WorldWideScience

Sample records for s band

  1. L-band brightness temperature disaggregation for use with S-band and C-band radiometer data for WCOM

    Science.gov (United States)

    Yao, P.; Shi, J.; Zhao, T.; Cosh, M. H.; Bindlish, R.

    2017-12-01

    There are two passive microwave sensors onboard the Water Cycle Observation Mission (WCOM), which includes a synthetic aperture radiometer operating at L-S-C bands and a scanning microwave radiometer operating from C- to W-bands. It provides a unique opportunity to disaggregate L-band brightness temperature (soil moisture) with S-band C-bands radiometer data. In this study, passive-only downscaling methodologies are developed and evaluated. Based on the radiative transfer modeling, it was found that the TBs (brightness temperature) between the L-band and S-band exhibit a linear relationship, and there is an exponential relationship between L-band and C-band. We carried out the downscaling results by two methods: (1) downscaling with L-S-C band passive measurements with the same incidence angle from payload IMI; (2) downscaling with L-C band passive measurements with different incidence angle from payloads IMI and PMI. The downscaling method with L-S bands with the same incident angle was first evaluated using SMEX02 data. The RMSE are 2.69 K and 1.52 K for H and V polarization respectively. The downscaling method with L-C bands is developed with different incident angles using SMEX03 data. The RMSE are 2.97 K and 2.68 K for H and V polarization respectively. These results showed that high-resolution L-band brightness temperature and soil moisture products could be generated from the future WCOM passive-only observations.

  2. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  3. S-band and X-band integrated PWT photoelectron linacs

    International Nuclear Information System (INIS)

    Yu, D.; Newsham, D.; Zeng, J.; Rosenzweig, J.

    2001-01-01

    A compact high-energy injector, which has been developed by DULY Research Inc., will have wide scientific, industrial, and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator. By focusing the beam with solenoids or permanent magnets, and producing high current with low emittance, high brightness and low energy spread are achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerances and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. Cold test results for this device are presented. DULY Research is also actively engaged in the development of an X-band photoelectron linear accelerator in a SBIR project. When completed, the higher frequency structure will be approximately three times smaller. Design considerations for this device are discussed following the S-band cold test results

  4. The Keenan and Wing bands in S stars

    International Nuclear Information System (INIS)

    Lambert, D.L.; Clegg, R.E.S.

    1980-01-01

    New observations of the near infrared spectra of S stars are presented as part of a survey of the unidentified Keenan and Wing bands. Bandhead wavelengths accurate to 0.5 A are presented. A new band is found at 9014 A. The bands are not present in normal M giants and dwarfs. Laboratory spectroscopy of heavy element oxides is reported. Several new identifications are proposed. The 10 300 A Wing band is identified with the Δv = - 1 sequence of the ZrO 9300 A Δv = 0 bands. The ZrO B 1 PI-A 1 Δ (Δv = 0) system may be responsible for either the 9736 A or the 10 515 A Wing bands. Two new bands in the near infrared at 8219 and 8235 A are provided by CeO. A new band with heads at 7503 and 7509 A in a spectrum of R And is tentatively attributed to YS. A band at 8268 A in M stars is the TiO delta(2-1) head. The 8610 A Keenan band is not due to CrH. Potential carriers of the Keenan and Wing bands are reviewed. It is suggested that the heavy element sulphides and, perhaps, chlorides are leading candidates. Identification of YS in R And may provide the first evidence for these sulphides. ZrS is a leading candidate for which laboratory spectroscopy is needed. (author)

  5. Resonant enhancement of band-to-band tunneling in in-plane MoS2/WS2 heterojunctions

    Science.gov (United States)

    Kuroda, Tatsuya; Mori, Nobuya

    2018-04-01

    The band-to-band (BTB) tunneling current J through in-plane MoS2/WS2 heterojunctions is calculated by the nonequilibrium Green function method combined with tight-binding approximation. Types A and B of band configurations are considered. For type-A (type-B) heterojunctions, a potential notch exists (or is absent) at the heterointerface. Both type-A and type-B MoS2/WS2 heterojunctions can support a higher BTB current than MoS2 and WS2 homojunctions. For type-A heterojunctions, the resonant enhancement of J occurs resulting in a significantly higher BTB tunneling current.

  6. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    Science.gov (United States)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  7. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2001-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  8. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2003-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  9. Full L-S Band Telemetry System

    National Research Council Canada - National Science Library

    Jensen, Michael

    2002-01-01

    Recent changes in spectrum availability as well as higher demands for spectrum have motivated the development of telemetry transmit systems capable of fully operating over both L and S telemetry bands...

  10. Magnetron based high energy S-band linac system

    International Nuclear Information System (INIS)

    Tiwari, T.; Krishnan, R.; Phatangare, Manoj

    2012-01-01

    This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system

  11. High-power test of S-band klystron for long-pulse operation

    International Nuclear Information System (INIS)

    Morii, Y.; Oshita, E.; Abe, S.; Keishi, T.; Tomimasu, T.; Ohkubo, Y.; Yoshinao, M.; Yonezawa, H.

    1994-01-01

    FELI(Free Electron Laser Research Institute, Inc.) is constructing a free electron laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using an S-band linac. The linac is commissioning now. An RF system of the linac for FELs is required of long pulse duration and high stability. S-band klystrons (TOSHIBA E3729) of the FELI linac are operated in three pulse operation modes (pulse width and peak RF power; 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW). The S-band klystron and its modulator were combined to test their performance. The high power test results of the S-band klystron are summarized in this paper. (author)

  12. Spectrum Band Selection in Delay-QoS Constrained Cognitive Radio Networks

    KAUST Repository

    Yang, Yuli

    2014-01-01

    In this paper, a cognitive radio (CR) network with multiple spectrum bands available for secondary users (SUs) is considered. For the SU\\'s active spectrum-band selection, two criteria are developed. One is to select the band with the highest secondary channel power gain, and the other is to select the band with the lowest interference channel power gain to primary users (PUs). With the quality-of-service (QoS) requirement concerning delay, the effective capacity (EC) behaviors over secondary links are investigated for both criteria under two spectrum-sharing constraints. To begin by presenting full benefits in these criteria, the constraint imposed on the secondary transmitter (ST) is the average interference limitation to PUs only. Furthermore, taking into account the ST\\'s battery/energy budget, the ST is imposed by joint constraints on its average interference to PUs, as well as on its own average transmit power. For either constraint, we formulate the ST\\'s optimal transmit power allocation to maximize the SU\\'s EC with both band-selection criteria and, correspondingly, obtain the secondary\\'s power allocation and maximum EC in closed forms. Numerical results demonstrated subsequently substantiate the validity of our derivations and provide a powerful tool for the spectrum-band selection in CR networks with multiple bands available. © 1967-2012 IEEE.

  13. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  14. Band structural properties of MoS2 (molybdenite)

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1980-01-01

    Semiconductivity and superconductivity in MoS 2 (molybdenite) can be understood in terms of the band structure of MoS 2 . The band structural properties of MoS 2 are presented here. The energy dependence of nsub(eff) and epsilon(infinity)sub(eff) is investigated. Using calculated values of nsub(eff) and epsilon(infinity)sub(eff), the Penn gap has been determined. The value thus obtained is shown to be in good agreement with the reflectivity data and also with the value obtained from the band structure. The Ravindra and Srivastava formula has been shown to give values for the isobaric temperature gradient of Esub(G)[(deltaEsub(G)/deltaT)sub(P)], which are in agreement with the experimental data, and the contribution to (deltaEsub(G)/deltaT)sub(P) due to the electron lattice interaction has been evaluated. In addition, the electronic polarizability has been calculated using a modified Lorentz-Lorenz relation. (author)

  15. Design of an S band narrow-band bandpass BAW filter

    Science.gov (United States)

    Gao, Yang; Zhao, Kun-li; Han, Chao

    2017-11-01

    An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.

  16. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Assessments of forest cover, forest carbon stocks and carbon emissions from deforestation and degradation are increasingly important components of sustainable resource management, for combating biodiversity loss and in climate mitigation policies. Satellite remote sensing provides the only means for mapping global forest cover regularly. However, forest classification with optical data is limited by its insensitivity to three-dimensional canopy structure and cloud cover obscuring many forest regions. Synthetic Aperture Radar (SAR sensors are increasingly being used to mitigate these problems, mainly in the L-, C- and X-band domains of the electromagnetic spectrum. S-band has not been systematically studied for this purpose. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest characterisation. The Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model is utilised to understand the scattering mechanisms in forest canopies at S-band. The MIMICS-I model reveals strong S-band backscatter sensitivity to the forest canopy in comparison to soil characteristics across all polarisations and incidence angles. Airborne S-band SAR imagery over the temperate mixed forest of Savernake Forest in southern England is analysed for its information content. Based on the modelling results, S-band HH- and VV-polarisation radar backscatter and the Radar Forest Degradation Index (RFDI are used in a forest/non-forest Maximum Likelihood classification at a spatial resolution of 6 m (70% overall accuracy, κ = 0.41 and 20 m (63% overall accuracy, κ = 0.27. The conclusion is that S-band SAR such as from NovaSAR-S is likely to be suitable for monitoring forest cover and its changes.

