gemericum and Veporicum. Basses on isochron geochronological data, mutual geochronological and geochemical relations are discussed. (author). 3 figs., 47 tabs., 14 refs

  13. Two-phase southward subduction of the Mongol-Okhotsk oceanic plate constrained by Permian-Jurassic granitoids in the Erguna and Xing'an massifs (NE China)

    Science.gov (United States)

    Liu, Huichuan; Li, Yinglei; He, Hongyun; Huangfu, Pengpeng; Liu, Yongzheng

    2018-04-01

    Geodynamics of the Mongol-Okhotsk oceanic plate southward subduction are still pending problems. This paper presents new zircon LA-ICP-MS U-Pb age and whole-rock geochemical data for the middle Permian to Middle Jurassic granitoids in the western Erguna and central Xing'an massifs. 267-264 Ma, 241 Ma and 173 Ma I-type granites, and 216 Ma A-type granites were identified in the Erguna and Xing'an massifs (NE China). The I-type granites were produced by partial melting of the lower mafic crust. The 216 Ma A-type granites were derived from partial melting of crustal materials with tonalitic to granodioritic compositions. The 267-264 Ma and 241 Ma I-type granites were generated in an Andean-type arc setting, wheras the 216 Ma A-type and 173 Ma granites were formed in supra subduction extensional setting. We summarized previous age data of the middle Permian to Middle Jurassic magmtaic rocks in the Erguna and Xing'an Massifs and identified two isolated phases of magmatic activity including the ca. 267-225 Ma and ca. 215-165 Ma periods, with a significant magmatic gap at ca. 225-215 Ma. These middle Permian to Middle Jurassic magmatic rocks are closely related to the southward subduction of the Mongol-Okhotsk ocean. A two-stage tectonic evolutionary model was proposed to account for these geological observations in the Erguna and Xing'an massifs, involving Permian to Middle Triassic continuous southward subduction of the Mongol-Okhotsk oceanic plate and Late Triassic to Jurassic slab-rollback and supra subduction extension.

  14. U-Pb zircon geochronology, Sr-Nd isotope geochemistry, and petrogenesis of oxidant granitoids at Keybarkuh, southwest of Khaf

    Directory of Open Access Journals (Sweden)

    Ehsan Salati

    2012-10-01

    Full Text Available Keybarkuh area is located 70 km southwest of Khaf, Khorasan Razavi province. The study area is situated in northeastern Lut block. The rock units in the area are Paleozoic metamorphic rocks and Cretaceous to Tertiary subvolcanic intrusions intruded as dike, stock and batholith; their composition varies from granite to diorite. Based on magnetic susceptibility, the intrusive rocks are divided into oxidant and reduced series. In this study, the oxidant intrusions are discussed. These intrusions are mostly high-K to shoshonitic and also meta-aluminous type. Their magma formed in subduction magmatic arc and they belong to I-type granitoid series. Enrichment of Large Ion Lithophile Elements (LILE such as Rb, Cs, K, Ba, and Th relative to High Field Stength Elements (HFSE such as Nb, Zr, and Ti supported the idea. Enrichment of Light Rare Earth Elements (LREE and depletion of Heavy Rare Earth Elements (HREE are also typical of subduction magmatism. Negative anomalies of Eu/Eu* can be attributed to the presence of residual plagioclase in a mantle source and contamination of magma by reduced continental crust. The amount of Nb > 11 ppm, lower ratio of Zr/Nb 0.706, initial 143Nd/144Nd (> 0.512 and εNd (< -3.5 indicate that magma contaminated by reduced continental crust. Hornblende biotite granodiorite porphyry dated using U-Pb zircon geochronology at 43.44 Ma (Middle Eocene. Based on calculated TDM, magma derived from ancient slab with 820 Ma age in the Keybarkuh area, was affected by the highest continental crust contamination during its ascent.

  15. Semi-brittle flow of granitoid fault rocks in experiments

    NARCIS (Netherlands)

    Pec, Matej; Stünitz, Holger; Heilbronner, Renée; Drury, Martyn

    Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-viscous transition. To understand the physical and chemical processes accommodating semi-brittle flow, we have

  16. Uranium and thorium in rocks and minerals of Zaangarsk alkaline massif

    International Nuclear Information System (INIS)

    Zhmodin, S.M.; Gofman, A.M.; Ksenzova, V.I.; Malmova, Z.V.; Nemirovskaya, N.A.

    1981-01-01

    U and Th distribution in rocks of the massif of alkaline-granitoid formation is studied using the methods of γ-spectrometry and neutron- fragment radiography. Predominant accumulation of U and Th in final products of magmatic differentiation - foyaites - is established. U and Th concentrations increased sharply during postmagmatic stage of alkaline massif formation - in permatites and metasomatically alterated rocks (Th/U and U/K ratios can serve as criteria for identification of such formations). The increase of U part, connected with accessory minerals in pegmatites and metasomatically alterated rocks, is pointed out. For U in postmagmatically alterated rocks high concentrations due to microcracks are characteristic [ru

  17. Fluid geochemistry associated associated to rocks: preliminary tests om minerals of granite rocks potentially hostess of radioactive waste repository; Geoquimica de fluidos associados a rochas: testes preliminares em minerais de rochas granitoides potencialmente hospedeiras de repositorios de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Lucas E.D.; Rios, Francisco J.; Oliveira, Lucilia A.R. de; Alves, James V.; Fuzikawa, Kazuo; Garcia, Luiz; Ribeiro, Yuri, E-mail: LDAmorim@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Matos, Evandro C. de [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil)

    2009-07-01

    Fluid inclusions (FI) are micro cavities present on crystals and imprison the mineralizer fluids, and are formed during or posterior to the mineral formation. Those kind of studies are very important for orientation of the engineer barrier projects for this purpose, in order to avoid that the solutions present in the mineral FI can affect the repository walls. This work proposes the development of FI micro compositional studies in the the hostess minerals viewing the contribution for a better understanding of the solution composition present in the metamorphosis granitoid rocks. So, micro thermometric, microchemical and characterization of the material confined in the FI, and the hostess minerals. Great part of the found FI are present in the quartz and plagioclase crystals. The obtained data on the mineral compositions and their inclusions will allow to formulate hypothesis on the process which could occurs at the repository walls, decurrens from of the corrosive character (or not) of the fluids present in the FI, and propose measurements to avoid them

  18. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance

    Science.gov (United States)

    Bettencourt, Jorge Silva; Juliani, Caetano; Xavier, Roberto P.; Monteiro, Lena V. S.; Bastos Neto, Artur C.; Klein, Evandro L.; Assis, Rafael R.; Leite, Washington Barbosa, Jr.; Moreto, Carolina P. N.; Fernandes, Carlos Marcello Dias; Pereira, Vitor Paulo

    2016-07-01

    The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04-2.97 Ga), metavolcanic-sedimentary units (2.76-2.74 Ga), granitoids (3.07-2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74-2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb-Y-Sn-Be-U. The latter, as well as Sn-W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0-1.87 Ga), two calc-alkaline volcanic sequences (2.0-1.95 Ga to 1.89-1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu-Au and Cu-Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98-1.75 Ga), generated in ocean-ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Col

  19. The study of the mineralogy and rare earth elements behavior in the hydrothermal alteration zones of the Astaneh granitoid massif (SW Arak, Markazi province, Iran)

    International Nuclear Information System (INIS)

    Esmaeily, D.; Afshooni, S. Z.; Valizadeh, M. V.

    2009-01-01

    The Astaneh granitoid massif is located about 40 km to Arak city, central Iran, is a part of Sanandaj-Sirjan structural zone. These intrusive rocks which are mainly composed of gronodioritic rocks, widely affected under hydrothermal alteration. The alteration zones, on the basis of field studies and mineralogy as well as the study of the REE behavior, are investigated in this paper. Eight alteration zones including phyllic (sericitic) with quartz, sericite and pyrite; chloritic with quartz, sericite and chlorite; propylitic with chlorite, epidot, calcite and albite; argillic with clay minerals (chlorite and illite); silicic with abundant quartz; albitic with albite, chlorite and quartz; hematitisation with hematite, Fe-carbonates (ankerite and siderite) and tourmalinisation with tourmaline (dravite) are identified. The results demonstrate notable differences in the REE behavior in the different alteration zones. Accordingly, comparison with the fresh rocks, in the phyllic (sericitic) alteration, LREE are enriched, but HREE, except Yb which enriched, unchanged. Also in chloritic alteration zone, LREEs are depleted, but HREEs represent different behaviors. In the argillic and propylitic alteration zones, all REE are depleted, but compared with HREE, the LREE represent more depletion. In the silicic and hematitisation alteration zones, compared with HREE, the LREE are enriched. Finally, in the albitic and tourmalinisation alteration zones all REE are depleted. These features indicate that the behavior of REE in the hydrothermal alteration zones of the Astaneh granitoid rocks is mainly controlled by p H, availability of complexing ions in the fluid as well as the presence of secondary phases as host REE minerals

  20. Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates

    Science.gov (United States)

    Açlan, Mustafa; Altun, Yusuf

    2018-06-01

    The Esenköy pluton which is situated in the East Anatolian Accretionary Complex (EACC) is represented by I-type, metalumino, calc-alkaline, VAG + syn-COLG, gabbro, diorite, quartz diorite, tonalite and granodiorite type rocks. This paper presents the characteristics of the above granitoids on their major, trace, rare earth elements (REE) and their zircon U-Pb dating. Zircon U-Pb crystallisation ages for gabbro, tonalite and granodiorite are 22.3 ± 0.2 Ma, 21.7 ± 0.2 Ma and 21.8 ± 0.2 Ma respectively. Esenköy granitoids show medium and high-K calc-alkaline character, with six exceptional K-poor sample plot in tholeiitic series field. The Rb/Y-Nb/Y diagram for Esenköy granitoids display subduction zone enrichment trend. The data which obtained from major, trace and REE geochemical characteristics and 206Pb/238U ages indicate that the collision which is take place between Arabian and Eurasian plates along the Bitlis-Zagros suture zone has begun in the Early Miocene (Aquitanian) or before from Early Miocene.

  1. The possibility of use of Kremicj granitoid (Serbia) as an architectural stone

    International Nuclear Information System (INIS)

    Kureshevicj, Lidja

    2010-01-01

    The stone from the granitoid pluton of Kremić in southern Serbia has been examined in order to evaluate the possibility of its use as an architectural stone. Both field observations and laboratory testing of specimens have been performed. Although the specimens were collected from the field surface level, their physicomechanical lab test results have shown that the rock mass itself fulfils all the requirements for use as an architectural stone set by the State through Serbian standards. Also, the stone quality is higher in deeper ground levels, where the weathering agents have less intense effects. This stone does not have high ornamental properties, but it has a finegrained texture and low mica content which has a positive effect on its technical characteristics and susceptibility to processing. (Author)

  2. Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data

    Science.gov (United States)

    Yousefi, Seyyed Jabber; Ranjbar, Hojjatollah; Alirezaei, Saeed; Dargahi, Sara; Lentz, David R.

    2018-06-01

    The southern section of the Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) of Iran, known as Kerman Magmatic Arc (KMA) or Kerman copper belt, is a major host to porphyry Cu ± Mo ± Au deposits, collectively known as PCDs. In this study, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and spectral angle mapper (SAM) method, combined with field data, mineralogical studies, and spectral analysis are used to determine hydrothermal alteration patterns related to PCDs in the KMA. Gossans developed over some of these porphyry type deposits were mapped using Landsat 8 data. In the NKMA gossans are more developed than in the SKMA due to comparatively lower rate of erosion. The hydrothermal alteration pattern mapped by ASTER data were evaluated using mineralogical and spectral data. ASTER data proved to be useful for mapping the hydrothermal alteration in this semi-arid type of climate. Also Landsat 8 was useful for mapping the iron oxide minerals in the gossans that are associated with the porphyry copper deposits. Our multidisciplinary approach indicates that unlike the PCDs in the northern KMA that are associated with distinct and widespread propylitic alteration, those in the granitoid country rocks lack propylitic alteration or the alteration is only weakly and irregularly developed. The porphyry systems in southern KMA are further distinguished by development of quartz-rich phyllic alteration zones in the outer parts of the PCDs that could be mapped using remote sensing data. Consideration of variations in alteration patterns and specific alteration assemblages are critical in regional exploration for PCDs.

  3. 10 CFR 960.3-1-2 - Diversity of rock types.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...

  4. Zircon U-Pb ages and Hf isotopic compositions of neoarchaean granitoids from Karimnagar, Eastern Dharwar craton, Southern India: LA-ICPMS results

    International Nuclear Information System (INIS)

    Babu, E.V.S.S.K.; Vijaya Kumar, T.; Sreenivas, B.; Khadke, Namrata; Vijaya Gopal, B.; Bhaskar Rao, Y.J.

    2015-01-01

    The Archaean Dharwar and Bastar cratons of Peninsular India are separated by the NE-SW trending Godavari Graben. This zone is involved in recurrent rifting. It is generally believed that earlier phase of rifting dates back to Mesoproterozoic and the younger phase is related to the deposition of Permo-carboniferous coal-bearing sediments. A belt of high-grade rocks (∼ 150 x 45 km) - the Karimnagar granulite terrane (KGT) along the southern flank of the graben. The KGT comprises high-grade lithologies such as orthopyroxene-bearing quarto-feldspathic gneiss, amphibolite-granulite facies supracrustal belts that include metamorphosed quartz-arenites, pelites, carbonates, iron formation and mafic rocks as well as several zones of migmatite and younger granitoid intrusives. The study presented new LA-ICPMS zircon U-Pb age data for five granitoid (charnockite and granite) samples (KRN-90-24, KRN-90-30, KRN-13-02, KRN-13-03 and KRN-13-05; a closer constraint of the age crystallization of protoliths and high-grade metamorphism of felsic granulites and orthogneisses from the KGT. Hf isotopic compositions were also obtained for selected zircons from two samples (KRN-90-24 and KRN-90-30) using New Wave UP-213 Laser Ablation system coupled to Nu Plasma HR MC-ICPMS to constraint the nature of the felsic protoliths of the charnockite and granite gneisses in the KGT

  5. A-type granites from the Guéra Massif, Central Chad: Petrology, geochemistry, geochronology, and petrogenesis.

    Science.gov (United States)

    Pham, Ngoc Ha T.; Shellnutt, J. Gregory; Yeh, Meng-Wan; Lee, Tung-Yi

    2017-04-01

    The poorly studied Saharan Metacraton of North-Central Africa is located between the Arabian-Nubian Shield in the east, the Tuareg Shield in the west and the Central African Orogenic Belt in the south. The Saharan Metacraton is composed of Neoproterozoic juvenile crust and the relics of pre-Neoproterozoic components reactivated during the Pan-African Orogeny. The Republic of Chad, constrained within the Saharan Metacraton, comprises a Phanerozoic cover overlying Precambrian basement outcroppings in four distinct massifs: the Mayo Kebbi, Tibesti, Ouaddaï, and the Guéra. The Guéra massif is the least studied of the four massifs but it likely preserves structures that were formed during the collision between Congo Craton and Saharan Metacraton. The Guéra Massif is composed of mostly granitic rocks. The granitoids have petrologic features that are consistent with A-type granite, such as micrographic intergrowth of sodic and potassic feldspar, the presence of sodic- and iron-rich amphibole, and iron-rich biotite. Compositionally, the granitic rocks of the Guéra Massif have high silica (SiO2 ≥ 68.9 wt.%) content and are metaluminous to marginally peraluminous. The rocks are classified as ferroan calc-alkalic to alkali-calcic with moderately high to very high Fe* ratios. The first zircon U/Pb geochronology of the silicic rocks from the Guéra Massif yielded three main age groups: 590 Ma, 570 Ma, 560 Ma, while a single gabbro yielded an intermediate age ( 580 Ma). A weakly foliated biotite granite yielded two populations, in which the emplacement age is interpreted to be 590 ± 10 Ma, whereas the younger age (550 ± 11 Ma) is considered to be a deformation age. Furthermore, inherited Meso- to Paleoproterozoic zircons are found in this sample. The geochemical and geochronology data indicate that there is a temporal evolution in the composition of rocks with the old, high Mg# granitoids shifting to young, low Mg# granitoids. This reveals that the A-type granites in

  6. Signature of breccia complex/iron oxide- type U-REE mineralisation in the Khairagarh basin with special reference to Dongargaon- Lohara area, central India

    International Nuclear Information System (INIS)

    Hansoti, S.K.; Sinha, D.K.

    1995-01-01

    The Khairagarh basin having late Archaean- early Proterozoic basement is filled up by middle Proterozoic Khairagarh group volcano - sedimentary sequence, laid in the Kotri rift zone (KRZ) with imprints of repetitive volcanic, plutonic and tectonic activities. A strong thermal imprint of ∼ 1.5 Ga has been recorded in rocks of the basin that could be an effect of copious outpouring of basalts, dacites, ignimbrites, together with the emplacements of stocks of gabbros, gabbroic dolerites, dolerites, granites, granophyres, felsites, aplites, and quartz veins. Some of the basement rocks are enriched in Fe, Cu and other base metals and have been emplaced and assimilated by the volcano- plutonic rocks of the Nandgaon group and Malanjkhand granitoids. The Nandgaon group rocks and the Malanjkhand granitoids have anomalous intrinsic abundance of U, REE, Cu, Fe and quite a few metals in different sectors. Thermo-tectonic (∼ 1.5 Ga) reactivation event(s) along the KRZ apart from facilitating formation of agglomerates, ignimbrites and tectonic breccias has promoted emplacement of plutonic and subvolcanic phases and their metasomatising and hydrothermal metal bearing fluids. In the Malanjkhand complex sector Cu±Mo±Fe±Ag±Au±REE±Zn metallisation and in the Dongargarh Massif sector U±Th±F±Fe±Pb±Zn±Cu±REE±Zr metallisation are manifested. The detection of Fe+U+REE ±Cu±Ni metallisation in the Bortalao sandstones of the Dongargaon - Lohara area, located in between Malanjkhand ore zone and the Chandidongri (Dongargarh granite hosted) fluorite-rich and Pb±Zn±Cu±U - bearing ore zone, considered to lie on the same (Malanjkhand - Chandidongri) fault/shear lineament is rated highly significant. This observation supports the prognosis that the terrain lying in between the Dongargarh Massif and the Malanjkhand Granitoid complex should be the locus for the mixing of the respective metal bearing fluids and such a terrain therefore should be considered as a first order

  7. Geology, mineralization, Rb-Sr & Sm-Nd geochemistry, and U–Pb zircon geochronology of Kalateh Ahani Cretaceous intrusive rocks, southeast Gonabad

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour

    2013-10-01

    Full Text Available Kalateh Ahani is located 27 km southeast of Gonabad within the Khorasan Razavi province. The area is part of Lut Block. Sub-volcanic monzonitic rocks intruded regional metamorphosed Shemshak Formation (Jurassic age. Magnetic susceptibility of less altered monzonitic rocks is 0.6%., As, Pb and Zn > 1%, Au up to 150 ppb and Sn = 133 ppm. The Sn content of vein in the northern part of Kalateh Ahani (Rud Gaz is > 1%. Based on mineralization, alteration and geochemistry, it seems that Sn mineralization is associated with the Cretaceous monzonitic rocks. Zircon U–Pb dating indicates that the age of the monzonitic rocks associated with mineralization is 109 Ma (Lower Cretaceous. Based on (87Sr/86Sri = 0.71089-0.710647 and (143Nd/144Ndi = 0.512113-0.51227 of the monzonitic rocks, the magma for these rocks were originated from the continental crust. This research has opened new window with respect to Sn-Cu mineralization and exploration within the Lut Block which is associated with Cretaceous granitoid rocks (reduced type, ilmenite series originated from the continental crust.

  8. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ikwuakor, K.C.

    1994-03-01

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  9. Rhyacian evolution of the eastern São Luís Craton: petrography, geochemistry and geochronology of the Rosário Suite

    Directory of Open Access Journals (Sweden)

    Bruna Karine Correa Nogueira

    Full Text Available ABSTRACT: The São Luís Cráton comprises an area between northeast Pará state and northwest Maranhão that exposes Paleoproterozoic granitic suites and meta-volcanosedimentary sequences. In the east of this geotectonic unit, about 70 km south of São Luís, there is a portion of the São Luís Craton, represented by the intrusive Rosario Suite (RS. This work is focused on rocks of this suite, including petrographic, lithochemical and geochronological studies to understand the crustal evolution of these granitoid rocks. The rock spectrum varies from tonalitic to granodioritic, quartz dioritic and granitic compositions, and there are partial structural and mineralogical changes related to deformation along transcurrent shear zones. The geochemical studies show granitic metaluminous compositions of the calc-alkaline series with I-type affinity typical of magmatic arc. Rare earth elements show marked fractionation and slight Eu positive or negative anomalies (Eu/Eu* = 0.82 to 1.1. Zircon U-Pb data provided consistent ages of 2165 ± 7 Ma, 2170 ± 7 Ma, 2170 ± 7 Ma, 2161 ± 4 Ma and 2175 ± 8 Ma, dating emplacement of these granitoids as Paleoproterozoic (Rhyacian. Sm-Nd isotopic data provided model ages (TDM of 2.21 to 2.31 Ga with positive values of εNd +1.9 to +3.2 (t = 2.17 Ga, indicating predominantly Rhyacian crustal sources for the parental magmas, similar to those ones found in other areas of the São Luís Craton. The data, integrated with published geological and geochronological information, indicate the occurrence of an important continental crust formation event in this area. The Paleoproterozoic evolution between 2.17 and 2.15 Ga is related to the Transamazonian orogeny. The granitoids of the Rosario Suite represent the main phase of continental arc magmatism that has continuity in other parts of the São Luís Craton and can be correlated with Rhyacian accretionary magmatism in the northwestern portion of the Amazonian Craton that

  10. High Sr/Y rocks are not all adakites!

    Science.gov (United States)

    Moyen, Jean-François

    2010-05-01

    The name of "adakite" is used to describe a far too large group of rocks, whose sole common feature is high Sr/Y and La/Yb ratios. Defining adakites only by this criterion is misleading, as the definition of this group of rocks does include many other criteria, including major elements. In itself, high (or commonly moderate!) Sr/Y ratios can be achieved via different processes: melting of a high Sr/Y (and La/Yb) source; deep melting, with abundant residual garnet; fractional crystallization or AFC; or interactions of felsic melts with the mantle, causing selective enrichment in LREE and Sr over HREE. A database of the compositions of "adakitic" rocks - including "high silica" and "low silica" adakites, "continental" adakites and Archaean adakites—was assembled. Geochemical modeling of the potential processes is used to interpret it, and reveals that (1) the genesis of high-silica adakites requires high pressure evolution (be it by melting or fractionation), in equilibrium with large amounts of garnet; (2) low-silica adakites are explained by garnet-present melting of an adakite-metasomatized mantle, i.e at depths greater than 2.5 GPa; (3) "Continental" adakites is a term encompassing a huge range of rocks, with a corresponding diversity of petrogenetic processes, and most of them are different from both low- and high- silica adakites; in fact in many cases it is a complete misnomer and the rocks studied are high-K calc-alkaline granitoids or even S-type granites; (4) Archaean adakites show a bimodal composition range, with some very high Sr/Y examples (similar to part of the TTG suite) reflecting deep melting (> 2.0 GPa) of a basaltic source with a relatively high Sr/Y, while lower Sr/Y rocks formed by shallower (1.0 GPa) melting of similar sources. Comparison with the Archaean TTG suite highlights the heterogeneity of the TTGs, whose composition spreads the whole combined range of HSA and Archaean adakites, pointing to a diversity of sources and processes

  11. Geochronology, geochemistry, and petrogenesis of late Permian to early Triassic mafic rocks from Darongshan, South China: Implications for ultrahigh-temperature metamorphism and S-type granite generation

    Science.gov (United States)

    Xu, Wang-Chun; Luo, Bi-Ji; Xu, Ya-Jun; Wang, Lei; Chen, Qi

    2018-05-01

    The role of the mantle in generating ultrahigh-temperature metamorphism and peraluminous S-type granites, and the extent of crust-mantle interaction are topics fundamental to our understanding of the Earth's evolution. In this study we present geochronological, geochemical, and Sr-Nd-Hf isotopic data for dolerites and mafic volcanic rocks from the Darongshan granite complex belt in western Cathaysia, South China. LA-ICP-MS U-Pb zircon analyses yielded magma crystallization ages of ca. 250-248 Ma for the dolerites, which are coeval with eruption of the mafic volcanic rocks, ultrahigh-temperature metamorphism, and emplacement of S-type granites in the Darongshan granite complex belt. The mafic volcanic rocks are high-K calc-alkaline or shoshonitic, enriched in Th, U, and light rare earth elements, and depleted in Nb, Ta and Ti. The dolerites are characterized by high Fe2O3tot (11.61-20.39 wt%) and TiO2 (1.62-3.17 wt%), and low MgO (1.73-4.38 wt%), Cr (2.8-10.8 ppm) and Ni (2.5-11.4 ppm). Isotopically, the mafic volcanic rocks have negative whole-rock εNd(t) values (-6.7 to -9.0) and high ISr values (0.71232 to 0.71767), which are slightly depleted compared with the dolerite samples (εNd(t) = -10.3 to -10.4 and ISr = 0.71796 to 0.71923). Zircons in the dolerites have εHf(t) values of -7.6 to -10.9. The mafic volcanic rocks are interpreted to have resulted from the partial melting of an enriched lithospheric mantle source with minor crustal contamination during ascent, whereas the dolerites formed by late-stage crystallization of enriched lithospheric mantle-derived magmas after fractionation of olivine and pyroxene. The formation of these mantle-derived mafic rocks may be attributed to transtension along a NE-trending strike-slip fault zone that was related to oblique subduction of the Paleo-Pacific plate beneath South China. Such underplated mafic magmas would provide sufficient heat for the generation of ultrahigh-temperature metamorphism and S-type granites, and

  12. "Rocking-Chair"-Type Metal Hybrid Supercapacitors.

    Science.gov (United States)

    Yoo, Hyun Deog; Han, Sang-Don; Bayliss, Ryan D; Gewirth, Andrew A; Genorio, Bostjan; Rajput, Nav Nidhi; Persson, Kristin A; Burrell, Anthony K; Cabana, Jordi

    2016-11-16

    Hybrid supercapacitors that follow a "rocking-chair"-type mechanism were developed by coupling divalent metal and activated carbon electrodes in nonaqueous electrolytes. Conventional supercapacitors require a large amount of electrolyte to provide a sufficient quantity of ions to the electrodes, due to their Daniell-type mechanism that depletes the ions from the electrolyte while charging. The alternative "rocking-chair"-type mechanism effectively enhances the energy density of supercapacitors by minimizing the necessary amount of electrolyte, because the ion is replenished from the metal anode while it is adsorbed to the cathode. Newly developed nonaqueous electrolytes for Mg and Zn electrochemistry, based on bis(trifluoromethylsulfonyl)imide (TFSI) salts, made the metal hybrid supercapacitors possible by enabling reversible deposition on the metal anodes and reversible adsorption on an activated carbon cathode. Factoring in gains through the cell design, the energy density of the metal hybrid supercapacitors is projected to be a factor of 7 higher than conventional devices thanks to both the "rocking-chair"-type mechanism that minimizes total electrolyte volume and the use of metal anodes, which have substantial merits in capacity and voltage. Self-discharge was also substantially alleviated compared to conventional supercapacitors. This concept offers a route to build supercapacitors that meet dual criteria of power and energy densities with a simple cell design.

  13. Use of petrophysical data for siting of deep geological repository of radioactive waste

    Science.gov (United States)

    Petrenko, Liliana; Shestopalov, Vyacheslav

    2017-11-01

    The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.

  14. Use of petrophysical data for siting of deep geological repository of radioactive waste

    Directory of Open Access Journals (Sweden)

    Petrenko Liliana

    2017-01-01

    Full Text Available The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.

  15. Preliminary state-of-the-art survey: mining techniques for salt and other rock types

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This is a systematic review of the state-of-the-art of underground mining and excavation technology in the U.S. as applied to salt, limestone, shale, and granite. Chapter 2 covers the basic characteristics of these rock types, the most frequently used underground mining methods, shaft and slope entry construction, equipment, and safety and productivity data. Chapters 3 and 4 summarize underground salt and limestone mining in the U.S. Chapter 5 shows that large amounts of thick shale exist in the U.S., but little is mined. Chapter 6 discusses underground excavations into granite-type rocks. Suggestions are given in the last chapter for further study. (DLC)

  16. Petrogenesis of Mesozoic granites in the Xitian, South China: Evidence from whole-rock geochemistry and zircon isotopes

    Science.gov (United States)

    Liu, Q.; Sun, J.; He, M.; Hou, Q.; Niu, R.

    2017-12-01

    Mesozoic granitoids are widespread in southeastern China, which accompanied with lots of world-famous polymetallic deposits. The mineralization is believed to be related to the Mesozoic granitic magmatism. However, the petrogenesis of these granites and their relation to the mineralization are still debated. As a typical granitic pluton, Xitian granites from the eastern Hunan Province are formed during this period and associated with tungsten-tin deposit. Whole-rock geochemical, SIMS zircon geochronology and oxygen isotopes, as well as LA-ICPMS zircon Lu-Hf isotopic analyses, were carried out on a suite of rocks from Xitian granitic pluton to constrain their magmatic sources and petrogenesis. Xitian granitic pluton is mainly composed of biotite adamellite, biotite granite, fine-grained granite. SIMS and LA-ICPMS U-Pb dating of zircons indicate that there are two episodes of these rocks, i.e., Late Triassic granites (227-233Ma) and Late Jurassic granites (150-154Ma). The Xitian granites are silica-rich, potassic and weakly peraluminous. Petrographic and geochemical features show that they are highly fractionated I-type granites. The combined elemental and isotopic results indicated that the Late Triassic granite in Xitian area experienced a process of crystal fractionation of crustal-derived magmas coupled with strong assimilation of the surrounding rocks. The occurrence of Jurassic granitoids in Xitian area is attributed to ascending of mantle-derived magmas, which provide heat for partial melting of crustal materials. The Late Jurassic granite may be derived from juvenile crust or partial melting of ancient crustal rocks, whereas high degrees of crystal fractionation further enriched tungsten-tin in the evolved granitic rocks. This work was financially supported by the Research Cooperation between Institute and University of Chinese Academy of Sciences grant (Y552012Y00), Public Welfare Project of the Ministry of land and Resources of China (201211024

  17. Towards the challenging REE exploration in Indonesia

    Science.gov (United States)

    Setiawan, Iwan

    2018-02-01

    Rare earth elements (REE) are the seventeen elements, including fifteen from 57La to 71Lu, in addition to 21Sc and 39Y. In rock-forming minerals, rare earth elements typically occur in compounds as trivalent cations in carbonates, oxides, phosphates, and silicates. The REE occur in a wide range of rock types: igneous, sedimentary and metamorphic rocks. REE are one of the critical metals in the world. Their occurrences are important to supply the world needs on high technology materials. Indonesia has a lot of potential sources of REE that are mainly from residual tin mining processes in Bangka islands, which are associated with radioactive minerals e.g. monazite and xenotime. However, the REE from monazite and xenotime are difficult to extract and contain high radioactivity. Granitoids are widely distributed in Sumatra, Sulawesi, Kalimantan and Papua. They also have a very thick weathering crusts. Important REE-bearing minerals are allanite and titanite. Their low susceptibilities during weathering result an economically potential REE concentration. I-/A- type granitoids and their weathered crusts are important REE sources in Indonesia. Unfortunately, their distribution and genesis have not been deeply studied. Future REE explorations challenge are mainly of the granitoids their weathered crusts. Geochemical and mineralogical characterization of type of granitoids and their weathered crusts, the hydrothermally altered rocks, and clear REE regulation will help discover REE deposits in Indonesia.

  18. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    Science.gov (United States)

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  19. Defending dreamer’s rock

    OpenAIRE

    Beck, Günter U.

    2007-01-01

    Defending dreamer’s rock : Geschichte, Geschichtsbewusstsein und Geschichtskultur im Native drama der USA und Kanadas. - Trier : WVT Wiss. Verl. Trier, 2007. - 445 S. - (CDE - Studies ; 14). - Zugl.: Augsburg, Univ., Diss., 2006

  20. Fracture toughness properties of rocks in Olkiluoto: Laboratory measurements 2008-2009

    Energy Technology Data Exchange (ETDEWEB)

    Siren, T.

    2012-05-15

    In Olkiluoto an underground rock characterization facility (ONKALO) for the final disposal site of spent nuclear fuel has been under thorough research many years, but further knowledge is needed on fracture toughness parameters. Fracture toughness parameters are important for example in fracture mechanics prediction for Posiva's Olkiluoto Spalling Experiment (POSE). This working report describes a laboratory campaign that was done between 2008 and 2009. The campaign aimed at determining the fracture mechanics parameters as well as density and ultrasonic velocities for Olkiluoto rocks. The specimens delivered were selected by Posiva; the core showed no damage and the quality of the delivered cores was good with varying sample diameter. Most of the test samples (9 out of 12) are gneissic rock. The Mode I fracture toughness was determined using two different methods to account for two different fracturing directions. The methods are the Chevron Bend (CB) test as proposed in the ISRM Suggested Method and a method based on the Brazilian Disk (BD) experiment. The Mode II fracture toughness was determined using the Punch-Through Shear with Confining Pressure experiment on the remaining pieces from the CB testing. The scatter in the results is very large, even within one piece of core sample. Usually the scatter of results is less than 5 %. The high scatter in the data at hand is believed to be due to the very inhomogeneous nature of the rock material. The magnitude of the determined Mode I fracture toughness compares well with available reported data for medium to coarse grained granitoide rocks. However the scatter of the mode II fracture toughness values is higher than experienced on other rock types, but the variability is reasonable for the inhomogeneous rock type. Distinguishing the fracture toughness values for different anisotropy directions would require more thorough testing with quality samples at different anisotropy directions. However since fracture

  1. Pb, Sr and Nd isotope geological characteristics and its evolution of Jianchaling rock

    International Nuclear Information System (INIS)

    Pang Chunyong; Chen Minyang; Xu Wenxin

    2003-01-01

    It has been a long time debatable subject on the raw material source and its genesis of Jianchaling ultrabasic rock, because the original rock phases, the original mineral compositions, texture and structure, even part of the chemical components of the rocks had been changed completely after many periods and phases of metamorphism. According to the content of Pb, Rb, Sr, Nd elements and their Pb, Sr, Nd isotope compositions of the rocks, together with the isotope geological age of late magmatic activities, the authors analyze the evolution of Pb, Sr, Nd isotope compositions, The inferred initiate Nd isotope ratio of ultrabasic rocks is 0.510233, lower than that of meteorite unity at a corresponding period, its ε Nd(T)>O; The initiate Sr ratios inferred by the isotope geological age ranges from 0.702735 to 0.719028; Projecting the lead isotope compositions on the Pb tectonic evolution model, the result indicates that the raw material of Jianchaling ultrabasic rock coming from the deplete upper mantle. The ultrabasic magma which enrich of Mg, Ni and less S intruded the crust and formed the Jianchaling ultrabasic rock at late Proterozoic era (927 Ma±). The forming time of serpentinite is mostly equal to the granitoid intruding time, showing the intrusion o flate acidic magma caused a large scale alteration of the ultrabasic rocks and formed the meta-ultrabasic phase rock observed today. (authors)

  2. Petrogenesis of Luchuba and Wuchaba granitoids in western Qinling: geochronological and geochemical evidence

    Science.gov (United States)

    Kong, Juanjuan; Niu, Yaoling; Duan, Meng; Zhang, Yu; Hu, Yan; Li, Jiyong; Chen, Shuo

    2017-12-01

    The West Qinling Orogenic Belt (WQOB) is a major portion of the Qinling-Dabie-Sulu Orogen and holds essential information for understanding the prolonged evolution of the northeastern branch of the Paleo-Tethys in East Asia. This study focuses on the petrogenesis of granitoids from Luchuba and Wuchaba plutons in the WQOB. We obtained zircon U-Pb ages of 211 ± 1.4 Ma for the Luchuba pluton and 218.7 ± 1.3 Ma for the Wuchaba pluton, which are the same as the proposed timing of continental collision at ˜220 Ma. We thus interpret the granitoids to represent a magmatic response to the collision between the North China Craton (NCC) and the Yangtze Block (YB). The two plutons are metaluminous to weakly peraluminous I-type granitoids. Samples from the two plutons show strong light rare earth element (REEs) enrichment and weak heavy REE depletion, with varying negative Eu anomalies, which is most consistent with significant plagioclase fractionation although the possible effect of plagioclase as residual phase in the magma source region cannot be ruled out. In primitive mantle normalized multi-element variation diagrams, nearly all the samples show negative Nb, Ta, P and Ti anomalies and relative enrichment in Rb, Pb, U and K. These characteristics resemble those of the average continental crust. The Luchuba pluton has lower (87Sr/86Sr)i (0.7051 to 0.7104), higher ɛNd(t) (-8.11 to -5.73) and ɛHf(t) (-6.70 to -1.65) than mature continental crust ([87Sr/86Sr] i > 0.72, ɛNd(t) pluton also has lower (87Sr/86Sr)i (0.7069 to 0.7080), higher ɛNd(t) (-9.86 to -3.34) and ɛHf(t) (-5.69 to 1.58) than mature continental crust. We conclude that the Luchuba and Wuchaba granitoids in the WQOB are best explained as resulting from fractional crystallization with crustal assimilation of parental magmas derived from melting of Mianlue oceanic crust under amphibolite facies conditions during the initial stage of continental collision between the North China Craton and the Yangtze Block

  3. Basic rocks in Finland

    International Nuclear Information System (INIS)

    Piirainen, T.; Gehoer, S.; Iljina, M.; Kaerki, A.; Paakkola, J.; Vuollo, J.

    1992-10-01

    Basic igneous rocks, containing less than 52% SiO 2 , constitute an important part of the Finnish Archaean and Proterozoic crust. In the Archaean crust exist two units which contain the majority of the basic rocks. The Arcaean basic rocks are metavolcanics and situated in the Greenstone Belts of Eastern Finland. They are divided into two units. The greenstones of the lower one are tholeiites, komatiites and basaltic komatiites. The upper consists of bimodal series of volcanics and the basic rocks of which are Fe-tholeiites, basaltic komatiites and komatiites. Proterozoic basic rocks are divided into seven groups according to their ages. The Proterozoic igneous activity started by the volominous basic magmatism 2.44 Ga ago. During this stage formed the layered intrusions and related dykes in the Northern Finland. 2.2 Ga old basic rocks are situated at the margins of Karelian formations. 2.1 Ga aged Fe-tholeiitic magmatic activity is widespread in Eastern and Northern Finland. The basic rocks of 1.97 Ga age group are met within the Karelian Schist Belts as obducted ophiolite complexes but they occur also as tholeiitic diabase dykes cutting the Karelian schists and Archean basement. The intrusions and the volcanics of the 1.9 Ga old basic igneous activity are mostly encountered around the Granitoid Complex of Central Finland. Subjotnian, 1.6 Ga aged tholeiitic diabases are situated around the Rapakivi massifs of Southern Finland, and postjotnian, 1.2 Ga diabases in Western Finland where they form dykes cutting Svecofennian rocks

  4. Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing'an Range, NE China

    Science.gov (United States)

    Feng, Zhiqiang; Liu, Yongjiang; Li, Yanrong; Li, Weimin; Wen, Quanbo; Liu, Binqiang; Zhou, Jianping; Zhao, Yingli

    2017-08-01

    The Xinlin-Xiguitu suture zone, located in the Great Xing'an Range, NE China, in the eastern segment of the Central Asian Orogenic Belt (CAOB), represents the boundary between the Erguna and Xing'an micro-continental blocks. The exact location of the Xinlin-Xiguitu suture zone has been debated, especially, the location of the northern extension of the suture zone. In this study, based on a detailed field, geochemical, geochronological and Sr-Nd-Hf isotope study, we focus our work on the Cambrian igneous rocks in the Erguna-Xing'an block. The Xinglong granitoids, mainly include ∼520 Ma diorite, ∼470 Ma monzogranite and ∼480 Ma pyroxene diorite. The granitoids show medium to high-K calc-alkaline series characteristics with post-collision granite affinity. The circa 500 Ma granitoids have low εHf (t) values (-16.6 to +2.2) and ancient two-stage model (TDM2) ages between 1317 Ma and 2528 Ma. These results indicate the primary magmas of the Xinglong granitoids were probably derived from the partial melting of a dominantly Paleo-Mesoproterozoic ;old; crustal source with possible different degrees of addition of juvenile materials, and formed in a post-collision tectonic setting after the amalgamation of the Erguna and Xing'an blocks. Compared with the Xinglong granitoids, the Duobaoshan igneous rocks are consisted of the approximately coeval rhyolitic tuffs (491 ± 5 Ma) and ultramafic intrusions (497 ± 5 Ma) within the Duobaoshan Formation. They are generally enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), consistent with the geochemistry of igneous rocks from island arcs or active continental margins. The ultramafic rocks have high positive εHf (t) values (+1.3 to +15) and εNd (t) (+1.86 to +2.28), and relatively young two-stage model (TDM2) ages and low initial 87Sr/86Sr ratios (0.70628-0.70853), indicating the partial melting of a depleted mantle source from a subducted slab in

  5. Migration of fluids as a tool to evaluate the feasibility of the implantation of geological radioactive wastes repositories (RARN) in granitoid rocks: tests on granites submitted to natural deformation vs. not deformed

    International Nuclear Information System (INIS)

    Lopes, Nilo Henrique Balzani; Barbosa, Pedro Henrique Silva; Santos, Alanna Leite dos; Amorim, Lucas Eustáquio Dias; Freitas, Mônica Elizetti de; Rios, Francisco Javier

    2017-01-01

    Fluid composition and migration studies in granitoid rocks subjected to deformation events are a factor that should be considered in the selection of geologically favorable areas for RANR construction, and may be an excellent complement to engineering barrier designs. The research objective was to develop an academic approach, comparing the behavior of deformed and non-deformed granites, not being related to any CNEN project of deploying repositories. It is concluded that in the choice of suitable sites for the construction of repositories, granite bodies that are submitted to metamorphic / deformation / hydrothermal events or that are very fractured should be disregarded. The domes of granite batholith that have undergone hydraulic billing should also be discarded. It has been found that, because of the warming caused by radioactive decay reactions, there is a real possibility that the release of potentially abrasive fluids contained in the minerals can reach and corrode the walls of the repositories and / or packaging

  6. Pore Type Classification on Carbonate Reservoir in Offshore Sarawak using Rock Physics Model and Rock Digital Images

    International Nuclear Information System (INIS)

    Lubis, L A; Harith, Z Z T

    2014-01-01

    It has been recognized that carbonate reservoirs are one of the biggest sources of hydrocarbon. Clearly, the evaluation of these reservoirs is important and critical. For rigorous reservoir characterization and performance prediction from geophysical measurements, the exact interpretation of geophysical response of different carbonate pore types is crucial. Yet, the characterization of carbonate reservoir rocks is difficult due to their complex pore systems. The significant diagenesis process and complex depositional environment makes pore systems in carbonates far more complicated than in clastics. Therefore, it is difficult to establish rock physics model for carbonate rock type. In this paper, we evaluate the possible rock physics model of 20 core plugs of a Miocene carbonate platform in Central Luconia, Sarawak. The published laboratory data of this area were used as an input to create the carbonate rock physics models. The elastic properties were analyzed to examine the validity of an existing analytical carbonate rock physics model. We integrate the Xu-Payne Differential Effective Medium (DEM) Model and the elastic modulus which was simulated from a digital carbonate rock image using Finite Element Modeling. The results of this integration matched well for the separation of carbonate pore types and sonic P-wave velocity obtained from laboratory measurement. Thus, the results of this study show that the integration of rock digital image and theoretical rock physics might improve the elastic properties prediction and useful for more advance geophysical techniques (e.g. Seismic Inversion) of carbonate reservoir in Sarawak

  7. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    International Nuclear Information System (INIS)

    Feng Mingyue

    1997-01-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits

  8. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1997-03-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits.

  9. Granitoids of South Korea and Southwest Japan. Trace element evidence regarding their differentiation

    International Nuclear Information System (INIS)

    Tsusue, Akio; Mizuta, Toshio; Tamai, Tadaharu.

    1994-01-01

    Although we have already published our trace element data for granitoids of South Korea and Southwest Japan, and we have interpreted REE patterns and Ba, Rb and Sr relationships of the granitoids (Tsusue et al., 1986, 1987a, 1987b, 1988), we intend to review briefly the trace element data of South Korea and Southwest Japan in this report. (J.P.N.)

  10. Testing the Mojave-Sonora megashear hypothesis: Evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico

    Science.gov (United States)

    Amato, J.M.; Lawton, T.F.; Mauel, D.J.; Leggett, W.J.; Gonzalez-Leon, C. M.; Farmer, G.L.; Wooden, J.L.

    2009-01-01

    U-Pb ages and Nd isotope values of Proterozoic rocks in Sonora, Mexico, indicate the presence of Caborca-type basement, predicted to lie only south of the Mojave-Sonora mega-shear, 40 km north of the postulated megashear. Granitoids have U-Pb zircon ages of 1763-1737 Ma and 1076 Ma, with ??Nd(t) values from +1.4 to -4.3, typical of the Caborca block. Lower Jurassic strata near the Proterozoic rocks contain large granitic clasts with U-Pb ages and ??Nd(t) values indistinguishable from those of Caborcan basement. Caborca-type basement was thus present at this location north of the megashear by 190 Ma, the depositional age of the Jurassic strata. The Proterozoic rocks are interpreted as parautochthonous, exhumed and juxtaposed against the Mesozoic section by a reverse fault that formed a footwall shortcut across a Jurassic normal fault. Geochronology, isotope geochemistry, and structural geology are therefore inconsistent with Late Jurassic megashear displacement and require either that no major transcurrent structure is present in Sonora or that strike-slip displacement occurred prior to Early Jurassic time. ?? 2009 The Geological Society of America.

  11. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    Science.gov (United States)

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  12. Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey.

    Science.gov (United States)

    Canbaz, Buket; Cam, N Füsun; Yaprak, Günseli; Candan, Osman

    2010-09-01

    The surveys of natural gamma-emitting radionuclides in rocks and soils from the Ezine plutonic area were conducted during 2007. Direct dose measurement using a survey meter was carried out simultaneously. The present study, which is part of the survey, analysed the activity concentrations of (238)U, (232)Th and (40)K in granitoid samples from all over the region by HPGe gamma spectrometry. The activity concentrations of (226)Ra ranged from 94 to 637 Bq kg(-1), those of (232)Th ranged from 120 to 601 Bq kg(-1)and those of (40)K ranged from 1074 to 1527 Bq kg(-1) in the analysed rock samples from different parts of the pluton. To evaluate the radiological hazard of the natural radioactivity in the samples, the absorbed dose rate (D), the annual effective dose rate, the radium equivalent activity (Ra(eq)) and the external (H(ex)) hazard index were calculated according to the UNSCEAR 2000 report. The thorium-to-uranium concentration ratios were also estimated.

  13. Petrography and geochronology (U/Pb-Sm/Nd) the Passagem Granite, Pensamiento Granitoid Complex, Paragua Terrane, SW Amazon Craton, Mato Grosso, Brazil; Petrologia e geocronologia (U/Pb-Sm/Nd) do Granito Passagem, Complexo Granitoide Pensamiento, SW do Craton Amazonico (MT)

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Gisely Carmo de, E-mail: giselycarmo@hotmail.co [Universidade Federal de Mato Grosso (ICET/UFMT), Cuiaba, MT (Brazil). Inst. de Ciencias Exatas e da Terra. Programa de Pos-Graduacao em Geociencias; Sousa, Maria Zelia Aguiar de, E-mail: mzaguiar@terra.com.b [Universidade Federal de Mato Grosso(ICET/UFMT), Cuiaba, MT (Brazil). Inst. de Ciencias Exatas e da Terra. Dept. de Recursos Minerais; Ruiz, Amarildo Salina; Matos, Joao Batista de, E-mail: asruiz@gmail.co, E-mail: jmatos@cpd.ufmt.b [Universidade Federal de Mato Grosso (ICET/UFMT), Cuiaba, MT (Brazil). Inst. de Ciencias Exatas e da Terra. Dept. de Geologia Geral

    2010-09-15

    The Passagem granite includes stocks, plugs and dikes located in the Ricardo Franco hill - Vila Bela da Santissima Trindade region - state of Mato Grosso, central Brazil. The Passagem Granite is included in the Paragua terrane - SW Amazonian Craton. It consists of isotropic monzogranite, sienogranite and more rarely granodiorites with leucocratic dark gray to white color. These rocks range from hypidomorphic inequigranular to xenomorphic texture, fine to medium grained. Biotite is the only primary mafic present as essential phase and characterize an expanded slightly acid sequence formed by a sub-alkaline magmatism of high-potassium calc-alkaline, slightly peraluminous composition from arc magmatic tectonic environment during a post-collisional period. Mechanism of fractional crystallization of plagioclase, biotite, titanite, apatite and zircon associated with simultaneous crustal assimilation are suggested for the evolution of these rocks. The results support the hypothesis of a post-collisional magmatism in the Paragua terrane at 1284 +- 20 Ma corresponding to the crystallization age of the Passagem granite. This paper propose that Passagem Granite represents as an extension in Brazilian terrane of the Pensamiento Granitoid Complex. (author)

  14. Characterization of Rock Types at Meridiani Planum, Mars using MER 13-Filter Pancam Spectra

    Science.gov (United States)

    Nuding, D. L.; Cohen, B. A.

