WorldWideScience

Sample records for s-2 glass fabrics

  1. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    Science.gov (United States)

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantum confinement of Bi2S3 in glass with magnetic behavior

    Directory of Open Access Journals (Sweden)

    Rajendra P. Panmand

    2013-02-01

    Full Text Available The novel Bi2S3 quantum dots (QDs glass nanosystems with unique magnetic properties have been investigated. The monodispersed QDs of size in the range of 3 to 15 nm were grown in the glass matrix. The optical study of these nanosystems clearly demonstrated the size quantization effect resulting in a pronounced band gap variation with QD size. The magnetic properties of the pristine glass and the Bi2S3 QD glass nanosystems were investigated by VSM and SQUID magnetometer. The pristine glass did not show any ferromagnetism while the Bi2S3 glass nanosystems showed significant and reproducible ferromagnetism. We also investigated the effect of the size of Bi2S3 QDs on the magnetic properties. The saturation magnetization for the 15 nm QD glass-nanosystem (124 memu/g was observed to be higher as compared to the 3nm QD glass nanosystem (58.2 memu/g. The SQUID measurement gave the excellent hysteresis up to 300K. Surprisingly, the bulk Bi2S3 powder is diamagnetic in nature but Bi2S3 quantum dots glass nanosystem showed the ferromagnetic behavior for the first time. The investigated novel QD glass-nanosystem may have a potential application in spintronic devices and most importantly, this nanosystem can be fabricated in any usable shape as per the device requirement.

  3. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    International Nuclear Information System (INIS)

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  4. Fabrication and Characterization of Surrogate Glasses Aimed to Validate Nuclear Forensic Techniques

    Science.gov (United States)

    2017-12-01

    the glass formed during a nuclear event, trinitite [14]. The SiO2 composition is generally greater than 50% for trinitite and can vary appreciably...CHARACTERIZATION OF SURROGATE GLASSES AIMED TO VALIDATE NUCLEAR FORENSIC TECHNIQUES by Ken G. Foos December 2017 Thesis Advisor: Claudia...December 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FABRICATION AND CHARACTERIZATION OF SURROGATE GLASSES AIMED TO

  5. Fabrication of All Glass Bifurcation Microfluidic Chip for Blood Plasma Separation

    Directory of Open Access Journals (Sweden)

    Hyungjun Jang

    2017-02-01

    Full Text Available An all-glass bifurcation microfluidic chip for blood plasma separation was fabricated by a cost-effective glass molding process using an amorphous carbon (AC mold, which in turn was fabricated by the carbonization of a replicated furan precursor. To compensate for the shrinkage during AC mold fabrication, an enlarged photoresist pattern master was designed, and an AC mold with a dimensional error of 2.9% was achieved; the dimensional error of the master pattern was 1.6%. In the glass molding process, a glass microchannel plate with negligible shape errors (~1.5% compared to AC mold was replicated. Finally, an all-glass bifurcation microfluidic chip was realized by micro drilling and thermal fusion bonding processes. A separation efficiency of 74% was obtained using the fabricated all-glass bifurcation microfluidic chip.

  6. Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses

    International Nuclear Information System (INIS)

    Guo Haitao; Zhai Yanbo; Tao Haizheng; Dong Guoping; Zhao Xiujian

    2007-01-01

    Chalcohalide glasses in the GeS 2 -Ga 2 S 3 -CdI 2 pseudo-ternary system were prepared by 3-5N pure raw materials. Structures of these glasses were studied with Raman spectroscopy. Several properties, namely, glass transition temperature, optical transmission, density and microhardness have also been measured. Based on the Raman spectra, it can be speculated that the glass network is mainly constituted by [GeS 4 ], [GaS 4 ] tetrahedra with some mixed-anion tetrahedra [S 3 GeI], [S 2 GeI 2 ] and [S 3 GaI], which are interconnected by bridging sulfurs and/or short S-S chains. In the glasses with little CdI 2 , some part of Ge(Ga) exists in the forms of the ethane-like units [S 3 (Ga)Ge-Ge(Ga)S 3 ] because of the lack of sulfur, but the amount of these units will decrease with the addition of CdI 2 . Additionally, in the glasses with high content of CdI 2 , some [CdI n ] structural units (s.u.) will be formed and dispersed homogenously in glass network. These novel glasses have relatively high glass transition temperatures (T g ranges from 512 to 670 K), good thermal stabilities (the maximum of difference between T x and T g is 185 K) and UV-vis optical transmission, large densities (d ranges from 3.162 to 3.863 g/cm 3 ) and microhardness (large than 150 kg/mm 2 generally). All properties evolutions follow the structural variations

  7. Study on the friction and wear properties of glass fabric composites filled with nano- and micro-particles under different conditions

    International Nuclear Information System (INIS)

    Su Fenghua; Zhang Zhaozhu; Liu Weimin

    2005-01-01

    The glass fabric composites filled with the particulates of polytetrafluoroethylene (PTFE), micro-sized MoS 2 , nano-TiO 2 , and nano-CaCO 3 , respectively, were prepared by dip-coating of the glass fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the resulting glass fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration at various temperatures were evaluated on a Xuanwu-III high temperature friction and wear tester. The morphologies of the worn surfaces of the filled glass fabric composites and the counterpart steel pins were analyzed by means of scanning electron microscopy, and the elemental distribution of F on the worn surface of the counterpart steel was determined by means of energy dispersive X-ray analysis (EDXA). It was found that PTFE and nano-TiO 2 particulates as the fillers contributed to significantly improve the friction-reducing and anti-wear properties of the glass fabric composites, but nano-CaCO 3 and micro-MoS 2 as the fillers were harmful to the friction and wear behavior of the glass fabric composites. The friction and wear properties of the glass fabric composites filled with the particulate fillers were closely dependent on the environmental temperature and the wear rates of the composites at elevated temperature above 200 deg. C were much larger than that below 150 deg. C, which was attributed to the degradation and decomposition of the adhesive resin at excessively elevated temperature. The bonding strengths between the interfaces of the glass fabric, the adhesive resin, and the incorporated particulates varied with the types of the particulate fillers, which largely accounted for the differences in the tribological properties of the glass fabric composites filled with different fillers. Moreover, the transferred layers of varied features formed on the counterpart steel pins also partly accounted for the different friction and

  8. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.

    Science.gov (United States)

    Bischoff, Christian; Schuller, Katherine; Martin, Steve W

    2014-04-03

    The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g)) of the binary end-member glasses, x = 0 and x = 1. Interestingly, the composition dependence of the densities of these ternary MGF glasses reveals a slightly positive MGFE deviation from a linear interpolation of the densities of the binary end-member glasses, x = 0 and x = 1. From our previous studies of the structures of these glasses using IR, Raman, and NMR spectroscopies, we find that a disproportionation reaction occurs between PS7/2(4-) and GeS3(2-) units into PS4(3-) and GeS5/2(1-) units. This disproportionation combined with the formation of Ge4S10(4-) anions from GeS5/2(1-) groups leads to the negative MGFE in T(g). A best-fit model of the T(g)s of these glasses was developed to quantify the amount of GeS5/2(1-) units that form Ge4S10(4-) molecular anions in the ternary glasses (∼ 5-10%). This refined structural model was used to develop a short-range structural model of the molar volumes, which shows that the slight densification of the ternary glasses is due to the improved packing efficiency of the germanium sulfide species.

  9. Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching

    Science.gov (United States)

    Yu, Eusun; Kim, Seul-Cham; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Functional glass surfaces with the properties of superhydrophobicity/or superhydrohydrophilicity, anti-condensation or low reflectance require nano- or micro-scale roughness, which is difficult to fabricate directly on glass surfaces. Here, we report a novel non-lithographic method for the fabrication of nanostructures on glass; this method introduces a sacrificial SiO2 layer for anisotropic plasma etching. The first step was to form nanopillars on SiO2 layer-coated glass by using preferential CF4 plasma etching. With continuous plasma etching, the SiO2 pillars become etch-resistant masks on the glass; thus, the glass regions covered by the SiO2 pillars are etched slowly, and the regions with no SiO2 pillars are etched rapidly, resulting in nanopatterned glass. The glass surface that is etched with CF4 plasma becomes superhydrophilic because of its high surface energy, as well as its nano-scale roughness and high aspect ratio. Upon applying a subsequent hydrophobic coating to the nanostructured glass, a superhydrophobic surface was achieved. The light transmission of the glass was relatively unaffected by the nanostructures, whereas the reflectance was significantly reduced by the increase in nanopattern roughness on the glass. PMID:25791414

  10. Study on the fabrication and photoluminescence characteristics of LiBO2 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Sin, S. W.; Hwang, J. H.; Choi, S. H.; Sumarokov, S. Yu.

    2002-01-01

    LiBO 2 glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of LiBO 2 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are 1000 .deg. C and 40 min, respectively. The result of photoluminescence analysis shows that Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu are not good as activator. Because emission spectrum of samples with them was equal to that of sample without activator. In the case of samples with Europium, the peak of emission spectrum of Eu(III) is 810 nm. And Samples with Ce(III) are 760 nm, and Tb(III) are about 535 nm. Samples with Ce(III) and Tb(III) have the best PL intensity with added sugar in Ar reduction atmosphere, and sample with Eu(III) has the best intensity without a reducing process

  11. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    Science.gov (United States)

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Near net-shape fabrication of hydroxyapatite glass composites

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.; Dortmans, L.; Feenstra, F.

    2004-01-01

    Near net-shape fabrication of hydroxyapatite (HA) glass composites has been attempted by infiltrating a glass into porous HA performs. Main efforts were put to develop glasses that are chemically compatible with HA at elevated temperatures. After extensive investigations in the phosphate and

  13. Ablation of (GeS2)0.3(Sb2S3)0.7 glass with an ultra-violet nano-second laser

    International Nuclear Information System (INIS)

    Knotek, P.; Navesnik, J.; Cernohorsky, T.; Kincl, M.; Vlcek, M.; Tichy, L.

    2015-01-01

    Highlights: • The interaction of (GeS 2 ) 0.3 (Sb 2 S 3 ) 0.7 bulk glass and film with UV nanosecond laser. • Ablation process, topography of crater and structure of the material were studied. • Ablation threshold fluencies changed with the spot diameter and number of pulses. • The photo-thermal expansion of the material occurred for low laser fluency. • Laser direct writing process applicable for fabrication of passive optical elements. - Abstract: The results of an experimental study of the laser ablation of bulk and thin films of a GeSbS chalcogenide glass using UV nanosecond pulses are reported. The response of the samples to illumination conditions was studied through the use of atomic force spectroscopy, digital holographic microscopy, Raman scattering and scanning electron microscopy. The multi-pulse ablation thresholds were determined for both the bulk and thin film samples for varying number of pulses and illuminated spot diameter. The possible application of direct laser writing into the bulk and thin films of this material is presented

  14. Mid-infrared volume diffraction gratings in IG2 chalcogenide glass: fabrication, characterization, and theoretical verification

    Science.gov (United States)

    Butcher, Helen L.; MacLachlan, David G.; Lee, David; Brownsword, Richard A.; Thomson, Robert R.; Weidmann, Damien

    2018-02-01

    Ultrafast laser inscription (ULI) has previously been employed to fabricate volume diffraction gratings in chalcogenide glasses, which operate in transmission mode in the mid-infrared spectral region. Prior gratings were manufactured for applications in astrophotonics, at wavelengths around 2.5 μm. Rugged volume gratings also have potential use in remote atmospheric sensing and molecular spectroscopy; for these applications, longer wavelength operation is required to coincide with atmospheric transparency windows (3-5 μm) and intense ro-vibrational molecular absorption bands. We report on ULI gratings inscribed in IG2 chalcogenide glass, enabling access to the full 3-5 μm window. High-resolution broadband spectral characterization of fabricated gratings was performed using a Fourier transform spectrometer. The zeroth order transmission was characterized to derive the diffraction efficiency into higher orders, up to the fourth orders in the case of gratings optimized for first order diffraction at 3 μm. The outcomes imply that ULI in IG2 is well suited for the fabrication of volume gratings in the mid infrared, providing the impact of the ULI fabrication parameters on the grating properties are well understood. To develop this understanding, grating modeling was conducted. Parameters studied include grating thickness, refractive index modification, and aspect ratio of the modulation achieved by ULI. Knowledge of the contribution and sensitivity of these parameters was used to inform the design of a 4.3 μm grating expected to achieve > 95% first order efficiency. We will also present the characterization of these latest mid-infrared diffraction gratings in IG2.

  15. Raman Spectroscopy of SiO{sub 2}–Na{sub 2}O–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} glass doped with Nd{sup 3+} and CdS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Serqueira, E.O.; Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902 (Brazil); Anjos, V. [Grupo de Espectroscopia de Materiais, Departamento de Física, ICE – UFJF, Campus Universitário, Juiz de Fora, MG 36036-330 (Brazil); Bell, M.J.V., E-mail: mjvbell@yahoo.com.br [Grupo de Espectroscopia de Materiais, Departamento de Física, ICE – UFJF, Campus Universitário, Juiz de Fora, MG 36036-330 (Brazil)

    2014-01-05

    Highlights: • The formation of CdS nanocrystals in the glassy host is shown by Raman measurements. • Nd{sub 2}O{sub 3} modifies the growth of CdS nanocrystals in the SNAB glass. • Nd{sup 3+} ions are not incorporated inside the semiconductor nanocrystals. -- Abstract: We report the Raman spectroscopic characterization of a SNAB glass system doped with neodymium and CdS nanocrystals and fabricated by the fusion process. Raman spectra revealed CdS nanocrystals in the glass host and bands associated with Si–O vibrational modes with five structural configurations, boroxol modes of B{sub 2}O{sub 3}, Al–O and Cd–S vibrational modes. Additionally, Nd{sub 2}O{sub 3} modifies the growth of CdS nanocrystals in the SNAB glass and Nd{sup 3+} ions are not incorporated inside the semiconductor nanocrystals.

  16. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  17. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Hanford Missions Programs; Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Process Technology Programs; Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development; Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Engineering Process Development

    2016-07-14

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the process demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the

  18. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    Science.gov (United States)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  19. Room Temperature Imprint Using Crack-Free Monolithic SiO2-PVA Nanocomposite for Fabricating Microhole Array on Silica Glass

    Directory of Open Access Journals (Sweden)

    Shigeru Fujino

    2015-01-01

    Full Text Available This paper aims to fabricate microhole arrays onto a silica glass via a room temperature imprint and subsequent sintering by using a monolithic SiO2-poly(vinyl alcohol (PVA nanocomposite as the silica glass precursor. The SiO2-PVA suspension was prepared from fumed silica particles and PVA, followed by drying to obtain tailored SiO2-PVA nanocomposites. The dependence of particle size of the fumed silica particles on pore size of the nanocomposite was examined. Nanocomposites prepared from 7 nm silica particles possessed suitable mesopores, whereas the corresponding nanocomposites prepared from 30 nm silica particles hardly possessed mesopores. The pore size of the nanocomposites increased as a function of decreasing pH of the SiO2-PVA suspension. As a consequence, the crack-free monolithic SiO2-PVA nanocomposite was obtained using 7 nm silica particles via the suspension at pH 3. Micropatterns were imprinted on the monolithic SiO2-PVA nanocomposite at room temperature. The imprinted nanocomposite was sintered to a transparent silica glass at 1200°C in air. The fabricated sintered glass possessed the microhole array on their surface with aspect ratios identical to the mold.

  20. Near net-shape fabrication of alumina glass composites

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.; Dortmans, L.J.M.G.; Feenstra, F.

    2005-01-01

    The purpose of the present study is to fabricate alumina glass composites by melt infiltration with better dimensional control through reducing both the presintering and infiltration temperature. Main efforts were put to develop glasses that are chemically compatible with alumina. After extensive

  1. Fabrication of artificial gemstones from glasses: From waste to jewelry

    Science.gov (United States)

    Srisittipokakun, N.; Ruangtaweep, Y.; Horprathum, M.; Kaewkhao, J.

    2014-09-01

    In this review, several aspects of artificial gemstones from glasses have been addressed from the advantages, the fabrication process, the coloration, their properties and finally the use of RHA as the glass former for the simulant gemstones. The silica sources for preparation of glasses were locally obtained from sand and biomass ashes in Thailand. The refractive index, density and hardness values of the glass gemstones reported in these researches had been meet the standard of EU-regulation for crystal. The glass gemstones were fabricated in a variety of colors with some special features such as color changing when exposed under different light sources. Barium was used instead of lead to increase the density and refractive index of the glasses. The developments of high refractive index lead-free glasses are also leave non-toxically impact to our environment.

  2. Local motifs in GeS{sub 2}–Ga{sub 2}S{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pethes, I., E-mail: pethes.ildiko@wigner.mta.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. 49 (Hungary); Nazabal, V.; Chahal, R.; Bureau, B. [Institut Sciences Chimiques de Rennes, UMR-CNRS 6226, Campus de Beaulieu, Université de Rennes 1, 35042 Rennes, Cedex (France); Kaban, I. [IFW Dresden, Institute for Complex Materials, Helmholtzstr. 20, 01069 Dresden (Germany); Belin, S. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif sur Yvette (France); Jóvári, P. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. 49 (Hungary)

    2016-07-15

    The structure of (GeS{sub 2}){sub 0.75}(Ga{sub 2}S{sub 3}){sub 0.25} and (GeS{sub 2}){sub 0.83}(Ga{sub 2}S{sub 3}){sub 0.17} glasses was investigated by Raman scattering, high energy X-ray diffraction and extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges. The reverse Monte Carlo simulation technique (RMC) was used to obtain structural models compatible with diffraction and EXAFS datasets. It was found that the coordination number of Ga is close to four. While Ge atoms have only S neighbors, Ga binds to S as well as to Ga atoms showing a violation of chemical ordering in GeS{sub 2}–Ga{sub 2}S{sub 3} glasses. Analysis of the corner- and edge-sharing between [GeS{sub 4/2}] units revealed that about 30% of germanium atoms participate in the edge-shared tetrahedra. - Highlights: • Structural models of GeS{sub 2}–Ga{sub 2}S{sub 3} glasses consistent with XRD + EXAFS data are created. • Chemical order is respected but Ga–Ga bonds are present caused by S-deficiency. • The coordination number of Ga is 3.7 ± 0.3. • The frequency and geometry of corner/edge-sharing [GeS{sub 4/2}] units were determined.

  3. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments

    NARCIS (Netherlands)

    Bomer, Johan G.; Prokofyev, A.V.; van den Berg, Albert; le Gac, Severine

    2014-01-01

    We report a wafer-scale fabrication process for the production of glass-FEP-glass microdevices using UV-curable adhesive (NOA81) as gluing material, which is applied using a novel "spin & roll" approach. Devices are characterized for the uniformity of the gluing layer, presence of glue in the

  4. Fabrication, characterization, and evaluation of a fully radioactive glass

    International Nuclear Information System (INIS)

    Olson, K.M.; Elliott, M.L.; Shade, J.W.; Smith, H.D.

    1991-01-01

    West Valley Sludge Glass-1 (WVSG-1) was fabricated using high-level waste from the West Valley Demonstration Project. Melt foaming was a problem during fabrication and a unique two-step funnel system was designed to feed the melting calcine into a crucible. The resultant glass was essentially bubble free. Crushed WVSG-1 was tested for durability using the Product Consistency Test developed at WSRC. Except for Al, the release of nonradioactive elements from WVSG-1 was lower than the release of the same elements from ATM-10, the West Valley reference glass and the release of the radionuclides Th, U, and Tc was about the same as for ATM-10

  5. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  6. Fabrication of wound capacitors using flexible alkali-free glass

    International Nuclear Information System (INIS)

    Wilke, Rudeger H. T.; Baker, Amanda; Brown-Shaklee, Harlan; Johnson-Wilke, Raegan; Hettler, Chad

    2016-01-01

    Here, alkali-free glasses, which exhibit high energy storage densities (~35 J/cc), present a unique opportunity to couple high temperature stability with high breakdown strength, and thus provide an avenue for capacitor applications with stringent temperature and power requirements. Realizing the potential of these materials in kilovolt class capacitors with >1 J/cc recoverable energy density requires novel packaging strategies that incorporate these extremely fragile dielectrics. In this paper, we demonstrate the feasibility of fabricating wound capacitors using 50-μm-thick glass. Two capacitors were fabricated from 2.8-m-long ribbons of thin (50 μm) glass wound into 125-140-mm-diameter spools. The capacitors exhibit a capacitance of 70-75 nF with loss tangents below 1%. The wound capacitors can operate up to 1 kV and show excellent temperature stability to 150 °C. By improving the end terminations, the self-resonance can be shifted to above 1 MHz, indicating that these materials may be useful for pulsed power applications with microsecond discharge times.

  7. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    Science.gov (United States)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  8. Cold-crucible fabrication of nuclear glasses

    International Nuclear Information System (INIS)

    Boen, R.

    2010-01-01

    Vitrification has stood the nuclear industry in good stead, for many years now, as a safe long-term conditioning technology for high-level waste. Major advances are nonetheless still being made, with the development of the cold-crucible technology, affording as it does new possibilities, in terms of volume reduction, and of extending the range of waste products amenable to incorporation. Indeed, by allowing higher melting temperatures to be achieved (1200 - 1400 C degrees), this process opens the way to a considerable increase in glass production capacities, and the fabrication of novel matrices, involving higher incorporation rates than current glasses. In the cold-crucible technology, materials put into the crucible are heated directly through induction. The crucible made of metal is cooled by water circulation. Where the glass comes into contact with the cold wall, a thin layer of solidified glass forms, with a thickness of 5-10 mm preventing the metal forming the crucible from coming into contact with the molten glass. A full scale pilot of the cold crucible was constructed at the La Hague vitrification workshop

  9. Low Power Consumption Complementary Inverters with n-MoS2 and p-WSe2 Dichalcogenide Nanosheets on Glass for Logic and Light-Emitting Diode Circuits.

    Science.gov (United States)

    Jeon, Pyo Jin; Kim, Jin Sung; Lim, June Yeong; Cho, Youngsuk; Pezeshki, Atiye; Lee, Hee Sung; Yu, Sanghyuck; Min, Sung-Wook; Im, Seongil

    2015-10-14

    Two-dimensional (2D) semiconductor materials with discrete bandgap become important because of their interesting physical properties and potentials toward future nanoscale electronics. Many 2D-based field effect transistors (FETs) have thus been reported. Several attempts to fabricate 2D complementary (CMOS) logic inverters have been made too. However, those CMOS devices seldom showed the most important advantage of typical CMOS: low power consumption. Here, we adopted p-WSe2 and n-MoS2 nanosheets separately for the channels of bottom-gate-patterned FETs, to fabricate 2D dichalcogenide-based hetero-CMOS inverters on the same glass substrate. Our hetero-CMOS inverters with electrically isolated FETs demonstrate novel and superior device performances of a maximum voltage gain as ∼27, sub-nanowatt power consumption, almost ideal noise margin approaching 0.5VDD (supply voltage, VDD=5 V) with a transition voltage of 2.3 V, and ∼800 μs for switching delay. Moreover, our glass-substrate CMOS device nicely performed digital logic (NOT, OR, and AND) and push-pull circuits for organic light-emitting diode switching, directly displaying the prospective of practical applications.

  10. Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film

    KAUST Repository

    Yang, Xiaoming

    2014-12-12

    Chalcogenide glasses have a variety of unique optical properties due to the intrinsic structural flexibility and bonds metastability. They are desirable materials for many applications, such as infrared communication sensors, holographic grating, optical imaging, and ultrafast nonlinear optic devices. Here, we introduce a novel electron-beam evaporation process to deposit the good quality arsenic trisulfide (As2S3) films and then the As2S3 films were used to fabricate the As2S3 waveguides with three approaches. The first method is photoresist lift-off. Because of the restriction of thermal budget of photoresist, the As2S3 film must be deposited at the room temperature. The second one is the silicon dioxide lift-off process on sapphire substrates, in which the As2S3 film could be evaporated at a high temperature (>180 °C) for better film quality. The third one is the plasma etching process with a metal protective thin layer in the pattern development process.

  11. Studies on fabrication of glass fiber reinforced composites using polymer blends

    Science.gov (United States)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  12. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    Science.gov (United States)

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator

    Science.gov (United States)

    Refatul Haq, Muhammad; Kim, Youngkyu; Kim, Jun; Oh, Pyoung-hwa; Ju, Jonghyun; Kim, Seok-Min; Lim, Jiseok

    2017-01-01

    This study reports a cost-effective method of replicating glass microfluidic chips using a vitreous carbon (VC) stamp. A glass replica with the required microfluidic microstructures was synthesized without etching. The replication method uses a VC stamp fabricated by combining thermal replication using a furan-based, thermally-curable polymer with carbonization. To test the feasibility of this method, a flow focusing droplet generator with flow-focusing and channel widths of 50 µm and 100 µm, respectively, was successfully fabricated in a soda-lime glass substrate. Deviation between the geometries of the initial shape and the vitreous carbon mold occurred because of shrinkage during the carbonization process, however this effect could be predicted and compensated for. Finally, the monodispersity of the droplets generated by the fabricated microfluidic device was evaluated. PMID:29286341

  14. Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator

    Directory of Open Access Journals (Sweden)

    Hyungjun Jang

    2017-12-01

    Full Text Available This study reports a cost-effective method of replicating glass microfluidic chips using a vitreous carbon (VC stamp. A glass replica with the required microfluidic microstructures was synthesized without etching. The replication method uses a VC stamp fabricated by combining thermal replication using a furan-based, thermally-curable polymer with carbonization. To test the feasibility of this method, a flow focusing droplet generator with flow-focusing and channel widths of 50 µm and 100 µm, respectively, was successfully fabricated in a soda-lime glass substrate. Deviation between the geometries of the initial shape and the vitreous carbon mold occurred because of shrinkage during the carbonization process, however this effect could be predicted and compensated for. Finally, the monodispersity of the droplets generated by the fabricated microfluidic device was evaluated.

  15. Wafer-scale fabrication of glass-FEP-glass microfluidic devices for lipid bilayer experiments.

    Science.gov (United States)

    Bomer, Johan G; Prokofyev, Alexander V; van den Berg, Albert; Le Gac, Séverine

    2014-12-07

    We report a wafer-scale fabrication process for the production of glass-FEP-glass microdevices using UV-curable adhesive (NOA81) as gluing material, which is applied using a novel "spin & roll" approach. Devices are characterized for the uniformity of the gluing layer, presence of glue in the microchannels, and alignment precision. Experiments on lipid bilayers with electrophysiological recordings using a model pore-forming polypeptide are demonstrated.

  16. Ablation of (GeS{sub 2}){sub 0.3}(Sb{sub 2}S{sub 3}){sub 0.7} glass with an ultra-violet nano-second laser

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, P., E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Joint Laboratory of Solid State Chemistry of IMC and University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); University of Pardubice, Faculty of Chemical Technology, Department of General and Inorganic Chemistry, Studentska 573, 532 10 Pardubice (Czech Republic); Navesnik, J.; Cernohorsky, T. [University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, Studentska 573, 532 10 Pardubice (Czech Republic); Kincl, M.; Vlcek, M.; Tichy, L. [Institute of Macromolecular Chemistry, AS CR, Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)

    2015-04-15

    Highlights: • The interaction of (GeS{sub 2}){sub 0.3}(Sb{sub 2}S{sub 3}){sub 0.7} bulk glass and film with UV nanosecond laser. • Ablation process, topography of crater and structure of the material were studied. • Ablation threshold fluencies changed with the spot diameter and number of pulses. • The photo-thermal expansion of the material occurred for low laser fluency. • Laser direct writing process applicable for fabrication of passive optical elements. - Abstract: The results of an experimental study of the laser ablation of bulk and thin films of a GeSbS chalcogenide glass using UV nanosecond pulses are reported. The response of the samples to illumination conditions was studied through the use of atomic force spectroscopy, digital holographic microscopy, Raman scattering and scanning electron microscopy. The multi-pulse ablation thresholds were determined for both the bulk and thin film samples for varying number of pulses and illuminated spot diameter. The possible application of direct laser writing into the bulk and thin films of this material is presented.

  17. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.

    Directory of Open Access Journals (Sweden)

    Jayesh A Bafna

    Full Text Available We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform.

  18. Fabrication and characterization of a water-free mid-infrared fluorotellurite glass.

    Science.gov (United States)

    Lin, Aoxiang; Ryasnyanskiy, Aleksandr; Toulouse, Jean

    2011-03-01

    Using a physical and chemical dehydration technique and a high-pressure, ultradry O2 atmosphere in a semiclosed steel-chamber furnace, we fabricated a group of fluorotellurite glasses with a composition of (90-x)TeO2-xZnF2-10Na2O (mol.%, x=0-30). For x=30, no OH absorption was observed in the range of 0.38-6.1 μm. This is the first report of a water-free mid-IR fluorotellurite glass, to our knowledge, offering the common advantages of a robust oxide glass and an IR-transparent fluoride one. Besides optimized linear transmittance and absorption, the nonlinear refractive indices and Raman gain coefficients are reduced. These results are discussed in the context of mid-IR high-power laser generation and transmission.

  19. Experimental Investigations on the effect of Additive on the Tensile Properties of Fiber Glass Fabric Lamina

    Science.gov (United States)

    Nava Sai Divya, A.; Raghu Kumar, B., Dr; Lakshmi Narayana, G., Dr

    2017-09-01

    The main objective of this work is to investigate the effect of additives on tensile behaviour of fiber glass fabric at lamina level to explore an alternative skin material for the outer body of aerospace applications and machines. This experimental work investigates the effect of silica concentration in epoxy resin lapox L-12 on the tensile properties of glass fabric lamina of 4H-satin weave having 3.6 mm thickness. The lamina was prepared by using hand lay-up method and tests were conducted on it. Various tensile properties values obtained from experimentation were compared for four glass fiber lamina composites fabricated by adding the silica powder to resin bath. The effect of variations in silica concentration (0% SiO2, 5% SiO2, 10% SiO2 and 15% SiO2) on the tensile properties of prepared material revealed that maximum stiffness was obtained at 15% and yield strength at 10% SiO2 concentration in glass fiber lamina. Increasing the silica concentration beyond 10% had led to deterioration in the material properties. The experimentation that was carried out on test specimen was reasonably successful as the effect of silica powder as an additive in glass fiber lamina enhanced the mechanical properties up to certain limit. The underpinning microscopic behaviour at the source of these observations will be investigated in a follow up work.

  20. Generation of micro-sized conductive lines on glass fibre fabrics by inkjet printing

    NARCIS (Netherlands)

    Balda Irurzun, Unai; Dutschk, Victoria; Calvimontes, Alfredo; Akkerman, Remko

    2012-01-01

    Micro-sized lines were inkjet printed on glass fibre fabrics using different droplet spacing. A conductive ink containing silver nanoparticles was used in this study. Glass fibre fabrics were differently pre-treated to avoid spontaneous spreading of the ink dispersion. The sample topography was

  1. Thermokinetic behaviour of Ag-doped (GeS2)50(Sb2S3)50 glasses.

    Czech Academy of Sciences Publication Activity Database

    Svoboda, R.; Fraenkl, M.; Frumarová, Božena; Wágner, T.; Málek, J.

    2016-01-01

    Roč. 449, 1 October (2016), s. 12-19 ISSN 0022-3093 Institutional support: RVO:61389013 Keywords : DSC * Ag doping * Ge-Sb-S glass Subject RIV: CA - Inorganic Chemistry Impact factor: 2.124, year: 2016

  2. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite.

    Science.gov (United States)

    Huang, Qiting; Qin, Wei; Garoushi, Sufyan; He, Jingwei; Lin, Zhengmei; Liu, Fang; Vallittu, Pekka K; Lassila, Lippo V J

    2018-01-30

    The objective of this study was to investigate several physicochemical properties of an experimental discontinuous S2-glass fiber-reinforced resin composite. The experimental composite was prepared by mixing 10 wt% of discontinuous S2-glass fibers with 27.5 wt% of resin matrix and 62.5 wt% of particulate fillers. Flexural strength (FS) and modulus (FM), fracture toughness (FT), work of fracture (WOF), double bond conversion (DC), Vickers hardness, volume shrinkage (VS) and fiber length distribution were determined. These were compared with two commercial resin composites. The experimental composite showed the highest FS, WOF and FT compared with two control composites. The DC of the experimental composite was comparable with controls. No significant difference was observed in VS between the three tested composites. The use of discontinuous glass fiber fillers with polymer matrix and particulate fillers yielded improved physical properties and substantial improvement was associated with the use of S2-glass fiber.

  3. Design and fabrication of multispectral optics using expanded glass map

    Science.gov (United States)

    Bayya, Shyam; Gibson, Daniel; Nguyen, Vinh; Sanghera, Jasbinder; Kotov, Mikhail; Drake, Gryphon; Deegan, John; Lindberg, George

    2015-06-01

    As the desire to have compact multispectral imagers in various DoD platforms is growing, the dearth of multispectral optics is widely felt. With the limited number of material choices for optics, these multispectral imagers are often very bulky and impractical on several weight sensitive platforms. To address this issue, NRL has developed a large set of unique infrared glasses that transmit from 0.9 to > 14 μm in wavelength and expand the glass map for multispectral optics with refractive indices from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. The new NRL glasses can be easily molded and also fused together to make bonded doublets. A Zemax compatible glass file has been created and is available upon request. In this paper we present some designs, optics fabrication and imaging, all using NRL materials.

  4. Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications

    Science.gov (United States)

    Guddala, S.; Chiappini, A.; Armellini, C.; Turell, S.; Righini, G. C.; Ferrari, M.; Narayana Rao, D.

    2015-02-01

    Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2-xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 μm communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers.

  5. Fabrication of silicon based glass fibres for optical communication

    Indian Academy of Sciences (India)

    Silicon based glass fibres are fabricated by conventional fibre drawing process. First, preform fabrication is carried out by means of conventional MCVD technique by using various dopants such as SiCl4, GeCl4, POCl3, and FeCl3. The chemicals are used in such a way that step index single mode fibre can be drawn.

  6. Chemical stability of soda-alumina-zirconia-silica glasses to Na, Na2S4, and S

    International Nuclear Information System (INIS)

    Bloom, S.I.; Bradley, J.; Nelson, P.A.; Roche, M.F.

    1985-01-01

    Twenty-two glasses with a broad range of compositions, spanning the quaternary soda-alumina-zirconia-silica system, have been prepared to allow characterization of the various properties of the system. The glasses were characterized by their resistivities, energies of activation for conduction, and glass transition temperatures. The glasses were screened for compositions of especially high chemical stability of static corrosion tests in Na, S, and Na 2 S 4 for 1000h at 400 0 C. Among the glasses tested, the high soda glasses showed the smallest weight change after exposure to the three media. The weight change observed was comparable to that seen in the Dow borate glass and beta'' alumina

  7. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  8. Soda-based glass fabricated from Thailand quartz sands doped with silver compound

    Science.gov (United States)

    Won-in, Krit; Dararutana, Pisutti

    2012-10-01

    Yellow colored glass which used for luxury art glass in ancient time was fabricated by the addition of silver compound into the molten glass. It was proved that it was actually silver nanoparticle technology. In this work, the SiO2-(Na2O,K2O)-CaO-B2O3-Al2O3-MgO glass system was prepared in the laboratory scale based on local quartz sands from Trat Province, eastern area of Thailand as the silica raw material. Various concentrations of silver nitrate were added. After the complete conventional melting process, the bubble-free yellow glasses were yielded. Physical and optical properties such as density, refractive index and optical absorption spectra were measured. Scanning electron microscope coupled with energy dispersive spectroscopy was carried out to study their morphology. The refractive indices and densities were increased as the increase of the silver contents. Electron micrographs showed the presence of silver nanoparticle in the glass matrix. UV-VIS spectra were in good agreement with that found from SEM measurements and corresponded with the universally accepted. It was also showed that the more brilliance on the surface of the glass products was obtained after firing with a gas torch.

  9. Effects of Fe{sub 2}O{sub 3} content on ionic conductivity of Li{sub 2}O-TiO{sub 2}-P{sub 2}O{sub 5} glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, E., E-mail: elnaz.mohaghegh@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11155-9466 (Iran, Islamic Republic of); Nemati, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11155-9466 (Iran, Islamic Republic of); Eftekhari Yekta, B. [Ceramic Division, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 16846-13114 (Iran, Islamic Republic of); Banijamali, S. [Ceramic Division, Materials & Energy Research Center, Alborz, 31787-316 (Iran, Islamic Republic of)

    2017-04-01

    In this study, Li{sub 2}O-TiO{sub 2}-P{sub 2}O{sub 5}-x(Fe{sub 2}O{sub 3}) (x = 0, 2.5, 5 and 7.5 weight part) glass and glass-ceramics were synthesized through conventional melt-quenching method and subsequently heat treatment. Glass samples were studied by UV–visible spectroscopy and crystallized samples were characterized by differential thermal analysis, X-ray diffractometry and field emission scanning electron microscopy. Besides, electrical properties were examined according to the electrochemical impedance spectroscopy techniques. Experimental optical spectra of the Fe{sub 2}O{sub 3}-doped glasses revealed strong UV absorption band in the range of 330–370 nm, which were attributed to the presence of Fe{sup 3+} ions. The major crystalline phase of the fabricated glass-ceramics was LiTi{sub 2}(PO{sub 4}){sub 3}. However, Li{sub 3}PO{sub 4} was also identified as the minor one. Considering the impedance spectroscopy studies, ionic conductivity of Fe{sub 2}O{sub 3} containing glasses was higher than that of the base glass. Additionally, the maximum bulk ionic conductivity of 1.38 × 10{sup −3} S/cm was achieved as well as activation energy as low as 0.26 eV at room temperature for x = 5. - Highlights: • Bulk and total ionic conductivity was extracted by using impedance spectroscopy. • Ionic conductivity of the studied glasses and glass-ceramics increased with increasing Fe{sub 2}O{sub 3} content. • The highest bulk ionic conductivity at room temperature was found to be 1.38 × 10{sup −3} S/cm for GC{sub 5}.

  10. Bioactive glass 45S5 from diatom biosilica

    Directory of Open Access Journals (Sweden)

    Luqman A. Adams

    2017-12-01

    Full Text Available A major draw-back to large scale production of bioactive glasses is the high cost of the standard silica precursor, usually tetraethyl orthosilicate (TEOS. The current study describes a novel sol–gel preparation of 45S5 bioactive glass using diatom biosilica from cultured cells of the diatom, Aulacoseira granulata as substitute to TEOS. The glass formed was characterized using mechanical tester, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDX, X-ray diffraction (XRD and Fourier transform infrared (FTIR spectroscopy. Results showed that the glass possessed a compressive strength of 3.75 ± 0.18 and formed carbonated hydroxyapatite (HCA within 7 days in simulated body fluid (SBF, attributable to good surface chemistry. The performance of the glass was compared with that of those formed using TEOS. Diatom biosilica could be a potential economically friendly starting material for large scale fabrication of bioactive glasses.

  11. Fiber Fabrication Facility for Non-Oxide and Specialty Glasses

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Unique facility for the research, development, and fabrication of non-oxide and specialty glasses and fibers in support of Navy/DoD programs.DESCRIPTION:...

  12. Crack-resistant Al2O3-SiO2 glasses.

    Science.gov (United States)

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  13. Experimental Investigation on Mechanical Properties of Hemp/E-Glass Fabric Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    M R SANJAY

    2016-09-01

    Full Text Available This research work has been focusing on Hemp fibers has an alternative reinforcement for fiber reinforced polymer composites due to its eco-friendly and biodegradable characteristics. This work has been carried out to evaluate the mechanical properties of hemp/E-glass fabrics reinforced polyester hybrid composites. Vacuum bagging method was used for the preparation of six different kinds of hemp/glass fabrics reinforced polyester composite laminates as per layering sequences. The tensile, flexural, impact and water absorption tests of these hybrid composites were carried out experimentally according to ASTM standards. It reveals that an addition of E-glass fabrics with hemp fabrics can increase the mechanical properties of composites and decrease the water absorption of the hybrid composites.

  14. Fabrication and characterization of biomorphic 45S5 bioglass scaffold from sugarcane

    International Nuclear Information System (INIS)

    Qian Junmin; Kang Yahong; Wei Zilin; Zhang Wei

    2009-01-01

    A biomorphic 45S5 bioglass scaffold has been fabricated from natural plant sugarcane successfully by a novel biotemplating process. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetry and differential scanning calorimetry (TG-DSC) technologies were employed to characterize the morphology, phase and chemical composition of the products. Experimental results show that the as-fabricated 45S5 bioglass scaffold retained the microstructure of sugarcane very well, and consisted of major crystal phase Na 2 Ca 2 Si 3 O 9 of hexagonal system, secondary crystal phase orthorhombic NaCaPO 4 and amorphous glass. The biomorphic 45S5 bioglass scaffold may be a promising candidate scaffold for bone tissue engineering.

  15. Gamma-ray irradiation resistance of silver doped GeS2–Ga2S3–AgI chalcohalide glasses

    International Nuclear Information System (INIS)

    Shen, W.; Baccaro, S.; Cemmi, A.; Ren, J.; Zhang, Z.; Zhou, Y.; Yang, Y.; Chen, G.

    2014-01-01

    Highlights: • The γ-ray irradiation resistance of Ag doped chalcohalide glasses (GeS 2 –Ga 2 S 3 –AgI) has been investigated. • The introduction of silver ions plays a specific role in the modification of the gamma-ray irradiation resistance of glasses. • The sulfur exerts an important effect on the photo-sensitivity of chalcogenide glasses. - Abstract: In the present work, series of silver doped Ge–Ga–S–AgI chalcohalide glasses have been prepared and their optical transmission spectra are compared before and after γ-ray irradiation at different doses. The differential transmission spectra of the irradiated samples with and without Ag doping have been compared to characterize the γ-ray irradiation induced red-shift of electronic absorption and formation of color centers. Ag doping plays an important role in increasing γ-ray irradiation resistance of the chalcohalide glasses due to its specific effect on the valence band and the network structure of glasses

  16. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.

    Science.gov (United States)

    Martin, Steve W; Bischoff, Christian; Schuller, Katherine

    2015-12-24

    A negative mixed glass former effect (MGFE) in the Na(+) ion conductivity of glass has been found in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] glasses where the Na(+) ion conductivity is significantly smaller for all of the ternary glasses than either of the binary end-member glasses. The minimum conductivity of ∼0.4 × 10(-6) (Ω cm)(-1) at 25 °C occurs for the x = 0.7 glass. Prior to this observation, the alkali ion conductivity of sulfide glasses at constant alkali concentration, but variable ratio of one glass former for another (x) ternary mixed glass former (MGF) glasses, has always produced a positive MGFE in the alkali ion conductivity; that is, the ternary glasses have always had higher ion conductivities that either of the end-member binary glasses. While the Na(+) ion conductivity exhibits a single global minimum value, the conductivity activation energy exhibits a bimodal double maximum at x ≈ 0.4 and x ≈ 0.7. The modified Christensen-Martin-Anderson-Stuart (CMAS) model of the activation energies reveals the origin of the negative MGFE to be due to an increase in the dielectric stiffness (a decrease in relative dielectric permittivity) of these glasses. When coupled with an increase in the average Na(+) ion jump distance and a slight increase in the mechanical stiffness of the glass, this causes the activation energy to go through maximum values and thereby produce the negative MGFE. The double maximum in the conductivity activation energy is coincident with double maximums in CMAS calculated strain, ΔES, and Coulombic, ΔEC, activation energies. In these ternary glasses, the increase in the dielectric stiffness of the glass arises from a negative deviation of the limiting high frequency dielectric permittivity as compared to the binary end-member glasses. While the CMAS calculated total activation energies ΔEact = ΔES + ΔEC are found to reproduce the overall shape of the composition dependence of the measured ΔEact values, they are consistently

  17. Crack-resistant Al2O3–SiO2 glasses

    Science.gov (United States)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  18. Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Murugan, Ganapathy Senthil; Ohishi, Yasutake

    2005-01-01

    Transparent Li 2 O-Ga 2 O 3 -SiO 2 (LGS) glass-ceramics embedding Ni:LiGa 5 O 8 nanocrystals were fabricated. An intense emission centered around 1300 nm with the width of more than 300 nm was observed by 976 nm photoexcitation of the glass-ceramics. The lifetime was more than 900 μs at 5 K and 500 μs at 300 K. The emission could be attributed to the 3 T 2g ( 3 F)→ 3 A 2g ( 3 F) transition of Ni 2+ in distorted octahedral sites in LiGa 5 O 8 . The product of stimulated emission cross section and lifetime for the emission was about 3.7x10 -24 cm 2 s and was a sufficiently practical value

  19. Fabrication and characterization of MCC approved testing material - ATM-8 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center (MCC) Approved Testing Material ATM-8 is a borosilicate glass that incorporates elements typical of high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuel. Its composition is based upon the simulated HLW glass type 76-68 (Mendel, J.E. et al., 1977, Annual Report of the Characteristics of High-Level Waste Glasses, BNWL-2252, Pacific Northwest Laboratory, Richland, Washington), to which depleted uranium, technetium-99, neptunium-237 and plutonium-239 have been added at moderate to low levels. The glass was requested by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. It was produced by the MCC at the Pacific Northwest Laboratory (PNL) operated for the Department of Energy (DOE) by Battelle Memorial Institute. ATM-8 glass was produced in April of 1984, and is the second in a series of testing materials for NNWSI. This report discusses its fabrication (starting materials, batch and glass preparation, measurement and testing equipment, other equipment, procedures, identification system and materials availability and storage, and characterization (bulk density) measurements, chemical analysis, microscopic examination, and x-ray diffraction analysis. 4 refs., 2 figs., 10 tabs

  20. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  1. Mid-infrared emissions of Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunfeng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Guo, Haitao, E-mail: guoht_001@opt.ac.cn [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Xu, Yantao; Hou, Chaoqi; Lu, Min [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); He, Xin [School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Pengfei; Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Peng, Bo, E-mail: bpeng@opt.ac.cn [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China)

    2014-12-15

    Graphical abstract: ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system. - Highlights: • Serial Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses were synthesized. • ∼4.6 μm mid-infrared fluorescence from Pr{sup 3+} was observed at room temperature. • The compositional dependence of luminescence properties was studied. • Radiative properties have been determined using the Judd–Ofelt theory. - Abstract: For elucidation of the glass composition’s influence on the spectroscopic properties in the chalcohalide system and the discovery of a new material for applications in mid-infrared fiber-lasers, a serial Pr{sup 3+}-doped (100 − x)(0.8GeS{sub 2}·0.2Ga{sub 2}S{sub 3})xCdI{sub 2} (x = 5, 10, 15 and 20) chalcohalide glasses were prepared. ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system, and the effective line-width of fluorescence band is 106–227 nm. Intense compositional dependence of mid-infrared emissions is found. The radiative rates of Pr{sup 3+} ions in these glasses were calculated by using the Judd–Ofelt theory.

  2. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In

  3. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rajta, I.; Nagy, G.U.L. [MTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Zolnai, Z. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Havranek, V. [Nuclear Physics Institute AV CR, Řež near Prague 250 68 (Czech Republic); Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Veres, M. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); Righini, G.C. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-07-15

    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO{sub 2}–WO{sub 3} glass through a special silicon mask using 1.5 MeV N{sup +} irradiation. This method was improved by increasing N{sup +} energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C{sup 3+} and C{sup 5+} and 5 MeV N{sup 3+}, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi{sub 4}Ge{sub 3}O{sub 12}) and sillenite type (Bi{sub 12}GeO{sub 20}) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N{sup +} irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method.

  4. On the “compositional threshold“ in GeS2-Sb2S3, GeSe2-Sb2Se3 and GeS2-Bi2S3 glasses

    Czech Academy of Sciences Publication Activity Database

    Tichý, Ladislav; Tichá, H.

    2015-01-01

    Roč. 152, 15 February (2015), s. 1-3 ISSN 0254-0584 Institutional support: RVO:61389013 Keywords : chalcogenide glasses * hetero three atom linkages * eutectic compositon Subject RIV: CA - Inorganic Chemistry Impact factor: 2.101, year: 2015

  5. Tailoring properties of porous Poly (vinylidene fluoride) scaffold through nano-sized 58s bioactive glass.

    Science.gov (United States)

    Shuai, Cijun; Huang, Wei; Feng, Pei; Gao, Chengde; Shuai, Xiong; Xiao, Tao; Deng, Youwen; Peng, Shuping; Wu, Ping

    2016-01-01

    The biological properties of porous poly (vinylidene fluoride) (PVDF) scaffolds fabricated by selective laser sintering were tailored through nano-sized 58s bioactive glass. The results showed that 58s bioactive glass distributed evenly in the PVDF matrix. There were some exposed particles on the surface which provided attachment sites for biological response. It was confirmed that the scaffolds had highly bioactivity by the formation of bone-like apatite in simulated body fluid. And the bone-like apatite became dense with the increase in 58s bioactive glass and culture time. Moreover, the scaffolds were suitable for cell adhesion and proliferation compared with the PVDF scaffolds without 58s bioactive glass. The research showed that the PVDF/58s bioactive glass scaffolds had latent application in bone tissue engineering.

  6. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  7. Development of glass/glass-ceramics materials and devices and their micro-structural studies

    International Nuclear Information System (INIS)

    Goswami, Madhumita; Sarkar, Arjun; Shingarvelan, Shobha; Kumar, Rakesh; Ananathanarayan, Arvind; Shrikhande, V.K.; Kothiyal, G.P.

    2009-01-01

    Materials and devices based on glass and glass-ceramics (GCs) find applications in various high pressure and vacuum applications. We have prepared different glasses/glass-ceramics with requisite thermal expansion coefficient, electrical, vacuum and wetting characteristics to fabricate hermetic seals with different metals/alloys as well as components for these applications. Some of these are, SiO 2 -Na 2 O-K 2 O-Al 2 O 3 -B 2O3 (BS) for matched type of seal fabricated with Kovar alloy, SiO 2 -Na 2 O-K 2 O-BaO-PbO(LS) for fabrication of compressive type seals with stainless steel and SS 446 alloys, P 2 O 5 -Na 2 O-B 2 O 3 -BaO-PbO(NAP) for fabrication of matched type of seal with relatively low melting metals/alloys like AI/Cu-Be and Li 2 O-ZnO-SiO 2 -P 2 O 5 -B 2 O 3 -Na 2 O (LZS) and Lithium aluminium silicate (LAS) glass-ceramics to fabricate matched and compression types feedtroughs/conductivity probes Magnesium aluminium silicate (MAS) machinable glass-ceramics is another development for high voltage and ultra high vacuum applications. Micro-structural studies have been carried out on these materials to understand the mechanism of their behaviour and have also been deployed in various systems and plants in DAE. (author)

  8. Effect of the ZnS shell layer on the charge storage capabilities of organic bistable memory devices fabricated utilizing CuInS2–ZnS core–shell quantum dots embedded in a poly(methylmethacrylate) layer

    International Nuclear Information System (INIS)

    Yun, Dong Yeol; Kim, Tae Whan; Kim, Sang Wook

    2013-01-01

    The electrical characteristics of organic bistable memory devices (OBDs) fabricated utilizing CuInS 2 (CIS) core or CIS–ZnS core–shell quantum dots (QDs) embedded in a poly(methylmethacrylate) (PMMA) layer on indium–tin-oxide (ITO) coated glass substrates were investigated. X-ray photoelectron spectroscopy spectra demonstrated that the stoichiometries of the QDs embedded in a PMMA layer were CIS or CIS–ZnS QDs. Current–voltage measurements on Al/CIS or CIS–ZnS QDs embedded in PMMA layer/ITO glass devices at 300 K showed current bistabilities. The maximum ON/OFF current ratios of the OBDs with CIS or CIS–ZnS QDs were approximately 1 × 10 3 and 1 × 10 5 , respectively. The retention number of ON and OFF states was measured by 1 × 10 5 . The memory mechanisms of the OBDs with CIS or CIS–ZnS QDs are described on the basis of the experimental results. - Highlights: • Organic bistable devices utilizing nanocomposites were fabricated. • Current–voltage results on organic bistable devices showed current bistabilities. • Maximum ON/OFF current ratio of the device with core–shell quantum dots was 1 × 10 5 . • Retention number of the device with core–shell quantum dots was 1 × 10 5

  9. Conductance switching in Ag(2)S devices fabricated by in situ sulfurization.

    Science.gov (United States)

    Morales-Masis, M; van der Molen, S J; Fu, W T; Hesselberth, M B; van Ruitenbeek, J M

    2009-03-04

    We report a simple and reproducible method to fabricate switchable Ag(2)S devices. The alpha-Ag(2)S thin films are produced by a sulfurization process after silver deposition on an Si substrate. Structure and composition of the Ag(2)S are characterized using XRD and RBS. Our samples show semiconductor behaviour at low bias voltages, whereas they exhibit reproducible bipolar resistance switching at higher bias voltages. The transition between both types of behaviour is observed by hysteresis in the I-V curves, indicating decomposition of the Ag(2)S, increasing the Ag(+) ion mobility. The as-fabricated Ag(2)S samples are a good candidate for future solid state memory devices, as they show reproducible memory resistive properties and they are fabricated by an accessible and reliable method.