  17. High Efficiency S-Band 20 Watt Amplifier

    Data.gov (United States)

    National Aeronautics and Space Administration — This project includes the design and build of a prototype 20 W, high efficiency, S-Band amplifier.   The design will incorporate the latest semiconductor technology,...

  18. Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model

    Science.gov (United States)

    Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad

    2018-02-01

    In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.

  19. Performance of a 150-MW S-band klystron

    International Nuclear Information System (INIS)

    Sprehn, D.; Phillips, R.M.; Caryotakis, G.

    1994-09-01

    As part of an international collaboration, the Stanford Linear Accelerator Center (SLAC) klystron group has designed, fabricated, and tested a 60-Hz, 3-μs, 150-MW S-band klystron built for Deutsches Elektronen Synchrotron (DESY). A test diode with a 535-kV, 700-A electron beam was constructed to verify the gun operation. The first klystron was built and successfully met design specifications. The 375-MW electron beam represents a new record for SLAC accelerator klystrons in terms of voltage, current, energy, and ruggedness of design. The rf output power is a 150% increase over the S-band tubes currently used in the two-mile-long linear accelerator at SLAC. This paper discusses design issues and experimental results of the diode and klystron

  20. Modulators for the S-band test linac at DESY

    Science.gov (United States)

    Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch.

    1995-07-01

    The development of adequate modulators for high peak power klystrons is one of the focus points for linear collider R&D programs. For the DESY/THD S-band linear collider study 150 MW rf-pulse power at 50 Hz repetition rate and 3 μs pulse duration is required [1]. Two different modulator schemes are under investigation. One is the conventional line type pulser, using a pulse forming network and a step up transformer, the other one is a hard tube pulser, using a dc power source at the full klystron voltage and a switch tube. This paper is focused on the modulator development for the S-band Test Linac at DESY. After a short overview over the test linac and a brief description of the 150 MW S-band klystron the circuitry of the line type pulse (LTP) is given. A hard tube pulser (HTP), which switches the high voltage directly from a storage capacitor to the klystron, has been built up at DESY. Circuitry and the results of the commissioning of the switch tube are reported.

  1. Broadband S-band class E HPA

    NARCIS (Netherlands)

    Wanum, M.; van Dijk, R.; de Hek, A.P.; van Vliet, Frank Edward

    2009-01-01

    A broadband class E High Power Amplifier (HPA) is presented. This HPA is designed to operate at S-band (2.75 to 3.75 GHz). A power added efficiency of 50% is obtained for the two stage amplifier with an output power of 35.5 dBm on a chip area of 5.25 times 2.8 mm2.

  2. CPM Signals for Satellite Navigation in the S and C Bands.

    Science.gov (United States)

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-06-05

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes.

  3. Determination of band offsets at GaN/single-layer MoS2 heterojunction

    KAUST Repository

    Tangi, Malleswararao

    2016-07-25

    We report the band alignment parameters of the GaN/single-layer (SL) MoS2 heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS2/c-sapphire. We confirm that the MoS2 is an SL by measuring the separation and position of room temperature micro-Raman E1 2g and A1 g modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS2 heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS2 and GaN. The valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.

  4. Determination of band offsets at GaN/single-layer MoS2 heterojunction

    KAUST Repository

    Tangi, Malleswararao; Mishra, Pawan; Ng, Tien Khee; Hedhili, Mohamed N.; Janjua, Bilal; Alias, Mohd Sharizal; Anjum, Dalaver H.; Tseng, Chien-Chih; Shi, Yumeng; Joyce, Hannah J.; Li, Lain-Jong; Ooi, Boon S.

    2016-01-01

    We report the band alignment parameters of the GaN/single-layer (SL) MoS2 heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS2/c-sapphire. We confirm that the MoS2 is an SL by measuring the separation and position of room temperature micro-Raman E1 2g and A1 g modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS2 heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS2 and GaN. The valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.

  5. A comparative cepstral based analysis of simulated and measured S-band and X-band radar Doppler spectra of human motion

    CSIR Research Space (South Africa)

    Van Eeden, WD

    2015-10-01

    Full Text Available targets. It is also shown that, whereas the motion of most body parts of a human target can be observed in the X-band data, only the main torso sway can be observed at S-band. This implies that X-band data is well suited to cepstrum based human motion...

  6. Bunch monitor for an S-band electron linear accelerator

    International Nuclear Information System (INIS)

    Otake, Yuji; Nakahara, Kazuo

    1991-01-01

    The measurement of bunch characteristics in an S-band electron linear accelerator is required in order to evaluate the quality of accelerated electron beams. A new-type bunch monitor has been developed which combines micro-stripline technology with an air insulator and wall-current monitoring technology. The obtained time resolution of the monitor was more than 150 ps. This result shows that the monitor can handle the bunch number of an S-band linac. The structure of the monitor is suitable for being installed in the vacuum area, since it is constructed of only metal and ceramic parts. It can therefore easily be employed in an actual machine

  7. Band alignment at the Cu{sub 2}ZnSn(S{sub x}Se{sub 1-x}){sub 4}/CdS interface

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard; Barkhouse, Aaron; Gunawan, Oki; Shin, Byungha; Copel, Matt; Hopstaken, Marinus; Mitzi, David B [IBM TJ Watson Research Center, P.O. Box 218, Yorktown Hts., New York 10598 (United States)

    2011-06-20

    Energy band alignments between CdS and Cu{sub 2}ZnSn(S{sub x}Se{sub 1-x}){sub 4} (CZTSSe) grown via solution-based and vacuum-based deposition routes were studied as a function of the [S]/[S+Se] ratio with femtosecond laser ultraviolet photoelectron spectroscopy, photoluminescence, medium energy ion scattering, and secondary ion mass spectrometry. Band bending in the underlying CZTSSe layer was measured via pump/probe photovoltage shifts of the photoelectron spectra and offsets were determined with photoemission under flat band conditions. Increasing the S content of the CZTSSe films produces a valence edge shift to higher binding energy and increases the CZTSSe band gap. In all cases, the CdS conduction band offsets were spikes.

  8. Summary and Analysis of the U.S. Government Bat Banding Program

    Science.gov (United States)

    Ellison, Laura E.

    2008-01-01

    This report summarizes the U.S. Government Bat Banding Program (BBP) from 1932 to 1972. More than 2 million bands were issued during the program, of which approximately 1.5 million bands were applied to 36 bat species by scientists in many locations in North America including the U.S., Canada, Mexico, and Central America. Throughout the BBP, banders noticed numerous and deleterious effects on bats, leading to a moratorium on bat banding by the U.S. Fish and Wildlife Service, and a resolution to cease banding by the American Society of Mammalogists in 1973. One of the main points of the memorandum written to justify the moratorium was to conduct a 'detailed evaluation of the files of the bat-banding program.' However, a critical and detailed evaluation of the BBP was never completed. In an effort to satisfy this need, I compiled a detailed history of the BBP by examining the files and conducting a literature review on bat banding activities during the program. I also provided a case study in managing data and applying current mark-recapture theory to estimate survival using the information from a series of bat bands issued to Clyde M. Senger during the BBP. The majority of bands applied by Senger were to Townsend's big-eared bat (Corynorhinus townsendii), a species of special concern for many states within its geographic range. I developed a database management system for the bat banding records and then analyzed and modeled survival of hibernating Townsend's big-eared bats at three main locations in Washington State using Cormack-Jolly-Seber (CJS) open models and the modeling capabilities of Program MARK. This analysis of a select dataset in the BBP files provided relatively precise estimates of survival for wintering Townsend's big-eared bats. However, this dataset is unique due to its well-maintained and complete state and because there were high recapture rates over the course of banding; it is doubtful that other unpublished datasets of the same quality exist

  9. Determination of band offsets at GaN/single-layer MoS{sub 2} heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Tangi, Malleswararao; Mishra, Pawan; Ng, Tien Khee; Janjua, Bilal; Alias, Mohd Sharizal; Ooi, Boon S., E-mail: boon.ooi@kaust.edu.sa [Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Hedhili, Mohamed Nejib; Anjum, Dalaver H. [Adavanced Nanofabrication Imaging and Characterization, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tseng, Chien-Chih; Shi, Yumeng; Li, Lain-Jong [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Joyce, Hannah J. [Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, Cambridgeshire CB3 0FA (United Kingdom)

    2016-07-18

    We report the band alignment parameters of the GaN/single-layer (SL) MoS{sub 2} heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS{sub 2}/c-sapphire. We confirm that the MoS{sub 2} is an SL by measuring the separation and position of room temperature micro-Raman E{sup 1}{sub 2g} and A{sup 1}{sub g} modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS{sub 2} heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS{sub 2} and GaN. The valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.

  10. Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Malashchonak, M.V.; Streltsov, E.A.; Mazanik, A.V.; Kulak, A.I.; Poznyak, S.K.; Stroyuk, O.L.; Kuchmiy, S.Ya.; Gaiduk, P.I.