    2009-01-01

    The Mars Exploration Rover Opportunity has traversed more than 13 km across Meridiani Planum, finding evidence of ancient aqueous environments that, in the past, may have been suitable for life. Meridiani bedrock along the rover traverse is a mixture in composition and bulk mineralogy between a sulfate-rich sedimentary rock and hematite spherules ("blueberries"). On top of the bedrock, numerous loose rocks exist. These rocks consist of both local bedrock and "cobbles" of foreign origin. The cobbles provide a window into lithologic diversity and a chance to understand other types of martian rocks and meteorites. This study was also an attempt to establish a method to expand upon those of Mini-TES to remotely identify rocks of interest to make efficient use of the rover s current resources.

  15. Geochemistry and meaning of the geotectonic position of plutonic rocks from Chapada region, Goias, Brazil

    International Nuclear Information System (INIS)

    Kuyumjian, R.M.

    1989-01-01

    In common with other orogenic belts, in which the presence of both, granitic and small basic-ultrabasic intrusions are characteristics of medium-high pressure metamorphic terranes, the geological and geochemical evidences indicate a close relationship between the granitoid, gabbroic and pyroxenitic plutons and the orogenic metabasaltic rocks from the Chapada volcano-sedimentary sequence. The granitoids are tonalitic and, on discriminant diagrams, they plot in the volcanic arc and pre-collisional fields. They display geochemical characteristics similar to the Jamaican oceanic arc-related granities. They show low LIL and HSF element abundances, low (Ta, Nb)/(K, La, etc) ratios and very low concentrations of Th, Hf, K and Y, when compared to patterns of calkaline, alkali-calcic and alkaline-peralkaline granitoids of magmatic arcs. These chemical features are characteristic of immature island arcs mantle-derived intrusives. The Chapada olivine gabbro has a chondrite-normalized spidergram, closely resembling those of island-arc basaltic lavas, the compositions of its coexisting olivine and plagioclase been similar to those from arc-related cumulate gabbros, and therefore, it could be the plutonic equivalent of the arc volcanics in the Chapada region. It is suggested that the evolution of the granitoids and gabbro intrusives from Chapada are related to a process of subduction that occurred in central Brazil during the Brasiliano/Pan-African event. (author) [pt

  16. 222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland)

    International Nuclear Information System (INIS)

    Przylibski, Tadeusz A.; Gorecka, Joanna

    2014-01-01

    Based on research conducted in three Variscan granitoid massifs located within the crystalline Bohemian Massif, the authors confirmed that the higher the degree of their erosional dissection, the smaller the concentration of 222 Rn in groundwaters circulating in these massifs. This notion implies that radon waters and high-radon waters, from which at least some of the dissolved radon should be removed before feeding them as drinking water to the water-supply system, could be expected in granitoid massifs which have been poorly exposed by erosion. At the same time, such massifs must be taken into account as the areas of possible occurrence of radon medicinal waters, which in some countries can be used for balneotherapy in health resorts. Slightly eroded granitoid massifs should be also regarded as very probable radon prone areas or areas of high radon potential. - Highlights: • The concentration of 222 Rn in groundwater depends on the zone of the granitoid massif which is exposed on the ground surface. • The highest 222 Rn concentrations occur in the least eroded granitoid massifs, the lowest in massifs with exposed root parts. • The stronger the erosional dissection of a granitoid massif, the lower 222 Rn concentration in groundwaters in this massif. • Not all granitoid massifs are areas with groundwaters containing high concentrations of 222 Rn. • The least eroded granitoid massifs are radon prone areas with the occurrence of high-radon and radon groundwaters

  17. Mineral chemistry of clinopyroxene: guidance on geo- thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan

    OpenAIRE

    Rezvan Mehvari; Moussa Noghreyan; Mortaza Sharifi; Mohammad Ali Mackizadeh; Seyed Hassan Tabatabaei; Ghodrat Torabi

    2017-01-01

    Introduction The Nabar area that is a part of the Urumieh- Dokhtar volcano- plutonic belt is located in the south of Kashan. Research works such as Emami (Emami, 1993) and Abbasi (Abbasi, 2012) have been done about the geology of this area. Rock units in the study area contain middle- upper Eocene intermediate to acidic lavas and pyroclastic rocks, green marl, shale and sandy marls of Oligo- Miocene, limestones of Qom formation, intrusive granitoids with Oligo- Miocene age and quaternar...

  18. The Rb/Sr ages for granitoids of the Middle Chukotka: a new approach to the geological history of the region

    International Nuclear Information System (INIS)

    Efremov, S.V.; Kozlov, V.D.; Sandimirova, G.P.

    2000-01-01

    For studying the history of geological evolution of the Middle Chukotka in the Mesozoic by the method of Rb-Sr dating the age of granitoids in the region was determined. It was ascertained that the granitoids have different genetic nature, their formation involving the most intensive tectonic restructuring. Magmatism was manifested in two stages. Formation of the first stage granitoids (126-144 mln. years) relates to orogenesis, while that of the second stage granitoids (∼ 80 mln. years) - to the process of the Chukotka folded region activation [ru

  19. Barren Miocene granitoids in the Central Andean metallogenic belt, Chile: Geochemistry and Nd-Hf and U-Pb isotope systematics

    International Nuclear Information System (INIS)

    Deckart, Katja; Godoy, Estanislao; Bertens, Alfredo; Jerez, Daniela; Saeed, Ayesha

    2010-01-01

    Four Middle-to-Late Miocene barren plutonic complexes that occur between the giant porphyry copper deposits of the central Chilean Andes were selected for U-Pb LA-ICPMS geochronology and Hf-isotope systematics on single zircon grains. Major and trace elements and Sr-Nd-Hf isotope whole rock geochemical studies were undertaken to compare with slightly younger or coeval barren and fertile intrusive rocks between 32 o and 34 o S. The studied granitoids yield resolvable crystallization ages of 11.3±0.1 Ma (Cerro Meson Alto massif), 10.3±0.2 Ma (La Gloria pluton), 14.9±0.2 Ma/14.9±0.1 Ma (Yerba Loca stock) and 11.2±0.1 Ma/14.7±0.1 Ma (San Francisco Batholith). Major and trace elements discard an adakitic signature as suggested for coeval porphyric intrusions at 32 o S, slightly younger mineralized porphyries at Rio Blanco-Los Bronces deposit and other Cenozoic adakites. Volcanic host rocks are less fractionated than the intrusive rock units. The same observation can be made for the unmineralized northern plutons compared to the southern ones. Initial Sr-Nd isotope data show insignificant variation (0.703761-0.704118 and 0.512758- 0.512882), plotting in the mantle array. Trace element enrichment can be explained by addition of subducted-slab fluids and/or terrigenous sediments to the mantle wedge prior to and/or slight crustal input during magma ascent. Zircon grains separated from these barren intrusives share a similar initial εHf-data variation for the younger age group (10-12 Ma; 7.04-9.54) and show a more scattered range for the older one (14-15 Ma; 8.50-15.34); both sets plot between the DM and CHUR evolution lines. There is evidence that magma evolution was slightly distinct through time from older to younger barren magmatism, compared to a few fertile porphyritic rocks from Rio Blanco-Los Bronces porphyry copper deposit. It is suggested that chronological inconsistencies within these complexes might be related to differential shortening across the NE

  20. Study of rare earth elements for the characterization and metalogenetic evaluation of granitoids of the paranaense shield

    International Nuclear Information System (INIS)

    Chiodi Filho, C.; Santos, J.F. dos; Moretzsohn, J.S.

    1989-01-01

    REE geochemistry combined with major and trace elements data, provide some diagnostic criteria regarding the origin, the geotectonic setting and the metallogenesis of granitoid intrusions in the Parana Shield. The intrusions were grouped as mantle (Sintexis Series) and crustal (Transformation Series) origins. The two lineages include six suites, with pre, syn, tardi-to-post and post-collisional emplacement. From the metallogenetic standpoint, the 'Sintexis' granitoids can be labelled as ''0Mo-W-Cu-Au porphyry-granites''and the 'Transformation' granitoids as Sn-W greisengranites. (author) [pt

  1. The Pedregal granite (Portugal: petrographic and geochemical characterization of a peculiar granitoid

    Directory of Open Access Journals (Sweden)

    Ferreira, J. A.

    2014-12-01

    Full Text Available The Pedregal granite outcrops in the Central Iberian Zone, northern Portugal, in the eastern border of a synorogenic variscan granite-migmatite complex sub-concordant with the regional metamorphic structures. It is a granitoid (ca. 3 km2 with an elongated NW-SE shape intruded in staurolite-micaschist and banded gneiss-migmatite rocks, with local igneous breccias in the contact. The country rocks belong to a metapelitic and metasammitic sequence of Edicarian-Cambrian age, known as the “Complexo Xisto-Grauváquico” (CXG which shows a main regional foliation with a NW-SE to NNW-SSE direction. The Pedregal granite is peraluminous (its A/CNK parameter ranges from 1.18 to 1.62, with a magnesian and alkali to alkali-calcic signature. The peculiar features of the granite are high contents of Zr (389 to 435 ppm and a LREE flat pattern, which are uncommon characteristics for granitic rocks, as well as the corroded shape of the biotite, and the large amount of secondary muscovite. These peculiar features distinguish it from the adjacent synorogenic granites. The field, petrographical and chemical features of the Pedregal granite are in accordance with a second phase of partial melting of a residuum, depleted by melt segregation during a first melting episode with the involvement of peritectic garnet and abundant residual biotite with LREE- and Zr-bearing accessory minerals. Besides, the intrusive character of the granite, and the presence of metasedimentary xenoliths point out to a secondary diatexite.El granito de Pedregal aflora en la Zona Centro-Ibérica, en el norte de Portugal, en el borde oriental de un complejo granito-migmatítico sinorogénico varisco, subconcordante con las estructuras metamórficas regionales. Es un granitoide (ca. 3 km2 de forma elongada NW-SE, que intruye en micaesquistos estaurolíticos y en rocas gneissico- migmatíticas bandeadas, con brechas ígneas locales en el contacto. Las rocas encajantes pertenecen a una

  2. Isotopic character of Cambro-Ordovician plutonism, southern Victoria Land

    International Nuclear Information System (INIS)

    Cox, S.C.; Parkinson, D.L.; Allibone, A.H.; Cooper, A.F.

    2000-01-01

    petrogenesis for these younger intrusions distinct from the older DV1a and DV1b suites. Gabbroic rocks from Mt Dromedary have eNd(T) values as low as -8.0 and Sri ratios as high as 0.7108, despite their mafic composition, confirming they are unrelated to granitoids in the Dry Valleys area. A granulite xenolith in the McMurdo Volcanics with calc-alkaline DV1a-type chemistry yielded a concordant U-Pb zircon age of 490 +/- 5 Ma. The age suggests that some of the lower crust in southern Victoria Land was emplaced during the Ross Orogeny rather than forming entirely during earlier Precambrian event(s). Isotopic ratios of metasediments and granitoids in the Dry Valleys correlate most closely with rocks that comprise the Beardmore 'Microcontinent' in the Central Transantarctic Mountains, rather than the Nimrod Group and crosscutting intrusions of the Miller Range. The DV1a suite granitoids in the Dry Valleys are petrographically and geochemically similar to calc-alkaline granitoids in northern Victoria Land, but have less-evolved isotopic compositions that imply a lower proportion of crustal material in the source of the southern Victoria Land granitoid rocks. The isotopic data imply complex variations in the chemistry and genesis of granitoid rocks parallel to, as well as perpendicular to, the trend of the Ross Orogen. (author)

  3. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    Science.gov (United States)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  4. Rock properties data base

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1991-03-01

    As mining companies proceed deeper and into areas whose stability is threatened by high and complex stress fields, the science of rock mechanics becomes invaluable in designing underground mine strata control programs. CANMET's Mining Research Laboratories division has compiled a summary of pre- and post-failure mechanical properties of rock types which were tested to provide design data. The 'Rock Properties Data Base' presents the results of these tests, and includes many rock types typical of Canadian mine environments. The data base also contains 'm' and 's' values determined using Hoek and Brown's failure criteria for both pre- and post-failure conditions. 7 refs., 3 tabs., 9 figs., 1 append.

  5. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  6. Petrochemical and Mineralogical Constraints on the Source and Processes of Uranium Mineralisation in the Granitoids of Zing-Monkin Area, Adamawa Massif, NE Nigeria

    International Nuclear Information System (INIS)

    Haruna, I. V.; Orazulike, D. M.; Ofulume, A. B.; Mamman, Y. D.

    2011-01-01

    Zing-Monkin area, located in the northern part of Adamawa Massif, is underlain by extensive exposures of moderately radioactive granodiorites, anatectic migmatites, equigranular granites, porphyritic granites and highly radioactive fine-grained granites with minor pegmatites. Selected major and trace element petrochemical investigations of the rocks show that a progression from granodiorite through migmatite to granites is characterised by depletion of MgO, CaO, Fe 2 O 3, Sr, Ba, and Zr, and enrichment of SiO 2 and Rb. This trend is associated with uranium enrichment and shows a chemical gradation from the more primitive granodiorite to the more evolved granites. Electron microprobe analysis shows that the uranium is content in uranothorite and in accessories, such as monazite, titanite, apatite, epidote and zircon. Based on petrochemical and mineralogical data, the more differentiated granitoids (e.g., fine-grained granite) bordering the Benue Trough are the immediate source of the uranium prospect in Bima Sandstone within the Trough. Uranium was derived from the granitoids by weathering and erosion. Transportation and subsequent interaction with organic matter within the Bima Sandstone led to precipitation of insoluble secondary uranium minerals in the Benue Trough.

  7. Geochronology of granitic magmatism from Caraculo-Bibala region (SW Angola) and its correlation with Ribeira fold belt (SE Brazil)

    International Nuclear Information System (INIS)

    Carvalho, Heitor de; Tassinari, Colombo C.G.

    1992-01-01

    Rb-Sr whole-rock analyses of representative granitic rocks from the Bibala-Caraculo region, southwestern Angola, are used to determine the age and evolution of the acid plutonic events in this segment of the Angolan continental crust. The granitoids present a wide range of lithological types and compositions. Three time-intervals have been defined for the magmatism: 1,950 - 1,900 Ma; 1,750 - 1,700 Ma; 1,550 - 1,500 Ma. The oldest, though not very well defined, was obtained for the Chicalengue granitoid, the second one represents the Serra dos Gandarengos and Chonga granitoids and Luchipa-Pungue Granitic Complex and the youngest one comprises the Chicate and Caraculo granitic bodies and Numhino Granitic Complex. The initial 87 Sr/ 86 Sr ratios show characteristic values for each time-interval, as follows; 1,950 -1,900 Ma = 0,7015; 1,750 - 1,700 Ma = 0,7060 to 0,7075; 1,550 - 1,500 Ma 0,7048 - 0,7057, suggesting different sources for the granitoids within each geological period. In addition are presented two K-Ar ages for the basic rocks in SW Angola, with values of 1700 and 600 Ma, which represent a minimum ages for these rocks and are probably related to the Damara Orogeny. (author). 24 refs., 11 figs., 2 tabs

  8. Relationship between natural radioactivity and rock type in the Van lake basin - Turkey

    International Nuclear Information System (INIS)

    Tolluoglu, A. U.; Eral, M.; Aytas, S.

    2004-01-01

    The Van Lake basin located at eastern part of Turkey. The Van lake basin essentially comprises two province, these are namely Van and Bitlis. The former geochemistry research indicated that the uranium concentrations of Van lake water and deep sediments are 78-116 ppb and 0.1-0.5 ppm respectively. Uranium was transported to Van Lake by rivers and streams, flow through to outcrops of Paleozoic Bitlis Massive, and young Pleistocene alkaline/calkalkaline volcanic rocks. This study focused on the revealing natural radioactivity and secondary dispersion of radioactivity related to rock types surface environments in the Van Lake Basin. The Van Lake Basin essentially subdivided into three different parts; the Eastern parts characterized by Mesozoic basic and ultra basic rocks, southern parts dominated by metamorphic rocks of Bitlis Massive, Western and Northwestern parts covered by volcanic rocks of Pleistocene. Volcanic rocks can be subdivided into two different types. The first type is mafic rocks mainly composed of basalts. The second type is felsic rocks represented by rhyolites, dacites and pumice tuff. Surface gamma measurements (cps) and dose rate measurements (μR/h) show different values according to rock type. Surface gamma measurement and surface dose rate values in the basaltic rocks are slightly higher than the average values (130 cps, 11 μR/h). In the felsic volcanic rocks such as rhyolites and dacites surface gamma measurement values and surface dose rate values, occasionally exceed the background. Highest values were obtained in the pumice tuffs. Rhyolitic eruptions related to Quaternary volcanic activity formed thick pumice (natural glassy froth related to felsic volcanic rocks and exhibit spongy texture) sequences Northern and Western part of Van Lake basin. The dose rate of pumice rocks was measured mean 15 μR/h. The highest value for surface gamma measurements was recorded as 200 cps. The pumice has very big water capacity, due to porous texture of

  9. Petrology and geochemistry of Granitoids at Khanchay-Aliabad region, Tarom sub-zone, East of Zanjan

    Directory of Open Access Journals (Sweden)

    Arefeh Saiedi

    2018-03-01

    Full Text Available Khanchay-Aliabad area as a part of Tarom magmatic belt contains some shallow depth intrusions which are intruded the Eocene volcanic- sedimentary rocks and have very close association with Cu mineralization. The Eocene volcanic- sedimentary rocks include alternation of basalt, basaltic andesite and andesite, various kinds of tuff, tuffaceous sandstone, sandstone, siltstone and occasionally shale. Petrographical studies demonstrate that intrusions are pyroxene quartz monzonite and olivine gabbro in composition. The Khanchay pyroxene quartz monzonite have porphyritic to porphyroidic, hetero-granular to sereitic, ophitic and sub- ophitic textures and composed of plagioclase, clinopyroxene, hornblende, quartz, K-feldspar and biotite. The Aliabad pyroxene quartz monzonite shows porphyritic to porphyroidic textures composing of plagioclase, clinopyroxene and hornblende in the quartz- feldspatic matrix. The Khanchay olivine gabbro is characterized by the presence of coarse grained granular, ophitic and sub- ophitic textures as well as the occurrence of plagioclase, clinopyroxene and olivine. Geochemical studies indicate that the Khanchay- Aliabad pyroxene quartz monzonitic intrusions have SiO2 content varying from 59.58 to 61.34 %. These intrusions have high- K calc- alkaline nature and are classified as I-type metaluminous granitoids. Their similar patterns on spider diagrams are indication of genetic relation of these intrusions. On these diagrams LILEs (Ba, K, Th and Pb enrichment along with negative anomalies of HFSEs (Nb and Ti are observed. Moreover, the Chondrite normalized REE patterns demonstrate LREE enrichment with high ratio of LREE/HREE and Lan/Ybn ratio ranging from 3.08 to 3.72. The overall  field investigation, petrological and geochemical studies as well as  tectonic setting discrimination diagrams confirm that the Khanchay- Aliabad high-K intrusions were formed from a subduction related metasomatized lithospheric mantle in a post

  10. Ages and petrogenesis of Jurassic and Cretaceous intrusive rocks in the Matsu Islands: Implications for lower crust modification beneath southeastern China

    Science.gov (United States)

    Chen, Jing-Yuan; Yang, Jin-Hui; Ji, Wei-Qiang

    2017-12-01

    Major and trace element, whole-rock Sr-, Nd- and Hf-isotope, zircon U-Pb age and Hf-O isotope data are reported for the intrusive rocks from the Matsu Islands in the coastal area of southeastern (SE) China, in order to study the ages, sources and petrogenesis of these rocks and evolution of the lower crust. The rocks include gneissic granite, massive granite, brecciated granite and diabase. Secondary ion mass spectrometer (SIMS) zircon U-Pb dating reveals that the rocks in the Matsu Islands were emplaced at ∼160 Ma, ∼130 Ma and ∼94 Ma. The Jurassic granites (∼160 Ma) have high SiO2 (74.1-74.5 wt%) and K2O + Na2O (8.32-8.33 wt%) contents and high Rb/Sr ratios of 0.6-1.2 and (La/Yb)CN ratios of 12.6-19.4. Their relatively high initial 87Sr/86Sr ratios (0.7074-0.7101), variable and negative εNd(t) values (-9.2 to -5.4), and variable zircon εHf(t) (-17.0 to +5.2) and δ18O (4.7-8.1‰) values indicate they were mainly derived from an ancient lower crustal source, but with involvement of high εHf(t) and low δ18O materials. The Early Cretaceous diabase (∼130 Ma) has SiO2 content of 56.5 wt%, relatively high MgO concentration, low initial 87Sr/86Sr ratio and negative εNd(t) value, similar to geochemical features of other Cretaceous mafic rocks in the coastal area of SE China. Zircons from the diabase have high εHf(t) values (-5.5 to +0.2) and relatively low δ18O values of 4.2-5.0‰. These characteristics indicate that the parental magma of the diabase was generated by partial melting of enriched lithospheric mantle, which have been metasomatised by altered oceanic crust-derived low-δ18O fluids. For the Cretaceous granitoids (∼130 Ma and 94 Ma), they have relatively low SiO2 (68.0-71.3 wt%) and K2O + Na2O (5.30-7.55 wt%) contents and low Rb/Sr ratios and (La/Yb)CN ratios of 5.8-7.1. They have low initial 87Sr/86Sr ratios (0.7071-0.7082), homogeneous εNd(t) (-4.3 to -4.5) and relatively high zircon εHf(t) values (-3.7 to +1.2) and low δ18O values (4

  11. THE GEOCHEMICAL CHARACTERISTIC OF MAJOR ELEMENT OF GRANITOID OF NATUNA, SINGKEP, BANGKA AND SIBOLGA

    Directory of Open Access Journals (Sweden)

    Ediar Usman

    2017-07-01

    Full Text Available A study of geochemical characteristic of major elelemnt of granitoid in Western Indonesia Region was carried out at Natuna, Bangka, Singkep and Sibolga. The SiO2 contents of the granites are 71.16 to 73.02 wt%, 71.77 to 75.56wt% and 71.16 to 73.02wt% at Natuna, Bangka, and Singkep respectively, which are classified as acid magma. While in Sibolga the SiO2 content from 60.27 to 71.44wt%, which is classified as intermediate to acid magma. Based on Harker Diagram, the granites from Natuna, Bangka and Singkep as a co-genetic. In other hand the Sibolga Granite show as a scatter pattern. Granites of Natuna, Bangka and Singkep have the alkaline-total (Na2O + K2O between 6.03 to 8.51 wt% which are classified as granite and alkali granite regime. K2O content ranges from 3.49 to 5.34 wt% and can be classified as calc-alkaline type. The content of alkaline-total of Sibolga granite between 8.12 to 11.81 wt% and classified as a regime of syenite and granite. The range of K2O is about 5.36 to 6.94wt%, and assumed derived from high-K magma to ultra-potassic types. Granites of Natuna, Bangka and Singkep derived from the plutonic rock types and calc-alkaline magma, while Sibolga granite magma derived from K-high to ultra-potassic as a granite of islands arc. Based on the chemical composition of granite in Western Indonesian Region can be divided into two groups, namely Sibolga granite group is representing the Sumatera Island influenced by tectonic arc system of Sumatera Island. Granites of Bangka and Singkep are representing a granite belt in Western Indonesian Region waters which is influenced by tectonic of back arc.

  12. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau

    Science.gov (United States)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi

    2018-05-01

    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  13. PRINCIPLE ROCK TYPES FOR RADIOACTIVE WASTE REPOSITORIES

    Directory of Open Access Journals (Sweden)

    Sibila Borojević Šostarić

    2012-07-01

    Full Text Available Underground geological storage of high- and intermediate/low radioactive waste is aimed to represent a barrier between the surface environment and potentially hazardous radioactive elements. Permeability, behavior against external stresses, chemical reacatibility and absorption are the key geological parameters for the geological storage of radioactive waste. Three principal rock types were discussed and applied to the Dinarides: (1 evaporites in general, (2 shale, and (3 crystalline basement rocks. (1 Within the Dinarides, evaporite formations are located within the central part of a Carbonate platform and are inappropriate for storage. Offshore evaporites are located within diapiric structures of the central and southern part of the Adriatic Sea and are covered by thick Mesozoic to Cenozoic clastic sediment. Under very specific circumstances they can be considered as potential site locations for further investigation for the storage of low/intermediate level radioactive wast e. (2 Thick flysch type formation of shale to phyllite rocks are exposed at the basement units of the Petrova and Trgovska gora regions whereas (3 crystalline magmatic to metamorphic basement is exposed at the Moslavačka Gora and Slavonian Mts. regions. For high-level radioactive waste, basement phyllites and granites may represent the only realistic potential option in the NW Dinarides.

  14. Field, geochemistry and Sr-Nd isotopes of the Pan-African granitoids from the Tifnoute Valley (Sirwa, Anti-Atlas, Morocco): a post-collisional event in a metacratonic setting

    Science.gov (United States)

    Toummite, A.; Liegeois, J. P.; Gasquet, D.; Bruguier, O.; Beraaouz, E. H.; Ikenne, M.

    2013-10-01

    In the Tifnoute Valley, three plutonic units have been defined: the Askaoun intrusion, the Imourkhssen intrusion and the Ougougane group of small intrusions. They are made of quartz diorite, granodiorite and granite and all contain abundant mafic microgranular enclaves (MME). The Askaoun granodiorite and the Imourkhssen granite have been dated by LA-ICP-MS on zircon at 558 ± 2 Ma and 561 ± 3 Ma, respectively. These granitic intrusions are subcontemporaneous to the widespread volcanic and volcano-detrital rocks from the Ouarzazate Group (580-545 Ma), marking the post-collisional transtensional period in the Anti-Atlas and which evolved towards alkaline and tholeiitic lavas in minor volume at the beginning of the Cambrian anorogenic intraplate extensional period. Geochemically, the Tifnoute Valley granitoids belong to an alkali-calcic series (high-K calc-alkaline) with typical Nb-Ta negative anomalies and no alkaline affinities. Granitoids and enclaves display positive ɛNd-560Ma (+0.8 to +3.5) with young Nd-TDM between 800 and 1200 Ma and relatively low 87Sr/86Sr initial ratios (Sri: 0.7034 and 0.7065). These values indicate a mainly juvenile source corresponding to a Pan-African metasomatized lithospheric mantle partly mixed with an old crustal component from the underlying West African Craton (WAC). Preservation in the Anti-Atlas of pre-Pan-African lithologies (c. 2.03 Ga basement, c. 800 Ma passive margin greenschist-facies sediments, allochthonous 750-700 Ma ophiolitic sequences) indicates that the Anti-Atlas lithosphere has not been thickened and was never an active margin during the Neoproterozoic. After a transpressive period, the late Ediacaran period (580-545 Ma) is marked by movement on near vertical transtensional faults, synchronous with the emplacement of the huge Ouarzazate Group and the Tifnoute Valley granitoids. We propose here a geodynamical model where the Tifnoute Valley granitoids as well as the Ouarzazate Group were generated during the post

  15. Isotopic geochronology of granitic rocks from the Central Iberian Zone: comparison of methodologies

    Directory of Open Access Journals (Sweden)

    Antunes, I. M.H.R.

    2010-06-01

    Full Text Available Five granitic rocks, concentrically disposed from core to rim, were distinguished in the Castelo Branco pluton. U-Pb-Th electron microprobe monazite ages from granitic rocks are similar and ranging between 297-303 Ma. The granitic rocks from Castelo Branco pluton are 310 ± 1 Ma old, obtained by U-Pb (ID-TIMS in separated zircon and monazite crystals, indicating a similar emplacement age for all granitic rocks of the pluton. Initial 87Sr/86Sr isotopic ratios and epsilon-Nd310 and delta-18O values suggest three distinct pulses of granitic magma and that they are derived from partial melting of heterogeneous metasedimentary materials. The other granitic rocks are related by magmatic differentiation and show small variations in (87Sr/86Sr310, epsilon-Nd310 and delta-18O. The granitic pluton of Castelo Branco shows a rare reverse zoning.

    En el plutón de Castelo Branco, se distinguen cinco granitoides, dispuestos concéntricamente de núcleo a borde del plutón. Las edades U-Pb-Th obtenidas en cristales de monacita por microsonda electrónica en estos granitoides son similares entre sí y varían entre 297 y 303 Ma. Los resultados de datación por U-Pb (ID-TIMS en cristales de circón y de monacita de los tres granitos seleccionados, indican una edad de implantación de 310 ± 1 Ma y que son rocas emplazadas simultáneamente. Las relaciones isotópicas iniciales de 87Sr/86Sr y los valores de epsilon-Nd310 y delta-18O de los tres pulsos magmáticos son característicos de granitos resultantes de anatexia cortical a partir de rocas metasedimentarias heterogéneas. En la secuencia de diferenciación magmática, las rocas graníticas presentan pequeñas variaciones en (87Sr/86Sr310, epsilon-Nd310 y delta-18O. El plutón de Castelo Branco presenta un

  16. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  17. Early Permian intrusions of the Alai range: Understanding tectonic settings of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan

    Science.gov (United States)

    Konopelko, D.; Wilde, S. A.; Seltmann, R.; Romer, R. L.; Biske, Yu. S.

    2018-03-01

    We present geochemical and Sr-Nd-Pb-Hf isotope data as well as the results of single grain U-Pb zircon dating for ten granitoid and alkaline intrusions of the Alai segment of Kyrgyz South Tien Shan (STS). The intrusions comprise four geochemically contrasting series or suites, including (1) I-type and (2) shoshonitic granitoids, (3) peraluminous granitoids including S-type leucogranites and (4) alkaline rocks and carbonatites, closely associated in space. New geochronological data indicate that these diverse magmatic series of the Alai segment formed in a post-collisional setting. Five single grain U-Pb zircon ages in the range 287-281 Ma, in combination with published ages, define the main post-collisional magmatic pulse at 290-280 Ma, which is similar to ages of post-collisional intrusions elsewhere in the STS. An age of 287 ± 4 Ma, obtained for peraluminous graniodiorite of the Liayliak massif, emplaced in amphibolite-facies metamorphic rocks of the Zeravshan-Alai block, is indistinguishable from ca. 290 Ma age of peraluminous granitoids emplaced coevally with Barrovian-type metamorphism in the Garm block, located ca. 40 km south-west of the research area. The Sr-Nd-Pb-Hf isotopic compositions of the studied intrusions are consistent with the reworking of crustal material with 1.6-1.1 Ga average crustal residence times, indicating the formation of the Alai segment on a continental basement with Mesoproterozoic or older crust. The pattern of post-collisional magmatism in the Alai segment, characterized by emplacement of I-type and shoshoninitic granitoids in combination with coeval Barrovian-type metamorphism, is markedly different from the pattern of post-collisional magmatism in the adjacent Kokshaal segment of the STS with predominant A-type granitoids that formed on a former passive margin of the Tarim Craton. We suggest that during the middle-late Carboniferous the Alai segment probably comprised a microcontinent with Precambrian basement located between

  18. A review of the ascent and emplacement of granitoid bodies into the crust

    Directory of Open Access Journals (Sweden)

    Katarína Bónová

    2005-03-01

    Full Text Available This paper relates to basic information (i.e. mechanical aspects of ascent, indicators faciliting the discriminability of various ascent styles about the models of ascent and emplacement of granitoid bodies, since the purely mechanical aspect of intrusion of magmas is a fascinating subject and it has generated a considerable controversy over many years. Individual models are demonstrated by world-known occurrences and examples from Western Carpathian’s region. The conditions of magma migration are demonstrated as well.

  19. Piedra lata terrane of Uruguay: Rb-Sr geochronological data of two new paleoproterozoic (transamazonian) granitoids

    International Nuclear Information System (INIS)

    Cingolani, C; Bossi, J; Varela, R; Maldonado, S.; Pineyro, D.; Schipilov, A

    2001-01-01

    The Precambrian basement of Uruguay consists of three major terranes separated and crosscut by wide NE-striking subvertical transcurrent shear zones. The western terrane as a part of the Rio de la Plata Craton is known as the Piedra Alta Terrane (PAT). This is separated from the Nico Perez Terrane by the Sarandi del Yi-Piri olis subvertical shear zone (Bossi et al., 1993). A mafic dykes complex intruded the PAT at 1.8 Ga and was not later deformed. The PAT has equivalent rocks in the igneous-metamorphic basement of Tandilia region and the Martin Garcia Island, Buenos Aires Province, Argentina (Dalla Salda et al., 1988; Cingolani and Dalla Salda, 2000). The PAT shows no evidence of the Neoproterozoic orogenies and is considered a best preserved Paleoproterozoic block (Transamazonian Cycle). It contains three E-W trending belts of volcano-sedimentary rocks with low grade metamorphism. These are from south to north: Pando, San Jose and Andresito belts (Bossi et al., 1996). Associated with them, three granitic-gneissic zones he Ecilda Paullier, Florida and Feliciano- were recognized with magmatic intrusives emplaced at different crustal levels. The San Jose belt is the largest supracrustal unit and contains abundant volcanic and volcaniclastic rocks of low grade metamorphic (Paso Severino Fm.) with sheets of granitic rocks intercalated (Mutti et al., 1996; Bossi et al., 1996). The associated granitic rocks are of large areal extension, mostly granodiorites and tonalites, and minor monzogranite and gabbro (e.g. Cerro Rospide region), including xenoliths from Paso Severino Fm. Towards the north of the San Jose belt an important Florida granitized zone is developed in the central part of the PAT, where the Pintos massif was recognized. The main purpose of this contribution is to offer new Rb-Sr geochronological data from two granitoid units, The Cerro Rospide intrusive in Paso Severino Fm. and Pintos massif included in medium grade migmatic-metamorphic complex and its

  20. the origin of late archaean granitoids in the sukumaland greenstone

    African Journals Online (AJOL)

    Mgina

    melting at the base of a late Archaean thickened sub-arc basaltic crust. Melting to form the Suite 1 granitoids occurred in the eclogite stability field whereas Suite 2 formed by melting at shallower ... of TTG in terms of slab melting processes.

  1. Petrography and geochronology (U/Pb-Sm/Nd) the Passagem Granite, Pensamiento Granitoid Complex, Paragua Terrane, SW Amazon Craton, Mato Grosso, Brazil

    International Nuclear Information System (INIS)

    Jesus, Gisely Carmo de; Sousa, Maria Zelia Aguiar de; Ruiz, Amarildo Salina; Matos, Joao Batista de

    2010-01-01

    The Passagem granite includes stocks, plugs and dikes located in the Ricardo Franco hill - Vila Bela da Santissima Trindade region - state of Mato Grosso, central Brazil. The Passagem Granite is included in the Paragua terrane - SW Amazonian Craton. It consists of isotropic monzogranite, sienogranite and more rarely granodiorites with leucocratic dark gray to white color. These rocks range from hypidomorphic inequigranular to xenomorphic texture, fine to medium grained. Biotite is the only primary mafic present as essential phase and characterize an expanded slightly acid sequence formed by a sub-alkaline magmatism of high-potassium calc-alkaline, slightly peraluminous composition from arc magmatic tectonic environment during a post-collisional period. Mechanism of fractional crystallization of plagioclase, biotite, titanite, apatite and zircon associated with simultaneous crustal assimilation are suggested for the evolution of these rocks. The results support the hypothesis of a post-collisional magmatism in the Paragua terrane at 1284 +- 20 Ma corresponding to the crystallization age of the Passagem granite. This paper propose that Passagem Granite represents as an extension in Brazilian terrane of the Pensamiento Granitoid Complex. (author)

  2. Structural control of weathering processes within exhumed granitoids: Compartmentalisation of geophysical properties by faults and fractures

    Science.gov (United States)

    Place, J.; Géraud, Y.; Diraison, M.; Herquel, G.; Edel, J.-B.; Bano, M.; Le Garzic, E.; Walter, B.

    2016-03-01

    In the latter stages of exhumation processes, rocks undergo weathering. Weathering halos have been described in the vicinity of structures such as faults, veins or dykes, with a lateral size gradually narrowing with depth, symmetrically around the structures. In this paper, we describe the geophysical characterisation of such alteration patterns on two granitoid outcrops of the Catalan Coastal Ranges (Spain), each of which is affected by one major fault, as well as minor faults and fractures. Seismic, electric and ground penetrating radar surveys were carried out to map the spatial distribution of P-wave velocity, electrical resistivity and to identify reflectors of electromagnetic waves. The analysis of this multi-method and complementary dataset revealed that, at shallow depth, geophysical properties of the materials are compartmentalised and asymmetric with respect to major and subsidiary faults affecting the rock mass. This compartmentalisation and asymmetry both tend to attenuate with depth, whereas the effect of weathering is more symmetric with respect to the major structure of the outcrops. We interpret such compartmentalisation as resulting from the role of hydraulic and mechanical boundaries played by subsidiary faults, which tend to govern both the chemical and physical alterations involved in weathering. Thus, the smoothly narrowing halo model is not always accurate, as weathering halos can be strongly asymmetrical and present highly irregular contours delimiting sharp contrasts of geophysical properties. These results should be considered when investigating and modelling fluid storage and transfer in top crystalline rock settings for groundwater applications, hydrocarbon or geothermal reservoirs, as well as mineral deposits.

  3. The Geology of the Kivetty area

    International Nuclear Information System (INIS)

    Anttila, P.; Paulamaeki, S.; Lindberg, A.; Paananen, M.; Koistinen, T.; Front, K.; Pitkaenen, P.

    1992-05-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel from the Olkiluoto nuclear power plant (TVO-I and TVO-II) deep in the Finnish bedrock. Kivetty in Konginkangas was one of the five areas selected in 1987 for preliminary site investigations for this purpose. The Kivetty area in Central Finland is located in a Svecokarelian granitoid environment consisting of a complex of synorogenic granitoids 1900 - 1860 million years in age. The bedrock consists almost entirely of plutonic rocks, i.e. gabbro, porphyritic granodiorite and granite, eguigranular granodiorite and granite, listed in order of age. The majority of the rock types are porphyritic in character, and supracrustal rocks such as quartz-feldspar schist and gneiss are found occasionally in small xenoliths

  4. Petrochemical and Sr-Nd isotope investigations of Cretaceous intrusive rocks and their enclaves in the Togouchi-Yoshiwa district, northwest Hiroshima prefecture, SW Japan

    International Nuclear Information System (INIS)

    Ishioka, Jun; Iizumi, Shigeru

    2003-01-01

    Petrographic, petrochemical and Sr-Nd isotopic data are presented for granitoids and microdioritic enclaves from two Cretaceous stocks (Togouchi granodiorite and Tateiwayama granite porphyry) from the Togouchi-Yoshiwa district, northwest Hiroshima prefecture, SW Japan. The data are used to examine the genetic relationships between the microdioritic enclaves and their granitoid hosts. The granodiorite, granite porphyry and the microdioritic enclaves are all calc-alkaline in nature, and belong to the I-type ilmenite series. The Togouchi graniodiorite has a Rb-Sr whole rock isochron age of 85.6±4.7 Ma with an initial Sr isotope ratio (SrI) of 0.70634±0.00012 (2σ). The Tateiwayama granite porphyry has a slightly younger Rb-Sr whole isochron age (77.4±3.1 Ma) but similar SrI of 0.70653±0.00015, suggesting that both stocks may have been derived from the same source. Despite diverse whole rock chemistry, the microdioritic enclaves in the respective intrusives have quite similar initial Sr and Nd isotope ratios, suggesting that they formed by fractional crystallization of a single magma, and also that the source of the enclaves in both intrusives had similar geochemical characteristics. In both stocks, however, the enclaves have distinctly lower initial Sr isotope ratios than their respective host rocks, indicating that they were derived from a different source than their hosts. In view of the geochemical and Sr-Nd isotope data, we infer that the enclave magmas were derived from a similar LILE- and LREE-enriched source to that of the Cretaceous basalts and gabbroic-dioritic rocks that are sporadically distributed in SW Japan. Such mafic to intermediate magmas were probably derived from the upper mantle, and transferred both heat and material to the lower crust, thus producing granitic magmas by partial melting. Successive mafic magmas or their differentiates could then have been injected into the granitic magma chamber, trapped and quenched, resulting in the formation

  5. Petrogenesis of Malaysian tin granites: geochemistry, fractional crystallization, U-Pb zircon geochronology and tectonic setting

    Science.gov (United States)

    Wai-Pan Ng, Samuel; Searle, Mike; Whitehouse, Martin; Chung, Sun-Lin; Ghani, Azman; Robb, Laurence; Sone, Masatoshi; Oliver, Grahame; Gardiner, Nick; Roselee, Mohammad

    2014-05-01

    The Malaysian tin granites forming the backbone of the Thai-Malay Peninsula has been long recognized with two distinct granitic provinces:- 1. Early Permian to Late Triassic Eastern Province with mainly "I-type" (Hbl)-Bt granites with associated Cu-Au deposits, with subordinate Bt granites hosting limited Sn-W deposits, and 2. Late Triassic Main Range Province with mainly "S-type" Bt granites with associated Sn-W deposits, and subordinate (Hbl)-Bt granites. New geochemical data show that Chappell and White's (1974) I-S granite classification adopted in the existing model does not adequately distinguish the granites from one another as previously implied. Trace element geochemistry and Sr-Nd isotopic compositions show that the Malaysian tin granites in both provinces have transitional I-S characteristics. In addition, they inherited within-plate signature from Cambro-Ordovician Gondwana-related source rocks. Previous ages were obtained by whole rock Rb-Sr and biotite K-Ar geochronology in the 70s and 80s, dating methods that may not accurately represent the crystallization age of granites. We re-sampled the entire Malaysian Peninsula and 40 samples were collected for high-precision U-Pb SIMS dating on extracted zircon grains in order to better constrain the magmatic and tectonic evolution of Southeast Asia. The crystallization ages of the Eastern Province granitoids have been constrained ranging from 220 to 290 Ma, while the Main Range (Western) Province granitoids have ages ranging from 200 to 230 Ma. A progressive westward younging trend is apparent across the Eastern Province, but becomes less obvious in the Main Range Province. Our model suggests two east dipping subduction zones. We suggest that subduction roll-back along the Bentong-Raub suture might account for the westward younging trend, in the Eastern province. A second Late Triassic east-dipping subduction zone beneath western Malaysia is proposed in order to explain the "I-type" components to the Main

  6. On the metamorphic history of an Archaean granitoid greenstone terrane, East Pilbara, Western Australia, using the 40Ar/39Ar age spectrum technique

    International Nuclear Information System (INIS)

    Wijbrans, J.R.; McDougall, I.

    1987-01-01

    Age spectrum analyses of blue-green hornblendes from amphibolites from the Western Shaw Belt, East Pilbara, Western Australia, indicate an age of at least 3200 Ma for early regional metamorphism. Ages on hornblende and muscovite from the narrow contact zone with the adjacent Yule Batholith probably data updoming of the granitoid gneiss terranes at 2950 Ma. Hornblendes from within the Shaw Batholith and from a contact zone of a post-tectonic granitoid yield ages of 2840-2900 Ma, indicating either prolonged high temperatures within the granitoid gneiss terranes or a separate thermal pulse associated with the intrusion of post-tectonic granitoids. The preservation of very old hornblendes in a narrow greenstone belt surrounded by massive granitoid gneiss domes indicates that remarkable contrasts in metamorphic geotherms existed over short distances during the Late Archaean, suggesting that updoming occurred during a period of rapid tectonism. (orig.)

  7. Geology, geochemistry, age and tectonic setting of the Gore-Gambella plutonic rocks, western Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Alemayehu, T.A.

    1989-01-01

    In transect across the Birbir and Baro domains of western Ethiopia, distinct granitoid suites are recognized on the basis of their field relations, petrology, chemical features and age. The Baro Domain consists of migmatitic, upper amphibolite facies gneisses and metaleucogranites. The Birbir Domain consists of lower amphibolite facies rocks with abundant intrusive and meta-intrusive rocks of mafic and intermediate composition. A ductile, transcurrent fault system, the Birbir Shear Zone, traverses the Birbir Domain. Kinematic indicators such as disrupted dykes and sills within the shear zone suggest major dextral movement which was succeeded by sinistral movement during its final stage. The pre- to syn-kinematic intrusives within the Birbir Domain are metamorphosed and mylonitized to variable degrees. Geochemical and isotopic data from early plutonic units in the Birbir Domain reflect arc-type igneous activity; late- to post-kinematic plutons are more alkalic and of intraplate character. U-Pb zircon and Rb-Sr whole-rock isochron dates show plutonic activity between 830 and 540 Ma. A whole-rock Rb-Sr date of 760 Ma from a pre- to syn-kinematic pluton coincides with the age of low-grade metamorphism of arc-related rocks of the Red Sea Hills of NE Africa and the Jeddah terrane of Arabia. The Birbir Domain is a southward extension of the Pan-African crust of NE Africa and Arabia. The Birbir shear zone indicates a tectonically active continental margin along which magmatic arc rocks were accreted. The Baro Domain is interpreted as a reactivated pre-Pan-African continental margin linked to the Mozambique Belt of east Africa. A subduction model, involving closure of an ocean basin, is proposed for the evolution of rocks of the Birbir Domain.

  8. CERN’s Summer of Rock

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    When a rock star visits CERN, they don’t just bring their entourage with them. Along for the ride are legions of fans across the world – many of whom may not be the typical CERN audience. In July alone, four big acts paid CERN a visit, sharing their experience with the world: Scorpions, The Script, Kings of Leon and Patti Smith.   @TheScript tweeted: #paleofestival we had the best time! Big love. #CERN (Image: Twitter).   It all started with the Scorpions, the classic rock band whose “Wind of Change” became an anthem in the early 1990s. On 19 July, the band braved the 35-degree heat to tour the CERN site on foot – visiting the Synchrocyclotron and the new Microcosm exhibition. The rockers were very enthusiastic about the research carried out at CERN, and talked about returning in the autumn during their next tour stop. The Scorpions visit Microcosm. Two days later, The Script rolled in. This Irish pop-rock band has been hittin...

  9. U-Pb age of granitoid rock from the quarry Dubna Skala - Mala Fatra Mts

    International Nuclear Information System (INIS)

    Cambel, B.; Shcherbak, N.P.; Bartnitsky, E.N.; Stepanyuk, L.M.

    1990-01-01

    The age of tonalite rock from the quarry Dubna Skala in the Mala Fatra mountains was determined by the U-Pb method. The measurements were carried out at the Institute of Geochemistry and Physics of Minerals in Kiev, USSR. The value measured, 353 m.y., is in a rather good agreement with the data obtained by the Rb-Sr method in core mountain ranges of the Western Carpathians. Nevertheless, in comparison with the Rb-Sr isochronal data from similar rocks and from the same regions, U-Pb geochronologic analyses largely give lower ages. So far, no unique explanation of this fact can be offered; apparently, the geochemical properties of the elements concerned play a major role in this. (author). 1 fig., 1 tab., 30 refs

  10. A radiological survey of the Eğrigöz granitoid, Western Anatolia/Turkey.

    Science.gov (United States)

    Canbaz Öztürk, B; Yaprak, G; Çam, N F; Candan, O

    2015-06-01

    A radiological survey of the granitoid areas throughout Western Anatolia was conducted during 2007-14. As a part of this radiological survey, this article presents results obtained from Eğrigöz pluton, which lies in the northeastern region of Western Anatolia. In the investigated area, the activity measurements of the natural gamma-emitting radionuclides ((226)Ra, (232)Th and (40)K) in the granitic rock samples and soils have been carried out by means of the NaI(Tl) gamma-ray spectrometry system. The activity concentrations of the relevant natural radionuclides in the granite samples appeared in the ranges as follows: (226)Ra, 28-95 Bq kg(-1); (232)Th, 50-122 Bq kg(-1) and (40)K, 782-1365 Bq kg(-1), while the typical ranges of the (226)Ra, (232)Th and (40)K activities in the soil samples were found to be 7-184, 11-174 and 149-1622 Bq kg(-1), respectively. Based on the available data, the radiation hazard parameters associated with the surveyed rocks/soils are calculated. The corresponding absorbed dose rates in air from all those radionuclides were always much lower than 200 nGy h(-1) and did not exceed the typical range of worldwide average values noted in the UNSCEAR (2000) report. Furthermore, the data are also used for the mapping of the surface soil activity of natural radionuclides and the corresponding gamma dose rates of the surveyed area. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Mg-spinel lithology: A new rock type on the lunar farside

    Science.gov (United States)

    Pieters, C.M.; Besse, S.; Boardman, J.; Buratti, B.; Cheek, L.; Clark, R.N.; Combe, J.-P.; Dhingra, D.; Goswami, J.N.; Green, R.O.; Head, J.W.; Isaacson, P.; Klima, R.; Kramer, G.; Lundeen, S.; Malaret, E.; McCord, T.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.A.; Thaisen, K.; Tompkins, S.; Whitten, J.