  10. Conductance switching in Ag2S devices fabricated by in situ sulfurization

    International Nuclear Information System (INIS)

    Morales-Masis, M; Molen, S J van der; Hesselberth, M B; Ruitenbeek, J M van; Fu, W T

    2009-01-01

    We report a simple and reproducible method to fabricate switchable Ag 2 S devices. The α-Ag 2 S thin films are produced by a sulfurization process after silver deposition on an Si substrate. Structure and composition of the Ag 2 S are characterized using XRD and RBS. Our samples show semiconductor behaviour at low bias voltages, whereas they exhibit reproducible bipolar resistance switching at higher bias voltages. The transition between both types of behaviour is observed by hysteresis in the I-V curves, indicating decomposition of the Ag 2 S, increasing the Ag + ion mobility. The as-fabricated Ag 2 S samples are a good candidate for future solid state memory devices, as they show reproducible memory resistive properties and they are fabricated by an accessible and reliable method.

  11. Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching

    NARCIS (Netherlands)

    Lenssen, B.L.K.; Bellouard, Y.

    2012-01-01

    Femtosecond laser manufacturing combined with chemical etching has recently emerged as a flexible platform for fabricating three-dimensional devices and integrated optical elements in glass substrates. Here, we demonstrate an optically transparent micro-actuator fabricated out of a single piece of

  12. Design and Fabrication of Automatic Glass Cutting Machine

    Science.gov (United States)

    Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.

    2016-09-01

    This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.

  13. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  14. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes

    Science.gov (United States)

    Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming

    2010-12-01

    Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.

  15. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    International Nuclear Information System (INIS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  16. An Ethology of Urban Fabric(s)

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Thomsen, Bodil Marie Stavning

    2014-01-01

    The article explores a non-metaphorical understanding of urban fabric(s), shifting the attention from a bird’s eye perspective to the actual, textural manifestations of a variety of urban fabric(s) to be studied in their real, processual, ecological and ethological complexity within urban life. We...... effectuate this move by bringing into resonance a range of intersecting fields that all deal with urban fabric(s) in complementary ways (interaction design and urban design activism, fashion, cultural theory, philosophy, urban computing)....

  17. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure...... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  18. Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage.

    Science.gov (United States)

    Yang, Peihua; Sun, Peng; Chai, Zhisheng; Huang, Langhuan; Cai, Xiang; Tan, Shaozao; Song, Jinhui; Mai, Wenjie

    2014-10-27

    Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine-doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g(-1). Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3% to 15.1% at a wavelength of 633 nm when a voltage of -0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy-storage and electrochromism properties. As a second example, a polyaniline-based pseudocapacitive glass was also developed, and its color can change from green to blue. A large-scale pseudocapacitive WO3-based glass window (15×15 cm(2)) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fabrication of selenization-free superstrate-type CuInS{sub 2} solar cells based on all-spin-coated layers

    Energy Technology Data Exchange (ETDEWEB)

    Cheshme khavar, Amir Hossein [Department of Chemistry, Tarbiat Modares University, P.O. Box. 14155-4383, Gisha Bridge, Tehran (Iran, Islamic Republic of); Mahjoub, Alireza, E-mail: mahjouba@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box. 14155-4383, Gisha Bridge, Tehran (Iran, Islamic Republic of); Samghabadi, Farnaz Safi [Physics Department, Sharif University of Technology, Tehran, 14588 (Iran, Islamic Republic of); Taghavinia, Nima, E-mail: taghavinia@sharif.edu [Physics Department, Sharif University of Technology, Tehran, 14588 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588 (Iran, Islamic Republic of)

    2017-01-15

    Today manufacturing of high efficiency chalcogenide thin film solar cells is based on high cost vacuum-based deposition processes at high temperature (>500 °C) and in chalcogen -containing atmosphere. In this paper, we introduce a simple vacuum-free and selenization-free, solution processing for fabricating a superstrate-type CuInS{sub 2} (CIS) solar cell. The absorber, buffer and blocking layers were all deposited by spin coating of molecular precursor inks. We demonstrate the deposition of In{sub 2}S{sub 3} buffer layer by sol-gel spin casting for the first time. The rapid sintering process of CIS layer was carried out at 250 °C that is considered a very low temperature in CIGS thin-film technologies. A novel molecular-ink route to deposit In{sub 2}S{sub 3} type buffer layer is presented. For the back contact we employed carbon, deposited by simple knife coating method. Different parameters including type of buffer, thickness of absorber layer, CIS and In{sub 2}S{sub 3} annealing temperature and morphology were optimized. Our air stable simple device structure consisting of <Glass/FTO/TiO{sub 2}/In{sub 2}S{sub 3}/CIS/Carbon > showed promising power conversion efficiency (PCE) of 2.67%. - Highlights: • This work is an effort on the fabrication of all spin-coated CIS solar cells. • A novel molecular-ink route to deposit In{sub 2}S{sub 3} type buffer layer is presented. • The best devices showed power conversion efficiency (PCE) of 2.67%.

  20. Fabrication and evaluation of osteoblastic differentiation of human mesenchymal stem cells on novel CaO-SiO2-P2O5-B2O3 glass-ceramics.

    Science.gov (United States)

    Lee, Jae Hyup; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Baek, Hae-Ri

    2013-07-01

    Apatite-wollastonite glass-ceramics have high mechanical strength, and CaO-SiO2 -B2 O3 glass-ceramics showed excellent bioactivity and high biodegradability. A new type of CaO-SiO2 -P2 O5 -B2 O3 system of bioactive glass-ceramics (BGS-7) was fabricated, and the effect and usefulness was evaluated via bioactivity using simulated body fluid and human mesenchymal stem cells (hMSCs). The purpose of this study was to compare BGS-7 and hydroxyapatite (HA) using hMSCs in order to evaluate the bioactivity of BGS-7 and its possibility as a bone graft extender. Alkaline phosphatase (ALP) staining, ALP activity, cell proliferation 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, Alizarin Red-S (AR-S) staining, calcium levels, the mRNA expression of ALP, osteocalcin, osteopontin, and runt-related transcription factor 2 (runx-2) using reverse-transcription polymerase chain reaction (RT-PCR) and the protein expression of osteocalcin and runx-2 using Western blot were measured by transplanting hMSC onto a tissue culture plate, HA, and BGS-7. The ALP staining and AR-S staining of BGS-7 was greater than that of HA and control. The ALP value of BGS-7 was significantly higher than that of HA and control. The MTS results showed that BGS-7 had a higher value than the groups transplanted onto HA and control on day 15. The calcium level was higher than the control in both HA and BGS-7, and was especially high in BGS-7. There were more mineral products on BGS-7 than on the HA when analyzed by scanning electron microscopy. The mRNA expression of ALP, osteopontin, osteocalcin, and runx-2 were higher on BGS-7 than on HA and the control when analyzed by RT-PCR. The relative gene expression of osteopontin and runx-2 were found to be higher on BGS-7 than on HA and the control by Western blot. Accordingly, it is predicted that BGS-7 would have high biocompatibility and good osteoconductivity, and presents a possibility as a new

  1. Ionic Exchange Study of Ternary Glass Membrane (AgI-PbS-As2S3)System in Solution Using Radioisotope Tracers

    International Nuclear Information System (INIS)

    Dawed, E. M.

    2004-01-01

    Glass-formation region was determined for the system AgI-PbS-As 2 S 3 in a large range of composition (from 12-64 mol. % AgI). The homogeneous glasses of AgI-PbS-As 2 S 3 system were chosen for the study. The electrical conductivity of the glasses was measured as a function of temperature and composition by the complex impedance diagram method. At 298 K, the conductivity reached a maximum value of 3.388 x 10 -3 Ω -1 cm -1 for glass containing the highest mole % of AgI. According to the ion conductivity parameters, two glass groups were observed and classified as: ionic conductors (12-50 mol. %, AgI) and super-ionic conductors (50-64 mol. % AgI). Conductivity measurements led to a decrease in the resistivity by eight orders of magnitude on increasing the concentration of AgI. Such a result made the ternary glass AgI-PbS-As 2 S 3 system a proper model to study the ionic processes of membrane surfaces. Ionic exchange processes between the glass membranes and the solutions were studied by the incorporation of radioactive indicators: silver-110 m ( 110m Ag) and cadmium- 115 m (115 mCd) radioisotopes in the form of silver and cadmium nitrate solutions respectively. In the present paper, data on the density, conductivity, and ionic exchange processes of the studied system are given. The conductivity and ionic exchange parameters are also graphically illustrated. (author)

  2. Fabrication of highly conductive Ta-doped SnO2 polycrystalline films on glass using seed-layer technique by pulse laser deposition

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Yamada, Naoomi; Hitosugi, Taro; Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya

    2010-01-01

    We discuss the fabrication of highly conductive Ta-doped SnO 2 (Sn 1-x Ta x O 2 ; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity (ρ) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO 2 and NbO 2 as seed-layers; these are isostructural materials of SnO 2, which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with x = 0.05 on rutile TiO 2 exhibited ρ = 3.5 x 10 -4 Ω cm, which is similar to those of the epitaxial films grown on Al 2 O 3 (0001).

  3. Conductance switching in Ag{sub 2}S devices fabricated by in situ sulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Masis, M; Molen, S J van der; Hesselberth, M B; Ruitenbeek, J M van [Kamerlingh Onnes Laboratorium, Universiteit Leiden, PO Box 9504, 2300 RA Leiden (Netherlands); Fu, W T [Leiden Institute of Chemistry, Gorlaeus Laboratorium, Universiteit Leiden, PO Box 9502, 2300 RA Leiden (Netherlands)], E-mail: ruitenbeek@physics.leidenuniv.nl

    2009-03-04

    We report a simple and reproducible method to fabricate switchable Ag{sub 2}S devices. The {alpha}-Ag{sub 2}S thin films are produced by a sulfurization process after silver deposition on an Si substrate. Structure and composition of the Ag{sub 2}S are characterized using XRD and RBS. Our samples show semiconductor behaviour at low bias voltages, whereas they exhibit reproducible bipolar resistance switching at higher bias voltages. The transition between both types of behaviour is observed by hysteresis in the I-V curves, indicating decomposition of the Ag{sub 2}S, increasing the Ag{sup +} ion mobility. The as-fabricated Ag{sub 2}S samples are a good candidate for future solid state memory devices, as they show reproducible memory resistive properties and they are fabricated by an accessible and reliable method.

  4. Optical properties of Er-doped GeS2-Ga2S3 glasses

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Jayasimhadri, M.; Kincl, Miloslav

    2009-01-01

    Roč. 11, č. 9 (2009), s. 1269-1272 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40500505 Keywords : glasses * optical properties * luminescence Subject RIV: CA - Inorganic Chemistry Impact factor: 0.433, year: 2009

  5. Numerical study on fabricating rectangle microchannel in microfluidic chips by glass molding process

    Science.gov (United States)

    Wang, Tao; Chen, Jing; Zhou, Tianfeng

    2017-09-01

    This paper studied the glass molding process (GMP) for fabricating a typical microstructure of glass microfluidic chips, i. e., rectangle microchannel, on soda-lime glass by finite element method. More than 100 models were established on the platform of Abaqus/Standard. The influence of parameters, i. e., temperature, aspect ratio, side wall angle and friction coefficient on deformation were studied, and the predicted morphology of the molded microchannel were presented as well. The research could provide fundamental experience for optimizing GMP process in the future.

  6. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  7. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSHILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2006-11-21

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs

  8. Fabrication and characterization of MCC approved testing material: ATM-WV/205 glass

    International Nuclear Information System (INIS)

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-08-01

    The ATM-WV/205 glass was produced in accordance with PNL's QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of this work. The method and procedure to be used in the fabrication and characterization of the ATM-WV/205 glass were specified in two run plans for glass preparation and a characterization plan. The ATM-WV/205 glass meets all specifications. The elemental composition and oxidation state of the glass are within the sponsor's specifications. Visually, the ATM-WV/205 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination and x-ray diffraction revealed low (about 0.5 wt %) concentrations of 3-μm iron chrome spinel crystals and 1-μm ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 20 to 135 μm, was observed in all samples. 3 refs., 10 figs., 21 tabs

  9. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair.

    Science.gov (United States)

    Liu, Xin; Rahaman, Mohamed N; Hilmas, Gregory E; Bal, B Sonny

    2013-06-01

    There is a need to develop synthetic scaffolds to repair large defects in load-bearing bones. Bioactive glasses have attractive properties as a scaffold material for bone repair, but data on their mechanical properties are limited. The objective of the present study was to comprehensively evaluate the mechanical properties of strong porous scaffolds of silicate 13-93 bioactive glass fabricated by robocasting. As-fabricated scaffolds with a grid-like microstructure (porosity 47%, filament diameter 330μm, pore width 300μm) were tested in compressive and flexural loading to determine their strength, elastic modulus, Weibull modulus, fatigue resistance, and fracture toughness. Scaffolds were also tested in compression after they were immersed in simulated body fluid (SBF) in vitro or implanted in a rat subcutaneous model in vivo. As fabricated, the scaffolds had a strength of 86±9MPa, elastic modulus of 13±2GPa, and a Weibull modulus of 12 when tested in compression. In flexural loading the strength, elastic modulus, and Weibull modulus were 11±3MPa, 13±2GPa, and 6, respectively. In compression, the as-fabricated scaffolds had a mean fatigue life of ∼10(6) cycles when tested in air at room temperature or in phosphate-buffered saline at 37°C under cyclic stresses of 1-10 or 2-20MPa. The compressive strength of the scaffolds decreased markedly during the first 2weeks of immersion in SBF or implantation in vivo, but more slowly thereafter. The brittle mechanical response of the scaffolds in vitro changed to an elasto-plastic response after implantation for longer than 2-4weeks in vivo. In addition to providing critically needed data for designing bioactive glass scaffolds, the results are promising for the application of these strong porous scaffolds in loaded bone repair. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Fabrication of poly(methyl methacrylate)-MoS{sub 2}/graphene heterostructure for memory device application

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Sachin M.; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2014-12-07

    Combination of two dimensional graphene and semi-conducting molybdenum disulfide (MoS{sub 2}) is of great interest for various electronic device applications. Here, we demonstrate fabrication of a hybridized structure with the chemical vapor deposited graphene and MoS{sub 2} crystals to configure a memory device. Elongated hexagonal and rhombus shaped MoS{sub 2} crystals are synthesized by sulfurization of thermally evaporated molybdenum oxide (MoO{sub 3}) thin film. Scanning transmission electron microscope studies reveal atomic level structure of the synthesized high quality MoS{sub 2} crystals. In the prospect of a memory device fabrication, poly(methyl methacrylate) (PMMA) is used as an insulating dielectric material as well as a supporting layer to transfer the MoS{sub 2} crystals. In the fabricated device, PMMA-MoS{sub 2} and graphene layers act as the functional and electrode materials, respectively. Distinctive bistable electrical switching and nonvolatile rewritable memory effect is observed in the fabricated PMMA-MoS{sub 2}/graphene heterostructure. The developed material system and demonstrated memory device fabrication can be significant for next generation data storage applications.

  11. Physical properties of glasses in the Ag2GeS3-AgBr system

    Science.gov (United States)

    Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.

    2013-08-01

    Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.

  12. Effect of silane coupling agent on interfacial adhesion of copper/glass fabric/epoxy composites

    International Nuclear Information System (INIS)

    Langroudi, A. E.; Yousefi, A. A.; Kabiri, Kourosh

    2003-01-01

    The effect of silane coupling agent on the peel strength of copper/prep reg/copper composites was investigated. The composite consisted of one or two sheets of prepress covered by two copper plates. The prep reg was prepared by hand dry-lay-up technique using an epoxy resin and an electrical resistant glass fabric (e-glass style 2165). 4,4'-methylene dianiline. An aromatic amine, was used as curing agent. curing times for prep reg and composite at 120 d ig C and 170 d ig C were 15 min and 1 h, respectively. γ-aminopropyl trimethoxy silane was used as coupling agent. The effect of aminopropyl trimethoxy silane on the adhesion of epoxy/glass and epoxy/copper interfaces was investigated by two methods. In the first method, the surface of the glass fabric and/or the copper plates were treated by aminopropyl trimethoxy silane. In the second method, aminopropyl trimethoxy silane was directly added to epoxy resin. In addition, the effect of additional resin on the adhesion strength was also studied by the latter method

  13. Preparation and investigation of Ge-S-I glasses for infrared fiber optics

    Science.gov (United States)

    Velmuzhov, A. P.; Sukhanov, M. V.; Plekhovich, A. D.; Snopatin, G. E.; Churbanov, M. F.; Iskhakova, L. D.; Ermakov, R. P.; Kotereva, T. V.; Shiryaev, V. S.

    2016-02-01

    Glass samples of [GeSx]90I10 (x = 1.5, 1.7, 2.0, 2.3, 2.45, 2.6) compositions were prepared, and some their thermal, optical properties as well as tendency to crystallization were investigated. The compositional dependences of glass transition temperature, volume fraction of crystallized phase and activation energy of glass formation (Eg) have nonmonotonic character with a maximum for [GeS2.0]90I10 glass. Glasses of 85.8GeS2-14.2GeI4 and [GeS1.5]90I10 compositions are identified as promising for preparation of optical fiber. For the first time, Ge-S-I glass fibers were produced. Minimum optical losses in 85.8GeS2-14.2GeI4 glass fiber were 2.7 dB/m at a wavelength of 5.1 μm, and that in [GeS1.5]90I10 glass fiber were 14.5 dB/m at 5.5 μm.

  14. Upconversion in rare earth ions doped TeO2-ZnO glass

    International Nuclear Information System (INIS)

    Mohanty, Deepak Kumar; Rai, Vineet Kumar

    2012-01-01

    The Er 3+ /Yb 3+ doped/codoped TeO 2 -ZnO glasses have been fabricated by conventional melt and quenching technique. The absorption spectra of the doped/codoped glasses have been performed. The visible upconversion emissions of both doped and codoped glasses have been observed using 808 nm diode laser excitation. The process involved in upconversion emissions has been discussed in detail. (author)

  15. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2006-11-15

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs

  16. Damage characterization of E-glass and C-glass fibre polymer composites after high velocity impact

    Science.gov (United States)

    Razali, N.; Sultan, M. T. H.; Cardona, F.; Jawaid, M.

    2017-12-01

    The purpose of this work is to identify impact damage on glass fibre reinforced polymer composite structures after high velocity impact. In this research, Type C-glass (600 g/m2) and Type E-glass (600 g/m2) were used to fabricate Glass Fibre-Reinforced Polymer composites (GFRP) plates. The panels were fabricated using a vacuum bagging and hot bounder method. Single stage gas gun (SSGG) was used to do the testing and data acquisition system was used to collect the damage data. Different types of bullets and different pressure levels were used for the experiment. The obtained results showed that the C-glass type of GFRP experienced more damage in comparison to E-glass type of materials based on the amount of energy absorbed on impact and the size of the damage area. All specimens underwent a partial fibre breakage but the laminates were not fully penetrated by the bullets. This indicated that both types of materials have high impact resistance even though the applied pressures of the gas gun were on the high range. We concluded that within the material specifications of the laminates including the type of glass fibre reinforcement and the thickness of the panels, those composite materials are safe to be applied in structural and body armour applications as an alternative to more expensive materials such as Kevlar and type S-glass fibre based panels.

  17. A facile method to fabricate close-packed concave microlens array on cylindrical glass

    International Nuclear Information System (INIS)

    Deng, Zefang; Chen, Feng; Yang, Qing; Liu, Hewei; Bian, Hao; Du, Guangqing; Hu, Yang; Si, Jinhai; Meng, Xiangwei; Hou, Xun

    2012-01-01

    This work presents a facile method to fabricate concave microlens arrays (MLAs) with controllable shape and high fill factor on cylindrical silica glass by a femtosecond laser-enhanced chemical wet etching process. The hexagonal and rectangular MLAs are flexibly fabricated on the silica glass cylinder with a diameter of 3 mm. The morphological characteristics of MLAs are measured by a scanning electron microscope and a laser scanning confocal microscope. The measurements show that the good uniformity and high packing density MLA structures are generated. It has also been demonstrated that the shape and size of the concave structures could be easily tuned by changing laser power and the arrangement of laser exposure spots. The convex MLAs replicated by the polymer casting method experience excellent image quality. (paper)

  18. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite

    International Nuclear Information System (INIS)

    Misri, S; Leman, Z; Sapuan, S M; Ishak, M R

    2010-01-01

    In recent years, sugar palm fibre has been found to have great potential to be used as fibre reinforcement in polymer matrix composites. This research investigates the mechanical properties of woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. The composite specimens made of different layer of fibres such as strand mat, natural and hand woven of sugar palm fibres. The composites were fabricated using a compression moulding technique. The tensile and impact test was carried out in accordance to ASTM 5083 and ASTM D256 standard. The fibre glass boat is a familiar material used in boat industry. A lot of research on fabrication process such as lay-up, vacuum infusion mould and resin transfer mould has been conducted. Hybrid material of sugar palm fibre and fibre glass was used in fabricating the boat. This research investigates the method selection for fabrication of small boat application of natural fibre composites. The composite specimens made of different layer of fibres; woven glass fibre, strand mat, natural and hand woven of woven sugar palm fibres were prepared. The small boat were fabricated using a compression moulding and lay up technique. The results of the experiment showed that the tensile strength, tensile modulus, elongation at break value and impact strength were higher than the natural woven sugar palm fibre. The best method for fabricating the small boat was compression moulding technique. As a general conclusion, the usage of glass fibre had improved the tensile properties sugar palm fibre composites and compression moulding technique is suitable to be used in making a small boat application of natural fibre composites.

  19. Synthesis, characterization of CaF2 doped silicate glass-ceramics.

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Mirza, Ambreen; Hussain, Tousif; Bashir, Farooq; Anjum, Safia

    2017-06-01

    This paper reports the fabrication and characterization of silicate glass-ceramics doped with (0-12mol%) CaF 2 . TGA-DSC analysis was carried out to determine the crystallization temperature and stability of glass measured by two glass parameters; Hruby parameter K H =(T x -T g )/(T L -T x ) and Weinberg parameter K W =(T c -T g )/T L . It was found that with CaF 2 doping improved sinterability at low temperature and provided stability to the glass. The XRD pattern exhibits a single phase of combeite and doping of CaF 2 cause increase in crystallite size. Microstructure of samples was also improved with CaF 2 addition, pores were significantly reduced. After 15days immersion in simulated body fluid all samples developed apatite layer onto its surface. Hence, the addition of CaF 2 provided bioactive glass-ceramic material having a low processing temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric

    Science.gov (United States)

    Xiao, Wenya; Huang, Zhixiong; Ding, Jie

    2017-12-01

    In this work, kaolin powder and glass fiber fabric were added to PF in order to improve its thermal stability and mechanical property. Micro-structures of carbonized PF with kaolin powder were inspected by scanning electron microscopy (SEM) to demonstrate the filler’s pinning effect. SEM results illustrated modified PF had well morphology after high-temperature heat treatment. The Fourier transform infrared spectrometer (FTIR) test was carried out and found that kaolin powder only physically dispersed in PF. The compression test and thermal weight loss test were done on two groups of modified PF (Group A: add powder and fabric; Group B: add powder only). Results showed that all modified PF were better than pure PF, while foams with powder and fabric showed better mechanical characteristic and thermal stability compared with foams with powder only.

  1. Structural and optical properties of Zn doped CuInS 2 thin films

    Indian Academy of Sciences (India)

    Copper indium sulphide (CIS) films were deposited by spray pyrolysis onto glass ... The effects of Zn (0–5%)molecular weight compared with CuInS2 Source and ... candidates for use as doped acceptors to fabricate CuInS2-based solar cells.

  2. Fabrication and Characterization of Thin Film Solar Cell Made from CuIn0.75Ga0.25S2 Wurtzite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fengyan Zhang

    2013-01-01

    Full Text Available CuIn0.75Ga0.25S2 (CIGS thin film solar cells have been successfully fabricated using CIGS Wurtzite phase nanoparticles for the first time. The structure of the cell is Glass/Mo/CIGS/CdS/ZnO/ZnO:Al/Ag. The light absorption layer is made from CIGS Wurtzite phase nanoparticles that are formed from single-source precursors through a microwave irradiation. The Wurtzite phase nanoparticles were converted to Chalcopyrite phase film through a single-step annealing process in the presence of argon and sulfur at 450°C. The solar cell made from Wurtzite phase nanoparticles showed 1.6% efficiency and 0.42 fill factor.

  3. Study on the fabrication and photoluminescence characteristics of LiPO3 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Jeong, S. Z.; Lee, J. M.; Hwang, J. H.; Choi, S. H.

    2001-01-01

    In this syudy, LiPO 3 glass scintillators were fabricated, and lanthanides (except Pm) oxides or chlorides were used as an activator. For the fabrication of LiPO 3 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time is 950 .deg. C and 90 min, respectively. As the result of photoluminescence analysis, it was impossible to apply Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu to activator. Because emission spectrum of samples with them was equal to that of sample without activator. In case of samples with Europium, the peak of emission spectrum of Eu(II) and Eu(III) is 420 nm and 620 nm, separately. And Samples with Ce(III) are about 380 nm, and Tb(III) are about 550 nm. On the fabrication of LiPO 3 glass samples, PL intensity was increased by adding sugar as reductant, and using Ar reduction atmosphere. And the optimum reduction conditions were differed as to the kinds of activators. Samples with Eu(II) and Tb(III) have the best PL intensity in the Ar reduction atmosphere, and sample with Ce(III) have the best intensity by added sugar

  4. Fabricating Zr-Based Bulk Metallic Glass Microcomponent by Suction Casting Using Silicon Micromold

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2014-08-01

    Full Text Available A suction casting process for fabricating Zr55Cu30Al10Ni5 bulk metallic glass microcomponent using silicon micromold has been studied. A complicated BMG microgear with 50 μm in module has been cast successfully. Observed by scanning electron microscopy and laser scanning confocal microscopy, we find that the cast microgear duplicates the silicon micromold including the microstructure on the surface. The amorphous state of the microgear is confirmed by transmission election microscopy. The nanoindentation hardness and elasticity modulus of the microgear reach 6.5 GPa and 94.5 GPa. The simulation and experimental results prove that the suction casting process with the silicon micromold is a promising one-step method to fabricate bulk metallic glass microcomponents with high performance for applications in microelectromechanical system.

  5. Freeform Fabrication of Magnetophotonic Crystals with Diamond Lattices of Oxide and Metallic Glasses for Terahertz Wave Control by Micro Patterning Stereolithography and Low Temperature Sintering

    Directory of Open Access Journals (Sweden)

    Maasa Nakano

    2013-04-01

    Full Text Available Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer sized metallic glass of Fe72B14.4Si9.6Nb4 and oxide glass of B2O3·Bi2O3 particles was spread on a metal substrate, and cross sectional images of ultra violet ray were exposed. Through the layer by layer stacking, micro lattice structures with a diamond type periodic arrangement were successfully formed. The composite structures could be obtained through the dewaxing and sintering process with the lower temperature under the transition point of metallic glass. Transmission spectra of the terahertz waves through the magnetophotonic crystals were measured by using a terahertz time domain spectroscopy.

  6. Fabrication of highly conductive Ta-doped SnO{sub 2} polycrystalline films on glass using seed-layer technique by pulse laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro, E-mail: tg-s-nakao@newkast.or.j [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Yamada, Naoomi [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hitosugi, Taro [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan)

    2010-03-31

    We discuss the fabrication of highly conductive Ta-doped SnO{sub 2} (Sn{sub 1-x}Ta{sub x}O{sub 2}; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity ({rho}) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO{sub 2} and NbO{sub 2} as seed-layers; these are isostructural materials of SnO{sub 2,} which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with x = 0.05 on rutile TiO{sub 2} exhibited {rho} = 3.5 x 10{sup -4} {Omega} cm, which is similar to those of the epitaxial films grown on Al{sub 2}O{sub 3} (0001).

  7. Double-bond defect modelling in As-S glasses

    International Nuclear Information System (INIS)

    Boyko, V; Shpotyuk, O; Hyla, M

    2010-01-01

    Ab initio calculations with the RHF/6-311G* basis set are used for geometrical optimization of regular pyramidal and defect quasi-tetrahedral clusters in binary As-S glasses. It is shown that quasi-tetrahedral S=AsS 3/2 structural units are impossible as main network-building blocks in these glasses.

  8. Double-bond defect modelling in As-S glasses

    Energy Technology Data Exchange (ETDEWEB)

    Boyko, V; Shpotyuk, O; Hyla, M, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Ab initio calculations with the RHF/6-311G* basis set are used for geometrical optimization of regular pyramidal and defect quasi-tetrahedral clusters in binary As-S glasses. It is shown that quasi-tetrahedral S=AsS{sub 3/2} structural units are impossible as main network-building blocks in these glasses.

  9. Ablation of (GeS2)0.3(Sb2S3)0.7 glass with an ultra – violet nano-second laser

    Czech Academy of Sciences Publication Activity Database

    Knotek, P.; Návesník, J.; Černohorský, T.; Kincl, Miloslav; Vlček, Milan; Tichý, Ladislav

    2015-01-01

    Roč. 64, April (2015), s. 42-50 ISSN 0025-5408 Institutional support: RVO:61389013 Keywords : chalcogenides * glass * atomic force microscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 2.435, year: 2015 http://www.sciencedirect.com/science/article/pii/S0025540814007843

  10. Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites

    Science.gov (United States)

    Studenyak, I. P.; Neimet, Yu. Yu.; Kranjčec, M.; Solomon, A. M.; Orliukas, A. F.; Kežionis, A.; Kazakevičius, E.; Šalkus, T.

    2014-01-01

    Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300-400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.

  11. Fabrication of worm-like Ag2S nanocrystals under mediation of protein

    Indian Academy of Sciences (India)

    1College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, ... inorganic–organic nanocomposites and there is strong interaction between Ag2S and pepsin. ... applied in the fields of photovoltaics, electroluminescence .... method for fabricating Ag2S nanostructure by using proteins.

  12. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    International Nuclear Information System (INIS)

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-01-01

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted

  13. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-09-23

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted

  14. Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films

    International Nuclear Information System (INIS)

    Lee, Keunhee; Ki, Hyungson

    2016-01-01

    We report a laser-based method for directly fabricating large-area, transparent conductive films with customizable electrical resistance on glass. In this method, a diamond-like carbon (DLC) film is deposited first on a glass substrate by pulsed laser deposition, which is then annealed in a helium shielding environment by a 2 kW continuous-wave fiber laser with a wavelength of 1070 nm, which is transparent to glass but is absorbed by DLC to transform the amorphous carbons to graphene. When a 510 nm thick film was annealed at a scanning speed of 1 m/s by a 200 μm top-hat laser beam, the sp 3 fraction was decreased from 43.1% to 8.1% after the annealing process, and the transformed film showed a transparency of ∼80% (at 550 nm) and a sheet resistance of ∼2050 Ω/sq. We also showed that sheet resistance and transparency can be controlled by changing processing parameters. To show the scalability of the method, a 15 mm wide line beam was used to produce a 15 mm × 15 mm film. This method is simple, fully scalable, transfer-free and catalyst-free, and we believe that the fabricated films can have many applications with further research, such as transparent heating films, electromagnetic shielding films, and transparent electrodes.

  15. Studies on fully transparent Al-Sn-Zn-O thin-film transistors fabricated on glass at low temperature

    Science.gov (United States)

    Cong, Yingying; Han, Dedong; Wu, Jing; Zhao, Nannan; Chen, Zhuofa; Zhao, Feilong; Dong, Junchen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2015-04-01

    High-performance fully transparent Al-Sn-Zn-O thin-film transistors (ATZO TFTs) with excellent electrical performance have been successfully fabricated by RF magnetron sputtering on glass at low temperatures. Two kinds of appropriate ATZO compositions are compared from several perspectives, including film material characteristics, device electrical performances, and fabrication process conditions. Finally, we achieve two excellent ATZO TFTs with competitive advantages. The ATZO TFT with larger amounts of dopants exhibits a superior field effect mobility μFE of 102.38 cm2 V-1 s-1, an ON/OFF current ratio (Ion/Ioff) of 1.18 × 107, and a threshold voltage VT of 1.35 V. The device with smaller amounts of dopants demonstrates better crystal quality and an excellent subthreshold swing SS of 155 mV/dec. Furthermore, it is less affected by oxygen partial pressure. The ATZO thin films display a high transmittance of over 80% in the visible light range.

  16. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    Science.gov (United States)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  17. Fabrication and characterization of MCC [Materials Characterization Center] approved testing material: ATM-10 glass

    International Nuclear Information System (INIS)

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-04-01

    The Materials Characterization Center ATM-10 glass represents a reference commercial high-level waste form similar to that which will be produced by the West Valley Nuclear Service Co. Inc., West Valley, New York. The target composition and acceptable range of composition were defined by the sponsor, West Valley Nuclear Service. The ATM-10 glass was produced in accordance with the Pacific Northwest Laboratory QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of the work. The method and procedure to be used in the fabrication and characterization of the ATM-10 glass were specified in two run plans for glass preparation and a characterization plan. All of the ATM-10 glass was produced in the form of bars 1.9 /times/ 1.9 /times/ 10 cm nominal size, and 93 g nominal mass. A total of 15 bars of ATM-10 glass weighing 1394 g was produced. The production bars were characterized to determine the mean composition, oxidation state, and microstructure of the ATM-10 product. Table A summarizes the characterization results. The ATM-10 glass meets all specifications. The elemental composition and oxidation state of the glass are within the specifications of the client. Visually, the ATM-10 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination revealed low (less than 2 wt %) concentractions of 3-μm iron-chrome (suspected spinel) crystals and /approximately/0.5-μm ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 5 to 250 μm, was observed in all samples. 4 refs., 10 figs., 21 tabs

  18. EXAFS and RDF studies of Ge27S53I20 glass

    International Nuclear Information System (INIS)

    Nasu, H.; Myoren, H.; Makida, S.; Imura, T.; Osaka, Y.

    1988-01-01

    Detailed X-ray diffraction measurements and extended X-ray absorption fine structure (EXAFS) have been applied to Ge 23 S 57 I 20 glass as a typical chalcohalide glass and to GeS 2 glass for comparison, in order to investigate the structure of Ge-S-I glass system. From the derived curves against atomic distance, the formation of Ge-I bonds is evidenced in the glass structure. (author) 4 refs., 2 figs., 1 tab

  19. Fabrication of microfluidic mixers with varying topography in glass using the powder-blasting process

    International Nuclear Information System (INIS)

    Sayah, Abdeljalil; Thivolle, Pierre-Antoine; Parashar, Virendra K; Gijs, Martin A M

    2009-01-01

    The powder-blasting method is used to fabricate structures with a three-dimensional topography in glass using elastomeric masks. The relation between the mask opening width and the erosion depth is exploited to fabricate microstructures with varying depth in a single micropatterning step. As an application, planar three-dimensional micro-mixers were fabricated, which consist of a repeating convergent microfluidic nozzle structure. Three different designs of the micro-mixers were considered. The mixing of co-flowing laminar streams results from the generation of multiple vortices at the exit of the different convergent nozzles

  20. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    Science.gov (United States)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  1. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  3. Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass.

    Science.gov (United States)

    Chen, Wei-Ting; Manivannan, Karthikeyan; Yu, Chia-Chi; Chu, Jinn P; Chen, Jem-Kun

    2018-01-18

    The concurrent attachment and detachment movements of geckos on virtually any type of surface via their foot pads have inspired us to develop a thermal device with numerous arrangements of a multi-layer thin film together with electrodes that can help modify the temperature of the surface via application of a voltage. A sequential fabrication process was employed on a large-scale integration to generate well-defined contact hole arrays of photoresist for use as templates on the electrode-based device. The photoresist templates were then subjected to sputter deposition of the metallic glass Zr 55 Cu 30 Al 10 Ni 5 . Consequently, a metallic glass nanotube (MGNT) array having a nominal wall thickness of 100 nm was obtained after removal of the photoresist template. When a water droplet was placed on the MGNT array, close nanochambers of metallic glass were formed. By applying voltage, the surface was heated to increase the pressure inside the nanochambers; this generated an expanding force that raised the droplet; thus, the static water contact angle (SWCA) was increased. In contrast, a sucking force was generated during surface cooling, which decreased the SWCA. Our fabrication strategy exploits the MGNT array surface as nanosuckers, which can mimic the climbing aptitude of geckos as they attach to (>10 N m -2 ) and detach from (0.26 N m -2 ) surfaces at 0.5 and 3 V of applied voltage, respectively. Thus, the climbing aptitude of geckos can be mimicked by employing the processing strategy presented herein for the development of artificial foot pads.

  4. Water’s second glass transition

    Science.gov (United States)

    Amann-Winkel, Katrin; Gainaru, Catalin; Handle, Philip H.; Seidl, Markus; Nelson, Helge; Böhmer, Roland

    2013-01-01

    The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water’s calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This “double Tg scenario” is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate–dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20–25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known (“superstrong”), and also high-density liquid is classified as a strong liquid. PMID:24101518

  5. Investigations on mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites

    International Nuclear Information System (INIS)

    Suresha, B.; Kumar, Kunigal N. Shiva

    2009-01-01

    The aim of the research article is to study the mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites. The measured wear volume loss increases with increase in abrading distance/abrasive particle size. However, the specific wear rate decreases with increase in abrading distance and decrease in abrasive particle size. The results showed that the highest specific wear rate is for glass fabric reinforced vinyl ester composite with a value of 10.89 x 10 -11 m 3 /Nm and the lowest wear rate is for carbon fabric reinforced vinyl ester composite with a value of 4.02 x 10 -11 m 3 /Nm. Mechanical properties were evaluated and obtained values are compared with the wear behaviour. The worn surface features have been examined using scanning electron microscope (SEM). Photomicrographs of the worn surfaces revealed higher percentage of broken glass fiber as compared to carbon fiber. Also better interfacial adhesion between carbon and vinyl ester in carbon reinforced vinyl ester composite was observed.

  6. Scalable fabrication of self-aligned graphene transistors and circuits on glass.

    Science.gov (United States)

    Liao, Lei; Bai, Jingwei; Cheng, Rui; Zhou, Hailong; Liu, Lixin; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2012-06-13

    Graphene transistors are of considerable interest for radio frequency (rf) applications. High-frequency graphene transistors with the intrinsic cutoff frequency up to 300 GHz have been demonstrated. However, the graphene transistors reported to date only exhibit a limited extrinsic cutoff frequency up to about 10 GHz, and functional graphene circuits demonstrated so far can merely operate in the tens of megahertz regime, far from the potential the graphene transistors could offer. Here we report a scalable approach to fabricate self-aligned graphene transistors with the extrinsic cutoff frequency exceeding 50 GHz and graphene circuits that can operate in the 1-10 GHz regime. The devices are fabricated on a glass substrate through a self-aligned process by using chemical vapor deposition (CVD) grown graphene and a dielectrophoretic assembled nanowire gate array. The self-aligned process allows the achievement of unprecedented performance in CVD graphene transistors with a highest transconductance of 0.36 mS/μm. The use of an insulating substrate minimizes the parasitic capacitance and has therefore enabled graphene transistors with a record-high extrinsic cutoff frequency (> 50 GHz) achieved to date. The excellent extrinsic cutoff frequency readily allows configuring the graphene transistors into frequency doubling or mixing circuits functioning in the 1-10 GHz regime, a significant advancement over previous reports (∼20 MHz). The studies open a pathway to scalable fabrication of high-speed graphene transistors and functional circuits and represent a significant step forward to graphene based radio frequency devices.

  7. Radiation-induced defects in As-Sb-S glass

    International Nuclear Information System (INIS)

    Balitska, V; Shpotyuk, Ya; Filipecki, J; Shpotyuk, O

    2010-01-01

    Defect-related instability was studied in γ-irradiated (As 2 S 3 ) 1-x (Sb 2 S 3 ) x glasses (x = 0, 0.1, 0.2 and 0.3) using positron annihilation lifetime spectroscopy treated within high-measurement statistics. The observed decrease in average positron lifetime in the studied glasses is explained as a renovation of destroyed covalent chemical bonds after irradiation. This process is governed by monomolecular relaxation kinetics, being described in the framework of universal configuration-coordinate model.

  8. Structure and Ionic Conductivity of Li2S-P2S5 Glass Electrolytes Simulated with First-Principles Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Takeshi eBaba

    2016-06-01

    Full Text Available Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solid-state lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li+ mobilities by using molecular dynamics calculations based on density functional theory (DFT-MD. The structures of xLi2S-(100 - xP2S5 (x = 67, 70, 75, and 80 were created by randomly identifying appropriate compositions of Li+, PS43-, P2S74-, and S2- and then annealing them with DFT-MD calculations. Calculated relative stabilities of the amorphous structures with x = 67, 70, and 75 relative to crystals with the same compositions were 0.04, 0.12, and 0.16 kJ/g, respectively. The implication is that these amorphous structures are metastable. There was good agreement between calculated and experimental structure factors determined from X-ray scattering. The differences between the structure factors of amorphous structures were small, except for the first sharp diffraction peak, which was affected by the environment between Li and S atoms. Li+ diffusion coefficients obtained from DFT-MD calculations at various temperatures for picosecond simulation times were on the order of 10-3 - 10-5 Angstrom2/ps. Ionic conductivities evaluated by the Nernst-Einstein relationship at 298.15 K were on the order of 10-5 S/cm. The ionic conductivity of the amorphous structure with x = 75 was the highest among the amorphous structures because there was a balance between the number density and diffusibility of Li+. The simulations also suggested that isolated S atoms suppress Li+ migration.

  9. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    Evander, Mikael; Tenje, Maria

    2014-01-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  10. Fabrication and characterization of MCC approved testing material - ATM-1 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center Approved Testing Material ATM-1 is a borosilicate glass that incorporates nonradioactive constituents and uranium to represent high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuel. Its composition is based upon the simulated HLW glass type 76-68 to which depleted uranium has been added as UO 2 . Three separate lots of ATM-1 glass have been fabricated, designated ATM-1a, ATM-1b, and ATM-1c. Limited analyses and microstructural evaluations were conducted on each type. Each lot of ATM-1 glass was produced from a feedstock melted in an air atmosphere at between 1150 to 1200 0 C and cast into stress annealed rectangular bars. Bars of ATM-1a were nominally 1.3 x 1.3 x 7.6 cm (approx.36 g each), bars of ATM-1b were nominally 2 x 2.5 x 17.5 cm (approx.190 g each) and bars of ATM-1c were nominally 1.9 x 1.9 x 15 cm (approx.170 g each). Thirteen bars of ATM-1a, 14 bars of ATM-1b, and 6 bars of ATM-1c were produced. Twelve random samples from each of lots ATM-1a, ATM-1b, and ATM-1c were analyzed. The concentrations (except for U and Cs) were obtained by Inductively-Coupled Argon Plasma Atomic Emission Spectroscopy analysis. Cesium analysis was performed by Atomic Absorption Spectroscopy, while uranium was analyzed by Pulsed Laser Fluorometry. X-ray diffraction analysis of four samples indicated that lot ATM-1a had no detectable crystalline phases (<3 wt %), while ATM-1b and ATM-1c contained approx.3 to 5 wt % iron-chrome spinel crystals. These concentrations of secondary spinel component are not considered uncommon. Scanning electron microscopy examination of fracture surfaces revealed only a random, apparently crystalline, second phase (1-10 μm diam) and a random distribution of small voids or bubbles (approx.1 μm nominal diam)

  11. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John [Clemson Univ., SC (United States)

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  12. Radiation-induced defects in As-Sb-S glass

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V; Shpotyuk, Ya; Filipecki, J; Shpotyuk, O, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Defect-related instability was studied in {gamma}-irradiated (As{sub 2}S{sub 3}){sub 1-x}(Sb{sub 2}S{sub 3}){sub x} glasses (x = 0, 0.1, 0.2 and 0.3) using positron annihilation lifetime spectroscopy treated within high-measurement statistics. The observed decrease in average positron lifetime in the studied glasses is explained as a renovation of destroyed covalent chemical bonds after irradiation. This process is governed by monomolecular relaxation kinetics, being described in the framework of universal configuration-coordinate model.

  13. A method for UV-bonding in the fabrication of glass electrophoretic microchips.

    Science.gov (United States)

    Huang, Z; Sanders, J C; Dunsmor, C; Ahmadzadeh, H; Landers, J P

    2001-10-01

    This paper presents an approach for the development of methodologies amenable to simple and inexpensive microchip fabrication, potentially applicable to dissimilar materials bonding and chip integration. The method involves a UV-curable glue that can be used for glass microchip fabrication bonding at room temperature. This involves nothing more than fabrication of glue "guide channels" into the microchip architecture that upon exposure to the appropriate UV light source, bonds the etched plate and cover plate together. The microchip performance was verified by capillary zone electrophoresis (CZE) of small fluorescent molecules with no microchannel surface modification carried out, as well as with a DNA fragment separation following surface modification. The performance of these UV-bonded electrophoretic microchips indicates that this method may provide an alternative to high temperature bonding.

  14. Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Z.; Wood, C.L.

    1995-08-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  15. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    Science.gov (United States)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  16. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  17. Glass forming in La2O3-TiO2-ZrO2 ternary system by containerless processing

    Science.gov (United States)

    Kaneko, Masashi; Kentei Yu, Yu; Kumar, Vijaya; Masuno, Atsunobu; Inoue, Hiroyuki; Odawara, Osamu; Yoda, Shinichi

    The containerless processing is an appropriate method to create new glasses, because it sup-presses nucleation at the boundary between liquid and crucible during solidification and it enables molten samples to be solidified without crystallization. Recently, we have succeeded in forming BaTi2 O5 glass in the bulk state by using an aerodynamic levitation furnace. BaTi2 O5 glass includes no traditional glass network former and it possesses high electric permittivity [1, 2]. From the point of view of optical application, BaTi2 O5 glass has high refractive indices over 2.1. BaTi2 O5 glass, however, vitrify only in a small sphere, and it crystallize when its diameter exceed 1.5 mm. In order to synthesize new titanate oxide glasses which possess higher refractive indices and larger diameter than BaTi2 O5 , La and Zr can be used as substitutive components. When Ba is replaced with La, refractive indices are expected to increase because of the heavier element. The addition of a third element is thought to be effective for enhance-ment of glass formation ability and Zr can be a candidate because Ti and Zr are homologous. In this research, we have succeeded in forming new bulk glass in La2 O3 -TiO2 -ZrO2 ternary system by means of the aerodynamic levitation furnace. We investigated the glass forming region, thermal properties and optical properties of La2 O3 -TiO2 -ZrO2 glass. Glass transition temperature, crystallization temperature, density, refractive indices and transmittance spectra were varied depending on the chemical composition. Reference [1] J. Yu et al, "Fabrication of BaTi2O5 Glass-Ceramics with Unusual Dielectric Properties during Crystallization", Chem-istry of Materials, 18 (2006) 2169-2173. [2] J. Yu et al., "Comprehensive Structural Study of Glassy and Metastable Crystalline BaTi2O5", Chemistry of Materials, 21 (2009) 259-263.

  18. Fabrication and optical properties of SnS thin films by SILAR method

    International Nuclear Information System (INIS)

    Ghosh, Biswajit; Das, Madhumita; Banerjee, Pushan; Das, Subrata

    2008-01-01

    Although the fabrication of tin disulfide thin films by SILAR method is quiet common, there is, however, no report is available on the growth of SnS thin film using above technique. In the present work, SnS films of 0.20 μm thickness were grown on glass and ITO substrates by SILAR method using SnSO 4 and Na 2 S solution. The as-grown films were smooth and strongly adherent to the substrate. XRD confirmed the deposition of SnS thin films. Scanning electron micrograph revealed almost equal distribution of the particle size well covered on the surface of the substrate. EDAX showed that as-grown SnS films were slightly rich in tin component while UV-vis transmission spectra exhibited high absorption in the visible region. The intense and sharp emission peaks at 680 and 825 nm (near band edge emission) dominated the photoluminescence spectra

  19. Studies on the chemical resistance and mechanical properties of natural polyalthia cerasoides woven fabric/glass hybridized epoxy composites

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2015-01-01

    Full Text Available In the present work, natural Polyalthiacerasoide woven fabrics were extracted from the bark of the tree and using these woven fabrics/glass fibre as reinforcements and epoxy as matrix the hybrid composites were prepared by the hand lay-up technique...

  20. Environment Humidity Effect on the Weight of Carbonized Na-Al-Si Glass Fabrics Recovery after Heating

    International Nuclear Information System (INIS)

    Pentjuss, E; Lusis, A; Gabrusenoks, J; Bajars, G

    2015-01-01

    Na-Al-Si glass fabrics fibres contain Na + ions that diffuse to its surface and along with CO 2 and H 2 O from atmosphere create here the shell of carbonate hydrates. The heating of fabric leads to weight loss by evolving these substances. In this work the results of weight recovery study at room relative humidity (20% – 50%) and elevated humidity (near 70%) of fabrics after its heating at different temperatures (70°C – 150°C) are compared. The experiments shoved the different weight recovery kinetics. The initial exponential stages up to 0.3 h – 0.5 h of the both recoveries are associated with water absorption and differ by its levels. In a case of lower environment humidity the later weight increase are restricted by its value, but at an elevated humidity has a maximum and followed weight increase. The reasons of observed differences are discussed

  1. Conductivity study on GeS2-Ga2S3-AgI-Ag chalcohalide glasses

    Czech Academy of Sciences Publication Activity Database

    Ren, J.; Yan, Q.; Wágner, T.; Zima, Vítězslav; Frumar, M.; Frumarová, Božena; Chen, G.

    2013-01-01

    Roč. 114, č. 2 (2013), 023701_1-023701_5 ISSN 0021-8979 Institutional support: RVO:61389013 Keywords : chalcogenide glasses * conductivity Subject RIV: CA - Inorganic Chemistry Impact factor: 2.185, year: 2013

  2. Fabrication of Radiation Shielding Glass

    International Nuclear Information System (INIS)

    Tavichai, Nattaya; Pormsean, Suriyont; Dararutana, Pisutti; Sirikulrat, Narin

    2003-06-01

    In this work, lead glass doped with 50%, 55%,60%, 65%, and 70% w/w Pb 3 O 4 . After that, glass mixtures were melt at 1,250οC with 4 hours soaking time. Molten glass was shaped by mould casting technique then annealed at 700οC and cooled down to room temperature. It was found that the glass with 60%w/w Pb 3 O 4 show maximum absorption coefficient of about 0.383 cm -1 with I-131 at energy 364 keV. The observed refractive indices of the samples range between 1.5908 to 1.5922

  3. Acoustic study of nano-crystal embedded PbO–P2O5 glass

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Glasses; acoustical properties; nanostructured materials; glass ceramic. 1. Introduction. During the last two decades, studies of different physical properties of nano-crystal embedded glass matrix have attracted attention of technologists as well as scientists for fabrication of glass ceramic through controlled crysta-.

  4. Visible light driven multifunctional photocatalysis in TeO2-based semiconductor glass ceramics

    Science.gov (United States)

    Kushwaha, Himmat Singh; Thomas, Paramanandam; Vaish, Rahul

    2017-01-01

    Photocatalytic xCaCu3Ti4O12-(100-x)TeO2 (x=0.25 mol% to 3 mol%), glass nanocomposites were fabricated and investigated for wastewater treatment, self-cleaning surfaces, and photocatalytic hydrogen evolution. Visible light active crystals of Cu-doped TiO2 and TiTe3O8 were grown by optimized crystallization of as-quenched glasses. The visible light photocatalytic activity of glass samples was investigated for estrogenic pharmaceutical pollutants, and the degradation rate was obtained as 168.56 min-1 m-2. A higher photocatalytic H2 production rate was observed (135 μmole h-1 g-1) for the crystallized CaCu3Ti4O12-TeO2 (x=3. 0) glass plate under visible light. The self-cleaning performance was observed using contact angle measurements for water under dark and light conditions. These visible light active glass ceramics are a cost effective sustainable solution for water treatment and self-cleaning applications.

  5. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

    2013-01-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO 2 , 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  6. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  7. Chemically etched sharpened tip of transparent crystallized glass fibers with nonlinear optical Ba2TiSi2O8 nanocrystals

    International Nuclear Information System (INIS)

    Enomoto, Itaru; Benino, Yasuhiko; Komatsu, Takayuki; Fujiwara, Takumi

    2007-01-01

    Glass fibers with a diameter of ∼100 μm are drawn by just pulling up melts of 40BaO·20TiO 2 ·40SiO 2 glass, and transparent crystallized glass fibers consisting of nonlinear optical fresnoite Ba 2 TiSi 2 O 8 nanocrystals (particle size: ∼100-200 nm) are fabricated by crystallization of glass fibers. Precursor glass fibers and nanocrystallized glass fibers are etched chemically using a meniscus method, in which an etching solution of 0.1wt%-HF/hexane is used. Glass fibers with sharpened tips (e.g., the taper length is ∼L=200 μm and the tip angle is ∼θ=23deg) are obtained. It is found that etched nanocrystallized glass fibers also have sharpened tips (L=50 μm, θ=80deg). Compared with precursor glass fibers, nanocrystallized glass fibers show a high resistance against chemical etching in a 0.1 wt%HF solution. Although sharpened tips in nanocrystallized glass fibers do not have nanoscaled apertures, the present study suggests that nanocrystallized glass fibers showing second harmonic generations would have a potential for fiber-type light control optical devices. (author)

  8. Mixed alkali effect in glasses containing MnO2

    International Nuclear Information System (INIS)

    Reddy, M. Sudhakara; Rajiv, Asha; Veeranna Gowda, V. C.; Chakradhar, R. P. S.; Reddy, C. Narayana

    2013-01-01

    Glass systems of the composition xLi 2 O−(25−x)K 2 O−70(0.4ZnO+0.6P 2 O 5 )+5MnO 2 (x = 4,8,12,16 and 20 mol %) have been prepared by melt quenching technique. The thermal and mechanical properties of the glasses have been evaluated as a function of mixed alkali content. Glass transition temperature and Vickers’s hardness of the glasses show a pronounced deviation from linearity at 12 mol%Li 2 O. Theoretically estimated elastic moduli of the glasses show small positive deviations from linearity. MAE in these properties has been attributed to the localized changes in the glass network. The absorption spectra of Mn 2+ ions in these glasses showed strong broad absorption band at 514 nm corresponding to the transition 6 A 1g (S)→ 4 T 1g (G), characteristic of manganese ions in octahedral symmetry. The fundamental absorption edge in UV region is used to study the optical transitions and electronic band structure. From UV absorption edge, optical band gap energies have been evaluated. Band gap energies of the glasses have exhibited MAE and shows minimum value for 12 mol%Li 2 O glass.