    2015-01-01

    Cadmium sulfide nanoparticle (NP) deposition by the successive ionic layer adsorption and reaction (SILAR) method on the surface of mesoporous ZnO micro-platelets with a large specific surface area (110 ± 10 m 2 g −1 ) results in the formation of ZnO/CdS heterostructures exhibiting a high incident photon-to-current conversion efficiency (Y) not only within the region of CdS fundamental absorption (Y max = 90%; 0.1 M Na 2 S + 0.1 M Na 2 SO 3 ), but also in the sub-band-gap (SBG) range (Y max = 25%). The onset potentials of SBG photoelectrochemical processes are more positive than the band-gap (BG) onset potential by up to 100 mV. A maximum incident photon-to-current conversion efficiency value for SBG processes is observed at larger amount of deposited CdS in comparison with the case of BG ones. The Urbach energy (E U ) of CdS NPs determined from the photocurrent spectra reaches a maximal value on an early deposition stage (E U = 93 mV at SILAR cycle number N = 5), then lowers somewhat (E U = 73 mV at N = 10) and remains steady in the range of N from 20 to 300 (E U = 67 ± 1 mV). High efficiency of the photoelectrochemical SBG processes are interpreted in terms of light scattering in the ZnO/CdS heterostructures. - Highlights: • ZnO/CdS films demonstrate high quantum efficiency (25%) for sub-band-gap transitions. • Onset photocurrent potentials for sub-band-gap processes differ than those for band-gap ones. • Sub-band-gap transitions are caused by band-tail states in CdS nanoparticles

  11. Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Malashchonak, M.V., E-mail: che.malasche@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A., E-mail: streltea@bsu.by [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Poznyak, S.K. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Stroyuk, O.L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 prosp. Nauky, 03028 Kyiv (Ukraine); Kuchmiy, S.Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 prosp. Nauky, 03028 Kyiv (Ukraine); Gaiduk, P.I. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-08-31

    Cadmium sulfide nanoparticle (NP) deposition by the successive ionic layer adsorption and reaction (SILAR) method on the surface of mesoporous ZnO micro-platelets with a large specific surface area (110 ± 10 m{sup 2}g{sup −1}) results in the formation of ZnO/CdS heterostructures exhibiting a high incident photon-to-current conversion efficiency (Y) not only within the region of CdS fundamental absorption (Y{sub max} = 90%; 0.1 M Na{sub 2}S + 0.1 M Na{sub 2}SO{sub 3}), but also in the sub-band-gap (SBG) range (Y{sub max} = 25%). The onset potentials of SBG photoelectrochemical processes are more positive than the band-gap (BG) onset potential by up to 100 mV. A maximum incident photon-to-current conversion efficiency value for SBG processes is observed at larger amount of deposited CdS in comparison with the case of BG ones. The Urbach energy (E{sub U}) of CdS NPs determined from the photocurrent spectra reaches a maximal value on an early deposition stage (E{sub U} = 93 mV at SILAR cycle number N = 5), then lowers somewhat (E{sub U} = 73 mV at N = 10) and remains steady in the range of N from 20 to 300 (E{sub U} = 67 ± 1 mV). High efficiency of the photoelectrochemical SBG processes are interpreted in terms of light scattering in the ZnO/CdS heterostructures. - Highlights: • ZnO/CdS films demonstrate high quantum efficiency (25%) for sub-band-gap transitions. • Onset photocurrent potentials for sub-band-gap processes differ than those for band-gap ones. • Sub-band-gap transitions are caused by band-tail states in CdS nanoparticles.

  12. High Peak Power Test and Evaluation of S-band Waveguide Switches

    Science.gov (United States)

    Nassiri, A.; Grelick, A.; Kustom, R. L.; White, M.

    1997-05-01

    The injector and source of particles for the Advanced Photon Source is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five exsisting S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized S-band waveguide switches at a peak operating power of 35 MW. Such rf switches have been successfully operated at other accelerator facilities but at lower peak powers. A test stand has been set up at the Stanford Linear Accelerator Center (SLAC) Klystron Factory to conduct tests comparing the power handling characteristics of two WR-284 and one WR-340 switches. Test results are presented and their implications for the design of the switching system are discussed.

  13. S-band 45 MW peak power test facility at RRCAT

    International Nuclear Information System (INIS)

    Wanmode, A. Yashwant; Reddy, Sivananda; Mulchandani, J.; Mohania, Praveen; Shrivastava, B. Purushottam

    2015-01-01

    RRCAT is engaged in the design and development of high energy electron LINAC as future injectors for the Booster Synchrotron for Indus-1 and Indus-2 SRS. The high energy LINAC will need microwave power over 30 MW depending on the number of structures to be energized. In order to have advance preparations for this development a 45 MW S-Band test facility has been designed and developed at RRCAT. The test stand is built around a 45 MW peak power S-band pulsed klystron, A conventional pulse forming network based modulator for klystron has been designed and developed. The WR-284 waveguide transmission system consisting of dual directional couplers, SF 6 gas pressurization unit, high power waveguide load and arc sensor has been developed and interfaced with the klystron. The klystron has been successfully tested up to 30 MW peak power at 2856 MHz on SF 6 pressurized waveguide line. A solid state S Band driver amplifier up to 1 kW output power was designed developed for driving the klystron. This paper describes the results of 30 MW peak power test of this facility. (author)

  14. Electronic structure of the misfit layer compound (SnS)(1.20)TiS2 : Band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; deGroot, RA; Wiegers, GA; Haas, C

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)(1.20)TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  15. Electronic structure of the misfit layer compound (SnS)1.20TiS2 : band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Groot, R.A. de; Wiegers, G.A.; Haas, C.

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)1.20TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  16. Airborne S-Band SAR for Forest Biophysical Retrieval in Temperate Mixed Forests of the UK

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Radar backscatter from forest canopies is related to forest cover, canopy structure and aboveground biomass (AGB. The S-band frequency (3.1–3.3 GHz lies between the longer L-band (1–2 GHz and the shorter C-band (5–6 GHz and has been insufficiently studied for forest applications due to limited data availability. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest biophysical properties. To understand the scattering mechanisms in forest canopies at S-band the Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model was used. S-band backscatter was found to have high sensitivity to the forest canopy characteristics across all polarisations and incidence angles. This sensitivity originates from ground/trunk interaction as the dominant scattering mechanism related to broadleaved species for co-polarised mode and specific incidence angles. The study was carried out in the temperate mixed forest at Savernake Forest and Wytham Woods in southern England, where airborne S-band SAR imagery and field data are available from the recent AirSAR campaign. Field data from the test sites revealed wide ranges of forest parameters, including average canopy height (6–23 m, diameter at breast-height (7–42 cm, basal area (0.2–56 m2/ha, stem density (20–350 trees/ha and woody biomass density (31–520 t/ha. S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest AGB with least error between 90.63 and 99.39 t/ha and coefficient of determination (r2 between 0.42 and 0.47 for the co-polarised channel at 0.25 ha resolution. The conclusion is that S-band SAR data such as from NovaSAR-S is suitable for monitoring forest aboveground biomass less than 100 t/ha at 25 m resolution in low to medium incidence angle range.

  17. Band gap engineering of MoS{sub 2} upon compression

    Energy Technology Data Exchange (ETDEWEB)

    López-Suárez, Miquel, E-mail: miquel.lopez@nipslab.org [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia (Italy); Neri, Igor [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia (Italy); INFN Sezione di Perugia, via Pascoli, 06123 Perugia (Italy); Rurali, Riccardo [Institut de Ciència de Materials de Barcelona (ICMAB–CSIC) Campus de Bellaterra, 08193 Bellaterra, Barcelona (Spain)

    2016-04-28

    Molybdenum disulfide (MoS{sub 2}) is a promising candidate for 2D nanoelectronic devices, which shows a direct band-gap for monolayer structure. In this work we study the electronic structure of MoS{sub 2} upon both compressive and tensile strains with first-principles density-functional calculations for different number of layers. The results show that the band-gap can be engineered for experimentally attainable strains (i.e., ±0.15). However, compressive strain can result in bucking that can prevent the use of large compressive strain. We then studied the stability of the compression, calculating the critical strain that results in the on-set of buckling for free-standing nanoribbons of different lengths. The results demonstrate that short structures, or few-layer MoS{sub 2}, show semi-conductor to metal transition upon compressive strain without bucking.

  18. High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.

    Science.gov (United States)

    Baskakov, O I; Civis, S; Kawaguchi, K

    2005-03-15

    In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.

  19. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending.

    Science.gov (United States)

    Zhang, Chendong; Johnson, Amber; Hsu, Chang-Lung; Li, Lain-Jong; Shih, Chih-Kang

    2014-05-14

    Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.

  20. Lunar Noise-Temperature Increase Measurements at S-Band, X-Band, and Ka-Band Using a 34-Meter-Diameter Beam-Waveguide Antenna

    Science.gov (United States)

    Morabito, D. D.

    2006-08-01

    The Moon radiates energy at infrared and microwave wavelengths, in addition to reflecting sunlight at optical wavelengths. As a result, an antenna pointed at or near the Moon will cause an increase in receiver noise temperature that needs to be accounted for in telemetry, radio science, or ranging link budgets. The Deep Space Network may be required to use its antennas in future lunar robotic or human missions, and thus it is important to understand the nature of this temperature increase as a function of observing frequency, lunar phase, and angular offset of the antenna beam from the center of the lunar disk. This article quantifies such a set of measurements acquired at DSS 13, a 34-m-diameter research and development beam-waveguide antenna located at Goldstone, California, at three different telecommunication frequencies, S-band (2.3 GHz), X-band (8.4 GHz), and Ka-band (32 GHz), over a wide range of lunar phase, for both disk-centered and limb-centered positions of the antenna beam.