    2011-01-01

    High-resolution compositional data from Moon Mineralogy Mapper (M 3) for the Moscoviense region on the lunar farside reveal three unusual, but distinctive, rock types along the inner basin ring. These are designated "OOS" since they are dominated by high concentrations of orthopyroxene, olivine, and Mg-rich spinel, respectively. The OOS occur as small areas, each a few kilometers in size, that are widely separated within the highly feldspathic setting of the basin rim. Although the abundance of plagioclase is not well constrained within the OOS, the mafic mineral content is exceptionally high, and two of the rock types could approach pyroxenite and harzburgite in composition. The third is a new rock type identified on the Moon that is dominated by Mg-rich spinel with no other mafic minerals detectable (lunar crust; they may thus be near contemporaneous with crustal products from the cooling magma ocean. Copyright ?? 2011 by the American Geophysical Union.

  12. Petrogenesis of late Paleozoic-to-early Mesozoic granitoids and metagabbroic rocks of the Tengchong Block, SW China: implications for the evolution of the eastern Paleo-Tethys

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Qin, Jiang-Feng; Zhao, Shao-Wei

    2018-03-01

    mantle-derived material associated with late Permian-to-Early Triassic subduction of the Paleo-Tethys, and a second stage that generated granitoid magmas by the partial melting of crustal-derived sources during the Late Triassic collision between the Lhasa and Tengchong blocks and the northern margin of the Australian continent. These rocks, therefore, provide evidence of a systematic late Permian-to-Late Triassic transition from a pre-collision/volcanic arc setting through a collisional setting to a final within-plate phase of magmatism. The previous research involving bulk-rock Sr-Nd analyses of units from the southern Sanjiang orogenic belt and zircon Hf isotopic analyses of units from the Tengchong Block suggests that these areas may record similar magmatic evolutionary trends from mantle- to crustal-derived sources during the evolution of the eastern Paleo-Tethys.

  13. Weathering-related origin of widespread monazite in S-type granites

    Energy Technology Data Exchange (ETDEWEB)

    Sawka, W N; Banfield, J F; Chappell, B W

    1986-01-01

    The S-type granite suites comprising more than a quarter of the extensively developed granites in the Lachlan Fold Belt, Australia, contain monazite which may be related to the chemical weathering of the sedimentary source rocks. We report a process whereby chemical weathering fixes mobile rare-earth elements (REE) in hydrous phosphate phases such as florencite and rhabdophane. This material contains up to 50 wt.% LREE and occurs as very small particles (approx. 3 ..mu..m). Dehydration of these hydrous REE phases during anatexis directly yields monazite. The low solubility of phosphorus in S-type granite melts inhibits dissolution of both monazite and apatite. Refractory monazite may be thus entrained and transported in S-type granites in a manner similar to processes resulting in inherited zircon. Since both Th and the light REE are major components in monazite, materials containing this minute phase may be of widespread geochemical significance in both granites and metamorphic rocks.

  14. The Archaean Granny Smith gold deposit, western Australia: age and Pb-isotope tracer studies

    International Nuclear Information System (INIS)

    Ojala, V.J.; McNaughton, N.J.; Groves, D.I.; Ridley, J.R.; Fanning, C.M.

    1997-01-01

    The Granny Smith gold deposits are situated within a greenstone sequence in the Laverton-Leonora area of the Northeastern Goldfields Province of the Archaean Yilgarn Block, Western Australia. The greenstone sequence (U-Pb zircon age of 2677±6 Ma, felsic pyroclastic rock) was intruded by the Granny Smith Granodiorite at 2665±4 Ma. Gold mineralisation is located along a reactivated N-S Stricking, thrust which wraps around the granitoid intrusion, and within the granitoid intrusion. Initial lead-isotope compositions of the Granny Smith Granodiorite and ore-fluid Pb, estimated from K-feldspar and galena and lead tellurides, respectively, are slightly different. Calculations based on Pb isotope data for the host rocks, and the U-Pb zircon age of the Granny Smith Granodiorite, suggest that ore-fluid Pb was derived from a source with a similar initial lead-isotopic composition to the source of the Granny Smith Granodiorite but about 30 million years after the intrusion of the granitoid. The Pb-isotope data for granitoids of the Northeastern Goldfields fall in a distinct field different to that of the granitoids of the Norseman area and those from Kambalda to Menzies. (authors)

  15. Geo-structural modelling for potential large rock slide in Machu Picchu

    Science.gov (United States)

    Spizzichino, D.; Delmonaco, G.; Margottini, C.; Mazzoli, S.

    2009-04-01

    The monumental complex of the Historical Sanctuary of Machu Picchu, declared as World Heritage Site by UNESCO in 1983, is located in the Andean chain at approx. 80 km from Cuzco (Peru) and at an elevation of 2430 m a.s.l. along the Urubamba River Valley. From a geological point of view, the Machu Picchu granitoid pluton, forming part of the larger "Quillabamba granite", is one of a series of plutons intruded along the axial zone of the high Eastern Cordillera Permo-Liassic rift system including a variety of rock types, dominantly granites and granodiorites. The most evident structures at the outcrop scale consist of planar joint sets that may be variably reactivated and exhibiting 4 main orientations. At present, the site is affected by geological risk due to frequent landslides that threaten security and tourist exploitation. In the last years, the international landslide scientific community has promoted a multi-discipline joint programme mainly finalised to slope deformation monitoring and analysis after the warning, launched in 2001, of a potential collapse of the citadel, caused by a huge rock slide. The contribute of the Italian research team was devoted to implement a landslide risk analysis and an innovative remote sensing techniques. The main scope of this work is to present the implementation of a geo-structural modelling aimed at defining present and potential slope stability conditions of the Machu Picchu Citadel. Data have been collected by geological, structural and geomechanical field surveys and laboratory tests in order to reconstruct the geomorphological evolution of the area. Landslide types and evolution are strictly controlled by regional tectonic uplift and structural setting. Several slope instability phenomena have been identified and classified according to mechanism, material involved and state of activity. Rock falls, debris flows, rock slides and debris slides are the main surveyed landslide types. Rock slides and rock falls may produce

  16. Geology of the plutonic basement rocks of Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2004-01-01

    Exposures of basement rocks on Stewart Island provide a c. 70 km long by 50 km wide map of part of the Median Batholith that spans the margin of the Western Province. Because of their distance from the present plate boundary, these rocks are relatively unaffected by Cenozoic tectonism, allowing examination of unmodified Carboniferous-Cretaceous relationships within the Median Batholith. Thirty individual plutons (>c.20 km 2 ) have been mapped along with numerous relatively small intrusions ( 2 ). The large plutons form 85-90% of the Median Batholith on Stewart Island while the many smaller intrusions comprise 10-15%, mostly in the north. Lithologies include: biotite ± minor hornblende granodiorite, granite and leucogranite with accessory titanite - magmatic epidote and allanite (c. 50%); biotite ± muscovite ± garnet granite with S-type affinities (c. 10%); alkaline quartz monzonite, granite, and alkali feldspar granite with rare aegirine and blue-green amphibole (c. 3%); quartz monzodiorite and diorite with hornblende > biotite (c. 23%); gabbro and anorthosite (c. 12%) and ultramafic rocks (c. 2%). U-Pb zircon and monazite dating indicates that c. 12% of these plutonic rocks were emplaced during the Carboniferous between 345 and 290 Ma, c. 20% in the Early-Middle Jurassic at c. 170-165 Ma, c. 30% in the latest Jurassic to earliest Cretaceous between 152 and 128 Ma, and c. 38% in the Early Cretaceous between 128 and 100 Ma. The distribution of Pegasus Group schists and peraluminous granitoid rocks indicates that the northern limit of extensive early Paleozoic Western Province basement is located either within the Gutter Shear Zone or at the Escarpment Fault, 10-15 km south of the Freshwater Fault System previously thought to mark this boundary. Carboniferous and Middle Jurassic magmatism extended plutonic basement northwards as far as the Freshwater Fault System, while further magmatism during the latest Jurassic and earliest Cretaceous produced the basement

  17. Direct evidence for the origin of low-18O silicic magmas: Quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon

    International Nuclear Information System (INIS)

    Bacon, C.R.; Adami, L.H.; Lanphere, M.A.

    1989-01-01

    Partially fused granitoid blocks were ejected in the climactic eruption of Mount Mazama, which was accompanied by collapse of Crater Lake caldera. Quartz, plagioclase, and glass in the granitoids have much lower δ 18 O values (-3.4 to +4.9per mille) than any fresh lavas of Mount Mazama and the surrounding region (+5.8 to +7.0per mille). Oxygen isotope fractionation between phases in granitoids is consistent with equilibrium at T≥900deg C following subsolidus exchange with hydrothermal fluids of meteoric origin. Assimilation of ≅ 10-20% of material similar to these granitoids can account for the O and Sr isotopic compositions of lavas and juvenile pyroclasts derived from the climactic magma chamber, many of which have δ 18 O values ≅ 0.5per mille or more lower than comparable lavas of Mount Mazama. The O isotope data provide the only clear evidence for such assimilation because the mineralogy and chemical and radiogenic isotopic compositions of the granitoids (dominantly granodiorite) are similar to those of erupted juvenile magmas. The granitoid blocks from Crater Lake serve as direct evidence for the origin of 18 O depletion in large, shallow silicic magma bodies. (orig.)

  18. Magmatism and polymetallic mineralization in southwestern Qinzhou-Hangzhou metallogenic belt, South China

    Science.gov (United States)

    Huang, Xudong; Lu, Jianjun; Wang, Rucheng; Ma, Dongsheng

    2016-04-01

    As Neoproterozoic suture zone between the Yangtze Block and Cathaysia Block, Qinzhou-Hangzhou metallogenic belt is one of the 21 key metallogenic belts in China. Intensive multiple-aged felsic magmatism and related polymetallic mineralization take place in this belt. Although Neoproterozoic, Paleozoic, Triassic granites and associated deposits have been found in southwestern Qinzhou-Hangzhou metallogenic belt, Middle-Late Jurassic (150-165 Ma) magmatism and related mineralization is of the most importance. Three major kinds of Middle-Late Jurassic granitoids have been distinguished. (Cu)-Pb-Zn-bearing granitoids are slightly differentiated, calc-alkaline and metaluminous dioritic to granodioritic rocks. Sn-(W)-bearing granites contain dark microgranular enclaves and have high contents of REE and HFSE, suggesting affinities of aluminous A-type (A2) granites. W-bearing granites are highly differentiated and peraluminous rocks. (Cu)-Pb-Zn-bearing granitoids have ɛNd(t) values of -11 ˜ -4 and ɛHf(t) values of -12 ˜ -7, corresponding to TDMC(Nd) from 1.4 to 1.8 Ga and TDMC(Hf) from 1.6 to 2.0 Ga, respectively. The ɛNd(t) values of W-bearing granites vary from -11 to -8 with TDMC(Nd) of 1.6 ˜ 1.9 Ga and ɛHf(t) values change from -16 to -7 with TDMC(Hf) of 1.5 ˜ 2.0 Ga. Compared with (Cu)-Pb-Zn-bearing granitoids and W-bearing granites, the Sn-(W)-bearing granites have higher ɛNd(t) (-8 ˜ -2) and ɛHf(t) (-8 ˜ -2) values and younger TDMC(Nd) (1.1 ˜ 1.6 Ga) and TDMC(Hf) (1.2 ˜ 1.8 Ga) values, showing a more juvenile isotopic character. Sn-(W)-bearing granites originate from partial melting of granulitized lower crust involved with some mantle-derived materials. W-bearing granites are derived from partial melting of crust. (Cu)-Pb-Zn-bearing granitoids are also derived from crust but may be influenced by more mantle-derived materials. For (Cu)-Pb-Zn deposits, skarn and carbonate replacement are the most important mineralization types. Cu ore bodies mainly

  19. Uranium distribution in Brazilian granitic rocks. Identification of uranium provinces

    International Nuclear Information System (INIS)

    Tassinari, C.G.G.

    1993-01-01

    The research characterized and described uranium enriched granitoids in Brazil. They occur in a variety of tectonic environments and are represented by a variety granite types of distinct ages. It may be deduced that in general they have been generated by partial melting process of continental crust. However, some of them, those with tonality composition, indicate a contribution from mantle derived materials, thus suggesting primary uranium enrichment from the upper mantle. Through this study, the identification and characterization of uranium enriched granite or uranium provinces in Brazil can be made. This may also help identify areas with potential for uranium mineralization although it has been note that uranium mineralization in Brazil are not related to the uranium enrichment process. In general the U-anomalous granitoids are composed of granites with alkaline composition and granite ''sensu strictu'' which comprise mainly of syenites, quartz-syenites and biotite-hornblende granites, with ages between 1,800 - 1,300 M.a. The U-anomalous belongings to this period present high Sr initial ratios values, above 0.706, and high Rb contents. Most of the U-enriched granitoids occur within ancient cratonic areas, or within Early to Mid-Proterozoic mobile belts, but after their cratonization. Generally, these granitoids are related to the border zones of the mobile belts or deep crustal discontinuity. Refs, 12 figs, 3 tabs

  20. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology

    Science.gov (United States)

    Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying

    2017-07-01

    The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages

  1. Petrology, geochemistry, and tectonic setting of Tertiary volcanic and intrusive rocks in the north of Shahr-e-Firouzeh (northeast of Iran)

    International Nuclear Information System (INIS)

    Malekzadeh Shafaroudi, A.; Karimpour, M. H.; Zarei, A.

    2016-01-01

    The study area is located in 15 km of the north of Shahr-e-Firouzeh in Khorasan Razavi province. The area is situated in the southeast of Quchan-Sabzevar arc magmatic. Lithology of the district includes dacitic lavas, which are intruded by Oligocene porphyritic hornblende granodioritic stock and granodioritic dike as subvolcanic and plutonic rocks. Igneous rocks were overlapped by younger sedimentary rocks. The texture of dacitic unit is porphyric to glomeroporphic with flow groundmass. Quartz, plagioclase, K-feldspar, and hornblende are the main minerals. The texture of hornblende granodiorite porphyry is porphyric to glomeroporphic and plagioclase, K-feldspar, hornblende, and quartz are the common minerals, whereas granodiorite unit is granular and hornblende is not present. Based on geochemical studies, the acidic volcanic and intrusive rocks show metaluminous and medium-K nature. These rocks belong to the I-type granitoid. Enrichment of LREE versus HREE and enrichment of LILE and depletion in HFSE indicate magma formed in subduction zone. The melt originated from partial melting of amphibolite with 10 to 25% garnet. Based on the average amount of major oxides, enrichment of LREE, mostly positive Eu anomaly, high Sr (up to 499 ppm), and low Y (<13 ppm) and Yb (<1.4 ppm) contents, the magma show silica-rich adakitic nature. The intrusive and volcanic rocks of the northern Shahr-e-Firouzeh were generated by partial melting of Sabzevar Neotethyan young and hot subducted oceanic crust and mantle wedge in the continental margin of the Turan plate.

  2. On the metamorphic history of an Archaean granitoid greenstone terrane, East Pilbara, Western Australia, using the /sup 40/Ar//sup 39/Ar age spectrum technique

    Energy Technology Data Exchange (ETDEWEB)

    Wijbrans, J.R.; McDougall, I.

    1987-07-01

    Age spectrum analyses of blue-green hornblendes from amphibolites from the Western Shaw Belt, East Pilbara, Western Australia, indicate an age of at least 3200 Ma for early regional metamorphism. Ages on hornblende and muscovite from the narrow contact zone with the adjacent Yule Batholith probably data updoming of the granitoid gneiss terranes at 2950 Ma. Hornblendes from within the Shaw Batholith and from a contact zone of a post-tectonic granitoid yield ages of 2840-2900 Ma, indicating either prolonged high temperatures within the granitoid gneiss terranes or a separate thermal pulse associated with the intrusion of post-tectonic granitoids. The preservation of very old hornblendes in a narrow greenstone belt surrounded by massive granitoid gneiss domes indicates that remarkable contrasts in metamorphic geotherms existed over short distances during the Late Archaean, suggesting that updoming occurred during a period of rapid tectonism.

  3. Spatiotemporal evolution of magmatic pulses and regional metamorphism during a Cretaceous flare-up event: Constraints from the Ryoke belt (Mikawa area, central Japan)

    Science.gov (United States)

    Takatsuka, Kota; Kawakami, Tetsuo; Skrzypek, Etienne; Sakata, Shuhei; Obayashi, Hideyuki; Hirata, Takafumi

    2018-05-01

    The spatiotemporal relationship between granitoid intrusions and low-pressure/temperature type regional metamorphism in the Ryoke belt (Mikawa area) is investigated to understand the tectono-thermal evolution of the upper- to middle-crust during a Cretaceous flare-up event at the Eurasian active continental margin. Three plutono-metamorphic stages are recognized; (1) 99-84 Ma: intrusion of granitoids (99-95 Ma pulse) into the upper crust and high-T regional metamorphism reaching sillimanite-grade (97.0 ± 4.4 Ma to 88.5 ± 2.5 Ma) in the middle crust, (2) 81-75 Ma: intrusion of gneissose granitoids (81-75 Ma Ma pulse) into the middle crust at 19-24 km depth, and (3) 75-69 Ma: voluminous intrusions of massive to weakly-foliated granitoids (75-69 Ma pulse) at 9-13 km depth and formation of contact metamorphic aureoles. Cooling of the highest-grade metamorphic zone below the wet solidus of granitic rocks is estimated at 88.5 ± 2.5 Ma. At ca. 75 Ma, the upper-middle crustal section underwent northward tilting, resulting in the exhumation of regional metamorphic zones to 9-13 km depth. Although the highest-grade metamorphic rocks and the 99-95 Ma pulse granitoids preserve similar U-Pb zircon ages, the absence of spatial association suggests that the regional metamorphic zones were mainly produced by a transient thermal anomaly in the mantle and thermal conduction through the crust, supplemented by localized advection due to granitoid intrusions. The successive emplacement of granitoids into shallow, deep and shallow levels of the crust was probably controlled by the combination of change in thermal structure of the crust and tectonics during granitoid intrusions.

  4. The mechanics of granitoid systems and maximum entropy production rates.

    Science.gov (United States)

    Hobbs, Bruce E; Ord, Alison

    2010-01-13

    A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate. This journal is © 2010 The Royal Society

  5. Tectonomagmatic evolution of the proto Andean Margin: Geochemical characterization and zircon U-Pb geochronologic constraints from the Ecuadorian Eastern Cordilleran granitoids

    Science.gov (United States)

    Buchwaldt, R.; Toulkeridis, T.

    2013-05-01

    The timing of pan-Pacific Gondwanide Orogeny in the proto-Andes, and its driving mechanisms are still highly debated and relies predominantly upon whole-rock Rb-Sr and K-Ar chronology and rudimentary mineralogy and geochemistry. In order to decipher these uncertainties we have studied the composition, age and provenance of granitoids along the strike of the Eastern Cordillera of Ecuador and related these deep-seated and surface tectonic processes attending the Late Cretaceous-Palaeogene history of the northern Andes. The plutonic rocks constitute a metaluminous to peraluminous (A/CNK ~ 0.8-1.2), calc-alkaline suite. A unimodal and wide compositional range of the intrusives (49-78 wt. % SiO2) is characteristic of this I-type orogenic suites. Mantle-normalized trace element patterns reveal typical subduction-related signature. Chondrite-normalized REE patterns do not show significant HREE fractionation suggesting the absence of high-pressure residual mineralogy in the source and formation in a "normal thickness", garnet-free crust. Slight Eu anomalies, lowering Sr contents, and concave-up REE patterns of samples dioritic in composition indicate a model involving fractionation of plagioclase, amphibole and pyroxene from a basaltic parent. The analyzed zircon crystals are colorless - transparent ranging in size from 50 to 250 μm. In CL images, 95% of the zircons exhibit oscillatory zonation, characteristic of a magmatic origin. This observation is consistent with the REE zircon composition showing a are characteristic steep positive slope from La to Lu with a significantly positive Ce-anomaly and slight negative Eu-anomaly. There is very little variation in Hf isotopic composition with most of the crust maintains near chondritic Zr/Hf ratios of around 35-40. Our results indicate the development of two tectonic episodes; with the first varying between 210-250 Ma and the second approximate 170-180 Ma. These results are consistent with similar events observed throughout

  6. Understanding the evolution of S- and I-type granitic plutons through analysis of apatite.

    Science.gov (United States)

    Hess, B. L.; Fiege, A.; Tailby, N.

    2017-12-01

    The major and trace element composition of apatites from the Lachlan fold belt (LFB) S- and I-type granitoids (Australia) and the Central French Massif (CFM) S-type leucogranites (France) were analyzed to investigate their compositional and redox variation. Apatite is a common accessory mineral in magmatic systems that can incorporate a variety of trace elements, including the polyvalent elements sulfur (S), iron (Fe), and manganese (Mn). It was recently discovered that apatite can incorporate three oxidation states of S (S6+, S4+, S2-) into its structure as a function of oxygen fugacity [1]. However, the oxidation states of Mn and Fe in apatite are essentially unknown (2+ and/or 3+). In this study, we collected many electron probe line transects across apatites in several different host phases from a variety of S- and I-type plutons. The F-H-Cl contents of the S- and I-type LFB samples were similar ( 2.9 wt% F, 0.4 wt% Cl, 0.5 wt% OH). The CFM S-types contained virtually no Cl and ranged from near-endmember OH-apatite to near-endmember F-apatite. The apatites of all studied the S- and I-type plutons are characterized by similar ranges of Fe content (X-ray absorption near-edge structure (XANES) spectroscopy. The spectra show variability in S oxidation states ranging from mostly sulfate down to nearly equal S6+/S2- ratios, indicating redox variations during apatite formation. The S-type Mn + Fe content plots in a 1:1 ratio against calcium (Ca) in atoms per formula unit, while the I-type apatites have too low Mn and Fe to show a clear trend. Thus, divalent Mn and Fe probably replace Ca2+ in the S-types' apatite structure, while the incorporation of trivalent Mn or Fe in apatite is rather unlikely. We suggest that Mn and Fe contents in apatite may become a useful tracer of melt evolution once the distributions coefficients are experimentally calibrated. [1] Konecke et al. (2017), Am Mineral

  7. Pattern Recognition of Signals for the Fault-Slip Type of Rock Burst in Coal Mines

    Directory of Open Access Journals (Sweden)

    X. S. Liu

    2015-01-01

    Full Text Available The fault-slip type of rock burst is a major threat to the safety of coal mining, and effectively recognizing its signals patterns is the foundation for the early warning and prevention. At first, a mechanical model of the fault-slip was established and the mechanism of the rock burst induced by the fault-slip was revealed. Then, the patterns of the electromagnetic radiation, acoustic emission (AE, and microseismic signals in the fault-slip type of rock burst were proposed, in that before the rock burst occurs, the electromagnetic radiation intensity near the sliding surface increases rapidly, the AE energy rises exponentially, and the energy released by microseismic events experiences at least one peak and is close to the next peak. At last, in situ investigations were performed at number 1412 coal face in the Huafeng Mine, China. Results showed that the signals patterns proposed are in good agreement with the process of the fault-slip type of rock burst. The pattern recognition can provide a basis for the early warning and the implementation of relief measures of the fault-slip type of rock burst.

  8. Cretaceous and Eocene Adakites in the Sikhote-Alin area (Russian Far East) and their correlation with adakitic rocks in the East Asia continental margin

    Science.gov (United States)

    Wu, T. J.; Jahn, B. M.

    2017-12-01

    Adakitic rocks of the Sikhote-Alin area were emplaced during two main periods: the Cretaceous (132-98 Ma) and Eocene (46-39 Ma). These rocks primarily occur in the Khanka Block and, less commonly, in the Sikhote-Alin Orogenic Belt. The adakitic rocks record the following chemical compositions: SiO2 = 57-74%, Al2O3 = 15-18%, Na2O = 3.5-6.1%, K2O = 0.7-3.2%, Na2O/K2O = 1.1-3.9, Sr/Y = 33-145, and (La/Yb)N = 11-53. The HREE and HFSE in these rocks are remarkably depleted. The Early Cretaceous adakites record ɛNd(T) = -1.0 to +3.2 and ISr = 0.7040-0.7090, and the Eocene adakitic rocks record Nd(T) = -2.0 to +2.2 and ISr = 0.7042-0.7058. Adakitic features suggest different modes of magma generation; a comparison of the Sr/Y and La/Yb ratios and geochemical data on Harker diagrams between the two periods of adakitic rocks reveals differences in their petrogenesis. The Cretaceous adakites may have been generated by the partial melting of meta-basic rocks in a subduction zone, accompanied by the emplacement of volcanic arc granitoids. Therefore, the subduction of the Paleo-Pacific Plate beneath the Sikhote-Alin was probably initiated during this time. The Eocene rocks, which record increasing adakitic features with increasing silica content, are most likely the product of andesite that underwent fractionation of mineral assemblage including clinopyoxene, orthopyroxene, garnet and amphibole. These rocks and associated basalts and rhyolite were formed after Cretaceous arc magmatism in the Sikhote-Alin area and were most likely generated by rollback of the subducting Pacific Plate after the Eocene. Abundant adakitic granitoids of Early Cretaceous and Eocene age occur in the Kitakami and Abukuma Mountains of NE Japan. Consequently, it is highly probable that a geological correlation existed between Sikhote-Alin and North Japan, particularly before the opening of the Japan Sea.

  9. Crustal contamination versus an enriched mantle source for intracontinental mafic rocks: Insights from early Paleozoic mafic rocks of the South China Block

    Science.gov (United States)

    Xu, Wenjing; Xu, Xisheng; Zeng, Gang

    2017-08-01

    Several recent studies have documented that the silicic rocks (SiO2 > 65 wt.%) comprising Silicic Large Igneous Provinces are derived from partial melting of the crust facilitated by underplating/intraplating of "hidden" large igneous province-scale basaltic magmas. The early Paleozoic intracontinental magmatic rocks in the South China Block (SCB) are dominantly granitoids, which cover a combined area of 22,000 km2. In contrast, exposures of mafic rocks total only 45 km2. These mafic rocks have extremely heterogeneous isotopic signatures that range from depleted to enriched (whole rock initial 87Sr/86Sr = 0.7041-0.7102; εNd(t) = - 8.4 to + 1.8; weighted mean zircon εHf(t) = - 7.4 to + 5.2), show low Ce/Pb and Nb/U ratios (0.59-13.1 and 3.5-20.9, respectively), and variable Th/La ratios (0.11-0.51). The high-MgO mafic rocks (MgO > 10 wt.%) tend to have lower εNd(t) values (- 4) and Sm/Nd ratios (> 0.255). The differences in geochemistry between the high-MgO and low-MgO mafic rocks indicate greater modification of the compositions of high-MgO mafic magmas by crustal material. In addition, generally good negative correlations between εNd(t) and initial 87Sr/86Sr ratios, MgO, and K2O, along with the presence of inherited zircons in some plutons, indicate that the geochemical and isotopic compositions of the mafic rocks reflect significant crustal contamination, rather than an enriched mantle source. The results show that high-MgO mafic rocks with fertile isotopic compositions may be indicative of crustal contamination in addition to an enriched mantle source, and it is more likely that the lithospheric mantle beneath the SCB during the early Paleozoic was moderately depleted than enriched by ancient subduction processes.

  10. Characterization and differentiation of rock varnish types from different environments by microanalytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Macholdt, D. S. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Jochum, K. P. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Pöhlker, C. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Arangio, A. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Förster, J. -D. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Stoll, B. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Weis, U. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Weber, B. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Müller, M. [Max Planck Inst. for Polymer Research, Mainz (Germany); Kappl, M. [Max Planck Inst. for Polymer Research, Mainz (Germany); Shiraiwa, M. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Kilcoyne, A. L. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weigand, M. [Max Planck Inst. for Intelligent Systems, Stuttgart (Germany); Scholz, D. [Johannes Gutenberg Univ., Mainz (Germany); Haug, G. H. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Al-Amri, A. [King Saud Univ., Riyadh (Saudi Arabia); Andreae, M. O. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; King Saud Univ., Riyadh (Saudi Arabia)

    2017-04-13

    We investigated rock varnishes collected from several locations and environments worldwide by a wide range of microanalytical techniques. These techniques were selected to address the challenges posed by the chemical and structural complexity within the micrometer- to nanometer-sized structures in these geological materials. Femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS), scanning transmission X-ray microscopy-near edge X-ray adsorption fine structure spectroscopy (STXM-NEXAFS) in combination with scanning electron microscopy (SEM) of focused ion beam (FIB) ultra-thin (100–200 nm) sections, conventional and polarization microscopy, as well as electron paramagnetic resonance (EPR) measurements were used to obtain information about these rock varnishes. Rock varnishes from different environments, which cannot readily be distinguished based on their macroscopic appearance, differ significantly in their constituent elemental mass fractions, e.g., of Mn, Fe, Ni, Co, Ba, and Pb, and their rare earth element (REE) patterns. Structural characteristics such as the particle sizes of embedded dust grains, internal structures such as layers of Mn-, Fe-, and Ca -rich material, and structures such as cavities varied between varnishes from different environments and regions in the world. The EPR spectra were consistent with aged biogenic Mn oxides in all samples, but showed subtle differences between samples of different origin. Our observations allow us to separate rock varnishes into different types, with differences that might be indicators of distinct geneses. Five different types of rock varnish could be distinguished, Type I–V, of which only Type I might be used as potential paleoclimate archive. Each varnish type has specific characteristics in terms of their elemental composition, element distribution, and structures. The combination of element ratios (Mn/Ba, Al/Ni, Mn/REY, Mn/Ce, Mn/Pb, La N /Yb N , and Ce/Ce*), total REE

  11. K-Ar age and tectonic setting of brannerite-mineralized Futagojima granodiorite, Koshiki Islands, Southern Kyushu

    International Nuclear Information System (INIS)

    Ishihara, Shunso; Shibata, Ken; Terashima, Shigeru

    1984-01-01

    Futagojima granodiorite, which was previously thought to be a part of Cretaceous Ryoke granitoids, is turned out to be upper Miocene granitoids (7.5 Ma). The granodiorite contains magnetite and is depleted in lithophile components. This is characteristics of magnetite-series granitoids in the Green Tuff terrains. All the Miocene granitoids in Koshiki Islands are relatively mafic consisting of hornblende-bearing facies such as quartz diorite, tonalite and granodiorite; thus belonging to I-type magnetite series. These rocks are considered to have generated at depth and formed along a rift zone during Miocene time (13 - 7 Ma). Thus, Koshiki Islands may represent an aborted rift at margin of the Danjo basin. Miocene granitoids of Koshiki Islands are small stocks but magmatic-hydrothermal ore deposits are only seen in Futagojima. This localization of mineralization is explained by a high degree of magmatic fractionation, which is only observed in Futagojima and by a low rate of erosion to preserve the mineralized horizons. Mineralization here is unique having brannerite-magnetite and chalcopyrite-molybdenite-quartz assemblages. No gold and silver were detected from the vein-type deposit. (author)

  12. Granites and granitoids of the southern region - Granite molybdenite system

    International Nuclear Information System (INIS)

    Issler, R.S.

    1987-01-01

    Economic concentrations of molybdenum are genetically closely associated with acidic and moderately acid granitoids-granites, granodiorites, monzonites and diorites, and are located in two geotectonic settings: subduction-related and rift-related. The aim of this paper is twofold, first succinctly approach the geology, tectonic setting and chemical parameters of the 'granite molybdenite system' as defined by Mutschler and/or alcali granite porphyry bodies emplaced in the North American continent for occasion of a Mesozoic-Fanerozoic extensile event; second to relate the computer-assisted evaluation of 422 major element chemical analysis of granites and granitoids of southern region of Brazil, using chemical fingerprints (SiO 2 ≥ 74. Owt%, Na 2 O ≤ 3.6wt%, K 2 O ≥ 4.5wt%), and K 2 O/Na 2 O ratio > 1.5 developed and testified from North American and Finnish occurrences, may locate molybdenite-bearing granite bodies with high exploration potential. These techniques suggest that some late Precambrian to early Paleozoic granite-rhyolite assemblages inserted at domains of the SG. 22/23 Curitiba/Iguape, SH. 21/22 Uruguaiana/Porto Alegre and SI.22 Lagoa Mirim Sheets, have exploration potential for molybdenum. (author) [pt

  13. The evolutionary characteristics and study of uranium mineralization conditions of early precambrian basement and old granitoids in Northern Hebei province of China

    International Nuclear Information System (INIS)

    Xia Yuliang; Rong Jiashu; Lin Jinrong; Zheng Maogong; Wen Xiyuan

    1993-05-01

    Based on the systematic studies of petrology, geochemistry and isotope geochronology, the Early Precambrian metamorphic complex in Northern Hebei province of China can be divided into three different series, i.e. granulite series, khondalite series and amphibolitic-felsic rock series. The so called 'magmatic granitoids' in that area are actually some magmagranites with different ages and different geneses, and they are not formed by migmatization. Up to now, the discovered Huaian complex which was formed in 3.5 Ga ago is the oldest nuclear area in the northern margin of North-China Platform. The granulite series, khondalite series and amphibolitic-felsic rock series belong to Early Archaean (>3.0 +- 0.1 Ga), Middle Archaean (>2.7 +- 0.1 Ga) and Later Archaean (>2.4 +- 0.1 Ga) respectively. The geological time scale of the Early Precambrian for Northern Hebei Province has been built. According to the synthetic analyses of various factors there is no prospect of uranium mineralization in the ancient terrain. However, the Mesozoic volcanic basins covering over the Hercynian Period granites would be main goal for looking for large uranium deposits in north part in that area

  14. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China

    Science.gov (United States)

    Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min

    2017-08-01

    We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.

  15. Rock magnetic survey of Himalaya-Karakoram ranges, northern Pakistan; Pakistan hokubu, Himalaya-Karakoram tai no ganseki jikigakuteki chosa

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M [Geoscience Co. Ltd., Tokyo (Japan); Khadim, I; Ahmad, M [Geological Survey of Pakistan, Islamabad (Pakistan)

    1997-10-22

    This paper describes results of the rock magnetic survey mainly including measurement of magnetic susceptibility conducted in the northern Pakistan from 1992 to 1997. Magnetic characteristics in Himalaya-Karakoram ranges and prospective ore deposits are also described. Magnetic susceptibility data measured in this district were summarized as a frequency map in each geological block. Granitoids in the northern part of Kohistan batholith and granitoids of Ladakh batholith showed remarkably high magnetic susceptibility values, which suggested they are magnetite-series magmatism. It has been known that magnetite-series magmatism often accompanies sulfide-forming mineral resources, which suggests high potentiality of abundant mineral resources containing Mo, Cu, Pb, Zn, Ag and Au. From the results of the magnetic susceptibility measurements and the above-mentioned models, accordingly, it can be pointed out that the northern part of Kohistan batholith, the distribution area of Ladakh batholith, and surrounding areas are promising targets for mineral resources exploration in the Himalaya-Karakoram ranges, northern Pakistan. 5 refs., 3 figs.

  16. Investigations of possibilities to dispose of spent nuclear fuel in Lithuania: a model case. Volume 1, Suitability of Geological Environment in Lithuania for Disposal of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Motiejunas, S.; Satkunas, J.

    2005-01-01

    This Volume contains an overview of geological structure with respect to its relevance for waste disposal conditions and characteristics of crystalline rocks in Lithuania with respect to its relevance for waste disposal. The most prospective rock types are represented by cratonic (anorogenic) granitoid intrusions that in some places compose rather large massifs. These rocks are the least damaged by tectonic activity. Furthermore, the lithology variations at short distances are only minor that makes exploration much easier. Yet, other rock types (gneisses, mafic intrusions, migmatites) compose someplace only weakly fractured blocks that also may be prospective for repository

  17. An evaluation of thematic mapper simulator data for the geobotanical discrimination of rock types in Southwest Oregon

    Science.gov (United States)

    Weinstock, K. J.; Morrissey, L. A.

    1984-01-01

    Rock type identification may be assisted by the use of remote sensing of associated vegetation, particularly in areas of dense vegetative cover where surface materials are not imaged directly by the sensor. The geobotanical discrimination of ultramafic parent materials was investigated and analytical techniques for lithologic mapping and mineral exploration were developed. The utility of remotely sensed data to discriminate vegetation types associated with ultramafic parent materials in a study area in southwest Oregon were evaluated. A number of specific objectives were identified, which include: (1) establishment of the association between vegetation and rock types; (2) examination of the spectral separability of vegetation types associated with rock types; (3) determination of the contribution of each TMS band for discriminating vegetation associated with rock types and (4) comparison of analytical techniques for spectrally classifying vegetation.

  18. Permo-Triassic arc-like granitoids along the northern Lancangjiang zone, eastern Tibet: Age, geochemistry, Sr-Nd-Hf isotopes, and tectonic implications

    Science.gov (United States)

    Wang, Xinyu; Wang, Shifeng; Wang, Chao; Tang, Wenkun

    2018-05-01

    Large volumes of Permo-Triassic granitoids are exposed along the Northern Lancangjiang zone, eastern Tibet, and these rocks provide insights into the tectonic evolution of the Paleo-Tethys Ocean. We conducted detailed geological fieldwork and geochemical analysis of the Xiaochangdu and Kagong plutons that crop out along the Northern Lancangjiang magmatic belt. Zircon U-Pb data constrain the emplacement of the Xiaochangdu quartz diotites to between 263 and 257 Ma, and the Kagong granites and diorites to between 234 and 232 Ma. The Xiaochangdu quartz diorites are enriched in light rare earth (LREE) and large ion lithophile elements (LILE), depleted in high field strength elements (HFSE), have low (87Sr/86Sr)i ratios, and near-positive εNd(t) (-0.26 to 1.58) and εHf(t) (0.68-8.83) values, similar to typical subduction- related mantle-derived arc magmas. They are also characterized by high Al2O3 concentrations and low Nb/U (3.48-7.59) and Ce/Pb (3.22-4.86) ratios, indicating that their mantle source was modified by subducted pelagic sediments; Coeval granites and diorites from the Kagong pluton exhibit low A/CNK values, high LREE/HREE (heavy rare earth element) ratios, enrichment in LILE, and depletion in HFSE, also characteristic of typical arc magmas. Their variable SiO2 contents (57%- 75%), (87Sr/86Sr)i ratios, and εNd(t) (1.02-4.49) and εHf(t) (2.52-6.93) values, and relatively high zircon saturation temperatures (721-827 °C), suggest underplating of mantle-derived mafic melts beneath the lower crust. Their magmatic evolution can be explained using a MASH model. In combination with regional geological studies, our geochemical and geochronological results suggest that the late Permian Xiaochangdu and Late Triassic Kagong arc-like granitoids represent a section of a Permo-Triassic magmatic arc that was associated with the eastward subduction of the Paleo-Tethys oceanic slab beneath the Northern Qiangtang-Changdu terrane. Combined with other geological evidence

  19. Pre- and syn-Ross orogenic granitoids at Drake Head and Kartografov Island, Oates Coast, northern Victoria Land, East Antarctica

    International Nuclear Information System (INIS)

    Adams, C.J.; Roland, N.W.

    2002-01-01

    The majority of the Oates Coast, northern Victoria Land granitoids, typified by those at Drake Head and Kartografov Island (Harald Bay), are monzogranites with lesser granodiorites and minor quartz-monzodiorite and syenogranite. All are plagioclase-K-feldspar-biotite granitoids with additional muscovite, garnet and/or hornblende, and are subalkaline and peraluminous. Berg Granite typifies the early Ordovician, Granite Harbour Instrusive (GHI) suite of the Ross Orogen at the Oates Coast. Granitoids from Kartografov Island have higher amounts of Fe+Mg+Ti and an ambiguous Rb-Sr geochronology: they could be either pre-Ross Orogeny in age, or syn-Ross Orogeny and representing a lower structural level of GHI. The Drake Head granite gneiss has a fractionated leuco-granite composition similar to Berg Granite, and is intruded by granite and granodiorite. Rb-Sr ages indicate that all are Neoproterozoic, although the granite gneiss result is probably an errorchron age, reflecting its less uniform nature (granodiorite:649 ± 30 Ma, initial ratio 0.7065 +/- 6; granite gneiss: 682 ± 140 Ma, initial ratio 0.7107 ± 50). These late Neoproterozoic granitoids provide a source for distinctive detrital zircon age components in extensive early Paleozoic turbidites of Australia-New Zealand-Antarctica. (author). 24 refs., 5 figs., 1 tab

  20. Signature of breccia complex/iron oxide- type U-REE mineralisation in the Khairagarh basin with special reference to Dongargaon- Lohara area, central India

    Energy Technology Data Exchange (ETDEWEB)

    Hansoti, S K; Sinha, D K [Department of Atomic Energy, Nagpur (India). Atomic Minerals Div.

    1995-10-01

    The Khairagarh basin having late Archaean- early Proterozoic basement is filled up by middle Proterozoic Khairagarh group volcano - sedimentary sequence, laid in the Kotri rift zone (KRZ) with imprints of repetitive volcanic, plutonic and tectonic activities. A strong thermal imprint of {approx} 1.5 Ga has been recorded in rocks of the basin that could be an effect of copious outpouring of basalts, dacites, ignimbrites, together with the emplacements of stocks of gabbros, gabbroic dolerites, dolerites, granites, granophyres, felsites, aplites, and quartz veins. Some of the basement rocks are enriched in Fe, Cu and other base metals and have been emplaced and assimilated by the volcano- plutonic rocks of the Nandgaon group and Malanjkhand granitoids. The Nandgaon group rocks and the Malanjkhand granitoids have anomalous intrinsic abundance of U, REE, Cu, Fe and quite a few metals in different sectors. Thermo-tectonic ({approx} 1.5 Ga) reactivation event(s) along the KRZ apart from facilitating formation of agglomerates, ignimbrites and tectonic breccias has promoted emplacement of plutonic and subvolcanic phases and their metasomatising and hydrothermal metal bearing fluids. In the Malanjkhand complex sector Cu{+-}Mo{+-}Fe{+-}Ag{+-}Au{+-}REE{+-}Zn metallisation and in the Dongargarh Massif sector U{+-}Th{+-}F{+-}Fe{+-}Pb{+-}Zn{+-}Cu{+-}REE{+-}Zr metallisation are manifested. The detection of Fe+U+REE {+-}Cu{+-}Ni metallisation in the Bortalao sandstones of the Dongargaon - Lohara area, located in between Malanjkhand ore zone and the Chandidongri (Dongargarh granite hosted) fluorite-rich and Pb{+-}Zn{+-}Cu{+-}U - bearing ore zone, considered to lie on the same (Malanjkhand - Chandidongri) fault/shear lineament is rated highly significant. (Abstract Truncated)

  1. Distribution regularities and prospecting of carbonate-siliceous-argillitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Zhao Fengmin; Pan Yan

    2012-01-01

    The carbonate-siliceous-argillitic rock type uranium deposit is one of the important types of uranium deposits in China. Exogenic permeability type and hydrothermal type are dominated in genetic type. Four mineralization zones, two independent mineralization districts, two potential mineralization zones can be classified in China, uranium mineralization districts can be classified further. They are classified as four levels through the potential metallogenic evaluation on the mineralization districts, an important prospective area in the near future. In order to develop and make use of carbonate-siliceous-argillitic rock type uranium resources, exploration and study should be listed in the development planning on uranium geology. (authors)

  2. Petrology of the Porriño late-Variscan pluton from NW Iberia. A model for post-tectonic plutons in collisional settings

    Energy Technology Data Exchange (ETDEWEB)

    González Menéndez, L.; Gallastegui, G.; Cuesta, A.; Montero, P.; Rubio-Ordoñez, A.; Molina, J.F.; Bea, F.

    2017-07-01

    The Variscan orogen of NW Iberia contains abundant syn- and post-tectonic granitoids. The post-tectonic granitoids are metaluminous to slightly peraluminous, I-type granites, monzogranites ± granodiorites ± tonalites. The Porriño pluton studied here is a representative example. It consists of two units: i) a pink-red, peraluminous, biotite granite and ii) a gray, metaluminous to peraluminous, biotite (± amphibole ± titanite) monzogranite, including maficintermediate enclaves. SHRIMP U-Pb dating yielded 290-295Ma ages for all the units. The mineralogy and geochemistry show that the pink-red granite has features of I- and A-type granites, whereas the gray monzogranite and enclaves are I-types. Sr isotopes show scattered values for the pink-red granite (87Sr/86Sr295Ma ≈ 0.702-0.710) and uniform values for the gray monzogranite and enclaves (87Sr/86Sr295Ma≈ 0.705-0.706). Geochemical results indicate a peritectic entrainment of clinopyroxene + orthopyroxene ± Ca-plagioclase ± ilmenite ± garnet, and minor accessory phases (± zircon ± titanite ± apatite) into a melt similar to the leucocratic gray monzogranite. A mafic-intermediate source is proposed for the gray monzogranite and its enclaves. Restitic protoliths generated granitic melts with A-type features such as the pink-red granite. The I-type nature of many post-tectonic granitoids could be explained by the previous extraction of S-type syn-tectonic granites that left restites and less fertile rocks. Late orogenic new melting affected the previously unmelted and more mafic lithologies of the lower-middle crust, and gave rise to I-type granitoids. Repeated melting events affecting such lithologies and previous restites could have generated granitic melts with A-type features.

  3. Geotechnical properties of rock

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1995-12-31

    The manual is a compilation of the geotechnical properties of many types of rock that are typical of Canadian mining environments. Included are values for density, porosity, compressive and shear wave velocity, uniaxial compressive strength, Young`s modulus, and Poisson`s ratio. The data base contains material constants that were determined using the Hoek and Brown failure criteria for both before and after failure conditions. 76 data sheets of rock properties in Canadian mines are included. 7 refs., 85 figs., 3 tabs.

  4. Charnockites and granites of the western Adirondacks, New York, USA: a differentiated A-type suite

    Science.gov (United States)

    Whitney, P.R.

    1992-01-01

    Granitic rocks in the west-central Adirondack Highlands of New York State include both relatively homogeneous charnockitic and hornblende granitic gneisses (CG), that occur in thick stratiform bodies and elliptical domes, and heterogeneous leucogneisses (LG), that commonly are interlayered with metasedimentary rocks. Major- and trace-element geochemical analyses were obtained for 115 samples, including both types of granitoids. Data for CG fail to show the presence of more than one distinct group based on composition. Most of the variance within the CG sample population is consistent with magmatic differentiation combined with incomplete separation of early crystals of alkali feldspar, plagioclase, and pyroxenes or amphibole from the residual liquid. Ti, Fe, Mg, Ca, P, Sr, Ba, and Zr decrease with increasing silica, while Rb and K increase. Within CG, the distinction between charnockitic (orthopyroxene-bearing) and granitic gneisses is correlated with bulk chemistry. The charnockites are consistently more mafic than the hornblende granitic gneisses, although forming a continuum with them. The leucogneisses, while generally more felsic than the charnockites and granitic gneisses, are otherwise geochemically similar to them. The data are consistent with the LG suite being an evolved extrusive equivalent of the intrusive CG suite. Both CG and LG suites are metaluminous to mildly peraluminous and display an A-type geochemical signature, enriched in Fe, K, Ce, Y, Nb, Zr, and Ga and depleted in Ca, Mg, and Sr relative to I- and S-type granites. Rare earth element patterns show moderate LREE enrichment and a negative Eu anomaly throughout the suite. The geochemical data suggest an origin by partial melting of biotite- and plagioclase-rich crustal rocks. Emplacement occurred in an anorogenic or post-collisional tectonic setting, probably at relatively shallow depths. Deformation and granulite-facies metamorphism with some partial melting followed during the Ottawan phase

  5. Uranium occurrence in major rock types by fission-track mapping

    International Nuclear Information System (INIS)

    Ledger, E.G.; Bomber, B.J.; Schaftenaar, W.E.; Tieh, T.T.

    1984-01-01

    Microscopic occurrence of uranium has been determined in about 50 igneous rocks from various location, and in a genetically unrelated sandstone from south Texas. Precambrian granites from the Llano uplift of central Texas contain from a few ppm uranium (considered normal) to over 100 ppm on a whole-rock basis. In granite, uranium is concentrated in: (1) accessory minerals including zircon, biotite, allanite, Fe-Ti oxides, and altered sphene, (2) along grain boundaries and in microfractures by precipitation from deuteric fluids, and (3) as point sources (small inclusions) in quartz and feldspars. Tertiary volcanic rocks from the Davis Mountains of west Texas include diverse rock types from basalt to rhyolite. Average uranium contents increase from 1 ppm in basalts to 7 ppm in rhyolites. Concentration occurs: (1) in iron-titanium-oxides, zircon, and rutile, (2) in the fine-grained groundmass as uniform and point-source concentrations, and (3) as late uranium in cavities associated with banded, silica-rich material. Uranium in ore-grade sandstone is concentrated to more than 3%. Specific occurrences include (1) leucoxene and/or anatase, (2) opaline and calcite cements, (3) mud clasts and altered volcanic rock fragments, and (4) in a few samples, as silt-size uranium- and molybdenum-rich spheres. Uranium content is quite low in pyrite, marcasite, and zeolites

  6. Uranium mineralization in the Bohemian Massif and its exploration

    International Nuclear Information System (INIS)

    Matolin, M.; Pluskal, O.; Rene, M.