  9. Subcritical crack growth behavior of AI2O3-Glass dental composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2003-01-01

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with

  10. Fabrication, characterization and application of Cu{sub 2}ZnSn(S,Se){sub 4} absorber layer via a hybrid ink containing ball milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Li, Yongfeng, E-mail: liyongfeng@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Xiao, Zhenyu [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Ding, Zhanhui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Zhao, Haifeng; Zhang, Ligong; Zhang, Zhenzhong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2015-09-15

    Highlights: • CZTS powders are prepared from binary sulfides by a low cost ball milling process. • Elaborated on phase evolution and formation mechanism of CZTS. • Proposed a hybrid ink approach to resolve difficulty in deposition of CZTS film. • CZTSSe solar cells with highest efficiency of 4.2% are fabricated. • Small-grained CZTS layer hinders the collection of minority carriers. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) powder with kesterite structure was prepared by ball milling of mixture of Cu{sub 2}S, ZnS and SnS{sub 2} powders for more than 15 h. By dispersing the milled CZTS powder in a Cu-, Zn- and Sn-chalcogenide precursor solution, a hybrid ink was fabricated. With the hybrid ink, a precursor CZTS film was deposited on Mo coated soda-lime glass by spin-coating. In order to obtain Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber film with kesterite structure, the CZTS film was annealed at 560 °C for 15 min in Se ambient. It is demonstrated that the annealed film is dominated by a thick layer of kesterite CZTSSe with larger grain size and Cu{sub 8}Fe{sub 3}Sn{sub 2}(S,Se){sub 12} impurity phase with the exception of a very thin layer of kesterite CZTS with smaller grain size at interface between the CZTSSe and Mo layers. Solar cell device was fabricated by using the annealed CZTSSe film as absorber layer, and its conversion efficiency reached 4.2%. Mechanism of formation of the kesterite CZTS powder and CZTSSe film as well as effect of impurity phases on conversion efficiency are discussed in the present paper. The present results suggest that the hybrid ink approach combining with ball milling is a simple, low cost and promising method for preparation of kesterite CZTSSe absorber film and CZTSSe-based solar cell.

  11. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    Science.gov (United States)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  12. Microleakage of Glass Ionomer-based Provisional Cement in CAD/CAM-Fabricated Interim Crowns: An in vitro Study.

    Science.gov (United States)

    Farah, Ra'fat I; Al-Harethi, Naji

    2016-10-01

    The aim of this study was to compare in vitro the marginal microleakage of glass ionomer-based provisional cement with resin-based provisional cement and zinc oxide non-eugenol (ZONE) provisional cement in computer-aided design and computer-aided manufacturing (CAD/CAM)-fabricated interim restorations. Fifteen intact human premolars were prepared in a standardized manner for complete coverage of crown restorations. Interim crowns for the prepared teeth were then fabricated using CAD/CAM, and the specimens were randomized into three groups of provisional cementing agents (n = 5 each): Glass ionomer-based provisional cement (GC Fuji TEMP LT™), bisphenol-A-glycidyldimethacrylate (Bis-GMA)/ triethylene glycol dimethacrylate (TEGDMA) resin-based cement (UltraTemp® REZ), and ZONE cement (TempBond NE). After 24 hours of storage in distilled water at 37°C, the specimens were thermocycled and then stored again for 24 hours in distilled water at room temperature. Next, the specimens were placed in freshly prepared 2% aqueous methylene blue dye for 24 hours and then embedded in autopolymerizing acrylic resin blocks and sectioned in buccolingual and mesiodistal directions to assess dye penetration using a stereomicroscope. The results were statistically analyzed using a nonparametric Kruskal-Wallis test. Dunn's post hoc test with a Bonferroni correction test was used to compute multiple pairwise comparisons that identified differences among groups; the level of significance was set at p provisional cement demonstrated the lowest microleakage scores, which were statistically different from those of the glass ionomer-based provisional cement and the ZONE cement. The provisional cementing agents exhibited different sealing abilities. The Bis-GMA/TEGDMA resin-based provisional cement exhibited the most effective favorable sealing properties against dye penetration compared with the glass ionomer-based provisional cement and conventional ZONE cement. Newly introduced glass

  13. Tensile and Compressive Properties of Woven Kenaf/Glass Sandwich Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman J. Sharba

    2016-01-01

    Full Text Available Monotonic (tensile and compression properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.

  14. Bioactive glass coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  15. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    Science.gov (United States)

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  16. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  17. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  18. Raman spectra of TeO2-PbCl2 glasses

    Czech Academy of Sciences Publication Activity Database

    Ležal, Dimitrij; Bludská, Jana; Horák, J.; Sklenář, A.; Karamazov, S.; Vlček, M.

    2002-01-01

    Roč. 43, č. 6 (2002), s. 296-299 ISSN 0031-9090 Institutional research plan: CEZ:AV0Z4032918 Keywords : tellurite glasses * TeO2glass * model Subject RIV: CA - Inorganic Chemistry Impact factor: 0.691, year: 2002

  19. Shielding Efficiency of a Fabric Based on Amorphous Glass-Covered Magnetic Microwires to Radiation Emitted by a Mobile Phone in 2G and 3G Communication Technologies

    Directory of Open Access Journals (Sweden)

    Miclăuş Simona

    2017-12-01

    Full Text Available A dual band mobile phone model was used to check the shielding properties of an amorphous ferromagnetic textile against the radiation emitted by the handset. Two frequencies belonging to the 2nd and 3rd generation of mobile emission technologies were used, 897 MHz and 1950 MHz. The specific absorption rate (SAR of energy deposition in a human head phantom was measured in standardized conditions. The textile contained micrometric-diameter wires of a ferromagnetic mixture embedded in a thin glass coat and weaved in a specific way. A set of fabric orientations and configurations (layering were provided in the experiment in order to achieve a better shielding to the phone’s radiation. Compared with the non-shielded handset, SAR deposited in the head while using the fabric-covered phone could be decreased up to 30 % of its initial value – in case of 2G technology and up to 24 % – in case of 3G technology. This type of material shows one of the highest shielding efficiencies of the electric-field component in near-field exposure conditions reported until now. A cubic curve of SAR decrease in depth of the head was revealed in both uncovered and covered handset, the effect of shielding being larger at the higher frequency.

  20. Fabrication of CdS nanowires with increasing anionic precursor by SILAR method

    Science.gov (United States)

    Dariani, R. S.; Salehi, F.

    2016-05-01

    CdS nanowires were fabricated on glass substrate at room temperature by SILAR method with cadmium nitrate cationic and sodium sulfide anionic precursors. The deposition were done at different S:Cd concentration ratios of 1:1, 3:1, 5:1, and 7:1. Nanowires growth procedure was studied in the mentioned concentrations. The number of immersion cycles was kept constant at 15 cycles. EDX analysis showed that in all stoichiometric ratios, S/Cd composition ratio remains at about unity. Our results indicated that S:Cd concentration ratio of 7:1 had the longest nanowires with hexagonal structure. The main objective of this paper was to produce CdS nanowires with increasing concentration of sulfur.

  1. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    Science.gov (United States)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  2. Glass formation in AgI:Ag2O:V2O5 and AgI:Ag2O:(V2O5+B2O3) systems

    International Nuclear Information System (INIS)

    Kaushik, R.; Hariharan, K.

    1988-01-01

    Transport properties of glasses in the system AgI:Ag 2 O: V 2 O 5 and AgI:Ag 2 O: (V 2 O 5 +B 2 O 3 ) have ben investigated. It was found that, at high AgI concentrations, the addition of another glass former (B 2 O 3 ) did not improve the conduction characteristics of the pure vanadate glasses, the best conducting composition of which had ambient temperature, ionic conductivity comparable to that of conventional liquid electrolytes. The highest conducting composition was used as an electrolyte in the study of silver solid state cells. The discharge characteristics of different cells fabricated with the glassy electrolyte, have been compared with those having the best conducting polycrystalline ompositions as electrolytes. 11 refs.; 4 figs.; 1 table

  3. Facile fabrication of Bi_2S_3/SnS_2 heterojunction photocatalysts with efficient photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Gao, Xiaomin; Huang, Guanbo; Gao, Haihuan; Pan, Cheng; Wang, Huan; Yan, Jing; Liu, Yu; Qiu, Haixia; Ma, Ning; Gao, Jianping

    2016-01-01

    In this work, Bi_2S_3/SnS_2 heterojunction photocatalysts were prepared by combining a hydrothermal technique and a facile in situ growth method. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffusion reflectance spectroscopy and room-temperature photoluminescence spectra. Their photocatalytic performances were evaluated by degrading methyl orange (MO) in aqueous solution (50 mg/L) under visible light (λ > 420 nm) irradiation. It was found that when the mass percentage of Bi_2S_3 in Bi_2S_3/SnS_2 was 7.95 wt%, the as-prepared Bi_2S_3/SnS_2 nanocomposite showed the best photocatalytic activity for the degradation of MO. The highly improved performance of the Bi_2S_3/SnS_2 nanocomposite was mainly ascribed to the efficient charge separation. - Highlights: • Facile fabrication of novel Bi_2S_3/SnS_2 heterojunction photocatalysts. • High-performance photocatalyst for the degradation of organic pollutants. • Good recyclability of catalyst without photo-corrosion. • The photocatalytic mechanism was proposed.

  4. Fluorescence of Er3+ doped La2S3.3Ga2S3 glasses

    International Nuclear Information System (INIS)

    Reisfeld, R.; Bornstein, A.

    1978-01-01

    In this paper the authors report the preparation and fluorescence of Er 3+ in chalcogenide glasses. In the oxide glasses it has been shown that the multiphonon transition rates of the RE are independent of the coupling between a given oxide glass and rare earth ion, but dependent exponentially on the number of phonons of highest energy bridging the emitting and next-lower level. It is of interest to establish whether changing the glass matrix will affect the amount of electron phonon coupling. In addition, because of their low phonon energy and high refractive index, the RE doped chalcogenide glasses will form a new type of fluorescent material. This may be of interest in new RE lasers. (Auth.)

  5. Investigation on non-glass laser fusion targets: their fabrication, characterization, and transport. Charged Particle Research Laboratory report No. 2-81, progress report, June 1, 1980-January 31, 1981

    International Nuclear Information System (INIS)

    Kim, K.

    1981-01-01

    A summary is presented of the research progress made under LLNL Subcontract 8320003 for the period of June 1, 1980 through January 31, 1981. The main theme of the research has continued to be the development of techniques for fabricating, characterizing, and transporting laser fusion targets on a continuous basis. The target fabrication techniques are intended mainly for non-glass spherical shell targets, both cryogenic and non-cryogenic. Specifically, progress has been made in each of the following categories. (1) Investigation of liquid hydrogen behavior inside a spherical laser fusion target. (2) Development of automated target characterization scheme. (3) Study of cryogenic target fabrication scheme utilizing cold-gas-levitation and electric field positioning. (4) Development of a cryogenic target fabrication system based on target free-fall method. (5) Generation of hydrogen powder using electro-hydrodynamic spraying. (6) Study of target-charging techniques for application to contactless cryogenic target fabrication. (7) Development of hollow metal sphere production technique. A brief summary of the research progress made in each category is presented

  6. Structural characterization and compositional dependence of the optical properties of Ge-Ga-La-S chalcohalide glass system

    Science.gov (United States)

    Li, Lini; Jiao, Qing; Lin, Changgui; Dai, Shixun; Nie, Qiuhua

    2018-04-01

    In this paper, chalcogenide glasses of 80GeS2sbnd (20sbnd x)Ga2S3sbnd xLa2S3 (x = 0, 1, 3, 5 mol%) were synthesized through the traditional melt-quenching technique. The effects of La2S3 addition on the thermal, optical, and structural properties of Gesbnd Gasbnd S glasses were investigated. Results showed that the synthesized glasses possessed considerably high glass transition temperature, improved glass forming ability, high refractive index, and excellent infrared transmittance. A redshift at the visible absorbing cut-off edge lower than 500 nm was observed with increasing of La2S3 content. Direct and indirect optical band gap values were calculated. SEM result suggested that this glass system owned better glass forming ability and uniformity. Raman spectral analysis indicated that the introduction of La2S3 induced the dissociation of Gesbnd Ge metal bonds and transformed the [S3Gesbnd GeS3] structure to GeS4 tetrahedrons. Consequently, the connectivity between tetrahedrons of the vitreous network was enhanced. This work suggests that La2S3 modified Ge-Gasbnd Lasbnd S glass is a promising material for infrared optical research.

  7. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    Science.gov (United States)

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-02-01

    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  8. Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yang, X.N.; Zhou, C.; Sun, Q.J.

    2014-01-01

    We study the fragile-to-strong (F−S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime o...

  9. Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution

    International Nuclear Information System (INIS)

    Ji, Shanshan; Yang, Zhe; Zhang, Chao; Liu, Zhenyan; Tjiu, Weng Weei; Phang, In Yee; Zhang, Zheng; Pan, Jisheng; Liu, Tianxi

    2013-01-01

    Graphical abstract: An efficient electrocatalyst for hydrogen evolution has been developed based on exfoliation of bulk MoS 2 crystals via a direct dispersion and ultrasonication method. Drop-casting method is used to fabricate the exfoliated MoS 2 nanosheets modified glass carbon electrode (E-MoS 2 /GCE) with various loadings. The E-MoS 2 /GCE with electrode loading of 48 μg cm −1 exhibits high catalytic activity for hydrogen evolution with a low overpotential (−0.12 V) and a high current density (1.26 mA cm −2 , at η = 150 mV). -- Highlights: • Two-dimensional MoS 2 nanosheets have been obtained by exfoliation of bulk MoS 2 crystals. • Exfoliated MoS 2 nanosheets show high electrocatalytic activity for H 2 production. • This study provides a new approach for renewable and economic H 2 production. -- Abstract: An efficient electrocatalyst for hydrogen evolution has been developed based on liquid exfoliation of bulk MoS 2 via a direct dispersion and ultrasonication method. Transmission electron microscopy and atomic force microscopy measurements show that the exfoliated MoS 2 consists of two-dimensional nanosheets. The exfoliated MoS 2 nanosheets modified glass carbon electrode (E-MoS 2 /GCE) with various loadings is fabricated via a drop-casting method. The electrocatalytic activity of E-MoS 2 /GCE toward hydrogen evolution reaction is examined using linear sweep voltammetry. It is shown that the E-MoS 2 /GCE with an electrode loading of 48 μg cm −2 exhibits a high catalytic activity for hydrogen evolution with a low overpotential (−0.12 V) and a high current density (1.26 mA cm −2 , at η = 150 mV)

  10. Characterization of TiO2 Thin Films on Glass Substrate Growth Using DC Sputtering Technique

    International Nuclear Information System (INIS)

    Agus Santoso; Tjipto Sujitno; Sayono

    2002-01-01

    It has been fabricated and characterization a TiO 2 thin films deposited on glass substrate using DC sputtering technique. Fabrication of TiO 2 thin films were carried out at electrode voltage 4 kV, sputtering current 5 mA, vacuum pressure 5 x 10 -4 torr, deposition time 150 minutes, and temperature of the substrate were varied from 150 -350 o C, while as a gas sputter was argon. The results was tested their micro structure using SEM, and crystal structure using XRD and found that the crystal structure of TiO 2 powder before deposited on glass substrate was rutile and anatase with orientation (110) and (200) for anatase and (100) and (111) rutile structure. While the crystal structure which deposited at temperature 150 o C and deposition time 2.5 hours was anatase with orientation (001) and (200). (author)

  11. Deposition of Ge{sub 23}Sb{sub 7}S{sub 70} chalcogenide glass films by electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Spencer, E-mail: spencen@g.clemson.edu [Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC (United States); College of Optics and Photonics, CREOL, University of Central FL (United States); Johnston, Danvers E.; Li, Cheng; Deng, Weiwei [Department of Mechanical and Aerospace Engineering, University of Central FL (United States); Richardson, Kathleen [Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC (United States); College of Optics and Photonics, CREOL, University of Central FL (United States)

    2015-08-03

    Solution-based chalcogenide glass films, traditionally deposited by spin-coating, are attractive for their potential use in chip-based devices operating in the mid-infrared and for ease of nanostructure incorporation. To overcome limitations of spin-coating such as excessive material waste and difficulty for scale-up, this paper introduces electrospray as a film deposition technique for solution-based chalcogenide glasses. Electrospray is shown to produce Ge{sub 23}Sb{sub 7}S{sub 70} films with similar surface quality and optical properties as films deposited by spin-coating. The advantages of electrospray deposition for nanoparticle dispersion, scalable and continuous manufacturing with little material waste, and comparable film quality to spin-coating make electrospray a promising deposition method for practical applications of chalcogenide glass films. - Highlights: • Electrospray film deposition processing of Ge{sub 23}Sb{sub 7}S{sub 70} films was developed. • Traditional spin-coated films were also fabricated in parallel. • Optical properties and surface quality found to be similar between two approaches.

  12. Toward an Active Fabric-Based Air Decontamination System

    National Research Council Canada - National Science Library

    Gaddy, G. A; Bratcher, Matthew S; Mills, G; Huang, S; Slaten, B. L; Debortoli, J

    2004-01-01

    ...) particles that were grafted on cotton fabric and on TiO2 particles that were embedded in glass fabric Modified TiO2 particles were grafted onto cotton fabric and irradiated in the presence of CHCl3...

  13. Fabrication and electrical properties of MoS2 nanodisc-based back-gated field effect transistors.

    Science.gov (United States)

    Gu, Weixia; Shen, Jiaoyan; Ma, Xiying

    2014-02-28

    Two-dimensional (2D) molybdenum disulfide (MoS2) is an attractive alternative semiconductor material for next-generation low-power nanoelectronic applications, due to its special structure and large bandgap. Here, we report the fabrication of large-area MoS2 nanodiscs and their incorporation into back-gated field effect transistors (FETs) whose electrical properties we characterize. The MoS2 nanodiscs, fabricated via chemical vapor deposition (CVD), are homogeneous and continuous, and their thickness of around 5 nm is equal to a few layers of MoS2. In addition, we find that the MoS2 nanodisc-based back-gated field effect transistors with nickel electrodes achieve very high performance. The transistors exhibit an on/off current ratio of up to 1.9 × 105, and a maximum transconductance of up to 27 μS (5.4 μS/μm). Moreover, their mobility is as high as 368 cm2/Vs. Furthermore, the transistors have good output characteristics and can be easily modulated by the back gate. The electrical properties of the MoS2 nanodisc transistors are better than or comparable to those values extracted from single and multilayer MoS2 FETs.

  14. Impact of optical properties of front glass substrates on Cu(In,Ga)Se{sub 2} solar cells using lift-off process

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Akihiro, E-mail: ro005080@ed.ritsumei.ac.jp [College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan); Abe, Yasuhiro [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan); Minemoto, Takashi [College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan)

    2013-11-01

    Transmittance of a front glass is one of the important factors in the development of high efficiency superstrate-type Cu(In,Ga)Se{sub 2} (CIGS) solar cells. In this study, we investigated the impact of optical properties of the front glass on the solar cell performance of the CIGS solar cells fabricated using the lift-off process. First, optical properties of quartz substrates and soda-lime glass (SLG) substrates with various thicknesses were investigated. Although optical properties of the SLG substrates depend on the thickness, those of the quartz substrates hardly depend on the thickness. Secondly, the superstrate-type CIGS solar cells were fabricated using 1-mm-thick SLG or 1-mm-thick quartz substrates. As a result, the short-circuit current density of the superstrate-type CIGS solar cell with 1-mm-thick quartz substrate was approximately 7% higher than that with 1-mm-thick SLG substrate, and its conversion efficiency was 7.1%. The external quantum efficiency of the solar cells was also improved using the quartz substrate as a front glass because transmittance and absorptance of the quartz substrate were superior to those of the SLG substrate. We therefore conclude that optical properties of the front glasses play an important role in the improvement of the superstrate-type solar cells. - Highlights: • Superstrate type Cu(In,Ga)Se{sub 2} solar cells are fabricated by lift-off process. • Various glasses are used as front glass for lift-off. • The impact of optical properties of the glasses on cell performance is investigated. • Quartz front glass gives 7% higher short-circuit current than soda-lime glass. • High transmittance is desired for front glass.

  15. One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route

    Science.gov (United States)

    Chang, Shu-Quan; Kang, Bin; Dai, Yao-Dong; Zhang, Hong-Xu; Chen, Da

    2011-11-01

    Biocompatible chitosan-coated ZnS quantum dots [CS-ZnS QDs] and chitosan-coated ZnS:Mn2+ quantum dots [CS-ZnS:Mn2+ QDs] were successfully fabricated via a convenient one-step γ-radiation route. The as-obtained QDs were around 5 nm in diameter with excellent water-solubility. These QDs emitting strong visible blue or orange light under UV excitation were successfully used as labels for PANC-1 cells. The cell experiments revealed that CS-ZnS and CS-ZnS:Mn2+ QDs showed low cytotoxicity and good biocompatibility, which offered possibilities for further biomedical applications. Moreover, this convenient synthesis strategy could be extended to fabricate other nanoparticles coated with chitosan. PACS: 81.07.Ta; 78.67.Hc; 82.35.Np; 87.85.Rs.

  16. Fabrication of 3D electro-thermal micro actuators in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Li, Qichao; Shan, Chao; Yang, Qing; Chen, Feng; Bian, Hao; Hou, Xun

    2017-02-01

    This paper demonstrates a novel electro-thermal micro actuator's design, fabrication and device tests which combine microfluidic technology and microsolidics process. A three-dimensional solenoid microchannel with high aspect ratio is fabricated inside the silica glass by an improved femtosecond laser wet etch (FLWE) technology, and the diameter of the spiral coil is only 200 μm. Molten alloy (Bi/In/Sn/Pb) with high melting point is injected into the three-dimensional solenoid microchannel inside the silica glass , then it solidifys and forms an electro-thermal micro actuator. The device is capable of achieving precise temperature control and quick response, and can also be easily integrated into MEMS, sensors and `lab on a chip' (LOC) platform inside the fused silica substrate.

  17. Temperature-controlled down-conversion luminescence behavior of Eu3+ -doped transparent MF2 (M = Ba, Ca, Sr) glass ceramics.

    Science.gov (United States)

    Zhou, B; E, C Q; Bu, Y Y; Meng, L; Yan, X H; Wang, X F

    2017-03-01

    Eu 3 + -doped transparent glass ceramics containing MF 2 (M = Ba, Ca, Sr) nanocrystals were fabricated using a melt-quenching method, and the resulting structures were studied using X-ray diffraction. Levels 5 D 1 and 5 D 0 of Eu 3 + ions were verified as thermally coupled levels using the fluorescence intensity ratio method. The fluorescence intensity ratios, optical temperature sensitivity and thermal quenching ratios of the transparent glass ceramics were studied as a function of temperature. With an increase in temperature, the relative sensitivity (S R ) decreased sharply at first, then slowly increased, before finally decreasing. The minimum S R values of GCBaF 2 (GCB), GCCaF 2 (GCC) and GCSrF 2 (GCS) were 2.8 × 10 -4 , 0.8 × 10 -4 and 1.9 × 10 - 4  K -1 at 360, 269 and 319 K, respectively. Glass ceramics with an intense emission intensity can be used to convert the measured spectrum into temperature and may have an important role in temperature detectors. Copyright © 2016 John Wiley & Sons, Ltd.

  18. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Matthew R. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Makarov, Nikolay S. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Ramasamy, Karthik [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Jackson, Aaron [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Guglielmetti, Rob [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; McDaniel, Hunter [UbiQD, Inc., Los Alamos, New Mexico 87544, United States

    2018-01-30

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within the existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.

  19. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    Science.gov (United States)

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  20. Structural features of spin-coated thin films of binary AsxS100−x chalcogenide glass system

    International Nuclear Information System (INIS)

    Cook, J.; Slang, S.; Golovchak, R.; Jain, H.; Vlcek, M.; Kovalskiy, A.

    2015-01-01

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As x S 100−x (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As 2 O 3 was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films

  1. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    International Nuclear Information System (INIS)

    NIKROO, A; BAUGH, W; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Deuterium (D 2 ) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of ∼ 0.15 (micro)m/hr coatings with ∼ 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 (micro)m/hr, was considerably worse (∼ 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C

  2. Structural elucidation of AgAsS2 glass by the analysis of clusters formed during laser desorption ionisation applying quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Alberti, Milan; Zhang, Bo; Fraenkl, Max; Wagner, Tomas; Havel, Josef

    2016-03-15

    The structure of AgA(s)S2 glass, which has a broad range of applications, is still not well understood and a systematic mass spectrometric analysis of AgA(s)S2 glass is currently not available. Elucidation of the structure should help in the development of this material. The AgA(s)S2 glass was prepared by the melt-quenched technique. Laser desorption ionisation (LDI) using quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to follow the generation of Ag(m)As(n)S(x) clusters. The stoichiometry of the clusters generated was determined via collision-induced dissociation (CID) and modelling of isotopic patterns. The AgA(s)S2 glass was characterised by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The LDI of AgA(s)S2 glass leads to the formation of unary (Ag+/− and As(3+)) species, 38 binary (As(n)S(x), Ag(m)S(x)), and 98 ternary (Ag(m)As(n)S(x)) singly charged clusters. The formation of silver-rich nano-grains during AgA(s)S2 glass synthesis has been identified using TEM analysis and also verified by QIT-TOFMS. TOFMS was shown to be a useful technique to study the generation of Ag(m)As(n)S(x )clusters. SEM, TEM and EDX analysis proved that the structure of AgA(s)S2 glass is ‘grain-like’ where grains are either: (1) Silver-rich ‘islands’ (Ag(m,) m up to 39) connected by arsenic and/or sulfur or arsenic sulfide chains or (2) silver sulfide (Ag2S)m (m = 9-20) clusters also similarly inter-connected. This obtained structural information may be useful for the development of ultra-high-density phase-change storage and memory devices using this kind of glass as a base.

  3. Fabrication of In2O3@In2S3 core-shell nanocubes for enhanced photoelectrochemical performance

    Science.gov (United States)

    Li, Haohua; Chen, Cong; Huang, Xinyou; Leng, Yang; Hou, Mengnan; Xiao, Xiaogu; Bao, Jie; You, Jiali; Zhang, Wenwen; Wang, Yukun; Song, Juan; Wang, Yaping; Liu, Qinqin; Hope, Gregory A.

    2014-02-01

    Herein, we report the facile synthesis of In2O3@In2S3 core-shell nanocubes and their improved photoelectrochemical property. In2O3@In2S3 core-shell nanocubes are grown on a F-doped SnO2 (FTO) glass substrate by a two-step process, which involves the electrodeposition of In2O3 nanocubes and a subsequent ion-exchange treatment. The improved light-harvesting ability and the suitable band alignment of the In2O3@In2S3 core-shell nanocubes generate a remarkable photocurrent density of 6.19 mA cm-2 (at 0 V vs. Ag/AgCl), which is substantially higher than the pristine In2O3 nanocubes. These results provide a new insight into the design of a high-performance photoanode for photoelectrochemical water splitting.

  4. Glass Ceiling in Academic Administration in Turkey: 1990s versus 2000s

    Science.gov (United States)

    Gunluk-Senesen, Gulay

    2009-01-01

    This paper assesses the glass ceiling for academics in the Turkish universities with reference to top administration positions: rectors and deans. Glass ceiling indicators show that the glass ceiling thickened from the 1990s to late 2000s. The findings are discussed against the background of the transformation in the Turkish universities in the…

  5. Internal Friction in L.A.S. Type Glass and Glass-Ceramics

    OpenAIRE

    Arnault , L.; RiviÈre , A.

    1996-01-01

    Internal friction measurements have been performed on glass and glass-ceramics of the Li2O-Al2O3-SiO2 type by isothermal mechanical spectroscopy. Experiments were carried out over a large frequency range (10-4Hz - 31.6 Hz) for various temperatures between 260K and 850K. For the glass, a relaxation peak is observed at low temperature (276K for 1Hz). This peak does not appear in the glass-ceramics ; however, for each of them, two other peaks were observed : the first one at about 343K (1Hz) and...

  6. Silver environment and covalent network rearrangement in GeS3–Ag glasses

    International Nuclear Information System (INIS)

    Rátkai, L; Jóvári, P; Kaban, I; Wágner, T; Kolář, J; Valková, S; Voleská, Iva; Beuneu, B

    2013-01-01

    The structure of Ag-doped GeS 3 glasses (0, 15, 20, 25 at.% Ag) was investigated by diffraction techniques and extended x-ray absorption fine structure measurements. Structural models were obtained by fitting the experimental datasets simultaneously by the reverse Monte Carlo simulation technique. It is observed that Ge has mostly S neighbours in GeS 3 , but Ge–Ge bonds appear already at 15% Ag content. Sulfur has ∼2 S/Ge neighbours over the whole concentration range, while the S–Ag coordination number increases with increasing Ag content. Ag–Ag pairs can already be found at 15% Ag. The Ag–S mean coordination number changes from 2.17 ± 0.2 to 2.86 ± 0.2 between 15% and 25% Ag content. Unlike the As–S network in AsS 2 –25Ag glass, the Ge–S network is not fragmented upon Ag-doping of GeS 3 glass. (paper)

  7. Compositional trends in low-temperature photoluminescence of heavily Er-doped GeS(2)-Ga(2)S(3) glasses

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.; Zavadil, Jiří; Rao, K. S. R. K.

    2011-01-01

    Roč. 357, 11-13 (2011), s. 2443-2446 ISSN 0022-3093 R&D Projects: GA ČR GA104/08/0734 Institutional research plan: CEZ:AV0Z20670512 Keywords : Glasses * Fluorescence * Rare earths Subject RIV: CA - Inorganic Chemistry Impact factor: 1.537, year: 2011

  8. Stress-induced buried waveguides in the 0.8CaSiO{sub 3}–0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Sola, D., E-mail: dsola@unizar.es [Centro de Física de Materiales, CSIC-UPV/EHU, P° Manuel de Lardizabal, 5, 20.018 San Sebastián (Spain); Martínez de Mendibil, J. [Departamento de Física de Materiales, C-04, Facultad de Ciencias, Universidad Autónoma de Madrid, 28.049 Madrid (Spain); Vázquez de Aldana, J.R. [Grupo de Óptica, Facultad de Ciencias, Universidad de Salamanca, 37.008 Salamanca (Spain); Lifante, G. [Departamento de Física de Materiales, C-04, Facultad de Ciencias, Universidad Autónoma de Madrid, 28.049 Madrid (Spain); Balda, R. [Centro de Física de Materiales, CSIC-UPV/EHU, P° Manuel de Lardizabal, 5, 20.018 San Sebastián (Spain); Departamento de Física Aplicada I, E.T.S. Ingeniería de Bilbao, UPV/EHU, Alda. de Urquijo s/n, 48.013 Bilbao (Spain); Aza, A.H. de; Pena, P. [Instituto de Cerámica y Vidrio, CSIC, C/Kelsen 5, 28.049 Madrid (Spain); Fernández, J. [Centro de Física de Materiales, CSIC-UPV/EHU, P° Manuel de Lardizabal, 5, 20.018 San Sebastián (Spain); Departamento de Física Aplicada I, E.T.S. Ingeniería de Bilbao, UPV/EHU, Alda. de Urquijo s/n, 48.013 Bilbao (Spain)

    2013-08-01

    In this work the fabrication of buried optical waveguides by femtosecond laser inscription in the 0.8CaSiO{sub 3}–0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions is reported. The glass samples were prepared by melting the eutectic powder mixture in a Pt–10 wt.% Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to release the inner stresses. Buried waveguides were fabricated by focusing beneath the surface a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. Two adjacent parallel tracks were written to define a region where an increase in the refractive index occurs. The effects produced by the variation of the laser pulse energy as well as the lateral separation between tracks, scanning speed and focusing distance were studied. After the laser processing, the near-field intensity distribution at 633 nm of the waveguide's modes was studied demonstrating the confinement of both, the TE as the TM polarizations. In order to diminish the losses induced by colour centres absorption, heat treatments were carried out in the samples. The waveguide's modes were compared with respect to the samples without heat treatments. The spectroscopic properties of the neodymium ions have been characterized to evaluate in what extent their optical properties could be modified by the waveguide fabrication process and to elucidate the potential application of such waveguides as integrated laser sources.

  9. Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system

    International Nuclear Information System (INIS)

    Smith, C.; Jackson, J.; Petit, L.; Rivero-Baleine, C.; Richardson, K.

    2010-01-01

    New oxy-sulfo-telluride glasses have been prepared in the Ge-Sb-Te-S-O system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO 2 or Sb 2 O 3 . The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the vis-NIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge 20 Sb 6 S 64 Te 3 O 7 ) processed by melting the Ge 23 Sb 7 S 70 glass with TeO 2 or the Ge 23 Sb 2 S 72 Te 4 glass with Sb 2 O 3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO 2 starting materials as compared to that of the Sb 2 O 3 . - Graphical abstract: In this paper, we discuss our most recent findings on the processing and characterization of new ChG glasses prepared with small levels of Te, melted either with TeO 2 or Sb 2 O 3 powders. We explain how these new oxy-sulfo-telluride glasses are prepared and we correlate the physical, thermal and optical properties of the investigated glasses to the structure changes induced by the addition of oxygen in the Ge-Sb-S-Te glass network.

  10. The manufacture and properties of a glass fabric/epoxy composite bellows

    International Nuclear Information System (INIS)

    Evans, D.; Langridge, J.U.D.; Morgan, J.T.

    1978-01-01

    This bellows is a small but critical part of a large bubble chamber at present being constructed. It forms a gas tight seal between the reciprocating piston and the stationary chamber walls separating the chamber liquid from the piston backing gas. It is tubular (800 mm diameter) containing only one convolution and operates at a temperature of 26K in a 3 tesla magnetic field. For this latter reason, a polymeric material is preferred since this avoids eddy current heating effects. During normal operation of the bubble chamber the bellows is required to accommodate the total stroke of the piston (+-3.5 mm) and to withstand a pressure swing of +-3 bar at a frequency of 30 Hz. Detailed consideration of these operating parameters confirms the need for high quality glass reinforced plastics material. This paper describes the moulding technique, first developed for a 300 mm diameter bellows successfully used in a similar application. It produces a composite of the complex shape required, to close dimensional tolerances and with a glass fabric content in excess of 60% by weight. (author)

  11. Hydrothermal metallurgy for recycling of slag and glass

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Yoshikawa, Takeshi; Hirai, Nobumitsu; Katsuyama, Shigeru

    2009-01-01

    The authors have applied hydrothermal reactions to develop recycling processing of slag or glass. As an example, under hydrothermal conditions such as 200 300 deg. C and 30 40MPa with H 2 O, powders made of glass can be sintered to become solidified glass materials containing about 10mass% H 2 O. When the glass containing H 2 O is heated again under normal pressure, the glass expands releasing H 2 O to make porous microstructure. H 2 O starts to emit just above the glass transition temperature. Therefore, when we have a glass with low glass transition temperature, we can make low temperature foaming glass. The SiO 2 -Na 2 O-B 2 O 3 glass is a candidate to be such a foaming glass. In this paper, we describe our recent trial on the fabrication of the low temperature foaming glass by using hydrothermal reaction.

  12. Spray pyrolyzed Cu2SnS3 thin films for photovoltaic application

    Science.gov (United States)

    Patel, Biren; Waldiya, Manmohansingh; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    We report the fabrication of Cu2SnS3 (CTS) thin films by a non-vacuum and low cost spray pyrolysis technique. Annealing of the as-deposited film in the sulphur atmosphere produces highly stoichiometric, granular and crystalline CTS phase. The CTS thin films shows direct optical band gap of 1.58 eV with high absorption coefficient of 105 cm-1. Hall measurement shows the carrier concentration of the order of 1021 cm-3 and a favourable resistivity of 10-3 Ω cm. A solar cell architecture of Glass/FTO/CTS/CdS/Al:ZnO/Al was fabricated and its current-voltage characteristic shows an open circuit voltage, short circuit current density and fill-factor of 12.6 mV, 20.2 µA/cm2 and 26% respectively. A further improvement in the solar cell parameters is underway.

  13. Elimination Of The Characterization Of DWPF Pour Stream Sample And The Glass Fabrication And Testing Of The DWPF Sludge Batch Qualification Sample

    International Nuclear Information System (INIS)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-01-01

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the

  14. Fabrication and Enhanced Photoelectrochemical Performance of MoS₂/S-Doped g-C₃N₄ Heterojunction Film.

    Science.gov (United States)

    Ye, Lijuan; Wang, Dan; Chen, Shijian

    2016-03-02

    We report on a novel MoS2/S-doped g-C3N4 heterojunction film with high visible-light photoelectrochemical (PEC) performance. The heterojunction films are prepared by CVD growth of S-doped g-C3N4 film on indium-tin oxide (ITO) glass substrates, with subsequent deposition of a low bandgap, 1.69 eV, visible-light response MoS2 layer by hydrothermal synthesis. Adding thiourea into melamine as the coprecursor not only facilitates the growth of g-C3N4 films but also introduces S dopants into the films, which significantly improves the PEC performance. The fabricated MoS2/S-doped g-C3N4 heterojunction film offers an enhanced anodic photocurrent of as high as ∼1.2 × 10(-4) A/cm(2) at an applied potential of +0.5 V vs Ag/AgCl under the visible light irradiation. The enhanced PEC performance of MoS2/S-doped g-C3N4 film is believed due to the improved light absorption and the efficient charge separation of the photogenerated charge at the MoS2/S-doped g-C3N4 interface. The convenient preparation of carbon nitride based heterojunction films in this work can be widely used to design new heterojunction photoelectrodes or photocatalysts with high performance for H2 evolution.

  15. Low temperature biosynthesis of Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction

    DEFF Research Database (Denmark)

    Du, X.Y.; He, W.; Zhang, X.D.

    2013-01-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a ‘nanocrystal-glass’ configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by ...... nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass–ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries....

  16. Fabrication of ultrafast laser written low-loss waveguides in flexible As₂S₃ chalcogenide glass tape.

    Science.gov (United States)

    Lapointe, Jerome; Ledemi, Yannick; Loranger, Sébastien; Iezzi, Victor Lambin; Soares de Lima Filho, Elton; Parent, Francois; Morency, Steeve; Messaddeq, Younes; Kashyap, Raman

    2016-01-15

    As2S3 glass has a unique combination of optical properties, such as wide transparency in the infrared region and a high nonlinear coefficient. Recently, intense research has been conducted to improve photonic devices using thin materials. In this Letter, highly uniform rectangular single-index and 2 dB/m loss step-index optical tapes have been drawn by the crucible technique. Low-loss (writing process in thin glass is also presented to facilitate a repeatable waveguide inscription recipe.

  17. Three-Dimensional Material Properties of Composites with S2-Glass Fibers or Ductile Hybrid Fabric

    Science.gov (United States)

    2013-01-13

    5 Figure ence of mat n PU Renca s of 2.81 cm s of 2.54 cm shows all n hat materia ar strength 0.8 0.9 1 1.1 1.2 N or m al iz ed St re ng th R es...and 1.91 .). ormalized l thickness d modulus for 3.81 c Value = 3.27 @ Value = 2.91 @ Materia m retrieved not a criti -of-plane st ied the out...h of Materia rocedure is gth (SC-15 ested at 21 strengths of results of M r to the resu terial 5, and tiffness resu low for an 1.91 cm y Sxy SCx

  18. Composite properties for S-2 glass in a room-temperature-curable epoxy matrix

    Science.gov (United States)

    Clements, L. L.; Moore, R. L.

    1979-01-01

    The authors have measured thermal and mechanical properties of several composites of S-2 glass fiber in a room-temperature-curable epoxy matrix. The filament-wound composites ranged from 50 to 70 vol% fiber. The composites had generally good to excellent mechanical properties, particularly in view of the moderate cost of the material. However, the composites showed rapid increases in transverse thermal expansion above 50 C, and this property must be carefully considered if any use above that temperature is contemplated.

  19. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics.

    Science.gov (United States)

    Höland, W; Schweiger, M; Frank, M; Rheinberger, V

    2000-01-01

    The aim of this report is to analyze the microstructures of glass-ceramics of the IPS Empress 2 and IPS Empress systems by scanning electron microscopy. The main properties of the glass-ceramics were determined and compared to each other. The flexural strength of the pressed glass-ceramic (core material) was improved by a factor of more than three for IPS Empress 2 (lithium disilicate glass-ceramic) in comparison with IPS Empress (leucite glass-ceramic). For the fracture toughness, the K(IC) value was measured as 3.3 +/- 0.3 MPa. m(0.5) for IPS Empress 2 and 1.3 +/- 0.1 MPa. m(0.5) for IPS Empress. Abrasion behavior, chemical durability, and optical properties such as translucency of all glass-ceramics fulfill the dental standards. The authors concluded that IPS Empress 2 can be used to fabricate 3-unit bridges up to the second premolar. Copyright 2000 John Wiley & Sons, Inc.

  20. Comprehensive study of electronic polarizability and band gap of B2O3–Bi2O3–ZnO–SiO2 glass network

    Directory of Open Access Journals (Sweden)

    Iskandar Shahrim Mustafa

    2017-10-01

    Full Text Available Quaternary glasses were successfully fabricated using melt quenching technique based on the chemical compound composition (xBi2O3–(0.5−x ZnO–(0.2B2O3–(0.3SiO2, where (x=0.1, 0.2, 0.3, 0.4, 0.45 mole. The sources of SiO2 was produced from rice husk ash (RHA at 99.36% of SiO2. The Urbach energy was increased from 0.16eV to the 0.29eV as the mole of Bi2O3 increased in the glass structure. The indirect energy band gap is indicated in decrement pattern with 3.15eV towards 2.51eV. The results of Urbach energy and band gap energy that were obtained are due to the increment of Bi3+ ion in the glass network. The refractive indexes for the prepared glasses were evaluated at 2.36 to 2.54 based on the Lorentz–Lorentz formulation which correlated to the energy band gap. The calculated of molar polarizability, electronic polarizability and optical basicity exemplify fine complement to the Bi2O3 addition in the glass network. The glass sample was indicated in amorphous state.

  1. Preparation of special purity Ge - S - I and Ge - Se - I glasses

    Science.gov (United States)

    Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Kotereva, T. V.; Snopatin, G. E.; Churbanov, M. F.

    2017-05-01

    The paper considers the new approaches for the production of special pure Ge - S - I and Ge - Se - I glasses via the germanium(IV) iodide, germanium(II) sulfide, as well as the Ge2S3, Ge2S3I2 and Ge2Se3I2 glassy alloys. The glass samples containing 0.03-0.17 ppm(wt) hydrogen impurity in the form of SH-group, 0.04-0.15 ppm(wt) hydrogen impurity in the form of SeH-group, and 0.5-7.8 ppm(wt) oxygen impurity in the form of Ge-O were produced. Using a crucible technique, the single-index [GeSe4]95I5 glass fibers of 300-400 μm diameter were drawn. The minimum optical losses in the best fiber were 1.7 dB/m at a wavelength of 5.5 μm; the background optical losses were within 2-3 dB/m in the spectral range of 2.5-8 μm.

  2. Synthesis of new dental nanocomposite with glass nanoparticles

    Directory of Open Access Journals (Sweden)

    Alireza Khavandi

    2013-09-01

    Full Text Available Objective(s: The aim of this study was to synthesis new dental nanocomposites reinforced with fabricated glass nanoparticles and compare two methods for fabrication and investigate the effect of this filler on mechanical properties. Materials and Methods : The glass nanoparticles were produced by wet milling process. The particle size and shape was achieved using PSA and SEM. Glass nanoparticles surface was modified with MPTMS silane. The composite was prepared by mixing these silane-treated nanoparticles with monomers. The resin composition was UDMA /TEGDMA (70/30 weight ratio. Three composites were developed with 5, 7.5 and 10 wt% glass fillers in each group. Two preparation methods were used, in dispersion in solvent method (group D glass nanoparticles were sonically dispersed in acetone and the solution was added to resin, then acetone was evaporated. In non-dispersion in solvent method (group N the glass nanoparticles were directly added to resin. Mechanical properties were investigated included flexural strength, flexural modulus and Vickers hardness. Results: Higher volume of glass nanoparticles improves mechanical properties of composite. Group D has batter mechanical properties than group N. Flexural strength of composite with 10%w filler of group D was 75Mpa against 59 Mpa of the composite with the same filler content of group N. The flexural modulus and hardness of group D is more than group N. Conclusion: It can be concluded that dispersion in solvent method is the best way to fabricate nanocomposites and glass nanoparticles is a significant filler to improve mechanical properties of dental nanocomposite.

  3. Solubility of actinides and surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  4. Fabrication and physical characteristics of new glasses from wastes ...

    Indian Academy of Sciences (India)

    64

    The FTIR spectra of all the investigated glasses exhibit four broad absorption bands for ..... experimentally determined bulk modulus (K) as represented in Fig. ..... Döhler, L. Van Wüllen, T. Kasuga, D.S. Brauer, Changes in structure and thermal.

  5. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    Science.gov (United States)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  6. Fabrication of an Open Microfluidic Device for Immunoblotting.

    Science.gov (United States)

    Abdel-Sayed, Philippe; Yamauchi, Kevin A; Gerver, Rachel E; Herr, Amy E

    2017-09-19

    Given the wide adoption of polydimethylsiloxane (PDMS) for the rapid fabrication of microfluidic networks and the utility of polyacrylamide gel electrophoresis (PAGE), we develop a technique for fabrication of PAGE molecular sieving gels in PDMS microchannel networks. In developing the fabrication protocol, we trade-off constraints on materials properties of these two polymer materials: PDMS is permeable to O 2 and the presence of O 2 inhibits the polymerization of polyacrylamide. We present a fabrication method compatible with performing PAGE protein separations in a composite PDMS-glass microdevice, that toggles from an "enclosed" microchannel for PAGE and blotting to an "open" PA gel lane for immunoprobing and readout. To overcome the inhibitory effects of O 2 , we coat the PDMS channel with a 10% benzophenone solution, which quenches the inhibiting effect of O 2 when exposed to UV, resulting in a PAGE-in-PDMS device. We then characterize the PAGE separation performance. Using a ladder of small-to-mid mass proteins (Trypsin Inhibitor (TI); Ovalbumin (OVA); Bovine Serum Albumin (BSA)), we observe resolution of the markers in TI, with comparable reproducibility to glass microdevice PAGE. We show that benzophenone groups incorporated into the gel through methacrylamide can be UV-activated multiple times to photocapture protein. PDMS microchannel network is reversibly bonded to a glass slide allowing direct access to separated proteins and subsequent in situ diffusion-driven immunoprobing and total protein Sypro red staining. We see this PAGE-in-PDMS fabrication technique as expanding the application and use of microfluidic PAGE without the need for a glass microfabrication infrastructure.

  7. Fabrication of SnS thin films by the successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Ghosh, Biswajit; Das, Madhumita; Banerjee, Pushan; Das, Subrata

    2008-01-01

    Tin sulfide films of 0.20 µm thickness were grown on glass and ITO substrates by the successive ionic layer adsorption and reaction (SILAR) method using SnSO 4 and Na 2 S solution. The as-grown films were well covered and strongly adherent to the substrate. XRD confirmed the deposition of SnS thin films and provided information on the crystallite size and residual strain of the thin films. FESEM revealed almost equal distribution of the particle size well covered on the surface of the substrate. EDX showed that as-grown SnS films were slightly rich in tin component. High absorption in the visible region was evident from UV–Vis transmission spectra. PL studies were carried out with 550 nm photon excitation. To the best of our knowledge, however, no attempt has been made to fabricate a SnS thin film using the SILAR technique

  8. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  9. Fabrication and characterization of MCC [Materials Characterization Center] approved testing material---ATM-2, ATM-3, and ATM-4 glasses

    International Nuclear Information System (INIS)

    Wald, J.W.

    1988-03-01

    Materials Characterization Center glasses ATM-2, ATM-3, and ATM-4 are designed to simulate high-level waste glasses that are likely to result from the reprocessing of commercial nuclear reactor fuels. The three Approved Testing Materials (ATMs) are borosilicate glasses based upon the MCC-76-68 glass composition. One radioisotope was added to form each ATM. The radioisotopes added to form ATM-2, ATM-3, and ATM-4 were 241 Am, 237 Np, and 239 Pu, respectively. Each of the ATM lots was produced in a nominal lot size of 450 g from feed stock melted in a nitrogen-atmosphere glove box at 1200/degree/C in a platinum crucible. Each ATM was then cast into bars. Analyzed compositions of these glasses are listed. The nonradioactive elements were analyzed by inductively coupled argon plasma atomic emission spectroscopy (ICP), and the radioisotope analyses were done by alpha energy analysis. Results are discussed. 7 refs., 3 figs., 5 tabs

  10. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

    Science.gov (United States)

    Kim, Dave (dea-wook); Hennigan, Daniel John; Beavers, Kevin Daniel

    2010-03-01

    Polymer composite materialsoffer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with a lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic(GFRP) composites is presented. Fabrication techniques used in this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results

  11. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Biswajit; Kumar, Kamlesh; Singh, Balwant Kr; Banerjee, Pushan; Das, Subrata, E-mail: neillohit@yahoo.co.in

    2014-11-30

    Graphical abstract: - Highlights: • CdS film grown on indium coated glass substrates via CBD and subsequent annealing. • Disappearance of the indium (1 1 2) peak confirms interdiffusion at 300 °C. • SIMS indicates the subsequent interdiffusion at progressively higher temperature. • Composite In–CdS layer showed lower photosensitivity compared to pure CdS. - Abstract: In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films.

  12. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level.

    Science.gov (United States)

    Albero, Jorge; Perrin, Stéphane; Bargiel, Sylwester; Passilly, Nicolas; Baranski, Maciej; Gauthier-Manuel, Ludovic; Bernard, Florent; Lullin, Justine; Froehly, Luc; Krauter, Johann; Osten, Wolfgang; Gorecki, Christophe

    2015-05-04

    This paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects. These effects, not experienced when lenses are sufficiently separated so that they can be considered as single items, are corrected by properly designing the silicon cavities. Complete topographic as well as optical characterizations are reported. The compatibility of materials with Micro-Opto-Electromechanical Systems (MOEMS) integration processes makes this technology attractive for the miniaturization of inspection systems, especially those devoted to imaging.