  1. A microscopic study of the S band in the generator co-ordinate approach

    International Nuclear Information System (INIS)

    Wuest, E.; Ansari, A.

    1985-04-01

    Using particle number and spin projected cranked Hartree-Fock-Bogolubov (CHFB) wave functions in the generator co-ordinate method (GCM) with the cranking frequency as a GC the shortcomings of the usual CHFB theory are removed and the ground as well as the s band are studied simultaneously. In particular, low-spin properties of the s band are discussed for a backbending nucleus 158 Dy. (author)

  2. Electronic structure of the misfit-layer compound (SnS)1.17NbS2 deduced from band-structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Ettema, A.R.H.F.; Haas, C.; Wiegers, G.A.; Leuken, H. van; Groot, R.A. de

    1995-01-01

    In order to understand the electronic structure of the misfit-layer compound (SnS)1.17NbS2 we carried out an ab initio band-structure calculation of the closely related commensurate compound (SnS)1.20NbS2. The band structure is compared with calculations for NbS2 and for hypothetical SnS with

  3. A multi-channel S-band FMCW radar front-end

    NARCIS (Netherlands)

    Maas, A.P.M.; Vliet, F.E. van

    2008-01-01

    This paper describes the design and performance of a low-cost synthesized FMCW radar module, operating in S band. The bi-layer PCB contains a frequency-agile low phase-noise synthesizer and three identical coherent receive-channels. The transmit channel has an automatic power control system that

  4. Mini-RF S- and X-band Bistatic Observations of the Floor of Cabeus Crater

    Science.gov (United States)

    Patterson, Gerald Wesley; Stickle, Angela; Turner, Franklin; Jensen, James; Cahill, Joshua; Mini-RF Team

    2017-10-01

    The Mini-RF instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) and operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34 meter antenna DSS-13 to collect S- and X-band bistatic radar data of the Moon. Bistatic radar data provide a means to probe the near subsurface for the presence of water ice, which exhibits a strong response in the form of a Coherent Backscatter Opposition Effect (CBOE). This effect has been observed in radar data for the icy surfaces of the Galilean satellites, the polar caps of Mars, polar craters on Mercury, and terrestrial ice sheets in Greenland. Previous work using Mini-RF S-band (12.6 cm) bistatic data suggests the presence of a CBOE associated with the floor of the lunar south polar crater Cabeus. The LRO spacecraft has begun its third extended mission. For this phase of operations Mini-RF is leveraging the existing AO architecture to make S-band radar observations of additional polar craters (e.g., Haworth, Shoemaker, Faustini). The purpose of acquiring these data is to determine whether other polar craters exhibit the response observed for Cabeus. Mini-RF has also initiated a new mode of operation that utilizes the X-band (4.2cm) capability of the instrument receiver and a recently commissioned X/C-band transmitter within the Deep Space Network’s (DSN) Goldstone complex to collect bistatic X-band data of the Moon. The purpose of acquiring these data is to constrain the depth/thickness of materials that exhibit a CBOE response - with an emphasis on observing the floor of Cabeus. Recent Mini-RF X-band observations of the floors of the craters Cabeus do not show evidence for a CBOE. This would suggest that the upper ~0.5 meters of the regolith for the floor of Cabeus do not harber water ice in a form detectable at 4.2 cm wavelengths.

  5. Band alignment of two-dimensional metal monochalcogenides MXs (M=Ga,In; X=S,Se,Te

    Directory of Open Access Journals (Sweden)

    Huazheng Sun

    2017-09-01

    Full Text Available Monolayer metal monochalcogenides MXs (M=Ga,In; X=S,Se,Te form a new class of two-dimensional semiconductors with indirect band gaps, and their band alignment information is investigated via first principles calculations. The dependence of band gap, valence-band maximum, conduction band minimum, and charge transfer on the M or X element has been obtained and can be understood from the orbital analysis of the band edges. Potential applications of metal monochalcogenides to design van der Waals heterostructures and catalyse the photo-splitting reaction of water have been discussed.

  6. Bandwidth Extension of an S-band, Fundamental-Mode Eight-Beam Klystron

    Science.gov (United States)

    2006-04-01

    Extension of an S - band , Fundamental-Mode Eight-Beam Klystron Khanh T. Nguyen Beam-Wave Research, Inc. Bethesda, MD 20814 Dean E. Pershing ATK Mission...of a five-cavity, approximately 18 cm downstream from the center of the broadband, high - power multiple-beam klystron (MBK) first gap - the logical...the circuit generates >550 kW across the band with a peak power of more than 600 kW at -3.27 Keywords: Multiple-beam klystron ; MBK; bandwidth GHz. The 1

  7. Life test on indigenous s-band pulsed magnetron

    International Nuclear Information System (INIS)

    Wanmode, Y.D.; Shrivastava, P.; Hannurkar, P.R.

    1999-01-01

    A 2 MW S-band pulsed magnetron has been developed under joint collaboration between CAT and CEERI. In this development effort several lab prototypes were evaluated on 2 MW microwave test facility developed at CAT. One magnetron is subjected to life test. The present paper describes the setup and procedures used for life test. Various observations and corrections made during the life tests are also described. Results of the tests are discussed. (author)

  8. Simulation study of the high intensity S-Band photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiongwei; Nakajima, Kazuhisa [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-10-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 {pi} mm mrad can be outputted at the exit of photoinjector. (author)

  9. Simulation study of the high intensity S-Band photoinjector

    International Nuclear Information System (INIS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2001-01-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 π mm mrad can be outputted at the exit of photoinjector. (author)

  10. RF processing of an S-band high gradient accelerator unit

    International Nuclear Information System (INIS)

    Morita, S.

    1994-01-01

    A 3m-long S-band accelerating structure is used in 1.54 GeV Linac of Accelerator Test Facility. The accelerating structure should be processed up to 200 MW which produce 52 MV/m accelerating gradient. The process of RF processing is described. (author)

  11. 260 Gbit/s photonic-wireless link in the THz band

    DEFF Research Database (Denmark)

    Pang, X.; Jia, S.; Ozolins, O.

    2016-01-01

    A single-transmitter/single-receiver THz link (0.3-0.5 THz) with a record net data rate of 260 Gbit/s is experimentally demonstrated. Spectrally efficient multi-channel signal transmission is enabled by a novel frequency-band-allocation scheme with pre-and post- digital equalization....

  12. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction

    KAUST Repository

    Chiu, Ming-Hui; Zhang, Chendong; Shiu, Hung-Wei; Chuu, Chih-Piao; Chen, Chang-Hsiao; Chang, Chih-Yuan S.; Chen, Chia-Hao; Chou, Mei-Yin; Shih, Chih-Kang; Li, Lain-Jong

    2015-01-01

    The emergence of two-dimensional electronic materials has stimulated proposals of novel electronic and photonic devices based on the heterostructures of transition metal dichalcogenides. Here we report the determination of band offsets in the heterostructures of transition metal dichalcogenides by using microbeam X-ray photoelectron spectroscopy and scanning tunnelling microscopy/spectroscopy. We determine a type-II alignment between MoS2 and WSe2 with a valence band offset value of 0.83 eV and a conduction band offset of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of WSe2 and MoS2 are well retained in their respective layers due to a weak interlayer coupling. Moreover, a valence band offset of 0.94 eV is obtained from density functional theory, consistent with the experimental determination.

  13. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction

    KAUST Repository

    Chiu, Ming-Hui

    2015-07-16

    The emergence of two-dimensional electronic materials has stimulated proposals of novel electronic and photonic devices based on the heterostructures of transition metal dichalcogenides. Here we report the determination of band offsets in the heterostructures of transition metal dichalcogenides by using microbeam X-ray photoelectron spectroscopy and scanning tunnelling microscopy/spectroscopy. We determine a type-II alignment between MoS2 and WSe2 with a valence band offset value of 0.83 eV and a conduction band offset of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of WSe2 and MoS2 are well retained in their respective layers due to a weak interlayer coupling. Moreover, a valence band offset of 0.94 eV is obtained from density functional theory, consistent with the experimental determination.