    1981-01-01

    Long-term systematic and planned uranium survey including airborne, carborne, ground, logging and laboratory radiometric measurements as well as geological and geochemical investigations have shown a difference in radioactivity of two regional geological units in Czechoslovakia. The higher regional radioactivity of the Variscan granitoid rocks of the Bohemian Massif differs from that of the West Carpathians and is associated with more frequent uranium mineralization. Endogenous vein-type uranium mineralization has a spatial association with high-radioactivity granitoids in the Bohemian Massif. Airborne prospection defined rock radioactivity features on a regional scale while surface and subsurface radiometric and geological investigations using various techniques localized important uranium deposits. Complex statistical evaluation of numerous geophysical and geological data was studied in order to delineate uranium-favourable areas. (author)

  7. Obsahy galia, india a thalia v granitoidech Českého masivu a jejich hlavních horninotvorných minerálech

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel; Vašinová Galiová, M.; Korbelová, Zuzana; Vaňková, M.; Kanický, V.

    2015-01-01

    Roč. 2014, č. 1 (2015), s. 79-83 ISSN 0514-8057 R&D Projects: GA ČR GA14-13600S Institutional support: RVO:67985831 Keywords : gallium * indium * thallium * granitoids * rock-forming minerals * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy

  8. Constraints and prospects of uranium exploration in Himalaya

    International Nuclear Information System (INIS)

    Singh, Rajendra

    1994-01-01

    Exploration for uranium in the Himalaya over the last thirty years has brought to light five distinct types of mineralisation, namely, vein-type, hydrothermal shear controlled-type, disseminated-type, syngenetic-type, and sandstone-type. The first three are associated with lower to middle proterozoic metasedimentary rocks, metabasic rocks, and granitoids of the lesser Himalaya in close proximity to the main central thrust (MCT). The carbonaceous slates of Haimanta group (late proterozoic to eocambrian) and the Mussoorie phosphorites (eocambrian) represent the syngenetic types. The sandstone-type is associated with the late tertiary Siwaliks of the northwestern Himalaya. The constraints in geology and uranium exploration in the Himalaya have been briefly discussed and principal uranium occurrences in relation to their tectonic environment and genesis listed. The need for geochemical characterization of the Himalayan granitoids and the metabasics related to known uranium mineralisation and new areas have been suggested. Integrated application of radiometric, geochemical and geophysical methods of prospecting and remote sensing techniques in regional geological correlation, identification of subtle rock alterations associated with mineralized zones, geologic structures, and deep crustal lineaments have been advocated. A case for the exploration of the areas of lesser Himalaya outside the MCT has been made out so as to locate hitherto unknown types of uranium deposits including, strata bound, metamorphic, and intra granitic types, possibly with better depth persistence. (author). 57 refs., 1 fig., 2 tabs

  9. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China

    Science.gov (United States)

    Wang, Hao; Wu, Yuan-Bao; Yang, Jin-Hui; Qin, Zheng-Wei; Duan, Rui-Chun; Zhou, Lian; Yang, Sai-Hong

    2017-06-01

    Ascertaining the petrogenesis of granitoid rocks in subduction zones holds the key for understanding the processes of how continental crust is produced. The synchronous Taoyuan and Huanggang plutons occur in two different geological units of the Paleozoic Tongbai orogen of central China. They provide an optimal opportunity for a study to address the role of the crustal basement in generating voluminous granitoid magmatism in subduction zones. The Taoyuan and Huanggang plutons have identical U-Pb zircon crystallization ages of 440-444 Ma, which are temporally related to northward subduction of the Paleotethyan Ocean. The Taoyuan samples show high SiO2 (73.36-79.16%) and low Al2O3 (12.00-13.45%) contents, Mg numbers (20.6-38.2), and Sr/Y (2.04-10.1) and (La/Yb)N (2.34-7.32) ratios with negative Eu anomalies (Eu/Eu* = 0.33-0.93). They yielded positive εNd(t) (+ 3.0 to + 6.7) and εHf(t) (+ 11.8 to + 13.2) values, elevated initial Sr isotopic ratios (0.7040-0.7057) and relatively low zircon δ18O values of 4.62-5.39‰. These suggest that they were produced through partial melting of hydrothermally altered lower crust of the accreted Erlangping oceanic arc. In contrast, the Huanggang samples exhibit variable whole-rock geochemical and isotopic compositions with SiO2 contents of 57.01-64.42 wt.%, initial Sr isotopic ratios of 0.7065-0.7078, and εNd(t) values of - 5.7 to - 9.4. Additionally, they have high zircon δ18O values of 7.57-8.45‰ and strongly negative zircon εHf(t) values of - 14.4 to - 10.5. They were suggested to have been mainly derived from ancient continental crust of the Kuanping crustal unit with the addition of 20-40% juvenile, mantle-derived material. Accordingly, the granitoids in both oceanic and continental arcs are likely to be mainly derived from intracrustal melting of their crustal basement. It is revealed by the Huanggang pluton that little net continental crust growth occurs in continental arcs, and addition of new volume of continental

  10. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper (Vattenfall Power Consultant AB, Stockholm (Sweden)); Curtis, Philip; Bockgaard, Niclas (Golder Associates AB (Sweden)); Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-01-15

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images

  11. Characterization and testing of rock aggregates of the Santa Marta Batholith, (Colombia

    Directory of Open Access Journals (Sweden)

    Nancy Paola Figueroa Madero

    2014-12-01

    Full Text Available Aggregates of intrusive rocks are the major source of crushed fine and coarse aggregates for use in concrete in several countries and they have to meet a number of specifications relating to strength and durability. This research reports the evaluation of aggregates of granitoids and associated rocks of Santa Marta Batholith, Sierra Nevada de Santa Marta Massif, Colombia, based on petrographic analysis and mechanical and chemical acceptance tests. The strength and durability of a particular rock type depends on its intrinsic characteristic, thus petrographic analysis is very important to understand its mechanical and chemical properties. Numerous standard tests used to ensure aggregates meet the appropriate specifications; however, petrographic analysis represents the most valuable test for predicting the overall performance of concrete aggregates in any control test. Aggregates were analyzed to determine their petrographic, physical, mechanical and chemical properties. Samples were categorized as hornblendite, gabbro, quartzmonzodiorite, monzodiorite and monzonite groups. Among these, of the quartzmonzodiorite was the dominant group. Specific gravity indicates values in the range 2673-2956kg/m3. Water absorption values are in the range 0.908-1.194%. Aggregate impact values of samples (37.82 to 61.36% showed good soundness only for one of the aggregates, which are considered acceptable for use in the preparation of a good quality concrete. Values of Methylene Blue Adsorption reveal the organic matter content is below the threshold. Magnesium sulphate values ranged between 0.11 and 4.75% suggesting good resistance against chemical atmospheric agents. The compressive strength test shows values in the range 35.22-59.45MPa indicating that the geomechanical behavior of rock cylinders is satisfactory. The geomechanical behavior of rock tablets under flexion is also satisfactory for SMA-2 sample (16.53MPa, although not for SMA-6 and SMA-8 samples

  12. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  13. Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit

    Science.gov (United States)

    Maleki, Mohammad; Emery, Xavier

    2017-12-01

    In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.

  14. Relict zircon U-Pb age and O isotope evidence for reworking of Neoproterozoic crustal rocks in the origin of Triassic S-type granites in South China

    Science.gov (United States)

    Gao, Peng; Zheng, Yong-Fei; Chen, Yi-Xiang; Zhao, Zi-Fu; Xia, Xiao-Ping

    2018-02-01

    Granites derived from partial melting of sedimentary rocks are generally characterized by high δ18O values and abundant relict zircons. Such relict zircons are valuable in tracing the source rocks of granites and the history of crustal anatexis. Here we report in-situ U-Pb ages, O isotopes and trace elements in zircons from Triassic granites in the Zhuguangshan and Jiuzhou regions, which are located in the Nanling Range and the Darongshan area, respectively, in South China. Zircon U-Pb dating yields magma crystallization ages of 236 ± 2 Ma for the Zhuguangshan granites and 246 ± 2 Ma to 252 ± 3 Ma for the Jiuzhou granites. The Triassic syn-magmatic zircons are characterized by high δ18O values of 10.1-11.9‰ in Zhuguangshan and 8.5-13.5‰ in Jiuzhou. The relict zircons show a wide range of U-Pb ages from 315 to 2185 Ma in Zhuguangshan and from 304 to 3121 Ma in Jiuzhou. Nevertheless, a dominant age peak of 700-1000 Ma is prominent in both occurrences, demonstrating that their source rocks were dominated by detrital sediments weathered from Neoproterozoic magmatic rocks. Taking previous results for regional granites together, Neoproterozoic relict zircons show δ18O values in a small range from 5 to 8‰ for the Nanling granites but a large range from 5 to 11‰ for the Darongshan granites. In addition, relict zircons of Paleozoic U-Pb age occur in the two granitic plutons. They exhibit consistently high δ18O values similar to the Triassic syn-magmatic zircons in the host granites. These Paleozoic relict zircons are interpreted as the peritectic product during transient melting of the metasedimentary rocks in response to the intracontinental orogenesis in South China. Therefore, the relict zircons of Neoproterozoic age are directly inherited from the source rocks of S-type granites, and those of Paleozoic age record the transient melting of metasedimentary rocks before intensive melting for granitic magmatism in the Triassic.

  15. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    Science.gov (United States)

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  16. Mass changes during hydrothermal alteration/mineralization in the gold-bearing Astaneh granitoid, western Iran

    Science.gov (United States)

    Zahra Afshooni, Seyedeh; Esmaeily, Dariush

    2010-05-01

    The Astaneh granitoid massif, located in western Iran, is a part of Sanandaj-Sirjan structural Zone. This body, mainly consist of granodioritic rocks, is widely affected under hydrothermal alteration and four alteration zones including phyllic (sericitic), chloritic, propylitic and argillic zones could be identified in this area. Four main mineralization- related alteration episodes have been studied in terms of mass transfer and element mobility during the hydrothermal evolution of Astaneh deposit. In order to illustrate these changes quantitatively, isocon plots have been applied. Isocon plots illustrate that Al, Ti, Ga and Tm was relatively immobile during alteration and that mass were essentially conserved during alteration. Phyllic alteration was accompanied by the depletion of Na and Fe and the enrichment of Si and Cu. The loss of Na and Fe reflects the sericitization of alkali feldspar and the destruction of ferromagnesian minerals. The addition of Si is consistent with widespread silicification wich is a major feature of phyllic alteration. All of the HFSE (except in Y), were enriched but all REEs were depleted in this zone. The overall obtained results show that major oxides such as SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5 and TiO2 and also LOI show dissimilar behaviors in the different zones. All of the LFSE, HFSE and FTSM (except in Cu and Mo) were depleted in argillic alteration but show dissimilar behaviors in the other alteration zones. The results shown strong depletion in REE, in particular LREE, in all of the alteration facies (except in chloritic zone), equivalent fresh rocks. In chloritic zone, compared with HREE, the LREE represent more enrichment.

  17. Sorptivity of rocks and soils of the van Genuchten-Mualem type

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.W.; Bodvarsson, G.S. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    One hydrological process that will have great relevance to the performance of the proposed underground radioactive waste repository at Yucca Mountain, Nevada, is that of the absorption of water from a water-filled fracture into the adjacent unsaturated rock formation. The rate at which water is imbibed by a rock depends on the hydrological properties of the rock and on the initial saturation (or initial capillary suction) of the formation. The hydrological properties that affect imbibition are the relative permeability function and the capillary pressure function. These functions are often collectively referred to as the `characteristic functions` of the porous medium. For one-dimensional absorption, it can be shown that, regardless of the details of the characteristic functions, the total amount of water imbibed by the formation, per unit surface area, will be proportional to the square root of the elapsed time. Hence the ability of a rock or soil to imbibe water can be quantified by a parameter known as the sorptivity S, which is defined such that the cumulative volumetric liquid influx per unit area is given by Q = S{radical}t. The paper discusses the simplification of these characteristic functions of porous medium.

  18. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    Science.gov (United States)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  19. Litho stratigraphy of precambrian rocks in middle Xingu river basin -Altamira, Para state, Brazil

    International Nuclear Information System (INIS)

    Santos, M.V. dos; Sousa Filho, E.E. dos; Tassinari, C.C.G.

    1988-01-01

    The basement rocks from the Xingu river is divided into five litho stratigraphic units. They are broadly characterized by domains of ortho and para gneisses, volcano-sedimentary sequences, migmatites and by syntectonic and latetectonic granitoids. In addition acid to intermediate volcanics (Iriri formation) and several sub-volcanic granitic plutons (Maloquinha suite) also occur within the investigated area, as well as basic intrusions and minor arenous sediments covers, slightly metamorphosed. Geochronological studies carried out on the basement rocks and on the volcanics demonstrates an geologic evolution restricted to the trans Amazonian cycle (2.1 - 1.9 Ga). Sr isotopic evolution (high initial 87 Sr/ 86 Sr ratios) suggest that strong reworking of crustal material occurred at this time, in association with the tectonic evolution of the Maroni-Itacaiunas mobile belt related to the lower proterozoic, which borders the northern and northerneast part of the Archean central Amazonian province. (author)

  20. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    Science.gov (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  1. Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis

    Science.gov (United States)

    Meyer, C., Jr.

    1978-01-01

    Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.

  2. Barren Miocene granitoids in the Central Andean metallogenic belt, Chile: Geochemistry and Nd-Hf and U-Pb isotope systematics Granitoides estériles del Mioceno en la franja metalogénica de los Andes Centrales, Chile: geoquímica e isotopía de Nd-Hf y U-Pb

    Directory of Open Access Journals (Sweden)

    Katja Deckart

    2010-01-01

    Full Text Available Four Middle-to-Late Miocene barren plutonic complexes that occur between the giant porphyry copper deposits of the central Chilean Andes were selected for U-Pb LA-ICPMS geochronology and Hf-isotope systematics on single zircon grains. Major and trace elements and Sr-Nd-Hf isotope whole rock geochemical studies were under-taken to compare with slightly younger or coeval barren and fertile intrusive rocks between 32° and 34°S. The studied granitoids yield resolvable crystallization ages of 11.3±0.1 Ma (Cerro Mesón Alto massif, 10.3±0.2 Ma (La Gloria pluton, 14.9±0.2 Ma/14.9±0.1 Ma (Yerba Loca stock and 11.2±0.1 Ma/14.7±0.1 Ma (San Francisco Batholith. Major and trace elements discard an adakitic signature as suggested for coeval porphyric intrusions at 32°S, slightly younger mineralized porphyries at Río Blanco-Los Bronces deposit and other Cenozoic adakites. Volcanic host rocks are less fractionated than the intrusive rock units. The same observation can be made for the unmineralized northern plutons compared to the southern ones. Initial Sr-Nd isotope data show insignificant variation (0.703761-0.704118 and 0.512758-0.512882, plotting in the mantle array. Trace element enrichment can be explained by addition of subducted-slab fluids and/or terrigenous sediments to the mantle wedge prior to and/or slight crustal input during magma ascent. Zircon grains separated from these barren intrusives share a similar initial εHf i-data variation for the younger age group (10-12 Ma; 7.04-9.54 and show a more scattered range for the older one (14-15 Ma; 8.50-15.34; both sets plot between the DM and CLTUR evolution lines. There is evidence that magma evolution was slightly distinct through time from older to younger barren magmatism, compared to a few fertile porphyritic rocks from Río Blanco-Los Bronces porphyry copper deposit. It is suggested that chronological inconsistencies within these complexes might be related to differential shortening

  3. Cooling of a polyethylene tunnel type greenhouse by means of a rock bed

    Energy Technology Data Exchange (ETDEWEB)

    Kurklu, Ahmet; Bilgin, Sefai [Akdeniz Univ., Dept. of Agricultural Mechanisation, Antalya (Turkey)

    2004-10-01

    An experiment was conducted to cool a 15 m{sup 2} ground area plastic-tunnel-type greenhouse by the use of a rock bed. An identical greenhouse with no rock bed was also erected for control purposes. Two rock-bed canals, each with the dimensions of 3 x l.25 x 0.75 m, were dug in the soil of the experimental greenhouse. After the canals were filled with the rocks and insulated, the top surface was covered by a soil layer of thickness enough for the root development depth of the plants. Air was pushed through the rock bed by a centrifugal fan with a 1100 m{sup 3}/h flow rate. Energy stored in the rock bed during the day was dumped outside the greenhouse at night using the cooler outside air. The results of the measurements showed that the rock-bed system maintained air temperature 14 deg C lower at maximum in the experimental greenhouse than the control one. The temperature difference seemed to increase with increasing solar radiation and outside air temperature. Relative humidity during the day remained at about 40% in the experimental greenhouse and was always higher than that in the control one. The coefficient of performance (COP) of the rock-bed system was higher than 3 in general, and it was observed that this value increased with decreasing rock-bed temperature. The average solar collection efficiency was 38%. The rock-bed system seems to have a significant potential for cooling applications in greenhouses. (Author)

  4. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  5. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  6. Petrological and geochemical characterization of the plutonic rocks of the Sierra de La Aguada, Province of San Luis, Argentina: Genetic implications with the Famatinian magmatic arc

    Directory of Open Access Journals (Sweden)

    E. Cristofolini

    2017-07-01

    Full Text Available This study presents a synthesis on the geology of the crystalline complex that constitute the Sierra de la Aguada, San Luis province, Argentine, from an approach based on field relations, petrologic and structural features and geochemical characteristic. This mountain range exposes a basement dominated by intermediate to mafic calcalkaline igneous rocks and peraluminous felsic granitoids, both emplaced in low to medium grade metamorphic rocks stabilized under low amphibolite facies. All this lithological terrane has been grouped in the El Carrizal-La Aguada Complex. Field relations, petrographic characterization and geochemical comparison of the plutonic rocks from the study area with those belonging to the Ordovician Famatinian suit exposed in the Sierra Grande de San Luis, suggest a genetic and temporal relation linked to the development of the Famatinian magmatic arc.

  7. Conceptual and safety-related questions in the final storage of radioactive waste - a comparison of various types of host rock

    International Nuclear Information System (INIS)

    Kleemann, U.

    2005-01-01

    The German Federal Office for Radiation Protection (BfS) in early November published the synthesis report (BfS 2005) about the conceptual and safety-related specific questions associated with the final storage of radioactive waste. In addition to a condensed version of twelve individual projects, the report contains a description of the results of the peer review and the workshops carried out, in particular an evaluation comparing different types of host rock in Germany. The whole project constitutes a comprehensive documentation of the current state of the art. Findings are expressed at a general level referring neither to the suitability of any specific repository site nor to that of salts as a repository formation, but covering all potential repository formations in deep geologic strata in Germany. The limits to and possibilities of, generic comparisons of various types of host rock are shown. It si seen that, in principle, none of the host rock varieties in Germany would be preferable to others. Numerous problems can be solved only for specific sites, thus requiring site comparisons. While some questions indicate a need for regulatory treatment, the need for basic research is considered to be low. The contribution presents the main findings made in each of the specific projects and the evaluations by the Office. (orig.)

  8. Migration of fluids as a tool to evaluate the feasibility of the implantation of geological radioactive wastes repositories (RARN) in granitoid rocks: tests on granites submitted to natural deformation vs. not deformed; A migração de fluidos como ferramenta de avaliação da viabilidade da implantação de repositórios de rejeitos radioativos geológicos (RARN) em rochas granitoides: testes em granitos submetidos a deformação natural vs. não deformados

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Nilo Henrique Balzani; Barbosa, Pedro Henrique Silva; Santos, Alanna Leite dos; Amorim, Lucas Eustáquio Dias; Freitas, Mônica Elizetti de; Rios, Francisco Javier, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Caracterização Mineralógica e Metalogênese

    2017-07-01

    Fluid composition and migration studies in granitoid rocks subjected to deformation events are a factor that should be considered in the selection of geologically favorable areas for RANR construction, and may be an excellent complement to engineering barrier designs. The research objective was to develop an academic approach, comparing the behavior of deformed and non-deformed granites, not being related to any CNEN project of deploying repositories. It is concluded that in the choice of suitable sites for the construction of repositories, granite bodies that are submitted to metamorphic / deformation / hydrothermal events or that are very fractured should be disregarded. The domes of granite batholith that have undergone hydraulic billing should also be discarded. It has been found that, because of the warming caused by radioactive decay reactions, there is a real possibility that the release of potentially abrasive fluids contained in the minerals can reach and corrode the walls of the repositories and / or packaging.

  9. General geology, alteration, and iron deposits in the Palaeoproterozoic Misi region, northern Finland

    Directory of Open Access Journals (Sweden)

    Tero Niiranen

    2003-01-01

    Full Text Available The Paleoproterozoic Misi region forms the northeastern part of the Peräpohja Schist Belt in northern Finland. The area comprises mafic volcanic and sedimentary rocks, differentiated gabbros, and late-orogenic granitoids. Three geochemically different mafic volcanic units were recognised: LREE-depleted amygdaloidal lavas, slightly LREE-enriched lavas, and mafic tuffs that have a flat REE pattern. Sedimentary rocks include arkosites, mica gneisses, dolomitic marbles, quartzites, tuffites, mica schists, calc-silicate rocks and graphite-bearing schists. Two types of gabbros wereidentified: one with a LREE-enriched pattern and another with flat REE pattern. The age of the former is according to Perttunen and Vaasjoki (2001 2117±4 Ma, whereas there is no age determination for the latter. The granitoid intrusions belong to the ca. 1800 Malate-orogenic group of the Central Lapland Granitoid Complex. The geochemistry and the stable isotope data on mafic lavas and dolomitic marbles show similarities with the mafic volcanic rocks and marbles of the lower part of the Kivalo group in the western part of Peräpohja Schist Belt. Peak metamorphic conditions in the region vary from upper-greenschist to upper-amphibolite facies. Three major stages of deformation were distinguished: N-S compressional D1 with ductile deformation, NE-SW compressional D2 with ductile to brittle-ductile deformation, and E-W compressional D3 with brittle deformation. Several magnetite occurrences are known in the region and four of those have been mined for iron. The ores are mainly composed of magnetite with minor haematite, pyrite, chalcopyrite and bornite. Besides iron, the ores contain small amounts of P, S and V aswell as trace amounts of Cu, Co, Te and Au. The magnetite bodies are hosted by skarnoids within the ca. 2220–2120 Ma dolomitic marble-quartzite sequence, and highly differentiated, intensely albitised, LREE-enriched gabbro. Multistage and -type alteration is

  10. Ore-forming environment and ore-forming system of carbonaceous-siliceous-pelitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; He Zhongbo; Wang Wenquan

    2012-01-01

    It is proposed that there are four types of ore-forming systems about carbonaceous-siliceous-pelitic rock type uranium deposit in China based on systematic study on structural environment and distribution regularity of uraniferous construction of marine carbonaceous-siliceous-pelitic rock in China: continental margin rift valley ore-forming systems, continental margin rifting deep fracture zone ore-forming systems, landmass boundary borderland basin ore-forming systems and epicontinental mobile belt downfaulted aulacogen ore-forming systems. It is propounded definitely that it is controlled by margin rift valley ore-forming systems and continental margin rifting deep fracture zone ore-forming systems for large-scale uranium mineralization of carbonaceous-siliceous-pelitic rock type uranium deposit in China, which is also controlled by uraniferous marine carbonaceous-siliceous-pelitic rock construction made up of silicalite, siliceous phosphorite and carbonaceous-siliceous-pelitic rock, which settled down accompany with submarine backwash and sub marine volcanic eruption in margin rift valley and continental margin rifting mineralizing environment. Continental mar gin rift valley and continental margin rifting thermal sedimentation or exhalation sedimentation is the mechanism of forming large-scale uraniferous marine carbonaceous-siliceous-pelitic rock construction Early Palaeozoic Era in China or large-scale uranium-polymetallic mineralization. (authors)

  11. 1.88 Ga São Gabriel AMCG association in the southernmost Uatumã-Anauá Domain: Petrological implications for post-collisional A-type magmatism in the Amazonian Craton

    Science.gov (United States)

    Valério, Cristóvão da Silva; Macambira, Moacir José Buenano; Souza, Valmir da Silva; Dantas, Elton Luiz; Nardi, Lauro Valentim Stoll

    2018-02-01

    In the southernmost Uatumã-Anauá Domain, central Amazonian craton (Brazil), crop out 1.98 Ga basement inliers represented by (meta)leucosyenogranites and amphibolites (Igarapé Canoas Suite), 1.90-1.89 Ga high-K calc-alkaline granitoids (Água Branca Suite), a 1.88-1.87 Ga alkali-calcic A-type volcano-plutonic system (Iricoumé-Mapuera), Tonian SiO2-satured alkaline granitoids, 1.45-1.25 Ga orthoderived metamorphic rocks (Jauaperi Complex) and Orosirian-Upper Triassic mafic intrusions. New data on petrography, multielementar geochemistry, in situ zircon U-Pb ages and Nd and Hf isotopes of alkali-calcic A-type granites (São Gabriel Granite, Mapuera Suite) and related rocks are indicative of a 1.89-1.87 Ga volcano-plutonic system integrated to the São Gabriel AMCG association. Its magmatic evolution was controlled by the fractional crystallization combined with magma mixing and cumulation processes. Nd isotope values (εNdt values = - 3.71 to + 0.51 and Nd TDM model age = 2.44 to 2.12 Ga) and U-Pb inherited zircon crystals (2115 ± 22 Ma; 2206 ± 21 Ma; 2377 ± 17 Ma, 2385 ± 17 Ma) of the São Gabriel system indicate a large participation of Siderian-Rhyacian crust (granite-greenstones and granulites) and small contribution of Rhyacian mantelic magma. εHft values (+ 5.2 to - 5.8) and Hf TDM ages (3.27-2.14 Ga) also point to contribution of Paleoarchean-Rhyacian crustal melts and small participation of Siderian-Rhyacian mantle melts. Residual melts from the lower crust have been mixed with basaltic melts generated by partial melting of the subcontinental lithospheric mantle (peridotite) in a post-collisional setting at 1.89-1.87 Ga. The mafic melts of such a mixture could have been originated through partial melting of residual ocean plate fragments (eclogites) which ascended onto a residual mantle wedge (hornblende peridotite) and melted it, resulting in modified basaltic magma which, by underplating, led heat to the anatexis of the lower continental crust

  12. Radioactivities (dose rates) of rocks in Japan

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Minato, Susumu

    1995-01-01

    The radioactive distribution (radiation doses) of major rocks in Japan was monitored to clarify the factors influencing terrestrial gamma-ray absorbed dose rates. The rock samples were reduced to powder and analyzed by well-type NaI(Tl) scintillation detector and pulse height analyzer. Terrestrial gamma-ray dose rates were estimated in terms of gamma radiation dose rate 1 m above the ground. The radioactivity concentration was highest in acidic rock which contains much SiO 2 among igneous rock, followed by neutral rock, basic rock, and ultrabasic rock. The radioactive concentration was 30-40% lower in acidic and clastic rocks than those of the world average concentration. Higher radioactive concentration was observed in soils than the parent rocks of sedimentary rock and metamorphic rock. The gamma radiation dose rate was in proportion to the radioactive concentration of the rocks. To clarify the radioactive effect in the change course of rocks into soils, comparative measurement of outcrop and soil radioactive concentrations is important. (S.Y.)

  13. Results of Rb-Sr dating of metamorphic rocks of crystalline complexes of Male Karpaty Mts

    International Nuclear Information System (INIS)

    Bagdasaryan, G.P.; Gukasyan, P.Kh.; Cambel, B.; Veselsky, J.

    1983-01-01

    The paper follows up on a recently published paper on Rb-Sr isochrone dating of granitoid rocks of the Male Karpaty Mts. Data are given on comparative statistical analysis of isochrones obtained for the Bratislava and Modra massifs (isochrone of the latter is complemented with the analyses of two new samples) and the results of age determination of metasedimentary rocks of the Pezinok-Pernek zone and the Bratislava area by the Rb-Sr isochrone. Regression analysis shows that there is no statistically significant difference between the age of the Bratislava massif (347+-4 m.y.) and the Modra massif (326+-22 m.y.) and between their initial ratios 87 Sr/ 86 Sr (i.e., they are synchronous, having the same magma source) which makes it possible to calculate uniform value for age. Whole-rock samples of metamorphic and crystalline schists (gneisses) of the Male Karpaty Mts. also determine the isochrone corresponding to the age 387+-38 m.y. (2σ) and initial ratio ( 87 Sr/ 86 Sr)=0.7100+-0.00O8 (2σ). Rb-Sr isotope analyses of several pairs of biotite-crystalline schist (from which biotite was separated) point out that redistribution of Sr isotopes among the mineral phases of rocks takes place during the periplutonic metamorphism, while the whole-rock samples remain chemically closed systems. (author)

  14. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  15. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil

    International Nuclear Information System (INIS)

    Passarelli, Claudia Regina

    1996-01-01

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr 87 / Sr 86 initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 ± 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 ± 15 Ma.)

  16. Les granitoïdes hercyniens post-collisionnels du Maroc oriental : une province magmatique calco-alcaline à shoshonitiqueThe post-collisional Hercynian granitoids from eastern Morocco: a calc-alkaline to shoshonitic magmatic province

    Science.gov (United States)

    El Hadi, Hassan; Tahiri, Abdelfatah; Reddad, Aicha

    2003-11-01

    The post-collisional Hercynian granitoids crop out in the easternmost part of the Moroccan Hercynian belt. Petrographical and geochemical studies show a composition similarity in the various granitoids. The granitoids belong to per-aluminous and metaluminous magmatic associations. They have evolved according to a scheme similar to high-K calc-alkaline to shoshonitic associations. To cite this article: H. El Hadi et al., C. R. Geoscience 335 (2003).

  17. A computer-assisted rock type data catalogue for gas formations; Ein rechnergestuetzter Gesteinsdatenkatalog fuer Gasformationen

    Energy Technology Data Exchange (ETDEWEB)

    Reitenbach, V.; Pusch, G.; Moeller, M.; Koll, S. [TU Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik; Constantini, A.; Junker, A.; Anton, H. [RWE Dea AG, Hamburg (Germany)

    2007-09-13

    Modern reservoir management commonly requires versatile reservoir data which are neces-sary for integrated reservoir characterization, evaluation and development planning. The rock data necessary for numerical reservoir simulation studies often have to be collected from different sources, analysed and sorted with a considerable effort. In a framework of DGMK research program (DGMK project 593-9/4), the Institute of Petro-leum Engineering (Clausthal University of Technology) and RWE DEA AG have developed a new tool named Rock Data Catalogue, which is capable of managing large amounts of rock data more efficiently and deriving new specific correlations for European rock types. The use of Rock Data Catalogue can facilitate the essential input data generation and proc-essing procedure for reservoir simulation studies. The Rock Data Catalogue is comprised of a Data Base Module of digitalized reservoir rock data and an interactive Data Correlation Module. Both modules are built-up as an interface to common reservoir simulation software. The universal structure of the software also makes it possible to exchange the data with other rock data information systems. The Data Correlation Module implements a ''Decision-Structure'' module, which helps the reservoir engineer to select the rock data for analysis and correlation depending on its litho-facial type and permeability class. The Data Base Module enables a quick search of appro-priated data sets and their export into the correlation module. The open source data of the North German Rotliegend gas formations as well as the data of measurements on Rotliegend core samples performed at the ITE in course of the DGMK tight gas projects were implemented in the rock data base. Correlations of poro/perm data, two-phase flow and capillary pressure functions of the Rotliegend sandstones with the per-meability range between 20 and 0.01 mD are implemented in the rock data base and serve for quality checking of the

  18. Fluid geochemistry associated associated to rocks: preliminary tests om minerals of granite rocks potentially hostess of radioactive waste repository

    International Nuclear Information System (INIS)

    Amorim, Lucas E.D.; Rios, Francisco J.; Oliveira, Lucilia A.R. de; Alves, James V.; Fuzikawa, Kazuo; Garcia, Luiz; Ribeiro, Yuri; Matos, Evandro C. de

    2009-01-01

    Fluid inclusions (FI) are micro cavities present on crystals and imprison the mineralizer fluids, and are formed during or posterior to the mineral formation. Those kind of studies are very important for orientation of the engineer barrier projects for this purpose, in order to avoid that the solutions present in the mineral FI can affect the repository walls. This work proposes the development of FI micro compositional studies in the the hostess minerals viewing the contribution for a better understanding of the solution composition present in the metamorphosis granitoid rocks. So, micro thermometric, microchemical and characterization of the material confined in the FI, and the hostess minerals. Great part of the found FI are present in the quartz and plagioclase crystals. The obtained data on the mineral compositions and their inclusions will allow to formulate hypothesis on the process which could occurs at the repository walls, decurrens from of the corrosive character (or not) of the fluids present in the FI, and propose measurements to avoid them

  19. Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan region, Iran): Evidence for interaction between MORB-type asthenosphere and OIB-type components in the southern Neo-Tethys Ocean

    Science.gov (United States)

    Saccani, Emilio; Allahyari, Khalil; Rahimzadeh, Bahman

    2014-05-01

    The Sarve-Abad (Sawlava) ophiolites crop out in the Main Zagros Thrust Zone and represent remnants of the Mesozoic southern Neo-Tethys Ocean that was located between the Arabian shield and Sanandaj-Sirjan continental block. They consist of several incomplete ophiolitic sequences including gabbroic bodies, a dyke complex, and pillow lava sequences. These rocks generally range from sub-alkaline to transitional character. Mineral chemistry and whole-rock geochemistry indicate that they have compositions akin to enriched-type mid-ocean ridge basalts (E-MORB) and plume-type MORB (P-MORB). Nonetheless, the different depletion degrees in heavy rare earth elements (HREE), which can be observed in both E-MORB like and P-MORB like rocks enable two main basic chemical types of rocks to be distinguished as Type-I and Type-II. Type-I rocks are strongly depleted in HREE (YbN 9.0). Petrogenetic modeling shows that Type-I rocks originated from 7 to 16% polybaric partial melting of a MORB-type mantle source, which was significantly enriched by plume-type components. These rocks resulted from the mixing of variable fractions of melts generated in garnet-facies and the spinel-facies mantle. In contrast, Type-II rocks originated from 5 to 8% partial melting in the spinel-facies of a MORB-type source, which was moderately enriched by plume-type components. A possible tectono-magmatic model for the generation of the southern Neo-Tethys oceanic crust implies that the continental rift and subsequent oceanic spreading were associated with uprising of MORB-type asthenospheric mantle featuring plume-type component influences decreasing from deep to shallow mantle levels. These deep plume-type components were most likely inherited from Carboniferous mantle plume activity that was associated with the opening of Paleo-Tethys in the same area.

  20. Geochemical, isotopic, and petrographic investigations of rocks from the Bosumtwi impact

    International Nuclear Information System (INIS)

    Losiak, A.

    2013-01-01

    The Bosumtwi structure is a 1.07 milion year old, well-preserved, 10.5 km wide complex impact crater. It is associated with one of only four tektite strewn fields known on Earth and it is the source of the Ivory Coast tektites. It was drilled in 2004 by the International Continental Scientific Drilling Program (ICDP), and since then it has been the object of intensive research on various aspects of impact cratering process. This thesis is a continuation of those studies. Chapter 3 of this thesis presents a full and detailed characterization of the three granitoid intrusions and one mafic dike located in the vicinity of the Bosumtwi crater in terms of petrology, major and trace element geochemistry, geochronology, as well as isotopic composition. This allows us to characterize magmatic evolution of the West African Craton in this area and better understand the geological framework and target rocks of the impact. This study shows that the similar composition (strongly peraluminous muscovite granites and granodiorites) and age (between 2092±6 Ma and 2098±6 Ma) of granitic intrusions in the proximity of the Bosumtwi crater suggest that they are co-genetic. The granitoids were probably formed as a result of anatexis of TTGs (or rocks derived from them) at relatively low pressure and temperature. We propose that the intrusions from the Bosumtwi area are genetically related to the Banso granite occurring to the east of the crater and can be classified as basin-type, late-stage granitoids. Also a mafic dike located to the NE of the Bosumtwi crater seems to be genetically related to those felsic intrusions. Based on those findings a revised version of the geological map of the Bosumtwi crater area is proposed. Chapter 4 presents results of the investigation of the spatial relations between a statistically significant number of shocked quartz grains (278) showing PDFs (409) developed within a given area of a single thin section (⁓35 mm 2 ) from the Bosumtwi impact crater

  1. Geology, alteration, mineralization, petrogenesis, geochronology, geochemistry and airborne geophysics of Kuh Shah prospecting area, SW Birjand

    Directory of Open Access Journals (Sweden)

    Maryam Abdi

    2012-04-01

    Full Text Available The Kuh Shah prospecting area is located in Tertiary volcano-plutonic belt of the Lut Block. More than seventeen subvolcanic intermediate to acidic intrusive rocks, diorite to syenite in composition, were identified in the study area. The intrusions are related to hydrothermal alteration zones and contain argillic, propylitic, advanced argillic, silicified, quartz-sericite-pyrite, gossan and hydrothermal breccia which overprinted to each other and are accompanied by weathering which made it complicated to distinguish zoning. Mineralization is observed as sulfide (pyrite and rare chalcopyrite, disseminated Fe-oxides and quartz-Fe-oxide stockwork veinlets. Intrusive rocks are metaluminous, calc-alkaline with shoshonitic affinity with high values of magnetic susceptibility. The Kuh Shah intrusive rocks are classified as magnetite-series of oxidant I-type granitoids. Based on zircon U–Pb age dating, the age of these granitoid rocks is 39.7± 0.7 Ma (Middle Eocene. The radioisotope data (initial 87Sr/86Sr and 143Nd/144Nd ratios as well as εNd and geochemical data suggest that the Kuh Shah granitoid rocks formed from depleted mantle in a subduction-related magmatic arc setting. Geochemical anomalies of elements such as Cu, Au, Fe, Pb, Zn, As, Sb, Mo, Bi, Hg and also Mn, Ba, Te and Se, correlated with quartz-sericite-pyrite, gossan-stockwork-hydrothermal breccias, irregular silicified bodies and advanced argillic hydrothermal alteration zones. Geophysical anomalies correlated with hydrothermal alteration and mineralization zones. The interpretation of the results represents complex patterns of sub-circular to ellipsoid shape with north-east to south-west direction. These evidences are similar to the other for known Cu-Au porphyry and Au-epithermal systems in Iran and worldwide.

  2. Geochemical investigation of petroleum source rocks by using Rock- Eval data in the Agha-Jari oilfield

    Directory of Open Access Journals (Sweden)

    Behzad khani

    2015-01-01

    Full Text Available In this study, 40 drilling cutting of the Pabdeh, Gurpi, kazhdumi and Gadvan Formations from the Agha-Jari Oilfield were analyzed by using Rock-Eval pyrolysis. In order to recognizing sedimentary environmental conditions of studied Formations, they are divided to 4 zones which A (Kazhdumi Formation#187 and C (Kazhdumi Formation#140 zones show reduction conditions by presence of sea organic materials and B (Gadvan Formation #140 and D(Gadvan Formation#187 zones show oxidation conditions by presence of continental organic materials to basin. Based on the Rock-Eval pyrolysis data, the Pabeh, Gurpi, Kazhdumi and Gadvan Formations have variable hydrocarbon generative potential. HI vs. OI plot revealed that the kerogen type in this Formations is a mixed of types II & III. The intensity of matrix effect in the Pabdeh, Gurpi, Kazhdumi and Gadvan Formations was compared by using S2 vs. TOC plot and calculating its regression equation. The results show that the significant amount of S2 adsorption by matrix was happened in the Pabdeh (4.98-6.96 mg HC/gr rock in wells 113 and 121 and Gurpi Formations ‌(4.33 mg HC/gr rock in well 113 which is due to their low thermal maturity‌(Tmax

  3. Possible genetic link between I-type granite and orogenic gold deposits in Egypt (metamorphic-magmatic interaction?)

    Science.gov (United States)

    Abd El Monsef, Mohamed

    2015-04-01

    The orogenic gold deposits are a distinctive type of deposits that revealed unique temporal and spatial association with an orogeny. Where, the system of gold veins and related ore minerals was confined to hydrothermal solutions formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens, with the respect to ongoing deep-crustal, subduction-related thermal processes. In Egypt, most of vein-type and dyke-type gold mineralization are restricted to granitic rocks or at least near of granitic intrusion that seems to have had an important influence on gold mineralization. Shear zone-related, mesothermal gold deposits of Fatira and Gidami mines in the northern Eastern Desert of Egypt are found within granitic bodies or at the contact between granites and metavolcanic rocks. The hosting-granitic rocks in Fatira and Gidami areas are mainly of granodioritic composition (I-Type granite) which is related to calc-alkaline magmatic series. However, Fatira granitoids were developed within island arc tectonic settings related to mature island arc system (Late-orogenic stage), at relatively low temperature (around 660° C) and medium pressure between (5 - 10 Kbar). On the other hand, Gidami granitoids were developed during the collision stage in continental arc regime related to active continental margin (Syn-orogeny), which were crystallized at relatively high temperature (700-720° C) and low pressure (around 0.1 Kbar). The ore mineralogy includes pyrite, chalcopyrite, sphalerite, covellite, ilmenite, goethite ± pyrrhotite ± pentlandite ± galena ± molybdenite. Native gold is detected only in Gidami mineralization as small inclusions within pyrite and goethite or as tiny grains scattered within quartz vein (in close proximity to the sulfides). In Fatira deposits, it is detected only by microprobe analysis within the crystal lattice of pyrite and jarosite. Fluid inclusions study for the mineralized

  4. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  5. The Sao Jose do Rio Pardo mangeritic-granitic suite, south eastern Brazil

    International Nuclear Information System (INIS)

    Campos Neto, M.C.; Figueiredo, M.C.H.; Janasi, V.A.; Basei, M.A.S.; Fryer, B.J.

    1988-01-01

    In the Sao Jose do Rio Pardo region, Sao Paulo and Minas Gerais States, occur some intrusive, folded tabular bodies of mangerites associated with hornblende granitoids. The country rocks correspond to a complex association of gneisses and migmatites, locally with granulite facies assemblages. Both the magnerites and hornblende granitoids present a tectonic foliation with mineral flattening and stretching. Petrographically the mangeritic rocks are mainly dark green quartz mangerites with mesoperthite, plagioclase, quartz, hypersthene, clinopyroxene and variable amounts of hornblende, with zircon as conspicuous acessory. The pink hornblende granitoids are mainly granite s.s. exhibiting higher quartz and amphibole contents and lacking pyroxenes. Hololeucocratic alkali feldspar granites are locally associated to the hornblende granites. The textures of the mangerites and granites almost always show an important metamorphic overprinting, with relictic mesoperthite and pyroxene crystal into a granoblastic matrix. The magneritic-granitic suite is characterized by relatively high Fe/(Fe + Mg), K and HFS elements and low Ca contents, being comparable to typical anorogenic magneritic-granitic suites from Svcandinavia and North America. The Rb/Sr data indicate a Late Proterozoic metamorphic isotopic rehomogenization (930 Ma, Ro = 0.706). Geological evidence suggest that the intrusive age could be Middle Proterozoic, wich is reinforced by another Rb-Sr value of about 1300 Ma. (author) [pt

  6. Geology, petrology and geochronology of meridional and oriental regions of the Morungaba complex, SP

    International Nuclear Information System (INIS)

    Vlach, S.R.F.

    1985-01-01

    This work studies the Morungaba Intensive Complex, in Southwestern of Sao Paulo State. Formed principally by granitoid rocks with biotite. 31 granitoid facies with structural was recognized. Petrographic own characteristics. The rocks from Morungaba Complex was joint in three magmatics groups, denominated: Roby Gray and Porphyritic. Petrographic and mineralogical composition studies of this three groups were done. Geochranological studies by Rb/Sr and K/sr methods made possible to establish the ages and evolution of this rocks. This Complex formation and evolution are associated with the dioritic rocks presence. This work also concluded that the Morungaba Intrusive Complex represent the pos-orogenic wents from Brazilian Cycle. (C.D.G.) [pt

  7. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    International Nuclear Information System (INIS)

    Petersson, Jesper; Curtis, Philip; Bockgaard, Niclas; Mattsson, Haakan

    2011-01-01

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images, or a

  8. Structural analysis and magmatism characterization of the Major Gercino shear zone, Santa Catarina State, Brazil; Analise estrutural e caracterizacao do magmatismo da zona de cisalhamento Major Gercino, SC

    Energy Technology Data Exchange (ETDEWEB)

    Passarelli, Claudia Regina

    1996-12-31

    This work describes the geometric and kinematic characteristics of the Major Gercino Shear Zone (MGSZ) in the Canelinha-Garcia area. This shear zone is one of the major lineaments that affect all southern Brazilian precambrian terrains. In Santa Catarina State, it separates, along its whole extension, the supracrustal rocks of the Brusque belt (northern part) from the Granitoid belt (southern). This zone is characterized by a regional NE trend and a dextral sense of movement where ductile-brittle structures predominate. The MGSZ is composed of two mylonitic belts separated by granitoid rocks probably associated to the development of the shear zone. Both shear zones show cataclastic to ultra mylonitic rocks, but mylonites and protomylonites conditions at high strain rate. The calc-alkaline granitoids present in the area can be grouped in two granitoid associations with meta to peraluminous affinities. The Rolador Granitoid Association is characterized by grayish porphyritic biotite-monzogranites and the Fernandes Granitoid Association by coarsed-grained to porphyritic pinkish amphibole-syenogranites. The U-Pb and Rb-Sr ages range from 670 to 590 Ma with the Sr{sup 87} / Sr{sup 86} initial ratios suggesting a crustal contribution in the generation of these rocks. The importance of the pure shear component is also emphasized by the results of the Fry method. Many z axes of the strain ellipses are at high angle to the shear foliation. Symmetric porphyroclasts also corroborate this hypothesis. The micaceous minerals formed during the shear development indicate K-Ar ages around 555 {+-} 15 Ma. Brittle reactivations of the shear zone have been placed by K-Ar in fine-fraction materials at Triassic time (215 {+-} 15 Ma.) 220 refs., 107 figs., 18 tabs., 4 maps

  9. From steep feeders to tabular plutons - Emplacement controls of syntectonic granitoid plutons in the Damara Belt, Namibia

    Science.gov (United States)

    Hall, Duncan; Kisters, Alexander

    2016-01-01

    Granitoid plutons in the deeply eroded south Central Zone of the Damara Belt in Namibia commonly show tabular geometries and pronounced stratigraphic controls on their emplacement. Subhorizontal, sheet-like pluton geometries record emplacement during regional subhorizontal shortening, but the intrusion of spatially and temporally closely-related granitoid plutons at different structural levels and in distinct structural settings suggests independent controls on their levels of emplacement. We describe and evaluate the controls on the loci of the dyke-to-sill transition that initiated the emplacement of three syntectonic (560-530 Ma) plutons in the basement-cover stratigraphy of the Erongo region. Intrusive relationships highlight the significance of (1) rigidity anisotropies associated with competent sedimentary packages or pre-existing subhorizontal granite sheets and (2) rheological anisotropies associated with the presence of thick ductile marble horizons. These mechanical anisotropies may lead to the initial deflection of steep feeder conduits as well as subsequent pluton assembly by the repeated underaccretion of later magma batches. The upward displacement of regional isotherms due to the heat advection associated with granite emplacement is likely to have a profound effect on the mechanical stratification of the upper crust and, consequently, on the level at which granitoid pluton emplacement is initiated. In this way, pluton emplacement at progressively shallower crustal depths may have resulted in the unusually high apparent geothermal gradients recorded in the upper crustal levels of the Damara Belt during its later evolution.

  10. Thermal conductivity of sedimentary rocks as function of Biot’s coefficient

    DEFF Research Database (Denmark)

    Orlander, Tobias; Pasquinelli, Lisa; Asmussen, J.J.

    2017-01-01

    A theoretical model for prediction of effective thermal conductivity with application to sedimentary rocks is presented. Effective thermal conductivity of sedimentary rocks can be estimated from empirical relations or theoretically modelled. Empirical relations are limited to the empirical...... conductivity of solids is typically orders of magnitude larger than that of fluids, grain contacts constituting the solid connectivity governs the heat transfer of sedi-mentary rocks and hence should be the basis for modelling effective thermal con-ductivity. By introducing Biot’s coefficient, α, we propose (1...... – α) as a measure of the solid connectivity and show how effective thermal conductivity of water saturated and dry sandstones can be modelled....

  11. ‘It’s a man’s man’s man’s world’ : music groupies and the othering of women in the world of rock.

    OpenAIRE

    Larsen, G.

    2017-01-01

    Groupies are understood as a particular type of fan that are most commonly associated with rock music. The ‘groupie’ identity is almost exclusively applied to female fans but sometimes also to female music producers and is largely used in a derogatory manner both by the popular media and by fans themselves. This article argues that the ‘groupie’ identity is used to ‘other’ and exclude women from creative production in rock music. This study draws on a rhetorical analysis of five published bio...