  13. Effect of heat treatment on the properties of SiO2-CaO-MgO-P 2O 5 bioactive glasses.

    Science.gov (United States)

    Zhou, Yue; Li, Hongying; Lin, Kaili; Zhai, Wanying; Gu, Weiming; Chang, Jiang

    2012-09-01

    Since the invention of 45S5 Bioglass, researchers never stopped exploring new generation bioactive glass (BG) materials for wider applications in regenerative medicine, among which a novel SiO(2)-CaO-MgO-P(2)O(5) bioactive glass (BG20) is an excellent candidate. However, apart from their biocompatibility and bioactivity, a porous structure is also a must for a tissue engineering scaffold in successfully fixing bone defect. The porosity is the outcome of the high temperature (500-1,000 °C) treatment in the fabricating process of the bioglass scaffold. Under the high temperature, the amorphous glass material will become crystallized at certain percentage in the glass matrix, and possibly leading to consequent changes in the mechanical strength, biodegradability and bioactivity. To elucidate the effect of phase transition on the change of the properties of BG20, the experiments in this report were designed to fine-tuning the heat treating temperatures to fabricate a series of BG20 powders with different crystallization structures. X-ray diffraction revealed a positive correlation between the heating temperature and the crystallization, as well as the compressive strength of the materials. In vitro degradation and ion analysis by ICP-AES demonstrated a similar releasing behavior of different ions including Mg(2+), Ca(2+) and Si(4+), which in common is the tendency of decreasing of the ion concentration along with the increasing of the treating temperature. Cell proliferation assay using both mouse fibroblasts (NIH3T3) and bone marrow stromal cells (BMSCs) showed little toxicity of the ionic extract of the BG20 powders at all the treating temperatures, while fibroblasts demonstrated a significant promoting in the percentage of proliferation. Furthermore, reverse-transcription and polymerase chain reaction analysis on two representative marker genes for early osteogenesis and endochondral ossification, respectively, type I collagen alpha 1 and Indian Hedge-hog, showed

  14. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    Science.gov (United States)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  15. A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist

    International Nuclear Information System (INIS)

    Vulto, Paul; Urban, G A; Huesgen, Till; Albrecht, Björn

    2009-01-01

    A full-wafer process is presented for fast and simple fabrication of glass microfluidic chips with integrated electroplated electrodes. The process employs the permanent dry film resist (DFR) Ordyl SY300 to create microfluidic channels, followed by electroplating of silver and subsequent chlorination. The dry film resist is bonded directly to a second substrate, without intermediate gluing layers, only by applying pressure and moderate heating. The process of microfluidic channel fabrication, electroplating and wafer bonding can be completed within 1 day, thus making it one of the fastest and simplest full-wafer fabrication processes. (note)

  16. New gadolinium based glasses for gamma-rays shielding materials

    International Nuclear Information System (INIS)

    Kaewjang, S.; Maghanemi, U.; Kothan, S.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • Gd 2 O 3 based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd 2 O 3. • All the glasses of Gd 2 O 3 compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd 2 O 3 based glass matrices. - Abstract: In this work, Gd 2 O 3 based glasses in compositions (80−x)B 2 O 3 -10SiO 2 -10CaO-xGd 2 O 3 (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd 2 O 3 concentration. The experimental values of mass attenuation coefficients (μ m ), effective atomic number (Z eff ) and effective electron densities (N e ) of the glasses were found to increase with the increasing of Gd 2 O 3 concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd 2 O 3 compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials

  17. Cu{sub 2}ZnSnS{sub 4} solar cells prepared by sulfurization of sputtered ZnS/Sn/CuS precursors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-Shan; Wang, Shu-Rong, E-mail: shrw88@aliyun.com; Jiang, Zhi; Yang, Min; Lu, Yi-Lei; Liu, Si-Jia; Zhao, Qi-Chen; Hao, Rui-Ting

    2016-12-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by sulfurization of sputtered ZnS/Sn/CuS precursors at different temperatures i.e. 560 °C, 580 °C and 600 °C. The effects of sulfurization temperature on the quality of CZTS thin films and solar cells were investigated. The crystal structure, surface morphology, chemical composition, phase purity and surface roughness of CZTS thin films fabricated at different sulfurization temperatures were characterized by X Ray Diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS), Raman spectroscopy and atomic force microscope (AFM), respectively. The results show that all CZTS thin films exhibit a polycrystalline kesterite structure and preferred (112) orientation. For the sulfurization temperature of 580 °C, the obtained CZTS thin films are dense and flat with larger grain size. Meanwhile composition studying indicates that the fabricated CZTS with single phase is copper poor and zinc rich. Furthermore, the surface roughness of CZTS film is the lowest. Finally, the CZTS solar cells with the structure of SLG/Mo/CZTS/CdS/i-ZnO/ITO/Al were fabricated and demonstrated the best power conversion efficiency of 3.59% when used sulfurization temperature was 580 °C.

  18. Synthesis and characterization of physical properties of Gd{sub 2}O{sub 2}S:Pr{sup 3+} semi-nanoflower phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H.R. [University of Isfahan, Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, Isfahan (Iran, Islamic Republic of); Zamani Zeinali, H. [Nuclear Science and Technology Research Institute, Agriculture, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2016-05-15

    Pure gadolinium oxysulfide phosphor (Gd{sub 2}O{sub 2}S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd{sub 2}O{sub 2}S:Pr{sup 3+}) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator were studied. Luminescence spectra of Gd{sub 2}O{sub 2}S:Pr{sup 3+} under 320 nm UV excitation show a green emission at near 511 nm corresponding to the {sup 3}P{sub 0}-{sup 3}H{sub 4} of Pr ions. After scintillation properties of synthesized Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator investigated, Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd{sub 2}O{sub 2}S:Pr{sup 3+} scintillator could be used for radiography applications in which good spatial resolution is needed. (orig.)

  19. Structural features of spin-coated thin films of binary As{sub x}S{sub 100−x} chalcogenide glass system

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J. [Austin Peay State University, Clarksville, TN 37075 (United States); Slang, S. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Golovchak, R. [Austin Peay State University, Clarksville, TN 37075 (United States); Jain, H. [International Materials Institute for New Functionality in Glass, Lehigh University, Bethlehem, PA 18015 (United States); Vlcek, M. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Kovalskiy, A., E-mail: kovalskyya@apsu.edu [Austin Peay State University, Clarksville, TN 37075 (United States)

    2015-08-31

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As{sub x}S{sub 100−x} (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As{sub 2}O{sub 3} was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films.

  20. Laser-assisted fabrication of gold nanoparticle-composed structures embedded in borosilicate glass

    Directory of Open Access Journals (Sweden)

    Nikolay Nedyalkov

    2017-11-01

    Full Text Available We present results on laser-assisted formation of two- and three-dimensional structures comprised of gold nanoparticles in glass. The sample material was gold-ion-doped borosilicate glass prepared by conventional melt quenching. The nanoparticle growth technique consisted of two steps – laser-induced defect formation and annealing. The first step was realized by irradiating the glass by nanosecond and femtosecond laser pulses over a wide range of fluences and number of applied pulses. The irradiation by nanosecond laser pulses (emitted by a Nd:YAG laser system induced defect formation, expressed by brown coloration of the glass sample, only at a wavelength of 266 nm. At 355, 532 and 1064 nm, no coloration of the sample was observed. The femtosecond laser irradiation at 800 nm also induced defects, again observed as brown coloration. The absorbance spectra indicated that this coloration was related to the formation of oxygen deficiency defects. After annealing, the color of the irradiated areas changed to pink, with a corresponding well-defined peak in the absorbance spectrum. We relate this effect to the formation of gold nanoparticles with optical properties defined by plasmon excitation. Their presence was confirmed by high-resolution TEM analysis. No nanoparticle formation was observed in the samples irradiated by nanosecond pulses at 355, 532 and 1064 nm. The optical properties of the irradiated areas were found to depend on the laser processing parameters; these properties were studied based on Mie theory, which was also used to correlate the experimental optical spectra and the characteristics of the nanoparticles formed. We also discuss the influence of the processing conditions on the characteristics of the particles formed and the mechanism of their formation and demonstrate the fabrication of structures composed of nanoparticles inside the glass sample. This technique can be used for the preparation of 3D nanoparticle systems

  1. Preparation and characterization of new glasses from the TeO2-CdO-Al2O3-SiO2 system

    OpenAIRE

    Zayas, Mª. E.; Espinoza-Beltrán, F. J.; Romero, Maximina; Rincón López, Jesús María

    1998-01-01

    A new family of glasses from the TeO2-CdO-Al2O3-SiO2 system obtained from CdS-TeO2 mixtures melted in fireclay crucibles have been prepared and characterized. The density values of these glasses are in the 3.30-3.46 gcm-3 range. The viscosity-temperature variation shows that glasses with high TeO2 content depict the typical variation of `short glasses' for a molding operation. Microstructural observations by TEM (replica method) and SEM microscopies have shown that these glasses contain very ...

  2. Single-step fabrication of stressed waveguides with tubular depressed-cladding in phosphate glasses using ultrafast vortex laser beams

    Directory of Open Access Journals (Sweden)

    Cheng Guanghua

    2013-11-01

    Full Text Available We report on the fabrication of the stressed optical waveguide with tubular depressed-refractive-index cladding in phosphate glasses by use of femtosecond vortex beam. Strained regions were emerged in domains surrounding the tubular track. Waveguiding occurs mainly within the tube induced by femtosecond laser.

  3. Facile fabrication of Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts with efficient photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaomin; Huang, Guanbo [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Gao, Haihuan [Tianjin Fourth Middle School, Tianjin 300021 (China); Pan, Cheng; Wang, Huan [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Yan, Jing, E-mail: yanjingls2012@163.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Liu, Yu [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Ma, Ning [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Gao, Jianping [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China)

    2016-07-25

    In this work, Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts were prepared by combining a hydrothermal technique and a facile in situ growth method. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma spectroscopy, X-ray photoelectron spectroscopy, UV–Vis diffusion reflectance spectroscopy and room-temperature photoluminescence spectra. Their photocatalytic performances were evaluated by degrading methyl orange (MO) in aqueous solution (50 mg/L) under visible light (λ > 420 nm) irradiation. It was found that when the mass percentage of Bi{sub 2}S{sub 3} in Bi{sub 2}S{sub 3}/SnS{sub 2} was 7.95 wt%, the as-prepared Bi{sub 2}S{sub 3}/SnS{sub 2} nanocomposite showed the best photocatalytic activity for the degradation of MO. The highly improved performance of the Bi{sub 2}S{sub 3}/SnS{sub 2} nanocomposite was mainly ascribed to the efficient charge separation. - Highlights: • Facile fabrication of novel Bi{sub 2}S{sub 3}/SnS{sub 2} heterojunction photocatalysts. • High-performance photocatalyst for the degradation of organic pollutants. • Good recyclability of catalyst without photo-corrosion. • The photocatalytic mechanism was proposed.

  4. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    International Nuclear Information System (INIS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-01-01

    Graphical abstract: A novel approach was developed for fabrication of TiO 2 /MoS 2 @zeolite photocatalyst using bulk MoS 2 as a photosensitizer and zeolite as carrier. The as-prepared TiO 2 /MoS 2 @zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS 2 from micro-MoS 2 . • The embedded sensitizer composite mode of (TiO 2 /MoS 2 /TiO 2 ) was used in the fabrication of TiO 2 /MoS 2 @zeolite composite photocatalyst. • The photocatalytic mechanism of TiO 2 /MoS 2 @zeolite photocatalyst was presented. - Abstract: TiO 2 /MoS 2 @zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl 4 as Ti source, MoS 2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO 2 /MoS 2 @zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k app ) (2.304 h −1 ) is higher than that of Degussa P25 (0.768 h −1 ); (3) the heterostructure consisted of zeolite, MoS 2 and TiO 2 nanostructure could provide synergistic effect for degradation

  5. Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration.

    Science.gov (United States)

    Mattioli-Belmonte, M; De Maria, C; Vitale-Brovarone, C; Baino, F; Dicarlo, M; Vozzi, G

    2017-07-01

    The aim of this work was the fabrication and characterization of bioactive glass-poly(lactic-co-glycolic acid) (PLGA) composite scaffolds mimicking the topological features of cancellous bone. Porous multilayer PLGA-CEL2 composite scaffolds were innovatively produced by a pressure-activated microsyringe (PAM) method, a CAD/CAM processing technique originally developed at the University of Pisa. In order to select the optimal formulations to be extruded by PAM, CEL2-PLGA composite films (CEL2 is an experimental bioactive SiO 2 -P 2 O 5 -CaO-MgO-Na 2 O-K 2 O glass developed at Politecnico di Torino) were produced and mechanically tested. The elastic modulus of the films increased from 30 to > 400 MPa, increasing the CEL2 amount (10-50 wt%) in the composite. The mixture containing 20 wt% CEL2 was used to fabricate 2D and 3D bone-like scaffolds composed by layers with different topologies (square, hexagonal and octagonal pores). It was observed that the increase of complexity of 2D topological structures led to an increment of the elastic modulus from 3 to 9 MPa in the composite porous monolayer. The elastic modulus of 3D multilayer scaffolds was intermediate (about 6.5 MPa) between the values of the monolayers with square and octagonal pores (corresponding to the lowest and highest complexity, respectively). MG63 osteoblast-like cells and periosteal-derived precursor cells (PDPCs) were used to assess the biocompatibility of the 3D bone-like scaffolds. A significant increase in cell proliferation between 48 h and 7 days of culture was observed for both cell phenotypes. Moreover, qRT-PCR analysis evidenced an induction of early genes of osteogenesis in PDPCs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    Science.gov (United States)

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    Science.gov (United States)

    Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.

    2016-08-01

    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s-1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.

  8. Structure and Ionic Conductivity of Li2S–P2S5 Glass Electrolytes Simulated with First-Principles Molecular Dynamics

    International Nuclear Information System (INIS)

    Baba, Takeshi; Kawamura, Yoshiumi

    2016-01-01

    Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solid-state lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li + mobilities by using molecular dynamics calculations based on density functional theory (DFT-MD). The structures of xLi 2 S–(100 − x)P 2 S 5 (x = 67, 70, 75, and 80) were created by randomly identifying appropriate compositions of Li + , PS 4 3− ,P 2 S 7 4− , and S 2− and then annealing them with DFT-MD calculations. Calculated relative stabilities of the amorphous structures with x = 67, 70, and 75 to crystals with the same compositions were 0.04, 0.12, and 0.16 kJ/g, respectively. The implication is that these amorphous structures are metastable. There was good agreement between calculated and experimental structure factors determined from X-ray scattering. The differences between the structure factors of amorphous structures were small, except for the first sharp diffraction peak, which was affected by the environment between Li and S atoms. Li + diffusion coefficients obtained from DFT-MD calculations at various temperatures for picosecond simulation times were on the order of 10 −3 –10 −5 Å 2 /ps. Ionic conductivities evaluated by the Nernst–Einstein relationship at 298.15 K were on the order of 10 −5 S/cm. The ionic conductivity of the amorphous structure with x = 75 was the highest among the amorphous structures because there was a balance between the number density and diffusibility of Li + . The simulations also suggested that isolated S atoms suppress Li + migration.

  9. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    Science.gov (United States)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  10. Conductivity in Ag-As-S(Se,Te) chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Kolář, J.; Bartoš, M.; Vlček, Milan; Frumar, M.; Zima, Vítězslav; Wágner, T.

    2010-01-01

    Roč. 181, 37/38 (2010), s. 1625-1630 ISSN 0167-2738 Institutional research plan: CEZ:AV0Z40500505 Keywords : chalcogenide glasses * ionics conductivity * phase separation Subject RIV: CA - Inorganic Chemistry Impact factor: 2.496, year: 2010

  11. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  12. Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.

    Science.gov (United States)

    Ma, Zhibo; Wang, Yinan; Shen, Qiang; Zhang, Han; Guo, Xuetao

    2018-04-17

    MEMS fabrication that is based on the silicon-on-glass (SOG) process requires many steps, including patterning, anodic bonding, deep reactive ion etching (DRIE), and chemical mechanical polishing (CMP). The effects of the process parameters of CMP and DRIE are investigated in this study. The process parameters of CMP, such as abrasive size, load pressure, and pH value of SF1 solution are examined to optimize the total thickness variation in the structure and the surface quality. The ratio of etching and passivation cycle time and the process pressure are also adjusted to achieve satisfactory performance during DRIE. The process is optimized to avoid neither the notching nor lag effects on the fabricated silicon structures. For demonstrating the capability of the modified CMP and DRIE processes, a z-axis micro gyroscope is fabricated that is based on the SOG process. Initial test results show that the average surface roughness of silicon is below 1.13 nm and the thickness of the silicon is measured to be 50 μm. All of the structures are well defined without the footing effect by the use of the modified DRIE process. The initial performance test results of the resonant frequency for the drive and sense modes are 4.048 and 4.076 kHz, respectively. The demands for this kind of SOG MEMS device can be fulfilled using the optimized process.

  13. Comment on 'Spherical 2+p spin-glass model: An analytically solvable model with a glass-to-glass transition'

    International Nuclear Information System (INIS)

    Krakoviack, V.

    2007-01-01

    Guided by old results on simple mode-coupling models displaying glass-glass transitions, we demonstrate, through a crude analysis of the solution with one step of replica symmetry breaking (1RSB) derived by Crisanti and Leuzzi for the spherical s+p mean-field spin glass [Phys. Rev. B 73, 014412 (2006)], that the phase behavior of these systems is not yet fully understood when s and p are well separated. First, there seems to be a possibility of glass-glass transition scenarios in these systems. Second, we find clear indications that the 1RSB solution cannot be correct in the full glassy phase. Therefore, while the proposed analysis is clearly naive and probably inexact, it definitely calls for a reassessment of the physics of these systems, with the promise of potentially interesting developments in the theory of disordered and complex systems

  14. Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles.

    Science.gov (United States)

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2018-08-05

    In the paper analysis of structural and luminescent properties of antimony-germanate-borate glasses and glass fiber co-doped with 0.6AgNO 3 /0.2Eu 2 O 3 are presented. Heat treatment of the fabricated glass and optical fiber (400 °C, 12 h) enabled to obtain Ag nanoparticles (NPs) with average size 30-50 nm on their surface. It has been proofed that silver ions migrate to the glass surface, where they are reduced to Ag 0 nanoparticles. Simultaneously, FTIR analysis showed that heat treatment of the glass and optical fiber increases the local symmetry of the Eu 3+ site. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Cu2ZnSnS4 thin films by simple replacement reaction route for solar photovoltaic application

    International Nuclear Information System (INIS)

    Tiwari, Devendra; Chaudhuri, Tapas K.; Ray, Arabinda; Tiwari, Krishan Dutt

    2014-01-01

    A process for deposition of Cu 2 ZnSnS 4 (CZTS) films using replacement of Zn 2+ in ZnS is demonstrated. X-ray diffraction pattern and Raman spectroscopy confirm the formation of pure CZTS. Atomic force microscopy shows the films to be homogeneous and compact with root mean squared roughness of 6 nm. The direct band gap of CZTS films as elucidated by UV–Vis-NIR spectroscopy is 1.45 eV. The CZTS films exhibit p-type conduction with electrical conductivity of 4.6 S/cm. The hole concentration and hole mobility is determined to be 3.6 × 10 17 cm −3 and 1.4 cm 2 V −1 s −1 respectively. Solar cells with structure: graphite/CZTS/CdS/ZnO/SnO 2 :In/Soda lime glass are also fabricated, gave photo-conversion efficiency of 6.17% with open circuit voltage and short circuit current density of 521 mV and 19.13 mA/cm 2 , respectively and a high fill factor of 0.62. The external quantum efficiency of the solar cell lies above 60% in the visible region. - Highlights: • Pure kesterite Cu 2 ZnSnS 4 thin films deposited by replacement reaction route • Energy band gap of films is 1.45 eV. • p-type films with conductivity of 4.6 S/cm and mobility of 1.4 cm 2 S −1 V −1 • Fabrication of Graphite/Cu 2 ZnSnS 4 /CdS/ZnO/SnO 2 :In/Glass solar cell • Solar cell delivered efficiency of 6.17% with high fill factor of 0.62

  16. Crystal growth and optical properties of CdS-doped lead silicate glass

    International Nuclear Information System (INIS)

    Liu Hao; Liu Qiming; Zhao Xiujian

    2007-01-01

    The crystal growth and optical properties of CdS microcrystallite-doped lead silicate glass is investigated in this paper. The existence of CdS nanocrystals was confirmed via X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results reveal that a two-stage heat-treat procedure can produce a better size distribution of CdS nanocrystals than a one-stage heat-treat procedure in glasses. The second harmonic generation (SHG) from the base glass and CdS microcrystallite doped glasses was observed, and the effects of the heat treatments and the thermal poling temperature on the crystallization of CdS and second-order harmonic (SH) intensity were discussed, respectively. It is indicated that samples doped with CdS microcrystallite showed larger SH intensity than that of the base glass. Use of a higher thermal poling temperature than the glass transformation temperature does not result in a good SH intensity in glasses

  17. Optical spectroscopy and optical waveguide fabrication in Eu3+ and Eu3+/Tb3+ doped zinc–sodium–aluminosilicate glasses

    International Nuclear Information System (INIS)

    Caldiño, U.; Speghini, A.; Berneschi, S.; Bettinelli, M.; Brenci, M.; Pasquini, E.; Pelli, S.; Righini, G.C.

    2014-01-01

    Optical and spectroscopic properties of 2.0% Eu(PO 3 ) 3 singly doped and 5.0% Tb(PO 3 ) 3 –2.0% Eu(PO 3 ) 3 codoped zinc–sodium–aluminosilicate glasses were investigated. Reddish-orange light emission, with x=0.64 and y=0.36 CIE1931 chromaticity coordinates, is obtained in the europium singly doped glass excited at 393 nm. Such chromaticity coordinates are close to those (0.67,0.33) standard of the National Television System Committee for the red phosphor. When the sodium–zinc–aluminosilicate glass is co-doped with Tb 3+ and Eu 3+ , reddish-orange light emission, with (0.61,0.37) CIE1931 chromaticity coordinates, is obtained upon Tb 3+ excitation at 344 nm. This reddish-orange luminescence is generated mainly by 5 D 0 → 7 F 1 and 5 D 0 → 7 F 2 emissions of Eu 3+ , europium being sensitized by terbium through a non-radiative energy transfer. From an analysis of the Tb 3+ emission decay curves it is inferred that the Tb 3+ →Eu 3+ energy transfer might take place between Tb 3+ and Eu 3+ clusters through a short-range interaction mechanism, so that an electric dipole–quadrupole interaction appears to be the most probable transfer mechanism. The efficiency of this energy transfer is about 62% upon excitation at 344 nm. In the singly doped and codoped glasses multimode optical waveguides were successfully produced by Ag + –Na + ion exchange, and they could be characterized at various wavelengths. -- Highlights: • Reddish-orange light emission can be generated from Tb 3+ and Eu 3+ codoped zinc–sodium–aluminosilicate glasses excited at 344 nm. • The Eu 3+ is sensitized by Tb 3+ through a non-radiative energy transfer. • Highly multimode waveguides can be fabricated by diluted silver–sodium exchange. • This type of AlGaN LEDs pumped glass phosphors might be useful for generation of reddish-orange light

  18. Gordon S. Fulcher: Renaissance Man of Glass Science

    Science.gov (United States)

    Mauro, John

    2014-11-01

    To a glass scientist, the name “Fulcher” conjures images of viscosity vs. temperature diagrams for glass-forming liquids. Indeed, Gordon Fulcher’s seminal 1925 publication, in which he proposed his three-parameter model of viscosity, is one of the most significant and influential papers ever published in the field of glass science. Fulcher developed this equation during the early part of his 14-year career at Corning Glass Works (1920-1934). However, Fulcher’s work in viscosity represents a small fraction of his highly diverse and accomplished career, which included pioneering the field of electrocast ceramics and developing the modern system of scientific abstracting that it still in use today. Fulcher also had a keen interest in social and economic problems, and his latter research focused heavily on the field of metacognition, i.e., the process of thinking.

  19. Spray deposition of electrospun TiO{sub 2} nanoparticles with self-cleaning and transparent properties onto glass

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fang [Department of Environmental Engineering and Biotechnology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Kyonggi-do 449-728 (Korea, Republic of); Li, Qiming [School of Chemistry and Material Science, Liaoning Shihua University, Fushun, Liaoning 113001 (China); Kim, Hern, E-mail: hernkim@mju.ac.kr [Department of Environmental Engineering and Biotechnology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Kyonggi-do 449-728 (Korea, Republic of)

    2013-07-01

    A self-cleaning and transparent TiO{sub 2} nano-structured film coating was fabricated onto a glass substrate by electrospinning. It was found that the addition of diethanolamine (DEA) to the TiO{sub 2} precursor solution remarkably changes the microscopic morphology of the resulting TiO{sub 2} coating. In that, as the DEA's amount was increased, the resulting coating changed from opaque fibers to transparent nanoparticles under the same electrospinning conditions which was confirmed by Scanning Electron Microscopy (SEM). Meanwhile, the experimental results showed that the DEA/TiO{sub 2} coating containing nanoparticles display better optical transmittance, e.g., a maximum transmittance of over 90% was achieved around 600 nm when the glass was coated with the nanoparticles at an electrospinning feed rate of 0.18 ml/h. The photocatalytic properties of the particle-like TiO{sub 2} coating was studied using Congo red decay and silver ion reduction experiments. Together these experiments proved that this novel TiO{sub 2} film/coating comprising electrospun nanoparticles possesses excellent photocatalytic activities. Lastly, water contact angle measurements proved that the coating is superhydrophilic.

  20. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    KAUST Repository

    Abulikemu, Mutalifu

    2015-12-26

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  1. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    KAUST Repository

    Abulikemu, Mutalifu; Del Gobbo, Silvano; Anjum, Dalaver H.; Malik, Mohammad A; Bakr, Osman

    2015-01-01

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  2. Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot recreational yachts

    Directory of Open Access Journals (Sweden)

    Dave (Dae-Wook Kim

    2010-03-01

    Full Text Available Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL, vacuum infusion (VI, and hybrid (HL + VI processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

  3. Faraday rotation influence factors in tellurite-based glass and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuling; Wang, Qingwei [Henan University of Technology, School of Materials Science and Engineering, Zhengzhou, Henan (China); Wang, Hui; Chen, Qiuping [Politecnico di Torino, Department of Applied Science and Technology, Turin (Italy)

    2015-09-15

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO{sub 2}-ZnO-Na{sub 2}O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  4. Faraday rotation influence factors in tellurite-based glass and fibers

    International Nuclear Information System (INIS)

    Chen, Qiuling; Wang, Qingwei; Wang, Hui; Chen, Qiuping

    2015-01-01

    The Faraday rotation influence factors in tellurite-based glass and fibers were studied by experiments and simulations. TeO 2 -ZnO-Na 2 O-BaO glass family was fabricated and characterized in terms of the thermal and magneto-optical properties. Two core-cladding pairs for two fibers were selected from fabricated glasses. The Verdet constants of the glasses and fibers were measured at different wavelengths using a homemade optical bench, and the Verdet constant of fiber was close to that of the bulk glass. The influence from external factors (wavelength, laser power and magnetic field) and internal factors (thermal expansion coefficient difference, refractive index and Verdet constant of core and cladding) on Faraday rotation in fibers was investigated and discussed, and the purpose of this study is to improve the Faraday rotation in tellurite fibers for MO device applications both from internal material property match and external parameter configuration in measurement. (orig.)

  5. Luminescence of MnS in glasses: spectroscopic probe for the study of thermal phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Menassa, P E

    1984-01-01

    A new approach for studying thermal phase separation in sodium borosilicate glasses using MnS as a luminescent probe is investigated. Seventy-one samples of glasses activated by MnS inside and around the Na2O.B2O3.SiO2 miscibility gaps were prepared. These samples were then phase separated by dry thermal treatment. It is shown that on addition of MnO, the ternary Na2O.B2O3.SiO2 system behaved like other quaternary systems of the type X2O.MO.B2O3.SiO2 (X = Na, K; M = Mg, Ca, Ba, Zn). Scanning electron microscopy and X-ray microanalysis demonstrated that manganese concentrates preferentially in the boron-rich phase. This, analysis, in conjuction with a comparison of MnS emission spectra of upheated and heat treated glasses shows that the glasses are submicroscopically phase separated when prepared. The decay-time analysis of MnS luminescence indicates that the low energy emission band arises from MnS in the boron-rich phase while the high energy emission is due to MnS in the silica-rich phase. The difference in the crystal field parameters obtained from the excitation spectra of the two emission bands shows that the high energy emission band is from MnS in tetrahedral sites while the low energy emission band is from MnS in an octahedral environment.

  6. Broadband anti-reflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cells

    International Nuclear Information System (INIS)

    Li, Xiaoyu; He, Junhui; Liu, Weiyi

    2013-01-01

    Graphical abstract: High performance broadband antireflective and water-repellent coatings were fabricated on glass substrates, which can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. - Highlights: • Broadband anti-reflective and water-repellent coatings were fabricated. • Transmittance increased to 99.0%, significantly higher than that of commercial solar glasses. • The performance of standard solar cells with the AR coating was enhanced as much as 6.6%. - Abstract: High performance broadband antireflective (AR) and water-repellent coatings were fabricated on glass substrates by assembly of silica nanoparticles and polyelectrolytes via the layer-by-layer (LbL) assembly technique, followed by calcination and hydrophobic modification. A porous poly(diallyladimethylammonium chloride) (PDDA)/20 nm SiO 2 nanoparticles (S-20) multilayer coating with AR property was prepared first. The maximum transmittance is as high as 99.0%, while that of the glass substrate is only 91.3%. After calcination and hydrophobic modification, the coating became water-repellent while maintaining the good AR property. Such water-repellent AR coatings can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. Scanning electron microscopy (SEM) was used to observe the morphology and thickness of coatings. Transmission spectra and reflection spectra were characterized by UV–vis spectrophotometer. The surface wettability was studied by a contact angle/interface system

  7. Scalable Fabrication of Efficient NiCo2S4 Counter Electrodes for Dye-sensitized Solar Cells Using a Facile Solution Approach

    International Nuclear Information System (INIS)

    Su, An-Lin; Lu, Man-Ning; Chang, Chin-Yu; Wei, Tzu-Chien; Lin, Jeng-Yu

    2016-01-01

    Exploiting highly electrocatalytic and cost-effectiveness counter electrodes (CEs) in dye-sensitized solar cells (DSCs) has been regarded as a persistent objective. In this work, we proposed a facile low-cost solution approach for scalable fabrication of NiCo 2 S 4 (NCS) CEs in Pt-free DSCs. Firstly, NCS particles were synthesized by means of a solvothermal method. Afterwards, the NCS particles were successfully immobilized on fluorine-doped tin oxide (FTO) glass substrate and indium doped tin oxide polyethylene naphthalate (ITO/PEN) flexible substrate as NCS CE and flexible NCS CE, respectively, by using series of dip-coating processes. On the basis of extensive electrochemical characterizations, the NCS CEs displayed Pt-like electrocatalytic activity for I 3 − reduction. The DSC based on the NCS CE achieved an impressive cell efficiency of 8.94%, which was higher than that of the cell with the conventional Pt CE (8.51%). More interesting, the DSC using the flexible NCS CE still demonstrated an acceptable cell performance of 8.62% (or 8.57% with the bended flexible NCS CE).

  8. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    Science.gov (United States)

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-01-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics. PMID:27734918

  9. A simple structure of Cu2ZnSnS4/CdS solar cells prepared by sputtering

    Science.gov (United States)

    Li, Zhishan; Wang, Shurong; Ma, Xun; Yang, Min; Jiang, Zhi; Liu, Tao; Lu, Yilei; Liu, Sijia

    2017-12-01

    In this work, Cu2ZnSnS4 (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by annealing of sputtered ZnS/Sn/CuS precursors at 580 ℃ for 15 min. As a try, the CZTS solar cells were fabricated using simple structure of Mo-coated SLG/CZTS/CdS/Al and traditional structure of Mo-coated SLG/CZTS/CdS/i-ZnO/In2O3:SnO2 (ITO)/Al, respectively. The results show that the CZTS device with simple structure can achieve same level of the open circuit voltage (Voc) compared with that of traditional structure. In addition, the power conversion efficiency of 2.95% and 3.59% were obtained with simple structure and traditional structure, respectively. The CZTS solar cell with simple structure provides a promising way and an easy process to prepare high-performance CZTS thin film solar cells which is available to large-scale industrial production in the future.

  10. Three dimensional fatigue damage evolution in non-crimp glass fibre fabric based composites used for wind turbine blades

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2017-01-01

    This work studies the tension fatigue damage progression of a uni-directional glass fibre composite made from a non-crimp fabric similar to those used for the main load carrying parts of a wind turbine blade. The spatial damage progression in a chosen region of a test specimen is monitored...... on a micro-structural scale by ex-situ X-ray computed tomography. The centimetre sized specimen remains uncut during the ex-situ experiment. The experimental results indicate that uni-directional fibre fractures initiate from matrix cracks related to the structure of the fabric: first in the thin off...

  11. Alkali-free bioactive glasses for bone regeneration =

    Science.gov (United States)

    Kapoor, Saurabh

    Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) - Fluorapatite (Ca5(PO4)3F) - Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1-12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass

  12. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    Science.gov (United States)

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window

    Science.gov (United States)

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-01

    SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  14. Fabrication of low thermal expansion SiC/ZrW{sub 2}O{sub 8} porous ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Poowancum, A; Matsumaru, K; Juarez-Ramirez, I; Ishizaki, K [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Torres-Martinez, L M [Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, San Nicolas de los Garza, NL, C.P. 66451 (Mexico); Fu, Z Y [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 (China); Lee, S W, E-mail: anurat@ishizaki.nagaokaut.ac.jp [Department of Environment Engineering, Sun Moon University, 100, Kalsan-ri, Tangjeong-myeon, Asan, Chungnam 336-708 (Korea, Republic of)

    2011-03-15

    Low or zero thermal expansion porous ceramics are required for several applications. In this work near zero thermal expansion porous ceramics were fabricated by using SiC and ZrW{sub 2}O{sub 8} as positive and negative thermal expansion materials, respectively, bonded by soda lime glass. The mixture of SiC, ZrW{sub 2}O{sub 8} and soda lime glass was sintered by Pulsed Electric Current Sintering (PECS, or sometimes called Spark Plasma Sintering, SPS) at 700 deg. C. Sintered samples with ZrW{sub 2}O{sub 8} particle size smaller than 25 {mu}m have high thermal expansion coefficient, because ZrW{sub 2}O{sub 8} has the reaction with soda lime glass to form Na{sub 2}ZrW{sub 3}O{sub 12} during sintering process. The reaction between soda lime glass and ZrW{sub 2}O{sub 8} is reduced by increasing particle size of ZrW{sub 2}O{sub 8}. Sintered sample with ZrW{sub 2}O{sub 8} particle size 45-90 {mu}m shows near zero thermal expansion.

  15. R S Khairnar

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R S Khairnar. Articles written in Bulletin of Materials Science. Volume 27 Issue 1 February 2004 pp 73-77 Optical Materials. Fabrication of silicon based glass fibres for optical communication · Vivek P Kude R S Khairnar · More Details Abstract Fulltext PDF. Silicon based glass ...

  16. Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2017-01-01

    The data published with this article are high resolution X-ray computed tomography (CT) data obtained during an ex-situ fatigue test of a coupon test specimen made from a non-crimp fabric based glass fibre composite similar to those used for wind turbine blades. The fatigue test was interrupted...

  17. Development of soda-lime glasses from ornamental rock wastes

    International Nuclear Information System (INIS)

    Babisk, Michelle Pereira

    2009-01-01

    During the ornamental rocks production, among other steps, one saw the rock blocks in order to transform them into semi-finished plates. In this step, expressive amounts of residues are generated, which are not properly discharged in nature, without any programmed utilization. The residues of silicide rocks present, in their compositions, oxides which are raw materials employed to fabricate soda-lime type glasses (containing SiO_2, Al_2O_3, CaO, Na_2O and K_2O). On the other hand the residues of carbonatic rocks are constituted of glass net modifier oxides, like CaO and MgO. In this work it was developed four types of soda-lime glasses using ornamental rock residues, where the glasses compositions were adjusted by adding sand, as silica source, as well as sodium and calcium carbonates as sources of Na_2O and CaO, respectively. The obtained glasses were characterized by means of Archimed's method for densities measurements, microstructure by using optical and electronic microscopy, phases by means of X-ray diffraction (XRD), hardness by Vickers indentation, spectroscopy (UV/VIS), and hydrolytic resistance according to ISO 719. The XRD analyses confirmed the compositions total vitrification, where the greened aspect of the samples was due to the presence of the iron oxides. The produced glasses properties were compared with those of commercial glasses aiming their industrial employment. The main difference between the produced glasses and those commercials varied primarily regarding the amount of carbonates incorporated. The results showed that the ornamental rocks residues may be used as raw materials for glasses fabrication, and they found a useful economic destination rather than discharge which promotes undesirable environmental impact. (author)

  18. Fabrication of slag-glass composite with controlled porosity

    Directory of Open Access Journals (Sweden)

    Ranko Adziski

    2008-06-01

    Full Text Available The preparation and performance of porous ceramics made from waste materials were investigated. Slag from thermal electrical plant Kakanj (Bosnia and Herzegovina with defined granulations: (0.500÷0.250 mm; (0.250÷0.125 mm; (0.125÷0.063 mm; (0.063÷0.045 mm and 20/10 wt.% of the waste TV screen glass with a granulation <0.063 mm were used for obtaining slag-glass composites with controlled porosity. The one produced from the slag powder fraction (0.125÷0.063 mm and 20 wt.% TV screen glass, sintered at 950°C/2h, was considered as the optimal. This system possesses open porosity of 26.8±1.0%, and interconnected pores with the size of 250–400 μm. The values of E-modulus and bending strength of this composite were 10.6±0.6 GPa and 45.7±0.7 MPa, respectively. The coefficient of thermal expansion was 8.47·10-6/°C. The mass loss in 0.1M HCl solution after 30 days was 1.2 wt.%. The permeability and the form coefficient of the porous composite were K0=0.12 Da and C0=4.53·105 m-1, respectively. The porous composite shows great potential to be used as filters, diffusers for water aeration, dust collectors, acoustic absorbers, etc.

  19. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    International Nuclear Information System (INIS)

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  20. Synthesis of nanocrystals in KNb(Ge,Si)O5 glasses and chemical etching of nanocrystallized glass fibers

    International Nuclear Information System (INIS)

    Enomoto, Itaru; Benino, Yasuhiko; Fujiwara, Takumi; Komatsu, Takayuki

    2006-01-01

    The nanocrystallization behavior of 25K 2 O-25Nb 2 O 5 -(50-x)GeO 2 -xSiO 2 glasses with x=0,25,and50 (i.e., KNb(Ge,Si)O 5 glasses) and the chemical etching behavior of transparent nanocrystallized glass fibers have been examined. All glasses show nanocrystallization, and the degree of transparency of the glasses studied depends on the heat treatment temperature. Transparent nanocrystallized glasses can be obtained if the glasses are heat treated at the first crystallization peak temperature. Transparent nanocrystallized glass fibers with a diameter of about 100μm in 25K 2 O-25Nb 2 O 5 -50GeO 2 are fabricated, and fibers with sharpened tips (e.g., the taper length is about 450μm and the tip angle is about 12 o ) are obtained using a meniscus chemical etching method, in which etching solutions of 10wt%-HF/hexane and 10M-NaOH/hexane are used. Although the tip (aperture size) has not a nanoscaled size, the present study suggests that KNb(Ge,Si)O 5 nanocrystallized glass fibers have a potential for new near-field optical fiber probes with high refractive indices of around n=1.8 and high dielectric constants of around ε=58 (1kHz, room temperature)

  1. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    Science.gov (United States)

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  2. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    Directory of Open Access Journals (Sweden)

    Elias Randjbaran

    2014-01-01

    Full Text Available Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  3. Correlation between supercooled liquid relaxation and glass poisson’s ratio

    DEFF Research Database (Denmark)

    Sun, Q.J.; Hu, L.N.; Zhou, C.

    2015-01-01

    in the ratio r and this relation can be described by the empirical function v = 0.5 − A ∗ exp(−B ∗ r), where A and B are constants. This correlation might imply that glass plasticity is associated with the competition between the α and the slow β relaxations in SLs. The underlying physics of this correlation......We report on a correlation between the supercooled liquid (SL) relaxation and glass Poisson’s ratio (v) by comparing the activation energy ratio (r) of the α and the slow β relaxations and the v values for both metallic and nonmetallic glasses. Poisson’s ratio v generally increases with an increase...... lies in the heredity of the structural heterogeneity from liquid to glass. This work gives insights into both the microscopic mechanism of glass deformation through the SL dynamics and the complex structural evolution during liquid-glass transition....

  4. Synthesis and Mechanical Properties Investigation of Nano TiO2/Glass/Epoxy Hybrid Nanocomposite

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salehi

    2015-10-01

    Full Text Available Mechanical properties of epoxy and glass/epoxy filled with 0.25, 0.5 and 1 vol% of TiO2 nanoparticles have been studied using tensile and three-point bending tests. For the TiO2/epoxy nanocomposites, the results showed that the strength and stiffness were improved, though the strain at ultimate strength point and breaking strain decreased. Moreover, the hybrid nanocomposites composed of 4 layers of woven E-glass fabric and TiO2/epoxy matrix were fabricated and cut onaxis and 45° off-axis by water jet. The results of tensile and three-point bending tests indicated a remarkable improvement in the strength and stiffness that could not be related to the mechanical improvement of the matrix. The samples containing 1 vol% nano TiO2 were improved relative to samples without the nanoparticles. The tensile strength of the on-axis and off-axis samples containing 1 vol% TiO2 increased by about 25.9% and 17.9%, in the order given, compared to that of the glass/epoxy specimens. In three-point bending test, the strength of the on-axis and off-axis specimens was improved 26% and 23.2%, respectively. In addition, the tensile stiffness of the onaxis and off-axis samples containing 1 vol% TiO2 increased, respectively, by about 14.4% and 17.5% compared to that of the glass/epoxy specimens. Also for the same on-axis and off-axis samples the three-point bending stiffness increased about 19.8% and 14.6%, respectively. The whole investigation on the microstructure of the hybrid nanocomposites illustrated that stronger interfaces between the fiber and TiO2/epoxy matrix were formed and improvement was noticed on mechanical properties of ternary composite compared to those of the fiber/epoxy composites. The analysis of damage zones of hybrid nanocomposites showed that the surface area of the damaged zone declined considerably due to the brittle behavior of TiO2-filled specimens but the area below the stress-strain curve, showing energy absorption during the test

  5. Study of glass-nanocomposite and glass-ceramic containing ferroelectric phase

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, E.K., E-mail: Eid_khalaf0@yahoo.com [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt); Mohamed, E.A. [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt); Salem, Shaaban M.; Ebrahim, F.M.; Kashif, I. [Department of Physics, Faculty of Science, Al Azhar University, Nasr City 11884, Cairo (Egypt)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Glass nanocomposites was synthesized. Black-Right-Pointing-Pointer Glass nanocomposites exhibit both optical transmission bands at 598 and 660 nm and broad dielectric anomalies. Black-Right-Pointing-Pointer The ferroelectricity in pure single-phase oxide glass has not yet been discovered. - Abstract: Transparent glass nanocomposite in the pseudo binary system (100 - x) Li{sub 2}B{sub 4}O{sub 7}-xBaTiO{sub 3} with x = 0 and 60 (in mol%) were prepared. Amorphous and glassy characteristics of the as-prepared samples were established via X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) respectively. The precipitated BaTiO{sub 3} nanocrystal phase embedded in the glass sample at x = 60 mol% was identified by transmission electron microscopic (TEM). The optical transmission bands at 598 and 660 nm were assigned to Ti{sup 3+} ions in tetragonal distorted octahedral sites. The precipitated Li{sub 2}B{sub 4}O{sub 7}, BaTi(BO{sub 3}){sub 2} and BaTiO{sub 3} nanocrystallites phases with heat-treatment at 923 K for 6 h (HT923) in glass-ceramic were identified by XRD, TEM and infrared absorption spectroscopy. The as-prepared at x = 60 mol% and the HT923 samples exhibit broad dielectric anomalies in the vicinity of the ferroelectric-to-paraelectric transition temperature. The results demonstrate that the method presented may be an effective way to fabricate ferroelectric host and development of multifunctional ferroelectrics.

  6. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  7. Photoluminescence of Mg_2Si films fabricated by magnetron sputtering

    International Nuclear Information System (INIS)

    Liao, Yang-Fang; Xie, Quan; Xiao, Qing-Quan; Chen, Qian; Fan, Meng-Hui; Xie, Jing; Huang, Jin; Zhang, Jin-Min; Ma, Rui; Wang, Shan-Lan; Wu, Hong-Xian; Fang, Di

    2017-01-01

    Highlights: • High quality Mg_2Si films were grown on Si (111) and glass substrates with magnetron sputtering, respectively. • The first observation of Photoluminescence (PL) of Mg_2Si films was reported. • The Mg_2Si PL emission wavelengths are almost independence on temperature in the range of 77–300 K. • The strongest PL emissions may be attributed to interstitial Mg donor level to valence band transitions. • The activation energy of Mg_2Si is determined from the quenching of major luminescence peaks. - Abstract: To understand the photoluminescence mechanisms and optimize the design of Mg_2Si-based light-emitting devices, Mg_2Si films were fabricated on silicon (111) and glass substrates by magnetron sputtering technique, and the influences of different substrates on the photoelectric properties of Mg_2Si films were investigated systematically. The crystal structure, cross-sectional morphology, composition ratios and temperature-dependent photoluminescence (PL) of the Mg_2Si films were examined using X-ray diffraction (XRD), Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and PL measurement system, respectively. XRD results indicate that the Mg_2Si film on Si (111) displays polycrystalline structure, whereas Mg_2Si film on glass substrate is of like-monocrystalline structure.SEM results show that Mg_2Si film on glass substrate is very compact with a typical dense columnar structure, and the film on Si substrate represents slight delamination phenomenon. EDS results suggest that the stoichiometry of Mg and Si is approximately 2:1. Photoluminescence (PL) of Mg_2Si films was observed for the first time. The PL emission wavelengths of Mg_2Si are almost independence on temperature in the range of 77–300 K. The PL intensity decreases gradually with increasing temperature. The PL intensity of Mg_2Si films on glass substrate is much larger than that of Mg_2Si film on Si (111) substrate. The activation energy of 18 meV is

  8. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    Science.gov (United States)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  9. Ferromagnetic glass ceramics and glass fibers based on the composition of SiO{sub 2}-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} glass system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianan, E-mail: lja@qlu.edu.cn; Zhu, Chaofeng; Zhang, Meimei; Zhang, Yanfei; Yang, Xuena

    2017-03-15

    Ferromagnetic glass-ceramics and glass fibers were obtained by the melt-method from the glass system SiO{sub 2}-CaO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} without performing any nucleation and crystallization heat treatments. Glass-ceramics and glass fibers were characterized by x-ray diffraction, scanning and transmission electron microscopy, magnetic measurements, and thermal expansion instrument. The influence of alumina content on the spontaneous crystallization of magnetite, magnetism properties and thermal expansion performances in glass were investigated. We examined the crystallization behavior of the glasses and found that the spontaneous crystallization capacity of magnetite and magnetism properties in base glass increases with increasing the content of alumina. The ferromagnetic glass fibers containing magnetite nano-crystals are also obtained. - Highlights: • Magnetite nano-crystals are formed spontaneously in the investigated glass systems. • The crystallization behavior of the glasses with the alumina content is examined. • Ferromagnetic glass fibers containing magnetite nano-crystals are obtained.

  10. INTERACTION OF SILVER MOLECULAR CLUSTERS, INTRODUCED BY LOW-TEMPERATURE ION EXCHANGE METHOD, WITH NANOPARTICLES OF CdS IN FLUORINE PHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    N. D. Grazhdanov

    2015-09-01

    Full Text Available Glasses with metallic and semi-conductive nano-particles appear to be perspective non-linear and luminescent materials of photonics. It was shown in theory that composite optical materials containing semi-conductive CdS-core with Ag shell (or vice versa are optimal for enhancement of non-linear Kerr effect. Interaction of such an ensemble of particles leads to the forming of Ag island structures on the CdS particle, and formation of acanthite Ag2S on the two phases border (CdS-Ag is minimal. In glasses synthesis of CdS quantum dots occurred due to thermal treatment close to glass transition temperature; introduction of silver was realized by low-temperature ion exchange (LIE. The main object of this work is investigation of Ag+ -LIE effect on the growth of CdS nano-particles. Two glasses were explored in this work: without CdS (glass 1 and with CdS (glass 2, processed by LIE at the temperature of 320°С for 10, 20 and 30 minutes and subsequent heat treatment at temperatures of 410°С and 420°С. In case of glass 1, intensive luminescence appears as a result of LIE, and subsequent heat treatment results in surface resonance at λ=410 nm. In case of glass 2, absorbance spectra change appears that is specific for formation of acanthite and weak luminescence shifting to long-wavelength region (from 550 to 700 nm as a result of applying LIE and heat treatment. It indicates the growth of CdS quantum dots. Experiment has shown that quantum efficiency increases to 70% for glass 2 containing CdS quantum dots without LIE, while glass that contains silver shows steep decrease of quantum efficiency to 0%. That decrease is caused by formation of acanthite Ag2S on the surface of CdS quantum dot.

  11. Conductivity in alkali doped CoO-B2O3 glasses

    International Nuclear Information System (INIS)

    Nagaraja, N; Sankarappa, T; Santoshkumar; Sadashivaiah, P J; Yenkayya

    2009-01-01

    Two series of cobalt-borate glasses doped with Li 2 O and K 2 O in single and mixed proportions have been synthesized by melt quenching method and investigated for ac conductivity in the frequency range of 50Hz to 5MHz and temperature range of 310K to 610K. From the measured total conductivity, the pure ac component and its frequency exponent, s were determined. In the single alkali doped glasses, for all the frequencies, the conductivity increased with increase of Li 2 O up to 0.4 mole fractions and decreased for further increase of Li 2 O. The temperature dependence of conductivity has been analyzed using Mott's small polaron hopping model and activation energy for ac conduction has been determined. Based on conductivity and activation behaviors, in single alkali glasses, a change over of conduction mechanism predominantly from ionic to electronic has been predicted. In mixed alkali doped glasses, the conductivity passed through minimum and activation energy passed through maximum for second alkali (K 2 O) content of 0.2 mole fractions. This result revealed the mixed alkali effect to be occurring at 0.2 mole fractions of K 2 O. The frequency exponent, s, was compared with theoretical models such as Quantum Mechanical Tunneling and Correlated Barrier Hopping models and found them to be inadequate to explain the experimental observations. Time-temperature superposition principle has been verified in both the sets of glasses.

  12. Fabrication of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiping; Xiao, Xinyan, E-mail: cexyxiao@scut.edu.cn; Zheng, Lili; Wan, Caixia

    2015-12-15

    Graphical abstract: A novel approach was developed for fabrication of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst using bulk MoS{sub 2} as a photosensitizer and zeolite as carrier. The as-prepared TiO{sub 2}/MoS{sub 2}@zeolite composite exhibited excellent photocatalytic performance for degradation of methyl orange under visible-light irradiation. - Highlights: • Ultrasound-exfoliation and hydrothermal reforming technique were employed for generating nano-MoS{sub 2} from micro-MoS{sub 2}. • The embedded sensitizer composite mode of (TiO{sub 2}/MoS{sub 2}/TiO{sub 2}) was used in the fabrication of TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalyst. • The photocatalytic mechanism of TiO{sub 2}/MoS{sub 2}@zeolite photocatalyst was presented. - Abstract: TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl{sub 4} as Ti source, MoS{sub 2} as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM–EDS, TEM, XPS, UV–vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO{sub 2}/MoS{sub 2}@zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir–Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (k{sub app}) (2.304 h{sup −1}) is higher than that of Degussa P25 (0.768 h{sup −1}); (3) the heterostructure

  13. Glass/ceramic coatings for implants

    Science.gov (United States)

    Tomsia, Antoni P [Pinole, CA; Saiz, Eduardo [Berkeley, CA; Gomez-Vega, Jose M [Nagoya, JP; Marshall, Sally J [Larkspur, CA; Marshall, Grayson W [Larkspur, CA

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  14. Luminescent properties of Eu2+-doped BaGdF5 glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    International Nuclear Information System (INIS)

    Zhang, Weihuan; Zhang, Yuepin; Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-01

    Eu 2+ doped transparent oxyfluoride glass ceramics containing BaGdF 5 nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd 3+ ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu 2+ doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd 3+ to Eu 2+ ions, the energy transfer efficiency from Gd 3+ to Eu 2+ ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu 2+ doped BaGdF 5 glass ceramics may be used as a potential blue-emitting phosphor for UV-LED

  15. VIS-IR transmitting BGG glass windows

    Science.gov (United States)

    Bayya, Shyam S.; Chin, Geoff D.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2003-09-01

    BaO-Ga2O3-GeO2 (BGG) glasses have the desired properties for various window applications in the 0.5-5 μm wavelength region. These glasses are low cost alternatives to the currently used window materials. Fabrication of a high optical quality 18" diameter BGG glass window has been demonstrated with a transmitted wave front error of λ/10 at 632 nm. BGG substrates have also been successfully tested for environmental weatherability (MIL-F-48616) and rain erosion durability up to 300 mph. Preliminary EMI grids have been successfully applied on BGG glasses demonstrating attenuation of 20dB in X and Ku bands. Although the mechanical properties of BGG glasses are acceptable for various window applications, it is demonstrated here that the properties can be further improved significantly by the glassceramization process. The ceramization process does not add any significant cost to the final window material. The crystallite size in the present glass-ceramic limits its transmission to the 2-5 μm region.

  16. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  17. Direct observation of a non-isothermal crystallization process in precursor Li10GeP2S12 glass electrolyte

    Science.gov (United States)

    Tsukasaki, Hirofumi; Mori, Shigeo; Shiotani, Shinya; Yamamura, Hideyuki; Iba, Hideki

    2017-11-01

    Crystallization of a precursor Li10GeP2S12 (LGPS) glass electrolyte by heat treatment significantly improves its ionic conductivity. The LGPS crystalline phase obtained by heat treatment above 450 °C shows an ionic conductivity on the order of 10-2 S/cm. To clarify the correlation between the crystallization behavior of precursor LGPS glasses and ionic conductivity, we developed an observation technique to visualize precipitated nanocrystallites and a new method to evaluate the crystallization degree via transmission electron microscopy (TEM). In-situ TEM observation revealed that LGPS nanocrystallites precipitated above 450 °C and their size remained fundamentally intact during heating. That is, the crystallization behavior could be characterized by only the formation of LGPS nanocrystallites in an amorphous matrix. In addition, the crystallization degree was quantitatively evaluated from electron diffraction patterns. The crystallization degree remarkably increased at around 450 °C and reached more than 60% above 450 °C. Based on these results, a high ionic conductivity of approximately 1.0 × 10-2 S/cm was confirmed to be directly associated with the appearance of the LGPS crystalline phase.

  18. Spherical 2+p spin-glass model: An exactly solvable model for glass to spin-glass transition

    International Nuclear Information System (INIS)

    Crisanti, A.; Leuzzi, L.