  14. Resolution of the 179W-isomer anomaly: Exposure of a Fermi-aligned s band

    International Nuclear Information System (INIS)

    Walker, P.M.; Dracoulis, G.D.; Byrne, A.P.; Fabricius, B.; Kibedi, T.; Stuchbery, A.E.; Department of Physics, University of Surrey, Guildford, GU2 5XH United Kingdom)

    1991-01-01

    The K π =35/2 - , five-quasiparticle isomer in 179 W is shown to decay into the region of a backbend in the 7/2 - [514] band, allowing for the first time the identification of a full set of aligned-band states. Destructive interference results from level mixing in the band-crossing region. The deduced γ-ray branching ratios are used to establish the mixing matrix elements and to show that the aligned band has a high value of the K quantum number. The properties of well-defined alignment and yet also high K provide the first clear example of a Fermi-aligned s band. The anomalous decay of the isomer itself is now explained

  15. Band alignment of ZnO/multilayer MoS{sub 2} interface determined by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: liuwj@szu.edu.cn; He, Jiazhu; Chen, Le; Li, Kuilong; Jia, Fang; Zeng, Yuxiang; Lu, Youming; Zhu, Deliang; Liu, Wenjun, E-mail: xkliu@szu.edu.cn, E-mail: liuwj@szu.edu.cn [College of Materials Science and Engineering, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Zhang, Yuan [School of Physics and Electronic Information, Hua Bei Normal University, 100 Dongshan Road, Huai Bei 235000 (China); Liu, Qiang; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Wu, Jing [Institute of Materials research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2016-08-15

    The energy band alignment between ZnO and multilayer (ML)-MoS{sub 2} was characterized using high-resolution x-ray photoelectron spectroscopy. The ZnO film was deposited using an atomic layer deposition tool, and ML-MoS{sub 2} was grown by chemical vapor deposition. A valence band offset (VBO) of 3.32 eV and a conduction band offset (CBO) of 1.12 eV were obtained for the ZnO/ML-MoS{sub 2} interface without any treatment. With CHF{sub 3} plasma treatment, a VBO and a CBO across the ZnO/ML-MoS{sub 2} interface were found to be 3.54 eV and 1.34 eV, respectively. With the CHF{sub 3} plasma treatment, the band alignment of the ZnO/ML-MoS{sub 2} interface has been changed from type II or staggered band alignment to type III or misaligned one, which favors the electron-hole pair separation. The band alignment difference is believed to be dominated by the down-shift in the core level of Zn 2p or the interface dipoles, which is caused by the interfacial layer rich in F.

  16. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  17. Resolution of the 179W isomer anomaly: exposure of a fermi aligned s-band

    International Nuclear Information System (INIS)

    Walker, P.M.; Surrey Univ., Guildford; Dracoulis, G.D.; Byrne, A.P.; Fabricius, B.; Kibedi, T.; Stuchbery, A.E.

    1991-06-01

    The K Π = 35/2 - , five quasiparticle isomer in 179 W is shown to decay into the region of a backbend in the 7/2 - [514] band, allowing for the first time the identification of a full set of aligned-band states. Destructive interference results from level-mixing in the band-crossing region. The deduced γ-ray branching ratios are used to establish the mixing matrix elements and to show that the aligned band has a high value of the K-quantum number. The properties of well-defined alignment and yet also high-K, provided the first clear example of a Fermi Aligned s-band. The anomalous decay of the isomer itself is now explained. 11 refs., 1 tab., 3 figs

  18. 16O+16O molecular nature of the superdeformed band of 32S and the evolution of the molecular structure

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Horiuchi, Hisashi

    2004-01-01

    The relation between the superdeformed band of 32 S and 16 O+ 16 O molecular bands is studied by the deformed-basis antisymmetrized molecular dynamics with the Gogny D1S force. It is found that the obtained superdeformed band members of S have a considerable amount of the 16 O+ 16 O component. Above the superdeformed band, we have obtained two excited rotational bands which have more prominent character of the 16 O+ 16 O molecular band. These three rotational bands are regarded as a series of 16 O+ 16 O molecular bands which were predicted by using the unique 16 O- 16 O optical potential. As the excitation energy and principal quantum number of the relative motion increase, the 16 O+ 16 O cluster structure becomes more prominent but at the same time, the band members are fragmented into several states

  19. Suppressing band gap of MoS{sub 2} by the incorporation of four- and eight-membered rings

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liyan; Zhang, Tingting, E-mail: ttzhang@hytc.edu.cn [Huaiyin Normal University, School of Physics and Electronic & Electrical Engineering, and Jiangsu Key Laboratory of Modern Measurement Technology and Intelligent Systems (China)

    2015-05-15

    A stable planar allotrope of MoS{sub 2}, formed by introducing four- and eight-membered rings into its hexagonal network (H468), is identified to be a narrow direct-band-gap semiconductor by first principle calculations, which is remarkably different from the large band gap semiconductor of conventional MoS{sub 2} and also the zero band gap allotrope consisting of four- and eight-membered rings (H48) only. The medium-sized direct band gap indicates that H468 would find applications in nanoelectronics and near-infrared optoelectronic devices. Furthermore, the distinctive simulated scanning tunneling microscope images under positive and negative biases might be a unique characteristic for the experimental identification of such an allotrope of MoS{sub 2}.

  20. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band

    Directory of Open Access Journals (Sweden)

    X. Yu

    2016-11-01

    Full Text Available To accommodate the ever increasing wireless traffic in the access networks, considerable efforts have been recently invested in developing photonics-assisted wireless communication systems with very high data rates. Superior to photonic millimeter-wave systems, terahertz (THz band (300 GHz-10 THz provides a much larger bandwidth and thus promises an extremely high capacity. However, the capacity potential of THz wireless systems has by no means been achieved yet. Here, we successfully demonstrate 160 Gbit/s wireless transmission by using a single THz emitter and modulating 25 GHz spaced 8 channels (20 Gbps per channel in the 300-500 GHz band, which is the highest bitrate in the frequency band above 300 GHz, to the best of our knowledge.

  1. Kent’s Sweden, or what a rock band can tell us about a nation

    Directory of Open Access Journals (Sweden)

    Johansson, Ola

    2013-06-01

    Full Text Available Music can communicate a great deal about the culture and society that it comes from. This is the case with the contemporary Swedish rock band Kent, who are not only the most popular band in recent Swedish music history, but also perceived as quintessentially Swedish. Of particular importance to understand this Swedishness is the band’s origin in the city of Eskilstuna, which communicates three interrelated ideas about Sweden: Eskilstuna as an archetypical Swedish small city; the band’s humble beginnings in Eskilstuna illustrates a “class journey” that resonates in Sweden; and Kent’s migration to Stockholm has resulted in an ambivalent relationship with their hometown. The path of Kent’s career has further reinforced the notion of Kent as a Swedish band, particularly as they failed outside the Nordic countries and how their concert choices and collective public persona create associations with Swedishness. Finally, the content of Kent’s music and lyrics are rich with spatial and environmental metaphors that can be conceptualized as four different landscapes representing Sweden: an inner landscape, a public landscape, an urban landscape, and a winter landscape.

  2. Compton profiles and band structure calculations of CdS and CdTe

    International Nuclear Information System (INIS)

    Heda, N.L.; Mathur, S.; Ahuja, B.L.; Sharma, B.K.

    2007-01-01

    In this paper we present the isotropic Compton profiles of zinc-blende CdS and CdTe measured at an intermediate resolution of 0.39 a.u. using our 20 Ci 137 Cs Compton spectrometer. The electronic band structure calculations for both the zinc-blende structure compounds and also wurtzite CdS have been undertaken using various schemes of ab-initio linear combination of atomic orbitals calculations implemented in CRYSTAL03 code. The band structure and Mulliken's populations are reported using density functional scheme. In case of wurtzite CdS, our theoretical anisotropies in directional Compton profiles are compared with available experimental data. In case of both the zinc-blende compounds, the isotropic experimental profiles are found to be in better agreement with the present Hartree-Fock calculations. A study of the equal-valence-electron-density experimental profiles of zinc-blende CdS and CdTe shows that the CdS is more ionic than CdTe. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Single Channel 106 Gbit/s 16QAM Wireless Transmission in the 0.4 THz Band

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Jia, Shi; Ozolins, Oskars

    2017-01-01

    We experimentally demonstrate a single channel 32-GBd 16QAM THz wireless link operating in the 0.4 THz band. Post-FEC net data rate of 106 Gbit/s is successfully achieved without any spatial/frequency multiplexing.......We experimentally demonstrate a single channel 32-GBd 16QAM THz wireless link operating in the 0.4 THz band. Post-FEC net data rate of 106 Gbit/s is successfully achieved without any spatial/frequency multiplexing....

  4. Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics

    Science.gov (United States)

    Zhou, Ru; Niu, Haihong; Ji, Fengwei; Wan, Lei; Mao, Xiaoli; Guo, Huier; Xu, Jinzhang; Cao, Guozhong

    2016-11-01

    PbS is a promising light harvester for near-infrared (NIR) responsive quantum dot (QD) photovoltaics due to its narrow bulk band gap (0.41 eV) and large exciton Bohr radius (18 nm). However, the relatively low conduction band (CB) and high-density surface defects of PbS as two major drawbacks for its use in solar cells severely hamper the photovoltaic performance enhancement. In this work, a modified solution-based successive ionic layer adsorption and reaction (SILAR) utilizing mixed cationic precursors of Pb2+ and Cd2+ is explored, and such a scheme offers two benefits, band-structure tailoring and surface passivation. In-situ deposited CdS suppresses the excessive growth of PbS in the mesopores, thereby facilitating the favorable electron injection from PbS to TiO2 in view of the up-shifted CB level of QDs; the intimate interpenetration of two sulfides with each other leads to superior passivation of trap state defects on PbS, which suppresses the interfacial charge recombination. With the construction of photovoltaics based on such a hybrid (Pb,Cd)S/CdS configuration, impressive power conversion efficiency up to 4.08% has been reached, outperforming that of the conventional PbS/CdS pattern (2.95%). This work highlights the great importance of band-structure tailoring and surface passivation for constructing highly efficient PbS QD photovoltaics.