  12. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    Science.gov (United States)

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  13. Application of Rock-Eval pyrolysis to the detection of hydrocarbon property in sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Sun Ye; Li Ziying; Guo Qingyin; Xiao Xinjian

    2006-01-01

    Rock-Eval pyrolysis is introduced into the research of uranium geology by means of oil-gas geochemical evaluation. Hydrocarbon (oil-gas) components in DS sandstone-type uranium deposit are detected quantitatively. Through analyzing the oil-gas bearing categories of the uranium-bearing sandstones, the internal relationships between the uranium deposit and the oil-gas are revealed. Rock-Eval pyrolysis is an effective method to study the interaction between inorganic and organic matters, and should be extended to the study of sandstone-type uranium deposits. (authors)

  14. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    Science.gov (United States)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  15. An review on geology study of carbonaceous-siliceous-pelitic rock type uranium deposit in China and the strategy for its development

    International Nuclear Information System (INIS)

    Zhao Fengmin

    2009-01-01

    Carbonaceous-siliceous-pelitic rock type uranium deposit was founded by Chinese uranium geologist, it refers to the uranium deposit hosted by non or light metamophosed carbonate,siliceous rock, pelitic rock and their intermediates. It is one of the important types uranium deposit in China. A lot of this type deposits have been discovered in China and their temporal-spatial distribution pattern and mineralization features have been basically identified, and the rich experience have layed a good foundation for the future exploration. Although the ore of this type is not favourable economically, it is still available. Because carbonaceous-siliceous-pelitic rock type uranium deposit has great resource potential, metallogenic study and exploration efforts should be projected differentially according to their economic profit so as to meet the uranium resource demand of nuclear power development in China. (authors)

  16. Tectono-metamorphic evolution of high-P/T and low-P/T metamorphic rocks in the Tia Complex, southern New England Fold Belt, eastern Australia: Insights from K-Ar chronology

    Science.gov (United States)

    Fukui, Shiro; Tsujimori, Tatsuki; Watanabe, Teruo; Itaya, Tetsumaru

    2012-10-01

    The Tia Complex in the southern New England Fold Belt is a poly-metamorphosed Late Paleozoic accretionary complex. It consists mainly of high-P/low-T type pumpellyite-actinolite facies (rare blueschist facies) schists, phyllite and serpentinite (T = 300 °C and P = 5 kbar), and low-P/high-T type amphibolite facies schist and gneiss (T = 600 °C and P Tia granodiorite). White mica and biotite K-Ar ages distinguish Carboniferous subduction zone metamorphism and Permian granitic intrusions, respectively. The systematic K-Ar age mapping along a N-S traverse of the Tia Complex exhibits a gradual change. The white mica ages become younger from the lowest-grade zone (339 Ma) to the highest-grade zone (259 Ma). In contrast, Si content of muscovite changes drastically only in the highest-grade zone. The regional changes of white mica K-Ar ages and chemical compositions of micas indicate argon depletion from precursor high-P/low-T type phengitic white mica during the thermal overprinting and recrystallization by granitoids intrusions. Our new K-Ar ages and available geological data postulate a model of the eastward rollback of a subduction zone in Early Permian. The eastward shift of a subduction zone system and subsequent magmatic activities of high-Mg andesite and adakite might explain formation of S-type granitoids (Hillgrove suite) and coeval low-P/high-T type metamorphism in the Tia Complex.

  17. Mineralization related to Alvand pluton in the Hamadan, western Iran

    Science.gov (United States)

    Salehi, M. H.; Doosti, E. A.; Ahadnejad, V.

    2009-04-01

    The Alvand (Hamadan) plutonic batholith is one of the largest plutonic bodies in the Sanandaj-Sirjan metamorphic belt. This complex is consist of mafic part (gabbro-diorite-tonalite), intermediate (granite-granodiorite porphyroids), and hololeucocratic granitoids. Previous studies have shown that S-type granite-granodiorites are mostly peraluminous and calc-alkaline; the gabbro-diorite-tonalite suite is mostly metaluminous and tholeiitic to calc-alkaline (Sepahi, 2008). High initial 87Sr-86Sr ratios (0.7081 to 0.7115), low epsilon Nd values (-1.0 to -3.3), and peraluminous character reflects a different origin for the granites, possibly crustal sources (Ghalamghash et al, 2007). Aplite-pegmatite dikes are intruded in granitoide rocks, metamorphic rocks and the contact of Alvand granite with metamorphic rocks. The contact of Alvand granite with metamorphic rocks is sharp. By using heavy mineral studies on the alluvium of Alvand complex, it is recognized 28 minerals amongst Scheelite, Cassiterite, Ilmenite, Zircon and Garnet. Different geostatistical studies such as variant, bivariant and multivariant studies have been done on rough data of heavy minerals. They showed normal concentration of gold in studied rocks and low enrichment of tin and tungsten. The index of the ore elements average, frequeney distribution criteria of elements, the ratio of elements index and multielements show that Alvand granite is barren. Mineralography studies did not recognized any tin and tungsten minerals. The grains of gold was recognized in some of the microscopic thin sections. Calcopyrotite is the most important ore mineral that is accompanied with oxides and iron carbonates. The contacts of aplite-pegmatite dikes with granitoide rocks mostly are not prolific. For recognizing Scheelite, some samples of rocks studied by ultraviolet and few Scheelite is recognized in the samples. Some alteration zone observed in this area but they are not accompany with main mineralization. Although

  18. SHRIMP U-Pb zircon dating of Archean core complex formatio and pancratonic strike-slip deformation in the East Pilbara Granite-Greenstone Terrain

    NARCIS (Netherlands)

    Zegers, T.E.; Nelson, D.R.; Wijbrans, J.R.; White, S.H.

    2001-01-01

    Sensitive high-resolution ion microprobe (SHRIMP) U-Pb dating of zircons from granitic rocks in the East Pilbara Granite-Greenstone Terrain has provided time constraints for main tectonic events in the Shaw Granitoid Complex and has shown that deformation was intricately related to granitoid

  19. Application feasibility study of evaluation technology for long-term rock behavior. 2. Parameter setting of variable compliance type model and application feasibility study for rock behavior evaluation

    International Nuclear Information System (INIS)

    Sato, Shin; Noda, Masaru; Niunoya, Sumio; Hata, Koji; Matsui, Hiroya; Mikake, Shinichiro

    2012-01-01

    Creep phenomenon is one of the long-term rock behaviors. In many of rock-creep studies, model and parameter have been verified in 2D analysis using model parameter acquired by uniaxial compression test etc considering rock types. Therefore, in this study model parameter was set by uniaxial compression test with classified rock samples which were taken from pilot boring when the main shaft was constructed. Then, comparison between measured value and 3D excavation analysis with identified parameter was made. By and large, the study showed that validity of identification methodology of parameter to identify reproduction of measured value and analysis method. (author)

  20. A tale of 10 plutons - Revisited: Age of granitic rocks in the White Mountains, California and Nevada

    Science.gov (United States)

    McKee, E.H.; Conrad, J.E.

    1996-01-01

    40Ar/39Ar incremental heating analysis and conventional K-Ar age determinations on plutonic rocks of the White Mountains define two stages of magmatic emplacement: Late Cretaceous, between ca. 90 Ma and 75 Ma, and Middle-Late Jurassic, between ca. 180 and 140 Ma. The Jurassic stage can be divided into two substages, 180-165 Ma and 150-140 Ma. Thermal effects of the younger plutons on the older granitoids partially to completely reset ages, making it difficult to determine the age of emplacement and cooling of several of the plutons even by 40Ar/39Ar incremental heating analyses. New data together with published ages and regional geochronological synthesis of the Sierra Nevada batholith indicate that regions within the batholith have coherent periods or episodes of magmatic activity. In the White Mountains and Sierra Nevada directly to the west there was little or no activity in Early Jurassic and Early Cretaceous time; magmatism took place during relatively short intervals of 15 m.y. or less in the Middle and Late Jurassic and Late Cretaceous periods. The new K-Ar and 40Ar/39Ar analyses of granitoids from the White Mountains help, but do not completely clarify the complex history of emplacement, cooling, and reheating of the batholith.

  1. Average contents of uranium and thorium in the most important types of rocks of the Ukrainian shield

    International Nuclear Information System (INIS)

    Belevtsev, Ya.N.; Egorov, Yu.P.; Titov, V.K.; Sukhinin, A.M.; Grechishnikova, Z. M.; Zayats, V.B.; Tikhonenko, V.A.; Zhukova, A.M.

    1975-01-01

    The data given concern uranium and thorium contents in the most important rock types of the Ukraina shield. The smallest quantities of uranium are characteristic for the vulcanic rocks of basic and ultrabasic rocks. Archean formations, whose source materials were mainly basic and ultrabasic vulcanites, are marked by this low uranium content. The highest uranium content is observed in the clastogenic rocks of low Proterozoic. The average uranium content is observed in silty argellite rocks represented by crystal slates and paragneissis. Rheomorphic and metasomatic granites and granosyenites of low and middle Proterozoic are also characterized by an increased content of uranium. The platform precipitation rocks of high Proterozoic possess a relatively low uranium content. Thorium concentrations with low thorium-uranium proportions in granites, syenites and granosyenites prove their enrichment in uranium

  2. Neoarchean granite-greenstone belts and related ore mineralization in the North China Craton: An overview

    Directory of Open Access Journals (Sweden)

    Li Tang

    2018-05-01

    Full Text Available Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts (GGB were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton (NCC are correlated to the amalgamation of microblocks welded by 2.75–2.6 Ga and ∼2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks (basalt and dacite interlayered with minor komatiites and calc-alkalic volcanic rocks (basalt, andesite and felsic rock. The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE (K, Rb, Sr, Ba and LREE, and depletion of HFSE (Nb, Ta, Th, U, Ti and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these, together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75–2.60 Ga TTG rocks, komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcano-sedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60–2.48 Ga, followed by metamorphism at 2.52–2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite (Dongwufenzi GGB, sanukitoid (Dongwufenzi GGB and Western Shandong GGB, BIF (Zunhua GGB and VMS deposit (Hongtoushan-Qingyuan-Helong GGB have closer connection to a combined

  3. Geochronology and geochemistry of the Borohoro pluton in the northern Yili Block, NW China: Implication for the tectonic evolution of the northern West Tianshan orogen

    Science.gov (United States)

    Wang, Meng; Zhang, Jinjiang; Zhang, Bo; Liu, Kai; Chen, Youxin; Zheng, Yanrong

    2018-03-01

    The closure of the North Tianshan Ocean between the Junggar Terrane and the Yili Block is a longtime debated issue in literature, because of the different understanding of the Carboniferous volcanic rocks in the northern margin of the Yili Block. This study presents new geochronological and whole-rock geochemical data for the granitic rocks from the Borohoro pluton to provide constraints on the tectonic regime for the northern West Tianshan during the Carboniferous. LA-ICP-MS U-Pb dating results reveal two magmatic phases for the Borohoro pluton. The former magmatic activity in the Early Carboniferous formed the fine-grained granodiorite (332 Ma). The later magmatic activity occurred during the Late Carboniferous (305-300 Ma), forming a diversity of granitic rocks, involving quartz diorite, granodiorite and granite. Geochemical and mineralogical studies reveal that the studied granitic rocks from the Borohoro pluton all belong to metaluminous to weakly peraluminous, calc-alkaline I-type granites. They are characterized by enrichment in LILEs relative to HFSEs, and depletion of Nb, Ti and P, typical of continental arc-type granites. The intermediate SiO2, high Al2O3, and relatively low Fe2O3T, MgO and TiO2 contents reflect that these granitic rocks are mainly crust-derived. But the high Mg# values for most samples and the occurrence of microgranular mafic enclaves indicate that their magma sources were mixed by mantle-derived components. Especially, the Late Carboniferous rocks define an elegant mixing trend in both the Rb-Rb/V and the 1/V-Rb/V diagrams, consistent with mixing between magmas from subcontinental lithospheric mantle and mafic lower crust. Taking into consideration of the facts that all the Devonian to Carboniferous granitoids belong to calc-alkaline I-type granites, and granitoids of A-type didn't appear until the Early Permian, we suggest that the subduction of the North Tianshan Ocean continued to the Late Carboniferous, generating the granitic

  4. Western cratonic domains in Uruguay: geochronology

    International Nuclear Information System (INIS)

    Preciozzi, F.; Peel, E.; Muzio, E.; Ledesma, R.; Guerequiz, R.

    2001-01-01

    The western cratonic domains in Uruguay are divided into three major units: Piedra Alta Terrane, Valentines Block and Pavas Block. Piedra Alta Terrane lacks of evidence of Neoproterozoic orogenesis (deformation, metamorphism or magmatism). Sarandí del Yi - Arroyo Solís Grande shear zone, separates it from Valentines Block. Valentines Block is separated from Pavas Block by Cueva del Tigre shear zone. Magmatic rocks with different ages, compositions and emplacements occur all over the Piedra Alta Terrane distributed in three metamorphic belts (Arroyo Grande, San José and Montevideo) as well as in the Central Gneissic-Migmatitic Complex (Figure 1). Samples from the Gneissic-Migmatitic complex, late tectonic granitoids and basic rocks associated to the metamorphic belts were analyzed using Rb/Sr, U/Pb, K/Ar and Sm/Nd methodologies. The age ranges obtained for granitoids

  5. Granitoids of the Dry Valleys area, southern Victoria Land, Antarctica : plutons, field relationships, and isotopic dating

    International Nuclear Information System (INIS)

    Allibone, A.H.; Cox, S.C.; Johnstone, R.D.

    1993-01-01

    Detailed mapping throughout much of the Dry Valleys area indicates the region is underlain by 15 major granitoid plutons and numerous smaller plugs and dikes. Intrusive relationships of these plutons and dikes indicate repeated intrusion of superficially similar granitoids at different times. Sufficient internal lithologic variation occurs within individual plutons, to allow correlation with several of the previously defined granitoid units based on lithologic character. Consequently, previous subdivision schemes based on lithology are no longer tenable and are here replaced with a subdivision scheme based on the identification of individual plutons. The elongate, concordant Bonney, Denton, Cavendish, and Wheeler Plutons, which range in composition between monzodiorite and granodiorite, are the oldest relatively undeformed plutons in the Dry Valleys area. Each pluton is characterised by flow alignment of K-feldspar megacrysts, hornblende, biotite, and mafic enclaves. Field relationships and radiometric dating indicate these are deep-level plutons, emplaced synchronous with upper amphibolite facies metamorphism of the adjacent Koettlitz Group between 589 and 490 Ma ago. Elongate, discordant plutons of equigranular homogeneous biotite granodiorite and granite (Hedley, Valhalla, St Johns, Suess) were subsequently emplaced by stoping at a relatively high crustal level at 490 Ma. These eight plutons are cut by numerous swarms of Vanda mafic and felsic porphyry dikes. The ovoid, discordant, high level Pearse, Nibelungen, Orestes, Brownworth, Swinford, and Harker Plutons, emplaced between c. 486 and 477 Ma, display mutually crosscutting relationships with the youngest of the Vanda dikes. These younger plutons range in composition between monzonite and granite. Some are characterised by K-feldspar megacrystic textures superficially similar to some of the oldest concordant plutons. (author). 57 refs.; 2 tabs.; 4 figs

  6. The behavior of major and trace elements of the tourmaline from the Mangavai and Ganjnameh pegmatitic rocks (Hamadan area

    Directory of Open Access Journals (Sweden)

    Ahmad Ahmadi khalaji

    2016-09-01

    Full Text Available The Mangavai and Ganjnameh pegmatitic rocks are part of the Alvand granitoid pluton in the Sanandaj-Sirjan zone. The composition of tourmaline in Mangavi is Schorl and that of the Ganjnameh lies in the Schorl- foitite fields. The amounts of aluminum and X-vacancy in the Ganjnameh tourmalines are more than those of Mangavi. But commonly, the main substitution of both types of tourmaline is proton production and Al increase types that Al increase; X-vacancy and Fe reduce occurred. During these substitutions, olenite and foitite, Al-tourmaline and X-vacancy have been formed, respectively. The absence of dravite and the Fe # value over 0.8 in analyzed samples indicate that the tourmalines in pegmatites are related to magmatic types. In addition, the substitution of X-vacancy and Na+Al (olenite type of tourmaline point to its magmatic nature and so, the required elements (i.e. boron, iron, sodium and aluminum provided by magmatic fluids. The HREE amount of the Mangavi tourmalines due to accompanied garnet are very low but in the absence of garnet, the Ganjnameh tourmaline have high levels of these elements. Although tourmalines have the extensive substitutions but do not have a tendency to absorb all rare earth elements and the greatest impact on the control of these elements in tourmaline related to paragenesis minerals.

  7. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  8. Permanganate diffusion and reaction in sedimentary rocks.

    Science.gov (United States)

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  10. The Study of enclaves and relative age of plutonic bodies in the Alvand Plutonic complex

    International Nuclear Information System (INIS)

    Sepahi Gerow, A. A.; Moien-Vaziri, H.

    2000-01-01

    The study of enclaves and field observations indicate that: The Alvand plutonic complex comprise several plutonic phases with sharp contact and different ages. The older plutonic rocks are composed of gabbro, diorite and tonalites. The porphyroid granites were formed at least in two phases and they are younger than gabbros, diorites and tonalites. The hololeucocratic granitoids were also formed in two phases and they are the youngest plutonic phase in the Alvand plutonic complex. The granitic rocks are magmatic and they are not metasomatic in origin. The porphyroid granites (monzogranites and granodiorites) are S-type (Anatexites). According to radiometric ages and relative ages we believe that mafic plutonism have occurred during pre-middle Cretaceous to Paleocene ages and felsic plutonism have occurred during middle Cretaceouc to Paleocene ages

  11. REE in cretaceous to tertiary granitoids of Chugoku and Shikoku district, SW Japan

    Energy Technology Data Exchange (ETDEWEB)

    Imaoka, Teruyoshi [Yamaguchi Univ. (Japan). Faculty of Science; Harada, Michiru

    1998-01-01

    `Niho plutonic composite rocks` distributed in Niho Kamigo area in the northeast of Yamaguchi-city in Japan. It is small plutonic composite rocks, of about 2 km in long length and 1 km of short length. The rocks were studied by the geological survey. Many kinds of rock and rare earth elements were determined. The constitution process is estimated by these results. It consists of gabbro-quartz diorite-tonalite{center_dot}granodiorite-granito. The more inside of rock existed, the more felsic rock are discovered. Chemical compositions were TiO{sub 2}, FeO, MnO and K{sub 2}O. It is estimated that intrusion of tonalite and successive intrusion of granodiorite generated and then formed in situ crystallization differentiation. (S.Y.)

  12. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny)

    Science.gov (United States)

    Pereira, M. F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U.

    2018-01-01

    Zircon grains extracted from S-type granites of the Mêda-Escalhão-Penedono Massif (Central Iberian Zone, Variscan Orogen) constrain the timing of emplacement and provide information about potential magma sources. Simple and composite zircon grains from three samples of S-type granite were analyzed by LA-ICP-MS. New U-Pb data indicate that granites crystallized in the Bashkirian (318.7 ± 4.8 Ma) overlapping the proposed age range of ca. 321-317 Ma of the nearby S-type granitic rocks of the Carrazeda de Anciães, Lamego and Ucanha-Vilar massifs. The timing of emplacement of such S-type granites seems to coincide with the waning stages of activity of a D2 extensional shear zone (i.e. Pinhel shear zone) developed in metamorphic conditions that reached partial melting and anatexis (ca. 321-317 Ma). Dykes of two-mica granites (resembling diatexite migmatite) are concordant and discordant to the compositional layering and S2 (main) foliation of the high-grade metamorphic rocks of the Pinhel shear zone. Much of the planar fabric in these dykes was formed during magmatic crystallization and subsequent solid-state deformation. Field relationships suggest contemporaneity between the ca. 319-317 Ma old magmatism of the study area and the switch from late D2 extensional deformation to early D3 contractional deformation. Inherited zircon cores are well preserved in these late D2-early D3 S-type granite plutons. U-Pb ages of inherited zircon cores range from ca. 2576 to ca. 421 Ma. The spectra of inherited cores overlap closely the range of detrital and magmatic zircon grains displayed by the Ediacaran to Silurian metasedimentary and metaigneous rocks of the Iberian autochthonous and parautochthonous domains. This is evidence of a genetic relationship between S-type granites and the host metamorphic rocks. There is no substantial evidence for the addition of mantle-derived material in the genesis of these late D2-early D3 S-type granitic rocks. The ɛNd arrays of heterogeneous

  13. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers

    Directory of Open Access Journals (Sweden)

    Esperanza García-Gonzalo

    2016-06-01

    Full Text Available The mining industry relies heavily on empirical analysis for design and prediction. An empirical design method, called the critical span graph, was developed specifically for rock stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill mining in Canada. This empirical span design chart plots the critical span against rock mass rating for the observed case histories and has been accepted by many mining operations for the initial span design of cut and fill stopes. Different types of analysis have been used to classify the observed cases into stable, potentially unstable and unstable groups. The main purpose of this paper is to present a new method for defining rock stability areas of the critical span graph, which applies machine learning classifiers (support vector machine and extreme learning machine. The results show a reasonable correlation with previous guidelines. These machine learning methods are good tools for developing empirical methods, since they make no assumptions about the regression function. With this software, it is easy to add new field observations to a previous database, improving prediction output with the addition of data that consider the local conditions for each mine.

  14. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers.

    Science.gov (United States)

    García-Gonzalo, Esperanza; Fernández-Muñiz, Zulima; García Nieto, Paulino José; Bernardo Sánchez, Antonio; Menéndez Fernández, Marta

    2016-06-29

    The mining industry relies heavily on empirical analysis for design and prediction. An empirical design method, called the critical span graph, was developed specifically for rock stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill mining in Canada. This empirical span design chart plots the critical span against rock mass rating for the observed case histories and has been accepted by many mining operations for the initial span design of cut and fill stopes. Different types of analysis have been used to classify the observed cases into stable, potentially unstable and unstable groups. The main purpose of this paper is to present a new method for defining rock stability areas of the critical span graph, which applies machine learning classifiers (support vector machine and extreme learning machine). The results show a reasonable correlation with previous guidelines. These machine learning methods are good tools for developing empirical methods, since they make no assumptions about the regression function. With this software, it is easy to add new field observations to a previous database, improving prediction output with the addition of data that consider the local conditions for each mine.

  15. Precambrian Terranes of African affinities in the southeastern part of Brazil and Uruguay

    International Nuclear Information System (INIS)

    Preciozzi, F.; Basei, M.; Siga Junior, H.; Sato, K.; Kaufuss, G.

    2006-01-01

    The interest in correlating terranes at opposite margins of the South Atlantic Ocean reflects a natural curiosity of both researchers who work in the eastern South-America and who study southwestern Africa. On a large scale scenario the geology of this region is characterized by a central portion composed of Neoproterozoic-Cambrian belts (Dom Feliciano, Kao ko, Damara, Gariep, Saldania) having on each side old gneissic-migmatitic terrains on both continents (Luis Alves, Rio de La Plata, Kalahari and Congo). In South America the Neoproterozoic Dom Feliciano Belt (DFB) predominates in the eastern part of the region and is internally organized according to three different crustal segments characterized, from southeast to northwest, by a Granite belt (deformed I-type medium to high calc-alkaline granites and alkaline granitoid rocks; a Schist belt (volcano-sedimentary rocks metamorphosed from green schist to amphibolite facies and intrusive granitoids), and a Fore land basin (anchimetamorphic sedimentary and volcanic rocks), the latter situated between the Schist belt and the Archean-Paleoproterozoic fore land. Despite discontinuously covered by younger sediments, the NS continuity of these three crustal segments is suggested by similar lithotypes, structural characteristics, ages and isotopic signature, as well as by the gravimetric data. The Major Gercino, Cordilheira, and Sierra Ballena shear zones are part of the major NE-SW lineaments that affect all southern Brazilian and Uruguayan Precambrian terrains. They separate the Dom Feliciano Schist Belt (supra crustal rocks of the Brusque-Porongos and Lavalleja groups), to the West, from the granitoids of the Granite belt, to the East. The shear zones are characterized by a regional NE trend and a resultant oblique direction of movement where ductile-brittle structures predominate

  16. Correlation between Bieniawski’s RMR index and Barton’s Q index in fine-grained sedimentary rock formations

    Directory of Open Access Journals (Sweden)

    J. D. Fernández-Gutiérrez

    2017-09-01

    Full Text Available From the XX century, various rock mass classification systems have been proposed. Among them, the Bieniawski’s RMR system and Barton’s Q system have emerged as the most used rock mass classification worldwide. Correlations between both indices have been proposed, usually with a wide scattering of the data used in deriving the equations. However, it has been observed that correlations established for a specific geological unit fit better. The aim of this paper is to propose a correlation between RMR and Q indices for fine-grained sedimentary rock formations, normally found in the area of Bilbao (Spain, by means of the collected data during the excavation of the tunnel Etxebarri-Casco Viejo of the line 3 of the Metropolitan Railway of Bilbao. Obtained equation shows a high correlation coefficient and a unique relationship between the two classification systems has been proposed, not depending on the choice of the independent variable.

  17. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  18. Establishment of tunnel-boring machine disk cutter rock-breaking model from energy perspective

    Directory of Open Access Journals (Sweden)

    Liwei Song

    2015-12-01

    Full Text Available As the most important cutting tools during tunnel-boring machine tunneling construction process, V-type disk cutter’s rock-breaking mechanism has been researched by many scholars all over the world. Adopting finite element method, this article focused on the interaction between V-type disk cutters and the intact rock to carry out microscopic parameter analysis methods: first, the stress model of rock breaking was established through V-type disk cutter motion trajectory analysis; second, based on the incremental theorem of the elastic–plastic theory, the strain model of the relative changes of rock displacement during breaking process was created. According to the principle of admissible work by energy method of the elastic–plastic theory to analyze energy transfer rules in the process of breaking rock, rock-breaking force of the V-type disk cutter could be regarded as the external force in the rock system. Finally, by taking the rock system as the reference object, the total potential energy equivalent model of rock system was derived to obtain the forces of the three directions acting on V-type disk cutter during the rock-breaking process. This derived model, which has been proved to be effective and scientific through comparisons with some original force models and by comparative analysis with experimental data, also initiates a new research strategy taking the view of the micro elastic–plastic theory to study the rock-breaking mechanism.

  19. Hinkler Well - Centipede uranium deposits

    International Nuclear Information System (INIS)

    Crabb, D.; Dudley, R.; Mann, A.W.

    1984-01-01

    The Hinkler Well - Centipede deposits are near the northeastern margin of the Archean Yilgarn Block on a drainage system entering Lake Way. Basement rocks are granitoids and greenstones. The rocks are deeply weathered and overlain by alluvism. Granitoids, the probable uranium source, currently contain up to 25 ppm uranium, in spite of the weathering. The host calcrete body is 33 km long and 2 km wide. Uranium up to 1000 ppm occurs in carnotite over a 15 km by 2.5 km area. (author)

  20. The Sr:Ba:Rb ratio and zircon typology in granitoid complexes of Sao Paulo, Parana and Minas Gerais states (Brazil)

    International Nuclear Information System (INIS)

    Wernick, E.; Galembeck, T.M.B.; Artur, A.C.; Rigo Junior, L.; Weber-Diefenbach, K.

    1990-01-01

    Chemical (Sr: Ba: Rb) and zircon typology data from the Nazare Paulista, Mairipora/Cantareira, Cunhaporanga, Tres Corregos, Morungaba, Socorro, Itu, Graciosa and Serra Carambei granitoid complexes from the states of Minas Gerais, Sao Paulo and Parana (SE/S Brazil) are presented and discussed. By the zircon typology method these complexes are reffered, respectively, to the 2nd crustal, 3rd crustal/low temperature C-A, low temperature C-A, medium temperature C-A, medium/high temperature C-A, K-SA/Alkaline and alkaline serie which are considered as generated under increasing temperature associated with a progressive major participation of mantellic material. All these series, with the exception of the medium to high temperature calc-alkaline complexes Socorro and Morungaba whose chemical data come from several laboratories, display different positions and behaviour in the Sr: Ba: Rb diagram which reinforce the use of the zircon typology method in the study of granitoids. From the 2nd crustal serie up to the medium temperature C-A serie the complexes show a regular shift in their chemical composition which became progressively richer in Sr and depleted in Rb. The highly differentiades hypersolvus Serra do Carambei granite is strongly enriched in Rb and impoverish in Ba with respect to the Itu and the Graciosa complex which itself is slighly more depleted in Sr than the Itu granite. (author)

  1. Determination of emplacement mechanism of Zafarghand granitoid Pluton (Southeast of Ardestan by using anisotropy of magnetic susceptibility method (AMS

    Directory of Open Access Journals (Sweden)

    Mahmoud Sadeghian

    2017-03-01

    Full Text Available Zafarghand granitoid pluton with compositional range from gabbro to granite and early to middle Miocene age cropped out about 35 km of SE Ardestan. This pluton intrudedthe Eocene volcanic and volcanosedimentary rocks of the Urumieh - Dokhtar structuralzone. In this research, for the first time, the emplacement mechanism of Zafarghandgranitoidic pluton method has been investigated using of anisotropy of magneticsusceptibility (AMS. Based on field observations, as well as petrography andinterpretations of magnetic parameters, Zafarghand pluton divided into 5 domains (1A,1B, 2, 3, 4 and 5. Domain 1, in turn, is divided into 1A and 1B. Domains 2 and 4 arelithologically, gabbro to quartzdiorite and have been emplaced first. They have playedas feeder zones. Domains 1A, 1B, 3, and 5 are dominantly granodioritic to graniticcomposition and have been emplaced as a big and low dip magmatic flow (or possibly as a sill. The occurrence of gabbro to quartzdiorite as well as grandiorite, granite andtonalite in the margin borders of the body, are all indication of magma mixing. It isshould be noted that during emplacement of the pluton studied, fractionalcrystallization, magma mixing and crustal contamination contributed to its generationand the evolution as well.

  2. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  3. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  4. Geology, petrology and geochemistry of the Cacapava do Sul Granitic complex, RS

    International Nuclear Information System (INIS)

    Nardi, L.V.S.; Bitencourt, M. de F.

    1989-01-01

    The Cacapava do Sul Granitic Complex comprises mainly hornblende and biotite-rich granodioritic rocks, leucogranitoids which may contain muscovite and garnet, and transitional types of granitoids. The available data suggest that it is a diapiric intrusion synchronous, with the second regional metamorphism and deformation phase, inprinted on the country rocks and on the batholith itself. Geochemical evidences are consistent with a comagmatic character for the granitic rocks and also indicate calc-alkaline affinity, with an origin either from partial melting of the lower crust or from differentiation of mantle-derived basaltic magmas, with crustal contamination. The geochemical features indicate strong similarities with orogenic granitoids intruded in highly mature arcs. The re-evaluation of Rb-Sr data indicates an age of 549 Ma and initial ratio of 0.7051 for the leucogranites. The available data suggest that the studied complex has been emplaced during the late stages of the Brasiliano Cycle, which were marked by the development of ensialic basins and shear zones, with associated granitic magmatism. In its early stages, this orogeny may be interpreted according to the classical model, involving subduction of oceanic crust. (author) [pt

  5. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  6. Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    Science.gov (United States)

    Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.

  7. Uranium in granites

    International Nuclear Information System (INIS)

    Maurice, Y.T.

    1982-01-01

    Recent research activities of the Canadian Uranium in Granites Study are presented in 18 papers and 3 abstracts. 'Granites' is used as a generic term for granitoids, granitic rocks, and plutonic rocks

  8. A survey of lunar rock types and comparison of the crusts of earth and moon

    Science.gov (United States)

    Wood, J. A.

    1977-01-01

    The principal known types of lunar rocks are briefly reviewed, and their chemical relationships discussed. In the suite of low-KREEP highland rocks, Fe/(Fe + Mg) in the normative mafic minerals increases and the albite content of normative plagio-clase decreases as the total amount of normative plagioclase increases, the opposite of the trend predicted by the Bowen reaction principle. The distribution of compositions of rocks from terrestrial layered mafic intrusives is substantially different: here the analyses fall in several discrete clusters (anorthositic rocks, norites, granophyres and ferrogabbros, ultramafics), and the chemical trends noted above are not reproduced. It is suggested that the observed trends in lunar highland rocks could be produced by crystal fractionation in a deep global surface magma system if (1) plagiociase tended to float, upon crystallization, and (2) the magma was kept agitated and well mixed (probably by thermal convection) until crystallization was far advanced and relatively little residual liquid was left. After the crustal system solidified, but before extensive cooling had developed a thick, strong lithosphere, mantle convection was able to draw portions of the lunar anorthositic crust down into the mantle.

  9. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  10. Statistical analysis of Thematic Mapper Simulator data for the geobotanical discrimination of rock types in southwest Oregon

    Science.gov (United States)

    Morrissey, L. A.; Weinstock, K. J.; Mouat, D. A.; Card, D. H.

    1984-01-01

    An evaluation of Thematic Mapper Simulator (TMS) data for the geobotanical discrimination of rock types based on vegetative cover characteristics is addressed in this research. A methodology for accomplishing this evaluation utilizing univariate and multivariate techniques is presented. TMS data acquired with a Daedalus DEI-1260 multispectral scanner were integrated with vegetation and geologic information for subsequent statistical analyses, which included a chi-square test, an analysis of variance, stepwise discriminant analysis, and Duncan's multiple range test. Results indicate that ultramafic rock types are spectrally separable from nonultramafics based on vegetative cover through the use of statistical analyses.

  11. Three tier transition of Neoarchean TTG-sanukitoid magmatism in the Beit Bridge Complex, Southern Africa

    Science.gov (United States)

    Rajesh, H. M.; Belyanin, G. A.; Van Reenen, D. D.

    2018-01-01

    Neoarchean TTG-sanukitoid associations of contrasting scales occur within the Beit Bridge Complex terrane of the Limpopo Complex in southern Africa. These include the smaller 2.65-2.63 Ga Avoca granitoid and the voluminous 2.73-2.64 Ga Alldays granitoid. This study characterizes the wide compositional spectrum preserved in these two granitoids. The elliptical Avoca pluton consists of a biotite-amphibole-orthopyroxene ± clinopyroxene-bearing core that is dominantly trondhjemite with less dominant tonalite and granodiorite variants, and a thin amphibole-biotite-bearing granite rim, with local occurrence of two-pyroxene-bearing metabasite boudins. While both the core and rim rocks exhibit a linear fabric, the granite in addition preserves a penetrative foliation. Field relations of granite enclaves in the core rocks together with available ages indicate that the core rocks intruded the granite. The foliated biotite ± amphibole-bearing Alldays granitoid contains inclusions of older supracrustals and rocks of the Messina layered intrusion, and is widely distributed. Compositionally, it include tonalites and granodiorites and to a lesser extent trondhjemites. Both the Avoca core and rim rocks are characterized by difference in mineral chemistry, with the mafic minerals Mg-rich in the TTG core, while they are Fe-rich in the granite and metabasite. In comparison, biotite is Mg-rich and amphibole is Fe-rich in the Alldays granitoid. Two groups of Alldays TTG can be delineated in terms of whole-rock geochemical characteristics, and are comparable to the low- to medium-pressure TTG groups delineated by Moyen (2011), while the Avoca TTG is similar to the high-pressure TTG group. The lowest silica samples from each group of granitoid have geochemical characteristics comparable to Archean sanukitoids, with those from the Avoca granitoid similar to low-Ti sanukitoids, and those from the Alldays granitoid similar to low-Ti and high-Ti sanukitoids. Separate petrogenetic models

  12. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  13. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  14. Geochemistry of granitoid rocks from the western Superior Province: Evidence for 2- and 3-stage crustal evolution models

    Science.gov (United States)

    Beakhouse, G. P.; errane) are discussed.

    1986-01-01

    The Superior Province is divisible into subprovinces that can be classified as greenstone-tonalite, paragneiss, or batholitic terranes and are distinguished by differences in lithologic proportions, metamorphic grade, and structural style. The origin and significance of contrasting geochemical characteristics of plutonic rocks from the Winnipeg River subprovince (a batholithic terrane) and the Wabigoon subprovince (a greenstone-tonalite terrane) are discussed.

  15. Uranium in the north of Côte d'Ivoire: the case of Odienné

    International Nuclear Information System (INIS)

    Koffi, K.

    2014-01-01

    This work is a contribution to a better knowledge of Precambrian formations of Odienne region (Côte d’Ivoire), through their petrography and geochemistry. Those formations may be divided into two main groups: - first the metamorphic rocks constituted of Liberian rock relics, volcanic and volcano-sedimentary complex of Birimian age, ortho-gneiss and amphibolites considered either as Ante-Eburnean or early from the Eburnean cycle; - second, the plutonic rocks which are mainly made of granitoids. The discovery of aluminous gneiss of granulite facies within the Liberian formations, petrographically and chemically similar to those described in the Man region, and the presence of magnetite containing quartzites, are evidences of the existence of Liberian basement in the Odienne region. All the features of the Odienne Eburnean volcanism, as shown by the study made on the volcanic and volcano-sedimentary complex, allow us to connect it to the calco-alkaline series. In the present case, a formation model related to the big cutting accidents seems to fit best. As for the granitoids, they show: • a cataclais characterized by mineral torsions or breakages, a frequent mineral lineation, and an ondulating extinction; these are evidences of a syncinematic set-up; • a high content of Na_2O that seems to be expressed by a very important plagioclasic charge; • an evolution wholly silico-potassic in nature; all the samples studied vary from a quartzic-diorite pole to a granitic pole, with the majority of the compositions found in the granodiorite and adamellite domains ; the magma which generated those granitoids is of the calco-alkaline type; • relatively low average uranium and thorium contents; most of the radioactivity of those rocks is concentrated in the biotite or in the accessory minerals (generally in the form of inclusions in the biotite). (author)

  16. Textures, trace element compositions, and U-Pb ages of titanite from the Mangling granitoid pluton, East Qinling Orogen: Implications for magma mixing and destruction of the North China Craton

    Science.gov (United States)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.; Luo, Yan; McCarron, Travis

    2017-07-01

    The Mangling granitoid pluton, located along the southern margin of the North China Craton, consists mainly of monzogranite with minor amounts of diorite. The monzogranite contains abundant mafic microgranular enclaves (MMEs) and is intruded by numerous mafic dikes, providing an opportunity to study magma mixing and its role in the formation of the granitioid pluton. In this paper, we present in situ analysis of U-Pb isotopes and trace element compositions of titanite from the MMEs and the host monzogranite using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to document the role of magma mixing in the formation of the Mangling granitoid pluton. Titanite grains from the MMEs (type 1) are euhedral with patchy zoning, whereas the varieties from the closely associated host monzogranite are euhedral and consist of two types (type 2 and type 3). Type 2 titanite is more abundant and has oscillatory zoning without Fe-Ti oxide inclusions, whereas type 3 grains commonly have Fe-Ti oxide inclusions in the core that is rimmed by inclusion-free overgrowths with weak oscillatory zoning. Titanite from monzogranite without MMEs (type 4) is euhedal and has weak oscillatory zoning, with rare ilmenite inclusions in the core. Titanite from a mafic dike intruding the monzogranite (type 5) is anhedral and has sector zoning. Titanite grains from MMEs and the monzogranite (type 1, 2 and 3) have U-Pb ages that are indistinguishable (149 ± 1 Ma, 148 ± 1 Ma and 148 ± 2 Ma, respectively). These ages agree well with zircon U-Pb ages of 150 ± 1 Ma, 150 ± 1 Ma and 149 ± 1 Ma for the MMEs, host monzogranite, and mafic dike, respectively. The age consistency thus confirms coeval formation of the MMEs, the host monzogranite, and the mafic dikes, demonstrating a mafic magmatic, rather than extraneous or restitic origin for the MMEs. Titanite grains from the MMEs (type 1) and mafic dike (type 5) have much lower Al2O3, REE, Nb/Zr, Y/Zr, and Lu/Hf, but higher (Ce + Nd)/Y and La

  17. Extrapolation of bulk rock elastic moduli of different rock types to high pressure conditions and comparison with texture-derived elastic moduli

    Science.gov (United States)

    Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.

    2018-02-01

    In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting

  18. Metasomatized and hybrid rocks associated with a Palaeoarchaean layered ultramafic intrusion on the Johannesburg Dome, South Africa

    Science.gov (United States)

    Anhaeusser, Carl R.

    2015-02-01

    , the surrounding granitoids, and the hybrid rocks, those from the Zandspruit metasomatized zone show prominent enrichment of K2O, TiO2, Al2O3, Rb, Y, Zr, Nb, Ba, Th and U and depletion in MgO, FeOt, CaO, Cr, Co and Ni.

  19. Patherns in the rare earth elements of the Serra do Carambei granite (Parana) and the others associated ignous rocks

    International Nuclear Information System (INIS)

    Pinto-Coelho, C.V.; Marini, O.J.

    1986-01-01

    The rare earth elements (REE) distribution patters in igneous rocks of the Serra do Carambei Granite area (Parana) were a very important tool to elucidate the genetic processes and the cogenetic relationships between these rocks. The porphyroid facies of the Cunhaporanga Granitoid Complex has a REE distribution pattern characterized by decreasing concentrations in direction to the heavy rare earth elements (HREE) and the smooth Eu negative anomalie, compatible with amphibole fractionation during the magma ascent and the incipient plagioclase fractionation. The REE pattern of the Serra do Carambei Granite is characterized by the strong Eu negative anomalie, by the light rare earth element (LREE) depletion and by the HREE increase. This shape of the REE patterns is frequently observed in Sn-W granites, according to French authors. However in the igneous rocks of the Serra do Carambei Granite area this is not true. ''Rhyolite'' dytes intrusives in the Serra do Carambei Granite exhibit REE pattern similar to the wall rock, indicating then the same genetic processes. The Castro Group rhyolites have REE patterns with decreasing concentrations in direction to the HREE and smooth Eu negative anomalie. The REE distribution patterns is against the consanguinity between the ''rhyolites'' intruded in the Serra do Carambei Granite and the rhyolites of the Castro Group and also between these rhyolites and the above mentioned Granite. (author) [pt

  20. Rb-Sr ages of Precambrian sedimentary rocks in the U.S.A

    International Nuclear Information System (INIS)

    Morton, J.P.; Long, L.E.

    1982-01-01

    Dating of Precambrian sedimentary rocks to determine the age of deposition has not been pursued as diligently in the U.S.A. as in other areas. Ages (which must be regarded as tentative) are summarized for the younger Precambrian stratified rocks of the Grand Canyon (Arizona), the Nonesuch Shale of the Keweenawan Series (Michigan), the Uinta Mountain Group (Utah), and the Belt-Supergroup (Idaho-Montana). An important question of interpretation is whether the ages correspond to times of deposition or of later diagenesis. (Auth.)

  1. Incremental growth of an upper crustal, A-type pluton, Argentina: Evidence of a re-used magma pathway

    Science.gov (United States)

    Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2017-07-01

    Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include older hot magma mush. The latter results in ductile downward flow of older, during rise of younger magma. Such complexes may reflect the plutonic portion of volcanic centers where chemically distinct magmas are erupted.

  2. Disc cutter wear and rock texture in hard rock TBM tunneling

    International Nuclear Information System (INIS)

    Koizumi, Yu; Tsusaka, Kimikazu; Tanimoto, Chikaosa; Nakagawa, Shigeo; Fujita, Naoya

    2008-01-01

    Disc cutter wear in TBM tunneling is caused by initial fragmentation of a solid rock face (the primary fragmentation) and fragmentation of residual rock pieces between a cutterhead and the face (the secondary fragmentation). In two projects through sedimentary and granitic rocks, the authors investigated the relationships between the rate of cutter wear caused by the primary fragmentation, point load index and the grain size and contents of abrasive minerals. As a result, it was found that the tensile strength and the mineral contents of rocks significantly influenced the cutter wear in both projects and thus it is necessary to take into account of rock type. (author)

  3. Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians).

    Science.gov (United States)

    Burda, Jolanta; Gawęda, Aleksandra; Klötzli, Urs

    In the Variscan Western Tatra granites hybridization phenomena such as mixing and mingling can be observed at the contact of mafic precursors of dioritic composition and more felsic granitic host rocks. The textural evidence of hybridization include: plagioclase-K-feldspar-sphene ocelli, hornblende- and biotite-rimmed quartz ocelli, plagioclase with Ca-rich spike zonation, inversely zoned K-feldspar crystals, mafic clots, poikilitic plagioclase and quartz crystals, mixed apatite morphologies, zoned K-feldspar phenocrysts. The apparent pressure range of the magma hybridization event was calculated at 6.1 kbar to 4.6 kbar, while the temperature, calculated by independent methods, is in the range of 810°C-770°C. U-Pb age data of the hybrid rocks were obtained by in-situ LA-MC-ICP-MS analysis of zircon. The oscillatory zoned zircon crystals yield a concordia age of 368 ± 8 Ma (MSWD = 1.1), interpreted as the age of magma hybridization and timing of formation of the magmatic precursors. It is the oldest Variscan magmatic event in that part of the Tatra Mountains.

  4. Study of Post-Peak Strain Softening Mechanical Behaviour of Rock Material Based on Hoek–Brown Criterion

    OpenAIRE

    Qibin Lin; Ping Cao; Peixin Wang

    2018-01-01

    In order to build the post-peak strain softening model of rock, the evolution laws of rock parameters m,s were obtained by using the evolutionary mode of piecewise linear function regarding the maximum principle stress. Based on the nonlinear Hoek–Brown criterion, the analytical relationship of the rock strength parameters m,s, cohesion c, and friction angle φ has been developed by theoretical derivation. According to the analysis on the four different types of rock, it is found that, within ...

  5. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    Science.gov (United States)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  6. Microstructural controls on the macroscopic behavior of geo-architected rock samples

    Science.gov (United States)

    Mitchell, C. A.; Pyrak-Nolte, L. J.

    2017-12-01

    Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  7. Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)

    Science.gov (United States)

    Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier

    2013-04-01

    Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.

  8. Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study.

    Science.gov (United States)

    Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B

    2017-10-01

    The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.

  9. Trace element characteristics of mafic and ultramafic meta-igneous rocks from the 3.5 Ga. Warrawoona group: evidence for plume-lithosphere interaction beneath Archaean continental crust

    International Nuclear Information System (INIS)

    Bolhar, R.; Hergt, J.; Woodhead, J.

    1999-01-01

    Full text: Magnesian- to Fe-rich tholeiitic basalts represent the dominant lithology in the Marble Bar Greenstone Belt, E-Pilbara Craton, and are locally associated with komatiitic basalts and rare komatiitic cumulates. Based on trace element characteristics, the extrusive and intrusive rocks from all three major stratigraphic units can be subdivided into LREE enriched and unfractionated to weakly LREE depleted groups. The former group is characterized by La/Sm pm = 1.7-4.6, Gd/Yb pm = 1.23.2 and Nb/Th pm 0.1-0.5, while the latter rocks possess ratios of La/Sm pm = 0.5-1.7, Gd/Yb pm = 0.8-1.9 and Nb/Th pm = 0.4-1.3. Nb/La -Nb/Th relationships in the LREE enriched samples indicate 7-28% contamination by crustal material similar in composition to Pilbara granitoids. LREE enrichment and strong negative HFSE anomalies, along with MgO = 2.2-22.0 wt% and SiO 2 = 39.2-63.5 wt%, have been observed in numerous Archaean greenstone belts, and can be successfully modeled in this study by AFC processes. In contrast, strong HFSE depletion combined with unfractionated to slightly depleted LREE in rocks of the latter group require different processes. Melting of mantle material previously depleted by melt extraction, enrichment of LILE and LREE relative to the HFSE in an arc-like environment and HFSE fractionation as a result of garnet retention in the melting source cannot account for negative Nb, Ta, Ti, P and strong positive Pb anomalies. Introduction of small amounts of crustal material into a depleted or primitive mantle, as possibly indicated by Nb/Ta ratios between 12 and 18, also fails to reproduce the trace element abundances of the second group of rocks. Recycling of oceanic crust previously processed through a subduction zone (low Th/Nb, La/Nb) and sub-arc lithospheric mantle (high Th/Nb, La/Nb), and subsequent mixing into the Archaean mantle has been recently invoked by several workers (e.g. Kerrich et al., EPSL, 168, 101-115; 1999) to explain the origin of

  10. A chemical redox reaction to generate rock salt-type materials: the case of Na3V2O5.

    Science.gov (United States)

    Adamczyk, E; Anger, E; Freire, M; Pralong, V

    2018-02-27

    Chemical redox reactions are extremely efficient to prepare fully reduced or oxidized phases that are formed during the topotactic insertion/extraction of alkaline ions. Herein, we report these reactions and discuss the possibility to generate new ordered or disordered rock salt-type structures depending on the structure of the mother phase. We have shown that a disordered rock salt-type structure is formed when the transition element is located at the tetrahedral site, as exemplified by the formation of Na 3 V 2 O 5 upon chemical reduction of V 2 O 5 .