    2004-01-01

    We present the full phase diagram of the spherical 2+p spin-glass model with p≥4. The main outcome is the presence of a phase with both properties of full replica symmetry breaking phases of discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking. This phase has a finite complexity which leads to different dynamic and static properties. The phase diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin glass phase transitions

  19. Crystallization processes in Ge2Sb2Se4Te glass

    Czech Academy of Sciences Publication Activity Database

    Svoboda, R.; Bezdička, Petr; Gutwirth, J.; Malek, J.

    2015-01-01

    Roč. 61, JAN (2015), s. 207-214 ISSN 0025-5408 Institutional support: RVO:61388980 Keywords : Chalcogenides * Glass es * Differential scanning calorimetry (DSC) * X-ray diffraction * Crystal structure Subject RIV: CA - Inorganic Chemistry Impact factor: 2.435, year: 2015

  20. Fabrication and characterization of In2S3 thin films deposited by thermal evaporation technique

    International Nuclear Information System (INIS)

    Timoumi, A.; Bouzouita, H.; Kanzari, M.; Rezig, B.

    2005-01-01

    Indium sulphide, In 2 S 3 , thin films present an alternative to conventional CdS films as buffer layer for CIS-based thin film solar cells. The objective is to eliminate toxic cadmium for environmental reasons. Indium sulphide is synthesized and deposited by single source vacuum thermal evaporation method on glass substrates. The films are analyzed by X-ray diffraction (XRD) and spectrophotometric measurements. They have a good crystallinity, homogeneity and adhesion. The X-ray diffraction analysis confirmed the initial amorphous nature of the deposited InS film and phase transition into crystalline In 2 S 3 formed upon annealing at free air for 250 deg. C substrate temperature for 2 h. The optical constants of the deposited films were obtained from the analysis of the experimental recorded transmission and reflectance spectral data over the wavelength range of 300-1800 nm. We note that the films annealed at 250 deg. C for 2 h show a good homogeneity with 80% transmission. An analysis of the optical absorption data of the deposited films revealed an optical direct band gap energy in the range of 2.0-2.2 eV

  1. Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, B.J. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-15

    Highlights: • Effective near-infrared emission (1380-1525 nm) is observed in Pr{sup 3+}-doped phosphate glasses. • Effective bandwidth of {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm. • Channel waveguides have been fabricated by K{sup +}-Na{sup +} ion-exchange method. • Pr{sup 3+}-doped phosphate glasses are promising in developing integrated broadband waveguide amplifier. - Abstract: Effective near-infrared emission covering the fifth optical telecommunication window (1380-1525 nm) has been observed in Pr{sup 3+}-doped phosphate (NMAP) glasses. Judd-Ofelt parameters Ω{sub 2} (6.38 × 10{sup −20} cm{sup 2}), Ω{sub 4} (20.30 × 10{sup −20} cm{sup 2}) and Ω{sub 6} (0.40 × 10{sup −20} cm{sup 2}) indicate a high inversion asymmetrical and strong covalent environment in the optical glasses. The effective bandwidth (Δλ{sub eff}) of the corresponding {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm, and the maximum stimulated emission cross-section (σ{sub em-max}) at 1468 nm is derived to be 1.14 × 10{sup −20} cm{sup 2}. Channel waveguide was fabricated successfully by K{sup +}-Na{sup +} ion-exchange method with mode field diameter of 8.8 μm in the horizontal direction and 6.7 μm in the vertical direction. Broad effective bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Pr{sup 3+}-doped NMAP phosphate glasses are promising in developing integrated broadband waveguide amplifier, especially operating at E- and S-bands which belong to the fifth optical telecommunication window.

  2. The Evolution of Al2O3 Content in Ancient Chinese Glasses

    Directory of Open Access Journals (Sweden)

    Wang Cheng-yu

    2016-01-01

    Full Text Available Based on the evidence from museums, collectors, the dug out of the grave, the evolution of Al2O3 content in Chinese glasses from Western Zhou to Qing dynasty was documented in this paper in detail. It was found that Al2O3 contents in ancient Chinese glasses were relatively higher than those of outside of China in the world. This is the character of the ancient Chinese glasses which is caused by not only the high Al contents in the raw materials but also by the Chinese people’s preference of the milky glasses similar to jade

  3. Characteristics of CoPc/CdS hybrid diode device

    Indian Academy of Sciences (India)

    Administrator

    CdS/CoPc hybrid heterojunctions were fabricated and characterized. CdS films were deposited by the spray pyrolysis technique on indium tin oxide (ITO)-coated glass substrates and ... ing solution was prepared by dissolving 0.025 M CdCl2.

  4. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    International Nuclear Information System (INIS)

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  5. Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries.

    Science.gov (United States)

    Hung, Yu-Han; Lu, Ang-Yu; Chang, Yung-Huang; Huang, Jing-Kai; Chang, Jeng-Kuei; Li, Lain-Jong; Su, Ching-Yuan

    2016-08-17

    In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 10(8) were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm(2) and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials.

  6. Fabricating an S&OP Process

    DEFF Research Database (Denmark)

    Lichen, Alex Yu

    , constituents of the S&OP process are dispersed in diverse local times and spaces rather than being coordinated in a single time and space by the group demand chain. Accounting is a set of matters of concern. The S&OP process and its purpose of integration come from an “absolute nothingness” – its minimal......Inspired by Latour’s (2005a) notion of matters of concern and M.C. Escher’s Circle Limit III as a representation of the Poincaré Disk, this study follows how an S&OP process was fabricated in a large Swedish manufacturing company. The study claims that when actors are fabricating the S&OP process......, local actors create emergent, ongoing and multiple matters of concern around it. The group demand chain, the actor who is responsible for guiding the implementation of the process, delegates the attempts to close these matters of concern to local actors located in separate times and spaces. As a result...

  7. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    Science.gov (United States)

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  8. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications.

    Science.gov (United States)

    Ghosh, Subhabrata; Bhaktha B N, Shivakiran

    2018-06-01

    Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO 2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦ C, both, Eu 2+ as well as Eu 3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦ C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu 3+ to Eu 2+ takes place in such ZnO/HfO 2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 6 5d [Formula: see text] 4f 7 energy level transition of Eu 2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm -1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  9. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications

    Science.gov (United States)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2018-06-01

    Eu-doped 70SiO2–23HfO2–7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦C, both, Eu2+ as well as Eu3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu3+ to Eu2+ takes place in such ZnO/HfO2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 65d \\to 4f 7 energy level transition of Eu2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm‑1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO2–23HfO2–7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  10. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    Science.gov (United States)

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Fabrication of Metallic Glass Powder for Brazing Paste for High-Temperature Thermoelectric Modules

    Science.gov (United States)

    Seo, Seung-Ho; Kim, Suk Jun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2018-06-01

    Metallic glass (MG) offers the advantage of outstanding oxidation resistance, since it has disordered atomic-scale structure without grain boundaries. We fabricated Al-based MG ribbons (Al84.5Y10Ni5.5) by a melt spinning process. We evaluated the adhesion strength of interfaces between the Al-based MG and a Ni-coated Cu electrode formed under various conditions at high temperature. In addition, we attempted to optimize the process conditions for pulverizing MG ribbons to high-energy ball milling and planetary milling. We confirmed that the electrical resistivity of the Al-based MG ribbon was substantially reduced after annealing at high temperature (over 300°C) due to crystallization.

  12. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Directory of Open Access Journals (Sweden)

    Ho-Chiao Chuang

    2014-06-01

    Full Text Available This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments.

  13. The Design, Fabrication and Characterization of a Transparent Atom Chip

    Science.gov (United States)

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  14. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles.

    Science.gov (United States)

    Novajra, G; Boetti, N G; Lousteau, J; Fiorilli, S; Milanese, D; Vitale-Brovarone, C

    2016-10-01

    Novel bone glass fibre scaffolds were developed by thermally bonding phosphate glass fibres belonging to the P2O5-CaO-Na2O-SiO2-MgO-K2O-TiO2 system (TiPS2.5 glass). Scaffolds with fibres of 85 or 110μm diameter were fabricated, showing compressive strength in the range of 2-3.5MPa, comparable to that of the trabecular bone. The effect of different thermal treatments and fibre diameters and length on the final scaffold structure was investigated by means of micro-CT analysis. The change of the sintering time from 30 to 60min led to a decrease in the scaffold overall porosity from 58 to 21vol.% for the 85μm fibre scaffold and from 50 to 40vol.% when increasing the sintering temperature from 490 to 500°C for the 110μm fibre scaffold. The 85μm fibres resulted in an increase of the scaffold overall porosity, increased pore size and lower trabecular thickness; the use of different fibre diameters allowed the fabrication of a scaffold showing a porosity gradient. In order to impart bioactive properties to the scaffold, for the first time in the literature the introduction in these fibre scaffolds of a bioactive phase, a melt-derived bioactive glass (CEL2) powder or spray-dried mesoporous bioactive glass particles (SD-MBG) was investigated. The scaffold bioactivity was assessed through soaking in simulated body fluid. CEL2/glass fibre scaffold did not show promising results due to particle detachment from the fibres during soaking in simulated body fluid. Instead the use of mesoporous bioactive powders showed to be an effective way to impart bioactivity to the scaffold and could be further exploited in the future through the ability of mesoporous particles to act as systems for the controlled release of drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fabrication of transparent superhydrophobic glass with fibered-silica network

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Shi, Zhenwu, E-mail: zwshi@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Jiang, Yingjie; Xu, Chengyun; Wu, Zhuhui; Wang, Yanyan [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Peng, Changsi, E-mail: changsipeng@suda.edu.cn [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China)

    2017-06-15

    Highlights: • Superhydrophobic fibred-silica film with water contact angle of 166° and sliding angle of 1° was efficiently prepared using soot as template by CVD. • The film showed transmittance of 88% in visible range. • The superhydrophobic film possesses excellent mechanical robustness, chemical corrosion resistance, and thermal stability. • The superhydrophobic film showed outstanding self-cleaning behavior. - Abstract: In this paper, silica was deposited on the soot film pre-coated glass via chemical vapor deposition. Through calcination at 500 °C with the assistance of O{sub 2} airflow, the soot film was removed and a novel robust fibered-silica network film was then decorated onto the glass substrate. After modification with fluorosilane, the surface water contact angle (WCA) was 166° and sliding angle (SA) was 1° which behaves a good self-cleaning for the as-prepared glass. And its average transmittance was still over 88% in visible wavelength. Moreover, this fibered-silica coating showed a strong tolerance for heavy water droplets, acid/alkali corrosion, salt solution immersion and thermal treatment.

  16. Pressure dependence of glass transition in As2Te3 glass.

    Science.gov (United States)

    Ramesh, K

    2014-07-24

    Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (Tg). Generally, application of high pressure increases the Tg and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As(2)Te(3) glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at Tg. The Tg estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 °C/kbar for a linear fit and -2.99 °C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As(2)Se(3), and As(30)Se(30)Te(40) show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As(2)Te(3) glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Δk/Δα will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between Tg and the optical band gap (Eg) for covalent semiconducting glasses when they are grouped

  17. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance.

    Science.gov (United States)

    Gao, Chengde; Liu, Tingting; Shuai, Cijun; Peng, Shuping

    2014-04-16

    Graphene is a novel material and currently popular as an enabler for the next-generation nanocomposites. Here, we report the use of graphene to improve the mechanical properties of nano-58S bioactive glass for bone repair and regeneration. And the composite scaffolds were fabricated by a homemade selective laser sintering system. Qualitative and quantitative analysis demonstrated the successful incorporation of graphene into the scaffold without obvious structural damage and weight loss. The optimum compressive strength and fracture toughness reached 48.65 ± 3.19 MPa and 1.94 ± 0.10 MPa · m(1/2) with graphene content of 0.5 wt%, indicating significant improvements by 105% and 38% respectively. The mechanisms of pull-out, crack bridging, crack deflection and crack tip shielding were found to be responsible for the mechanical enhancement. Simulated body fluid and cell culture tests indicated favorable bioactivity and biocompatibility of the composite scaffold. The results suggest a great potential of graphene/nano-58S composite scaffold for bone tissue engineering applications.

  18. Electroless porous silicon formation applied to fabrication of boron–silica–glass cantilevers

    International Nuclear Information System (INIS)

    Teva, J; Davis, Z J; Hansen, O

    2010-01-01

    This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5–1 mm 3 ) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing the etching rate and reproducibility of the etching. In addition to that, a study of the morphology of the pore that is obtained by this technique is presented. The results from the characterization of the process are applied to the fabrication of boron–silica–glass cantilevers that serve as a platform for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH solution

  19. Deep glass etched microring resonators based on silica-on-silicon technology

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rottwitt, Karsten; Philipp, Hugh Taylor

    2006-01-01

    Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented.......Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented....

  20. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO2 fuel reprocessing waste

    International Nuclear Information System (INIS)

    Tait, J.C.

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of 129 I, 85 Kr and 14 C. (author). 104 refs., 9 tabs., 5 figs

  1. Luminescent properties of Eu{sup 3+}-doped glass ceramics containing BaCl{sub 2} nanocrystals under NUV excitation for White LED

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Han; Mo, Zhaojun, E-mail: mzjmzj163@163.com; Zhang, Xiaosong; Yuan, Linlin; Yan, Ming; Li, Lan, E-mail: lilan@tjut.edu.cn

    2016-07-15

    Eu{sup 3+} doped fluorozirconate glass ceramics containing BaCl{sub 2} nanocrystals were successfully fabricated by melt quenching method, and their structural and luminous properties were investigated. The existence of BaCl{sub 2} nanocrystals in the glass ceramics plays an important role on the improvement of luminescent properties. The emission intensity in glass ceramics was remarkably enhanced, which attributes to the phonon energy decrease by Eu{sup 3+} ions into BaCl{sub 2} nanocrystals. Meanwhile, the extended average fluorescence decay lifetime from 4.60 ms to 5.42 ms and the decreased Red/Orange ratio and spark splitting of {sup 7}F{sub 1} energy level also confirmed this view. Additionally, the excitation spectra showed that glass ceramics could be effectively excited by NUV light. The CIE chromaticity coordinates of glass ceramics (GC320) were calculated as (0.611, 0.371), which was close to the NTSC standard values for red (0.67, 0.33). The results suggested that the glass ceramics may be used as potential red phosphors under UV light excitation for white light-emitting diodes.

  2. Cu{sub 2}ZnSnS{sub 4} thin films by simple replacement reaction route for solar photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Devendra, E-mail: devendratiwari.rnd@ecchanga.ac.in [Dr. K. C. Patel Research and Development Centre, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Chaudhuri, Tapas K. [Dr. K. C. Patel Research and Development Centre, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Ray, Arabinda [P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Tiwari, Krishan Dutt [Powerdeal Energy Systems - India, Private Limited, Nashik 422010, Maharashtra (India)

    2014-01-31

    A process for deposition of Cu{sub 2}ZnSnS{sub 4} (CZTS) films using replacement of Zn{sup 2+} in ZnS is demonstrated. X-ray diffraction pattern and Raman spectroscopy confirm the formation of pure CZTS. Atomic force microscopy shows the films to be homogeneous and compact with root mean squared roughness of 6 nm. The direct band gap of CZTS films as elucidated by UV–Vis-NIR spectroscopy is 1.45 eV. The CZTS films exhibit p-type conduction with electrical conductivity of 4.6 S/cm. The hole concentration and hole mobility is determined to be 3.6 × 10{sup 17} cm{sup −3} and 1.4 cm{sup 2}V{sup −1} s{sup −1} respectively. Solar cells with structure: graphite/CZTS/CdS/ZnO/SnO{sub 2}:In/Soda lime glass are also fabricated, gave photo-conversion efficiency of 6.17% with open circuit voltage and short circuit current density of 521 mV and 19.13 mA/cm{sup 2}, respectively and a high fill factor of 0.62. The external quantum efficiency of the solar cell lies above 60% in the visible region. - Highlights: • Pure kesterite Cu{sub 2}ZnSnS{sub 4} thin films deposited by replacement reaction route • Energy band gap of films is 1.45 eV. • p-type films with conductivity of 4.6 S/cm and mobility of 1.4 cm{sup 2} S{sup −1} V{sup −1} • Fabrication of Graphite/Cu{sub 2}ZnSnS{sub 4}/CdS/ZnO/SnO{sub 2}:In/Glass solar cell • Solar cell delivered efficiency of 6.17% with high fill factor of 0.62.

  3. Electrical conduction of glasses in the system Fe2O3-Sb2O3-TeO2; Fe2O3-Sb2O3-TeO2 kei garasu no denki dendo

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Honghua; Mori, H; Sakata, H; Hirayama, T [Tokai Univ., Tokyo (Japan). Faculty of Engineering

    1995-01-01

    In this study, taking into consideration that TeO2 is a component of the glass network and Sb2O3 shows the redox effect in the glasses reducing its possibility of transformation of Sb{sup 3+} to Sb{sup 5+} as well as glass basicity, highly conductive tellurite based glasses have been prepared by the press-quenching method selecting the Fe2O3-Sb2O3-TeO2 system, and the electroconductive mechanism of the glasses has been examined by measuring its D.C. conductivity {sigma}. Part of the obtained information is as follows; the glass formation range of the Fe2O3-Sb2O3-TeO2 system has been 0 {le} Fe2O3 {le} 15mol%, 0 {le} Sb2O3 {le} 18mol% and 78 {le} TeO2 {le} 100mol% and about 15mol% of the additional amount of Fe2O3 has been the limit of glass formation. As the amount of Fe2O3 has increased, C{sub Fe} has also increased and with this, the linear electroconductivity of the glasses has increased from 1.86 {times} 10{sup -7}S{center_dot}cm{sup -1} to 1.62 {times} 10{sup -6}S{center_dot}cm{sup -1} and the glasses have been confirmed as the n-type semiconductor. The factor determining {sigma} of the glasses has been C{sub Fe} which has increased as the amount of Fe2O3 has increased. 34 refs., 8 figs., 2 tabs.

  4. Fabrication of silica glass containing yellow oxynitride phosphor by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Hiroyo; Yoshimizu, Hisato; Hirosaki, Naoto; Inoue, Satoru, E-mail: SEGAWA.Hiroyo@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-06-15

    We have prepared silica glass by the sol-gel method and studied its ability to disperse the Ca-{alpha}-SiAlON:Eu{sup 2+} phosphor for application in white light emitting diodes (LEDs). The emission color generated by irradiating doped glass with a blue LED at 450 nm depended on the concentration of SiAlON and the glass thickness, resulting in nearly white light. The luminescence efficiency of 1-mm-thick glass depended on the SiAlON concentration, and was highest at 4 wt% SiAlON.

  5. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (Over-layered TCO on tempered glass for solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (kyoka class fukugo tomei doden kiban seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of over-layered TCO on tempered glass in fiscal 1994. (1) On the fabrication technology of heat-resistant over-layered TCO, thermal deformation of TCO substrates was studied by both experiment and numerical computation. The thermal deformation increased with carrier concentration. As the observation result on change in lattice strain of heated TCO films by high-temperature X-ray diffraction, lattice strain was largely affected by thermal expansion. (2) On development of the low-temperature heat treatment method of TCO films, a technological prospect was obtained for fabrication of low-resistance TCO films by heat treatment without strength deterioration of tempered TCO substrates. (3) On development of cost reduction technology, the large-area CVD equipment was devised on the basis of the inline tempering method which tempers substrate glass by air cooling after formation of SnO2 film as fabrication method of tempered TCO. The TCO substrate tempered by air cooling could endure the drop test of 227g and 1.5m. 5 figs., 1 tab.

  6. Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass.

    Science.gov (United States)

    Guo, Yanyan; Li, Ming; Hu, Lili; Zhang, Junjie

    2012-01-15

    The 2.7 μm emission properties in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass were investigated in the present Letter. An intense 2.7 μm emission in Er3+-doped bismuthate glass was observed. It is found that Er3+-doped bismuthate glass possesses high spontaneous transition probability A (65.26 s(-1)) and large 2.7 μm emission cross section σ(em) (9.53×10(-21) cm2) corresponding to the stimulated emission of Er3+:4I11/2→4I13/2 transition. The emission characteristic and energy transfer process upon excitation of a conventional 980 nm laser diode in bismuthate glass were analyzed. Additionally, the structure of bismuthate glass was analyzed by the Raman spectrum. The advantageous spectroscopic characteristics of Er3+ single-doped bismuthate glass together with the prominent thermal property indicate that bismuthate glass might become an attractive host for developing solid-state lasers around 2.7 μm.

  7. Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Paul, Mukul C. [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Kir' yanov, Alexander V. [Centro de Investigaciones en Optica, Guanajuato (Mexico); Bysakh, Sandip [Electron Microscopic Section, Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-08-15

    The basic material and optical properties of chromium-doped nanophase-separated yttria-alumina-silica (YAS) glass based optical preforms and fibers, fabricated through the modified chemical vapor deposition process in conjunction with solution doping technique under suitable thermal annealing conditions are reported. The size of the phase-separated particles within the core of the annealed preform is around 20-30 nm which is significantly reduced to around 5.0 nm in the drawn fiber. The absorption spectra of fibers drawn from the annealed and non-annealed preform samples revealed the presence of Cr{sup 4+}, Cr{sup 3+}, and Cr{sup 6+} specie. Numerically, extinction of absorption drops ∝3-3.5 times for the annealed sample as a result of nano-phase restructuration during annealing process. Intense broadband emission (within 500-800 nm) in case of the annealed preform sample is observed as compared to the non-annealed one and is associated with the presence of Cr{sup 3+} ions in nanostructured environment inside the YAS core glass. The final fibers show broadband emission ranging from 900 to 1400 nm under pumping at 1064 nm which is attributed mainly to the presence of Cr{sup 3+}/Cr{sup 4+} ions. The fabricated fibers seem to be a potential candidate for the development of fiber laser sources for the visible and near-infra ranges and for effective Q-switching units for ∝1-1.1 μm all-fiber ytterbium lasers. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Glass formation, physicochemical characterization and photoluminescence properties of new Sb2O3-PbO-ZnO/ZnS systems

    Czech Academy of Sciences Publication Activity Database

    Nouadji, M.; Ivanova, Z.G.; Poulain, M.; Zavadil, Jiří; Attaf, A.

    2013-01-01

    Roč. 549, 5 February (2013), s. 158-162 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985882 Keywords : Glasses * Rare earths * Photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.726, year: 2013

  9. Stress-induced buried waveguides in the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic glass doped with Nd3+ ions

    International Nuclear Information System (INIS)

    Sola, D.; Martínez de Mendibil, J.; Vázquez de Aldana, J.R.; Lifante, G.; Balda, R.; Aza, A.H. de; Pena, P.; Fernández, J.

    2013-01-01

    In this work the fabrication of buried optical waveguides by femtosecond laser inscription in the 0.8CaSiO 3 –0.2Ca 3 (PO 4 ) 2 eutectic glass doped with Nd 3+ ions is reported. The glass samples were prepared by melting the eutectic powder mixture in a Pt–10 wt.% Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to release the inner stresses. Buried waveguides were fabricated by focusing beneath the surface a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. Two adjacent parallel tracks were written to define a region where an increase in the refractive index occurs. The effects produced by the variation of the laser pulse energy as well as the lateral separation between tracks, scanning speed and focusing distance were studied. After the laser processing, the near-field intensity distribution at 633 nm of the waveguide's modes was studied demonstrating the confinement of both, the TE as the TM polarizations. In order to diminish the losses induced by colour centres absorption, heat treatments were carried out in the samples. The waveguide's modes were compared with respect to the samples without heat treatments. The spectroscopic properties of the neodymium ions have been characterized to evaluate in what extent their optical properties could be modified by the waveguide fabrication process and to elucidate the potential application of such waveguides as integrated laser sources.

  10. Investigation on mechanical properties of basalt composite fabrics (experiment study

    Directory of Open Access Journals (Sweden)

    Talebi Mazraehshahi H.

    2010-06-01

    Full Text Available To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1. Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2. Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3. Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4. Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one

  11. Fabrication of hematite (α-Fe{sub 2}O{sub 3}) nanoparticles using electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingling; Wang, Zuobin, E-mail: wangz@cust.edu.cn; Chai, Xiangyu; Weng, Zhankun; Ding, Ran; Dong, Litong

    2016-04-15

    Graphical abstract: - Highlights: • Cathodic electrochemical deposition proposed to fabricate hematite nanoparticles. • Hematite nanoparticles were fabricated on indium-tin-oxide coated glass substrates. • The size and shape of nanoparticles were determined by deposition conditions. • The nanoparticles were well decentralized for different potential applications. • Electrochemical deposition is a useful approach in fabricating nanoparticles. - Abstract: In this work, cathodic electrochemical deposition was proposed to fabricate reproducible and homogeneous hematite (α-Fe{sub 2}O{sub 3}) nanoparticles on indium-tin-oxide (ITO) films. The α-Fe{sub 2}O{sub 3} nanoparticles, which were quasi-hexagonally shaped, were deposited in an aqueous mixture of FeCl{sub 2} and FeCl{sub 3} at the temperatures 16.5 °C, 40 °C and 60 °C. The electrochemically deposited α-Fe{sub 2}O{sub 3} nanoparticles showed excellent stability and good crystallinity. The α-Fe{sub 2}O{sub 3} nanoparticles were characterized by Raman spectroscope and X-ray diffractometer (XRD). A scanning electron microscope (SEM) was used to measure the size and shape of the nanoparticles. The experiment results have shown that the size and shape of nanoparticles were determined by electrochemical deposition conditions including the deposition time, current density, reaction temperature and solution concentration. The proposed electrochemical deposition method has been proven to be a cost-effective, environment friendly and highly efficient approach in fabricating well decentralized α-Fe{sub 2}O{sub 3} nanoparticles for different potential applications.

  12. 6Li-doped silicate glass for thermal neutron shielding

    International Nuclear Information System (INIS)

    Stone, C.A.; Blackburn, D.H.; Kauffman, D.A.; Cranmer, D.C.; Olmez, I.

    1994-01-01

    Glass formulations are described that contain high concentrations of 6 Li and are suitable for use as thermal neutron shielding. One formulation contained 31 mol% of 6 Li 2 O and 69 mol% of SiO 2 . Studies were performed on a second formulation that contained as much as 37 mol% of 6 Li 2 O and 59 mol% of SiO 2 , with 4 mol% Al 2 O 3 added to prevent crystallization at such high 6 Li 2 O concentrations. These lithium silicate glasses can be formed into a variety of shapes using conventional glass fabrication techniques. Examples include flat plates, disks, hollow cylinders, and other more complex geometries. Both in-beam and in-core experiments have been performed to study the use and durability of Li silicate glasses. In-core experiments show the glass can withstand the intense radiation fields near the core of a reactor. The neutron attenuation of the glasses used in these studies was 90%/mm. In-beam studies show that the glass is effective for reducing the gamma-ray and neutron fields near experiments. ((orig.))

  13. Influence of annealing conditions on the optical and structural properties of spin-coated As(2)S(3) chalcogenide glass thin films.

    Science.gov (United States)

    Song, Shanshan; Dua, Janesha; Arnold, Craig B

    2010-03-15

    Spin-coating of chalcogenide glass is a low-cost, scalable method to create optical grade thin films, which are ideal for visible and infrared applications. In this paper, we study the influence of annealing on optical parameters of As(2)S(3) films by examining UV-visible and infrared spectroscopy and correlating the results to changes in the physical properties associated with solvent removal. Evaporation of excess solvent results in a more highly coordinated, denser glass network with higher index and lower absorption. Depending on the annealing temperature and time, index values ranging from n = 2.1 to the bulk value (n = 2.4) can be obtained, enabling a pathway to materials optimization.

  14. Photoelectrochemical properties of hierarchical ZnO micro-nanostructure sensitized with Sb2S3 nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhimin GUO

    2016-02-01

    Full Text Available By using electrochemical deposition method, and assisted with additions of PEG-400 and EDA, well-aligned ZnO nanorods and hierarchical ZnO micro-nanostructure are fabricated directly on indium doped tin oxide coated conducting glass (ITO substrate. The shell-core Sb2S3/ZnO nanorod structure and the shell-core hierarchical Sb2S3/ZnO micro-nanostructure are prepared by chemical bath deposition method. SEM, XRD, UV-Vis and photocurrent test are used to characterize the morphology, nanostructures and their photoelectrochemical properties. The studies show that the photocurrent on the array membranes with shell-core hierarchical Sb2S3/ZnO micro-nanostructure is apparently higher than that with shell-core Sb2S3/ZnO nanorods array.

  15. Bismuth silicate glass: A new choice for 2 μm fiber lasers

    Science.gov (United States)

    Ding, Jia; Zhao, Guoying; Tian, Ying; Chen, Wei; Hu, Lili

    2012-11-01

    We report on a new Yb3+/Tm3+/Ho3+ co-doped bismuth silicate glass: SiO2-Bi2O3-R2O (R = Li, Na, K) for 2 μm fiber lasers. Bi2O3 was introduced into alkali silicate glass to optimize 2 μm emission properties. Physical, chemical and spectroscopic properties of Yb3+/Tm3+/Ho3+ co-doped SiO2-Bi2O3-R2O (SBR) glass were presented. The Yb3+/Tm3+/Ho3+ co-doped SBR glass shows excellent thermal stability (ΔT = 162 °C), an intense 2.0 μm emission pumped by 980 nm LD with a lifetime of 1.33 ms and width of 168 nm, large maximum emission cross section of Ho3+ (5.3 × 10-21 cm2), thus large σemτ product (7.049 × 10-24 cm2 s), which suggest its application in 2 μm fiber lasers.

  16. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baharin, R; Hobson, P R; Smith, D R, E-mail: ruzalina.baharin@brunel.ac.u [Centre for Sensors and Instrumentation, School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2010-09-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  17. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    International Nuclear Information System (INIS)

    Baharin, R; Hobson, P R; Smith, D R

    2010-01-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  18. Photoluminescence quenching by OH in Er- and Pr-doped glasses for 1.5 and 1.3 μm optical amplifiers

    Science.gov (United States)

    Faber, Anne J.; Simons, Dennis R.; Yan, Yingchao; de Waal, Henk

    1994-09-01

    In this paper we report on the effect of hydroxyl (OH) groups on the photoluminescence in the near IR (1.5 and 1.3 micrometers ) in rare earth (Er, Pr)-doped glasses. The 1.5 micrometers emission of Er-doped phosphate glasses was studied, before and after a special heat treatment. The luminescent lifetime of the 1.5 micrometers emission increases substantially, typically from 3 ms up to 7.2 ms for a 2 mole% Er2O3-doped phosphate glass, due to the controlled heat treatment. The increase in lifetime is ascribed to a decrease in OH- concentration, which is confirmed by IR-absorption spectroscopy. The quenching by OH is described by a simplified quenching model, which predicts the 1.5 micrometers emission lifetime as a function of Er- concentration with the OH-concentration as parameter. It appears that the larger part of the OH groups is coupled to Er ions and thus acts as quenching center. Photoluminescence quenching by OH groups is also reported for the 1.3 micrometers emission of Pr in GeS2-glasses: In pure OH-free GeS2 glass the 1.3 micrometers emission lifetime is as high as 350 microsecond(s) , for a 400 ppm dopant level. In GeS2 glasses containing only small amounts of OH (approximately 100 ppm), this lifetime is less than 200 microsecond(s) . Both examples demonstrate that for the fabrication of efficient glass optical amplifiers at the telecommunication windows 1.3 and 1.5 micrometers , the OH-impurity level of the host glass must be kept as low as possible.

  19. Tuning into single-band red upconversion luminescence in Yb(3+)/Ho(3+) activated nano-glass-ceramics through Ce(3+) doping.

    Science.gov (United States)

    Chen, Daqin; Zhou, Yang; Wan, Zhongyi; Ji, Zhenguo; Huang, Ping

    2015-03-28

    Yb(3+)/Ho(3+) activated glass ceramics containing β-YF3 nanocrystals were successfully fabricated. The green ((5)S2/(5)F4→(5)I8) upconversion emission is dominant in the glass ceramics and is about 160 times stronger than that of the precursor glass, resulting from the partition of lanthanide activators into a low-phonon-energy crystalline lattice and the subsequent low probability of multi-phonon nonradiative relaxation from the (5)S2/(5)F4 and (5)I6 states to the lower ones. Upon the introduction of Ce(3+) ions into nano-glass-ceramics, two efficient cross-relaxation processes between Ho(3+) and Ce(3+), i.e., Ho(3+):(5)S2/(5)F4 + Ce(3+):(2)F5/2→Ho(3+):(5)F5 + Ce(3+):(2)F7/2 and Ho(3+):(5)I6 + Ce(3+):(2)F5/2→Ho(3+):(5)I7 + Ce(3+):(2)F7/2, are demonstrated to greatly suppress the population of the green-emitting (5)S2/(5)F4 state and to enhance the population of the red-emitting (5)F5 one, leading to the intense single-band red UC radiation of Ho(3+).

  20. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films.

    Science.gov (United States)

    Zhu, Yan-Feng; Zhang, Juan; Xu, Lu; Guo, Ya; Wang, Xiao-Ping; Du, Rong-Gui; Lin, Chang-Jian

    2013-03-21

    A highly ordered TiO(2) nanotube array film was fabricated by an anodic oxidation method. The film was modified by Au nanoparticles (NPs) formed by a deposition-precipitation technique and was covered with a thin ZnS shell prepared by a successive ionic layer adsorption and reaction (SILAR) method. The photoelectrochemical properties of the prepared ZnS/Au/TiO(2) composite film were evaluated by incident photon-to-current conversion efficiency (IPCE), and photopotential and electrochemical impedance spectroscopy (EIS) measurements under white light illumination. The results indicated that the Au NPs could expand the light sensitivity range of the film and suppress the electron-hole recombination, and the ZnS shell could inhibit the leakage of photogenerated electrons from the surface of Au NPs to the ZnS/electrolyte interface. When the 403 stainless steel in a 0.5 M NaCl solution was coupled to the ZnS/Au/TiO(2) nanotube film photoanode under illumination, its potential decreased by 400 mV, showing that the composite film had a better photocathodic protection effect on the steel than that of a pure TiO(2) nanotube film.

  1. Structure, spectra and thermal, mechanical, Faraday rotation properties of novel diamagnetic SeO2-PbO-Bi2O3-B2O3 glasses

    Science.gov (United States)

    Chen, Qiuling; Su, Kai; Li, Yantao; Zhao, Zhiwei

    2018-06-01

    Faraday rotation diamagnetic glass has attracted research attentions in photonics, sensing and magneto optical devices due to their high refractive index, wide transmittance in UV and Fourier transform infrared (FT-IR) range and temperature independent Faraday rotation. Selenite modified heavy metal oxides glasses with composition of xSeO2-(10-x) B2O3-45PbO-45Bi2O3 (x = 0, 1, 5 and 10mol%) and 15%SeO2-40%PbO-45%Bi2O3 have been fabricated by melt-quenching method in present study. The influence of SeO2 on glass forming ability, thermal, mechanical properties and Faraday rotation were evaluated through X-ray Diffraction (XRD), Fourier transforms infrared spectra (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), Vicker's hardness and Verdet constant measurements. XRD spectra reveal that the good vitrification was achieved for glass with SeO2 amounts ≤10% even without B2O3. FT-IR, Raman and XPS spectra ascertain the existence of characteristic vibration of SeO4, SeO3, PbO4, BiO3 and BO3 units. The incorporation of SeO2 increases the connectivity of glassy network by increasing the Tg, thermal stability and mechanical hardness. The small band gap, high polarizable Se4+ ions and isolated SeO3 units contribute to Faraday rotation improvement.

  2. Photolithography-free laser-patterned HF acid-resistant chromium-polyimide mask for rapid fabrication of microfluidic systems in glass

    International Nuclear Information System (INIS)

    Zamuruyev, Konstantin O; Zrodnikov, Yuriy; Davis, Cristina E

    2017-01-01

    Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µ m; minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µ m. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µ m in borosilicate glass), feature under etch ratio in isotropic etch (∼1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility. (paper)

  3. Fabrication and characterization of fine ceramic based on alumina, bentonite, and glass bead

    Science.gov (United States)

    Sebayang, P.; Nurdina; Simbolon, S.; Kurniawan, C.; Yunus, M.; Setiadi, E. A.; Sitorus, Z.

    2018-03-01

    Fabrication of fine ceramics based on alumina, bentonite and glass bead has been carried out by powder metallurgy. The preparation of powder has been performed using High Energy Milling (HEM) with wet milling process and using toluene as medium for 2 hours. The powder milling result was dried in oven at 100 °C for 24 hours. After that, the powder was compacted into pellet by using hydraulic press with 80 kgf/cm2 pressure at room temperature. Then, the pellet was sintered at 900 °C for 4 hours. Materials characterization such as physical properties (true density, bulk density, porosity, and water absorption), average particle diameter, hardness, microstructure and phase were measured by Archimedes method, Particle Size Analyzer (PSA), Hardness Vickers (HV), Scanning Electron Microscope (SEM-EDX) and X-Ray Diffraction (XRD). From the result, the optimum condition is sample D (with addition of 30 wt.% γ-Al2O3) with sintering temperature of 900 °C for 4 hours. At this condition, these properties were measured: average particle diameter of 4.27 μm, true density of 2.32 g/cm3, porosity of 5.57%, water absorption of 2.46%, bulk density of 2.39 g/cm3, and hardness of 632 HV. The fine ceramic has four phases with albite (Al2NaO8Si3) and quartz (SiO2) as dominant phases and corundum (Al2O3) and nepheline (AlNaO4Si) as minor phases.

  4. Glass to contain wastes

    International Nuclear Information System (INIS)

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  5. Long-term conversion of 45S5 bioactive glass-ceramic microspheres in aqueous phosphate solution.

    Science.gov (United States)

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2012-05-01

    The conversion of 45S5 glass and glass-ceramics to a hydroxyapatite (HA)-like material in vitro has been studied extensively, but only for short reaction times (typically glass-ceramic microspheres (designated 45S5c) in an aqueous phosphate solution. Microspheres of 45S5c (75-150 μm) were immersed for 10 years at room temperature (~25 °C) in K(2)HPO(4) solution with a concentration of 0.01 M or 1.0 M, and with a starting pH of 7.0 or 9.5. The reacted 45S5c microspheres and solutions were analyzed using structural and analytical techniques. Only 25-45 vol% of the 45S5c microspheres were converted to an HA-like material after the 10 year reaction. In solutions with a starting pH of 9.5, an increase in the K(2)HPO(4) concentration from 0.01 to 1.0 M resulted in a doubling of the volume of the microspheres converted to an HA-like material but had little effect on the composition of the HA-like product. In comparison, reaction of the 45S5c microspheres in the solution with a starting pH of 7.0 resulted in an HA-like product in the 0.01 M K(2)HPO(4) solution but a calcium pyrophosphate product, Ca(10)K(4)(P(2)O(7))(6).9H(2)O, in the 1.0 M solution. The consequences of these results for the long-term use of 45S5 glass-ceramics in biomedical applications are discussed.

  6. Structure and Ionic Conductivity of Li{sub 2}S–P{sub 2}S{sub 5} Glass Electrolytes Simulated with First-Principles Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takeshi; Kawamura, Yoshiumi, E-mail: yoshiumi_kawamura@mail.toyota.co.jp [Toyota Motor Corporation, Shizuoka (Japan)

    2016-06-02

    Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solid-state lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li{sup +} mobilities by using molecular dynamics calculations based on density functional theory (DFT-MD). The structures of xLi{sub 2}S–(100 − x)P{sub 2}S{sub 5} (x = 67, 70, 75, and 80) were created by randomly identifying appropriate compositions of Li{sup +}, PS{sub 4}{sup 3−},P{sub 2}S{sub 7}{sup 4−}, and S{sup 2−} and then annealing them with DFT-MD calculations. Calculated relative stabilities of the amorphous structures with x = 67, 70, and 75 to crystals with the same compositions were 0.04, 0.12, and 0.16 kJ/g, respectively. The implication is that these amorphous structures are metastable. There was good agreement between calculated and experimental structure factors determined from X-ray scattering. The differences between the structure factors of amorphous structures were small, except for the first sharp diffraction peak, which was affected by the environment between Li and S atoms. Li{sup +} diffusion coefficients obtained from DFT-MD calculations at various temperatures for picosecond simulation times were on the order of 10{sup −3}–10{sup −5} Å{sup 2}/ps. Ionic conductivities evaluated by the Nernst–Einstein relationship at 298.15 K were on the order of 10{sup −5} S/cm. The ionic conductivity of the amorphous structure with x = 75 was the highest among the amorphous structures because there was a balance between the number density and diffusibility of Li{sup +}. The simulations also suggested that isolated S atoms suppress Li{sup +} migration.

  7. Photonic crystal waveguides in PECVD glass

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Têtu, Amélie

    Silicon oxynitride (SiON) on silicon has found wide use as a robust and versatileplatform for integrated, optical devices. With plasma-enhanced chemical vapourdeposition (PECVD) the refractive index can be varied all the way from 1.5 (pure silica,SiO2) to 2.0 (pure silicon nitride, Si3N4). We have...... fabricated glasses with refractive indexup to approximately 1.75, with which value it is possible to fabricate photonic crystalwaveguides. These structures have the advantage of being transparent in the whole of thevisible region, which makes them different from photonic crystals made...

  8. Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO2 films on glass

    Science.gov (United States)

    Garlisi, Corrado; Palmisano, Giovanni

    2017-10-01

    In this work, we show the unique wettability properties of TiO2 thin films deposited by e-beam evaporation on glass and treated at 500 °C. The deposited materials exhibited compact non-porous structures and their non-UV activated superwetting behavior was characterized, emphasizing the better performance compared to the bare glass substrate and to a commercial self-cleaning glass (Pilkington Activ™) even in terms of antifogging and optical properties. The results demonstrate how the superhydrophilic character arises from the used deposition technique inducing a large amount of oxygen vacancies further boosted by the annealing treatment, allowing for the fabrication of a pioneering material in the area of multifunctional coatings. The superhydrophilic character was maintained even at an extremely small thickness (20 nm), similarly to the adhesion of the film to the glass substrate, as confirmed by ultrasound stress tests and the cross-cut test performed according to ISO 2409 standard. The photocatalytic activity of the e-beam evaporated film was also assessed by degradation of methanol, 2-propanol and toluene under UV light in a gas phase reactor and the performance was found to be in most cases superior compared to Pilkington Activ™.

  9. Er3+ infrared fluorescence affected by spatial distribution synchronicity of Ba2+ and Er3+ in Er3+-doped BaO–SiO2 glasses

    Directory of Open Access Journals (Sweden)

    Atsunobu Masuno

    2016-02-01

    Full Text Available Glasses with the composition xBaO–(99.9 − xSiO2–0.1ErO3/2 (0 ≤x ≤ 34.9 were fabricated by a levitation technique. The glasses in the immiscibility region were opaque due to chemical inhomogeneity, while the other glasses were colorless and transparent. The scanning electron microscope observations and electron probe microanalysis scan profiles revealed that more Er3+ ions were preferentially distributed in the regions where more Ba2+ ions existed in the chemically inhomogeneous glasses. The synchronicity of the spatial distributions of the two ions initially increased with increasing x and then decreased when the Ba2+ concentration exceeded a certain value. The peak shape and lifetime of the fluorescence at 1.55 μm depended on x as well as the spatial distribution of both ions. These results indicate that although ErOn polyhedra are preferentially coordinated with Ba2+ ions and their local structure is affected by the coordination of Ba2+, there is a maximum in the amount of Ba2+ ions that can coordinate ErOn polyhedra since the available space for Ba2+ ions is limited. These findings provide us with efficient ways to design the chemical composition of glasses with superior Er3+ fluorescence properties for optical communication network systems.

  10. Photoluminescence and lasing in whispering gallery mode glass microspherical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, D. [Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics, Bijenička c. 54, Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Research unit New Functional Materials, Bijenička c. 54, Zagreb (Croatia); Berneschi, S.; Camerini, M. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Farnesi, D.; Pelli, S. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Trono, C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Chiappini, A.; Chiasera, A.; Ferrari, M. [CSMFO Group, Istituto di Fotonica e Nanotecnologie, IFN-CNR, Via alla Cascata 56/C, 38050 Povo-Trento (Italy); Lukowiak, A. [Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, Wroclaw 50-950 (Poland); Dumeige, Y.; Féron, P. [Laboratoire d' Optronique, (CNRS-UMR 6082-Foton), ENSSAT, 6 rue de Kérampont, 22300 Lannion (France); Righini, G.C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Soria, S., E-mail: s.soria@ifac.cnr.it [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Conti, G. Nunzi [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy)

    2016-02-15

    We report experimental results regarding the development of Er{sup 3+}-doped glass microspherical cavities for the fabrication of compact sources at 1.55 μm. We investigate several different approaches in order to fabricate the microspheres including direct melting of Er{sup 3+}-doped glass powders, synthesis of Er{sup 3+}-doped monolithic microspheres by drawing Er{sup 3+}-doped glass, and coating of silica microspheres with an Er{sup 3+}-doped sol–gel layer. Details of the different fabrication processes are presented together with the photoluminescence characterization in free space configuration of the microspheres and of the glass precursor. We have analyzed the photoluminescence spectra of the whispering gallery modes of the microspheres excited using evanescent coupling and we demonstrate tunable laser action in a wide range of wavelengths around 1.55 μm. As much as 90 μW of laser output power was measured in Er{sup 3+}-doped glass microspheres. - Highlights: • Different approaches in microsphere fabrication and various types of post-processing. • Trimming of photorefractive glass microsphere lasers with UV light. • Peak power record of 90 μW by pumping at 1480 nm.

  11. Radiation effects in glass and glass-ceramic waste forms for the immobilization of CANDU UO{sub 2} fuel reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J C

    1993-05-01

    AECL has investigated three waste forms for the immobilization of high-level liquid wastes that would arise if used CANDU fuels were reprocessed at some time in the future to remove fissile materials for the fabrication of new power reactor fuel. These waste forms are borosilicate glasses, aluminosilicate glasses and titanosilicate glass-ceramics. This report discusses the potential effects of alpha, beta and gamma radiation on the releases of radionuclides from these waste forms as a result of aqueous corrosion by groundwaters that would be present in an underground waste disposal vault. The report discusses solid-state damage caused by radiation-induced atomic displacements in the waste forms as well as irradiation of groundwater solutions (radiolysis), and their potential effects on waste-form corrosion and radionuclide release. The current literature on radiation effects on borosilicate glasses and in ceramics is briefly reviewed, as are potential radiation effects on specialized waste forms for the immobilization of {sup 129}I, {sup 85}Kr and {sup 14}C. (author). 104 refs., 9 tabs., 5 figs.

  12. Superhydrophobic Cu{sub 2}S@Cu{sub 2}O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Pihui, E-mail: phpi@scut.edu.cn; Hou, Kun; Zhou, Cailong; Li, Guidong; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Wang, Shuangfeng

    2017-02-28

    Highlights: • A superhydrophobic film with macro/nano structure was fabricated on copper surface. • The as-prepared film shows outstanding water repellency and long-term storage stability. • The same method was used to fabricate superhydrophobic/superoleophilic copper mesh. • The obtained mesh could realize separation of various oily sewages with separation efficiency above 94%. - Abstract: Cu{sub 2}S and Cu{sub 2}O composite (Cu{sub 2}S@Cu{sub 2}O) film with micro/nano binary structure was created on copper surface using the mixing solution of sodium thiosulphate and copper sulfate by a facile chemical bath deposition method. After modification with low-cost polydimethylsioxane (PDMS), the superhydrophobic Cu{sub 2}S@Cu{sub 2}O film was obtained. The as-prepared film shows outstanding water repellency with a water contact angle larger than 150° and long-term storage stability. The geometric morphology and chemical composition of the film were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Moreover, the same method was used to fabricate superhydrophobic/superoleophilic copper mesh, and it could realize separation of various oily sewages with separation efficiency above 94%. This strategy has potential to fabricate the practical superhydrophobic Cu{sub 2}S@Cu{sub 2}O film on copper surface on a large scale due to its simplicity and low cost.

  13. Influence of annealing temperature on properties of Cu(In,Ga)(Se,S){sub 2} thin films prepared by co-sputtering from quaternary alloy and In{sub 2}S{sub 3} targets

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C., E-mail: ielinyc@cc.ncue.edu.t [Department of Mechatronics Engineering, National Changhua University of Education, No. 2, Shida Road, Changhua 50074, Taiwan (China); Yen, W.T.; Chen, Y.L.; Wang, L.Q. [Department of Mechatronics Engineering, National Changhua University of Education, No. 2, Shida Road, Changhua 50074, Taiwan (China); Jih, F.W. [Chung-Shan Institute of Science and Technology, No. 15, Shi Qi Zi, Gaoping village, Longtan Township, Taoyuan County, Taiwan (China)

    2011-02-15

    Pentanary Cu(In,Ga)(Se,S){sub 2} (CIGSS) thin films were deposited on soda-lime glass substrate by co-sputtering quaternary alloy, and In{sub 2}S{sub 3} targets. In this study, we investigated the influence of post-annealing temperature on structural, compositional, electrical, and optical properties of CIGSS films. Our experimental results show that the CIGS quaternary target had chalcopyrite characteristics. All CIGSS films annealed above 733 K exhibited a polycrystalline tetragonal chalcopyrite structure, with (1 1 2) preferred orientation. The carrier concentration and resistivity of the resultant CIGSS layer annealed above 763 K was 4.86x10{sup 16} cm{sup -3} and 32 {Omega} cm, respectively, and the optical band-gap of the CIGSS absorber layer was 1.18 eV. Raman spectral analysis demonstrated the existence of many different phases, including CuInSe{sub 2}, CuGaSe{sub 2}, and CuInS{sub 2}. This may be because the vibration frequencies of In-Se, In-S bonds are similar to the Ga-Se and Ga-S bonds, causing their absorption bands overlap. -- Research Highlights: {yields} We report a chalcopyrite Cu(In,Ga)(Se,S){sub 2} (CIGSS) thin films on soda lime glass substrate by co-sputtering quaternary single-phase chalcopyrite CIGS alloy, and In{sub 2}S{sub 3} targets. {yields} By incorporating sulfur into partly selenized CIGS films, researchers fabricated a chalcopyrite CIGSS layer with double-graded band-gap structure. {yields} The CIGS quaternary target and Raman spectra were analyzed for investigating the CIGSS structure and quality.

  14. A comparative study of CdS thin films deposited by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Hernández, G., E-mail: german.perez@ujat.mx [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Pantoja-Enríquez, J. [Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, UNICACH, Libramiento Norte No 1150, Tuxtla Gutiérrez, Chiapas 29039 (Mexico); Escobar-Morales, B. [Instituto Tecnológico de Cancún, Avenida Kábah Km 3, Cancún, Quintana Roo 77500 (Mexico); Martinez-Hernández, D.; Díaz-Flores, L.L.; Ricardez-Jiménez, C. [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Mathews, N.R.; Mathew, X. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico)

    2013-05-01

    Cadmium sulfide thin-films were deposited on glass slides and SnO{sub 2}:F coated glass substrates by chemical bath deposition, sputtering and close-spaced sublimation techniques. The films were studied for the structural and opto-electronic properties after annealing in an ambient identical to that employed in the fabrication of CdTe/CdS devices. Quantum efficiency of the CdTe/CdS solar cells fabricated with CdS buffer films prepared by the three methods were investigated to understand the role of CdS film preparation method on the blue response of the devices. The higher blue response observed for the devices fabricated with chemical bath deposited CdS film is discussed. - Highlights: ► CdS films were prepared by different techniques. ► Role of CdS on the blue response of device was studied. ► Structural and optical properties of CdS were analyzed. ► Chemically deposited CdS has high blue transmittance. ► CdS deposition method influences diffusion of S and Te.

  15. Relief grating induced by photo-expansion in Ga-Ge-S and Ga-Ge-As-S glasses

    Czech Academy of Sciences Publication Activity Database

    Messaddeq, S. H.; Li, M. S.; Ležal, Dimitrij; Messaddeq, Y.

    2002-01-01

    Roč. 4, č. 2 (2002), s. 375-380 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z4032918 Keywords : light-induced effects * chalcogenide glasses * relief gratings Subject RIV: CA - Inorganic Chemistry Impact factor: 0.446, year: 2002

  16. Super-bright and short-lived photoluminescence of textured Zn2SiO4:Mn2+ phosphor film on quartz glass

    Science.gov (United States)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Seo, Kwangil; Kwon, Kevin; Kung, Patrick; Kim, Seongsin M.

    2010-02-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor film was fabricated by a thermal diffusion of ZnO:Mn on quartz glass. The characterization has been performed in terms of Mn2+ ions concentration (Mn/Zn=1~9 mol %). As an increase of Mn2+ ions concentration in the Zn2SiO4:Mn2+ phosphor film, the emission peak was red shifted from 519 nm to 526 nm, and the decay time to 10% of the maximum intensity was shorter from 20 ms to 0.5 ms. All annealed Zn2SiO4:Mn2+ phosphor films became textured along some hexagonal directions on the amorphous quartz glass. The brightest Zn2SiO4:Mn2+ film at optimal Mn2+ concentration of 5 % showed the photoluminescence brightness of 65 % and the shortened decay time of 4.4 ms in comparison with a commercially Zn2SiO4: Mn2+ powder phosphor screen. The excellencies can be attributed to a unique textured structure.