  5. Development of an S-band cavity Beam Position Monitor for ATF2

    Science.gov (United States)

    Heo, A.; Kim, E.-S.; Kim, H.; Son, D.; Honda, Y.; Tauchi, T.

    2013-04-01

    We have developed an S-band cavity Beam Position Monitor (BPM) in order to measure the position of an electron beam in the final focus area at ATF2, which is the test facility for the final focus design for the International Linear Collider (ILC). The lattice of the ILC Beam Delivery System (BDS) has been modified, requiring a larger physical aperture of 40 mm in the final focus area. The beam orbit measurement in this area is now covered with high resolution S-Band cavity BPMs. In this paper we summarize the design of the cavity BPM and the first experimental results. The calibration slopes were measured as 0.87 counts/μm in the x-coordinate direction and 1.16 counts/μm in the y-coordinate direction.

  6. Bi2Se3/CdS/TiO2 hybrid photoelectrode and its band-edge levels

    International Nuclear Information System (INIS)

    Zhang, Qi; Su, Jun; Zhang, Xianghui; Li, Jian; Zhang, Aiqing; Gao, Yihua

    2012-01-01

    Highlights: ► CVD synthesis of Bi 2 Se 3 nanoparticles. ► Bi 2 Se 3 and CdS co-sensitized TiO 2 nanorod arrays electrode was assembled by CVD. ► Direct physical contact heterojunctions were formed at the interfaces of electrode. ► Cascade structure of band-edge levels was formed in Bi 2 Se 3 /CdS/TiO 2 electrode. - Abstract: Bismuth selenide (Bi 2 Se 3 ) was chosen as the sensitizer to TiO 2 nanorod (NR) arrays photoelectrode to harvest infrared (IR) light for its narrow band gap. For utilizing more amount of IR solar energy, Bi 2 Se 3 nanoparticles (NPs) were grown up to a relative larger grain size. And, a cadmium sulfide (CdS) NPs intermediate layer was introduced to help, to coordinate, the structure of band-edge levels in Bi 2 Se 3 /CdS/TiO 2 electrode. Here, a chemical vapor deposition (CVD) strategy was introduced to assemble this kind of composite photoelectrode. And a cascade structure of band-edge levels constructed in it when achieving electrostatic equilibrium in Na 2 S/Na 2 SO 3 aqueous solution electrolyte revealed by electrochemical analysis method, which will facilitate the hydrogen generation.

  7. Optical band gap energy and ur bach tail of CdS:Pb2+ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)

    2016-11-01

    Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)

  8. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    Science.gov (United States)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  9. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloodS data set was collected from April 30, 2013 to June 16, 2013 near Traer, Iowa as...

  10. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  11. CdS_xTe_1_-_x ternary semiconductors band gaps calculation using ground state and GW approximations

    International Nuclear Information System (INIS)

    Kheloufi, Nawal; Bouzid, Abderrazak

    2016-01-01

    We present band gap calculations of zinc-blende ternary CdS_xTe_1_-_x semiconductors within the standard DFT and quasiparticle calculations employing pseudopotential method. The DFT, the local density approximation (LDA) and the Generalized Gradient Approximation (GGA) based calculations have given very poor results compared to experimental data. The quasiparticle calculations have been investigated via the one-shot GW approximation. The present paper discuses and confirms the effect of inclusion of the semicore states in the cadmium (Cd) pseudopotential. The obtained GW quasiparticle band gap using Cd"+"2"0 pseudopotential has been improved compared to the obtained results from the available pseudopotential without the treatment of semicore states. Our DFT and quasiparticle band gap results are discussed and compared to the available theoretical calculations and experimental data. - Graphical abstract: Band gaps improvement concerning the binary and ternary alloys using the GW approximation and Cd"2"0"+ pseudopotential with others levels of approximations (the LDA and GGA approximation employing the Cd"1"2"+ and the LDA within Cd"2"0"+ pseudopotential). - Highlights: • The direct Γ- Γ and indirect Γ- X and Γ- L bands gaps show a nonlinear behavior when S content is enhanced. • The quasiparticle band gap result for the investigated semiconductors is improved using the GW approximation. • All CdS_xTe_1_-_x compounds in all compositions range from 0 to 1 are direct band gap semiconductors.

  12. Optical properties of oxygen-implanted CdS:O layers in terms of band anticrossing theory

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, N. K., E-mail: MorozovaNK@mail.ru; Kanakhin, A. A.; Miroshnikova, I. N. [Moscow Power Engineering Institute, National Research University (Russian Federation); Galstyan, V. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-08-15

    The microcathodoluminescence (MCL) and photoreflection spectra of CdS:O layers implanted with oxygen ions to 4 Multiplication-Sign 10{sup 20} cm{sup -3} are investigated. Used method of MCL spectroscopy yields information only about the implanted-layer volume. Exciton MCL spectra, which allow one to determine the concentration of dissolved oxygen in the CdS:O layers and the influence of deviation of the substrates from stoichiometry, are recorded. The homogeneity of the ion-implanted layers is studied by cathodoluminescence (CL) scanning electron microscopy. The relationship between light-emitting areas and the luminescence band at {approx}630 nm is established. The reason for enhancement of this band upon radiation annealing is revealed and its nature as the luminescence of F{sup +} centers in CdS is confirmed. New photoreflection spectroscopy data are obtained, which describe the specific behavioral features of oxygen on the layer surface as an isoelectronic impurity in highly mismatched alloys (HMAs). It is shown that sulfur completely bonds and removes oxygen from CdS:O. Oxygen-free CdS remains on the surface in the form of nanoparticles, the size of which depends on the oxygen concentration in the CdS:O layer bulk. The results obtained are in agreement with the predictions of band anticrossing theory.

  13. Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator.

    Science.gov (United States)

    Balcı, Erdem; Akkuş, Ünal Özden; Berber, Savas

    2018-04-18

    The electronic structures of Si and Ge substitutionally doped Sc 2 C(OH) 2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc 2 C(OH) 2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.

  14. Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator

    Science.gov (United States)

    Balcı, Erdem; Özden Akkuş, Ünal; Berber, Savas

    2018-04-01

    The electronic structures of Si and Ge substitutionally doped Sc2C(OH)2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc2C(OH)2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.

  15. An effective 2-band eg model of sulfur hydride H3S for high-Tc superconductivity

    Science.gov (United States)

    Nishiguchi, Kazutaka; Teranishi, Shingo; Miyao, Satoaki; Matsushita, Goh; Kusakabe, Koichi

    To understand high transition temperature (Tc) superconductivity in sulfur hydride H3S, we propose an effective 2-band model having the eg symmetry as the minimal model for H3S. Two eg orbitals centered on a sulfur S atom are chosen for the smallest representation of relevant bands with the van-Hove singularity around the Fermi levels except for the Γ-centered small hole pockets by the sulfur 3 p orbitals. By using the maximally localized Wannier functions, we derive the minimal effective model preserving the body-centered cubic (bcc) crystal symmetry of the H3S phase having the highest Tc ( 203 K under pressures) among the other polymorphs of H3S.

  16. Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands

    Science.gov (United States)

    Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.

    2012-10-01

    A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.

  17. Beam Dynamics a Integrated Plane Wave Transformer Photoinjector at S- and X- band

    Science.gov (United States)

    Rosenzweig, J. B.; Ding, X.; Pellegrini, X.; Serafini, L.; Yu, D.

    1997-05-01

    The beam dynamics of an integrated S-band rf photoinjector based on the plane wave transformer concept, proposed as part of an SBIR collaboration between UCLA and DULY Research, are studied. The intial design, which calls for an 11.5 cell structure run at a peak on-axis accelerating field of 60 MV/m, and has a compact solenoid around the intial 2.5 cells, is based on the recently developed theory of emittance compensation(L.Serafini, and J.B. Rosenzweig, submitted to Physical Review E.). It calls for matching the beam onto an envelope which is a generalized Brillouin flow, producing a beam which diminishes in transverse size as the square root of the accelerating beam energy. This condition produces a minimized emittance, which for the S-band case is 1 mm-rad at at charge of 1 nC. This design is also scaled to produce nearly identical performance at X-band, giving an injector appropriate to running an FEL at the SLAC NLCTA. It is noted that these designs are insensitive to rf emittance increase, allowign a choice of injection phase, and the option to compress the emitted pulse.

  18. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  19. 640 Gbit/s Optical Packet Switching using a Novel In-Band Optical Notch-Filter Labeling Scheme

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved.......Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved....