  11. An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia

    DEFF Research Database (Denmark)

    Ilkhchi, Rahim Kadkhodaie; Rezaee, Reza; Harami, Reza Moussavi

    2014-01-01

    Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate...... the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship...... between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types...

  12. Uranium deposits in granitic rocks

    International Nuclear Information System (INIS)

    Nishimori, R.K.; Ragland, P.C.; Rogers, J.J.W.; Greenberg, J.K.

    1977-01-01

    This report is a review of published data bearing on the geology and origin of uranium deposits in granitic, pegmatitic and migmatitic rocks with the aim of assisting in the development of predictive criteria for the search for similar deposits in the U.S. Efforts were concentrated on the so-called ''porphyry'' uranium deposits. Two types of uranium deposits are primarily considered: deposits in pegmatites and alaskites in gneiss terrains, and disseminations of uranium in high-level granites. In Chapter 1 of this report, the general data on the distribution of uranium in igneous and metamorphic rocks are reviewed. Chapter 2 contains some comments on the classification of uranium deposits associated with igneous rocks and a summary of the main features of the geology of uranium deposits in granites. General concepts of the behavior of uranium in granites during crustal evolution are reviewed in Chapter 3. Also included is a discussion of the relationship of uranium mineralization in granites to the general evolution of mobile belts, plus the influence of magmatic and post-magmatic processes on the distribution of uranium in igneous rocks and related ore deposits. Chapter 4 relates the results of experimental studies on the crystallization of granites to some of the geologic features of uranium deposits in pegmatites and alaskites in high-grade metamorphic terrains. Potential or favorable areas for igneous uranium deposits in the U.S.A. are delineated in Chapter 5. Data on the geology of specific uranium deposits in granitic rocks are contained in Appendix 1. A compilation of igneous rock formations containing greater than 10 ppM uranium is included in Appendix 2. Appendix 3 is a report on the results of a visit to the Roessing area. Appendix 4 is a report on a field excursion to eastern Canada

  13. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  14. Carboniferous Granitoid Magmatism of Northern Taimyr: Results of Isotopic-Geochemical Study and Geodynamic Interpretation

    Science.gov (United States)

    Kurapov, M. Yu.; Ershova, V. B.; Makariev, A. A.; Makarieva, E. V.; Khudoley, A. K.; Luchitskaya, M. V.; Prokopiev, A. V.

    2018-03-01

    Data on the petrography, geochemistry, and isotopic geochronology of granites from the northern part of the Taimyr Peninsula are considered. The Early-Middle Carboniferous age of these rocks has been established (U-Pb, SIMS). Judging by the results of 40Ar/39Ar dating, the rocks underwent metamorphism in the Middle Permian. In geochemical and isotopic composition, the granitic rocks have much in common with evolved I-type granites. This makes it possible to specify a suprasubduction marginal continental formation setting. The existence of an active Carboniferous margin along the southern edge of the Kara Block (in presentday coordinates) corroborates the close relationship of the studied region with the continent of Baltia.

  15. Petrogenesis of the middle Jurassic appinite and coeval granitoids in the Eastern Hebei area of North China Craton

    Science.gov (United States)

    Fan, Wenbo; Jiang, Neng; Xu, Xiyang; Hu, Jun; Zong, Keqing

    2017-05-01

    An integrated study of zircon U-Pb ages and Hf-O isotopic compositions, whole rock elemental and Sr-Nd isotope geochemistry was conducted on three lithologically diverse middle Jurassic plutons from the Eastern Hebei area of the North China Craton (NCC), in order to reveal both their petrogenesis and possible tectonic affinity. The three plutons have consistent magmatic zircon U-Pb ages from 167 ± 1 Ma to 173 ± 1 Ma. The Nianziyu pluton has typical characteristics of appinite with low SiO2 (43.7-52.6%), high Ca, Mg, Fe and H2O contents. It possesses subduction-related trace element patterns, enriched Nd-Hf isotopic signatures as well as elevated zircon δ18O values (6.2-7.2‰), arguing for an enriched mantle source metasomatized by fluids related to subduction. The Shuihutong monzogranites have high silica (SiO2 = 75.4-75.9%) and alkali contents, low Ca contents and striking negative Ba, Sr and Eu anomalies. Samples from the pluton have more evolved Nd-Hf isotopic values and are considered to be most likely derived from anatexis of ancient lower continental crust. Hybridization between mantle- and ancient lower crust-derived magmas is proposed for the mafic microgranular enclave-bearing Baijiadian granitoids, which are characterized by variable εNd (t) and εHf(t) values. Integrated with the regional geologic history, we suggest that the formation of the three middle Jurassic plutons were related to the subduction of the Paleo-Pacific ocean plate beneath the NCC. Their petrogenetic differences reflect complex magmatic processes in subduction settings involving melting of multiple sources, possible partly facilitated by fluid metasomatism and water-rich magma injection, accompanied with various degrees of magma mixing. The appearance of middle Jurassic appinitic rocks leads us to propose that the NCC destruction and lithosphere thinning were facilitated and controlled by the weakening of the lithospheric mantle after hydration because of the subduction of the

  16. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    Science.gov (United States)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After

  17. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids — examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia)

    Science.gov (United States)

    Schwartz, M. O.

    1992-03-01

    Two examples of albite-rich granitoids of different genesis are discussed: the Ta-Li granite at Yichun (China) exhibits dominantly igneous textures, and the sodium-enrichment zone in biotite granite of the Sn-W deposit at Tikus is characterized by metasomatic textures. The Yichun stock shows a magmatic evolution from biotite-muscovite granite to lepidolite granite with an increase of Na2O and F concentrations and a decrease of CaO and Sr concentrations. The composition of the different granite phases is close to pseudoternary minima in the haplogranite-H2O(-Li-F) system. The composition of the F-rich albitization zone at Tikus deviates strongly from the pseudoternary minima and shows a tendency to become monomineralic (nearly pure albitite). CaO and Sr concentrations are increased or remain unchanged with respect to the unaltered biotite granite at Tikus. Albitization produced by fluid-rock interaction in F-rich systems is characterized by that CaO or Sr released by the breakdown of plagioclase in the granite protolith, are fixed in newly formed fluorite or albite, respectively.

  18. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  19. Reconnaissance isotopic investigations in the Namaqua mobile belt and implications for proterozoic crustal evolution - Namaqualand geotraverse

    International Nuclear Information System (INIS)

    Barton, E.S.

    1983-01-01

    Fourteen rock units in the western portion of the Namaqua mobile belt were investigated by some or all of the following isotopic methods: Rb-Sr, Pb-Pb, Th-Pb total-rock and Rb-Sr mineral age measurements. Two major tectogenetic events are recongnised. The early Orange River event is represented by the emplacement and metamorphism of the volcanic rocks of the Haib Subgroup and the emplacement of granitoids of the Vioolsdrif and Gladkop suites in the regions of the Richtersveld Province and the Steinkopf domain. The later Namaqua event is represented mainly by extensive granitoid emplacement and high-grade granulite facies metamorphism in the Okiep Copper District, with minor granitoid and dyke emplacement taking place in the Steinkopf domain. The polymetamorphism associated with these tectonic events had far-reaching effects in the form of long continued isotopic resetting of rock and mineral systems. In the instances where the regression of the total-rock isotopic data define errorchron results, geological disturbance is inferred. The Sr-isotopic results indicate substrantial crustal reworking and two periods of mantle differentiation producing continental crust at approximately 2 000 and approximately 1 200 Ma ago. The Pb-isotopic data for these rocks indicate μ 2 values for the source regions that are compatible with crustal reworking for the felsic rocks or a significant amount of crustal recycling into the mantle for the mafic rocks. On this basis a magmatic arc environment is envisaged for the rocks generated during the Orange River event. The deformation fabrics associated with the Orange River and Namaqua tectogenetic episodes are dated by the time of emplacement of syn- and post-tectonic granitic rocks. The regional fabric observed in the Steinkopf domain and in the Okiep Copper District was not synchronously developed

  20. Petrographic characterization and preliminary lithogeochemistry of albitites from Folha Bramado, northwest of Bahia state, Brazil

    International Nuclear Information System (INIS)

    Burgos, Cristina Maria; Pinho, Ivana Conceicao de Araujo; Martins, Adriano Alberto Marques; Teixeira, Leo Rodrigues; Oliveira, Rita Cunha Leal Menezes de; Cruz Filho, Basilio Elesbao da; Wosniak, Ricardo

    2011-01-01

    The mapping geological works carried out by CPRM, in the scope of the Brumado-Condeuba Project, had proceeded to the sampling from granitoids in the 'Folha Brumado'. The majority of the samples were classified as biotite gneiss and two of them recognized as albitites. Lithogeochemical data had proved that the rocks are alkaline, metaluminous, potash-rich (except for the two classified as albitites that are soda-rich), enriched in rare earth elements, with negative anomaly in europium and typical standards of A-type granitoids. They had been located in the field of the within-plate granites in the discrimination diagrams for the tectonic interpretation. The albitites of the 'Folha Brumado' are similar to the albitites that had been described in the Uranium Province of Lagoa Real. (author)

  1. Rock types and ductile structures on a rock domain basis, and fracture orientation and mineralogy on a deformation zone basis. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael [Geological Survey of Sweden, Uppsala (Sweden); Forssberg, Ola [Golder Associates AB, Uppsala (Sweden)

    2006-09-15

    This report presents the results of the analysis of base geological data in order to establish the dominant rock type, the subordinate rock types and the orientation of ductile mineral fabrics within each rock domain included in the regional geological model, version 1.2. An assessment of the degree of homogeneity of each domain is also provided. The analytical work has utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values or best-fit great circles and corresponding pole values have been calculated for the ductile structural data. These values have been used in the geometric modelling of rock domains in the regional model, version 1.2. Furthermore, all analytical results have been used in the assignment of properties to rock domains in this model. A second analytical component reported here addresses the orientation and mineralogy of fractures in the deterministic deformation zones that are included in the regional geological model, version 1.2. The analytical work has once again utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values are presented for the orientation of fracture sets in the deterministic deformation zones that have been identified with the help of new borehole data. The frequencies of occurrence of different minerals along the fractures in these deformation zones as well as the orientation of fractures in the zones, along which different minerals occur, are also presented. The results of the analyses have been used in the establishment of a conceptual structural model for the Forsmark site and in the assignment of properties to deterministic deformation zones in model version 1.2.

  2. Musical Structure as Narrative in Rock

    Directory of Open Access Journals (Sweden)

    John Fernando Encarnacao

    2011-09-01

    Full Text Available In an attempt to take a fresh look at the analysis of form in rock music, this paper uses Susan McClary’s (2000 idea of ‘quest narrative’ in Western art music as a starting point. While much pop and rock adheres to the basic structure of the establishment of a home territory, episodes or adventures away, and then a return, my study suggests three categories of rock music form that provide alternatives to common combinations of verses, choruses and bridges through which the quest narrative is delivered. Labyrinth forms present more than the usual number of sections to confound our sense of ‘home’, and consequently of ‘quest’. Single-cell forms use repetition to suggest either a kind of stasis or to disrupt our expectations of beginning, middle and end. Immersive forms blur sectional divisions and invite more sensual and participatory responses to the recorded text. With regard to all of these alternative approaches to structure, Judy Lochhead’s (1992 concept of ‘forming’ is called upon to underline rock music forms that unfold as process, rather than map received formal constructs. Central to the argument are a couple of crucial definitions. Following Theodore Gracyk (1996, it is not songs, as such, but particular recordings that constitute rock music texts. Additionally, narrative is understood not in (direct relation to the lyrics of a song, nor in terms of artists’ biographies or the trajectories of musical styles, but considered in terms of musical structure. It is hoped that this outline of non-narrative musical structures in rock may have applications not only to other types of music, but to other time-based art forms.

  3. 'Mister Badger' Pushing Mars Rock

    Science.gov (United States)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  4. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    Science.gov (United States)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  5. Evaluation of Rock Bolt Support for Polish Hard Rock Mines

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-03-01

    The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.

  6. Sliding rocks on Racetrack Playa, Death Valley National Park: first observation of rocks in motion.

    Directory of Open Access Journals (Sweden)

    Richard D Norris

    Full Text Available The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved > 60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, "windowpane" ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of -4-5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2-5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice.

  7. Age and geochemistry of Neoproterozoic granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and tectonic implications

    Science.gov (United States)

    Luan, Jin-Peng; Xu, Wen-Liang; Wang, Feng; Wang, Zhi-Wei; Guo, Peng

    2017-10-01

    This study presents new zircon U-Pb ages and geochemical data for Neoproterozoic granitoids in the Songnen-Zhangguangcai Range Massif (SZRM) of NE China. This dataset provides insights into the Neoproterozoic tectonic setting of the SZRM and the links between this magmatism and the evolution of the Rodinia supercontinent. The zircon U-Pb dating indicates that the Neoproterozoic magmatism within the SZRM can be subdivided into two stages: (1) a ∼917-911 Ma suite of syenogranites and monzogranites, and (2) an ∼841 Ma suite of granodiorites. The 917-911 Ma granitoids contain high concentrations of SiO2 (67.89-71.18 wt.%), K2O (4.24-6.91 wt.%), and Al2O3 (14.89-16.14 wt.%), and low concentrations of TFe2O3 (1.63-3.70 wt.%) and MgO (0.53-0.88 wt.%). They are enriched in the light rare earth elements (LREE) and the large ion lithophile elements (LILE), are depleted in the heavy REE (HREE) and the high field strength elements (HFSE; e.g., Nb, Ta, and Ti), and have slightly positive Eu anomalies, indicating that they are geochemically similar to high-K adakitic rocks. They have zircon εHf (t) values and TDM2 ages from -4.4 to +1.5 and 1915 Ma to 1592 Ma, respectively, suggesting that they were derived from a primary magma generated by the partial melting of ancient thickened lower crustal material. In comparison, the 841 Ma granodiorites contain relatively low concentrations of Al2O3 (14.50-14.58 wt.%) and K2O (3.27-3.29 wt.%), relatively high concentrations of TFe2O3 (3.78-3.81 wt.%) and the HREE, have negative Eu anomalies, and have zircon εHf (t) values and TDM2 ages from -4.7 to +1.0 and 1875 to 1559 Ma, respectively. These granodiorites formed from a primary magma generated by the partial melting of ancient crustal material. The ∼917-911 Ma magmatism within the SZRM is inferred to have formed in an orogenic setting, whereas the ∼841 Ma magmatism formed in an anorogenic setting related to either a post-orogenic tectonic event or the onset of Neoproterozoic

  8. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK.

    Directory of Open Access Journals (Sweden)

    Steve Pedrini

    2005-01-01

    Full Text Available Statins are widely used cholesterol-lowering drugs that act by inhibiting HMGCoA reductase, the rate-limiting enzyme in cholesterol biosynthesis. Recent evidence suggests that statin use may be associated with a decreased risk for Alzheimer disease, although the mechanisms underlying this apparent risk reduction are poorly understood. One popular hypothesis for statin action is related to the drugs' ability to activate alpha-secretase-type shedding of the alpha-secretase-cleaved soluble Alzheimer amyloid precursor protein ectodomain (sAPP(alpha. Statins also inhibit the isoprenoid pathway, thereby modulating the activities of the Rho family of small GTPases-Rho A, B, and C-as well as the activities of Rac and cdc42. Rho proteins, in turn, exert many of their effects via Rho-associated protein kinases (ROCKs. Several cell-surface molecules are substrates for activated alpha-secretase-type ectodomain shedding, and regulation of shedding typically occurs via activation of protein kinase C or extracellular-signal-regulated protein kinases, or via inactivation of protein phosphatase 1 or 2A. However, the possibility that these enzymes play a role in statin-stimulated shedding has been excluded, leading us to investigate whether the Rho/ROCK1 protein phosphorylation pathway might be involved.We found that both atorvastatin and simvastatin stimulated sAPP(alpha shedding from a neuroblastoma cell line via a subcellular mechanism apparently located upstream of endocytosis. A farnesyl transferase inhibitor also increased sAPP(alpha shedding, as did a dominant negative form of ROCK1. Most conclusively, a constitutively active ROCK1 molecule inhibited statin-stimulated sAPP(alpha shedding.Together, these data suggest that statins exert their effects on shedding of sAPP(alpha from cultured cells, at least in part, by modulation of the isoprenoid pathway and ROCK1.

  9. S-C Mylonites

    NARCIS (Netherlands)

    Lister, G.S.; Snoke, A.W.

    1984-01-01

    Two types of foliations are commonly developed in mylonites and mylonitic rocks: (a) S-surfaces related to the accumulation of finite strain and (b) C-surfaces related to displacement discontinuities or zones of relatively high shear strain. There are two types of S-C mylonites. Type I S-C

  10. Geology of the Curimatau medium region (Paraiba State, Brazil) and the emplacement of the Dona Ines granite associated to the Brasiliano transcurrent shear zones

    International Nuclear Information System (INIS)

    Borges, Sergio Vieira Freire

    1996-01-01

    In an area of about 700 Km 2 located in the northeast of Paraiba State and having as main point the town of Dona Ines, a geologic/structural mapping, a gravimetric survey and radiometric dating using the Rb/Sr method in whole rock and Sm.Nd model ages were undertaken in order to study and to understand the geology of this portion of terrain, the emplacement of the Dona Ines granitoids and its relationship with the enclosing rocks and the deformation acting at the time of the intrusion. The age of the pluton of Dona Ines was determined by the Rb/Sr whole rock method as 560 ± 20 Ma (end of Brasiliano Cycle in the region). Sm.Nd model ages in granitoids of Araras, Belem and Dona Ines have revealed paleoproterozoic ages for their crustal sources, as indicated by the negative ε nd of this rock

  11. Fluorine geochemistry in bedrock groundwater of South Korea

    International Nuclear Information System (INIS)

    Chae, Gi-Tak; Yun, Seong-Taek; Mayer, Bernhard; Kim, Kyoung-Ho; Kim, Seong-Yong; Kwon, Jang-Soon; Kim, Kangjoo; Koh, Yong-Kwon

    2007-01-01

    High fluoride concentrations (median = 4.4 mg/L) in deep bedrock groundwater of South Korea prevent the usage of it as a drinking water source. The hydrogeochemistry of deep thermal groundwaters (N = 377) in diverse bedrocks has been studied in order to evaluate the geologic and geochemical controls on fluoride concentrations in groundwater. The groundwater samples were clustered geologically, and the average and median concentrations of fluoride were compared by the Mann-Whitney U test. The order of median fluoride concentration with respect to geology is as follows: metamorphic rocksgranitoids ≥ complex rock >> volcanic rocks ≥ sedimentary rocks. This result indicates that the geological source of fluoride in groundwater is related to the mineral composition of metamorphic rocks and granitoids. With respect to groundwater chemistry, the fluoride concentration was highest in Na-HCO 3 type groundwater and lowest in Ca-HCO 3 type groundwater. Ionic relationships also imply that the geochemical behavior of fluoride in groundwater is related to the geochemical process releasing Na and removing Ca ions. The thermodynamic relationship between the activities of Ca and F indicates that fluoride concentration is controlled by the equilibrium of fluorite (CaF 2 ). In other words, the upper limits of fluoride concentration are determined by the Ca ion; i.e., Ca concentrations play a crucial role in fluoride behavior in deep thermal groundwater. The result of this study suggests that the high fluoride in groundwater originates from geological sources and fluoride can be removed by fluorite precipitation when high Ca concentration is maintained. This provides a basis for a proper management plan to develop the deep thermal groundwater and for treatment of high fluoride groundwater frequently found in South Korea

  12. Erosion in southern Tibet shut down at ∼10 Ma due to enhanced rock uplift within the Himalaya.

    Science.gov (United States)

    Tremblay, Marissa M; Fox, Matthew; Schmidt, Jennifer L; Tripathy-Lang, Alka; Wielicki, Matthew M; Harrison, T Mark; Zeitler, Peter K; Shuster, David L

    2015-09-29

    Exhumation of the southern Tibetan plateau margin reflects interplay between surface and lithospheric dynamics within the Himalaya-Tibet orogen. We report thermochronometric data from a 1.2-km elevation transect within granitoids of the eastern Lhasa terrane, southern Tibet, which indicate rapid exhumation exceeding 1 km/Ma from 17-16 to 12-11 Ma followed by very slow exhumation to the present. We hypothesize that these changes in exhumation occurred in response to changes in the loci and rate of rock uplift and the resulting southward shift of the main topographic and drainage divides from within the Lhasa terrane to their current positions within the Himalaya. At ∼17 Ma, steep erosive drainage networks would have flowed across the Himalaya and greater amounts of moisture would have advected into the Lhasa terrane to drive large-scale erosional exhumation. As convergence thickened and widened the Himalaya, the orographic barrier to precipitation in southern Tibet terrane would have strengthened. Previously documented midcrustal duplexing around 10 Ma generated a zone of high rock uplift within the Himalaya. We use numerical simulations as a conceptual tool to highlight how a zone of high rock uplift could have defeated transverse drainage networks, resulting in substantial drainage reorganization. When combined with a strengthening orographic barrier to precipitation, this drainage reorganization would have driven the sharp reduction in exhumation rate we observe in southern Tibet.

  13. Diffusion in the matrix of rocks from Olkiluoto. The effect of anion exclusion

    International Nuclear Information System (INIS)

    Valkiainen, M.; Aalto, H.; Olin, M.; Lindberg, A.; Siitari-Kauppi, M.

    1995-12-01

    Diffusion in the rock matrix is dependent on two basic factors: the effective diffusion conductivity of the rock and the rock-capacity factor. The aim of this ongoing research is to study both of these factors more closely by finding evidence and studying the significance of anion exclusion and surface diffusion. The material for the study was selected form the drill-core of the drill-hole OL-KR5 from Olkiluoto investigations site. Six rock-types were included in the study, three unaltered and three altered. The water-types selected can be divided to two groups: in one the ionic strength is varied, in the another the ionic type is varied. The diffusion measurements were carried out partly by the equilibration-leaching method, partly by the through-diffusion method. The measurements by the equilibration-leaching method were performed in the anaerobic cabinet and the through-diffusion measurement in laboratory room conditions. Radioactive isotopes 3 H, 35 S, 36 Cl and 22 Na were selected as tracers. This report contains results of the equilibration-leaching measurements and through- diffusion measurements using 3 H (HTO), 36 Cl (Cl-) and 35 S(SO 4 2- ) as tracers. The rock-types under study were also studied in the University of Helsinki, Department of Chemistry using polymethylmethacrylate labelled with 14 C revealing the pore structure. Also, results of specific surface area measurements made in BAM, Berlin are given. The comparison of results obtained by the gas diffusion method at the University of Jyvaeskylae to the results obtained by tritium are also appended. (12 refs., 20 figs., 10 tabs.)

  14. Rare earth element mobility in arc-type volcanic rocks

    International Nuclear Information System (INIS)

    Kuschel, E.; Smith, I.E.M.

    1990-01-01

    Some samples from arc-type volcanic suites collected in northern New Zealand and southeastern Papua New Guinea show rare earth element (REE) and Y abundances which are enriched relative to the those typical of their respective associations. This enrichment appears to be the result of an alteration process which selectively mobilises the REE and re-precipitates them as REE-bearing minerals in veins and interstitial patches. The alteration is on a micron scale and is not detected in routine petrographic examination. It is emphasised that the pattern of REE mobility in young, fresh rocks is important to igneous geochemists who use REE abundances to constrain petrogenetic models and may also be important because it indicates the operation of a natural REE enrichment process which could operate in the formation of economic REE deposits. 3 refs., 5 figs

  15. Graphite-(Mo,W)S2 intergrowth as a palaeoenvironmental proxy in metasedimentary rocks

    Science.gov (United States)

    Cabral, Alexandre Raphael; Zeh, Armin; da Silva Viana, Nívea Cristina; Schirmer, Thomas; Lehmann, Bernd

    2017-12-01

    Molybdenum enrichment in pristine organic-C-rich sedimentary rocks forms the basis for inferring the presence of dissolved oxygen in seawater. Organic matter removes dissolved hexavalent Mo from seawater where anoxic and euxinic conditions are attained. However, it is unknown whether this Mo-based proxy is retained under metamorphic conditions where organic C is no longer preserved. Here, we describe aggregates of graphite and molybdenite (MoS2) containing up to 21 mass per cent of W as tungstenite (WS2) in solid solution. These aggregates are disseminated in a sulfide-rich Mn-silicate-carbonate rock (queluzite), metamorphosed under amphibolite-facies conditions within the Archaean Barbacena greenstone belt in Minas Gerais, Brazil. Our finding indicates that: (i) W is, like Mo, a palaeoenvironmental proxy; (ii) the W proxy is sensitive to high fS2/fO2 environments; (iii) both Mo and W proxies survive amphibolite-facies overprint as (Mo,W)S2 intergrown with graphite. Archaean greenstones are potential candidates for storing palaeoenvironmental information as (Mo,W)S2-graphite intergrowths.

  16. The siliceous-calcareous-argillaceous rock type uranium deposit in south subzone of Western Qinling

    International Nuclear Information System (INIS)

    Qian Farong; Zhou Dean; Ji Hongfang

    1995-11-01

    The siliceous-calcareous-argillaceous rock type uranium deposit in south subzone of western Qinling is an inland found type deposit with specific mineralization and good potentiality. The mineralization distributes along definite horizons and occurs in siliceous layer and lenses of siliceous-calcareous rocks. Orebody presents in forms of stratoid, lenticular and irregular veins and controlled by factorial structures. Ore is identified as massive and sandy and each characterized by various mineral compositions and element associations. The study shows that the mineralizing materials are mainly derived from ore-bearing strata. The metallogenic environment has characteristics of middle-low temperature and supergene The metallogenesis underwent three stages: (1) Sedimentation-diagenesis of the ore-bearing strata led to preliminary concentration of uranium; (2) Polytectonic activities accompanied by underground hydrothermal process resulted in the industrial concentration of uranium; and (3) Orebody reworked by oxidation-denudation and leaching, locally has taken place secondary concentration. The deposit in origin attributes to polygenesis dominated by underground hydrothermal metallogenesis. Main metallogenic epoch happens during the periods of Late Yanshan and Himalayan. According to the geological-tectonic conditions the further prospecting direction in study area is proposed. (3 refs., 5 figs., 9 tabs.)

  17. Critical issues in soft rocks

    OpenAIRE

    Milton Assis Kanji

    2014-01-01

    This paper discusses several efforts made to study and investigate soft rocks, as well as their physico-mechanical characteristics recognized up to now, the problems in their sampling and testing, and the possibility of its reproduction through artificially made soft rocks. The problems in utilizing current and widespread classification systems to some types of weak rocks are also discussed, as well as other problems related to them. Some examples of engineering works in soft rock or in soft ...

  18. La pyrolyse Rock-Eval et ses applications. Troisième partie. Rock-Eval Pyrolysis and Its Applications (Part Three

    Directory of Open Access Journals (Sweden)

    Espitalie J.

    2006-11-01

    Full Text Available Conçue pour répondre aux besoins de l'exploration pétrolière, la méthode de pyrolyse Rock-Eval est maintenant largement utilisée. Elle fournit, en effet, et d'une façon rapide, différentes informations sur le contenu organique des roches, telles que le potentiel pétrolier des séries rencontrées, la nature des kérogènes, leur état de maturation. En ce qui concerne le matériel, deux nouvelles versions ont été mises au point à l'Institut Français du Pétrole (IFP depuis l'apparition en 1977 des premiers appareils Rock-Eval : un Rock-Eval II complètement automatisé grâce à un microprocesseur et doté, en option, d'un module de dosage du carbone organique; un Rock-Eval III (Oil Show Analyzer qui se distingue du précédent par le fait qu'il analyse séparément le gaz et l'huile et qu'il effectue le dosage du carbone organique à la place du pic S3. En ce qui concerne l'interprétation de la méthode, l'expérience acquise tant par les applications aux bassins sédimentaires que par les études expérimentales menées en laboratoire a permis de mieux connaître les paramètres utilisés (pics S1, S2, S3, température de pyrolyse Tmax à travers leurs variations et, de là, de mieux discerner les limites d'application de la méthode. En ce qui concerne l'application de la méthode, la représentation verticale des résultats sous forme de logs géochimiques conduit à une interprétation à la fois efficace et pratique. Des abaques et des diagrammes de référence permettent de caractériser les roches mères (potentiels pétroliers, types de matière organique, degré d'évolution, altérations . . . ainsi que les phénomènes de migration. L'établissement de cartes géochimiques à l'échelle du bassin devient alors possible. Enfin la méthode est sortie du domaine de l'exploration pétrolière proprement dite pour trouver des applications à l'étude des charbons, des roches bitumineuses, des sédiments récents et même aux

  19. La pyrolyse Rock-Eval et ses applications. Première partie. Rock-Eval Pyrolysis and Its Applications (Part One

    Directory of Open Access Journals (Sweden)

    Espitalie J.

    2006-11-01

    Full Text Available Conçue pour répondre aux besoins de l'exploration pétrolière, la méthode de pyrolyse Rock-Eval est maintenant largement utilisée. Elle fournit, en effet, et d'une façon rapide, différentes informations sur le contenu organique des roches, telles que le potentiel pétrolier des séries rencontrées, la nature des kérogènes, leur état de maturation. En ce qui concerne le matériel, deux nouvelles versions ont été mises au point à l'Institut Français du Pétrole (IFP depuis l'apparition en 1977 des premiers appareils Rock-Eval : un Rock-Eval II complètement automatisé grâce à un microprocesseur et doté, en option, d'un module de dosage du carbone organique; un Rock-Eval III (Oil Show Analyzer qui se distingue du précédent par le fait qu'il analyse séparément le gaz et l'huile et qu'il effectue le dosage du carbone organique à la place du pic S3. En ce qui concerne l'interprétation de la méthode, l'expérience acquise tant par les applications aux bassins sédimentaires que par les études expérimentales menées en laboratoire a permis de mieux connaître les paramètres utilisés (pics S1, S2, S3, température de pyrolyse Tmax à travers leurs variations et, de là, de mieux discerner les limites d'application de la méthode. En ce qui concerne l'application de la méthode, la représentation verticale des résultats sous forme de logs géochimiques conduit à une interprétation à la fois efficace et pratique. Des abaques et des diagrammes de référence permettent de caractériser les roches mères (potentiels pétroliers, types de matière organique, degré d'évolution, altérations. . . ainsi que les phénomènes de migration. L'établissement de cartes géochimiques à l'échelle du bassin devient alors possible. Enfin la méthode est sortie du domaine de l'exploration pétrolière proprement dite pour trouver des applications à l'étude des charbons, des roches bitumineuses, des sédiments récents et même aux

  20. La pyrolyse Rock-Eval et ses applications. Deuxième partie. Rock-Eval Pyrolysis and Its Applications (Part Two

    Directory of Open Access Journals (Sweden)

    Espitalie J.

    2006-11-01

    Full Text Available Conçue pour répondre aux besoins de l'exploration pétrolière, la méthode de pyrolyse Rock-Eval est maintenant largement utilisée. Elle fournit, en effet, et d'une façon rapide, différentes informations sur le contenu organique des roches, telles que le potentiel pétrolier des séries rencontrées, la nature des kérogènes, leur état de maturation. En ce qui concerne le matériel, deux nouvelles versions ont été mises au point à l'Institut Français du Pétrole (IFP depuis l'apparition en 1977 des premiers appareils Rock-Eval : un Rock-Eval II complètement automatisé grâce à un microprocesseur et doté, en option, d'un module de dosage du carbone organique; un Rock-Eval III (Oil Show Analyzer qui se distingue du précédent par le fait qu'il analyse séparément le gaz et l'huile et qu'il effectue le dosage du carbone organique à la place du pic S3. En ce qui concerne l'interprétation de la méthode, l'expérience acquise tant par les applications aux bassins sédimentaires que par les études expérimentales menées en laboratoire a permis de mieux connaître les paramètres utilisés (pics S1, S2, S3, température de pyrolyse Tmax à travers leurs variations et, de là, de mieux discerner les limites d'application de la méthode. En ce qui concerne l'application de la méthode, la représentation verticale des résultats sous forme de logs géochimiques conduit à une interprétation à la fois efficace et pratique. Des abaques et des diagrammes de référence permettent de caractériser les roches mères (potentiels pétroliers, types de matière organique, degré d'évolution, altérations. . . ainsi que les phénomènes de migration. L'établissement de cartes géochimiques à l'échelle du bassin devient alors possible. Enfin la méthode est sortie du domaine de l'exploration pétrolière proprement dite pour trouver des applications à l'étude des charbons, des roches bitumineuses, des sédiments récents et même aux

  1. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    Science.gov (United States)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  2. Site-specific evaluation of safety issues for high-level waste disposal in crystalline rocks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M. (ed.) [DBE Technology GmbH, Peine (Germany)

    2016-03-31

    intent to assist Russian engineers and scientists in their integration into the international scientific community concerned with radioactive waste disposal and to share advanced safety approaches. The corresponding joint R and D activities were pooled in the following three R and D BMWi-funded projects: - ASTER ''Requirements for Site Investigation for a HLW Repository in hard rock Formations'' (2002 - 05), to develop a well-justified methodological approach for site investigation and selection in the Nizhnekansk granitoid formation near Krasnoyarsk, exemplarily for the disposal of conditioned HLW sludge from formerly produced weapons-grade plutonium and vitrified HLW from reprocessing - WIBASTA ''Performance investigation of engineered and geologic barriers of a HLW repository in magmatic host rocks'' (2005 - 08): performance analysis of the system of geologic and engineered barriers based on safety functions, exemplarily for the proposed HLW disposal facility at the Yeniseysky site - URSEL ''Site-specific evaluation of safety issues for HLW disposal in crystalline rocks'' (2008 - 16) Main Objective: Investigation of the robustness of the safety and of the safety assessment of e repository in crystalline rocks. In the last decade of the 20th century, site investigation activities started in various preselected regions of the Nizhnekansky granitoid formation east of Krasnoyarsk. Starting in 2003, preference was given to the Yeniseysky site, which is located several kilometres south east of the underground former production facilities for weapons-grade plutonium of the Mining Chemical Combine (MCC) at Zheleznogorsk. In the beginning, these investigations were performed for the eventual disposal of conditioned HLW sludge from weapons-grade plutonium production and vitrified HLW from reprocessing of the planned reprocessing plant RT-2 at Zheleznogorsk. Recently, priority has been given to so-called class 1 waste

  3. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  4. Geology and potential of the formation of sandstone type uranium mineralization at Hatapang region, North Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Study based on geological setting of Hatapang region, North Sumatera, identified as a favourable area to the formation of sandstone type uranium mineralization. This characterized by the occurred of anomalous radioactivity, uranium contents of the upper cretaceous granite intrusions and radioactivity anomalous of tertiary sedimentary rocks deposited in terrestrial environments. The study is objective to find out the potential formation of sandstone type-uranium mineralization within tertiary sedimentary rocks based on data’s studies of geological, geochemical, mineralogy, radioactivity of rocks. Stratigraphy of Hatapang area of the oldest to youngest are quartz units (permian-carboniferous), sandstone units (upper Triassic), granite (upper cretaceous), conglomerate units (Lower –middle Miocene) and tuff units (Pleistocene). Hatapang’s granite is S type granite which is not only potential as source of radioactive minerals, particularly placer type monazite, but also potential as source rocks of sandstone type-uranium mineralization on lighter sedimentary rocks. Sedimentary rock of conglomerate units has potential as host rock, even though uranium did not accumulated in its rocks since the lack number of carbon as precipitant material and dissolved U"+"6 in water did not reduced into U"+"4 caused the uranium mineralization did not deposited. (author)

  5. Sr-Nd evidence of paleoproterozoic mantle metasomatism in the lithospheric mantle beneath northeastern Brazil

    International Nuclear Information System (INIS)

    Hollanda, M.H.B.M.; Pimentel, M.M.; Jardim de Sa, E.F

    2001-01-01

    In the Borborema Province (Northeastern Brazil), the Brasiliano/Pan-African Cycle is expressed by two prominent and penecontemporaneous features: a regional network of transcurrent shear zones and associated large granitoid magmatism. The Rio Grande do Norte Domain (RGND) is an orogenic domain located in the northeastern part of the Borborema Province, and its tectonic evolution is largely related to the Brasiliano orogeny (ca. 600 Ma). This domain includes four major tectonic terranes, which are represented by two metavolcanosedimentary sequences Jaguaribe-Oeste Potiguar and Serido belts, and its gneiss-migmatite Paleoproterozoic basement the Rio Piranhas and Sao Jose de Campestre massifs (Brito Neves et al., 2000). The rocks have been metamorphosed up to the amphibolite facies. Its deformational fabrics are dominated by extensive Brasiliano ductile shear zones displaying predominantly dextral transcurrent kinematic regime. These structures control the emplacement of several Neoproterozoic granitoid intrusions which are made up mainly by porphyritic granitoid suites with subalkaline monzonitic affinity. These occur as isolated plutons of various sizes or as composite intrusions, associated with basic-tointermediate suites. In the latter case, magma mingling and mixing attest that these are contemporaneous igneous suites. Several features suggest coeval relationships with granitic magmas, possibly implying processes such as assimilation or magma mixing. Field evidence of magma mixing include (i) extensive capture of feldspar phenocrysts of the acid mushes by the basic magmas, (ii) common presence of globular to ellipsoidal basic enclaves in the granitic suites, (iii) stockwork-type features consisting of felsic material veining through a diorite host and (iv) syn-plutonic basic dykes intruded into the porphyritic granites (Jardim de S 1994). In this work, Rb-Sr and Sm-Nd isotopic compositions from six distinct basic-to-intermediate suites were investigated to

  6. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  7. Attempt of groundwater dating using the drilled rock core. 1. Development of the rock sampling method for measurement of noble gases dissolved in interstitial water in rock

    International Nuclear Information System (INIS)

    Mahara, Yasunori

    2002-01-01

    Groundwater dating in low permeable rock is very difficult and impracticable, because we take a very long time to collect groundwater sample in a borehole and have to invest much fund in production of the in-situ groundwater sampler and in operation of it. If we can directly measure noble gases dissolved in interstitial groundwater in rock core, we have a big merit to estimate groundwater resident time easy. In this study, we designed and produced a high vacuum container to let dissolved noble gases diffuse until reaching in equilibrium, and we made a handling manual of the rock core into the container and a procedure to vacuum out air from the sealed container. We compared data sets of noble gas concentration obtained from rock cores and groundwater sample collected from boreholes in-situ. The measured rocks are pumice-tuff rock, mud rock and hornfels, which have their permeabilities of 10 -6 cm/s, 10 -9 cm/s and 10 -11 cm/s, respectively. Consequently, we evaluated the rock core method is better than the in-situ groundwater sampling method for low permeable rock. (author)

  8. Coexistence of enriched and modern-like 142Nd signatures in Archean igneous rocks of the eastern Kaapvaal Craton, southern Africa

    Science.gov (United States)

    Schneider, Kathrin P.; Hoffmann, J. Elis; Boyet, Maud; Münker, Carsten; Kröner, Alfred

    2018-04-01

    The short-lived 146Sm-142Nd isotope system is an important tool for tracing Hadean crust-mantle differentiation processes and constraining their imprint on much younger rocks from Archean cratons. We report the first comprehensive set of high-precision 142Nd analyses for granitoids and amphibolites of the Ancient Gneiss Complex (AGC; Swaziland) and the oldest metavolcanic units of the Barberton Greenstone Belt (BGB; South Africa). The investigated samples span an age range from 3.66 Ga to 3.22 Ga and are representative of major geological units of the AGC and the lower Onverwacht Group of the BGB. Measured samples yielded μ142Nd values in the range from -8 ppm to +3 ppm relative to the JNdi-1 terrestrial standard, with typical errors smaller than 4.4 ppm. The distribution of the μ142Nd values for these 17 measured samples is bimodal with ten samples showing a tendency towards slightly negative μ142Nd anomalies, whereas seven samples have 142Nd similar to the terrestrial reference. The only confidently resolvable μ142Nd anomalies were found in a 3.44 Ga Ngwane Gneiss sample and in amphibolites of the ca. 3.45 Ga Dwalile Greenstone Remnant, revealing μ142Nd values ranging from - 7.9 ± 4.4 to - 6.1 ± 4.3 ppm. The μ142Nd deficits do not correlate with age, lithological unit, or sample locality. Instead, our results reveal that two distinct mantle domains were involved in the formation of the AGC crust. The two reservoirs can be distinguished by their μ142Nd signatures. Mantle-derived rocks tapped the enriched reservoir with negative μ142Nd at least until 3.46 Ga, whereas the granitoids preserved a negative μ142Nd signature that formed by incorporation of older AGC crust at least until 3.22 Ga. The oldest gneisses with no μ142Nd anomaly are up to 3.64 Ga in age, indicating that a modern terrestrial 142Nd reservoir was already present by early Archean times.

  9. Isotope geochemistry of brasiliano age, coarsely porphyritic, K-calc-alkalic granitoids and associated K-diorites, northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.; Mariano, G.; Ferreira, V.P.

    1989-01-01

    Several porphyritic, K-calc-alkalic were syntectonically intruded in NE Brazil during the Brasiliano orogeny. They show bi-(qz) diorite and coarsely porphyritic granodiorite to qz monzonite ('Itaporanga-type') in commingling zones on a scale of cm to m irrespective of whether plutons are at the margins of the NE-trending Cachoeirinha-Salgueiro Fold Belt (CSF) or intruded metasediments of the Serido Fold Belt (SFB). The bi(qz) diorites are found in magmatic or stromatic structures and narrow dikes wich intruded the felsic facies. SiO 2 in the porphyritic facies ranges from 61 to 72% with K 2 O usually > Na 2 O. K-diorities exhibit SiO 2 from 50 to 58%, MgO from 2 to 10% and K 2 O from 2 to 5%. Both facies are usually Ba and Sr-enriched, with similar, highly fractionated REE patterns, lacking free of Eu anomaly. Quartz 180 values are considered homogeneous on the scale of these intrusions in the CSF, (8 to 10 per milSMOW). Bi-(qz) diorites exhibit slightly higher 180 (9.5 to 10.5 per milSMOW). In the SFB both facies are lower than 180. The oxygen isotope data for the porphyritic facies are compatible with I-type source with some metasedimentary component of variable proportion. As bi(qz) diorites were formed pre- to post-porphyritic facies intrusion, their high LREE, K and 180 reflect their source rather than the interaction with the potassic felsic magma. Preliminarly sulfur isotope values suggest that porphyritic facies of granitoids in the SBF are lower in 34S than those in the CSF. Rb and Sr isotopes reflect source heterogeneity, complicated by mixing relations. Ages span from 510 to 630 Ma suggesting that the Itaporanga-type association was formed during uplift and cooling of the Pan-African I and onset of the Pan-African II orogenies, recognized in West Africa. (author) [pt

  10. Ore-controlling mechanism of carbonaceous-siliceous-pelitic rock type uranium deposits with down-faulted red basins in the southeast continental margin of Yangtze plate

    International Nuclear Information System (INIS)

    Zhang Zilong; Qi Fucheng; He Zhongbo; Li Zhixing; Wang Wenquan; Yu Jinshui

    2012-01-01

    One of the important ore-concentrated areas of carbonaceous-siliceous-pelitic rock type uranium deposits is the Southeast continental margin of Yangtze plate. Sedimentary-exogenously transformed type and sedimentary- hydrothermal superimposed transformed type uranium deposits are always distributed at or near the edge of down-faulted red ba sins. In this paper, the distributions of the deposits are analyzed with the relation to down-faulted red basins. The connective effect and ore-controlling mechanism are proposed of carbonaceous-siliceous-pelitic rock type uranium deposits with marginal fractures of red basins. (authors)

  11. Rock critics as 'Mouldy Modernists'

    Directory of Open Access Journals (Sweden)

    Becky Shepherd

    2011-08-01

    Full Text Available Contemporary rock criticism appears to be firmly tied to the past. The specialist music press valorise rock music of the 1960s and 1970s, and new emerging artists are championed for their ‘retro’ sounding music by journalists who compare the sound of these new artists with those included in the established ‘canon’ of rock music. This article examines the narrative tropes of authenticity and nostalgia that frame the retrospective focus of this contemporary rock writing, and most significantly, the maintenance of the rock canon within contemporary popular culture. The article concludes by suggesting that while contemporary rock criticism is predominately characterised by nostalgia, this nostalgia is not simply a passive romanticism of the past. Rather, this nostalgia fuels a process of active recontextualisation within contemporary popular culture.

  12. Geology of the Curimatau medium region (Paraiba State, Brazil) and the emplacement of the Dona Ines granite associated to the Brasiliano transcurrent shear zones; Geologia da Regiao do Medio Curimatau (PB) e o alojamento do granito de Dona Ines associado a zonas de cisalhamento transcorrentes brasilianas

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Sergio Vieira Freire

    1996-12-31

    In an area of about 700 Km{sup 2} located in the northeast of Paraiba State and having as main point the town of Dona Ines, a geologic/structural mapping, a gravimetric survey and radiometric dating using the Rb/Sr method in whole rock and Sm.Nd model ages were undertaken in order to study and to understand the geology of this portion of terrain, the emplacement of the Dona Ines granitoids and its relationship with the enclosing rocks and the deformation acting at the time of the intrusion. The age of the pluton of Dona Ines was determined by the Rb/Sr whole rock method as 560 {+-} 20 Ma (end of Brasiliano Cycle in the region). Sm.Nd model ages in granitoids of Araras, Belem and Dona Ines have revealed paleoproterozoic ages for their crustal sources, as indicated by the negative {epsilon}{sub nd} of this rock 128 refs., 95 figs., 6 tabs., 7 maps

  13. Geology of the Curimatau medium region (Paraiba State, Brazil) and the emplacement of the Dona Ines granite associated to the Brasiliano transcurrent shear zones; Geologia da Regiao do Medio Curimatau (PB) e o alojamento do granito de Dona Ines associado a zonas de cisalhamento transcorrentes brasilianas

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Sergio Vieira Freire

    1997-12-31

    In an area of about 700 Km{sup 2} located in the northeast of Paraiba State and having as main point the town of Dona Ines, a geologic/structural mapping, a gravimetric survey and radiometric dating using the Rb/Sr method in whole rock and Sm.Nd model ages were undertaken in order to study and to understand the geology of this portion of terrain, the emplacement of the Dona Ines granitoids and its relationship with the enclosing rocks and the deformation acting at the time of the intrusion. The age of the pluton of Dona Ines was determined by the Rb/Sr whole rock method as 560 {+-} 20 Ma (end of Brasiliano Cycle in the region). Sm.Nd model ages in granitoids of Araras, Belem and Dona Ines have revealed paleoproterozoic ages for their crustal sources, as indicated by the negative {epsilon}{sub nd} of this rock 128 refs., 95 figs., 6 tabs., 7 maps

  14. A Review on the British Rock Music

    OpenAIRE

    Hutapea, Alfian Hadi Pranata

    2011-01-01

    Music has an important role in people’s life. In people’s daily, music is often hearing of course and in people’s customs and traditions music is also be used. Music has many genres, one of them is rock music. Many people like rock music especially youngman because rock music has given a message in a song through enthusiasm expression. Rock music has many subgenres and each of subgenres have a distinctive feature. The developing of rock music is very wide in the world, especially in Great Bri...

  15. Rock suitability classification RSC 2012

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, T. (ed.) [McEwen Consulting, Leicester (United Kingdom); Kapyaho, A. [Geological Survey of Finland, Espoo (Finland); Hella, P. [Saanio and Riekkola, Helsinki (Finland); Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-15

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel.

  16. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    substances. A set of solid phases of the multisystem is formed with the mineral composition of the crystalline rocks of the Fennoscandian (Baltic) shield taken into account. The processes of forming the surface waters in the "water - rock - atmosphere" system depending on the degree of interaction (ξ) of rocks with aqueous solutions under open conditions (100 kg of atmosphere, 1000 kg of water, T-5oC, P-1 bar and rock (100 g) - the rock average composition: 1) Inari terrane rocks, 2) granulites of the Lapland granulite belt were investigated. Clarke concentrations of S, C, F, Zn, Ni, Pb, Cu (Vinogradov, 1962) were taken into account in order to determine their influence on forming the chemical composition of water solutions, and water migration coefficients (Perelman, 1989). Comparison of the modeling results with the monitoring results of the source of river Paz shows that the chemical composition of waters of lake Inari as well as the upper flow of river Paz is formed by interactions of surface waters, ground waters, and fissure waters with granulites of the Lapland granulite belt, as well as gneisses, diorites and granitoids of Inari terrane of the northern Fennoscandia. Thermodynamic modeling determined that the chemical composition of surface waters is formed as a result of interaction of atmospheric precipitation with intrusive and sedimentary rocks of the northern Fennoscandia, containing clarke concentrations of S, C, F, Zn, Ni, Pb, Cu. The obtained model solutions indicate that surface waters are formed within the considered system as a result of "water-rock-atmosphere" interaction.

  17. Foliation: Geological background, rock mechanics significance, and preliminary investigations at Olkiluoto

    International Nuclear Information System (INIS)

    Milnes, A.G.; Hudson, J.; Wikstroem, L.; Aaltonen, I.