  17. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography

    Science.gov (United States)

    Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S. D.; Flewitt, Andrew J.; Wilkinson, Timothy D.

    2016-12-01

    High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm-2, 1 nAs-1) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ˜33 nm with 80 nm spacing; for isolated structures, ˜45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ˜0.25 cm2.

  18. Development of a glass GEM

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Mitsuya, Yuki; Fujiwara, Takeshi; Fushie, Takashi

    2013-01-01

    Gas electron multipliers (GEMs) apply the concept of gas amplification inside many tiny holes, realizing robust and high-gain proportional counters. However, the polyimide substrate of GEMs prevents them from being used in sealed detector applications. We have fabricated and tested glass GEMs (G-GEMs) with substrates made of photosensitive glass material from the Hoya Corporation. We fabricated G-GEMs with several different hole diameters and thicknesses and successfully operated test G-GEMs with a 100×100 mm 2 effective area. The uniformity of our G-GEMs was good, and the energy resolution for 5.9 keV X-rays was 18.8% under uniform irradiation of the entire effective area. A gas gain by the G-GEMs of up to 6700 was confirmed with a gas mixture of Ar (70%)+CH 4 (30%). X-ray imaging using the charge division readout method was demonstrated

  19. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2–Ar sputtering gas mixture

    International Nuclear Information System (INIS)

    Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; Andrés, A. de; Prieto, C.

    2015-01-01

    Highlights: • ITO deposition on glass and PET at room temperature by using H. • High transparency and low resistance is obtained by tuning the H. • The figure of merit for ITO films on PET becomes maximal for thickness near 100 nm. - Abstract: The optical and electrical properties of indium tin oxide (ITO) films deposited at room temperature on glass and polyethylene terephthalate (PET) substrates were investigated. A clear evolution of optical transparency and sheet resistance with the content of H 2 in the gas mixture of H 2 and Ar during magnetron sputtering deposition is observed. An optimized performance of the transparent conductive properties ITO films on PET was achieved for samples prepared using H 2 /(Ar + H 2 ) ratio in the range of 0.3–0.6%. Moreover, flexible ITO-PET samples show a better transparent conductive figure of merit, Φ TC = T 10 /R S , than their glass counterparts. These results provide valuable insight into the room temperature fabrication and development of transparent conductive ITO-based flexible devices

  20. Sulfur Solubility Testing and Characterization of Hanford LAW Phase 2, Inner Layer Matrix Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Caldwell, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-27

    In this report, the Savannah River National Laboratory (SRNL) provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated low activity waste (LAW) glass compositions. A procedure developed at the Pacific Northwest National Laboratory (PNNL) for producing sulfur saturated melts (SSMs) was carried out at both SRNL and PNNL to fabricate the glasses characterized in this report. This method includes triplicate melting steps with excess sodium sulfate, followed by grinding and washing to remove unincorporated sulfur salts. The wash solutions were also analyzed as part of this study. These data will be used in the development of improved sulfur solubility models for LAW glass.

  1. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  2. Preparation, structural characterization, and in vitro cell studies of three-dimensional SiO2-CaO binary glass scaffolds built ofultra-small nanofibers.

    Science.gov (United States)

    Luo, Honglin; Li, Wei; Ao, Haiyong; Li, Gen; Tu, Junpin; Xiong, Guangyao; Zhu, Yong; Wan, Yizao

    2017-07-01

    Three-dimensional (3D) nanofibrous scaffolds hold great promises in tissue engineering and regenerative medicine. In this work, for the first time, 3D SiO 2 -CaO binary glass nanofibrous scaffolds have been fabricated via a combined method of template-assisted sol-gel and calcination by using bacterial cellulose as the template. SEM with EDS, TEM, and AFM confirm that the molar ratio of Ca to Si and fiber diameter of the resultant SiO 2 -CaO nanofibers can be controlled by immersion time in the solution of tetraethyl orthosilicate and ethanol. The optimal immersion time was 6h which produced the SiO 2 -CaO binary glass containing 60at.% Si and 40at.% Ca (named 60S40C). The fiber diameter of 60S40C scaffold is as small as 29nm. In addition, the scaffold has highly porous 3D nanostructure with dominant mesopores at 10.6nm and macropores at 20μm as well as a large BET surface area (240.9m 2 g -1 ), which endow the 60S40C scaffold excellent biocompatibility and high ALP activity as revealed by cell studies using osteoblast cells. These results suggest that the 60S40C scaffold has great potential in bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Investigation on fabrication and positioning of cryogenic shell laser fusion targets. Annual report, October 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Kim, K.

    1978-01-01

    The research has been directed toward fabrication and positioning of cryogenic shell laser fusion targets, with particular emphasis on the development of a scheme which would allow for continuous fabrication, inspection, and delivery of the targets. Specifically, progress has been made in each of the following areas: (1) fabrication of a uniform layer of solid DT inside a glass microshell using a combination of helium gas jets and a heater wire; (2) levitation-freezing of a DT-filled glass microshell as a method for fabricating and positioning a cryogenic shell target; (3) a target fabrication system intended for continuous fabrication, inspection, and delivery of cryogenic targets; and (4) development of diagnostics for inspection, recording, and analysis of a solid DT layer inside a glass microshell, and for observing the parameters controlling the target freezing process

  4. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT01, KT02, KT03, AND KT04-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2010-11-01

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT01 and KT02-series of glasses were chosen to allow for the identification of the influence of the concentrations of major components of the glass on the retention of TiO{sub 2}. The KT03 series of glasses was chosen to allow for the identification of these influences when higher Nb{sub 2}O{sub 5} and ZrO{sub 2} concentrations are included along with TiO2. The KT04 series of glasses was chosen to investigate the properties and performance of glasses based on the best available projections of actual compositions to be processed at the DWPF (i.e., future sludge batches including the SCIX streams).

  5. Magnetic and electrical properties in BaNiS2-type solid solutions

    International Nuclear Information System (INIS)

    Irizawa, Akinori; Yoshimura, Kazuyoshi; Kosuge, Koji

    2000-01-01

    The magnetic and electrical properties are reported in the new solid solutions BaCo 1-x Cu x S 2 and BaNi 1-x Fe x S 2 . Both compounds show spin-glass-like behavior, although the type of spin frustrations is different with each other. BaCo 1-x Cu x S 2 shows a competition type spin-glass behavior with reentrant phenomenon from antiferromagnetic to spin-glass at low temperatures. BaNi 1-x Fe x S 2 shows a dilute type spin-glass behavior together with super-paramagnetic properties. The temperature variation of 57 Fe Moessbauer spectra in BaNi 0.8 Fe 0.2 S 2 is explicable in a framework of cluster-glass. (author)

  6. Scalable Patterning of MoS2Nanoribbons by Micromolding in Capillaries

    KAUST Repository

    Hung, Yu-Han

    2016-07-27

    In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 108 were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm2 and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials. © 2016 American Chemical Society.

  7. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  8. Bulk glass ceramics containing Yb{sup 3+}/Er{sup 3+}: β-NaGdF{sub 4} nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yan [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Zhong, Jiasong; Ding, Mingye [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong; Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-07-25

    Highlights: • Hexagonal NaGdF{sub 4} nanocrystals embedded bulk glass ceramics were fabricated. • The incorporation of Ln{sup 3+} dopants into the β-NaGdF{sub 4} lattice was demonstrated. • Upconversion luminescence was highly intensified after glass crystallization. • Such glass ceramics had possible application in the optical temperature sensors. - Abstract: Lanthanide doped hexagonal β-NaGdF{sub 4} nanocrystals embedded transparent bulk glass ceramics were successfully fabricated via a phase-separation-controlled crystallization route. Elemental mapping in the scanning transmission electron microscope and optical spectroscopy analysis demonstrated the partition of the active centers into the β-NaGdF{sub 4} crystalline lattice. As a result, upconversion luminescence of the glass ceramic co-doped with Yb{sup 3+} and Er{sup 3+} is about 60 times as high as that of the precursor glass, attributing to the modification of Yb{sup 3+}/Er{sup 3+} surrounding from phase-separated amorphous nanoparticle to β-NaGdF{sub 4} crystalline lattice with low phonon energy and high crystallinity after crystallization. Furthermore, the temperature-dependent green upconversion emissions assigned to {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2} (520 nm) and {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} (540 nm) transitions were investigated, and the corresponding fluorescence intensity ratio of these two thermally coupled emitting-states greatly enhanced with increase of temperature. Using such fabricated glass ceramic as an optical thermometric medium, the maximum sensitivity reached as high as 0.0037 K{sup −1} at 580 K. It is expected that the investigated Er{sup 3+}/Yb{sup 3+} codoped glass ceramic might be a very promising candidate for accurate optical temperature sensors.

  9. Photoluminescence of Mg{sub 2}Si films fabricated by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yang-Fang [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); School of Physics and Electronic Science of Guizhou Normal University, Guiyang 550001 (China); Xie, Quan, E-mail: qxie@gzu.edu.cn [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); Xiao, Qing-Quan [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); Engineering Center for Avionics Electrical and Information Network of Guizhou Provincial Colleges and Universities, Anshun 561000 (China); Chen, Qian; Fan, Meng-Hui [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); Xie, Jing [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); School of Physics and Electronic Science of Guizhou Normal University, Guiyang 550001 (China); Huang, Jin; Zhang, Jin-Min; Ma, Rui; Wang, Shan-Lan; Wu, Hong-Xian; Fang, Di [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China)

    2017-05-01

    Highlights: • High quality Mg{sub 2}Si films were grown on Si (111) and glass substrates with magnetron sputtering, respectively. • The first observation of Photoluminescence (PL) of Mg{sub 2}Si films was reported. • The Mg{sub 2}Si PL emission wavelengths are almost independence on temperature in the range of 77–300 K. • The strongest PL emissions may be attributed to interstitial Mg donor level to valence band transitions. • The activation energy of Mg{sub 2}Si is determined from the quenching of major luminescence peaks. - Abstract: To understand the photoluminescence mechanisms and optimize the design of Mg{sub 2}Si-based light-emitting devices, Mg{sub 2}Si films were fabricated on silicon (111) and glass substrates by magnetron sputtering technique, and the influences of different substrates on the photoelectric properties of Mg{sub 2}Si films were investigated systematically. The crystal structure, cross-sectional morphology, composition ratios and temperature-dependent photoluminescence (PL) of the Mg{sub 2}Si films were examined using X-ray diffraction (XRD), Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and PL measurement system, respectively. XRD results indicate that the Mg{sub 2}Si film on Si (111) displays polycrystalline structure, whereas Mg{sub 2}Si film on glass substrate is of like-monocrystalline structure.SEM results show that Mg{sub 2}Si film on glass substrate is very compact with a typical dense columnar structure, and the film on Si substrate represents slight delamination phenomenon. EDS results suggest that the stoichiometry of Mg and Si is approximately 2:1. Photoluminescence (PL) of Mg{sub 2}Si films was observed for the first time. The PL emission wavelengths of Mg{sub 2}Si are almost independence on temperature in the range of 77–300 K. The PL intensity decreases gradually with increasing temperature. The PL intensity of Mg{sub 2}Si films on glass substrate is much larger than that of Mg

  10. Two dimensional MoS{sub 2}/graphene p-n heterojunction diode: Fabrication and electronic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Chang, Hsuan-Chen [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Wang, Yi-Ping [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Hsu, Hung-Pin [Department of Electronic Engineering, Ming Chi University of Technology, 84 Gungjuan Road, New Taipei City 24301, Taiwan (China); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2016-06-25

    Molybdenum disulfide (MoS{sub 2}) films are currently the most potential semiconductor materials of the two-dimensional nano-material heterojunction. Few-layer MoS{sub 2} is an n-type semiconductor that has good mechanical strength, high carrier mobility, and has similar thickness as graphene. Graphene is presently the thinnest two-dimensional material with good thermal conductivity and high carrier mobility. The graphene Fermi level can be precisely controlled using the oxygen adsorption. Therefore, graphene can be tuned from zero-gap to p-type semiconductor material using the amount of adsorbed oxygen. In this study we combine few-layer MoS{sub 2} and graphene to produce a heterojunction and exhaustively study the interface properties for heterojunction diode application. According to the results, the MoS{sub 2} band-gap increases with decreasing thickness. The I–V characteristics of the MoS{sub 2}/Graphene p-n junction diodes can be precisely tuned by adjusting different thicknesses of the MoS{sub 2} films. By applying our fabricating method, MoS{sub 2}/Graphene heterojunction diode can be easily constructed and have potential to different applications. - Highlights: • We controlled the layer thickness of MoS{sub 2} by different exfoliation times. • We presented Raman scattering of MoS{sub 2} and define their layers number. • The few-layer MoS{sub 2}/graphene pn junction diode was synthesized. • We measured the device current and voltage characteristics. • The built-in potential barrier could be adjusted by controlling MoS{sub 2} thicknesses.

  11. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  12. Raman and infrared investigations of glass and glass-ceramics with composition 2Na2O·1CaO·3SiO2

    OpenAIRE

    Ziemath, Ervino C.; Aegerter, Michel A.

    1994-01-01

    Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975 and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystalliz...

  13. Fabrication of a temperature-responsive and recyclable MoS2 nanocatalyst through composting with poly (N-isopropylacrylamide)

    Science.gov (United States)

    Liu, Yan; Chen, Pengpeng; Nie, Wangyan; Zhou, Yifeng

    2018-04-01

    A temperature-responsive, recyclable nanocatalyst was fabricated by composting the exfoliated molybdenum disulfide (MoS2) nanosheets with poly (N-isopropylacry lamide) (PNIPAM). The structure and morphology of MoS2/PNIPAM nanocatalyst was fully characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Thermogravimetry analysis (TGA), Scanning electron microscope (SEM) and Transmission electron microscopy (TEM). The temperature-responsive properties of the MoS2/PNIPAM nanocatalyst were confirmed by Dynamic Light Scattering (DLS) and Ultraviolet-visible ((UV-vis)) absorption spectroscopy. The catalytic activities of the MoS2/PNIPAM nanocatalyst were studied using the reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as the model reaction. Results showed that the catalytic activity of the MoS2/PNIPAM nanocatalyst could be regulated by temperature. Furthermore, when the temperature went higher than the low critical solution temperature (LCST) of PNIPAM, the MoS2/PNIPAM nanocatalyst tended to aggregated to form bulk materials from homogeneous suspension.

  14. Anti-scratch AlMgB14 Gorilla® Glass coating

    Science.gov (United States)

    Putrolaynen, V. V.; Grishin, A. M.; Rigoev, I. V.

    2017-10-01

    Hard aluminum-magnesium boride (BAM) films were fabricated onto Corning® Gorilla® Glass by radio-frequency magnetron sputtering of a single stoichiometric AlMgB14 target. BAM films exhibit a Vickers hardness from 10 to 30 GPa and a Young's modulus from 80 to 160 GPa depending on applied loading forces. Deposited hard coating increases the critical load at which glass substrate cracks. The adhesion energy of BAM films on Gorilla® Glass is 6.4 J/m2.

  15. Propriedades mecânicas de tração de compósitos poliéster/tecidos híbridos sisal/vidro Properties of polyester/hibrid sisal-glass fabrics

    Directory of Open Access Journals (Sweden)

    Laura H. de Carvalho

    2006-03-01

    Full Text Available O desempenho e o custo de compósitos podem ser alterados por hibridização e, neste sentido, é relativamente comum o uso combinado de fibras e reforços minerais no desenvolvimento destes materiais. No presente trabalho o desempenho mecânico de compósitos poliéster insaturado/ tecidos híbridos sisal-vidro foram investigados em função do teor de fibra e direção do teste. Foram confeccionados três tecidos híbridos (com 30, 40 e 50% em peso de vidro com fios de sisal no urdume e fibras de vidro na trama. Os compósitos foram moldados por compressão à temperatura ambiente com os tecidos alinhados. Os resultados indicam que houve um aumento nas propriedades mecânicas de tração de todos os compósitos com o aumento do teor de fibras. Para os compósitos reforçados por tecidos com baixo teor de fibra de vidro, as propriedades tenderam a ser mais elevadas quando os testes foram conduzidos na direção do sisal, enquanto que para os tecidos com elevado teor de vidro, o oposto foi observado. Estes comportamentos foram associados ao teor de fibra de vidro na direção do teste e ao diâmetro das fibras de sisal. Em baixos teores de fibra o sisal agiria como inclusão ou defeito, prejudicando as propriedades mecânicas; em elevados teores as propriedades do vidro suplantariam os defeitos provocados pelo sisal.Hybridization can alter both mechanical performance and cost of polymer composites, and novel composite materials can be obtained by the combination of both fibrous and mineral reinforcements. In the present work the mechanical performance of unsaturated polyester/hybrid sisal-glass fabrics was determined as a function of fibre content and test direction. Three different hybrid fabrics (30, 40 and 50% w/w glass content with sisal strings in the warp and glass roving in the weft were hand weaved. Aligned fabric compression moulded composites were obtained at room temperature. The results showed enhanced properties with fibre content

  16. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  17. Assembly of CdS Quantum Dots onto Hierarchical TiO2 Structure for Quantum Dots Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Syed Mansoor Ali

    2015-05-01

    Full Text Available Quantum dot (QD sensitized solar cells based on Hierarchical TiO2 structure (HTS consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate is fabricated. The hierarchical TiO2 structure consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate synthesized by hydrothermal route. The CdS quantum dots were grown by the successive ionic layer adsorption and reaction deposition method. The quantum dot sensitized solar cell based on the hierarchical TiO2 structure shows a current density JSC = 1.44 mA, VOC = 0.46 V, FF = 0.42 and η = 0.27%. The QD provide a high surface area and nano-urchins offer a highway for fast charge collection and multiple scattering centers within the photoelectrode.

  18. Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation

    Science.gov (United States)

    Wang, Meng; Hua, Jianhao; Yang, Yaling

    2018-06-01

    An efficient cadmium sulfide quantum-dots (CdS QDs) and carbon dots (CDs) modified TiO2 photocatalyst (CdS/CDs-TiO2) was successfully fabricated. The as-prepared ternary nano-composites simultaneously improved the photo-corrosion of CdS and amplified its photocatalytic activity. The introduction of CdS QDs and CDs could enhance more absorbance of light, prevent the undesirable electron/hole recombination, and promote charge separation, which was important for the continuous formation of rad OH and rad O2- radicals. When the optimal mass ratio of CdS QDs to CDs was 3:1, above 90% degradation efficiencies were achieved for benzene within 1 h and toluene in 2 h, while that of pure TiO2 (P25), CdS QDs-TiO2, CDs-TiO2 nano-composites was around 15%. Owing to the symmetric structure and conjugation of methyl with benzene ring, the degradation of toluene was more difficult than benzene to carry on. The new fabricated nano-composites showed good prospective application of cleaning up refractory pollutants and the resource utilization.

  19. The quality study of recycled glass phosphor waste for LED

    Science.gov (United States)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  20. Characterization of the R7T7 LWR reference glass

    International Nuclear Information System (INIS)

    Pacaud, F.; Fillet, C.; Baudin, G.; Bastien-Thiry, H.

    1990-01-01

    Characterization describes the glass properties by means of standard tests with no attempt to assess its long-term behavior. Characterization involved complementary comparative investigations of nonradioactive laboratory glass specimens, radioactive glass specimens prepared in laboratory hot cells, and nonradioactive industrial glass samples fabricated in the full-scale continuous vitrification prototype facility (specimens were taken from the casting stream and core-samples were taken from a 200 kg glass block after cooling in the canister). Additional measurements are planned on actual radioactive glass samples fabricated in the R7 facility at La Hague. The results are indicated for each of the properties studied: physical, thermal and mechanical properties; structure and homogeneity examination; thermal stability and crystallization; resistance to chemical corrosion; irradiation resistance and volatilization. Comparative examination of glass samples of different origins showed consistent properties

  1. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    Science.gov (United States)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  2. Magnetic MoS2 on multiwalled carbon nanotubes for sulfide sensing.

    Science.gov (United States)

    Li, Chunxiang; Zhang, Dan; Wang, Jiankang; Hu, Pingan; Jiang, Zhaohua

    2017-07-04

    A novel hybrid metallic cobalt insided in multiwalled carbon nanotubles/molybdenum disulfide (Co@CNT/MoS 2 ) modified glass carbon electrode (GCE) was fabricated with a adhesive of Nafion suspension and used as chemical sensors for sulfide detection. Single-layered MoS 2 was coated on CNTs through magnetic traction force between paramagnetic monolayer MoS 2 and Co particles in CNTs. Co particles faciliated the collection of paramagnetic monolayer MoS 2 exfoliated from bulk MoS 2 in solution. Amperometric analysis, cycle voltammetry, cathodic stripping analysis and linear sweep voltammetry results showed the Co@CNT/MoS 2 modified GCE exhibited excellent electrochemical activity to sulfide in buffer solutions, but amperometric analysis was found to be more sensitive than the other methods. The amperometric response result indicated the Co@CNT/MoS 2 -modified GCE electrode was an excellent electrochemical sensor for detecting S 2- with a detection limit of 7.6 nM and sensitivity of 0.23 mA/μM. The proposed electrode was used for the determination of sulfide levels in hydrogen sulfide-pretreated fruits, and the method was also verified with recovery studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prospects of chemically deposited CoS-CU2S coatings for solar ...

    African Journals Online (AJOL)

    The thin films of Cu2S deposited on CoS-precoated glass substrates from chemical baths and annealed at 100oC were found to have desirable solar control characteristics superior to commercial tinted glass and magnetron sputtered multilayer metallic solar control coatings. These include: transmission spectra in the ...

  4. Preparation and properties of yttrium iron garnet microcrystal in $P_{2}O_{5}-MgO$ glass

    CERN Document Server

    Chen, G J; Chang, Y S; Lee, H M; Lin, Y J; 10.1016/j.jallcom.2004.07.041

    2005-01-01

    The fabrication of phosphorus-based glasses containing Y/sub 3/Fe/sub 5/O/sub 12/ crystals by the incorporation method was studied. From transmission electron microscopy observation, there is only one rod- like crystalline phase identified as Y/sub 3/Fe/sub 5/O/sub 12/ existing in the glass matrix. When the content of YIG is 30wt.%, the as-cast sample shows a Faraday rotation of 85 degrees /cm and a magnetization of 0.4emu/g in a field of 14kOe. After heat treatment, the magnetic and optical properties of the glass ceramic changed owing to the thermal diffusion of iron ions into the glass matrix.

  5. Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes

    Science.gov (United States)

    This study explores the mechanical properties of an E-glass fabric composite reinforced with anchored multi-walled carbon nanotubes (CNTs). The CNTs were grown on the E-glass fabric using a floating catalyst chemical vapor deposition procedure. The E-glass fabric with attached CNTs was then incorpor...

  6. Properties of glass-bonded zeolite monoliths

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Murphy, C.D.

    1994-01-01

    It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m 2 d in 28-day tests in deionized water and in brine at 363 K (90 degrees C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young's modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt

  7. Solar cells with PbS quantum dot sensitized TiO2-multiwalled carbon nanotube composites, sulfide-titania gel and tin sulfide coated C-fabric.

    Science.gov (United States)

    Kokal, Ramesh K; Deepa, Melepurath; Kalluri, Ankarao; Singh, Shrishti; Macwan, Isaac; Patra, Prabir K; Gilarde, Jeff

    2017-10-04

    Novel approaches to boost quantum dot solar cell (QDSC) efficiencies are in demand. Herein, three strategies are used: (i) a hydrothermally synthesized TiO 2 -multiwalled carbon nanotube (MWCNT) composite instead of conventional TiO 2 , (ii) a counter electrode (CE) that has not been applied to QDSCs until now, namely, tin sulfide (SnS) nanoparticles (NPs) coated over a conductive carbon (C)-fabric, and (iii) a quasi-solid-state gel electrolyte composed of S 2- , an inert polymer and TiO 2 nanoparticles as opposed to a polysulfide solution based hole transport layer. MWCNTs by virtue of their high electrical conductivity and suitably positioned Fermi level (below the conduction bands of TiO 2 and PbS) allow fast photogenerated electron injection into the external circuit, and this is confirmed by a higher efficiency of 6.3% achieved for a TiO 2 -MWCNT/PbS/ZnS based (champion) cell, compared to the corresponding TiO 2 /PbS/ZnS based cell (4.45%). Nanoscale current map analysis of TiO 2 and TiO 2 -MWCNTs reveals the presence of narrowly spaced highly conducting domains in the latter, which equips it with an average current carrying capability greater by a few orders of magnitude. Electron transport and recombination resistances are lower and higher respectively for the TiO 2 -MWCNT/PbS/ZnS cell relative to the TiO 2 /PbS/ZnS cell, thus leading to a high performance cell. The efficacy of SnS/C-fabric as a CE is confirmed from the higher efficiency achieved in cells with this CE compared to the C-fabric based cells. Lower charge transfer and diffusional resistances, slower photovoltage decay, high electrical conductance and lower redox potential impart high catalytic activity to the SnS/C-fabric assembly for sulfide reduction and thus endow the TiO 2 -MWCNT/PbS/ZnS cell with a high open circuit voltage (0.9 V) and a large short circuit current density (∼20 mA cm -2 ). This study attempts to unravel how simple strategies can amplify QDSC performances.

  8. Preparation of CulnS2 Thin Films on the Glass Substrate by DC Sputtering for Solar Cell Component

    International Nuclear Information System (INIS)

    Bambang Siswanto; Wirjoadi; Darsono

    2007-01-01

    The CuInS 2 alloys were deposited on glass substrate using plasma DC sputtering technique. A CuInS 2 alloy target was made from Cu, In, Se powder with impurity of 99.998%. The deposition process was done with the following process parameter variations: deposition time and substrate temperature were the range of 15 to 45 min and 150 to 300 ℃, the gas pressure was kept at 1.4x10 -1 Torr. The purpose of the research is to obtain the solar cell component of CuInS 2 thin films. The electrical and optical properties measurement has been done by four-point probe and UV-Vis. Crystal structure was analyzed using X-ray diffraction (XRD). The result shows that minimum resistance of CuInS 2 thin films is 35.7 kΩ and optical transmittance is 14.7 %. The crystal structure of CuInS 2 is oriented at (112) plane and by Touc-plot method was obtained that the band gap energy of thin films is 1.45 eV. It could be concluded that the CuInS 2 thin film can be used as a solar cell component. (author)

  9. A micro surface tension pump (MISPU) in a glass microchip.

    Science.gov (United States)

    Peng, Xing Yue Larry

    2011-01-07

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  10. Properties of M1-M2-Si-Al-O-N glasses (M1 = La or Nd, M2 = Y or Er)

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, M.J.; Nestor, E.; Hampshire, S. [Limerick Univ. (Ireland). Materials and Surface Science Inst.; Ramesh, R. [Littelfuse Ireland, Dundalk, Co. Louth (Ireland)

    2002-07-01

    Mixed lanthanide cation oxynitride glasses have been prepared in the M1 - M2 - Si-Al-O-N systems where M1 = La or Nd and M2 = Y or Er. The densities ({rho}), Young's moduli (E), microhardnesses (H{sub v}), glass transition temperatures (T{sub g}), dilatometric softening temperatures (T{sub dil}) and coefficients of thermal expansion (CTE) of 13 glasses were determined. The molar volume values (MV) calculated from density data, E, H{sub v}, T{sub g}, T{sub dil} and CTE values were all found to vary linearly with the effective cation field strength arising from the M1 and M2 modifier cations. Least squares intercept and slope values are presented which correlate each property to effective cation field strength together with error values which arise from glass and specimen preparation and measurement inconsistencies. These linear correlations clearly indicate that the overall glass structure remains the same for each of the thirteen glasses with only the modifier cation(s) having any influence. This influence appears to be a cross-linking effect, the strength of which increases as the effective cation field strength of the M1, M2 modifiers increases. (orig.)

  11. Photoluminescence characteristics of sintered silica glass doped with Cu ions using mesoporous SiO{sub 2}-PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Murata, Takahiro [Faculty of Education and Master' s Course in Education, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Fujino, Shigeru, E-mail: fujino@astec.kyushu-u.ac.jp [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2015-07-15

    Monolithic silica glasses doped with Cu ions were prepared by immersing a mesoporous SiO{sub 2}-polyvinyl alcohol (PVA) nanocomposite in a copper nitrate solution followed by sintering at 1100 °C for 12 h in air. The Cu ions were reduced from divalent to monovalent during the sintering process and consequently Cu{sup +} was doped into the silica glass matrix. The sintered glass possessed blue or yellow photoluminescence (PL) under UV irradiation, depending on the total concentration of Cu ions in the sintered silica glass. At a lower concentration below 30 ppm, the isolated Cu{sup +} existed in the glass matrix resulting in the blue PL. However, above 70 ppm, the Cu{sup +}–Cu{sup +} pairs were present, exhibiting the yellow PL. It was demonstrated that the PL characteristics of the sintered silica glasses doped with monovalent copper ions were affected by the total concentration of Cu ions in the glass, which can be adjusted as a function of the immersion conditions. - Highlights: • Silica glass doped with Cu{sup +} was fabricated by sintering the nanocomposite. • The Cu ions were reduced from divalent to monovalent during the sintering process. • The sintered glass possessed blue or yellow PL under UV irradiation. • The blue and yellow PL are due to isolated Cu{sup +} and Cu{sup +}–Cu{sup +} pairs, respectively. • The PL characteristics depended on the total concentration of Cu ions in the glass.

  12. Effects of S/V on secondary phase formation on waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Buck, E.C.; Bates, J.K.; Gong, M.; Dietz, N.L.; Pegg, I.L.

    1994-01-01

    Simulated West Valley high-level nuclear waste glass, WV205, was leached with and without buffered media in both deuterated and ordinary water at glass surface area to solution volumes (S/N) of 200--6000 m -1 . Examination of the glass surface after testing for 14 days indicated that the S/V-induced pH change plays a dominant role in the development of the altered surface layer and the secondary phases formed. The changes due to SN-induced pH determine the rate of surface layer formation, the element distribution in the surface layer, and possibly, the identities of the secondary phases. Changes due to SN-induced elemental concentration also influence glass reaction rate in terms of the layer thickness and the elemental distribution in the surface layers

  13. Fabrication and characterization of MCC approved testing material: ATM-9 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1986-06-01

    The Materials Characterization Center ATM-9 glass is designed to be representative of glass to be produced by the Defense Waste Processing Facility at the Savannah River Plant, Aiken, South Carolina. ATM-9 glass contains all of the major components of the DWPF glass and corresponds to a waste loading of 29 wt %. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 Black Frit to which was added Ba, Cs, Md, Nd, Zr, as well as 99 Tc, depleted U, 237 Np, 239+240 Pu, and 243 Am. The glass was produced under reducing conditions by the addition of 0.7 wt % graphite during the final melting process. Three kilograms of the glass were produced from April to May of 1984. On final melting, the glass was formed into stress-annealed rectangular bars of two sizes: 1.9 x 1.9 x 10 cm and 1.3 x 1.3 x 10 cm. Seventeen bars of each size were made. The analyzed composition of ATM-9 glass is listed. Examination by optical microscopy of a single transverse section from one bar showed random porosity estimated at 0.36 vol % with nominal pore diameters ranging from approx. 5 μm to 200 μm. Only one distinct second phase was observed and it was at a low concentraction level in the glass matrix. The phase appeared as spherical metallic particles. X-ray diffraction analysis of this same sample did not show any diffraction peaks from crystalline components, indicating that the glass contained less than 5 wt % of crystalline devitrification products. The even shading on the radiograph exposure indicated a generally uniform distribution of radioactivity throughout the glass matrix, with no distinct high-concentration regions

  14. Structural-relaxation phenomena in As–S glasses as probed by combined PAL/DBAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials of Scientific Research Company “Carat”, 202 Stryjska Str., Lviv, 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa, 42200 (Poland); Ingram, A. [Faculty of Physics of Opole Technical University, 75 Ozimska Str., Opole, 45370 (Poland); Szatanik, R. [Institute of Physics of Opole University, 48 Oleska Str., Opole, 45052 (Poland); Shpotyuk, M. [Institute of Materials of Scientific Research Company “Carat”, 202 Stryjska Str., Lviv, 79031 (Ukraine); Lviv Polytechnic National University, 12 Bandery Str., Lviv, 79013 (Ukraine); Golovchak, R. [Physics and Astronomy Department, Austin Peay State University, 601 College Str., Clarksville, TN, 37044 (United States)

    2015-04-01

    Experimental techniques exploring phenomena of positron–electron interaction, namely the positron annihilation lifetime spectroscopy and Doppler broadening of annihilation radiation, are shown to be very informative tools to study radiation- and thermally-induced phenomena in chalcogenide glasses of binary As–S system. Time-dependent processes of free-volume voids agglomeration (expansion), fragmentation (refining) and disappearing (contraction) are identified as main stages of physical aging in S-rich glasses, while a competitive channel of coordination topological defects formation associated with void charging becomes significant in a vicinity of near-stoichiometric glass compositions under γ-irradiation. The data of combined positron lifetime and Doppler broadening of annihilation radiation measurements are correlated with radiation-induced shift of fundamental optical absorption edge of the studied glasses. The meaningful model for γ-induced and relaxation-driven evolution in free-volume void structure of As–S glasses giving a unified insight on their structural-chemical nature is proposed. - Highlights: • Combined optical, PAL and DBAR probes to study structural relaxation in As–S glasses. • Void agglomeration, fragmentation and disappearing are main stages of physical aging. • Radiation-induced coordination defects are important in near-stoichiometric As–S. • Proposed model describes free-volume evolution in the void structure of As–S glasses.

  15. Structural-relaxation phenomena in As–S glasses as probed by combined PAL/DBAR technique

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Ingram, A.; Szatanik, R.; Shpotyuk, M.; Golovchak, R.

    2015-01-01

    Experimental techniques exploring phenomena of positron–electron interaction, namely the positron annihilation lifetime spectroscopy and Doppler broadening of annihilation radiation, are shown to be very informative tools to study radiation- and thermally-induced phenomena in chalcogenide glasses of binary As–S system. Time-dependent processes of free-volume voids agglomeration (expansion), fragmentation (refining) and disappearing (contraction) are identified as main stages of physical aging in S-rich glasses, while a competitive channel of coordination topological defects formation associated with void charging becomes significant in a vicinity of near-stoichiometric glass compositions under γ-irradiation. The data of combined positron lifetime and Doppler broadening of annihilation radiation measurements are correlated with radiation-induced shift of fundamental optical absorption edge of the studied glasses. The meaningful model for γ-induced and relaxation-driven evolution in free-volume void structure of As–S glasses giving a unified insight on their structural-chemical nature is proposed. - Highlights: • Combined optical, PAL and DBAR probes to study structural relaxation in As–S glasses. • Void agglomeration, fragmentation and disappearing are main stages of physical aging. • Radiation-induced coordination defects are important in near-stoichiometric As–S. • Proposed model describes free-volume evolution in the void structure of As–S glasses

  16. Glass sample preparation and performance investigations. [solar x-ray imager

    Science.gov (United States)

    Johnson, R. Barry

    1992-01-01

    This final report details the work performed under this delivery order from April 1991 through April 1992. The currently available capabilities for integrated optical performance modeling at MSFC for large and complex systems such as AXAF were investigated. The Integrated Structural Modeling (ISM) program developed by Boeing for the U.S. Air Force was obtained and installed on two DECstations 5000 at MSFC. The structural, thermal and optical analysis programs available in ISM were evaluated. As part of the optomechanical engineering activities, technical support was provided in the design of support structure, mirror assembly, filter wheel assembly and material selection for the Solar X-ray Imager (SXI) program. As part of the fabrication activities, a large number of zerodur glass samples were prepared in different sizes and shapes for acid etching, coating and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations. Various optical components for AXAF video microscope and the x-ray test facility were also fabricated. A number of glass fabrication and test instruments such as a scatter plate interferometer, a gravity feed saw and some phenolic cutting blades were fabricated, integrated and tested.

  17. Bulk and microscale compressive behavior of a Zr-based metallic glass

    International Nuclear Information System (INIS)

    Lai, Y.H.; Lee, C.J.; Cheng, Y.T.; Chou, H.S.; Chen, H.M.; Du, X.H.; Chang, C.I.; Huang, J.C.; Jian, S.R.; Jang, J.S.C.; Nieh, T.G.

    2008-01-01

    Micropillars with diameters of 3.8, 1 and 0.7 μm were fabricated from a two-phase Zr-based metallic glass using focus ion beam (FIB), and then tested in compression at strain rates from 1 x 10 -4 to 1 x 10 -2 s -1 . The apparent yield strength of the micropillars ranges from 1992 to 2972 MPa, or 25-86% increase over that of the bulk specimens. This strength increase can be rationalized by the Weibull statistics for brittle materials

  18. Solid-state superionic stamping with silver iodide-silver metaphosphate glass

    International Nuclear Information System (INIS)

    Jacobs, K E; Hsu, K H; Han, X; Azeredo, B P; Ferreira, P M; Kumar, A; Fang, N X

    2011-01-01

    This paper demonstrates and analyzes the new use of the glassy solid electrolyte AgI-AgPO 3 for direct nanopatterning of thin silver films with feature resolutions of 30 nm. AgI-AgPO 3 has a high room temperature ionic conductivity with Ag + as the mobile ion, leading to silver etch/patterning rates of up to 20 nm s -1 at an applied bias of 300 mV. The glass can be melt-processed at temperatures below 200 deg. C, providing a facile and economical pathway for creating large area stamps, including the 25 mm 2 stamps shown in this study. Further, the glass is sufficiently transparent to permit integration with existing tools such as aligners and imprint tools, enabling high overlay registration accuracy and facilitating insertion into multi-step fabrication recipes.

  19. Glass-based confined structures enabling light control

    Energy Technology Data Exchange (ETDEWEB)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Lukowiak, Anna [Institute of Low Temperature and Structure Research PAS, Okolna St. 2, 50-422 Wroclaw (Poland); Vasilchenko, Iustyna [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, via Sommarive 14 Povo, 38123Trento (Italy); Ristic, Davor [Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb (Croatia); Boulard, Brigitte [IMMM, CNRS Equipe Fluorures, Université du Maine, Av. Messiaen, 72085 Le Mans cedex 9 (France); Dorosz, Dominik [Department of Power Engineering, Photonics and Lighting Technology, Bialystok University of Technology, Wiejska Street 45D, 15-351 Bialystok (Poland); Scotognella, Francesco [Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milan (Italy); Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vaccari, Alessandro [FBK -CMM, ARES Unit, 38123 Trento (Italy); Taccheo, Stefano [College of Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea (United Kingdom); Pelli, Stefano; Righini, Giancarlo C. [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Museo Storico della Fisica e Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, 00184 Roma (Italy); Conti, Gualtiero Nunzi [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Ramponi, Roberta [Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); and others

    2015-04-24

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.

  20. Glass-based confined structures enabling light control

    International Nuclear Information System (INIS)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro; Lukowiak, Anna; Vasilchenko, Iustyna; Ristic, Davor; Boulard, Brigitte; Dorosz, Dominik; Scotognella, Francesco; Vaccari, Alessandro; Taccheo, Stefano; Pelli, Stefano; Righini, Giancarlo C.; Conti, Gualtiero Nunzi; Ramponi, Roberta

    2015-01-01

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties

  1. Study on Characteristics of CdS/Cu2S Photovoltaic Cell

    International Nuclear Information System (INIS)

    Nwe Nwe Htun

    2011-12-01

    In this paper the CdS-Cu2S photovoltaic cell has been prepared and characteristiced by using evaporation method on glass substrate. CdS film was deposited on the Pyrex glass substrate by evaporation and Cu2S layer was obtained by electroplating in a dilute acqueous solution of CusO4 at room temperature. Silver electrode was applied to the electroplated surface. The results of electrical and optical characteristics of the CdS-Cu2S hetrojunction were investigated. The photovoltaic response has been observed under various illuminated intensity for different wavelengths in visible region. It was found to be the photovoltage and photocurrent varying with different light intensities. It can be concluded that formation of a low resistivity CdS film and Cu2S layer play a big role in obtaining a high efficiency cell.

  2. Double laminated reduced graphene/Cu2S/reduced graphene/graphene oxide nanofilms and their photoelectrochemical properties

    Institute of Scientific and Technical Information of China (English)

    Junwei Li; Xueqi Zhang; Li Song; Min Zhang; Baohang Zhang

    2016-01-01

    In this work,an efficient photocatalytic material was prepared directly on Indium tin oxide (ITO) glass substrates by fabricating Cu2S and graphene oxide onto graphene for photoelectrochemical (PEC) water splitting.The double laminated reduced graphene/Cu2S/reduced graphene/graphene oxide (RG/Cu2S/RG/GO) nanofilms were characterized,and an enhanced photoelectrochemical response in the visible region was discovered.The photocurrent density of the nanofilms for PEC water splitting was measured to be up to 1.98 mA/cm2,which could be ascribed to the followings:(i) a higher efficiency of light-harvesting because of GO coupling with Cu2S that could broaden the absorbing solar spectrum and enhance the light utilization efficiency;(ii) a stepwise structure of band-edge levels in the Cu2S/GO electrode was constructed;(iii) double laminated electron accelerator (RG) was used in the Cu2S/GO materials to get better electron-injecting efficiency.

  3. Double laminated reduced graphene/Cu2S/reduced graphene/graphene oxide nanofilms and their photoelectrochemical properties

    Institute of Scientific and Technical Information of China (English)

    Junwei; Li; Xueqi; Zhang; Li; Song; Min; Zhang; Baohang; Zhang

    2016-01-01

    In this work,an efficient photocatalytic material was prepared directly on Indium tin oxide(ITO)glass substrates by fabricating Cu2 S and graphene oxide onto graphene for photoelectrochemical(PEC) water splitting.The double laminated reduced graphene/Cu2S/reduced graphene/graphene oxide(RG/Cu2S/RG/GO) nanofilms were characterized,and an enhanced photoelectrochemical response in the visible region was discovered.The photocurrent density of the nanofilms for PEC water splitting was measured to be up to 1.98 m A/cm2,which could be ascribed to the followings:(i) a higher efficiency of light-harvesting because of GO coupling with Cu2 S that could broaden the absorbing solar spectrum and enhance the light utilization efficiency;(ii) a stepwise structure of band-edge levels in the Cu2S/GO electrode was constructed;(iii) double laminated electron accelerator(RG) was used in the Cu2S/GO materials to get better electron-injecting efficiency.

  4. Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching.

    Science.gov (United States)

    Maier, Thomas; Bach, David; Müllner, Paul; Hainberger, Rainer; Brückl, Hubert

    2013-08-26

    We describe the fabrication of an antireflective surface structure with sub-wavelength dimensions on a glass surface using scalable low-cost techniques involving sol-gel coating, thermal annealing, and wet chemical etching. The glass surface structure consists of sand dune like protrusions with 250 nm periodicity and a maximum peak-to-valley height of 120 nm. The antireflective structure increases the transmission of the glass up to 0.9% at 700 nm, and the transmission remains enhanced over a wide spectral range and for a wide range of incident angles. Our measurements reveal a strong polarization dependence of the transmission change.

  5. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    Science.gov (United States)

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  6. Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference.

    Science.gov (United States)

    Cheng, Tonglei; Kanou, Yasuhire; Deng, Dinghuan; Xue, Xiaojie; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake

    2014-06-02

    A hybrid four-hole AsSe2-As2S5 microstructured optical fiber (MOF) with a large refractive index difference is fabricated by the rod-in-tube drawing technique. The core and the cladding are made from the AsSe2 glass and As2S5 glass, respectively. The propagation loss is ~1.8 dB/m and the nonlinear coefficient is ~2.03 × 10(4) km(-1)W(-1) at 2000 nm. Raman scattering is observed in the normal dispersion regime when the fiber is pumped by a 2 μm mode-locked picosecond fiber laser. Additionally, soliton is generated in the anomalous dispersion regime when the fiber is pumped by an optical parametric oscillator (OPO) at the pump wavelength of ~3000 nm.

  7. Development of an Alternative Glass Formulation for Vitrification of Excess Plutonium

    International Nuclear Information System (INIS)

    MARRA, JAMES

    2006-01-01

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (La 2 O 3 -B 2 O 3 -SiO 2 (LaBS))-Frit B) was developed and testing with the LaBS Frit B composition is underway to provide data to support the Yucca Mountain License Application process. The objective of this task was to investigate alternative frit compositions and/or processing conditions that may improve the performance of the reference Frit B-LaBS glass in the repository. The current LaBS Frit B composition was used as the baseline for alternative glass formulation development efforts. A review of the literature and past high actinide concentration glass development efforts was conducted to formulate candidate compositions for testing. Glass science principles were also utilized to determine candidate frit components that may meet task objectives. Additionally, glass processing methods (e.g. slow cooling or induced heat treatment) were investigated as potential means to improve the glass durability and/or minimize fissile material and neutron absorber separation. Based on these analyses, a series of candidate surrogate glasses were fabricated and analyzed. One composition was then selected for fabrication with PuO 2 and subsequently analyzed. A phase equilibrium approach, developed from the assessment of previous high lanthanide glass formulations, was used to recommend modifications to the SRNL Frit B composition. A specific recommendation to increase Ln 2 O 3 content with concurrent reduction of Al 2 O 3 and SiO 2 content proved to be successful in improving the melting behavior and component solubility of the glass. This change moved the formulation from a

  8. Glass formation and properties of glasses in V/sub 2/O/sub 5/-B/sub 2/O/sub 3/-P/sub 2/O/sub 5/ system

    Energy Technology Data Exchange (ETDEWEB)

    Sedmale, G P; Vajvad, Ya A; Arkhipova, S E; Laukmanis, L A

    1987-01-01

    The glass formation in the system V/sub 2/O/sub 5/-B/sub 2/O/sub 3/-P/sub 2/O/sub 5/ and the properties of the obtained glasses have been studied by methods including that of the mathematical design and the treatment of the obtained data on ECM. The glass formation region is limited by the molar content of V/sub 2/O/sub 5/ 30-80%, B/sub 2/O/sub 3/ 0-45%, P/sub 2/O/sub 5/ 20-65%. The chemical stability data show that at the molar content of V/sub 2/O/sub 5/ 45-50% the transfer of vanadium from the state of the modificator to the glass-forming agent takes place. For the studied glasses the electron mechanism of conductivity is the dominating one.

  9. Formation of black glass to be used in solar collectors as absorbent and CuO and Fe{sub 2}O{sub 3}'s effect on this glass

    Energy Technology Data Exchange (ETDEWEB)

    Colak, Sadiye Cetinkaya; Birdogan, Selcuk; Aral, Ertunc; Kilic, Gokhan [Eskisehir Osmangazi University, Faculty of Science and Arts, Physics Department, Meselik, 26480 Eskisehir (Turkey)

    2009-06-15

    Solar energy has the highest potential among novel and renewable energies. In order for solar energy to be used it should first be collected. In this study, a black glass was formed by doping silicate glass with Co{sub 3}O{sub 4} at a high concentration to be used as absorbent, and in addition, this black glass was also doped with CuO and Fe{sub 2}O{sub 3}. Optical absorptions, electrical conductivities, thermal diffusion coefficients, SEM images and EDX spectra of all glasses were obtained and effects of transition metal oxides on glass were examined. (author)

  10. 1887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers

    Science.gov (United States)

    Wang, Shunbin; Yao, Chuanfei; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-04-01

    In this paper, we demonstrate ∼2 μm lasing in Tm3+-doped fluorotellurite microstructured fibers. The Tm3+-doped fibers are based on TeO2-BaF2-Y2O3 glasses and fabricated by using a rod-in-tube method. Under the pump of a 1570 nm Er3+-doped fiber laser, lasing at 1887 nm is obtained in a ∼42.5 cm long Tm3+-doped fiber with a threshold pump power of 94 mW. As the pump power increases to 780 mW, the obtained maximum unsaturated power reaches up to ∼408 mW with a slop efficiency of ∼58.1%. This result indicates that the Tm3+-doped fluorotellurite fibers are promising gain media for ∼2 μm fiber lasers.

  11. Optical spectroscopy and optical waveguide fabrication in Eu{sup 3+} and Eu{sup 3+}/Tb{sup 3+} doped zinc–sodium–aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Caldiño, U., E-mail: cald@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F. (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Berneschi, S. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Brenci, M. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Pasquini, E. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (Firenze) (Italy); Pelli, S. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Righini, G.C. [Istituto di Fisica Applicata Nello Carrara, C.N.R., Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-03-15

    Optical and spectroscopic properties of 2.0% Eu(PO{sub 3}){sub 3} singly doped and 5.0% Tb(PO{sub 3}){sub 3}–2.0% Eu(PO{sub 3}){sub 3} codoped zinc–sodium–aluminosilicate glasses were investigated. Reddish-orange light emission, with x=0.64 and y=0.36 CIE1931 chromaticity coordinates, is obtained in the europium singly doped glass excited at 393 nm. Such chromaticity coordinates are close to those (0.67,0.33) standard of the National Television System Committee for the red phosphor. When the sodium–zinc–aluminosilicate glass is co-doped with Tb{sup 3+} and Eu{sup 3+}, reddish-orange light emission, with (0.61,0.37) CIE1931 chromaticity coordinates, is obtained upon Tb{sup 3+} excitation at 344 nm. This reddish-orange luminescence is generated mainly by {sup 5}D{sub 0}→{sup 7}F{sub 1} and {sup 5}D{sub 0} →{sup 7}F{sub 2} emissions of Eu{sup 3+}, europium being sensitized by terbium through a non-radiative energy transfer. From an analysis of the Tb{sup 3+} emission decay curves it is inferred that the Tb{sup 3+}→Eu{sup 3+} energy transfer might take place between Tb{sup 3+} and Eu{sup 3+} clusters through a short-range interaction mechanism, so that an electric dipole–quadrupole interaction appears to be the most probable transfer mechanism. The efficiency of this energy transfer is about 62% upon excitation at 344 nm. In the singly doped and codoped glasses multimode optical waveguides were successfully produced by Ag{sup +}–Na{sup +} ion exchange, and they could be characterized at various wavelengths. -- Highlights: • Reddish-orange light emission can be generated from Tb{sup 3+} and Eu{sup 3+} codoped zinc–sodium–aluminosilicate glasses excited at 344 nm. • The Eu{sup 3+} is sensitized by Tb{sup 3+} through a non-radiative energy transfer. • Highly multimode waveguides can be fabricated by diluted silver–sodium exchange. • This type of AlGaN LEDs pumped glass phosphors might be useful for generation of reddish-orange light.

  12. To Enhance Performance of Light Soaking Process on ZnS/CuIn1-xGaxSe2 Solar Cell

    Directory of Open Access Journals (Sweden)

    Yu-Jen Hsiao

    2013-01-01

    Full Text Available The ZnS/CuInGaSe2 heterojunction solar cell fabricated on Mo coated glass is studied. The crystallinity of the CIGS absorber layer is prepared by coevaporated method and the ZnS buffer layer with a band gap of 3.21 eV. The MoS2 phase was also found in the CuInGaSe2/Mo system form HRTEM. The light soaking effect of photoactive film for 10 min results in an increase in F.F. from 55.8 to 64%, but series resistivity from 7.4 to 3.8 Ω. The efficiency of the devices improved from 8.12 to 9.50%.

  13. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Science.gov (United States)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  14. Fabrication and characterization of pixelated Gd{sub 2}O{sub 2}S:Tb scintillator screens for digital X-ray imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul, E-mail: kjongyul@kaist.ac.kr [Korea Advanced Institute of Science and Technology, 335 Gwahangno, Daejeon 305-701 (Korea, Republic of); Kyoung Cha, Bo; Hyung Bae, Jun; Lee, Chae-hun; Kim, Hyungtaek; Chang, Sungho; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, 335 Gwahangno, Daejeon 305-701 (Korea, Republic of); Sim, Cheulmuu; Kim, Taejoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Daejeon 305-353 (Korea, Republic of)

    2011-05-15

    X-ray imaging detectors in combination with scintillator screens have been widely used in digital X-ray imaging applications. Gd{sub 2}O{sub 2}S:Tb was used as scintillation material for pixelated scintillator screens based on silicon substrates (wafer) with a micropore array of various dimensions fabricated using the photolithography and deep reactive ion etching (DRIE) process. The relative light output and the modulation transfer function (MTF) of each fabricated scintillator screen were measured by a cooled CCD and compared with those of Lanex screens. The spatial resolution of our scintillator screens was higher but their light outputs were lower than those of Lanex screen probably due to the loss of light at the wall surfaces. Therefore further treatment of the wall surface, such as reflective coating, seems necessary to compensate the light loss.

  15. Transport and solid state battery characteristic studies of silver based super ion conducting glasses

    International Nuclear Information System (INIS)

    Jayaseelan, S.; Muralidharan, P.; Venkateswarlu, M.; Satyanarayana, N.