  20. Using Ground Targets to Validate S-NPP VIIRS Day-Night Band Calibration

    Science.gov (United States)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu

    2016-01-01

    In this study, the observations from S-NPP VIIRS Day-Night band (DNB) and Moderate resolution bands (M bands) of Libya 4 and Dome C over the first four years of the mission are used to assess the DNB low gain calibration stability. The Sensor Data Records produced by NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired from nearly nadir overpasses for Libya 4 desert and Dome C snow surfaces. A kernel-driven bidirectional reflectance distribution function (BRDF) correction model is used for both Libya 4 and Dome C sites to correct the surface BRDF influence. At both sites, the simulated top-of-atmosphere (TOA) DNB reflectances based on SCIAMACHY spectral data are compared with Land PEATE TOA reflectances based on modulated Relative Spectral Response (RSR). In the Libya 4 site, the results indicate a decrease of 1.03% in Land PEATE TOA reflectance and a decrease of 1.01% in SCIAMACHY derived TOA reflectance over the period from April 2012 to January 2016. In the Dome C site, the decreases are 0.29% and 0.14%, respectively. The consistency between SCIAMACHY and Land PEATE data trends is good. The small difference between SCIAMACHY and Land PEATE derived TOA reflectances could be caused by changes in the surface targets, atmosphere status, and on-orbit calibration. The reflectances and radiances of Land PEATE DNB are also compared with matching M bands and the integral M bands based on M4, M5, and M7. The fitting trends of the DNB to integral M bands ratios indicate a 0.75% decrease at the Libya 4 site and a 1.89% decrease at the Dome C site. Part of the difference is due to an insufficient number of sampled bands available within the DNB wavelength range. The above results indicate that the Land PEATE VIIRS DNB product is accurate and stable. The methods used in this study can be used on other satellite instruments to provide quantitative assessments for calibration stability.

  1. Using Ground Targets to Validate S-NPP VIIRS Day-Night Band Calibration

    Directory of Open Access Journals (Sweden)

    Xuexia Chen

    2016-11-01

    Full Text Available In this study, the observations from S-NPP VIIRS Day-Night band (DNB and Moderate resolution bands (M bands of Libya 4 and Dome C over the first four years of the mission are used to assess the DNB low gain calibration stability. The Sensor Data Records produced by NASA Land Product Evaluation and Algorithm Testing Element (PEATE are acquired from nearly nadir overpasses for Libya 4 desert and Dome C snow surfaces. A kernel-driven bidirectional reflectance distribution function (BRDF correction model is used for both Libya 4 and Dome C sites to correct the surface BRDF influence. At both sites, the simulated top-of-atmosphere (TOA DNB reflectances based on SCIAMACHY spectral data are compared with Land PEATE TOA reflectances based on modulated Relative Spectral Response (RSR. In the Libya 4 site, the results indicate a decrease of 1.03% in Land PEATE TOA reflectance and a decrease of 1.01% in SCIAMACHY derived TOA reflectance over the period from April 2012 to January 2016. In the Dome C site, the decreases are 0.29% and 0.14%, respectively. The consistency between SCIAMACHY and Land PEATE data trends is good. The small difference between SCIAMACHY and Land PEATE derived TOA reflectances could be caused by changes in the surface targets, atmosphere status, and on-orbit calibration. The reflectances and radiances of Land PEATE DNB are also compared with matching M bands and the integral M bands based on M4, M5, and M7. The fitting trends of the DNB to integral M bands ratios indicate a 0.75% decrease at the Libya 4 site and a 1.89% decrease at the Dome C site. Part of the difference is due to an insufficient number of sampled bands available within the DNB wavelength range. The above results indicate that the Land PEATE VIIRS DNB product is accurate and stable. The methods used in this study can be used on other satellite instruments to provide quantitative assessments for calibration stability.

  2. Efficient evaluation of epitaxial MoS2 on sapphire by direct band structure imaging

    Science.gov (United States)

    Kim, Hokwon; Dumcenco, Dumitru; Fregnaux, Mathieu; Benayad, Anass; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier; Lanes Group, Epfl Team; Leti, Cea Team

    The electronic band structure evaluation of two-dimensional metal dichalcogenides is critical as the band structure can be greatly influenced by the film thickness, strain, and substrate. Here, we performed a direct measurement of the band structure of as-grown monolayer MoS2 on single crystalline sapphire by reciprocal-space photoelectron emission microscopy with a conventional laboratory ultra-violet He I light source. Arrays of gold electrodes were deposited onto the sample in order to avoid charging effects due to the insulating substrate. This allowed the high resolution mapping (ΔE = 0.2 eV Δk = 0.05 Å-1) of the valence states in momentum space down to 7 eV below the Fermi level. The high degree of the epitaxial alignment of the single crystalline MoS2 nuclei was verified by the direct momentum space imaging over a large area containing multiple nuclei. The derived values of the hole effective mass were 2.41 +/-0.05 m0 and 0.81 +/-0.05 m0, respectively at Γ and K points, consistent with the theoretical values of the freestanding monolayer MoS2 reported in the literature. HK acknowledges the french CEA Basic Technological Research program (RTB) for funding.

  3. Surface Floating 2D Bands in Layered Nonsymmorphic Semimetals: ZrSiS and Related Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Andreas; Queiroz, Raquel; Grüneis, Andreas; Müchler, Lukas; Rost, Andreas W.; Varykhalov, Andrei; Marchenko, Dmitry; Krivenkov, Maxim; Rodolakis, Fanny; McChesney, Jessica L.; Lotsch, Bettina V.; Schoop, Leslie M.; Ast, Christian R.

    2017-12-01

    In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed in the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced symmetry at the surface, the bulk bands are strongly modified. This leads to the creation of two-dimensional floating bands, which are distinct from Shockley states, quantum well states or topologically protected surface states. We focus on the layered semimetal ZrSiS to clarify the origin of its surface states. We demonstrate an excellent agreement between DFT calculations and ARPES measurements and present an effective four-band model in which similar surface bands appear. Finally, we emphasize the role of the surface chemical potential by comparing the surface density of states in samples with and without potassium coating. Our findings can be extended to related compounds and generalized to other crystals with nonsymmorphic symmetries.

  4. Capacity Enhancement for Hybrid Fiber-Wireless Channels with 46.8Gbit/sWireless Multi-CAP Transmission over 50m at W-Band

    DEFF Research Database (Denmark)

    Rommel, Simon; Puerta Ramírez, Rafael; Vegas Olmos, Juan José

    2017-01-01

    Transmission of a 46.8 Gbit/s multi-band CAP signal is experimentally demonstrated over a 50 m W-band radio-over-fiber link. Bit error rates below 3.8×10-3 are achieved, employing nine CAP bands with bit and power loading.......Transmission of a 46.8 Gbit/s multi-band CAP signal is experimentally demonstrated over a 50 m W-band radio-over-fiber link. Bit error rates below 3.8×10-3 are achieved, employing nine CAP bands with bit and power loading....

  5. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    Science.gov (United States)

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  6. A comparison of the chromosome G-banding pattern in two Sorex species, S. satunini and S. araneus (Mammalia, Insectivora

    Directory of Open Access Journals (Sweden)

    Yuri Borisov

    2012-08-01

    Full Text Available The G-banded karyotype of S. satunini was compared with the karyotype of Sorex araneus. Extensive homology was revealed. The major chromosomal rearrangements involved in the evolutionary divergence of these species have been identified as centric fusions and centromeric shifts. From the known palaeontological age of S. satunini it is obvious that the vast chromosomal polymorphism of the S. araneus group originated during the middle Pleistocene.

  7. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    Science.gov (United States)

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV.

  8. GPM GROUND VALIDATION NOAA S-BAND PROFILER MINUTE DATA MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA S-Band Profiler Minute Data MC3E dataset was gathered during the Midlatitude Continental Convective Clouds Experiment (MC3E) in...

  9. What is the band alignment of Cu2ZnSn(S,Se)4 solar cells?

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Hansen, Ole

    2017-01-01

    The band alignment at the Cu2ZnSn(S,Se)4/CdS solar cell heterojunction is a controversial issue, as different measurements and calculations point to substantially different conduction band offsets (CBO). As the actual value of the CBO has profound implications on solar cell performance, the aim...... of this work is to separate genuine process-dependent variations in the CBO from errors in its experimental determination. We argue that the two most likely mechanisms responsible for real CBO variations are Fermi level pinning (which tends to decrease the CBO) and chemical interdiffusion (which tends...... measurement approaches. Interestingly, a rough correlation can be established between the CBO measured at the Cu2ZnSnS4/CdS interface by different groups and their corresponding solar cell efficiency: lower-efficiency cells often have a large "cliff-like" offset, whereas most high-efficiency cells have...

  10. CdS{sub x}Te{sub 1-x} ternary semiconductors band gaps calculation using ground state and GW approximations

    Energy Technology Data Exchange (ETDEWEB)

    Kheloufi, Nawal; Bouzid, Abderrazak, E-mail: a_bouzid34@hotmail.com

    2016-06-25

    We present band gap calculations of zinc-blende ternary CdS{sub x}Te{sub 1-x} semiconductors within the standard DFT and quasiparticle calculations employing pseudopotential method. The DFT, the local density approximation (LDA) and the Generalized Gradient Approximation (GGA) based calculations have given very poor results compared to experimental data. The quasiparticle calculations have been investigated via the one-shot GW approximation. The present paper discuses and confirms the effect of inclusion of the semicore states in the cadmium (Cd) pseudopotential. The obtained GW quasiparticle band gap using Cd{sup +20} pseudopotential has been improved compared to the obtained results from the available pseudopotential without the treatment of semicore states. Our DFT and quasiparticle band gap results are discussed and compared to the available theoretical calculations and experimental data. - Graphical abstract: Band gaps improvement concerning the binary and ternary alloys using the GW approximation and Cd{sup 20+} pseudopotential with others levels of approximations (the LDA and GGA approximation employing the Cd{sup 12+} and the LDA within Cd{sup 20+} pseudopotential). - Highlights: • The direct Γ- Γ and indirect Γ- X and Γ- L bands gaps show a nonlinear behavior when S content is enhanced. • The quasiparticle band gap result for the investigated semiconductors is improved using the GW approximation. • All CdS{sub x}Te{sub 1-x} compounds in all compositions range from 0 to 1 are direct band gap semiconductors.