    2006-01-01

    A well developed, pervasive foliation is a characteristic feature of the migmatites and gneisses in the Olkiluoto bedrock, and is expected to have a significant influence on the underground construction, the design and layout and the groundwater flow regime of a deep spent nuclear fuel repository. This Working Report reviews the geological background and rock mechanics significance of foliation, and develops a methodology for the systematic acquisition of foliation data in cored boreholes and in tunnels at the Olkiluoto site, to provide the necessary basis for future geological, rock mechanics and hydrogeological modelling. The first part of the methodology concerns foliation characterisation, and develops a characterisation scheme based on two variables: the foliation type (G = gneissic, B = banded, S = schistose), which is a function of mineral composition and degree of smallscale heterogeneity, and the foliation intensity (1 = low, 2 = intermediate, 3 = high), which is a function of the type and intensity of the deformation by which it was produced (under high-grade metamorphic conditions in the core of the Svecofennian orogenic belt). At the suggested reference scales (1 m length of core, 10 m 2 area of tunnel wall), the most representative foliation type and intensity is assessed using a standard set of core photographs, which are included as an Appendix at the end of the report, providing a systematic description in terms of 9 descriptive types (G1, G2, G3, B1, B2, B3, S1, S2, S3). As a further step, the rock mechanics significance of these types is assessed and a rock mechanics foliation (RMF) number is assigned (RMF 0 = no significance, RMF 1, RMF 2 and RMF 3 = low, intermediate and high significance, respectively). The second part of the methodology concerns the orientations of the foliation within the same 1 m core lengths or 10 m2 wall areas, which have been characterised as above. This combined analysis of foliation character and foliation orientation

  18. ROCK-CAD - computer aided geological modelling system

    International Nuclear Information System (INIS)

    Saksa, P.

    1995-12-01

    The study discusses surface and solid modelling methods, their use and interfacing with geodata. Application software named ROCK-CAD suitable for geological bedrock modelling has been developed with support from Teollisuuden Voima Oy (TVO). It has been utilized in the Finnish site characterization programme for spent nuclear fuel waste disposal during the 1980s and 1990s. The system is based on the solid modelling technique. It comprises also rich functionality for the particular geological modelling scheme. The ROCK-CAD system provides, among other things, varying graphical vertical and horizontal intersections and perspective illustrations. The specially developed features are the application of the boundary representation modelling method, parametric object generation language and the discipline approach. The ROCK-CAD system has been utilized in modelling spatial distribution of rock types and fracturing structures in TVO's site characterization. The Olkiluoto site at Eurajoki serves as an example case. The study comprises the description of the modelling process, models and illustration examples. The utilization of bedrock models in site characterization, in tentative repository siting as well as in groundwater flow simulation is depicted. The application software has improved the assessment of the sites studied, given a new basis for the documentation of interpretation and modelling work, substituted hand-drawing and enabled digital transfer to numerical analysis. Finally, aspects of presentation graphics in geological modelling are considered. (84 refs., 30 figs., 11 tabs.)

  19. Isotopic geochronology of the Western Carpathian crystalline complex: the present state

    International Nuclear Information System (INIS)

    Cambel, B.; Kral, J.

    1989-01-01

    Main events in the Western Carpathian crystalline complex documented by the U-Th-Pb, Rb-Sr, K-Ar and FT methods are as follows: Regional metamorphism of sedimentary rocks from the Tatric unit documented by isotopic homogenization of the 87 Sr/ 86 Sr ratio took place 400 million years ago (Silurian-Devonian boundary). Subsequent metamorphism of these rocks is associated with intrusions of granitoid bodies. The age of rhyolite volcanism of Gelnica sequence in the Gemericum is identical with that of the first stage of regional metamorphism. Granitoid plutonism covers a long time interval ranging from 390 to 280 million years. The presence of late Alpine granites has not yet been proved. Cooling of rocks from the crystalline complex to a temperature of ca. 270 degC was attained in the Tatric rocks ca. 300 million years ago and in the Veporic (Gemeric) rocks ca. 90-120 million years ago. The latest post-orogenic uplift differs in the Tatricum (most often Miocene) and the Veporicum (Upper Cretaceous). (author). 8 fis., 1 tab., 51 refs

  20. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  1. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    International Nuclear Information System (INIS)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-01-01

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  2. ROCK1 and ROCK2 are Required for Non-Small Cell Lung Cancer Anchorage-Independent Growth and Invasion

    OpenAIRE

    Vigil, Dominico; Kim, Tai Young; Plachco, Ana; Garton, Andrew J.; Castaldo, Linda; Pachter, Jonathan A.; Dong, Hanqing; Chen, Xin; Tokar, Brianna; Campbell, Sharon L.; Der, Channing J.

    2012-01-01

    Evidence is emerging that the closely related ROCK1 and ROCK2 serine/threonine kinases support the invasive and metastatic growth of a spectrum of human cancer types. Therefore, inhibitors of ROCK are under preclinical development. However, a key step in their development involves the identification of genetic biomarkers that will predict ROCK inhibitor anti-tumor activity. One identified mechanism for ROCK activation in cancer involves the loss of function of the DLC1 tumor suppressor gene, ...

  3. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  4. Petrology and geochemistry of the orbicular granitoid of Caldera, northern Chile. Models and hypotheses on the formation of radial orbicular textures

    Science.gov (United States)

    Díaz-Alvarado, Juan; Rodríguez, Natalia; Rodríguez, Carmen; Fernández, Carlos; Constanzo, Ítalo

    2017-07-01

    The orbicular granitoid of Caldera, located at the northern part of the Chilean Coastal Range, is a spectacular example of radial textures in orbicular structures. The orbicular body crops out as a 375 m2 tabular to lensoidal intrusive sheet emplaced in the Lower Jurassic Relincho pluton. The orbicular structures are 3-7 cm in diameter ellipsoids hosted in a porphyritic matrix. The orbicules are comprised by a Qtz-dioritic core (3-5 cm in diameter) composed by Pl + Hbl + Qtz + Bt ± Kfs with equiaxial textures and a gabbroic shell (2-3 cm in diameter) characterized by feathery and radiate textures with a plagioclase + hornblende paragenesis. The radial shell crystals are rooted and orthogonally disposed in the irregular contact with the core. The radial shell, called here inner shell, is in contact with the granodioritic equiaxial interorbicular matrix through a 2-3 mm wide poikilitic band around the orbicule (outer shell). The outer shell and the matrix surrounding the orbicules are characterized by the presence of large hornblende and biotite oikocrystals that include fine-grained rounded plagioclase and magnetite. The oikocrystals of both the outer shell and the matrix have a circumferential arrangement around the orbicule, i.e. orthogonal to the radial inner shell. The coarse-grained granodioritic interorbicular matrix present pegmatitic domains with large acicular hornblende and K-feldspar megacrysts. This work presents a review of the textural characteristics of the orbicules and a complete new mineral and whole-rock geochemical study of the different parts of the orbicular granitoid, together with thermobarometric and crystallographic data, and theoretical modeling of the crystallization and element partitioning processes. We propose a model for the formation of the orbicular radial textures consisting of several processes that are suggested to occur fast and consecutively: superheating, volatile exsolution, undercooling, geochemical fractionation and

  5. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  6. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    Science.gov (United States)

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  7. Pseudotachylitic breccia from the Dhala impact structure, north-central India: Texture, mineralogy and geochemical characterization

    Science.gov (United States)

    Pati, J. K.; Reimold, W. U.; Greshake, A.; Schmitt, R. T.; Koeberl, C.; Pati, P.; Prakash, K.

    2015-05-01

    Pseudotachylitic breccia (PTB) occurs in a drill core from the crater floor of the 11 km diameter, Proterozoic Dhala impact structure, India. PTBs were intersected in late Archean granitoids between 348.15 m and 502.55 m depth in the MCB-10 drill core from the center of the Dhala structure. The breccias comprise both cataclastic-matrix as well as melt breccias. The presence of microlites and vesicles in the groundmass and a widely observed flow fabric in the PTB support the presence of melt in the groundmass of some samples. Clasts in PTB are derived from the Archean granitoid basement. PTB matrix, the matrix of impact melt breccia also occurring between 256.50 m and 502.55 m depth, and the target granitoids vary in terms of silica, total alkali, magnesium and iron oxide contents. Chondrite-normalized REE patterns of PTB and target granitoids are similar, but the elemental abundances in the PTB are lower. The restricted size of PTB as veins and pods of up to 2.5 cm width, their occurrence at varied depths over a core length of 150 m, the clast population, and the chemical relationships between PTB and their host rocks all suggest the derivation of these breccias locally from the fractured basement granitoids involving in-situ melting. We favor that this took place due to rapid decompression during the collapse and modification stage of impact cratering, with, locally, additional energy input from frictional heating. Locally, amphibolite and dioritic mylonite occur in the host granitoids and their admixture could have contributed to the comparatively more mafic composition of PTB. Alteration of these crater floor rocks could have involved preferential reduction of silica and alkali element abundances, possibly due to impact-induced hydrothermal activity at crater floor level. This process, too, could have resulted in more mafic compositions.

  8. Emplacement and deformation of the Cerro Durazno Pluton delineates stages of the lower Paleozoic tectono-magmatic evolution in NW-Argentina

    Science.gov (United States)

    Hongn, F.; Riller, U.

    2003-04-01

    Regional-scale transpression and transtension are considered to be important in the lower Paleozoic tectono-magmatic evolution of metamorphic and granitoid basement rocks of the southern central Andes. In order to test whether such kinematic changes affected Paleozoic basement rocks on the local scale, i.e. in the Eastern Cordillera of NW-Argentina, we performed a detailed field-based structural analysis of the 456 Ma granitoid Cerro Durazno pluton (CDP). The results of our analysis point to the following stages in the geodynamic evolution of this area: (1) Metamorphism and deformation of Neoproterozoic-Paleozoic basement rocks occurred at high T and low to medium P prior to emplacement of the CDP. This lead to the formation of schists and migmatites characterized by pervasive planar and linear mineral shape fabrics and the growth of andalusite, cordierite and fibrolite. (2) Magmatic foliation in the CDP is defined by the shape-preferred orientation of euhedral feldspar phenocrysts and microgranitoid enclaves. These fabrics are concordant to the NE-SW striking intrusive contact with migmatitic host rocks. The lack of submagmatic or high-T solid-state fabrics in the CDP may indicate that cooling and solidification of granitoid magma was not accompanied by regional deformation. Alternatively, emplacement of granitoid magma may have been facilitated by the creation of open space at mid-crustal level induced by regional deformation. (3) Ductile deformation under greenschist metamorphic conditions overprinted magmatic fabrics of the CDP. This is evident by NW-SE striking metamorphic foliation surfaces transecting magmatic shape fabrics at high angles. During this deformation, the pluton was thrust on a SW-dipping shear zone toward the NE over low-grade metamorphic host rocks which lead to a condensation of metamorphic isograds in the host rocks. Ages of strained pegmatitic dikes indicate that this deformation occurred at about 430 Ma. In summary, the difference in age

  9. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.

  10. Original geochemical types and epigenetic alteration of rocks in prospecting target stratum for uranium deposit in the southeast of Songliao basin

    International Nuclear Information System (INIS)

    Lin Jinrong; Tian Hua; Dong Wenming; Xia Yuliang; Qi Daneng; Yao Shancong; Zheng Jiwei

    2009-01-01

    By comprehensive analysis on informations of regional geology and evaluating drillhole works of uranium resources in the southeast of Songliao basin, lithofacies-palaeogeography features, lithologies and sandbody characteristics of target layes in Quantou formation, Yaojia formation and Sifangtai formation have been basically found out. By research on geochemical environment of rocks in target layez, types of original geochemistry and epigenetic alteration have been identified and classified. The types of original geochemistry have been divided into types of original oxidation and original reduction, and the types of epigenetic alteration have been divided into types of reduction by oil-gas and coalbed gas and epigenetic oxidation. By comparative study on mineral and chemical characteristics of original geochemistry and epigenetic oxidation, identification marks for oil-gas and coalbed gas reduced epigenetic oxidation have been proposed. It is proposed that uranium was strongly pre-concentrated in original sandstone that bearing carboniferous matter, and reduction by oil-gas and coalbed gas made uranium superimpose and concentrate in alterated rocks. (authors)

  11. Remote Sensing of Rock Type in the Visible and Near-Infrared,

    Science.gov (United States)

    Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral

  12. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  13. Nonlinear attenuation of S-waves and Love waves within ambient rock

    Science.gov (United States)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  14. Investigating the Early Carbon Cycle Using Carbonaceous Inclusions and Dissolved Carbon in Detrital Zircon

    Science.gov (United States)

    Bell, E. A.; Boehnke, P.; Harrison, M.; Mao, W. L.

    2015-12-01

    Because the terrestrial rock record extends only to ~4 Ga and older materials thus far identified are limited to detrital zircons, information about volatile abundances and cycles on early Earth is limited. Carbon, for instance, plays an important role not only in the modern biosphere but also in deep recycling of materials between the crust and mantle. We are investigating the record of carbon abundance and origin in Hadean zircons from Jack Hills (W. Australia) using two main approaches. First, carbon may partition into the zircon structure at trace levels during crystallization from a magma, and better understanding of this partitioning behavior will allow for zircon's use as a monitor of magmatic carbon contents. We have measured carbon abundances in zircon from a variety of igneous rocks (gabbro; I-, A-, and S-type granitoids) via SIMS and found that although abundances are typically low (average raw 12C/30Si ~ 1x10-6), S-type granite zircons can reach a factor of 1000 over this background. Around 10% of Hadean zircons investigated show similar enrichments, consistent with other evidence for the derivation of many Jack Hills zircons from S-type granitoids and with the establishment of modern-level carbon abundances in the crust by ca. 4.2 Ga. Diamond and graphite inclusions reported in the Jack Hills zircons by previous studies proved to be contamination by polishing debris, leaving the true abundance of these materials in the population uncertain. On a second front, we have identified and investigated primary carbonaceous inclusions in these zircons. From a population of over 10,000 Jack Hills zircons, we identified one concordant 4.10±0.01 Ga zircon that contains primary graphite inclusions (so interpreted due to their enclosure in a crack-free zircon host as shown by transmission X-ray microscopy and their crystal habit). Their δ13CPDB of -24±5‰ is consistent with a biogenic origin and, in the absence of a likely inorganic mechanism to produce such a

  15. On stages of hydrothermal mineralization of molybdenum-uranium ore manifestation in volcanic edifice

    International Nuclear Information System (INIS)

    Yakovlev, P.D.; Mamotin, S.A.

    1976-01-01

    Volcanogenic-intrusive complex of the ore manifestation region is represented by various facies of liparite and granitoid formation rocks. Numerous dislocations with breaks in continuity and the corresponding feathering fissures relate to 3 stages of hydrothermal mineralization of rocks. Quartz-sericite-kaolin metasomatites were formed at the earlier (volcanic) stage. Tourmalinization was associated with the middle stage which accompanied the granitoid intrusive formation. The later mineralization stage was accompanied by formation of beresites and molibdenum-uranium ores. Identification was controlled by the dislocation, ore bodies had the shape of lens, vein or small nest. 7 stages separated by shores were identified at the ore stage: quartz-sericite pyritic; quartz-pyrite-arsenopyritic; sulfide-pitchblendic; chalcedonic; ankeritic; quartz-calcitic and pyrite-ankeritic

  16. Geocronología y geoquímica isotópica (Sr, Nd) de los granitoides de Pola de Allande (Asturias): ¿Relictos de un arco magmático cadomiense en la Zona Asturoccidental Leonesa?

    OpenAIRE

    Gutiérrez Alonso, Gabriel; Fernández Suárez, Javier

    1998-01-01

    [ES] Los granitoides pre-Variscos de Pola de Allande se sitúan en el Antiforme del Narcea, en el límite entre las zonas Cantábrica y Asturoccidental Leonesa de la cadena Varisca Ibérica. Estos granitoides, formados por tonalitas y granodioritas con afinidades geoquímicas de arco magmático, intruyeron en sedimentos siliciclásticos Neoproterozoicos y fueron posteriormente afectados por la deformación tangencial Varisca. La datación U-Pb de circones de dos intrusiones por el método de Ablación L...

  17. Characterization of deep-seated rock masses by means of borehole investigation

    International Nuclear Information System (INIS)

    1982-04-01

    Swedish State Power Board. The main objective of the programme was to test a method of measuring in-situ rock stresses in the deep, water-filled boreholes and to correlate measured rock stresses with the hydraulic and geological properties of the rock mass. The investigations consist of the following activities: - Coredrillin of two main boreholes with a depth of 500 m and 250 m respectively. - Rock stress measurements at 11 and 9 main levels in the boreholes respectively. At each level at least 3 complete measurements were made. - Logging of the cores with respect to rock type, fractures and fracture characteristics. - Water injection tests in the boreholes. The rock mass investigated is composed of a gneiss granite of Svecocarelian age (1500 Ma), with inclusions of younger pegmatites and greenstones of variable ages. The fracture density is as a mean 2 fractures per meter with a marked decrease in frequency with increased depth. The fractures are generally coated with calcite and chlorite as the dominating coating minerals. For the rock stress measurements, the method of Leeman and Hayes was chosen. The result show that there is a very high stress level in the rock mass, recordings of about 70 MPa were taken below a horizontal fracture zone at 320 m depth. In this lower rock masses the high stresses were also illustrated by intense disking of the hollow core which made measurements impossible in large sections of the boreholes. Water injection tests were performed, mainly as double-packer tests alon the entire boreholes. For the evaluation, both stationary and transient calculation theories were used and the results show a good agreement. The hyddraulic conductivities of the rock mass vary from below 10 -10 m/s up to 10 -7 m/s. The conductivity decreases with depth, though there are zones even at great depth with high conductivity. (Author)

  18. Professional users handbook for rock bolting

    Energy Technology Data Exchange (ETDEWEB)

    Stillborg, B.

    1986-01-01

    The paper is a practical handbook which reviews the basic principles of rock bolting and sets out the design considerations used for most types of rockbolts in current use. It discusses the characteristics of these bolts and gives information on installation procedures and the observations and measurement of rockbolt performance. Rockbolting is considered under the following chapter headings: review of typical rockbolt systems; rockbolt installation; testing of rockbolts; design considerations; design of rock reinforcement; monitoring; cost of rock bolting; and Atlas Lopco auxillary equipment for rock bolting. 45 refs.

  19. Rock-colonizing plants: abundance of the endemic cactus Mammillaria fraileana related to rock type in the southern Sonoran Desert

    Science.gov (United States)

    Blanca R. Lopez; Yoav Bashan; Macario Bacilio; Gustavo. De la Cruz-Aguero

    2009-01-01

    Establishment, colonization, and permanence of plants affect biogenic and physical processes leading to development of soil. Rockiness, temperature, and humidity are accepted explanations to the influence and the presence of rock-dwelling plants, but the relationship between mineral and chemical composition of rocks with plant abundance is unknown in some regions. This...

  20. Stress Analysis and Model Test of Rock Breaking by Arc Blade Wedged Hob

    Directory of Open Access Journals (Sweden)

    Ying-chao Liu

    2016-07-01

    Full Text Available Based on rock compression-shear damage theory, the mechanical characteristics of an arc blade wedged hob were analyzed to study the rock fragmentation mechanism of hob during excavation, and rock fragmentation forecasting model of the arc blade wedged hob was improved. A spoke type cutter model which is similar to the tunnel boring machine (TBM cutter head was designed to study the rock fragmentation efficiency in different cutter spacing by adjusting the bearing sleeve size to obtain different distances between the hobs. The results show that the hob-breaking rock force mainly comes from three directions. The vertical force along the direction of the tunnel excavation, which is associated with uniaxial compressive strength of rock mass, plays a key role in the process of rock fragmentation. Field project data shows that the prediction model’s results of rock fragmentation in this paper are closer to the measured results than the results of the traditional linear cutting model. The optimal cutter spacing exists among different cutter spacings to get higher rock fragmentation rate and lower energy consumption during rock fragmentation. It is of great reference significance to design the arc blade wedged hob and enhance the efficiency of rock fragmentation in rock strata.

  1. Anisotropy effect on strengths of metamorphic rocks

    Directory of Open Access Journals (Sweden)

    Ahmet Özbek

    2018-02-01

    Full Text Available This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern (Çine submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble (calcschist were selected and examined. Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L- and N-type Schmidt hammers were applied in the directions perpendicular (anisotropy angle of 0° and parallel (anisotropy angle of 90° to the foliation on selected blocks of phyllite, schist, gneiss and marble (calcschist. The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble (calcschist have higher rebound values and strengths, and they are classified as strong–very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation, discontinuities, water content, weathering degree and thickness of foliated structure.

  2. An integrated geological, geochemical, and geophysical investigation of uranium metallogenesis in selected granitic plutons of the Miramichi Anticlinorium, New Brunswick

    International Nuclear Information System (INIS)

    Hassan, H.H.; McAllister, A.L.

    1992-01-01

    Integrated geological, geochemical, and geophysical data for the post-tectonic granitic rocks of the North Pole, Burnthill, Dungarvon, Trout Brook, and Rocky Brook plutons and surrounding areas were examined to assess their potential for uranium mineralization. Geological, geochemical, and geophysical criteria that are thought to be useful guides for uranium exploration were also established for the host granites. The granitic plutons were emplaced discordantly, late in the tectonomagmatic sequence and at shallow depths within the metasedimentary rocks of the Miramichi Anticlinorium. Geochemically, the host granites are highly evolved (Si0 2 > 75 wt. %), peraluminous and have strong similarities with ilmenite-series 'S-type' and 'A-type' granitoids. Uranium occurrences are spatially and perhaps temporally associated with late-phase differentiates of the plutons where elevated levels of other lithophile elements such as Sn, W, Mo, and F were also detected. Geophysically, the granitic plutons are associated with distinctively high aeroradiometric eU, eTh, and K anomalies that coincide with strong negative Bouguer anomalies and low magnetic values. Conceptual models involving magmatic and hydrothermal processes have been adopted to explain the concentration of uranium and associated metals in the granitic plutons

  3. Uranium migration and retention during weathering of a granitic waste rock pile

    International Nuclear Information System (INIS)

    Boekhout, F.; Gérard, M.; Kanzari, A.; Michel, A.; Déjeant, A.; Galoisy, L.; Calas, G.; Descostes, M.

    2015-01-01

    Highlights: • We investigate the environmental impact of the granitic waste rock piles. • The majority of the waste rocks in the pile is barren- or overburden rock. • The main neo-formed U-bearing phases are (Ca) and (Cu) uranyl phosphates. • Under circum-neutral pH conditions they do not pose an environment threat. - Abstract: This study investigates the post-mining evolution of S-type granitic waste rocks around a former uranium mine, Vieilles Sagnes (Haute Vienne, NW Massif Central, France). This mine was operated between 1957 and 1965 in the La Crouzille former world-class uranium mining district and is representative of intra-granitic vein-type deposits. 50 years after mine closure and the construction and subsequent re-vegetation of the granitic waste rock pile, we evaluate the environmental evolution of the rock pile, including rock alteration, neo-formation of U-bearing phases during weathering, and U migration. Vertical trenches have been excavated through the rock pile down to an underlying paleo-soil, allowing the investigation of the vertical differentiation of the rock pile and its influence on water pathways, weathering processes and U migration and retention. Arenization dominantly drives liberation of U, by dissolution of uraninite inclusions in the most alterable granitic minerals (i.e. K-feldspar and biotite). Retention of U in the matrix at the base of the waste rock pile, and in the underlying paleo-soil most likely occurs by precipitation of (nano-) uranyl phosphates or a combination of co-precipitation and adsorption reactions of U onto Fe (oxy)hydroxides and/or clay minerals. Even though U-migration was observed, U is retained in stable secondary mineral phases, provided the current conditions will not be modified

  4. Evolved-Lithology Clasts in Lunar Breccias: Relating Petrogenetic Diversity to Measured Water Content

    Science.gov (United States)

    Christoffersen, R.; Simon, J. J.; Ross, D. K.

    2017-01-01

    Studies of the inventory and distribution of water in lunar rocks have recently begun to focus on alkali suite samples as possible water repositories, particularly the most highly evolved granitoid lithologies. Although H analyses of feldspars in these rocks have so far pointed to 'low' (less than 20 ppm) H2O contents, there is sufficient variability in the dataset (e.g., 2-20 ppm) to warrant consideration of the petrogenetic factors that may have caused some granitoid-to-intermediate rocks to be dryer or wetter than others. Given that all examples of these rocks occur as clasts in complex impact breccias, the role of impact and other factors in altering water contents established by primary igneous processes becomes a major factor. We are supporting our ongoing SIMS studies of water in evolved lunar lithologies with systematic SEM and EPMA observations. Here we report a synthesis of the observations as part of developing discriminating factors for reconstructing the thermal, crystallization and shock history of these samples as compared with their water contents.

  5. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes

    Science.gov (United States)

    Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.

    2018-01-01

    Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore

  6. Interactions of Various types between Rock and Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Mec Pavel

    2017-03-01

    Full Text Available Alkali-activated binders (AAB are very intensively studied materials nowadays. Because of possible usage as secondary raw materials, they can be environmentally efficient. Intensive research is focused especially on binder matrix, composition and its structure. For industrial usage, it is necessary to work with some aggregate for the preparation of mortars and concretes. Due to different structures of alkali-activated binders, the interaction with the aggregate will be different in comparison to an ordinary Portland cement binder. This paper deals with the study of interactions between several types of rocks used as aggregate and alkali-activated blast furnace slag. The research was focused especially on mechanical properties of prepared mortars.

  7. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    Science.gov (United States)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  8. Late Paleozoic-Early Mesozoic tectonic evolution of the Paleo-Asian Ocean: geochronological and geochemical evidence from granitoids in the northern margin of Alxa, Western China

    Science.gov (United States)

    Sha, Xin; Wang, Jinrong; Chen, Wanfeng; Liu, Zheng; Zhai, Xinwei; Ma, Jinlong; Wang, Shuhua

    2018-03-01

    The Paleo-Asian Ocean (Southern Mongolian Ocean) ophiolitic belts and massive granitoids are exposed in the Alxa block, in response to oceanic subduction processes. In this work, we report petrographic, geochemical, and zircon U-Pb age data of some granitoid intrusions from the northern Alxa. Zircon U-Pb dating for the quartz diorite, tonalite, monzogranite, and biotite granite yielded weighted mean 206Pb/238U ages of 302±9.2 Ma, 246.5±4.6 Ma, 235±4.4 Ma, and 229.5±5.6 Ma, respectively. The quartz diorites ( 302 Ma) exhibit geochemical similarities to adakites, likely derived from partial melting of the initially subducted Chaganchulu back-arc oceanic slab. The tonalites ( 246.5 Ma) display geochemical affinities of I-type granites. They were probably derived by fractional crystallization of the modified lithospheric mantle-derived basaltic magmas in a volcanic arc setting. The monzogranites ( 235 Ma) are characterized by low Al2O3, but high Y and Yb with notably negative Eu anomalies. In contrast, the biotite granites ( 229.5 Ma) show high Al2O3 but low Y and Yb with steep HREE patterns and the absence of negative Eu anomalies. Elemental data suggested that the biotite granites were likely derived from a thickened lower crust, but the monzogranites originated from a thin crust. Our data suggested that the initial subduction of the Chaganchulu oceanic slab towards the Alxa block occurred at 302 Ma. This subduction process continued to the Early Triassic ( 246 Ma) and the basin was finally closed before the Middle Triassic ( 235 Ma). Subsequently, the break-off of the subducted slab triggered asthenosphere upwelling (240-230 Ma).

  9. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    Science.gov (United States)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  10. Petrología y Estructura del Complejo Ígneo-Metamórfico Aluminé, Provincia de Neuquén, Argentina Petrology and Structure of the Aluminé Igneous-Metamorphic Complex, Neuquén province, Argentina

    Directory of Open Access Journals (Sweden)

    Ivana A Urraza

    2011-01-01

    andinas (cretácicas o más modernas y el sector sur donde dominan los granitoides preandinos de edades permotriásicas-jurásicas, emplazados en un basamento paleozoico. Si bien los diagramas geoquímicos permiten diferenciar los diferentes petrotipos definidos petrográficamente y sus tendencias evolutivas podrían indicar procesos de cristalización fraccionada, la distribución areal de los mismos, sus características petrográfico-microestructurales y la geocronología, indican que podrían corresponder a diferentes pulsos-eventos magmáticos separados en el tiempo, aunque desarrollados en un contexto de características tectónicas similares.In the present contribution, the partial results of a detailed study of the magmatic, metamorphic and tectonic events developed in the Aluminé Igneous-Metamorphic Complex (AIMC are given. We define the AIMC as the set of pre-andean and andean intrusive igneous and metamorphic rocks, outcropping in the área located between the Aluminé, Moquehue, Ñorquinco and Pulmarí lakes in the Neuquén province, Argentina. Based on field and petrographic observations and geochemical characteristics, the granitic rocks forming part of the AIMC have been classified as: 1. quartz diorites, 2. tonalites-granodiorites, 3. granodiorites and 4. granites. The geochemical parameters indícate that the defined lithologies derive from calcic to weakly calcalkaline magmas of metaluminous composition, typical of Type I Cordilleran batholiths associated with active continental margins. Intercalated between the magmatic rocks, some outcrops of metamorphic basement composed mainly of schists, gneisses, amphibolites and scarce quartzose sandstones. Andesites, tuffs and basalts cover in part the metamorphites and granitoids are exposed. The structure of the sector is characterized by the presence of three main sets of regional lineaments, with NE-SW, NW-SE and N-S orientations. These directions coincide with the orientations of the three groups of

  11. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  12. Implicit fracture modelling in FLAC3D: Assessing the behaviour of fractured shales, carbonates and other fractured rock types

    NARCIS (Netherlands)

    Osinga, S.; Pizzocolo, F.; Veer, E.F. van der; Heege, J.H. ter

    2016-01-01

    Fractured rocks play an important role in many types of petroleum and geo-energy operations. From fractured limestone reservoirs to unconventionals, understanding the geomechanical behaviour and the dynamically coupled (dual) permeability system is paramount for optimal development of these systems.

  13. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    Science.gov (United States)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  14. Regulation of ROCK Activity in Cancer

    Science.gov (United States)

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  15. The mineralogy and petrology of I-type cosmic spherules: Implications for their sources, origins and identification in sedimentary rocks

    Science.gov (United States)

    Genge, Matthew J.; Davies, Bridie; Suttle, Martin D.; van Ginneken, Matthias; Tomkins, Andrew G.

    2017-12-01

    I-type cosmic spherules are micrometeorites that formed by melting during atmospheric entry and consist mainly of iron oxides and FeNi metal. I-types are important because they can readily be recovered from sedimentary rocks allowing study of solar system events over geological time. We report the results of a study of the mineralogy and petrology of 88 I-type cosmic spherules recovered from Antarctica in order to evaluate how they formed and evolved during atmospheric entry, to constrain the nature of their precursors and to establish rigorous criteria by which they may be conclusively identified within sediments and sedimentary rocks. Two textural types of I-type cosmic spherule are recognised: (1) metal bead-bearing (MET) spherules dominated by Ni-poor (100 and suggest that metal from H-group ordinary, CM, CR and iron meteorites may form the majority of particles. Oxidation during entry heating increases in the series MET 80 wt% Ni comprising a particle mass fraction of exchange of Ni between wüstite and metal, and magnetite and wüstite are suggested as proxies for the rate of oxidation and cooling rate respectively. Variations in magnetite and wüstite crystal sizes are also suggested to relate to cooling rate allowing relative entry angle of particles to be evaluated. The formation of secondary metal in the form of sub-micron Ni-rich or Pt-group nuggets and as symplectite with magnetite was also identified and suggested to occur largely due to the exsolution of metallic alloys during decomposition of non-stoichiometric wüstite. Weathering is restricted to replacement of metal by iron hydroxides. The following criteria are recommended for the conclusive identification of I-type spherules within sediments and sedimentary rocks: (i) spherical particle morphologies, (ii) dendritic crystal morphologies, (iii) the presence of wüstite and magnetite, (iv) Ni-bearing wüstite and magnetite, and (v) the presence of relict FeNi metal.

  16. Review of potential host rocks for radioactive waste disposal in the Piedmont Province of Georgia

    International Nuclear Information System (INIS)

    Wenner, D.B.; Gillon, K.A.

    1980-10-01

    A literature study was conducted on the Piedmont province of Georgia to designate areas that may be favorable for field exploration for consideration of a repository for storage of radioactive waste. The criteria utilized in such a designation was based upon consideration of the rock unit having favorable geological, geotechnical, and geohydrological features. The most important are that the rock unit have: (1) satisfactory unit dimensions (> 100 km 2 outcrop area and at least 1500 meters (approx. 5000 feet) depth of a continuous rock type); and (2) acceptable geohydrological conditions. Among all rock types, it is concluded that the granites of the large post-metamorphic plutons and large, homogeneous orthogneissic units offer the most favorable geologic settings for exploration for siting a radioactive waste repository. Virtually all other rock types, including most metavolcanic and metasedimentary lithologies have unacceptable unit dimensions, generally unfavorable geohydrologic settings, and deleterious mechanical and physical geotechnical properties. After consideration of all major lithologies that comprise the Georgia Piedmont, the following units were deemed favorable: (1) the Elberton Pluton; (2) the Siloam Pluton; (3) the Sparta Pluton; (4) two unnamed plutons adjacent to the Snelson body of S.W. Georgia; (5) the Lithonia Gneiss; (6) basement orthogneisses and charnockites of the Pine Mountain Belt

  17. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  18. Structural Analysis: Folds Classification of metasedimentary rock in the Peninsular Malaysia

    Science.gov (United States)

    Shamsuddin, A.

    2017-10-01

    Understanding shear zone characteristics of deformation are a crucial part in the oil and gas industry as it might increase the knowledge of the fracture characteristics and lead to the prediction of the location of fracture zones or fracture swarms. This zone might give high influence on reservoir performance. There are four general types of shear zones which are brittle, ductile, semibrittle and brittle-ductile transition zones. The objective of this study is to study and observe the structural geometry of the shear zones and its implication as there is a lack of understanding, especially in the subsurface area because of the limitation of seismic resolution. A field study was conducted on the metasedimentary rocks (shear zone) which are exposed along the coastal part of the Peninsular Malaysia as this type of rock resembles the types of rock in the subsurface. The analysis in this area shows three main types of rock which are non-foliated metaquartzite and foliated rock which can be divided into slate and phyllite. Two different fold classification can be determined in this study. Layer 1 with phyllite as the main type of rock can be classified in class 1C and layer 2 with slate as the main type of rock can be classified in class 1A. This study will benefit in predicting the characteristics of the fracture and fracture zones.

  19. Conditioning of traced rock section for diffusion profile analyses

    International Nuclear Information System (INIS)

    Dewonck, S.; Auriere, C.

    2010-01-01

    to drill and saw the over-core. Then, the clay pieces are cut in slices and each slice of rock is conditioned in a volume of pure water to stabilize the radionuclides in liquid phase. During this period, it's necessary: - to protect workers of ionizing radiations, - to reduce as low as possible the radioactive discharge, - to avoid radioactive contamination of the area. - in relation with the radiological impact. It's the reason why a specific ventilated room was built. The human protection is guaranteed by an aspiration directly to the source of radioactive dust and by a dynamic confining (ventilation type IIB for the room and type IIA for the.security double door system). The depression should be between -80 +/- 20 Pa compare to atmospheric pressure. The filtration is composed of several steps of THE filters adding of iodine and chlorine filters in order to reduce as law as possible the radioactive discharge. (authors)

  20. Provenance and tectonic setting of the Neoproterozoic clastic rocks hosting the Banana Zone Cu-Ag mineralisation, northwest Botswana

    Science.gov (United States)

    Kelepile, Tebogo; Bineli Betsi, Thierry; Franchi, Fulvio; Shemang, Elisha; Suh, Cheo Emmanuel

    2017-05-01

    Petrographic and geochemical data were combined in order to decipher the petrogenesis of the Neoproterozoic sedimentary succession associated with the Banana Zone Cu-Ag mineralisation (northwest Botswana), in the Kalahari Copperbelt. The investigated Neoproterozoic sedimentary succession is composed of two formations including the Ngwako Pan and the D'kar Formations. The Ngwako Pan Formation is made up of continental siliciclastic sediments, mainly sandstones interbedded with siltstones and mudstones, whereas the D'kar Formation is comprised of shallow marine laminated siltstones, sandstones and mudstones, with subordinate limestone. Copper-Ag mineralisation is essentially confined at the base of the D'kar Formation, which bears reduced organic components, likely to have controlled Cu-Ag precipitation. Sandstones of both the Ngwako Pan and the D'kar Formations are arkoses and subarkoses, composed of quartz (Q), feldspars (F) and lithic fragments (L). Moreover, geochemically the sandstones are considered as potassic and classified as arkoses. On the other hand, mudrocks of the D'kar Formation are finely laminated and are dominated by muscovite, sericite, chlorite and quartz. The modified chemical index of weathering (CIW‧) values indicated an intense chemical weathering of the source rock. The dominance of detrital quartz and feldspar grains coupled with Al2O3/TiO2 ratios (average 29.67 and 24.52 for Ngwako Pan and D'kar Formations, respectively) and Ni and Cr depletion in the sandstones, suggest a dominant felsic source. However, high concentrations of Ni and Cr and a low Al2O3/TiO2 ratio (block and deposited in a continental rift setting (passive margin) in a humid environment. The source rocks might have been the Palaeoproterozoic basement rocks (granitoids and granitic gneiss) and the Mesoproterozoic Kgwebe volcanic rocks exposed north of the study area.

  1. Source rock potential of middle cretaceous rocks in Southwestern Montana

    Science.gov (United States)

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  2. Rocks and geology in the San Francisco Bay region

    Science.gov (United States)

    Stoffer, Philip W.

    2002-01-01

    The landscape of the San Francisco Bay region is host to a greater variety of rocks than most other regions in the United States. This introductory guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the region. Rock types are described in context of their identification qualities, how they form, and where they occur in the region. The guide also provides discussion about of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. Maps and text also provide information where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.

  3. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 18. Facility construction feasibility and costs by rock type

    International Nuclear Information System (INIS)

    1978-04-01

    The results of a study that compared the general engineering feasibility and unit costs associated with sinking shafts and mining storage rooms in the four rock types (salt, granite, shale, basalt) are presented in this volume. The report includes a discussion of the general effects of rock characteristics on shaft and mine design, the application of these design considerations to the specific designs developed for the Draft GEIS, shaft and mine construction techniques, and the unit cost comparison. The repository designs upon which this comparison was based are presented in other volumes of this series

  4. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    Science.gov (United States)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    outcrops of granite, sandstone, and quartzite found in Shenandoah National Park, Virginia. Preliminary results reveal that many observed cracking characteristics are consistent with our hypotheses linking subcritical crack growth, weathering stresses and the production of different sized sediment from different rock types.

  5. Rock Slope Design Criteria : Executive Summary Report

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  6. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    deformation zones is included. The main conclusion is that, despite deep reaching damage potential, in all the load cases studied the currently designed and used reinforcement types and configurations (rock bolts, shotcrete) are capable of handling the dead weight of the damaged rock should this occur, with damage occurring on the shotcrete liner. The long term safety and stability of the repository during its lifetime can be guaranteed by perceiving the reinforcement strategy in two stages. Firstly, by installing the rock reinforcement to sustain the initial stresses and short term increases from the start of deposition with a monitoring programme in place. Secondly, by installing additional reinforcement, if found necessary through monitoring and observation of the underground facilities. In this way, the effect of any time dependent rock stress increase affecting the reinforcement structures can be observed, in addition to creep based damage, thus providing a better level of safety than a single stage design. (orig.)

  7. Comparison of laboratory, in situ, and rock mass measurements of the hydraulic conductivity of metamorphic rock at the Savannah River Plant near Aiken, South Carolina

    International Nuclear Information System (INIS)

    Marine, I.W.

    1980-01-01

    In situ testing of exploratory wells in metamorphic rock indicates that two types of fracturing occur in the rock mass. Rock containing small openings that permit only extremely slow movement of water is termed virtually impermeable rock. Rock containing openings of sufficient size to permit transmission of water at a significantly faster rate is termed hydraulically transmissive rock. Laboratory methods are unsuitable for measuring hydraulic conductivity in hydraulically transmissive rock; however, for the virtually impermeable rock, values comparable to the in situ tests are obtained. The hydraulic conductivity of the rock mass over a large region is calculated by using the hydraulic gradient, porosity, and regional velocity. This velocity is determined by dividing the inferred travel distance by the age of water which is determined by the helium content of the water. This rock mass hydraulic conductivity value is between the values measured for the two types of fractures, but is closer to the measured value for the virtually impermeable rock. This relationship is attributed to the control of the regional flow rate by the virtually impermeable rock where the discrete fractures do not form a continuous open connection through the entire rock mass. Thus, laboratory methods of measuring permeability in metamorphic rock are of value if they are properly applied

  8. Magnetic mineralogy and rock magnetic properties of silicate and carbonatite rocks from Oldoinyo Lengai volcano (Tanzania)

    Science.gov (United States)

    Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.

    2018-06-01

    Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.

  9. Mechanical dispersion in fractured crystalline rock systems

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m

  10. Rb-Sr and Sm-Nd isotopic compositions and Petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (North of Hanich), east of Iran

    International Nuclear Information System (INIS)

    Malekzadeh Shafaroudi, A.; Karimpour, M. H.; Mazaheri, S. A.

    2010-01-01

    partial melting (relatively up to 50%) of a basaltic garnet-bearing (lower than 10%) amphibolite to amphibolite lacking plagioclase as a residual or source mineral can explain most of the moderate to low Y and Yb contents, low (La/Yb) N , high Sr/Y ratios and lack of negative anomaly of Eu in the rocks of the district. The geochemical signature of the adakites within the granitoid rocks represents a characteristic guide, for further exploration for copper porphyry-type ore deposit in Eastern Iran.

  11. Eos Chaos Rocks

    Science.gov (United States)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region. Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  12. Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu; Bernier, Frederic; Davies, Christophe

    2004-01-01

    The creation of an excavation disturbed zone or excavation damaged zone is expected around all man-made openings in geologic formations. Macro- and micro-fracturing, and in general a redistribution of in situ stresses and rearrangement of rock structures, will occur in this zone, resulting in drastic changes of permeability to flow, mainly through the fractures and cracks induced by excavation. Such an EDZ may have significant implications for the operation and long-term performance of an underground nuclear waste repository. Various issues of concern need to be evaluated, such as processes creating fractures in the excavation damaged zone, the degree of permeability increase, and the potential for sealing or healing (with permeability reduction) in the zone. In recent years, efforts along these lines have been made for a potential repository in four rock types-crystalline rock, salt, indurated clay, and plastic clay-and these efforts have involved field, laboratory, and theoretical studies. The present work involves a synthesis of the ideas and issues that emerged from presentations and discussions on EDZ in these four rock types at a CLUSTER Conference and Workshop held in Luxembourg in November, 2003. First, definitions of excavation disturbed and excavation damaged zones are proposed. Then, an approach is suggested for the synthesis and intercomparison of geohydromechanical processes in the EDZ for the four rock types (crystalline rock, salt, indurated clay, and plastic clay). Comparison tables of relevant processes, associated factors, and modeling and testing techniques are developed. A discussion of the general state-of-the-art and outstanding issues are also presented. A substantial bibliography of relevant papers on the subject is supplied at the end of the paper

  13. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    Science.gov (United States)

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  14. Effect of Micro-Structure on Fatigue Behavior of Intact Rocks under Completely Reversed Loading

    Directory of Open Access Journals (Sweden)

    Saeed Jamali Zavareh

    2017-01-01

    Full Text Available Rock formations and structures can be subjected to both static and dynamic loadings. Static loadings resulting from different sources such as gravity and tectonic forces and dynamic forces are intermittently transmitted via vibrations of the earth’s crust, through major earthquakes, rock bursts, rock blasting and drilling and also, traffic. Reaction of rocks to cyclic and repetitive stresses resulting from dynamic loads has been generally neglected with the exception of a few rather limited studies. In this study, , two crystalline quarry stones in Iran; (Natanz gabbro and Green onyx and one non-crystalline rock (Asmari limestone are used to evaluate the effect of micro-structure of intact rock on fatigue behavior. These rocks have different mineral compositions and formation conditions. A new apparatus based on rotating beam fatigue testing machine (R.R.Moore, which is commonly used for laboratory fatigue test in metals, is developed and fatigue behavior and existence of the endurance limit were evaluated for the mentioned rocks based on stress-life method. The obtained results in the variation of applied amplitude stress versus loading cycle number (S-N diagram followed common relationship in other materials. In addition, the endurance limit is perceived for all tested rocks. The results also illustrated that the endurance limits for all types of tested rocks in this study are ranged between 0.4 and 0.6 of their tensile strengths. The endurance limit to tensile strength fraction of green onyx and Natanz gabbro were approximated in a higher value compared to the Asmari limestone with non-crystalline micro-structure.

  15. A COMPARISON OF MAJOR ELEMENTS BETWEEN MARINE SEDIMENTS AND IGNEOUS ROCKS: AS A BASIC DETERMINATION OF THE SEDIMENT SOURCE AT UJUNG PENYUSUK WATERS, NORTH BANGKA,BANGKA BELITUNG PROVINCE

    Directory of Open Access Journals (Sweden)

    Ediar Usman

    2017-07-01

    Full Text Available Three igneous rock samples from the coast and five sediments from the marine of Ujung Penyusuk Waters have been used for chemistry analysis as the basic determination of sediment source. The result of chemistry analysis shows that the major element with relatively same pattern. In the igneous rock samples, the result of chemistry analysis shows the SiO2 ranges between 72.3 - 76.8%, Al2O3 (9.64 - 11.64%, and Fe2O3 ( 2.08 - 2.18%. In the marine sediment, the content of SiO2 is between 62.2 and 66.5%, Al2O3 (2.93 - 3.63% and Fe2O3 (21.19 - 24.40%. Other elements such as CaO, MgO, K2O, Na2O and TiO2 are relatively similar values in all samples. The difference of element content in marine sediment and coastal igneous rock occurs in Al2O3 and Fe2O3. The Al2O3 is small in marine sediment while the Fe2O3 is higher compared to igneous rocks. Decreasing of the Al2O3 (kaolinite in the marine sediment is caused by the character of the Al2O3 that was derived from quartz rich of igneous rocks forming kaolinite. It was than deposited in the sea floor. Increasing of the Fe2O3 in marine sediment is caused by addition reaction of the Fe from the sea. Generally, the content of the SiO2 (quartz in igneous rock and marine sediment belongs to the same group source that is acid igneous rock. The SiO2 in the sediment belongs to a group of granitoid.

  16. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  17. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    Science.gov (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  18. Geochemistry of radioactive elements in the process of weathering of carbonatites, acidic and alkali rocks

    International Nuclear Information System (INIS)

    Zhmodik, S.M.

    1984-01-01

    Geochemical peculiarities of uranium and thorium behaviour under formation of area crusts of weathering of granitoids, alkali rocks and carbonatites of certain areas of East Siberia are considered. The presented crysts of weathering have been formed under different climatic conditions, they have different age (in the limit of upper Cretaceous period - Neogene up to Quaternary time), chemical and mineral composition. Factors determining and controlling the level of uranium and thorium concentrations in weathering products are disclosed on the basis of facts using the methods of neutron-fragmentary radiography and by-fractional balances. Uranium and thorium distribution in granulometric fractions of crysts of weathering is considered in detail. Data on change in forms of radioactive elements under weathering, effect of fine-dispersed hypergene minerals (kaolinite, montmorillonite, goethite, etc.) on the character of uranium and thorium distribution in eluvial products as well as on sources of migrating uranium in crusts of weathering are presented. Scales of uranium and thorium redistribution under weathering are revealed. Supposition on the source of uranium and throium in sediments is made

  19. Effect of type of explosives and physical-mechanical properties of explosive rock on formation of toxic gases in atmosphere of shafts

    Science.gov (United States)

    Mindeli, E. O.; Khudyakov, M. Y.

    1981-01-01

    The quality of toxic gases formed during explosive work in underground shafts depends upon the type of explosives and the conditions of explosion. Several types of explosives and rocks were examined. All remaining conditions were maintained the same (sandy-argillaceous stemming, electrical method of explosions, diameter of blast holes, and the direct triggering of charges).

  20. Record of Permian-Early Triassic continental arc magmatism in the western margin of the Jiamusi Block, NE China: petrogenesis and implications for Paleo-Pacific subduction

    Science.gov (United States)

    Yang, Hao; Ge, Wenchun; Dong, Yu; Bi, Junhui; Wang, Zhihui; Ji, Zheng; Yang, H.; Ge, W. C.; Dong, Y.; Bi, J. H.; Wang, Z. H.; Ji, Z.