    2005-01-01

    Silverarsenotellurite (SAT), silverphosphotellurite (SPT) and silvervanadotellurite (SVT) quaternary glass systems were prepared with various formers compositions by a melt quenching method. Glass nature, glass transition temperature (T g ) and structure of the prepared glasses were identified respectively by X-ray diffraction (XRD), differential scanning calorimetric (DSC) and Fourier transform infrared (FT-IR) technique. Electrical conductivity studies were carried out by impedance measurement in the frequency range 40 Hz to 100 KHz at different temperatures for all three sets of AgI-Ag 2 O-[TeO 2 -M 2 O 5 ] (M 2 O 5 = As 2 O 5 , P 2 O 5 , V 2 O 5 ) glasses. The high conducting compositions of SAT, SPT and SVT glass samples were fixed from the results of total conductivity (σ t ). Electronic conductivity (σ e ) studies were made on high conducting composition of each glass system by Wagner's polarization method. Total current (i t ) is due to ion and electron. Electronic current (i e ) due to electron were estimated through mobility studies. Ionic conductivity (σ i ) and ionic current (i i ) were calculated respectively using the conductivity (σ t and σ e ) and current (i t and i e ) results for the SAT, SPT and SVT glasses. Transport numbers due to ion (t i ) and electron (t e ) were calculated using the conductivity and mobility results for each glass system. The high conducting composition of the SAT, SPT and SVT glasses were used as solid electrolytes with silver metal as an anode and iodine:graphite (I:C) as a cathode for the fabrication of solid state batteries (SSBs). All the fabricated batteries were characterized by measuring the open circuit voltage (OCV) and polarization properties and estimated the batteries performances

  16. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    Science.gov (United States)

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with

  17. 2.3 µm laser potential of TeO2 based glasses

    Science.gov (United States)

    Denker, B. I.; Dorofeev, V. V.; Galagan, B. I.; Motorin, S. E.; Sverchkov, S. E.

    2017-09-01

    Tm3+ doped TeO2-based well-dehydrated glasses were synthesized and investigated. The analysis of their spectral and relaxation properties have showed that these glasses can be a suitable host for bulk and fiber lasers emitting at ~2.3 µm wavelength (3H4-3H5 Tm3+ transition). Laser action in the bulk glass sample was demonstrated.

  18. Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity.

    Science.gov (United States)

    Ju, Seongmin; Watekar, Pramod R; Han, Won-Taek

    2011-01-31

    Germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots (SQDs) in the core was fabricated by using the atomization process in modified chemical vapor deposition (MCVD) process. The absorption bands attributed to PbTe semiconductor quantum dots in the fiber core were found to appear at around 687 nm and 1055 nm. The nonlinear refractive index measured by the long-period fiber grating (LPG) pair method upon pumping with laser diode at 976.4 nm was estimated to be ~1.5 × 10(-16) m2/W.

  19. Electrodeposited ZnIn{sub 2}S{sub 4} onto TiO{sub 2} thin films for semiconductor-sensitized photocatalytic and photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Assaker, Ibtissem Ben, E-mail: ibtissem.ben-assaker@laposte.net [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l’Energie Technopole borj cedria, Bp 95, Hammamm lif 2050 (Tunisia); Gannouni, Mounir; Naceur, Jamila Ben [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l’Energie Technopole borj cedria, Bp 95, Hammamm lif 2050 (Tunisia); Almessiere, Munirah Abdullah; Al-Otaibi, Amal Lafy; Ghrib, Taher [Laboratory of Physical Alloys (LPA), College of Science, University of Dammam (Saudi Arabia); Shen, Shouwen [Advanced Analysis Unit, Technical Service Division Research & Development Center Saudi Aramco, Dhahran (Saudi Arabia); Chtourou, Radhouane [Laboratoire Photovoltaïque, Centre de Recherches et des Technologies de l’Energie Technopole borj cedria, Bp 95, Hammamm lif 2050 (Tunisia)

    2015-10-01

    Graphical abstract: - Highlights: • ZnIn{sub 2}S{sub 4} thin films was grown using electrodeposition route onto TiO{sub 2}/ITO coated glass substrate. • Study of the heterostructure ZnIn{sub 2}S{sub 4}/TiO{sub 2} thin films. • Photocatalytic activity of ZnIn{sub 2}S{sub 4}/TiO{sub 2} heterostructure under visible light irradiation. • High performance of Photoelectrochemical properties in the presence of the junction ZnIn{sub 2}S{sub 4}/TiO{sub 2}. - Abstract: In this study, ZnIn{sub 2}S{sub 4}/TiO{sub 2} heterostructure was successfully synthesized on ITO-coated glass substrates via a facile two-step process from aqueous solution. First, TiO{sub 2} thin film was prepared by sol–gel and deposited onto ITO coated glass substrate by spin-coating method. Then the zinc indium sulfide semiconductor was fabricated via electrodeposition technique onto TiO{sub 2}/ITO coated glass electrode. The X-ray diffraction patterns confirm that the heterostructure is mixed of both Anatase TiO{sub 2} and Rhombohedric ZnIn{sub 2}S{sub 4}. The scanning electron microscopy (SEM) images show that the morphology change with the deposition of ZnIn{sub 2}S{sub 4} over TiO{sub 2} thin film and a total coverage of the electrode surface was obtained. Optical absorption spectroscopy study of ZnIn{sub 2}S{sub 4}/TiO{sub 2} heterostructure exhibits a remarkable red-shift compared to the TiO{sub 2} and ZnIn{sub 2}S{sub 4} achieve the best efficiency of visible light absorption. Therefore, it is expected to apply to visible-light photocatalysis and solar cells. To investigate the effect of the heterojunction on the photocatalytic activity of ZnIn{sub 2}S{sub 4}/TiO{sub 2} thin films, photodegradation of methylene blue in the presence of ZnIn{sub 2}S{sub 4} was performed. ZnIn{sub 2}S{sub 4}/TiO{sub 2} heterostructure exhibited strong photocatalytic activity, and the degradation of methylene blue eached 91% after irradiation only for 4 h. Also, the study of the photocurrent density produced

  20. Fabrication of Cu{sub 2}S nanoneedles by self-assembly of nanoparticles via simple wet chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Kumarakuru, Haridas, E-mail: haridas.kumarakuru@nmmu.ac.za; Coombes, Matthew J.; Neethling, Johannes H.; Westraadt, Johan E.

    2014-03-15

    Highlights: • An inexpensive wet chemical method was used at room temperature to grow Cu{sub 2}S. • Growth of Cu{sub 2}S nanostructures influences by the Cl{sup −} ion concentration. • Thioglycerol and Cl{sup −} ions are used as a blend capping agents. • Cu{sub 2}S nanoneedles were formed via self-assembly of nanoparticles. • We can propose a growth model for Cu{sub 2}S nanoneedles based on our observations. -- Abstract: Cu{sub 2}S nanoneedles, fabricated by self-assembly of Cu{sub 2}S nanoparticles via wet chemical method are investigated. Crystallinity and surface morphologies of the as-grown needles are examined using X-ray diffraction and scanning and transmission electron microscopy. It is observed that the nanoparticle formation is controlled by the blend concentration of capping agents, thioglycerol, added during the synthesis and the Cl{sup −} ions delivered by the CuCl source. The likely reasons for the elongated structure of the nanoparticle self-assembly are also discussed.

  1. Investigating the electronic properties of multi-junction ZnS/CdS/CdTe graded bandgap solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Olusola, O.I., E-mail: olajideibk@yahoo.com [Electronic Materials and Sensors Group, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Department of Physics, School of Science, The Federal University of Technology, Akure (FUTA), P.M.B. 704 (Nigeria); Madugu, M.L.; Dharmadasa, I.M. [Electronic Materials and Sensors Group, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2017-04-15

    The fabrication of multi-junction graded bandgap solar cells have been successfully implemented by electroplating three binary compound semiconductors from II-VI family. The three semiconductor materials grown by electroplating techniques are ZnS, CdS and CdTe thin films. The electrical conductivity type and energy bandgap of each of the three semiconductors were determined using photoelectrochemical (PEC) cell measurement and UV–Vis spectrophotometry techniques respectively. The PEC cell results show that all the three semiconductor materials have n-type electrical conductivity. These two material characterisation techniques were considered in this paper in order to establish the relevant energy band diagram for device results, analysis and interpretation. Solar cells with the device structure glass/FTO/n-ZnS/n-CdS/n-CdTe/Au were then fabricated and characterised using current-voltage (I-V) and capacitance-voltage (C-V) techniques. From the I-V characteristics measurement, the fabricated device structures yielded an open circuit voltage (V{sub oc}) of 670 mV, short circuit current density (J{sub sc}) of 41.5 mA cm{sup −2} and fill-factor (FF) of 0.46 resulting in ∼12.8% efficiency when measured at room temperature under AM1.5 illumination conditions. The device structure showed an excellent rectification factor (RF) of 10{sup 4.3} and ideality factor (n) of 1.88. The results obtained from the C-V measurement also showed that the device structures have a moderate doping level of 5.2 × 10{sup 15} cm{sup −3}. - Highlights: • Electroplating of n-ZnS, n-CdS and n-CdTe binary compound semiconductors. • Fabrication of Schottky barrier solar cells from glass/FTO/n-ZnS/n-CdS/n-CdTe/Au. • Development of multi-junction graded bandgap solar cells using n-n-n structures.

  2. High-gain subnanowatt power consumption hybrid complementary logic inverter with WSe2 nanosheet and ZnO nanowire transistors on glass.

    Science.gov (United States)

    Shokouh, Seyed Hossein Hosseini; Pezeshki, Atiye; Ali Raza, Syed Raza; Lee, Hee Sung; Min, Sung-Wook; Jeon, Pyo Jin; Shin, Jae Min; Im, Seongil

    2015-01-07

    A 1D-2D hybrid complementary logic inverter comprising of ZnO nanowire and WSe2 nanosheet field-effect transistors (FETs) is fabricated on glass, which shows excellent static and dynamic electrical performances with a voltage gain of ≈60, sub-nanowatt power consumption, and at least 1 kHz inverting speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystallization Kinetics and Characterization of Nanostructure Mica Glass-Ceramics with Optical Transparency

    Directory of Open Access Journals (Sweden)

    P. Alizadeh

    2014-01-01

    Full Text Available Transparent glasses in a system of Li2O-MgO-SiO2-Al2O3-Fchemical constituents were prepared by melt quenching method. In the fabrication of nanocrystal glass-ceramics, controlled nucleation and subsequent crystal growth were necessary to avoid loss of transparency. It was therefore important to understand thermal properties and crystallization kinetics of the glass ceramics. The crystallization behavior of the prepared glass was investigated by DTA, XRD and SEM. By crystallization heat-treatment, various crystalline phases, microstructure and transmittance were obtained. The sellaite was first precipitated as the nuclei before the crystallization of mica and then mica nanocrystals were precipitated with average size of

  4. Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass.

    Science.gov (United States)

    Denisov, Igor A; Skoptsov, Nikolai A; Gaponenko, Maxim S; Malyarevich, Alexander M; Yumashev, Konstantin V; Lipovskii, Andrei A

    2009-11-01

    Passive Q-switched mode locking of a 2.09 microm flashlamp-pumped Cr(3+),Tm(3+),Ho(3+):Y(3)Sc(2)Al(3)O(12) laser by use of a phosphate glass doped with PbS quantum dots of 5 nm in radius was demonstrated. Mode-locked pulses of 290 ps in duration and up to 0.5 mJ in energy were registered.

  5. NERVA turbopump bearing retainer fabrication on nonmetallic retainer

    Science.gov (United States)

    Accinelli, J. B.

    1972-01-01

    The need for a low-wear, lightweight, high strength bearing retainer material with a radiation degradation threshold of 10 to the 9th power rads (C) prompted development of nonmetallic reinforced polymers of the following types: (1) polybenzimidazole, (2) polyimide, and (3) polyquinoxaline. Retainers were machined from tubular laminates (billets), including reinforcement by either glass or graphite fabric or filament. Fabrication of billets involves hot preimpregnation of the reinforcement fabric or filament with polymer followed by wrapping this prepreg over a heated mandrel to form a tube with the required thickness and length.

  6. Crystallization kinetics, optical and dielectric properties of Li2OṡCdOṡBi2O3ṡSiO2 glasses

    Science.gov (United States)

    Rani, Saroj; Sanghi, Sujata; Ahlawat, Neetu; Agarwal, Ashish

    2015-10-01

    Crystallization kinetics, optical absorption and electrical behavior of lithium cadmium silicate glasses with different amount of bismuth oxide were investigated using non-isothermal crystallization approach, UV-VIS-NIR spectroscopy and impedance spectroscopy, respectively. These glasses were synthesized by normal melt quenching technique. Variation in physical properties, viz. density, molar volume with Bi2O3:SiO2 ratio were related to the structural changes occurring in the glasses. The glass transition temperature (Tg), crystalline peak temperature (Tp) and melting temperature (Tm) of these glasses were determined using differential scanning calorimeter at various heating rates. The dependence of Tg and Tp on heating rate has been used for the determination of the activation energy of glass transition and crystallization. Thermal stability parameters have revealed high stability of the glass prepared with 40 mol% of Bi2O3 content. The crystallization kinetics for the glasses was studied by using the Kissinger and modified Ozawa equations. Appearance of a sharp cut-off and a wide and reasonable transmission in VIS-NIR region makes these glasses suitable for IR transmission window. The cut-off wavelength, optical band gap and Urbach's energy have been analyzed and discussed in terms of changes in the glass structure. By analyzing the impedance spectra, the ac and dc conductivities, activation energy for dc conduction (Edc) and for relaxation (EM″) were calculated. The results obtained from dc conductivity confirm the network forming role of Cd2+ ion in the glasses. The scaling of the conductivity spectra has been used to interpret the temperature dependence of the relaxation dynamics. The observed conductivity spectra follows power law with exponent 's' which decreases with temperature and satisfies the correlated barrier hopping (CBH) model. The perfect overlying of normalized plots of electrical modulus on a single 'master curve' depicts temperature as well as

  7. Ge and As x-ray absorption fine structure spectroscopic study of homopolar bonding, chemical order, and topology in Ge-As-S chalcogenide glasses

    International Nuclear Information System (INIS)

    Sen, S.; Ponader, C.W.; Aitken, B.G.

    2001-01-01

    The coordination environments of Ge and As atoms in Ge x As y S 1-x-y glasses with x:y=1:2, 1:1, and 2.5:1 and with wide-ranging S contents have been studied with Ge and As K-edge x-ray absorption fine structure spectroscopy. The coordination numbers of Ge and As atoms are found to be 4 and 3, respectively, in all glasses. The first coordination shells of Ge and As atoms in the stoichiometric and S-excess glasses consist of S atoms only, implying the preservation of chemical order at least over the length scale of the first coordination shell. As-As homopolar bonds are found to appear at low and intermediate levels of S deficiency, whereas Ge-Ge bonds are formed only in strongly S-deficient glasses indicating clustering of metal atoms and violation of chemical order in S-deficient glasses. The composition-dependent variation in chemical order in chalcogenide glasses has been hypothesized to result in topological changes in the intermediate-range structural units. The role of such topological transitions in controlling the structure-property relationships in chalcogenide glasses is discussed

  8. Fabrication and characterization of MCC approved testing material - ATM-12 glass

    International Nuclear Information System (INIS)

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center (MCC) Approved Testing Material ATM-12 is a borosilicate glass that incorporates elements typical of high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuels. The composition has been adjusted to match that predicted for HLW type 76-68 glass at an age of 300 y. Radioactive constituents contained in this glass include depleted uranium, 99 Tc, 237 Np, 239 Pu, and 241 Am. The glass was produced by the MCC at the Pacific Northwest Laboratory (PNL). ATM-12 glass ws produced from July to November of 1984 at the request of the Nevada Nuclear Waste Site Investigations (NNWSI) Program and is the third in a series of glasses produced for NNWSI. Most of the glass produced was in the form of cast bars; special castings and crushed material were also produced. Three kilograms of ATM-12 glass were produced from a feedstock melted in a nitrogen-atmosphere glove box at 1150 0 C in a platinum crucible, and formed into stress-annealed rectangular bars and the special casting shapes requested by NNWSI. Bars of ATM-12 were nominally 1.9 x 1.9 x 10 cm, with an average mass of 111 g each. Nineteen bars and 37 special castings were made. ATM-12 glass has been provided to the NNWSI Program, in the form of bars, crushed powder and special castings. As of August 1985 approximately 590 g of ATM-12 is available for distribution. Requests for materials or services related to this glass should be directed to the Materials Characterization Center Program Office, PNL

  9. Fabrication of Radiation Shielding Glasses Based on Lead-free High Refractive Index Glasses Prepared from Local Sand

    International Nuclear Information System (INIS)

    Dararutana, Pisutti; Dutchaneepet, Jirapan; Sirikulrat, Narin

    2007-08-01

    Full text: Lead glasses that show high refractive index are the best know and most popular for radiation shielding. Due to harmful effects of lead and considering the health as well as the environmental issues, lead-free glasses were developed. In this work, content of Chumphon sand was fixed at 40 % (by weight) as a main composition but concentrations of BaCO3 were varied from 6 to 30 % (by weight). It was found that the absorption coefficient of the glass samples containing 30 % BaCO3 was 0.233 cm-1 for Ba-133. The density was also measured. It can be concluded that the prepared lead free glasses offered adequate shielding to gamma radiation in comparison with the lead ones. These glasses were one of the environmental friendly materials

  10. Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations.

    Science.gov (United States)

    Malavasi, Gianluca; Pedone, Alfonso; Menziani, Maria Cristina

    2013-04-18

    The structural properties of phosphosilicate glasses based on the 45S5 Bioglass doped with gallium and aluminum (46.2 SiO2·24.3Na2O·26.9CaO·2.6P2O5·1.0X2O3, X = Ga or Al) are investigated by means of classical molecular dynamics simulations. Structural features of the two compositions are compared with those of the original 45S5 Bioglass in order to relate them to the different known bioactivities of these materials. Differences in the coordination environments of Ga and Al, network connectivity, and ion aggregation reveal a microscopic model of these glasses which supports the interpretation of the experimental data and provides new insight into the different biological behaviors of Ga- and Al-containing phosphosilicate glasses. Although Ga is found predominantly in a 4-fold coordination environment, small amounts of 5- and 6-fold coordinated atoms have been detected depending on the interatomic potential model employed. This suggests its possible intermediate role in phosphosilicate glasses. On the contrary, Al plays a network former role and leads to glasses with a more polymerized structure. Interestingly, the results show an increased propensity for aggregation of the Ca(2+) and PO4(3-) ions in the Al-containing phosphosilicate glasses with respect to the Ga-containing ones. This leads to insoluble calcium-phosphate-rich regions not detected in the bioactive glasses.

  11. Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system

    International Nuclear Information System (INIS)

    V. Ganni; D. M. Arenius; B. S. Bevins; W. C. Chronis; J. D. Creel; J. D. Wilson Jr.

    2002-01-01

    In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design, fabrication, and commissioning of a cold compressor system capable of pumping 250 g/s of 2-K helium vapor to a pressure above 1 bar. The 2-K cold box consists of five stages of centrifugal variable speed compressors with LN2 cooled drive motors and magnetic bearings, a plate fin heat exchanger, and an LN2 shield system. The new 2-K cold box (referred to as the SCN) was built as a redundant system to an existing four stage cold compressor SCM cold box that was commissioned in May 1994. The SCN has been in continuous service supporting the facility experiments since commissioning. This system has achieved a significant improvement in the total 2-K refrigeration system capacity and stability and has substantially increased the operating envelope both in cold compressor flow and operating pressure range. This paper describes the cold box configuration and the experience s in the design, fabrication, commissioning and performance evaluation. The capacity of the system for various operating pressures (0.040 to 0.025 bar at the load corresponding to a total compressor pressure ratio of 28 to 54) is presented. An effort is made to characterize the components and their operating data over the tested range. This includes the return side pressure drop in the distribution system, the heat exchanger, and the cold compressor characteristics. The system design parameters and their effects on performance are outlined

  12. Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film

    KAUST Repository

    San Roman Alerigi, Damian; Anjum, Dalaver H.; Zhang, Yaping; Yang, Xiaoming; Ben Slimane, Ahmed; Ng, Tien Khee; Hedhili, Mohamed N.; Alsunaidi, Mohammad; Ooi, Boon S.

    2013-01-01

    In this paper, we investigate the effect of electron beam irradiation on the dielectric properties of As 2 S 3 chalcogenide glass. By means of low-loss electron energy loss spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show a heretofore unseen phenomenon: a reduction in the permittivity of ? 40 %. Consequently a reduction of the refractive index of 20%, hence, suggests a conspicuous change in the optical properties of the material under irradiation with a 300 keV electron beam. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption. The reported phenomena, exhibited by As 2 S 3-thin film, can be crucial for the development of photonics integrated circuits using electron beam irradiation method. © 2013 American Institute of Physics.

  13. Design, fabrication, and characterization of a solenoid system to ...

    Indian Academy of Sciences (India)

    system to generate magnetic field for an ECR proton source. S K JAIN .... The bore of the solenoid coils was fabricated using high voltage glass epoxy. Each ... sure drop and flow, the inlet and outlet connections were provided. ... stability of an ECR plasma source, as any small change in the distribution of the axial magnetic.

  14. Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Xun Lu

    2017-01-01

    Full Text Available A glancing angle deposition (GLAD technique was used to generate SiO2 nanorods on a glass substrate to fabricate a low-cost superhydrophobic functional nanostructured surface. GLAD-deposited SiO2 nanorod structures were fabricated using various deposition rates, substrate rotating speeds, oblique angles, and deposition times to analyze the effects of processing conditions on the characteristics of the fabricated functional nanostructures. The wettability of the surface was measured after surface modification with a self-assembled monolayer (SAM. The measured water contact angles were primarily affected by substrate rotation speed and oblique angle because the surface fraction of the GLAD nanostructure was mainly affected by these parameters. A maximum contact angle of 157° was obtained from the GLAD sample fabricated at a rotation speed of 5 rpm and an oblique angle of 87°. Although the deposition thickness (height of the nanorods was not a dominant factor for determining the wettability, we selected a deposition thickness of 260 nm as the optimum processing condition based on the measured optical transmittance of the samples because optically transparent films can serve as superhydrophobic functional nanostructures for optical applications.

  15. In situ preparation of NiS2/CoS2 composite electrocatalytic materials on conductive glass substrates with electronic modulation for high-performance counter electrodes of dye-sensitized solar cells

    Science.gov (United States)

    Li, Faxin; Wang, Jiali; Zheng, Li; Zhao, Yaqiang; Huang, Niu; Sun, Panpan; Fang, Liang; Wang, Lei; Sun, Xiaohua

    2018-04-01

    The electrocatalytic composite materials of honeycomb structure NiS2 nanosheets loaded with metallic CoS2 nanoparticles are in situ prepared on F doped SnO2 conductive glass (FTO) substrates used as counter electrodes of DSSCs through chemical bath deposition (CBD) and sulfidizing process. Single crystalline NiS2 honeycomb structure array lay a foundation for the large surface area of NiS2/CoS2 composite CEs. The formed NiS2/CoS2 nanointerface modulates electronic structure of composite CEs from the synergetic interactions between CoS2 nanoparticles and NiS2 nanosheets, which dramatically improves the electrocatalytic activity of NiS2/CoS2 composite CEs; Metallic CoS2 nanoparticles covering NiS2 nanosheets electrodes adjusts the electrodes' structure and then reduces the series resistance (Rs) and the Nernst diffusion resistance (Zw) of counter electrodes. The improvement of these areas greatly enhances the electrocatalytic performance of CEs and the short circuit current density (Jsc) and Fill factor (FF) of DSSCs. Impressively, the DSSC based on NiS2/CoS2-0.1 CE shows the best photovoltaic performance with photovoltaic conversion efficiency of 8.22%, which is 24.36% higher than that (6.61%) of the DSSC with Pt CE. And the NiS2/CoS2-0.1 CE also displays a good stability in the iodine based electrolyte. This work indicates that rational construction of composite electrocatalytic materials paves an avenue for high-performance counter electrodes of DSSCs.

  16. Linear Optical Properties of Zinc Borotellurite Glass Doped with Lanthanum Oxide Nanoparticles for Optoelectronic and Photonic Application

    Directory of Open Access Journals (Sweden)

    Faznny Mohd Fudzi

    2017-01-01

    Full Text Available Enhancing the optical properties of glasses for the sake of optical application in various fields is an ongoing challenge in materials science and technology. Thus, the optical properties of zinc borotellurite glass doped with lanthanum oxide nanoparticles (La2O3 NPs with the chemical composition of {[(TeO20.7(B2O30.3]0.7(ZnO0.3}1−x (La2O3 NPsx, where x = 0.01, 0.02, 0.03, 0.04, and 0.05 molar fraction, have been investigated. Characterization techniques such as x-ray diffraction, Fourier Transform Infrared Spectroscopy, and Ultraviolet-Visible Spectroscopy are employed to yield the structural properties and optical parameter of the glass. The amorphous nature of the fabricated glasses is confirmed with the presence of a broad hump via XRD diffraction pattern. The decreasing amount of high polarizable nonbridging oxygen as the concentration of La2O3 NPs increases has contributed to the increasing trend of energy band gap in the range of 2.70 to 3.52 eV and decreasing value of refractive index between 2.34 and 2.48. The fabricated glasses that have a higher refractive index than the widely used fiber material, pure silica glass, indicate that zinc borotellurite glass doped with lanthanum nanoparticles is a promising material to be applied as optical fibers.

  17. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Gönen, Seza Özge, E-mail: gonens@itu.edu.tr; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-10-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25 kV, tip-to-collector distance of 12.5 cm, and flow rate of 1 mL/h), the fiber diameter was found to be 584 ± 337 nm which was in good agreement with the predicted value by the developed models (523 ± 290 nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. - Highlights: • Nanocomposite fibers of gelatin, PCL, and bioactive glass were successfully fabricated. • Three-level, four-variable Box-Behnken design was adopted as an optimization tool. • The individual and interactive effects of the electrospinning parameters were determined. • Quadratic models were used to adjust the fiber diameter and its standard deviation.

  18. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    International Nuclear Information System (INIS)

    Gönen, Seza Özge; Erol Taygun, Melek; Aktürk, Ayşen; Küçükbayrak, Sadriye

    2016-01-01

    The current research was conducted to propose a nanocomposite material, which could be suitable to be used as a scaffold for bone tissue engineering applications. For this purpose, nanocomposite fibers of gelatin, poly(ε-caprolactone) (PCL), and bioactive glass were successfully fabricated via electrospinning process. In this context, response surface methodology based on a three-level, four-variable Box-Behnken design was adopted as an optimization tool to choose the most appropriate parameter settings to obtain the desired fiber diameter. The investigation, based on a second order polynomial model, focused on the analysis of the effect of both solution and processing parameters on the fiber diameter and its standard deviation. In optimum conditions (bioactive glass content of 7.5% (w/v), applied voltage of 25 kV, tip-to-collector distance of 12.5 cm, and flow rate of 1 mL/h), the fiber diameter was found to be 584 ± 337 nm which was in good agreement with the predicted value by the developed models (523 ± 290 nm). Analytical tools such as scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and differential thermal analyzer were used for further evaluation of the optimized nanocomposite mat. The overall results showed that nanocomposite scaffolds could be promising candidates for tissue engineering applications. - Highlights: • Nanocomposite fibers of gelatin, PCL, and bioactive glass were successfully fabricated. • Three-level, four-variable Box-Behnken design was adopted as an optimization tool. • The individual and interactive effects of the electrospinning parameters were determined. • Quadratic models were used to adjust the fiber diameter and its standard deviation.

  19. Thermally fabricated MoS{sub 2}-graphene hybrids as high performance anode in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.K., E-mail: sunil111954@yahoo.co.uk [Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 (India); Kartick, B. [Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 (India); Choudhury, S. [Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF Dresden), Hohe Strasse 6, 01069, Dresden (Germany); Stamm, M. [Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF Dresden), Hohe Strasse 6, 01069, Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymer Materials, 01062, Dresden (Germany)

    2016-11-01

    MoS{sub 2}-reduced graphene oxide (MoS{sub 2}-rGO: where rGO = 0, 1, 3, 5, 7 and 10 wt%) hybrids have been fabricated using (NH{sub 4}){sub 2}MoS{sub 4} and graphite oxide as single source precursors of MoS{sub 2} and thermally exfoliated reduced graphene oxide respectively. These individual precursors were initially subjected to grinding for 30 min followed by heating at 1200 °C for 15 min and characterized. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) confirmed co-dispersion of MoS{sub 2} on thermally exfoliated graphite oxide. Electrochemical studies of these hybrids as anode materials showed that MoS{sub 2}-rGO (7 wt%) exhibited superior reversible capacity, cycling stability, enhanced rate performance (780 mAhg{sup −1}) and rate capability (880 mAhg{sup −1}) over pristine MoS{sub 2} and other hybrids. - Highlights: • MoS{sub 2}-graphene hybrids are synthesized by high temperature from individual precursors. • These hybrids have been used as anode material in LIB. • MoS{sub 2}-graphene (7 wt%) exhibited superior reversible capacity and cycling stability. • It showed high rate performance (780 mA h g{sup −1}) and rate capability (880 mA h g{sup −1}). • Enhanced performance at lower graphene makes it most attractive anode material in LIB.

  20. Glass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Xiaoliang Han

    2016-09-01

    Full Text Available In recent years, CuZr-based bulk metallic glass (BMG composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by introducing Co (i.e., 4, 5, and 6 at. % and 10 at. % Al into CuZr-based alloys, the relatively good glass-forming ability (GFA of CuZr-based alloys still can be achieved. Meanwhile, the B2 phase can be successfully stabilized to lower temperatures than the final temperatures of crystallization upon heating CuZr-based BMGs. Unlike previous reported CuZr-based BMGs, the primary crystallization products upon heating are mainly B2 CuZr crystals but not CuZr2 and Cu10Zr7 crystals. Furthermore, the primary precipitates during solidification are still dominated by B2 crystals, whose percolation threshold is detected to lie between 10 ± 2 vol. % and 31 ± 2 vol. %. The crystallization kinetics underlying the precipitation of B2 crystals was also investigated. Our results show that the present glass-forming composites are promising candidates for the fabrication of ductile CuZr-based BMG composites.

  1. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass

    Directory of Open Access Journals (Sweden)

    Mona A. Ouis

    2012-09-01

    Full Text Available Bioactive borate glasses (from the system Na2O-CaO-B2O3-P2O5 and corresponding glass-ceramics as a new class of scaffold material were prepared by full replacement of SiO2 with B2O3 in Hench patented bioactive glass. The prepared samples were investigated by differential thermal analysis (DTA, Fourier transform infrared (FTIR spectroscopy and X-ray diffraction (XRD analysis. The DTA data were used to find out the proper heat treatment temperatures for preparation of the appropriate glass-ceramics with high crystallinity. The prepared crystalline glass-ceramics derivatives were examined by XRD to identify the crystalline phases that were precipitated during controlled thermal treatment. The FTIR spectroscopy was used to justify the formation of hydroxyapatite as an indication of the bioactivity potential or activity of the studied ternary borate glasses or corresponding glass-ceramics after immersion in aqueous phosphate solution. The corrosion results are interpreted on the basis of suggested recent views on the corrosion mechanism of such modified borate glasses in relation to their composition and constitution.

  2. Precision glass molding: Toward an optimal fabrication of optical lenses

    Science.gov (United States)

    Zhang, Liangchi; Liu, Weidong

    2017-03-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  3. SOI silicon on glass for optical MEMS

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, Jan Tue; Hansen, Ole

    2003-01-01

    and a final sealing at the interconnects can be performed using a suitable polymer. Packaged MEMS on glass are advantageous within Optical MEMS and for sensitive capacitive devices. We report on experiences with bonding SOI to Pyrex. Uniform DRIE shallow and deep etching was achieved by a combination......A newly developed fabrication method for fabrication of single crystalline Si (SCS) components on glass, utilizing Deep Reactive Ion Etching (DRIE) of a Silicon On Insulator (SOI) wafer is presented. The devices are packaged at wafer level in a glass-silicon-glass (GSG) stack by anodic bonding...... of an optimized device layout and an optimized process recipe. The behavior of the buried oxide membrane when used as an etch stop for the through-hole etch is described. No harmful buckling or fracture of the membrane is observed for an oxide thickness below 1 μm, but larger and more fragile released structures...

  4. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.

    Science.gov (United States)

    Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L

    2012-01-01

    Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta

  5. Manufacture, characterisation and properties of novel fluorcanasite glass-ceramics.

    Science.gov (United States)

    Pollington, Sarah; van Noort, Richard

    2012-11-01

    The aim of this study was to investigate the manufacture and characterisation of different compositions of fluorcanasite glass-ceramics with reduced fluorine content and to assess their mechanical and physical properties. Three compositional variations (S80, S81 and S82) of a fluorcanasite glass were investigated. Differential thermal analysis (DTA) and X-ray diffraction (XRD) identified crystallisation temperatures and phases. X-ray fluorescence (XRF) determined the element composition in the glass-ceramics. Different heat treatments [2 h nucleation and either 2 or 4 h crystallisation] were used for the glasses. Scanning electron microscopy (SEM) examined the microstructure of the cerammed glass. The chemical solubility, biaxial flexural strength, fracture toughness, hardness and brittleness index of S81 and S82 fluorcanasite were investigated with lithium disilicate (e.max CAD, Ivoclar Vivadent) as a commercial comparison. Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparison tests (Pglasses. XRD analysis confirmed fluorcanasite formation with the S81 and S82 compositions, with the S82 (2+2h) showing the most prominent crystal structure. The chemical solubility of the glass-ceramics was significantly different, varying from 2565 ± 507 μg/cm(2) for the S81 (2+2 h) to 722 ± 177 μg/cm(2) for the S82 (2+2 h) to 37.4 ± 25.2 μg/cm(2) for the lithium disilicate. BFS values were highest for the S82 (2+2 h) composition (250 ± 26 MPa) and lithium disilicate (266 ± 37 MPa) glass-ceramics. The fracture toughness was higher for the S82 compositions, with the S82 (2+2h) attaining the highest value of 4.2 ± 0.3 MPa m(1/2)(P=0.01). The S82 (2+2 h) fluorcanasite glass-ceramic had the lowest brittleness index. The S82 (2+2 h) fluorcanasite glass-ceramic has acceptable chemical solubility, high biaxial flexural strength, fracture toughness and hardness. A novel glass-ceramic has been developed with potential as a restorative material. The

  6. Optical spectroscopy of Sm(3+) doped Na2O-ZnO-La2O3-TeO2 glasses.

    Science.gov (United States)

    Sobczyk, Marcin

    2015-10-05

    Telluride glasses with the composition xSm2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2 (where x=0.1, 1, 2, 5 and 7 mol%) were obtained by the melt quenching technique. Electronic absorption and fluorescence spectra as well as fluorescence dynamics of the Sm(3+)-doped title glasses are presented and analysed in detail. A Judd-Ofelt intensity analysis of the absorption spectrum at 300 K has been applied for determination of Ωλ parameters (Ω2=3.10, Ω4=3.80, Ω6=1.61×10(-20) cm(2)) which in turn have been used for calculations of the radiative transition probabilities (AT), the natural (radiative) lifetimes (τR) of the (4)G5/2 level of Sm(3+), the fluorescence branching ratios (β) and the emission cross-sections (σem). The τR value of the (4)G5/2 level amount to 1546 μs and is slightly higher than the measured decay time of 1306 μs. With the increasing of Sm2O3 concentration from 0.1 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 1306 to 41 μs. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The optical achieved results indicate that the investigated glasses are potentially applicable as an orange and/or red laser host. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    Science.gov (United States)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  8. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO{sub 3}-0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G. [Departamento de Física de Materiales, C-04, Facultad de Ciencias, Universidad Autónoma de Madrid, 28.049 Madrid (Spain); Sola, D.; Peña, J. I. [Departamento de Ciencia y Tecnología de Materiales y Fluidos, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50.018 Zaragoza (Spain); Vázquez de Aldana, J. R. [Grupo de Investigación en Microprocesado de Materiales con Láser, Departamento de Física Aplicada, Universidad de Salamanca, 37.008 Salamanca (Spain); Aza, A. H. de; Pena, P. [Instituto de Cerámica y Vidrio-CSIC, 28.049 Madrid (Spain)

    2015-01-28

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.

  9. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    Science.gov (United States)

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  10. Hot Embossing of Zr-Based Bulk Metallic Glass Micropart Using Stacked Silicon Dies

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2015-01-01

    Full Text Available We demonstrated hot embossing of Zr65Cu17.5Ni10Al7.5 bulk metallic glass micropart using stacked silicon dies. Finite element simulation was carried out, suggesting that it could reduce the stress below 400 MPa in the silicon dies and enhance the durability of the brittle silicon dies when using varying load mode (100 N for 60 s and then 400 N for 60 s compared with using constant load mode (200 N for 120 s. A micropart with good appearance was fabricated under the varying load, and no silicon die failure was observed, in agreement with the simulation. The amorphous state of the micropart was confirmed by differential scanning calorimeter and X-ray diffraction, and the nanohardness and Young’s modulus were validated close to those of the as-cast BMG rods by nanoindentation tests. The results proved that it was feasible to adopt the varying load mode to fabricate three-dimensional Zr-based bulk metallic glass microparts by hot embossing process.

  11. Fabrication of AgInSe2 heterojunction solar cell

    Science.gov (United States)

    Khudayer, Iman Hameed

    2018-05-01

    Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta = 400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta = 400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization, the photovoltaic parameters such as, open-circuit voltage, short-circuit current density, fill factor, ideality factor, and efficiencies, were computed. As well as the built-in potential, carrier concentration and depletion width were determined under RT and (Ta = 400, 500 and 600) K from C-V measurement.

  12. Bending strength of glass-ceramics based on 3CaO.P2O5-SiO2-MgO glass system

    International Nuclear Information System (INIS)

    Daguano, J.K.M.F.; Suzuki, P.A.; Santos, C.; Fernandes, M.H.V.; Elias, C.N.

    2009-01-01

    In this work, the Modulus of Rupture of bioactive glass-ceramic based on 3CaO.P 2 O 5 -SiO 2 -MgO system was investigated, aiming its use in bone-restorations. The mechanical property was correlated with microstructural and crystallographic features of this material. High-purity starting-powders, CaCO 3 , SiO 2 , MgO, Ca (H 2 PO 4 ).H 2 O, were used in this study. The powders were mixed in a stoichiometric ratio, using planetary ball-mill. The suspensions were dried, sieved and melted at 1600 deg C, for 4h. The casting ones were cooled quickly until annealing temperature 700 deg C, in which remained for 2h, with controlled cooling-rate until ambient temperature. Bulks of glass were heat-treated with temperatures varying between 700 deg C and 1100 deg C, for 4h, being after that, cooled at 3 deg C/min. Bioactive glass and glass-ceramic were characterized by HRXRD (high resolution X-ray diffraction), where whitlockite was main phase. The microstructure was analyzed by scanning electronic microscopy. Modulus of Rupture was determined by four-point bending testing using specimens of 1.5 x 2 x 25 mm and glasses presented strength near to 70MPa, while glass ceramics treated at 975 deg C-4h, presented bending strength of 120MPa. (author)

  13. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  14. Antitumor activity of docetaxel-loaded polymeric nanoparticles fabricated by Shirasu porous glass membrane-emulsification technique

    Directory of Open Access Journals (Sweden)

    Yu YN

    2013-07-01

    Full Text Available Yunni Yu,1,* Songwei Tan,1,2,* Shuang Zhao,1 Xiangting Zhuang,1 Qingle Song,1 Yuliang Wang,1 Qin Zhou,2,3 Zhiping Zhang1,2 1Tongji School of Pharmacy, 2National Engineering Research Center for Nanomedicine, 3College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Docetaxel (DTX has excellent efficiency against a wide spectrum of cancers. However, the current clinical formulation has limited its usage, as it causes some severe side effects. Various polymeric nanoparticles have thus been developed as alternative formulations of DTX, but they have been mostly fabricated on a laboratory scale. Previously, we synthesized a novel copolymer, poly(lactide-D-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS, and found that it exhibited great potential in drug delivery with improved properties. In this study, we applied the Shirasu porous glass (SPG membrane-emulsification technique to prepare the DTX-loaded PLA-TPGS nanoparticles on a pilot scale. The effect of several formulation variables on the DTX-loaded nanoparticle properties, including particle size, zeta potential, and drug-encapsulation efficiency, were investigated based on surfactant type and concentration in the aqueous phase, organic/aqueous phase volumetric ratio, membrane-pore size, transmembrane cycles, and operation pressure. The DTX-loaded nanoparticles were obtained with sizes of 306.8 ± 5.5 nm and 334.1 ± 2.7 nm (mean value ± standard deviation, and drug-encapsulation efficiency of 81.8% ± 4.5% and 64.5% ± 2.7% for PLA-TPGS and poly(lactic-co-glycolic acid (PLGA nanoparticles, respectively. In vivo pharmacokinetic study exhibited a significant advantage of PLA-TPGS nanoparticles over PLGA nanoparticles and Taxotere. Drug-loaded PLA-TPGS nanoparticles exhibited 1.78-, 6.34- and 3.35-fold higher values for area under the curve, half-life, and mean

  15. A simple method of fabricating mask-free microfluidic devices for biological analysis.

    KAUST Repository

    Yi, Xin

    2010-09-07

    We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper to form intricate patterns and differently configured channels for specific purposes. Bonded with cyanoacrylate-based resin, the prepared paper sheet is sandwiched between glass slides (hydrophilic) or polymer-based plates (hydrophobic) to obtain a multilayer structure. In order to examine the chip\\'s biocompatibility and applicability, protein concentration was measured while DNA capillary electrophoresis was carried out, and both of them show positive results. With the utilization of direct laser cutting and one-step gas-sacrificing techniques, the whole fabrication processes for complicated 2D and 3D microfluidic devices are shorten into several minutes which make it a good alternative of poly(dimethylsiloxane) microfluidic chips used in biological analysis researches.

  16. S-F graphic representation analysis of photoelectric facula focometer poroo-plate glass

    Science.gov (United States)

    Tong, Yilin; Han, Xuecai

    2016-10-01

    Optical system focal length is usually based on the magnification method with focal length measurement poroo-plate glass is used as base element measuring focal length of focometer. On the basis of using analysis of magnification method to measure the accuracy of optical lens focal length, an expression between the ruling span of poroo-plate glass and the focal length of measured optical system was deduced, an efficient method to work out S-F graph with AUTOCAD was developed, the selecting principle of focometer parameter was analyzed, and Applied examples for designing poroo-plate glass in S-F figure was obtained.

  17. Fabrication and characterization of MCC approved testing material: ATM-11 glass

    International Nuclear Information System (INIS)

    Wald, J.W.; Daniel, J.L.

    1986-08-01

    ATM-11 glass is designed to be representative of defense high-level waste glasses that will be produced by the Defense Waste Processing Facility at the Savannah River Plant in Aiken, South Carolina. It is representative of a 300-year-old nuclear waste glass and was intended as a conservative compromise between 10-year-old waste and 1000-year-old waste. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 black frit to which was added Ba, Cs, Mo, Nd, Ni, Pd, Rb, Ru, Sr, Te, Y, and Zr, as well as 241 Am, 237 Np, /sup 239+240/Pu, 151 Sm, 99 Tc, and depleted U. The glass was melted under the reducing conditions that resulted from the addition of 0.7 wt% graphite during the final melting process. Nearly 3 kg of ATM-11 glass were produced from a feedstock melted in a nitrogen-atmosphere glove box at 1250 0 C in Denver Fire Clay crucibles. After final melting, the glass was formed into stress-annealed rectangular bars 1.9 x 1.9 x 10 cm nominal size. Twenty-six bars were cast with a nominal weight of about 100 g each. The analyzed composition of ATM-11 glass is tabulated. Examination of a single transverse section from one bar by reflected light microscopy showed random porosity estimated at 0.4 vol% with nominal pore diameters ranging from ∼5 μm to 175 μm. A distinct randomly distributed second phase was observed at a very low concentration in the glass matrix as agglomerated, metallic-like clusters. One form of the aggregates contained mainly a high concentration of iron, while a second form had regions of high nickel concentration, and of high palladium concentration. All aggregates also contained a low concentration of technetium and/or ruthenium. An autoradiograph of the sample provided an indication of the total radionuclide ditribution. X-ray diffraction analysis of this same sample indicates that the glass probably contained 5 wt% crystalline material

  18. Facile and Low-Temperature Fabrication of Thermochromic Cr2O3/VO2 Smart Coatings: Enhanced Solar Modulation Ability, High Luminous Transmittance and UV-Shielding Function.

    Science.gov (United States)

    Chang, Tianci; Cao, Xun; Li, Ning; Long, Shiwei; Gao, Xiang; Dedon, Liv R; Sun, Guangyao; Luo, Hongjie; Jin, Ping

    2017-08-09

    In the pursuit of energy efficient materials, vanadium dioxide (VO 2 ) based smart coatings have gained much attention in recent years. For smart window applications, VO 2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr 2 O 3 /VO 2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr 2 O 3 layer not only provides a structural template for the growth of VO 2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr 2 O 3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO 2 coating. According to optical measurements, the Cr 2 O 3 /VO 2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔT sol = 12.2%) and a high luminous transmittance (T lum,lt = 46.0%), which makes a good balance between ΔT sol and T lum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr 2 O 3 /VO 2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr 2 O 3 /VO 2 coating glass.

  19. Fabrication of hydrophilic S/In{sub 2}O{sub 3} core–shell nanocomposite for enhancement of photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Sugang; Cao, Zhisheng; Fu, Xianliang [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [Department of Chemistry, Huaibei Normal University, Anhui Huaibei, 235000 (China); Department of Chemistry, Anhui Science and Technology University, Anhui Fengyang, 233100 (China)

    2015-01-01

    Graphical abstract: - Highlights: • The elemental core–shell heterostructure was reported for the first time. • The hydrophilic core–shell S/In{sub 2}O{sub 3} photocatalyst was prepared by ball milling. • The rate constant of 10% S/In{sub 2}O{sub 3} is 11.6 and 13.5 times that of In{sub 2}O{sub 3} and S. • The hydrophilicity and efficiently separation of carriers are major factor. - Abstract: Recently, elemental semiconductors as new photocatalysts excited by visible light have attracted great attention due to their potential applications for environmental remediation and clean energy generation. However, it is still a challenge to fabricate elemental photocatalysts with high activity and stability. In this paper, a straightforward ball-milling method was carried out to fabricate core–shell S/In{sub 2}O{sub 3} nanocomposite photocatalyst with high performance. The photocatalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) method, photoluminescence spectra (PL) and super-hydrophilic experiment. The results showed that In{sub 2}O{sub 3} nanoparticles were successfully grown round of S blocks and formed core–shell heterostructures. The 10% S/In{sub 2}O{sub 3} core–shell nanocomposite exhibited the highest photocatalytic activity for degradation of rhodamine B (RhB) under visible light irradiation. The reaction rate constant (k) of the 10% S/In{sub 2}O{sub 3} core–shell nanocomposite is about 8.7 times as high as the sum of pure In{sub 2}O{sub 3} and S because of the formation of core–shell S/In{sub 2}O{sub 3} heterostructures, which might remedy the drawbacks of poor hydrophilicity of S, enhance visible light absorption and separate the photogenerated carriers efficiently. Furthermore, the mechanism of influence on the photocatalytic activity of the S

  20. Development and characterization of single gap glass RPC

    Energy Technology Data Exchange (ETDEWEB)

    Manisha, E-mail: manisha@pu.ac.in; Bhatnagar, V.; Shahi, J.S.; Singh, J.B.

    2016-12-21

    India-based Neutrino Observatory (INO) facility is going to have a 50 kton magnetized Iron CALorimeter (ICAL) detector for precision measurements of neutrino oscillations using atmospheric neutrinos. The proposed ICAL detector will be a stack of magnetized iron plates (acting as target material) interleaved with glass Resistive Plate Chambers (RPCs) as the active detector elements. An RPC is a gaseous detector made up of two parallel electrode plates having high bulk resistivity like that of a float glass and bakelite. For the ICAL detector, glass is preferred over bakelite as it does not need any kind of surface treatment to achieve better surface uniformity and also the cost of associated electronics is reduced. Under the detector R&D efforts for the proposed glass RPC detector, a few glass RPCs of 1 m × 1 m dimension are fabricated procuring glass of ∼2 mm thickness from one of the Indian glass manufacturers (Asahi). In the present paper, we report the characterization of RPC based on leakage current, muon detection efficiency and noise rate studies with varying gas compositions.

  1. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    Czech Academy of Sciences Publication Activity Database

    Harris, W.H.; Guillen, D.P.; Kloužek, Jaroslav; Pokorný, P.; Yano, T.; Lee, S.; Schweiger, M. J.; Hrma, P.

    2017-01-01

    Roč. 100, č. 9 (2017), s. 3883-3894 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : borosilicate glass * computed tomography * glass melting * morphology * nuclear waste * X-ray Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.841, year: 2016

  2. Tin Valence and Local Environments in Silicate Glasses as Determined From X-ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    McKeown, D.; Buechele, A.; Gan, H.; Pegg, I.

    2008-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize the tin (Sn) environments in four borosilicate glass nuclear waste formulations, two silicate float glasses, and three potassium aluminosilicate glasses. Sn K-edge XAS data of most glasses investigated indicate Sn4+O6 units with average Sn-O distances near 2.03 Angstroms. XAS data for a float glass fabricated under reducing conditions show a mixture of Sn4+O6 and Sn2+O4 sites. XAS data for three glasses indicate Sn-Sn distances ranging from 3.43 to 3.53 Angstroms, that suggest Sn4+O6 units linking with each other, while the 4.96 Angstroms Sn-Sn distance for one waste glass suggests clustering of unlinked Sn4+O6 units.

  3. Structural and luminescence behavior of Er(3+) ions doped Barium tellurofluoroborate glasses.

    Science.gov (United States)

    Annapoorani, K; Maheshvaran, K; Arunkumar, S; Suriya Murthy, N; Marimuthu, K

    2015-01-25

    Er(3+) doped Barium tellurofluoroborate glasses (BTFBxE) with the chemical composition (30-x)TeO2+30B2O3+20BaO+20BaF+xEr2O3 (where x=0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 in wt%) were prepared following the melt quenching technique. The different vibrational modes of borates and tellurites in the prepared glasses were explored through FTIR and Raman spectra. The optical absorption spectra have been used to determine the ionic/covalent nature of the metal-ligand bond in the prepared glasses with the help of Nephelauxetic ratio (β) and bonding parameter (δ) studies. The optical band gap of direct and indirect allowed transitions were determined from Tauc's plot and the variations of band gap energy with structural arrangements were discussed. The Urbach energy values were determined and the relatively lower values of the Urbach's energy reveal the minimal degree of disorderness in the prepared glasses. The oscillator strengths (fexp and fcal) and Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were calculated with the application of JO theory and the trends of the JO intensity parameters are found to be Ω2>Ω6>Ω4 for all the prepared glasses with a minimum variation in Ω2 intensity parameter values. A bright green emission was observed from the (2)H11/2+(4)S3/2→ (4)I15/2 transition and the radiative properties such as transition probability (A), stimulated emission cross-section (σP(E)), branching ratio (βr) and radiative lifetime (τ) were calculated using the JO parameters. The suitability of the prepared glasses for the fabrication of photonic devices were also discussed and reported in the present work. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Fabrication of SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films for enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsyi-En, E-mail: sean@mail.stust.edu.tw; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-28

    Highlights: • SnO{sub 2}-TiO{sub 2} core-shell nanopillar-arrays on ITO glass were successfully fabricated. • The 3D heterojunction solves the problem of low photocatalytic activity of TiO{sub 2} films. • SnO{sub 2} is more suitable than ITO for the core layer to separate electron-hole pairs. - Abstract: Immobilized or deposited thin film TiO{sub 2} photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO{sub 2} can be effectively improved by the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array structure which combines the benefits of SnO{sub 2}/TiO{sub 2} heterojunction and high reaction surface area. The SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO{sub 2} film was 45% improved by introducing a SnO{sub 2} film between TiO{sub 2} and ITO glass substrate and was 300% improved by using the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array structure. The 45% improvement by the SnO{sub 2} interlayer is attributed to the SnO{sub 2}/TiO{sub 2} heterojunction which separates the photogenerated electron-hole pairs in TiO{sub 2} for MB degradation, and the high photocatalytic activity of the SnO{sub 2}-TiO{sub 2} core-shell nanopillar-array films is attributed to the three dimensional SnO{sub 2}/TiO{sub 2} heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  5. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator

    International Nuclear Information System (INIS)

    Park, J.M.; Ha, D.H.; Kaewjeang, S.; Maghanemi, U.; Kothan, S.; Kaewkhao, J.; Kim, H.J.

    2016-01-01

    In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator. - Highlights: • Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators were developed. • Glass is easily fabricated with large sizes and various doping materials. • The luminescence properties are studied by using various radiation sources. • The light yield and decay time were measured at low temperature. • One decay time component is found.

  6. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries.

    Science.gov (United States)

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2013-05-01

    During last two decades, lithium-based glasses have been studied extensively as electrolytes for solid-state secondary batteries. For practical use, solid electrolyte must have high ionic conductivity as well as chemical, thermal and electrochemical stability. Recent progresses have focused on glass electrolytes due to advantages over crystalline solid. Glass electrolytes are generally classified into two types oxide glass and sulfide glass. Oxide glasses do not react with electrode materials and this chemical inertness is advantageous for cycle performances of battery. In this study, major effort has been focused on the improvement of the ion conductivity of nanosized LiAlTi(PO4)3 oxide electrolyte prepared by mechanical milling (MM) method. After heating at 1000 degrees C the material shows good crystallinity and ionic conductivity with low electronic conductivity. In LiTi2(PO4)3, Ti4+ ions are partially substituted by Al3+ ions by heat-treatment of Li20-Al2O3-TiO2-P2O5 glasses at 1000 degrees C for 10 h. The conductivity of this material is 1.09 x 10(-3) S/cm at room temp. The glass-ceramics show fast ion conduction and low E(a) value. It is suggested that high conductivity, easy fabrication and low cost make this glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li rechargeable batteries.

  7. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Z.G.; Leeflang, M.A. [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Zhou, J., E-mail: j.zhou@tudelft.nl [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Duszczyk, J. [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Biodegradable Mg-bioglass composites were made using casting; powder metallurgy. Black-Right-Pointing-Pointer Bioglass powder retained its composition and morphology. Black-Right-Pointing-Pointer Accelerated deposition of Ca; P ions on composites occurred due to bioglass. Black-Right-Pointing-Pointer Mg-bioglass composites made from powders had reduced degradation rates. Black-Right-Pointing-Pointer Powder metallurgy appeared to be better for making biodegradable composites. - Abstract: Previous in vivo studies on biodegradable magnesium alloys for orthopedic implant applications showed the need to improve early-stage bioactivity. Introducing bioactive particles into a magnesium alloy to form a metal matrix composite (MMC) represents an effective way to enhance the bioactivity of the alloy. In this study, composites with the ZK30 alloy as the matrix and the 45S5 bioactive glass (BG) as the reinforcement phase were fabricated using a semi-solid casting (SSC) method and a powder metallurgy (P/M) method. The SSC and P/M biocomposites with the same weight percents of bioactive glass particles were compared. Optical microscopy showed homogeneously dispered BG particles in the SSC and P/M composites. SEM and EDX analyses confirmed the retention of the morphological characteristics and composition of BG particles in the composites. However, the SSC composites exhibited micro-porous structures, while the P/M composites had nearly fully densified structures. As compared with the ZK30 matrix, the SSC composites exhibited significantly higher degradation rates, while the P/M composites possessed lower degradation rates. On the surface of all the composites, accelerated deposition of Ca and P ions occurred during immersion in the cell culture medium, indicating an improved surface bioactivity of the composites. The P/M method was found to be advantageous over the SSC method and could yield magnesium-matrix composites with enhanced

  9. High-entropy bulk metallic glasses as promising magnetic refrigerants

    International Nuclear Information System (INIS)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao; Wang, Jun-Qiang; Li, Run-Wei; Inoue, Akihisa

    2015-01-01

    In this paper, the Ho 20 Er 20 Co 20 Al 20 RE 20 (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS M pk ) and refrigerant capacity (RC) reaches 15.0 J kg −1 K −1 and 627 J kg −1 at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS M pk and RC. In addition, the magnetic ordering temperature, ΔS M pk and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures

  10. Hybrid solar cells with outstanding short-circuit currents based on a room temperature soft-chemical strategy: the case of P3HT:Ag2S.

    Science.gov (United States)

    Lei, Yan; Jia, Huimin; He, Weiwei; Zhang, Yange; Mi, Liwei; Hou, Hongwei; Zhu, Guangshan; Zheng, Zhi

    2012-10-24

    P3HT:Ag(2)S hybrid solar cells with broad absorption from the UV to NIR band were directly fabricated on ITO glass by using a room temperature, low energy consumption, and low-cost soft-chemical strategy. The resulting Ag(2)S nanosheet arrays facilitate the construction of a perfect percolation structure with organic P3HT to form ordered bulk heterojunctions (BHJ); without interface modification, the assembled P3HT:Ag(2)S device exhibits outstanding short-circuit current densities (J(sc)) around 20 mA cm(-2). At the current stage, the optimized device exhibited a power conversion efficiency of 2.04%.

  11. RADIATION EFFECTS IN PHYSICAL AGING OF BINARY As-S AND As-Se GLASSES

    International Nuclear Information System (INIS)

    Golovchak, Roman; Shpotyuk, O.; Kozdras, A.; Riley, Brian J.; Sundaram, S.K.; McCloy, John S.

    2011-01-01

    Radiation-induced physical aging effects are studied in binary As x S 100-x and As x Se 100-x (30 (le) x (le) 42) glasses by conventional differential scanning calorimetry (DSC) method. It is shown that γ-irradiation (Co 60 source, ∼ 3 MGy dose) of glassy As x S 100-x caused a measurable increase in glass transition temperature and endothermic peak area in the vicinity of glass transition region, which was associated with acceleration of structural relaxation processes in these materials. In contrast to sulfide glasses, the samples of As-Se family did not exhibit any significant changes in DSC curves after γ-irradiation. The observed difference in radiation-induced physical aging between sulfides and selenides was explained by more effective destruction-polymerization transformations and possible metastable defects formation in S-based glassy network.

  12. Calculation and analysis of vibrational spectra of PbCl(2)-Sb(2)O(3)-TeO(2) glass from first principles

    Czech Academy of Sciences Publication Activity Database

    Macháček, J.; Kostka, Petr; Liška, M.; Zavadil, Jiří; Gedeon, O.

    2011-01-01

    Roč. 357, č. 14 (2011), s. 2562-2570 ISSN 0022-3093 R&D Projects: GA ČR GA104/08/0734; GA MPO 2A-1TP1/063 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20670512 Keywords : vibrational spectrum * tellurite glass * ab initio molecular simulation Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.537, year: 2011

  13. Properties and structure of Faraday rotating glasses for magneto optical current transducer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Ma, Q.; Wang, H.; Wang, Q.; Hao, Y.; Chen, Q.

    2017-07-01

    High heavy metal oxides (60–100mol.%) ternary PbO–Bi2O3–B2O3 (PBB) glasses were fabricated and characterized. Using a homemade single lightway DC magnetic setup, Verdet constants of PBB glasses were measured to be 0.0923–0.1664min/G cm at 633nm wavelengths. Glasses with substitution of PbO by Bi2O3 were studied in terms of their Faraday effects. PbO–Bi2O3–B2O3 = 50–40–10mol.% exhibited good thermal stability, high Verdet constant (0.1503min/G cm) and good figure of merit (0.071). Based on this glass, a magneto optical current sensor prototype was constructed and its sensitivity at different currents was evaluated to be 8.31nW/A. © 2. (Author)

  14. Acid neutralizing, mechanical and physical properties of pit and fissure sealants containing melt-derived 45S5 bioactive glass.

    Science.gov (United States)

    Yang, Song-Yi; Piao, Yin-Zhu; Kim, Sung-Min; Lee, Yong-Keun; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2013-12-01

    The aim of this study was to examine the effects of 45S5 bioactive glass (BAG) on the acid neutralizing, mechanical and physical properties of pit and fissure sealants. 45S5BAG (glass (180 ± 30 nm) and added into a resin matrix [Bis-GMA/TEGDMA 50/50 (wt%) containing 1% of DMAEMA/CQ 2:1 (wt%)] with varying filler proportions; 0% 45S5BAG+50% glass (BAG0); 12.5% 45S5BAG+37.5% glass (BAG12.5); 25% 45S5BAG+25% glass (BAG25); 37.5% 45S5BAG+12.5% glass (BAG37.5); and 50% 45S5BAG+0% glass (BAG50). To evaluate the acid neutralizing properties, specimens were immersed in lactic acid solution (pH 4.0). Then, the change in pH and the time required to raise the pH from 4.0 to 5.5 were measured. In addition, flexural strength, water sorption and solubility were analyzed. The acid neutralizing properties of each group exhibited increasing pH values as more 45S5BAG was added, and the time required to raise the pH from 4.0 to 5.5 became shorter as the proportion of 45S5BAG increased (P0.05), except for BAG50. The novel pit and fissure sealants neutralized the acid solution (pH 4.0) and exhibited appropriate mechanical and physical properties. Therefore, these compounds are suitable candidates for caries-inhibiting dental materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. A Method for Out-of-autoclave Fabrication of High Fiber Volume Fraction Fiber Reinforced Polymer Composites

    Science.gov (United States)

    2012-07-01

    5 Figure 5. (a) (Left) Results showing optimal compaction of an E-glass (similar compaction to S-Glass) laminate at approximately 350...repeatability and a lack in dimensional tolerances versus prepreg composites fabricated in an autoclave. However, recent advancements in process understanding...structure, and while high fvf composite laminates are attainable in autoclave processing, these techniques may not be cost effective (10–15). The out

  16. Leaky mode suppression in planar optical waveguides written in Er:TeO{sub 2}–WO{sub 3} glass and CaF{sub 2} crystal via double energy implantation with MeV N{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, Budapest H-1525 (Hungary); Berneschi, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2014-05-01

    Ion implantation proved to be an universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Calcium fluoride is an excellent optical material, due to its perfect optical characteristics from UV wavelengths up to near IR. It has become a promising laser host material (doped with rare earth elements). Ion implantation was also applied to optical waveguide fabrication in CaF{sub 2} and other halide crystals. In the present work first single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in Er:Te glass, and up to 980 nm in CaF{sub 2}. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.2 MeV were performed to suppress leaky modes by increasing barrier width.

  17. Third-order nonlinear optical properties of GeSe2-Ga2Se3-PbI2 glasses

    International Nuclear Information System (INIS)

    Tang Gao; Liu Cunming; Luo Lan; Chen Wei

    2010-01-01

    The third-order nonlinear optical (NLO) properties of new selenium-based GeSe 2 -Ga 2 Se 3 -PbI 2 glasses have been measured using the optical Kerr effect (OKE) technique, with picosecond and femtosecond laser pulses. The 0.70GeSe 2 -0.15Ga 2 Se 3 -0.15PbI 2 glass has the largest third-order optical nonlinear susceptibility in GeSe 2 -Ga 2 Se 3 -PbI 2 glass system with χ (3) of 5.28x10 12 esu. In addition, the response time of glasses is sub-picosecond, which is predominantly associated with electron cloud. Local structure of the glasses has been identified by using Raman studies, while the origins of the observed nonlinear optical response are discussed. The [Ge(Ga)Se 4 ] tetrahedral and lone-pair electrons from highly polarizable Pb atom in glasses play an important role in enhanced NLO response. These results as well as their good chemical stability indicate that GeSe 2 -Ga 2 Se 3 -PbI 2 glasses are promising materials for photonic applications of third-order nonlinear optical signal processing.

  18. Preparation and characterization of Cu2SnS3 thin films by electrodeposition

    Science.gov (United States)

    Patel, Biren; Narasimman, R.; Pati, Ranjan K.; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    Cu2SnS3 thin films were electrodeposited on F:SnO2/Glass substrates at room temperature by using aqueous solution. Copper and tin were first electrodeposited from single bath and post annealed in the presence of sulphur atmosphere to obtain the Cu2SnS3 phase. The Cu2SnS3 phase with preferred orientation along the (112) crystal direction grows to greater extent by the post annealing of the film. Raman analysis confirms the monoclinic crystal structure of Cu2SnS3 with principle mode of vibration as A1 (symmetric breathing mode) corresponding to the band at 291 cm-1. It also reveals the benign coexistence of orthorhombic Cu3SnS4 and Cu2SnS7 phases. Optical properties of the film show direct band gap of 1.25 eV with a high absorption coefficient of the order of 104 cm-1 in the visible region. Photo activity of the electrodeposited film was established in two electrode photoelectro-chemical cell, where an open circuit voltage of 91.6 mV and a short circuit current density of 10.6 µA/cm2 were recorded. Fabrication of Cu2SnS3 thin film heterojunction solar cell is underway.

  19. Silicon–glass-based single piezoresistive pressure sensors for harsh environment applications

    International Nuclear Information System (INIS)

    San, Haisheng; Zhang, Hong; Zhang, Qiang; Yu, Yuxi; Chen, Xuyuan

    2013-01-01

    Silicon–glass (Si–glass)-based single piezoresistive pressure sensors were designed and fabricated by standard MEMS technology. The single piezoresistive sensing element was designed to be on the lower surface of the silicon diaphragm and be vacuum-sealed in a Si–glass cavity, which form a self-packaging protection structure helpful to the applications of sensors in harsh media. The pressure sensors were fabricated using a Si–glass anodic bonding technique, and the embedded Al feedthrough lines at the Si–glass interface are used to realize the electrical connections between the piezo-sensing element and the electrode-pads, and two larger-size electrode-pads are fabricated for realizing the soldered electrical connection between the sensor and the external circuit. The performance of the pressure sensors was characterized by a pressure test system at different temperature conditions. The temperature compensation was performed by the difference between the output voltage at zero-pressure and the output at operation pressure. The measurement results show that the sensitivity is 24 mV V –1 MPa −1 , the coefficient of sensitivity is 0.14% FS °C –1 , and both the zero-point offset and the temperature coefficient of offset are equal to zero, which are able to meet the commercial application requirements. However, a nonlinearity of 5.2% FS caused by the balloon effect would considerably worsen the accuracy of the pressure sensor. It is suggested to reduce the balloon effect by using a bossed-diaphragm structure in the pressure sensor. (paper)

  20. CuO and Ag2O effect on electrical properties of barium vanadate glasses

    International Nuclear Information System (INIS)

    Bogomolova, L.D.; Glasova, M.N.; Kalygina, V.M.; Spasibkina, S.N.; Khorikov, A.A.

    1987-01-01

    Effect of CuO on barium vanadate glass (BVG) conductivity on direct and alternating currents in the frequency range (10 2 -10 4 )Hz has been studied. Effect of Ag 2 O has been also studied for comparison, as Ag and Cu have idendical structure of external electron shells (d 10 , S 1 ). CuO introduction to binary barium vanadate glasses as a modificator results in the conductivity improvement on direct and alternating currents conditioned with reducing activation energy of small radius polaron jump, apparently, owing to exchange (ferromagnetic) interaction between V(IV) and Cu(II). Jump activation energy in barium vanadate glasses with Ag 2 O increases and conductivity drops due to the distance increase between vanadium atoms

  1. Structural and magnetic properties of SiO{sub 2}-CaO-Na{sub 2}O-P{sub 2}O{sub 5} containing BaO-Fe{sub 2}O{sub 3} glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Leenakul, W.; Kantha, P.; Pisitpipathsin, N. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Rujijanagul, G.; Eitssayeam, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pengpat, K., E-mail: kamonpan.p@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-01-15

    The incorporation method was employed to produce bioactive glass-ceramics from the BaFe{sub 12}O{sub 19}-SiO{sub 2}-CaO-Na{sub 2}O-P{sub 2}O{sub 5} glass system. The ferrimagnetic BaFe{sub 12}O{sub 19} was first prepared using a simple mixed oxide method, where the oxide precursors of 45S5 bioglass were initially mixed and then melted to form glass. The devitrification of Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} and Fe{sub 3}O{sub 4} was observed in all of the quenched glass samples. The glass samples were then subjected to a heat treatment schedule for further crystallization. It was found that the small traces of BaFe{sub 12}O{sub 19} phases started to crystallize in high BF content samples of 20 and 40 wt%. These samples also exhibited good magnetic properties comparable to that of other magnetic glass-ceramics. The bioactivity of the BF glass-ceramics improved with increasing BF content as was evident by the formation of bone-like apatite layers on the surface of all of the glass-ceramics after soaking in SBF for 14 days. The results support the use of these bioactive glass-ceramics for hyperthermia treatment within the human body. - Highlights: Black-Right-Pointing-Pointer BF addition improves the magnetic property and bioactivity of 45S5 bioglasses. Black-Right-Pointing-Pointer Bioglass-ceramics exhibited soft magnetic properties with Mr=14.850 emu/g. Black-Right-Pointing-Pointer Magnetic property can be enhanced by crystallization of BF in 45S5 bioglasses.

  2. Structure of high alumina content Al2O3-SiO2 composition glasses.

    Science.gov (United States)

    Weber, Richard; Sen, Sabyasachi; Youngman, Randall E; Hart, Robert T; Benmore, Chris J

    2008-12-25

    The structure of binary aluminosilicate glasses containing 60-67 mol % Al2O3 were investigated using high-resolution 27Al NMR and X-ray and neutron diffraction. The glasses were made by aerodynamic levitation of molten oxides. The 67% alumina composition required a cooling rate of approximately 1600 degrees C s(1-) to form glass from submillimeter sized samples. NMR results show that the glasses contain aluminum in 4-, 5-, and 6-fold coordination in the approximate ratio 4:5:1. The average Al coordination increases from 4.57 to 4.73 as the fraction of octahedral Al increases with alumina content. The diffraction results on the 67% composition are consistent with a disordered Al framework with Al ions in a range of coordination environments that are substantially different from those found in the equilibrium crystalline phases. Analysis of the neutron and X-ray structure factors yields an average bond angle of 125 +/- 4 degrees between an Al ion and the adjoining cation via a bridging oxygen. We propose that the structure of the glass is a "transition state" between the alumina-rich liquid and the equilibrium mullite phase that are dominated by 4- and 6-coordinated aluminum ions, respectively.

  3. Fabrication of hollow-sphere films of wurtzite CuInS{sub 2} on copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Shuijin, E-mail: shjlei@ncu.edu.cn [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Wang, Chunying [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Qiang [School of Electromechanical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Liu, Lei; Ge, Yang; Tang, Qingliu; Cheng, Baochang; Xiao, Yanhe; Zhou, Lang [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China)

    2013-12-16

    As important semiconductors, I–III–VI{sub 2} compounds have attracted wide attention, among which the wurtzite structured CuInS{sub 2} has been the research focus due to its metastable phase. In this paper, the wurtzite CuInS{sub 2} hollow-sphere films have been successfully prepared on copper substrate in a self-designed solvothermal detached system. The films of Cu(OH){sub 2} one-dimensional nanostructure arrays and thioacetamide were used as the precursors and triethylene glycol was used as the solvent. Experiments showed that the amount of indium trichloride played a determinative role in the final morphology of the products. Meanwhile, the one-dimensional nanostructure arrays and the detached solvothermal system have great influences on the crystal shape as well. Based on the experimental results, a possible formation mechanism for the CuInS{sub 2} hollow spheres was also proposed. The UV–Vis absorption spectrum showed a broad absorption over the entire visible light and extending into the near-infrared region and presented the band gap of 1.53 eV for the as-prepared wurtzite CuInS{sub 2}, which indicates the potential applications in solar cells. - Highlights: • A self-designed detached system along with solvothermal treatment was developed. • Wurtzite CuInS{sub 2} hollow-sphere films were successfully fabricated on Cu substrate. • The detached system and InCl{sub 3} usage were crucial for the hollow spheres. • The broadband absorption and 1.53 eV band-gap indicates its potentials in PV.

  4. Ceramic composite resistors of B4C modified by TIO2 and glass phase

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.

    1998-01-01

    Technical progress in the manufacturing technology of composite materials resulted in arising of new generation of bulk resistors, resistant to high levels of overloads and high temperature. These resistors can be applied in extremely heavy working conditions, for instance in cooperation with ignition circuits. The resistors investigated in our research were performed on the basis of ceramic composite consisted of semiconductor boron carbide B 4 C as conductive phase, aluminium oxide Al 2 O 3 and non-alkali glass as insulators and titanium dioxide TiO 2 . The technological procedure of the fabrication of resistors and the results of the tests, such as temperature dependence of the electrical resistance exploitation trials, are presented. (author)

  5. CdS/CdSSe quantum dots in glass matrix

    Indian Academy of Sciences (India)

    CdSSe and melted at 1200–1300°C. The glass samples were transparent and pale yellow in colour due to presence of CdS/CdSSe tiny nano crystal (Q-dots). in situ growth of CdS/CdSSe nano crystals imparts the yellow/orange/red colour to ...

  6. Acquisition of rheological and calorimetric properties of borosilicate glass to determine the free energy of formation

    International Nuclear Information System (INIS)

    Linard, Y.; Advocat, Th.

    2000-01-01

    No fundamental thermodynamic data, such as the entropy Δ f S T) and enthalpy Δ f H T) of formation are currently available for nuclear borosilicate glasses. They are necessary to assess the glass thermodynamic stability in water, one of the most important potential long-term glass alteration vectors. Three glass composition ranges were investigated: - 8 compositions ranging from a ternary B 2 O 3 -SiO 2 --Na 2 O (BSN) glass to the simulated SON 68 industrial glass for containment of high active nuclear wastes after reprocessing spent uranium oxide fuel from light water reactors. The basic BSN glass was gradually modified with the additives: Al 2 O 3 , CaO, ZrO 2 , Ce 2 O 3 , Li 2 O and Fe 2 O 3 , and non-radioactive surrogate fission product oxides. - A second using another BSN ternary glass to which Al 2 O 3 , MgO and a group of non-radioactive surrogate fission product oxides, representative of natural uranium GCR fuel, were added. - A third range consisting of various BSN ternary glass compositions. All the glass specimens were fabricated by melting the oxides, carbonates anal nitrates at 1273 to 1473 K in a platinum crucible. Experimental methods based on calorimetry and viscosimetry techniques were used to determine the heat capacity Cp of each glass composition, a necessary parameter in addition to the known heat capacities of the basic glass component oxides, for calculating Δ f S T) and Δ f S T). The heat capacity Cp was measured between 273 K and 1480 K through a combination of three experimental devices: a low-temperature adiabatic calorimeter, a differential scanning calorimeter, and an ice calorimeter. The glass configuration entropy S conf (T g ) necessary to obtain the glass entropy of formation (Eqn.(3)) was determined from tile glass rheological properties. A low-temperature viscosimeter was used to measure the strain ε of a glass specimen subjected to a given uniaxial stress σ to determine the viscosity η. A Couette viscosimeter was used to

  7. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Wan, Ming Hua; Wong, Poh Sum; Hussin, Rosli; Lintang, Hendrik O.; Endud, Salasiah

    2014-01-01

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ( 4 T 1g → 6 A 1g ). • As the concentration of Mn 2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn 2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn 2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4 T 1g → 6 A 1g ground state of Mn 2+ ions. As the concentration of Mn 2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4 T 1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn 2+ concentrations. From the emission characteristic parameters of 6 A 1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  8. The structure of MgO-SiO2 glasses at elevated pressure.

    Science.gov (United States)

    Wilding, Martin; Guthrie, Malcolm; Kohara, Shinji; Bull, Craig L; Akola, Jaakko; Tucker, Matt G

    2012-06-06

    The magnesium silicate system is an important geophysical analogue and neutron diffraction data from glasses formed in this system may also provide an initial framework for understanding the structure-dependent properties of related liquids that are important during planetary formation. Neutron diffraction data collected in situ for a single composition (38 mol% SiO(2)) magnesium silicate glass sample shows local changes in structure as pressure is increased from ambient conditions to 8.6 GPa at ambient temperature. A method for obtaining the fully corrected, total structure factor, S(Q), has been developed that allows accurate structural characterization as this weakly scattering glass sample is compressed. The measured S(Q) data indicate changes in chemical ordering with pressure and the real-space transforms show an increase in Mg-O coordination number and a distortion of the local environment around magnesium ions. We have used reverse Monte Carlo methods to compare the high pressure and ambient pressure structures and also compare the high pressure form with a more silica-poor glass (Mg(2)SiO(4)) that represents the approach to a more dense, void-free and topologically ordered structure. The Mg-O coordination number increases with pressure and we also find that the degree of continuous connectivity of Si-O bonds increases via a collapse of interstices.

  9. Foaming of CRT panel glass powder with Na2CO3

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    melt, while Na2O becomes incorporated into the glass structure. We have quantified the melt expansion through density measurements and the Na2O incorporation is indicated by the decrease of the glass transition temperature (Tg) of the final foam glass. The glass foaming quality depends on the foaming......Recycling of cathode ray tube (CRT) glass remains a challenging task. The CRT glass consists of four glass types fused together: Funnel-, neck-, frit- and panel glass. The three former glasses contain toxic lead oxide, and therefore have a low recycling potential. The latter on the other hand...... is lead-free, but since barium and strontium oxide are present, panel glass is incompatible with most common recycling methods. However, foam glass production is a promising approach for the recycling of panel glass waste, since the process parameters can be changed according to the glass waste...

  10. UV-VUV laser induced phenomena in SiO2 glass

    International Nuclear Information System (INIS)

    Kajihara, Koichi; Ikuta, Yoshiaki; Oto, Masanori; Hirano, Masahiro; Skuja, Linards; Hosono, Hideo

    2004-01-01

    Creation and annihilation of point defects were studied for SiO 2 glass exposed to ultraviolet (UV) and vacuum UV (VUV) lights to improve transparency and radiation toughness of SiO 2 glass to UV-VUV laser light. Topologically disordered structure of SiO 2 glass featured by the distribution of Si-O-Si angle is a critical factor degrading transmittance near the fundamental absorption edge. Doping with terminal functional groups enhances the structural relaxation and reduces the number of strained Si-O-Si bonds by breaking up the glass network without creating the color centers. Transmittance and laser toughness of SiO 2 glass for F 2 laser is greatly improved in fluorine-doped SiO 2 glass, often referred as 'modified silica glass'. Interstitial hydrogenous species are mobile and reactive at ambient temperature, and play an important role in photochemical reactions induced by exposure to UV-VUV laser light. They terminate the dangling-bond type color centers, while enhancing the formation of the oxygen vacancies. These findings are utilized to develop a deep-UV optical fiber transmitting ArF laser photons with low radiation damage

  11. Unusual glass-forming ability induced by changes in the local atomic structure in Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Y C; Chang, H J; Kim, D H; Kim, W T; Cha, P R

    2007-01-01

    The effect of partial replacement of Cu by Be in Ti 50 Cu 32 Ni 15 Sn 3 alloy on the thermal properties, structure, and forming ability of an amorphous phase were investigated by differential scanning calorimetry (DSC), x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and high-resolution transmission electron microscopy (HRTEM). Ti 50 Cu 25 Ni 15 Sn 3 Be 7 alloy shows enhanced glass-forming ability, enabling one to fabricate a fully amorphous bulk metallic glass sample 2 mm in diameter by injection casting. With the replacement, the supercooled liquid region ΔT x (= T x -T g , where T x is the crystallization temperature and T g is the glass transition temperature) decreased from 73 to 45 K and the reduced glass transition temperature T rg (= T g /T 1 , where T 1 is the liquidus temperature) increased from 0.53 to 0.57. The amorphous Ti 50 Cu 25 Ni 15 Sn 3 Be 7 phase showed a formation of short-range-ordered clusters 1-2 nm in size, which is attributed to the strong interaction between Ti and Be. The results show that ΔT x can be used as a thermal parameter reflecting the glass-forming ability of the alloy only when the phase formed during crystallization is the same as the phase competing with the glass transition during solidification

  12. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.

    Science.gov (United States)

    Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

    2012-02-01

    Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment. Copyright © 2011 Wiley Periodicals, Inc.

  13. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    Science.gov (United States)

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  14. Erbium concentration dependent absorbance in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  15. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Science.gov (United States)

    Molino, Giulia; Vitale Brovarone, Chiara

    2018-01-01

    Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions. PMID:29495498

  16. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Directory of Open Access Journals (Sweden)

    Hamada Elsayed

    2018-02-01

    Full Text Available Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2 were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C, owing to the formation of a C–S–H (calcium silicate hydrate gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80% and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions.

  17. Effect of Nb on glass forming ability and plasticity of (Ti-Cu)-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Suo, Z.Y.; Qiu, K.Q.; Li, Q.F.; Ren, Y.L.; Hu, Z.Q.

    2010-01-01

    A Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 bulk metallic glass has been developed by Nb partial substitution for Zr in Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 alloy. The glass forming ability Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy has been investigated using differential scanning calorimetry and X-ray diffractometry. Partial Nb substitutes for Zr promote the glass forming ability. Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG with diameter of 3 mm can be fabricated by Cu-mold injection casting method. The glass forming ability of Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 alloy is enhanced by stabilizing the undercooled liquid against crystallization. The plastic strain up to 2.5% was obtained for Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG compared to 0.15% for Ti 33 Cu 47 Zr 11 Ni 6 Sn 2 Si 1 BMG, which demonstrates that small amount of Nb addition can have a dramatic effect on plasticity enhancement in Ti-Cu-based BMG. The intersection and branching of the shear bands are observed. The plastic strain of the Ti 33 Cu 47 Zr 9 Ni 6 Sn 2 Si 1 Nb 2 BMG can be improved by the generation of nanocrystalline particles, which lead to multiple shear bands.

  18. Photoelectrolchemical performance of PbS/CdS quantum dots co-sensitized TiO2 nanosheets array film photoelectrodes

    International Nuclear Information System (INIS)

    Yao, Huizhen; Li, Xue; Liu, Li; Niu, Jiasheng; Ding, Dong; Mu, Yannan; Su, Pengyu; Wang, Guangxia; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Herein, PbS/CdS quantum dots (QDs) co-sensitized titanium dioxide nanosheets array (TiO 2 NSs) films were reported for the first time. The TiO 2 NSs films exposed {001} facets were vertically grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrates by a facile hydrothermal method. The PbS/CdS QDs were assembled on TiO 2 NSs photoelectrode by successive ionic layer adsorption and reaction (SILAR). The X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) verified that QDs with a diameter less than 20 nm were uniformly anchored on the surface of the TiO 2 NSs films. The QDs co-sensitization can significantly extend the absorption range and increase the absorption property of the photoelectrode by UV–vis absorption spectra. The optimal photoelectrolchemical (PEC) performance of PbS/CdS QDs co-sensitization TiO 2 NSs was with photocurrent density of 6.12 mA cm −2 under an illumination of AM 1.5 G, indicating the TiO 2 NSs films co-sensitized by PbS/CdS QDs have potential applications in solar cells. - Highlights: • TiO 2 nanosheets films were fabricated by a simple hydrothermal. • TiO 2 nanosheets film exposed high energy facets was with gaps. • PbS/CdS co-sensitized TiO 2 nanosheets film was obtained for the first time. • Photocurrent intensity of the novel photoelectrode increased to 6.12 mA cm −2

  19. Yb3+ sensitized Tm3+ upconversion in tellurite lead oxide glass.

    Science.gov (United States)

    Mohanty, Deepak Kumar; Rai, Vineet Kumar; Dwivedi, Y

    2012-04-01

    Triply ionized thulium/thulium--ytterbium doped/codoped TeO2-Pb3O4 (TPO) glasses have been fabricated by classical quenching method. The upconversion emission spectra in the Tm3+/Tm3+-Yb3+ doped/codoped glasses upon excitation with a diode laser lasing at ∼980 nm has been studied. Effect of the addition of the Yb3+ on the upconversion emission intensity in the visible and near infrared regions of the Tm3+ doped in TPO glass has been studied and the processes involved explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Fabrication and evaluation of hybrid materials from A-zeolite and ground glass powders for vitrified radioactive waste

    International Nuclear Information System (INIS)

    Kamitani, Masataka; Kondo, Mitsunori; Hiki, Tomonori; Tagami, Toru; Nakahira, Atsushi; Wakihara, Toru

    2014-01-01

    The samples from A-type zeolite and ground soda-lime glass powders were solidified by calcinations at 600 to 800°C in air atmosphere. These hybrid zeolite/glass samples at 700°C were in part insufficiently densified and hybrid samples were fully densified at 800°C, although the densification was not generated at 600°C. A-zeolites were still stable in glass melt at 800°C for hybrid zeolite/glass samples. These hybrid zeolite/glass samples had the ion exchange ability of 20% against Sr 2+ and the high ability over 80% against Cs + as well as A-zeolite. Microstructures of obtained hybrid zeolite/glass samples were evaluated. (author)

  1. Green Composites Reinforced with Plant-Based Fabrics: Cost and Eco-Impact Assessment

    Directory of Open Access Journals (Sweden)

    Georgios Koronis

    2018-02-01

    Full Text Available This study considers a green composite under a twofold assessment; evaluating its process-based cost and environmental footprint profile. The initial objective was to project the manufacturing cost and allow for an additional material comparison of alternative scenarios in the resin transfer molding processes. The additional aim is to have an intermediate environmental assessment to assist in selecting materials and adjust manufacturing parameters which would minimize the energy spent and the CO2 emissions. As it has been noted in numerous applications, the incorporation of natural fiber fabrics, as opposed to glass fabrics, bring together weight savings and consequently cost savings. However, the economic analysis suggests that a glass reinforced composite is marginally cheaper at the production volume of 300 parts (1.9% lower cost in contrast to a possible green solution (ramie. Considering jute instead of ramie as a reinforcement, the cost gets immediately lower, and further decreases with proposed improvements to the manufacturing process. Additional reduction of up to 10% in the production cost can be achieved by process upgrade. As indicated by the Eco-Audit analysis, 36% less energy and 44% CO2 per kilo will be generated, respectively when swapping from glass to ramie fabrics in the production of the automotive hood.

  2. Cu2ZnSnS4 solar cells fabricated by short-term sulfurization of sputtered Sn/Zn/Cu precursors under an H2S atmosphere

    International Nuclear Information System (INIS)

    Emrani, Amin; Rajbhandari, Pravakar P.; Dhakal, Tara P.; Westgate, Charles R.

    2015-01-01

    Synthesis of Cu 2 ZnSnS 4 (CZTS) thin films by short-term sulfurization of sputtered Sn/Zn/Cu precursors under ambient H 2 S is studied. The effect of the sulfurization processes on the film morphology, surface roughness, composition of the CZTS, and the crystallinity was investigated by using scanning electron microscopy, optical profiler, energy dispersive spectroscopy, and X-ray diffraction respectively. To further explore the CZTS layer, the following additional layers were deposited to complete the solar cells: CdS with chemical bath deposition; ZnO and Al 2 O 3 -doped ZnO with RF magnetron deposition; and, silver fingers as the front contact as the last layer. The optical and morphological properties of the CZTS films were investigated and compared. Subsequently, the electrical characteristics and the efficiencies of the regarding solar cells were analyzed. A maximum efficiency of 3.8% has been obtained for the fast sulfurization (30 min at 580 °C) and finally, the performance is compared with our best cell fabricated through the more common slow annealing. - Highlights: • Development of Cu 2 ZnSnS 4 (CZTS) solar cells using elemental metal sputtering • 112-oriented CZTS films with well-defined morphology obtained • Reported efficiency of 3.8% for a short-term annealing (less than 30 min) under ambient H 2 S • A detailed comparison between the fast and the more common slow annealing is reported

  3. Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent

    International Nuclear Information System (INIS)

    Yin Tao; Zhou Lin; Rong Minzhi; Zhang Mingqiu

    2008-01-01

    This paper reports a study of self-healing woven glass fabric reinforced epoxy composites. The healing agent was a two-component one synthesized in the authors' laboratory, which consisted of epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr 2 (2-methylimidazole) 4 (CuBr 2 (2-MeIm) 4 ) as the latent hardener. Both the microcapsules and the matching catalyst were pre-embedded and pre-dissolved in the composites' matrix, respectively. When the microcapsules are split by propagating cracks, the uncured epoxy can be released into the damaged areas and then consolidated under the catalysis of CuBr 2 (2-MeIm) 4 that was homogeneously distributed in the composites' matrix on a molecular scale. As a result, the cracked faces can be bonded together. The influence of the content of the self-healing agent on the composites' tensile properties, interlaminar fracture toughness and healing efficiency was evaluated. It was found that a healing efficiency over 70% relative to the fracture toughness of virgin composites was obtained in the case of 30 wt% epoxy-loaded microcapsules and 2 wt% latent hardener

  4. First principles process-product models for vitrification of nuclear waste: Relationship of glass composition to glass viscosity, resistivity, liquidus temperature, and durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1991-01-01

    Borosilicate glasses will be used in the USA and in Europe to immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Process and product quality models based on glass composition simplify the fabrication of the borosilicate glass while ensuring glass processability and quality. The process model for glass viscosity is based on a relationship between the glass composition and its structural polymerization. The relationship between glass viscosity and electrical resistivity is also shown to relate to glass polymerization. The process model for glass liquidus temperature calculates the solubility of the liquidus phases based on the free energies of formation of the precipitating species. The durability product quality model is based on the calculation of the thermodynamic hydration free energy from the glass composition

  5. MoSx-coated NbS2 nanoflakes growth on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng; Lin, Shi-Hsin; Yang, Xiulin; Li, Henan; Hedhili, Mohamed N.; Li, Lain-Jong; Zhang, Wenjing; Shi, Yumeng

    2018-01-01

    Recent experimental and theoretical studies have demonstrated that two-dimensional (2D) transition metal dichalcogenide (TMDC) nanoflakes are one of the most promising candidates for non-noblemetal electrocatalysts for hydrogen evolution reaction (HER). However, it is still demanding to optimize their conductivity and enrich active sites for the high efficient electrochemical performance. Herein, we report a chemical vapor deposition (CVD) and thermal annealing two-step strategy to controllably synthesize hybrid electrocatalysts consisting of metallic NbS2 nanoflake backbones and highly catalytic active MoSx nanocrystalline shell on polished commercial glass carbon (GC). In addition, the amounts of MoSx in the hybrids can be easily adjusted, we first demonstrate that small amount of MoSx obviously promotes the HER activity of 2D NbS2 nanoflakes, which is in good consistence with the density functional theory (DFT) calculation results. Meanwhile, the optimized MoSx@NbS2/GC electrocatalyst displays a superior HER activity with an overpotential of -164 mV at -10 mA/cm2, a small Tafel slope of 43.2 mV/dec, and prominent electrochemical stability. This study provides a new path for enhancing the HER performance of 2D TMDC nanoflakes.

  6. MoSx-coated NbS2 nanoflakes growth on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2018-01-19

    Recent experimental and theoretical studies have demonstrated that two-dimensional (2D) transition metal dichalcogenide (TMDC) nanoflakes are one of the most promising candidates for non-noblemetal electrocatalysts for hydrogen evolution reaction (HER). However, it is still demanding to optimize their conductivity and enrich active sites for the high efficient electrochemical performance. Herein, we report a chemical vapor deposition (CVD) and thermal annealing two-step strategy to controllably synthesize hybrid electrocatalysts consisting of metallic NbS2 nanoflake backbones and highly catalytic active MoSx nanocrystalline shell on polished commercial glass carbon (GC). In addition, the amounts of MoSx in the hybrids can be easily adjusted, we first demonstrate that small amount of MoSx obviously promotes the HER activity of 2D NbS2 nanoflakes, which is in good consistence with the density functional theory (DFT) calculation results. Meanwhile, the optimized MoSx@NbS2/GC electrocatalyst displays a superior HER activity with an overpotential of -164 mV at -10 mA/cm2, a small Tafel slope of 43.2 mV/dec, and prominent electrochemical stability. This study provides a new path for enhancing the HER performance of 2D TMDC nanoflakes.

  7. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    Science.gov (United States)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  8. Spin-glass behavior in the S=1/2 fcc ordered perovskite Sr2CaReO6

    International Nuclear Information System (INIS)

    Wiebe, C.R.; Greedan, J.E.; Luke, G.M.; Gardner, J.S.

    2002-01-01

    The ordered perovskite Sr 2 CaReO 6 of monoclinic symmetry [space group P2 1 /n,a=5.7556(3) A,b=5.8534(3) A,c=8.1317(4) A,β=90.276(5) deg. at T=4 K] has been synthesized using standard solid-state chemistry techniques. The difference in the size and charge of the cations induces an ordering of the B site Ca 2+ and Re 6+ ions which leads to a distorted fcc lattice of spin-(1/2) Re 6+ (5d 1 ) moments. dc magnetic susceptibility measurements indicate a maximum at T G ∼14 K and an irreversibility in the field-cooled and zero-field-cooled data at ∼22 K that is believed to be caused by the geometric frustration inherent in the fcc structure. Neutron-scattering measurements confirm the absence of magnetic long-range order, and muon spin relaxation experiments indicate the presence of an abrupt spin freezing at T G . Specific heat measurements reveal a broad anomaly typical of spin glasses and no sharp feature. 65% of the spin entropy is released at low temperatures. The low-temperature data do not show the expected linear temperature dependence, but rather a T 3 relationship, as is observed, typically, for antiferromagnetic spin waves. The material is characterized as an unconventional, essentially disorder-free, spin glass

  9. The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting

    International Nuclear Information System (INIS)

    Li, X.P.; Kang, C.W.; Huang, H.; Sercombe, T.B.

    2014-01-01

    Highlights: • We proposed a re-scan strategy to prevent crack propagation in SLM. • The re-scan should be carried out at a low laser energy density. • The underlying mechanism is through reduction and relief of residual stresses. • Lowered temperature gradient and superplasticity account for reduction of stress. • For the first time, a crack-free BMGCs gear with a large size was produced. - Abstract: In this paper, we have investigated the use of a re-scanning strategy to prevent propagation of macro-cracks during the selective laser melting of an Al 85 Ni 5 Y 6 Co 2 Fe 2 bulk metallic glass composites (BMGCs). These cracks form as a result of the high residual stress caused by the rapid heating and cooling of the material by the laser beam. Unlike crystalline materials, the BMGCs possess a supercooled liquid region in which the residual stress can be relieved by plastic flow. We show that by using a high power initial scan (designed to melt the material) followed by a lower power re-scan (for stress relief) cracking can be prevented. Using this approach, crack-free Al 85 Ni 5 Y 6 Co 2 Fe 2 BMGCs components have been fabricated, including a gear with a diameter ∼25 mm and height ∼10 mm

  10. Simple Fabrication Process for 2D ZnO Nanowalls and Their Potential Application as a Methane Sensor

    Directory of Open Access Journals (Sweden)

    Zhan-Shuo Hu

    2013-03-01

    Full Text Available Two-dimensional (2D ZnO nanowalls were prepared on a glass substrate by a low-temperature thermal evaporation method, in which the fabrication process did not use a metal catalyst or the pre-deposition of a ZnO seed layer on the substrate. The nanowalls were characterized for their surface morphology, and the structural and optical properties were investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, transmission electron microscopy (TEM, and photoluminescence (PL. The fabricated ZnO nanowalls have many advantages, such as low growth temperature and good crystal quality, while being fast, low cost, and easy to fabricate. Methane sensor measurements of the ZnO nanowalls show a high sensitivity to methane gas, and rapid response and recovery times. These unique characteristics are attributed to the high surface-to-volume ratio of the ZnO nanowalls. Thus, the ZnO nanowall methane sensor is a potential gas sensor candidate owing to its good performance.

  11. Mixed Alkali Effect in (40-x)K2O-xLi2O-10Na2O-50B2O3 Glasses - Physical and Optical Absorption Studies

    Science.gov (United States)

    Samee, M. A.; Ahmmad, Shaikh Kareem; Taqiullah, Sair. Md.; Edukondalu, A.; Bale, Shashidhar; Rahman, Syed

    So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x) K2O-x Li2O -10Na2O-50B2O3.(0≤x≤40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. We report the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the various values of optical band gap (Eo) and Urbach energy (ΔE) have been evaluated. The values of Eo and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The band gap energy based average electronic polarizability of oxide ions αO2-(Eo), optical basicity A(Eo), and Yamashita-Kurosawa’s interaction parameter A(Eo) have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present K2O- Li2O-Na2O-B2O3 glasses are classified as normal ionic (basic) oxides.

  12. COMPARISON OF BIOACTIVITY IN VITRO OF GLASS AND GLASS CERAMIC MATERIALS DURING SOAKING IN SBF AND DMEM MEDIUM

    Directory of Open Access Journals (Sweden)

    GABRIELA LUTIŠANOVÁ

    2011-09-01

    Full Text Available This paper investigated the surface reactivity of two sets of glasses and glass ceramic materials belonging to the Li2O–SiO2–CaO–P2O5–CaF2 system. The in vitro bioactivity of coatings was evaluated using simulated body fluid (SBF and Dulbecco’s Modified Eagle’s Medium (DMEM soaking test in static regime for up to 28 days at 36.5°C in microincubator. The surface structure changes were examined by scanning electron microscopy (SEM and electron probe micro-analyzer (EPMA methods. The functional groups of the silicate and phosphates were identified by infrared spectroscopy (IR. The crystal phases of the glasses and glass ceramics were identified by X-ray diffraction analysis (XRD. The results suggest the bioactivity behavior for all compositions of glasses as well as glass ceramic samples after 28 days in the SBF and DMEM medium. The surface characterization and in vitro tests revealed a few variations in the reactivity of the different glasses and glass ceramic samples in their pristine form. The best results show the samples of glass and glass ceramic samples with higher content of fluorapatite (FA. The use of the acellular culture medium DMEM resulted in a delay at the start of precipitation.

  13. Fabrication and Optoelectrical Properties of IZO/Cu2O Heterostructure Solar Cells by Thermal Oxidation

    Directory of Open Access Journals (Sweden)

    Cheng-Chiang Chen

    2012-01-01

    Full Text Available Indium zinc oxide (IZO/cupper oxide (Cu2O is a nontoxic nature and an attractive all-oxide candidate for low-cost photovoltaic (PV applications. The present paper reports on the fabrication of IZO/Cu2O heterostructure solar cells which the Cu2O layers were prepared by oxidation of Cu thin films deposited on glass substrate. The measured parameters of cells were the short-circuit current (Isc, the open-circuit voltage (Voc, the maximum output power (Pm, the fill factor (FF, and the efficiency (η, which had values of 0.11 mA, 0.136 V, 5.05 μW, 0.338, and 0.56%, respectively, under AM 1.5 illumination.

  14. Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode

    Science.gov (United States)

    Arya, Sandeep; Sharma, Asha; Singh, Bikram; Riyas, Mohammad; Bandhoria, Pankaj; Aatif, Mohammad; Gupta, Vinay

    2018-05-01

    Copper (Cu) doped p-CdS nanoparticles have been synthesized via sol-gel method. The as-synthesized nanoparticles were successfully characterized and implemented for fabrication of Glass/ITO/n-ZnO/p-CdS/Al thin film photodiode. The fabricated device is tested for small (-1 V to +1 V) bias voltage. Results verified that the junction leakage current within the dark is very small. During reverse bias condition, the maximum amount of photocurrent is obtained under illumination of 100 μW/cm2. Electrical characterizations confirmed that the external quantum efficiency (EQE), gain and responsivity of n-ZnO/p-CdS photodiode show improved photo response than conventional p-type materials for such a small bias voltage. It is therefore revealed that the Cu-doped CdS nanoparticles is an efficient p-type material for fabrication of thin film photo-devices.

  15. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Hideaki; Kubo, Yuki; Jimbo, Kazuo; Maw, Win Shwe; Katagiri, Hironori; Yamazaki, Makoto; Oishi, Koichiro; Takeuchi, Akiko [Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2009-05-15

    Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were prepared by sulfurization of electrodeposited Cu-Zn-Sn precursors. The Cu-Zn-Sn precursors were deposited on Mo-coated glass substrates in a one-step process from an electrolyte containing copper (II) sulfate pentahydrate, zinc sulfate heptahydrate, tin (II) chloride dehydrate and tri-sodium citrate dehydrate. The precursors were sulfurized by annealing with sulfur at temperatures of 580 C and 600 C in an N{sub 2} atmosphere. X-ray diffraction peaks attributable to CZTS were detected in the sulfurized films. Photovoltaic cells with the structure glass/Mo/CZTS/ CdS/ZnO:Al/Al were fabricated using the CZTS films by sulfurizing the electrodeposited precursors. The best photovoltaic cell performance was obtained with Zn-rich samples. An open-circuit voltage of 540 mV, a short-circuit current of 12.6 mA/cm{sup 2} and an efficiency of 3.16% were achieved. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Glass substrates crosslinked with tetracycline-imprinted polymeric silicate and CdTe quantum dots as fluorescent sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Mu-Rong [Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Hu, Chiung-Wen [Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Chen, Jian-Lian, E-mail: cjl@mail.cmu.edu.tw [School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2016-06-21

    A fluorescence-based sensor that combines the merits of quantum dots (QDs) and molecularly imprinted polymers (MIPs) was first fabricated on a glass substrate via a sol–gel route. Some of the key performance factors, including silane selection, substrate etching, the reaction times of glass silanization and sol–gel polymerization, and the times and methods used for template stripping and loading, were discussed and determined. After fabricating the sensor on either a 3-aminopropyltriethoxysilane (APS) or a 3-mercaptopropyltriethoxysilane (MPS) modified glass substrate, APS showed a much better performance than MPS as both the capping reagent of QDs and the functional monomer of tetracycline-templated MIPs. The APS-QDs on APS-modified glass had a higher imprinted factor (IF = 5.6), a lower LOD (2.1 μM, 3σ), and a more stable signal (2.8%, n = 10 at 70 μM) than those on the MPS-modified glass (IF = 5.2, LOD = 6.5 μM, stability = 6.2%). Furthermore, the recoveries of tetracycline (70 μM) from BSA (133 μg/mL) and FBS (0.66 ppt) by the APS-modified glass were 98% (RSD = 3.5%, n = 5) and 97% (RSD = 5.7%), respectively. For the MPS-modified glass, recoveries of 95% (RSD = 7.2%) and 89% (RSD = 8.7%) were observed at 67 μg/mL of BSA and 0.33 ppt of FBS, respectively. - Highlights: • QD-MIP composites were first built on a glass substrate through a sol–gel route. • Two silanes were evaluated as both a surface modifier and a functional capping monomer. • Fluorescence enhancement by template on glass was different from quenching in solution.

  17. Transistors using crystalline silicon devices on glass

    Science.gov (United States)

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  18. Effect of concentration variation on 2.0 µm emission of Ho3+-doped SiO2-Al2O3-Na2CO3-SrF2-CaF2 oxyfluorosilicate glasses

    Science.gov (United States)

    Gelija, Devarajulu; Borelli, Deva Prasad Raju

    2018-02-01

    The concentration variation of Ho3+ ion-doped SiO2-Al2O3-Na2CO3-SrF2-CaF2 glasses has been prepared by conventional melt quenching method. The thermal stability of 1 mol % of Ho3+-doped oxyfluorosilicate glass has been calculated using the differential thermal analysis (DTA) spectra. The phenomenological Judd-Ofelt intensity parameters Ωλ ( λ = 2, 4 and 6) were calculated for all concentrations of Ho3+ ions. The luminescence spectra in visible region of Ho3+ ion-doped glasses were recorded under the excitation wavelength of 452 nm. The spectra consists of several intense emission bands (5F4, 5S2) → 5I8 (547 nm), 5F3 → 5I8 (647 nm), 5F5 → 5I7 (660 nm) and (5F4, 5S2) → 5I7 (750 nm) in the range 500-780 nm. The fluorescence emission at ˜2.0 µm (5I7 → 5I8) was observed under the excitation of 488 nm Ar-ion laser. The stimulated emission cross section for 5I7 → 5I8 transition (˜2.0 µm) varies from 8.46 to 9.52 × 10-21 cm2, as calculated by the Fuchtbauer-Ladenburg (FL) theory. However, Mc-Cumber theory was used to calculate emission cross section values about 4.24-5.75 × 10-21 cm2 for the 5I7 → 5I8 transition in all concentrations of Ho3+-doped oxyfluorosilicate glasses. Therefore, these results reveal that the 0.5 mol % of Ho3+-doped oxyfluorosilicate glasses, exhibiting higher emission cross section, has potentially been used for laser applications at ˜ 2.0 µm.

  19. Oxidation state of sulfur, iron and tin at the surface of float glasses

    International Nuclear Information System (INIS)

    Lagarde, P; Flank, A-M; Jupille, J; Montigaud, H

    2009-01-01

    Sulfur is an important element of glasses, not because of its amount, always very low (less than 0.4 % in weight of SO 3 ), but because of its role since it actively participates to the refinement process and, combined to other elements, it can be responsible for the coloration of the glass. Iron is also of a major importance in most of the glasses. In the case of the float glass, the two faces, because of the fabrication process, are different in terms of composition (presence of Sn for one face) and also in terms of oxidation state of these minority elements (Fe, Sn, S). There should be a subtle interplay between the concentrations and the oxidation states of these different minority elements, and anyway these variations occur over a thickness of the order of few micrometers below the surface. Using the high intensity and the focusing properties (3 x 3 μm 2 ) of the x-ray beam from the Lucia beamline, we have therefore studied the speciation of iron and sulfur near the face of a float glass in relation with the behavior of tin. This has been obtained by combining elemental x-ray fluorescence cartography and x-ray micro-absorption at the different K-edges.

  20. Oxidation state of sulfur, iron and tin at the surface of float glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lagarde, P; Flank, A-M [Synchrotron SOLEIL, l' Orme des Merisiers, BP 48 91192 Gif/Yvette cedex (France); Jupille, J [IMPMC, Universite P. and M. Curie, Campus de Boucicaut, 140 rue de Lourmel 75015 Paris (France); Montigaud, H [Saint-Gobain Recherche 39, quai Lucien Lefranc, BP 135 93303 Aubervilliers Cedex (France)

    2009-11-15

    Sulfur is an important element of glasses, not because of its amount, always very low (less than 0.4 % in weight of SO{sub 3}), but because of its role since it actively participates to the refinement process and, combined to other elements, it can be responsible for the coloration of the glass. Iron is also of a major importance in most of the glasses. In the case of the float glass, the two faces, because of the fabrication process, are different in terms of composition (presence of Sn for one face) and also in terms of oxidation state of these minority elements (Fe, Sn, S). There should be a subtle interplay between the concentrations and the oxidation states of these different minority elements, and anyway these variations occur over a thickness of the order of few micrometers below the surface. Using the high intensity and the focusing properties (3 x 3 {mu}m{sup 2}) of the x-ray beam from the Lucia beamline, we have therefore studied the speciation of iron and sulfur near the face of a float glass in relation with the behavior of tin. This has been obtained by combining elemental x-ray fluorescence cartography and x-ray micro-absorption at the different K-edges.