    2017-09-01

    In this paper, we report zircon U-Pb ages, Hf isotopes and whole-rock geochemical data for the Permian to Early Triassic granitoids from the western margin of the Jiamusi Block (WJB), NE China. The intermediate to felsic (SiO2 = 59.67-74.04 wt%) granitoids belong to calc-alkaline series and are characterized by enrichments in light rare earth elements and large ion lithophile elements with pronounced negative Nb, Ta and Ti anomalies, revealing typical continental magmatic arc geochemical signatures. The zircon U-Pb determinations on the granodiorite, monzogranite, syenogranite and quartz diorite samples yielded ages between ca. 275-245 Ma, which, together with the published coeval intrusive rocks, indicates that Permian to Early Triassic continental arc magmatism occurred extensively in the WJB. The low and mainly negative zircon ɛ Hf( t) values between -7.6 and +1.6 and the zircon Hf model ages of 1.2-1.8 Ga, which are significantly older than their crystallization ages, suggest that they were mainly derived from reworking of ancient crustal materials with a limited input of juvenile components. The geochemical systematics and petrogenetic considerations indicate that the studied granitoids were generated from a zone of melting, assimilation, storage, and homogenization, i.e., a MASHed zone at the base of Paleo- to Mesoproterozoic continental crust, where large portions of igneous rocks and minor clay-poor sediments involved in the source region. In combination with regional geological data, we argue that the Jiamusi Block was unlikely the rifted segment of the Songliao Block and two possible geodynamical models were proposed to interpret the formation of the ca. 275-245 Ma granitoids in the WJB. In the context of Permian global plate reconstruction, we suggest that Paleo-Pacific plate subduction was initiated in the Permian to Early Triassic beneath the Jiamusi Block, and even whole eastern NE China.

  1. The Usability of Noise Level from Rock Cutting for the Prediction of Physico-Mechanical Properties of Rocks

    Science.gov (United States)

    Delibalta, M. S.; Kahraman, S.; Comakli, R.

    2015-11-01

    Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.

  2. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

    Science.gov (United States)

    Mathurin, Frédéric A.; Drake, Henrik; Tullborg, Eva-Lena; Berger, Tobias; Peltola, Pasi; Kalinowski, Birgitta E.; Åström, Mats E.

    2014-05-01

    Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Äspö Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 μg L-1) occur in the low-temperature (single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the groundwater of marine origin are, in contrast, explained by relatively fast cation exchange reactions. As indicated by the field data and predicted by 1D solute transport modeling, alkali cations with low-energy hydration carried by intruding marine water are capable of (NH4+ in particular and K+ to some extent) replacing Cs+ on frayed edge (FES) sites on illite in the fracture coatings. The result is a rapid and persistent (at least in the order of decades) buildup of dissolved Cs concentrations in fractures where marine water flows downward. The identification of high Cs concentrations in young groundwater of marine origin and the predicted capacity of NH4+ to displace Cs from fracture solids are of particular relevance in the disposal of radioactive nuclear waste deep underground in crystalline rock.

  3. High frequency measurement of P- and S-wave velocities on crystalline rock massif surface - methodology of measurement

    Science.gov (United States)

    Vilhelm, Jan; Slavík, Lubomír

    2014-05-01

    For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially

  4. Rock avalanche and rock glacier: A compound landform study from Hornsund, Svalbard

    Czech Academy of Sciences Publication Activity Database

    Hartvich, Filip; Blahůt, Jan; Stemberk, Josef

    2017-01-01

    Roč. 276, JAN 1 (2017), s. 244-256 ISSN 0169-555X R&D Projects: GA MŠk(CZ) LM2015079; GA MŠk(CZ) LG15007 Institutional support: RVO:67985891 Keywords : ERT * TLS (LiDAR) * lichenometry * morphometry * rock avalanche * rock glacier * Schmidt hammer * Svalbard * Hornsund Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.958, year: 2016

  5. Synthetic Rock Analogue for Permeability Studies of Rock Salt with Mudstone

    Directory of Open Access Journals (Sweden)

    Hongwu Yin

    2017-09-01

    Full Text Available Knowledge about the permeability of surrounding rock (salt rock and mudstone interlayer is an important topic, which acts as a key parameter to characterize the tightness of gas storage. The goal of experiments that test the permeability of gas storage facilities in rock salt is to develop a synthetic analogue to use as a permeability model. To address the permeability of a mudstone/salt layered and mixed rock mass in Jintan, Jiangsu Province, synthetic mixed and layered specimens using the mudstone and the salt were fabricated for permeability testing. Because of the gas “slippage effect”, test results are corrected by the Klinkenberg method, and the permeability of specimens is obtained by regression fitting. The results show that the permeability of synthetic pure rock salt is 6.9 × 10−20 m2, and its porosity is 3.8%. The permeability of synthetic mudstone rock is 2.97 × 10−18 m2, with a porosity 17.8%. These results are close to those obtained from intact natural specimens. We also find that with the same mudstone content, the permeability of mixed specimens is about 40% higher than for the layered specimens, and with an increase in the mudstone content, the Klinkenberg permeability increases for both types of specimens. The permeability and mudstone content have a strong exponential relationship. When the mudstone content is below 40%, the permeability increases only slightly with mudstone content, whereas above this threshold, the permeability increases rapidly with mudstone content. The results of the study are of use in the assessment of the tightness of natural gas storage facilities in mudstone-rich rock salt formations in China.

  6. New data on barguzinsky granitoids age of the Angaro-Vitimsky batholith

    International Nuclear Information System (INIS)

    Budnikov, S.V.; Kovalenko, V.I.; Yarmolyuk, V.V.

    1995-01-01

    The age batholith rocks was studied by the Sm-Nd and U-Pb methods in terms of zircon. The boundary of masses being of Late carboniferous age of batholith rocks has been defined. Early and Middle Proterozoic age is possible for magmatic rocks of this part of batholith. 12 refs.; 3 refs.; 1 tab

  7. Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U-Pb LA-ICP-MS study

    Science.gov (United States)

    López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.

    2018-04-01

    In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.

  8. Geochemical evaluation of Pabdeh Formation in Nosrat field, southeast Persian Gulf using Rock- Eval VI pyrolysis

    Directory of Open Access Journals (Sweden)

    mohammad sadeghi

    2015-02-01

    Full Text Available The present study was performed on 59 drillhole cuttings from Pabdeh Formation in Nosrat oil field using Rock- Eval VI pryrolysis. Geochemical analysis indicated that Pabdeh Formation possesses poor to good hydrocarbon potential. Plotting S1 against TOC suggests that samples were not affected by polluting substances such as crude oil and lubricants while drilling operation. Jones organic fancies diagram shows B-BC area indicating that Pabdeh Formation was deposited in marine anoxic to oxic environments. HI vesus Tmax shows that most samples initially have had type II kerogen and now reflecting a mixture of type II to III kerogen (capable of generating oil that have already entered oil generation window. In addition, S1+S2 versus TOC plot also suggests that Pabdeh Formation can be considered as a capable hydrocarbon generating source rock in the study area.

  9. Hot dry rock geothermal energy: status of exploration and assessment. Report No. 1 of the hot dry rock assessment panel

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The status of knowledge of attempts to utilize hot dry rock (HDR) geothermal energy is summarized. It contains (1) descriptions or case histories of the ERDA-funded projects at Marysville, MT, Fenton Hill, NM, and Coso Hot Springs, CA; (2) a review of the status of existing techniques available for exploration and delineation of HDR; (3) descriptions of other potential HDR sites; (4) definitions of the probable types of HDR resource localities; and (5) an estimate of the magnitude of the HDR resource base in the conterminous United States. The scope is limited to that part of HDR resource assessment related to the determination of the extent and character of HDR, with emphasis on the igneous-related type. It is estimated that approximately 74 Q (1 Q = 1,000 Quads) of heat is stored in these sites within the conterminous U.S. at depths less than 10 km and temperatures above 150/sup 0/C, the minimum for power generation. (Q = 10/sup 18/ BTU = 10/sup 21/J; the total U.S. consumption for 1972 was approximately 0.07 Q). Approximately 6300 Q are stored in the conduction-dominated parts of the crust in the western U.S. (23% of the total surface area), again at depths less than 10 km and temperatures above 150/sup 0/C. Nearly 10,000 Q are believed to be contained in crustal rocks underlying the entire conterminous U.S., at temperatures above 150/sup 0/C. The resource base is significantly larger for lower grade heat. (JGB)

  10. Mechanical properties of granitic rocks from Gideaa, Sweden

    International Nuclear Information System (INIS)

    Ljunggren, C.; Stephansson, O.; Alm, O.; Hakami, H.; Mattila, U.

    1985-10-01

    The elastic and mechanical properties were determined for two rock types from the Gideaa study area. Gideaa is located approximately 30 km north-east of Oernskoeldsvik, Northern Sweden. The rock types that were tested were migmatitic gneiss and migmatitic granite. The following tests were conducted: - sound velocity measurements; - uniaxial compression tests with acoustic emission recording; - brazilian disc tests; - triaxial tests; - three point bending tests. All together, 12 rock samples were tested with each test method. Six samples of these were migmatic gneiss and six samples were migmatitic granite. The result shows that the migmatitic gneiss has varying strength properties with low compressive strength in comparison with its high tensile strength. The migmatitic granite, on the other hand, is found to have parameter values similar to other granitic rocks. With 15 refs. (Author)

  11. Chemical composition of granite uraninites and of quartz-pebble-conglomerates-type uranium deposits: evidences for a placer-type origin for these deposits; Composition chimique des uraninites des granites et des gisements d'uranium de type conglomerats a galets de quartz: evidences pour une origine de type placer de ces gisements

    Energy Technology Data Exchange (ETDEWEB)

    Duhamel, I.; Cuney, M. [Nancy-Universite, Laboratoire G2R - UMR 7566, CNRS, CREGU, 54 - Vandoeuvre-les-Nancy (France)

    2009-07-01

    The authors report and comment data obtained by geochemical and mineralogical studies performed in several conglomerate-type uranium deposits located in South Africa and in Canada. These data display positive correlations between uranium enriching and that of thorium, rare earth notably. They compare the geochemical signature of uraninites of these conglomerates with that of granitoid uraninites of same age which could be their source. Measurements have been performed with an electronic microprobe for uranium oxide species and a ionic microprobe for rare earth contents. Different types of uranium-bearing minerals are identified which correspond to different mechanisms and origins of formation of uraninites

  12. Neutron pole figures compared with magnetic preferred orientations of different rock types

    International Nuclear Information System (INIS)

    Hansen, Anke; Chadima, Martin; Cifelli, Francesca; Brokmeier, H.-G.Heinz-Guenter; Siemes, Heinrich

    2004-01-01

    Neutron diffraction is an excellent tool for pole figure measurement of rock samples. Due to high penetration depth of neutrons for most materials neutron diffraction represents an efficient tool to measure complete pole figures with reliable grain statistics even in coarse grained or inequi-granular materials. In the field of structural geology, the measurement of anisotropy of magnetic susceptibility is a standard technique to reveal the tectonic history of deformed rocks. The application of both techniques on still ongoing studies of Precambrian, Carboniferous and Quaternary rocks which are characterised by fundamental different tectonic evolutions and mineralogical compositions shows the wide field of relevance and importance of these methods in understanding tectonic processes in detail

  13. Smart Rocking Armour Units

    OpenAIRE

    Hofland, B.; Arefin, Syed Shamsil; van der Lem, Cock; van gent, Marcel

    2018-01-01

    This paper describes a method to measure the rocking motion of lab-scale armour units. Sensors as found in mobile phones are used. These sensors, data-storage and battery are all embedded in the model units, such that they can be applied without wires attached to them. The technique is applied to double-layer units in order to compare the results to the existing knowledge for this type of armour layers. In contrast to previous research, the gyroscope reading is used to determine the (rocking)...

  14. High Temperature Versus Geomechanical Parameters of Selected Rocks – The Present State of Research

    Directory of Open Access Journals (Sweden)

    Anna Sygała

    2013-01-01

    Full Text Available This paper presents the current state of knowledge concerning the examination of the impact of increased temperatures on changes of geomechanical properties of rocks. Based on historical data, the shape of stress–strain characteristics that illustrate the process of the destruction of rock samples as a result of load impact under uniaxial compression in a testing machine, were discussed. The results from the studies on changes in the basic strength and elasticity parameters of rocks, such as the compressive strength and Young’s modulus were compared. On their basis, it was found that temperature has a significant effect on the change of geomechanical properties of rocks. The nature of these changes also depends on other factors (apart from temperature. They are, among others: the mineral composition of rock, the porosity and density. The research analysis showed that changes in the rock by heating it at various temperatures and then uniaxially loading it in a testing machine, are different for different rock types. Most of the important processes that cause changes in the values of the strength parameters of the examined rocks occured in the temperature range of 400 to 600 °C.

  15. Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks

    Science.gov (United States)

    Takahashi, T.

    2017-12-01

    The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications

  16. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments

    Science.gov (United States)

    Rooney, A.D.; Selby, D.; Lewan, M.D.; Lillis, P.G.; Houzay, J.-P.

    2012-01-01

    Successful application of the 187Re–187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re–Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re–Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re–Os systematics in ORS as supported by various studies on natural systems. The

  17. Contrasting Nature of Magnetic Anomalies over Thin Sections Made out of Barrandien’s Basaltic Rocks Points to their Origin

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Pruner, Petr; Schnabl, Petr; Šifnerová, Kristýna

    -, special issue (2012), s. 69-70 ISSN 1335-2806. [Castle meeting New Trends in Geomagnetism : Paleo, rock and environmental magnetism/13./. 17.06.2012-23.06.2012, Zvolen] R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 Keywords : magnetic anomalies * thin sections * volcanic rocks Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://gauss.savba.sk/GPIweb/conferences/Castle2012/abstrCastle.pdf

  18. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment

    Science.gov (United States)

    Houlton, B. Z.; Morford, S. L.; Dahlgren, R. A.

    2018-04-01

    Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth’s land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet’s nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth’s nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink.

  19. Petrogenesis of cataclastic rocks within the San Andreas fault zone of Southern California U.S.A.

    Science.gov (United States)

    Lawford Anderson, J.; Osborne, Robert H.; Palmer, Donald F.

    1980-08-01

    cataclasis. It is evident that the gouge development in these primarily igneous crystalline terranes is largely an in situ process with minimal mixing of rock types. Fabric analyses reveal that brecciation (shattering), not shearing, is the major deformational mechanism at these upper crustal levels.

  20. Spinels of Variscan olivine hornblendites related to the Montnegre granitoids revisited (NE Spain): petrogenetic evidence of mafic magma mixing

    Energy Technology Data Exchange (ETDEWEB)

    Galán, G.; Enrique, P.; Butjosa, L.; Fernández-Roig, L.

    2017-07-01

    Olivine hornblendites (cortlandtites) form part of the Montnegre mafic complex related to late-Variscan I-type granitoids in the Catalan Coastal Ranges. Two generations of spinel are present in these hornblendites: Spl1 forms euhedral crystals included in both olivine and Spl2. Spl2 forms euhedral to anhedral crystals associated with phlogopite and fibrous colourless amphibole forming pseudomorphs after olivine. Compositions of Spl1 are picotite-Al chromite (Fe#: 77.78-66.60; Cr#: 30.12-52.22; Fe3+/R3+: 6.99-21.89; 0.10< TiO2%< 0.62). Compositions of Spl2 are pleonaste (Fe#: 37.86-52.12; Cr#: 1.00-15.45; Fe3+/R3+: 0.31-5.21; TiO2% <0.10%). The two types of spinel follow a CrAl trend, mainly due to the substitution (Fe2+)-1Cr-1= MgAl, which is interpreted as the result of mixing between two different mantle-derived melts. The compositions of early Spl1 crystals included in olivine are characteristic of Al-rich basalts. More aluminous Spl2 would result from reaction of olivine with a less evolved, Al and K-rich mantle-derived melt after new refilling of the magma chamber or channel. As a whole, spinels from similar examples of Variscan olivine hronblendites also follow a CrAl trend with high Fe# and starting at higher Cr# than other trends of this type. Cr# heterogeneity in the early spinels from these Variscan hornblendites would be inherited from the variable Al content of the mafic melts involved in their genesis.

  1. X-ray microtomography application in pore space reservoir rock.

    Science.gov (United States)

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. An integrated study of geochemistry and mineralogy of the Upper Tukau Formation, Borneo Island (East Malaysia): Sediment provenance, depositional setting and tectonic implications

    Science.gov (United States)

    Nagarajan, Ramasamy; Roy, Priyadarsi D.; Kessler, Franz L.; Jong, John; Dayong, Vivian; Jonathan, M. P.

    2017-08-01

    An integrated study using bulk chemical composition, mineralogy and mineral chemistry of sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented in order to understand the depositional and tectonic settings during the Neogene. Sedimentary rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of them are highly matured and were derived from a moderate to intensively weathered source. Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. The chondrite normalized REE signature indicates the presence of felsic rocks in the source region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. Additionally, presence of chromian spinels and their chemistry indicate a minor influence of mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift settings. Our key geochemical observation on tectonic setting is comparable to the regional geological setting of northwestern Borneo as described in the literature.

  3. ONKALO rock mechanics model (RMM) - Version 2.0

    International Nuclear Information System (INIS)

    Moenkkoenen, H.; Hakala, M.; Paananen, M.; Laine, E.

    2012-02-01

    The Rock Mechanics Model of the ONKALO rock volume is a description of the significant features and parameters related to rock mechanics. The main objective is to develop a tool to predict the rock properties, quality and hence the potential for stress failure which can then be used for continuing design of the ONKALO and the repository. This is the second implementation of the Rock Mechanics Model and it includes sub-models of the intact rock strength, in situ stress, thermal properties, rock mass quality and properties of the brittle deformation zones. Because of the varying quantities of available data for the different parameters, the types of presentations also vary: some data sets can be presented in the style of a 3D block model but, in other cases, a single distribution represents the whole rock volume hosting the ONKALO. (orig.)

  4. Development of a Comprehensive Plan for Scientific Research, Exploration, and Design: Creation of an Underground Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif

    International Nuclear Information System (INIS)

    Jardine, L J

    2005-01-01

    ISTC Partner Project No.2377, ''Development of a General Research and Survey Plan to Create an Underground RW Isolation Facility in Nizhnekansky Massif'', funded a group of key Russian experts in geologic disposal, primarily at Federal State Unitary Enterprise All-Russian Design and Research Institute of Engineering Production (VNIPIPT) and Mining Chemical Combine Krasnoyarsk-26 (MCC K-26) (Reference 1). The activities under the ISTC Partner Project were targeted to the creation of an underground research laboratory which was to justify the acceptability of the geologic conditions for ultimate isolation of high-level waste in Russia. In parallel to this project work was also under way with Minatom's financial support to characterize alternative sections of the Nizhnekansky granitoid rock massif near the MCC K-26 site to justify the possibility of creating an underground facility for long-term or ultimate isolation of radioactive waste (RW) and spent nuclear fuel (SNF). (Reference 2) The result was a synergistic, integrated set of activities several years that advanced the geologic repository site characterization and development of a proposed underground research laboratory better than could have been expected with only the limited funds from ISTC Partner Project No.2377 funded by the U.S. DOE-RW. There were four objectives of this ISTC Partner Project 2377 geologic disposal work: (1) Generalize and analyze all research work done previously at the Nizhnekansky granitoid massif by various organizations; (2) Prepare and issue a declaration of intent (DOI) for proceeding with an underground research laboratory in a granite massif near the MCC K-26 site. (The DOI is similar to a Record of Decision in U.S. terminology). (3) Proceeding from the data obtained as a result of scientific research and exploration and design activities, prepare a justification of investment (JOI) for an underground research laboratory in as much detail as the available site characterization

  5. On the K-Ar ages of the rocks of two kinds existed in the Kamuikotan metamorphic rocks located in the Horokanai district, Hokkaido

    International Nuclear Information System (INIS)

    Imaizumi, Masayuki; Ueda, Yoshio.

    1981-01-01

    In the Fransiscan metamorphic rocks known as the typical high-pressure type metamorphic belts, existence of the blocks of high grade metamorphic rocks of older age in the widely distributed low grade ones of younger age is commonly noticed. This feature has been explained as a phenomenon that the blocks had been tectonically mixed with the surroundings - so-called tectonic blocks - based on the absolute age determination of the component minerals. The Kamuikotan tectonic belt is a melange zone in which occur various kinds of metamorphic rocks of high-pressure and low-pressure types. The high-pressure Kamuikotan metamorphic rocks can be classified into two kinds based upon the modes of occurrence and mineral paragenesis. One is the low grade metamorphic rocks of greenschist and glaucophane schist and the other, the high grade metamorphic rocks of epidote glaucophane schist and epidote amphibolite. The high grade metamorphic rocks always occur as isolated blocks in the low grade metamorphics and associated serpentinite. The report discusses the age of muscovites separated from the two types of high-pressure Kamuikotan metamorphic rocks in the Horokanai district, central Hokkaido. The muscovites separated from the low grade metamorphics of the district give the age of 72 - 116 m.y., while those separated from the high grade metamorphics give the age of 132 - 145 m.y. These ages seem to agree with the idea that the blocks of high grade metamorphics (epidote glaucophane schist and epidote amphibolite) would be the ''tectonic blocks'' - namely the fragments tectonically mixed into the low grade metamorphics of younger age. (author)

  6. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10 -6 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10 -11 m 2 /s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Kivetty is classified as fresh water and

  7. Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau

    Science.gov (United States)

    Chen, Bei; Long, Xiaoping; Wilde, Simon A.; Yuan, Chao; Wang, Qiang; Xia, Xiaoping; Zhang, Zhaofeng

    2017-07-01

    New zircon U-Pb ages, mineral chemical data, whole-rock geochemistry and Sr-Nd isotopes from the potassium-rich intrusions in the Yunnan area, SW China, were determined to provide constraints on the uplift of the Eastern Tibetan Plateau. The intrusive rocks consist of shoshonitic syenites (high-Mg syenites, low-Mg syenites and syenite porphyries) and potassic granitoids (granite porphyries). Zircon LA-ICP-MS U-Pb dating indicates coeval emplacement ages of 35 Ma. The shoshonitic syenites have alkaline affinities and the enrichment in LILEs and LREEs (e.g. La, Sr, U, Pb), with depletion of HFSEs (e.g. Nb, Ti, Ta) and weak Eu anomalies. They display uniform Sr-Nd-Lu-Hf isotopic compositions with similar initial 87Sr/86Sr ratios (0.7073-0.7079), enriched εNd(t) values (- 6.8 to - 4.3) and mostly negative zircon εHf(t) values ranging from - 4.6 to + 0.1. The high-Mg syenites have high MgO, Fe2O3T, TiO2, CaO, Cr, Ni concentrations and relatively high Mg# (60-68), indicating an origin from enriched lithospheric mantle. The low-Mg syenites and syenite porphyries are geochemically distinct with the high-Mg syenites, but the insignificant variations in major elements, linear trends of La against (La/Yb)N and similar Sr-Nd isotopic compositions to the high-Mg syenites suggest that they were produced by different degrees of partial melting of the same enriched mantle source. The potassic granitic intrusions are sub-alkaline with a strongly peraluminous character. They display an S-type granite affinity, with high Al2O3/TiO2 and low CaO/Na2O and K2O/Al2O3 ratios, suggesting a pelitic source. They are LREE-enriched and have relatively flat HREE patterns with weakly negative Eu anomalies and positive Rb, U, and Pb anomalies and negative Nb, Ta, and Ti anomalies. They have relatively high initial 87Sr/86Sr ratios (0.7143) and enriched Nd isotopic compositions [εNd(t) = - 4.1]. Their zircon εHf(t) values (- 4.0 to + 0.09) and old two-stage Hf model ages (TDMc = 1.16-1.36 Ga

  8. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    Science.gov (United States)

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  9. Magmatism during the accretion of the late Archaean Dharwar Craton (South India): sanukitoids and related rocks in their geological context.

    Science.gov (United States)

    Moyen, J.-F.; Martin, H.; Jayananda, M.; Peucat, J.-J.

    2003-04-01

    The South Indian Dharwar Craton assembled during the late-Archaean (ca. 2.5 Ga). This event was associated with intense granite genesis and emplacement. Based on petrography and geochemistry, 4 main types of late Archaean granitoids were distinguished: (1) Anatectic granites (and diatexites), formed by partial melting of TTG gneisses; (2) Classical TTGs; (3) Sanukitoids, generated by interaction between slab melts (TTG) and mantle peridotite; (4) The high HFSE Closepet granite, interpreted as derived from partial melting of a mantle metasomatized by slab melts (TTG). While the 3 later groups all are interpreted as resulting from slab melt/mantle wedge interactions, their differences are related to decreasing felsic melt/peridotite ratios during the ascent “slab melts” in the mantle wedge above an active subduction zone. Field data together with geochronology and isotope geochemistry allow to subdivide the Dharwar craton into three main domains: (1) The Western Dharwar Craton (WDC) is an old (3.3 2.9 Ga ), stable continental block with limited amounts of 2.5 Ga old anatectic granites. (2) The Eastern Dharwar Craton (EDC) is subdivided into two parts: (2a) West of Kolar Schist Belt, a region of 3.0-2.7 Ga old basement intruded by 2.5 Ga old anatectic granites; (2b) East of Kolar, an area featuring mainly 2.5 Ga old diatexites and granites, derived of partial melting of a newly accreted TTG crust. Anatectic granites are ubiquitous, and late in the cratonic evolution; they witnessed generalized melting of a juvenile crust. In contrast, deep-originated granites emplaced before this melting and are restricted to the boundaries between the blocks. This structure of distinct terranes separated by narrow bands operating as channels for deep-originated magmas provides independent evidences for a two-stage evolution: an arc accretion context for the TTG, sanukitoids and related rocks, immediately followed by high temperature reworking of the newly accreted craton

  10. Rock breaking methods to replace blasting

    Science.gov (United States)

    Zhou, Huisheng; Xie, Xinghua; Feng, Yuqing

    2018-03-01

    The method of breaking rock by blasting has a high efficiency and the cost is relatively low, but the associated vibration, flyrock, production of toxic gases since the 1970’s, the Western developed countries began to study the safety of breaking rock. This paper introduces different methods and their progress to safely break rock. Ideally, safe rock breaking would have little vibration, no fly stone, and no toxic gases, which can be widely used in municipal engineering, road excavation, high-risk mining, quarrying and complex environment.

  11. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans.

    Science.gov (United States)

    Ushida, Kazunari; Segawa, Takahiro; Tsuchida, Sayaka; Murata, Koichi

    2016-02-01

    Preservation of indigenous gastrointestinal microbiota is deemed to be critical for successful captive breeding of endangered wild animals, yet its biology is poorly understood. Here, we investigated cecal bacterial communities in wild Japanese rock ptarmigans (Lagopus muta japonica) and compared them with those in Svalbard rock ptarmigans (L. m. hyperborea) in captivity. Ultra-deep sequencing of 16S rRNA gene indicated that the community structure of cecal microbiota in wild rock ptarmigans was remarkably different from that in captive Svalbard rock ptarmigans. Fundamental differences between bacterial communities in the two groups of birds were detected at the phylum level. Firmicutes, Actinobacteria, Bacteroidetes and Synergistetes were the major phyla detected in wild Japanese rock ptarmigans, whereas Firmicutes alone occupied more than 80% of abundance in captive Svalbard rock ptarmigans. Furthermore, unclassified genera of Coriobacteriaceae, Synergistaceae, Bacteroidaceae, Actinomycetaceae, Veillonellaceae and Clostridiales were the major taxa detected in wild individuals, whereas in zoo-reared birds, major genera were Ruminococcus, Blautia, Faecalibacterium and Akkermansia. Zoo-reared birds seemed to lack almost all rock ptarmigan-specific bacteria in their intestine, which may explain the relatively high rate of pathogenic infections affecting them. We show evidence that preservation and reconstitution of indigenous cecal microflora are critical for successful ex situ conservation and future re-introduction plan for the Japanese rock ptarmigan.

  12. Classification and Distribution of Mars Pathfinder Rocks Using Quantitative Morphologic Indices

    Science.gov (United States)

    Yingst, R. A.; Biederman, K. L.; Monhead, A. M.; Haldemann, A. F. C.; Kowalczyk, M. R.

    2004-01-01

    The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder visible/near-infrared spectra, it has not been fully determined which of these stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique mineralogy's difficult. Efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, and the current understanding is such that many factors influencing spectral signatures cannot be quantified to a sufficient level so they may be removed. The result is that fundamental questions regarding information needed to reveal the present and past interactions between the rocks and rock surfaces and the Martian environment remain unanswered. But it is possible to approach the issue of identifying distinct rock and rock surface types from a different angle.

  13. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  14. Intellektuaalne rock

    Index Scriptorium Estoniae

    2007-01-01

    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  15. Report of exploration in the mining reserve N XIV

    International Nuclear Information System (INIS)

    Spoturno, J.; Lara, P.

    1991-01-01

    This report is about the geological exploration in the mining reserve N X IV. There were recognized basically three units : 1) granitic basement neisico migma tic. 2) lithologic group a md 3) a unit of quartz feldspar granitoid rocks.

  16. Report of exploration in the mining reserve N XIV; Informe de exploracion en la reserva minera XIV

    Energy Technology Data Exchange (ETDEWEB)

    Spoturno, J.; Lara, P.

    1991-07-01

    This report is about the geological exploration in the mining reserve N X IV. There were recognized basically three units : 1) granitic basement neisico migma tic. 2) lithologic group a md 3) a unit of quartz feldspar granitoid rocks.

  17. Natural radioactivity of the rocks from the Moon and planets

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, Yu.A. (AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient continent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts.

  18. Natural radioactivity of the rocks from the Moon and planets

    International Nuclear Information System (INIS)

    Surkov, Yu.A.

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient contineent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts

  19. Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico

    Science.gov (United States)

    Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; Gehrels, G.E.; Wooden, J.L.

    2008-01-01

    New U-Pb zircon ages, geochemistry, and Nd isotopic data are presented from three localities in the Paleoproterozoic Mazatzal province of southern New Mexico, United States. These data help in understanding the source regions and tectonic setting of magmatism from 1680 to 1620 Ma, the timing of the Mazatzal orogeny, the nature of postorogenic maginatism, Proterozoic plate tectonics, and provide a link between Mazatzal subblocks in Arizona and northern New Mexico. The data indicate a period from 1680 to 1650 Ma in which juvenile felsic granitoids were formed, and a later event between 1646 and 1633 Ma, when these rocks were deformed together with sedimentary rocks. No evidence of pre-1680 Ma rocks or inherited zircons was observed. The igneous rocks have ENd(t) from -1.2 to +4.3 with most between +2 and +4, suggesting a mantle source or derivation from similar-aged crust. Nd isotope and trace element concentrations are consistent with models for typical are magmatism. Detrital zircon ages from metasedimentary rocks indicate that sedimentation occurred until at least 1646 Ma. Both local and Yavapai province sources contributed to the detritus. All of the samples older than ca. 1650 Ma are deformed, whereas undeformed porphyroblasts were found in the contact aureole of a previously dated 1633 Ma gabbro. Regionally, the Mlazatzal orogeny occurred mainly between 1654 and 1643 Ma, during final accretion of a series of island arcs and intervening basins that may have amalgamated offshore. Rhyolite magmatism in the southern Mazatzal province was coeval with gabbro intrusions at 1633 Ma and this bimodal magmatism may have been related to extensional processes following arc accretion. ?? 2007 Geological Society of America.

  20. Mineral chemistry of garnet in pegmatite and metamorphic rocks in the Hamedan area

    Directory of Open Access Journals (Sweden)

    Ahmad Ahmadi Khalaji

    2015-10-01

    Full Text Available Introduction The area of this study is located near Hamadan within the Sanandaj - Sirjan tectonic zone. In the Hamadan area, consisting mainly of Mesozoic plutonic and metamorphic rocks, aplites and pegmatites locally contain garnets.(Baharifar et al., 2004, Amidi and Majidi, 1977; Torkian, 1995. Garnet-bearing schists and hornfelses in the area are products of regional metamorphism shown by slate and phyllite (Baharifar, 2004. In this investigation the distribution of elements in garnet in different rock type was studied to determine their mineral types and conditions of formation. Garnet samples from igneous and metamorphic rocks were analyzed by electron microprobe (EMPA, the results of which are presented in this article. Materials and methods Thirty-five samples were selected for thin section preparation and twenty thin-polished sections were prepared for mineralogical and microprobe analysis. Thin sections of garnet-bearing igneous (pegmatite and metamorphic rocks (schist and hornfels were studied by polarizing microscope. Chemical analysis was performed on the garnets (38 points using a Caimeca SX100 electron microprobe at an acceleration voltage of 15 kV and electric current of 15 nA in the Mineral Processing Research Center, Iran. Separation of iron (II and Fe (III was calculated by Droop’s method (1987 and the structural formulas of the garnets were calculated using 24 oxygens to determine the relative proportions of the end-members using the mineral spreadsheet software of Preston and Still (2001. Results Based on the analyses, almandine (Fe - Al garnet and spessartine (Mn - Al garnet are the principal types of the (Kamari metamorphic and (Abaro pegmatitic garnets, that belong to the well-known pyralspite garnet group. Chemical zoning patterns of the garnets in the metamorphic rocks (schists differ from those in the igneous rocks (pegmatite, showing different compositions from core to rim. Petrographic evidence such as: co

  1. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency, Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana secondary placer gold. A field study indicates that the Langkowala (Bombana placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.

  2. Modeling rock specimens through 3D printing: Tentative experiments and prospects

    Science.gov (United States)

    Jiang, Quan; Feng, Xiating; Song, Lvbo; Gong, Yahua; Zheng, Hong; Cui, Jie

    2016-02-01

    Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive manufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) compressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in producing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the simulation of similar material modeling experiments.

  3. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    Science.gov (United States)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  4. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-03-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments were made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapidly-pulsed scanning electron beam was designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods

  5. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    OpenAIRE

    Hu, Shan-chao; Tan, Yun-liang; Ning, Jian-guo; Guo, Wei-Yao; Liu, Xue-sheng

    2017-01-01

    Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-i...

  6. Stable isotope systematics in mesozoic granites of Central and Northern California and Southwestern Oregon

    Science.gov (United States)

    Masi, U.; O'Neil, J.R.; Kistler, R.W.

    1981-01-01

    18O, D, and H2O+ contents were measured for whole-rock specimens of granitoid rocks from 131 localitics in California and southwestern Oregon. With 41 new determinations in the Klamath Mountains and Sierra Nevada, initial strontium isotope ratios are known for 104 of these samples. Large variations in ??18O (5.5 to 12.4), ??D (-130 to -31), water contents (0.14 to 2.23 weight percent) and initial strontium isotope ratios (0.7028 to 0.7095) suggest a variety of source materials and identify rocks modified by secondary processes. Regular patterns of variation in each isotopic ratio exist over large geographical regions, but correlations between the ratios are generally absent except in restricted areas. For example, the regular decrease in ??D values from west to east in the Sierra Nevada batholith is not correlative with a quite complex pattern of ??18O values, implying that different processes were responsible for the isotopic variations in these two elements. In marked contrast to a good correlation between (87Sr/86Sr)o and ??18O observed in the Peninsular Ranges batholith to the south, such correlations are lacking except in a few areas. ??D values, on the other hand, correlate well with rock types, chemistry, and (87Sr/86Sr)o except in the Coast Ranges where few of the isotopic signatures are primary. The uniformly low ??D values of samples from the Mojave Desert indicate that meteoric water contributed much of the hydrogen to the rocks in that area. Even so, the ??18O values and 18O fractionations between quartz and feldspar are normal in these same rocks. This reconnaissance study has identified regularities in geochemical parameters over enormous geographical regions. These patterns are not well understood but merit more detailed examination because they contain information critical to our understanding of the development of granitoid batholiths. ?? 1981 Springer-Verlag.

  7. Tales from the tomb: the microbial ecology of exposed rock surfaces.

    Science.gov (United States)

    Brewer, Tess E; Fierer, Noah

    2018-03-01

    Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Exposé or misconstrual? Unresolved issues of authorship and the authenticity of GW Stow’s ‘forgery’ of a rock art painting

    Directory of Open Access Journals (Sweden)

    Marguerite Prins

    2005-05-01

    Full Text Available George William Stow (1822-1882 is today considered to have been one of the founding fathers of rock art research and conservation in Southern Africa. He arrived from England in 1843 and settled on the frontier of the Eastern Cape where he gradually started specializing in geological exploration, the ethnological history of the early peoples of the subcontinent and the rock art of the region. By the 1870s he was responsible for the discovery of the coalfields in the Vaal Triangle of South Africa. In recent years Stow’s legacy has been the subject of academic suspicion. Some rock art experts claim that he made himself guilty of ‘forgery’. In the article the authors argues in favour of restoring the status of Stow by pointing to the fact that two mutually exclusive interpretational approaches of rock art, than it is about an alleged forgery, are at the heart of the attempts at discrediting his work. In the process, irreparable and undeserving harm has been done to the name of George William Stow and his contribution to rock art research and conservation in South Africa.

  9. Regional characterization of suspected land Punta del Este ( east of the Republica Oriental del Uruguay )

    International Nuclear Information System (INIS)

    Preciozzi, F.; Sanchez Bettucci, L.; Oyhantcabal, P.; Pecoits, E.; Aubet, N.; Peel, E.; Basei, M.

    2003-01-01

    Field Suspect Punta del Este (TSPE) is located in the easternmost portion of Uruguay (Figure 1). This is bounded to the west by Shear Zone Punta del Este-Cordillera (Masquelin, 1990; Preciozzi et al., 1999; 2002), while the east with Rocha makes Formation (Hasui et al, 1975;.. Sanchez-Bettucci and Mezzano, 1993). The TSPE is represented by gneisses and Migmatites formed in the range of 1100 and 630 Ma (Preciozzi et al, in prep.) and have been intensively reworked during Rio Doce orogeny (ca. 600 Ma). Field Suspect Punta del Este (TSPE) is separated from the Neoproterozoic granitoids or granitoids by central Shear Zone Punta del Este-Cordillera represented by a thin strip of mylonite s and gneisses mylonitic able to anatexis. Granitoids are sub alkaline trend throughout of this guideline. The mylonitic foliation has a general direction between N15ºE and N40ºE with sub vertical slope where development ductile quartz and muscovite bands observed (Figure 2). The base of TSPE consists essentially of porphyritic granitoids deformed with biotite and muscovite, and ortho gneisses oftalmíticos granitoids, showing an attenuation of that reaching isotropic deformation terms. From studies in zircons from a sample of ortho gneisses (UCUR 03) by U / Pb conventional and SHRIMP ages of 753 ± 14 Ma for the edge obtained (consistent with the conventional age) and 1000 Ma for zircon center. This has allowed us to recognize in the protoliths one Grenvillian heritage in this area, preserved during crustal melting processes. Also, new U / Pb (Preciozzi et al., In prep.) Data show a orogénesis penicontemporánea to the Brasiliano cycle would be responsible for most of the generation of the rocks that make up the TSPE

  10. Intercorrência audiológica em músicas após um show de rock Hearing incidents in musicians after a rock concert

    Directory of Open Access Journals (Sweden)

    Marcela Pfeiffer

    2007-09-01

    Full Text Available OBJETIVO: verificar mudança temporária do limiar de audição de músicos, após exposição a níveis de pressão sonora elevados de um show de rock. MÉTODOS: foi utilizada uma amostra com seis músicos componentes da banda. Foram feitos: anamnese ocupacional, determinação dos níveis mínimos de audição e reflexos acústicos, antes e após o show de rock. A mensuração do ruído da sala do exame e do palco foi realizada por meio de um dosímetro. Os resultados foram comparados e analisados estatisticamente, utilizando-se o teste t Student, com critério para determinação de significância de p maior do que 0,05. RESULTADOS: para a dosimetria, foi encontrada a exposição ao ruído do show com valor de LAVG igual a 98,5 dB. Dentre os aspectos comportamentais relacionados ao ruído, o zumbido foi a queixa mais presente entre os integrantes. Na audiometria tonal, as maiores diferenças pré e pós-exposição, foram encontradas nas freqüências altas, sendo a orelha direita a que apresentou maiores mudanças temporárias de limiar. Os resultados foram significantes nas freqüências de 2000, 3000, 4000 e 6000 Hz, na orelha direita (p=2,7; p=2,59; p=3,7 e p=2,86 e, na freqüência de 4000 Hz, na orelha esquerda (p=2,87. Na medida do reflexo acústico após o show, a orelha direita obteve o maior índice de ausência de reflexo, com o índice de 40%; entretanto, foram encontradas diferenças estatisticamente significantes, na presença de reflexo acústico na comparação pré e pós-exposição, apenas na orelha esquerda (p=3,64. CONCLUSÃO: músicos expostos a níveis de pressão sonora intensos apresentaram alteração temporária do limiar e alteração do reflexo acústico.PURPOSE: verifying the temporary threshold shift in musicians after a high sound pressure level music exposure in a rock concert. METHODS: the sample has been made up of six band's musicians, who underwent an occupational anamnesis, pure tone audiometry and

  11. Rock mechanics. Proceedings of the 33rd U.S. symposium

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Wawersik, W.R.

    1992-01-01

    After giving abstracts of the award winning papers for 1991 and the keynote lecture, papers are presented under the following headings: origin of stresses in the lithosphere; fault mechanics; rock mass monitoring; subsidence and ground motions; blasting; reservoir completion and stimulation; underground storage and sealing; design and supports; fluid and contaminant transport; numerical methods; constitutive modelling and strain localization; nonlinear dynamic systems; geostatistics and reliability; fracture mechanics; physical rock properties; experimental methods; geotechnical design methodology - workshop; and induced seismicity - workshop. Six papers have been abstracted separately

  12. Les granitoïdes néoprotérozoïques de Khzama, Anti-Atlas central, Maroc: marqueurs de l'évolution d'un magmatisme d'arc à un magmatisme alcalineNeoproterozoic granitoids from Khzama, central Anti-Atlas, Morocco: evolution markers from arc magmatism to alkaline magmatism

    Science.gov (United States)

    El-Khanchaoui, T.; Lahmam, M.; El-Boukhari, A.; El-Beraaouz, H.

    2001-05-01

    Petrological study and zircon typology provide important information that is related to the classification and genesis of Neoproterozoic granitoids in the Khzama area (northeast Siroua). The Pan-African granitoids show a transition from island-arc magmatism to alkaline magmatism. A space and time zonation of magmatism from the north to the south is evident. Early Pan-African granitoids were generated from various magma sources through different petrogenetic mechanisms. The first association corresponds to the low-K calc-alkaline plutons of Ait Nebdas, the second one correponds to high-K calc-alkaline post-collisional granites (Tamassirte-Tiferatine and Ifouachguel). Finally, shoshonitic magmatism (Irhiri) ends the magmatic evolution of the region. Thus, the late Pan-African granitic plutonism began with calc-alkaline associations and ended with K-alkaline magmatism in a transtensional setting, heralding the onset of the Moroccan Palæozoic cycle.

  13. Analysis of the behavior of radionuclides migration in fractured medium in different types of rocks matrices

    International Nuclear Information System (INIS)

    Sá, Ludimila Silva Salles de; Silveira, Cláudia Siqueira da; Lima, Zelmo Rodrigues de

    2017-01-01

    In management of radioactive wastes, the current trend is to dispose the radioactive waste for long life and high activity in permanent repositories of depth, geologically stable and low permeability. Thus, it is relevant to analyze the groundwater movement process, because the mechanism by which the radionuclides in a repository with fractures could return to the surface would be through the groundwater circulation system. A common problem encountered is the modeling of the migration of radionuclides in a fractured medium. The objective of this work is to evaluate the behavior of the migration of radionuclides in two types of rock matrix, considering the following properties: volumetric density, porosity, distribution coefficient and molecular diffusion coefficient. The physical system adopted consists of the matrix rock containing a discrete fracture in a porous medium saturated with water. The partial differential equations that describe the radionuclide movement were discretized by finite differences, and the Implicit Euler method was adopted. While for the convective term the numerical scheme of progressive differences was used

  14. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Havmøller, Ole; Krogsbøll, Anette

    1997-01-01

    The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns...

  15. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-01-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments have been made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapid-pulsed scanning electron-beam has been designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods. (author)

  16. Rock index properties for geoengineering in the Paradox Basin

    International Nuclear Information System (INIS)

    O'Rourke, J.E.; Rey, P.H.; Alviti, E.; Capps, C.C.

    1986-02-01

    Previous researchers have investigated the use of a number of rapid index tests that can be used on core samples, or in situ, to determine rock properties needed for geoengineering design, or to predict construction performance in these rock types. Selected research is reviewed, and the correlations of index tests with laboratory tests of rock properties found by the earlier investigators are discussed. The selection and testing of rock core samples from the Gibson Dome No. 1 borehole in Paradox Basin are described. The samples consist primarily of non-salt rock above salt cycle 6, but include some samples of anhydrite and salt cycle 6. The index tests included the point load test, Schmidt hammer rebound test, and abrasion hardness test. Statistical methods were used to analyze the correlations of index test data with laboratory test data of rock properties for the same core. Complete statistical results and computer-generated graphics are presented; these results are discussed in relation to the work of earlier investigations for index testing of similar rock types. Generally, fair to good correlations were obtained for predicting unconfined compressive strength and Young's modulus for sandstone and siltstone, while poorer correlations were found for limestone. This may be due to the large variability of limestone properties compared to the small number of samples. Overall, the use of index tests to assess rock properties at Paradox Basin appears to be practial for some conceptual and preliminary design needs, and the technique should prove useful at any salt repository site. However, it is likely that specific correlations should be demonstrated separately for each site, and the data base for establishing the correlations should probably include at least several hundred data points for each type

  17. Mechanical properties of rock at high temperatures

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Abe, Tohru; Wakabayashi, Naruki; Ishida, Tsuyoshi.

    1997-01-01

    The laboratory tests have been performed in order to investigate the effects of temperature up to 300degC and pressure up to 30 MPa on the mechanical properties of three types of rocks, Inada granite, Sanjoume andesite and Oya tuff. The experimental results indicated that the significant differences in temperature dependence of mechanical properties exist between the three rocks, because of the difference of the factors which determine the mechanical properties of the rocks. The effect of temperature on the mechanical properties for the rocks is lower than that of pressure and water content. Temperature dependence of the mechanical properties is reduced by increase in pressure in the range of pressure and temperature investigated in this paper. (author)

  18. Geochronology Intermediary Laboratory implantation at the Rio Grande do Norte Federal University: the dating of the Serrinha Granitoid (RN) and the correlate Brasiliana extensional deformation; Implantacao do Laboratorio Intermediario de Geocronologia na UFRN: a datacao do granitoide de Serrinha (RN) e da deformacao extensional brasiliana correlata

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Maria Helena F.; Sa, Emanuel F. Jardim de; Souza, Zorano S. [Pernambuco Univ., Recife, PE (Brazil). Nucleo de Pesquisa em Geodinamica e Geofisica; Mendes, Franklin S. [Pernambuco Univ., Recife, PE (Brazil). Curso de Quimica; Ramalho, Karlos A.C. [Pernambuco Univ., Recife, PE (Brazil). Curso de Geologia

    1997-12-31

    The article describes the activities developed by the Geochronology Intermediary Laboratory at the Federal University of the Rio Grande do Norte, a Brazilian university, where there were the preoccupation of establishing strategies for a geochronological development. It relates the Rubidium-Strontium (Rb/Sr) and Samarium-Neodymium (Sm/Nd) methods, describing the analysis realized in these methodologies. Afterward, it presents the geological and petrographic situation of the Granitoide de Serrinha, located at Rio Grande do Norte State, Brazil and its geochronological data 8 refs., 2 figs.

  19. Response spectra by blind faults for design purpose of stiff structures on rock site

    International Nuclear Information System (INIS)

    Hiroyuki Mizutani; Kenichi Kato; Masayuki Takemura; Kazuhiko Yashiro; Kazuo Dan

    2005-01-01

    The goal of this paper is to propose the response spectra by blind faults for seismic design of nuclear power facilities. It is impossible to evaluate earthquake ground motions from blind faults, because the size and the location of blind fault cannot be identified even if the detailed geological surveys are conducted. From the viewpoint of seismic design, it is crucial to investigate the upper level of earthquake ground motions due to blind faults. In this paper, 41 earthquakes that occurred in the upper crust in Japan and California are selected and classified into the active and the blind fault types. On the basis of near-source strong motion records observed on rock sites, upper level of response spectra by blind faults is examined. The estimated upper level is as follows: the peak ground acceleration is 450 cm/s 2 , the flat level of the acceleration response spectra is 1200 cm/s 2 , and the flat level of the velocity response spectra is 100 cm/s on rock sites with shear wave velocity Vs of about 700 m/s. The upper level can envelop the observed response spectra in near-source region on rock sites. (authors)

  20. Specification for switching magnets type S30, S45 and S60

    International Nuclear Information System (INIS)

    Cornell, J.C.

    1983-01-01

    This document specifies 3 types of symmetric, water-cooled dipole switching magnets, type S30 with a maximum bend angle of plus minus 30 0 type S45 with bend angles of +45 0 and -45 0 only and type S60 with bend angles up to plus minus 60 0 . One magnet of each type will be required. These magnets will form part of the beam distribution system for the 200 MeV separated-sector cyclotron at the National Accelerator Centre of the Council for Scientific and Industrial Research at Faure