  11. IHEP S-band 45 MW pulse power klystron development

    International Nuclear Information System (INIS)

    Dong Dong; Zhou Zusheng; Zhang Liang; Li Gangying; Tian Shuangmin

    2006-01-01

    S-band 45 MW pulse power klystron has been developed in the Institute of High Energy Physics (IHEP) for the Beijing Electron Positron Collider (BEPC) upgrade projects (BEPC-II). This new klystron has 5 cavities in its RF-beam interaction and single RF output window, and the RF output power is 45 MW at 310 kV, the gain is 50 dB, the efficiency 40%. The manufacturing, training and testing of a prototype klystron has been finished in IHEP and RF power 45 MW at 300 kV has been reached. The testing results show that all the parameters of the 45 MW klystron reach the design goal. (authors)

  12. Demonstration of 352 Gbit/s Photonically-enabled D-Band Wireless Delivery in one 2x2 MIMO System

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Yu, Jianjun; Li, Xinying

    2017-01-01

    First demonstration of photonically-enabled independent side-bands D-Band wireless transmission up to 352 Gbit/s with a BER below 3.8×10-3. These results were achieved by means of advanced DSP and antenna polarization multiplexing (2x2 MIMO)....

  13. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    Science.gov (United States)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  14. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    Science.gov (United States)

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  15. Miniaturized UHF, S-, and Ka-band RF MEMS Filters for Small Form Factor, High Performance EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II of this SBIR, Harmonic Devices (HDI) proposes to develop miniaturized MEMS filters at UHF, S-band and Ka-band to address the requirements of NASA's...

  16. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Science.gov (United States)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  17. Two orthogonal carriers assisted 101-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF.

    Science.gov (United States)

    Chen, Yiqin; Hu, Rong; Yang, Qi; Luo, Ming; Yu, Shaohua; Li, Wei

    2015-05-04

    We propose a novel fading-free direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) scheme for 100-Gb/s medium-reach transmission. In the proposed scheme, we adopts two bands spaced at 100-GHz to accommodate the same complex-valued OFDM signal. However, the signals are coupled with a pair of orthogonal optical carriers. By doing so, real and imaginary parts of the complex-valued OFDM signal can be recovered from the two bands, respectively. We also propose a cost-effective scheme to generate such DDO-OFDM signal using an optical 90-degree hybrid and an optical I/Q modulator. The advantage of the proposed method is that it is fading-free, and the electrical spectral efficiency (SE) is doubled compared to traditional direct-detection method. Finally, we experimentally demonstrated a 101-Gb/s dual-band transmission over 320-km SSMF within only 30-GHz electrical bandwidth, which is highly competitive in both capacity and cost.

  18. Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations

    NARCIS (Netherlands)

    Ettema, A.R.H.F.; Groot, R.A. de; Haas, C.; Turner, T.S.

    1992-01-01

    SnS is a layer compound with a phase transition from a high-temperature β phase to a low-temperature α phase with a lower symmetry. Ab initio band-structure calculations are presented for both phases. The calculations show that the charge distributions in the two phases are very similar. However,

  19. Validation of S-NPP VIIRS Day-Night Band and M Bands Performance Using Ground Reference Targets of Libya 4 and Dome C

    Science.gov (United States)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu

    2015-01-01

    This paper provides methodologies developed and implemented by the NASA VIIRS Calibration Support Team (VCST) to validate the S-NPP VIIRS Day-Night band (DNB) and M bands calibration performance. The Sensor Data Records produced by the Interface Data Processing Segment (IDPS) and NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired nearly nadir overpass for Libya 4 desert and Dome C snow surfaces. In the past 3.5 years, the modulated relative spectral responses (RSR) change with time and lead to 3.8% increase on the DNB sensed solar irradiance and 0.1% or less increases on the M4-M7 bands. After excluding data before April 5th, 2013, IDPS DNB radiance and reflectance data are consistent with Land PEATE data with 0.6% or less difference for Libya 4 site and 2% or less difference for Dome C site. These difference are caused by inconsistent LUTs and algorithms used in calibration. In Libya 4 site, the SCIAMACHY spectral and modulated RSR derived top of atmosphere (TOA) reflectance are compared with Land PEATE TOA reflectance and they indicate a decrease of 1.2% and 1.3%, respectively. The radiance of Land PEATE DNB are compared with the simulated radiance from aggregated M bands (M4, M5, and M7). These data trends match well with 2% or less difference for Libya 4 site and 4% or less difference for Dome C. This study demonstrate the consistent quality of DNB and M bands calibration for Land PEATE products during operational period and for IDPS products after April 5th, 2013.

  20. S-band 300 W pulsed solid state microwave amplifier development for driving high power klystrons for electron accelerators

    International Nuclear Information System (INIS)

    Mohania, Praveen; Shrivastava, Purushottam; Hannurkar, P.R.

    2005-01-01

    S-Band Microwave electron accelerators like microtrons and linear accelerators need pulsed microwaves from few megawatts to tens of megawatts to accelerator the electrons to desired energy and intensity. Klystron tube based driver amplifiers were used to drive the high power klystrons, which need microwave power from few tens of watts to 1 kW depending on tube output power and gain. A endeavour was initiated at Centre for Advanced Technology to develop state of art solid state S-band microwave amplifiers indigenously to drive the klystron tubes. A modular design approach was used and individual modules up to 160 W power levels were developed and tested. Finally combining 160 W modules will give up to 300 W output power. Several more modules can be combined to achieve even high power levels. Present paper describes the developmental efforts of 300 W S-band solid-state amplifiers and related microwave technologies. (author)

  1. Median and ulnar neuropathies in U.S. Army Medical Command Band members.

    Science.gov (United States)

    Shaffer, Scott W; Koreerat, Nicholas R; Gordon, Lindsay B; Santillo, Douglas R; Moore, Josef H; Greathouse, David G

    2013-12-01

    Musicians have been reported as having a high prevalence of upper-extremity musculoskeletal disorders, including carpal tunnel syndrome. The purpose of this study was to determine the presence of median and ulnar neuropathies in U.S. Army Medical Command (MEDCOM) Band members at Fort Sam Houston, Texas. Thirty-five MEDCOM Band members (30 males, 5 females) volunteered to participate. There were 33 right-handed musicians, and the mean length of time in the MEDCOM Band was 12.2 yrs (range, 1-30 yrs). Subjects completed a history form, were interviewed, and underwent a physical examination of the cervical spine and bilateral upper extremities. Nerve conduction studies of the bilateral median and ulnar nerves were performed. Electrophysiological variables served as the reference standard for median and ulnar neuropathy and included distal sensory latencies, distal motor latencies, amplitudes, conduction velocities, and comparison study latencies. Ten of the 35 subjects (29%) presented with abnormal electrophysiologic values suggestive of an upper extremity mononeuropathy. Nine of the subjects had abnormal median nerve electrophysiologic values at or distal to the wrist; 2 had bilateral abnormal values. One had an abnormal ulnar nerve electrophysiologic assessment at the elbow. Nine of these 10 subjects had clinical examination findings consistent with the electrophysiological findings. The prevalence of mononeuropathies in this sample of band members is similar to that found in previous research involving civilian musicians (20-36%) and far exceeds that reported in the general population. Prospective research investigating screening, examination items, and injury prevention measures in musicians appears to be warranted.

  2. The U.S. Geological Survey Bird Banding Laboratory: an integrated scientific program supporting research and conservation of North American birds

    Science.gov (United States)

    Smith, Gregory J.

    2013-01-01

    The U.S. Geological Survey (USGS) Bird Banding Laboratory (BBL) was established in 1920 after ratification of the Migratory Bird Treaty Act with the United Kingdom in 1918. During World War II, the BBL was moved from Washington, D.C., to what is now the USGS Patuxent Wildlife Research Center (PWRC). The BBL issues permits and bands to permittees to band birds, records bird band recoveries or encounters primarily through telephone and Internet reporting, and manages more than 72 million banding records and more than 4.5 million records of encounters using state-of-the-art technologies. Moreover, the BBL also issues bands and manages banding and encounter data for the Canadian Bird Banding Office (BBO). Each year approximately 1 million bands are shipped from the BBL to banders in the United States and Canada, and nearly 100,000 encounter reports are entered into the BBL systems. Banding data are essential for regulatory programs, especially migratory waterfowl harvest regulations. The USGS BBL works closely with the U.S. Fish and Wildlife Service (USFWS) to develop regulations for the capture, handling, banding, and marking of birds. These regulations are published in the Code of Federal Regulations (CFR). In 2006, the BBL and the USFWS Division of Migratory Bird Management (DMBM) began a comprehensive revision of the banding regulations. The bird banding community has three major constituencies: Federal and State agency personnel involved in the management and conservation of bird populations that include the Flyway Councils, ornithological research scientists, and avocational banders. With increased demand for banding activities and relatively constant funding, a Federal Advisory Committee (Committee) was chartered and reviewed the BBL program in 2005. The final report of the Committee included six major goals and 58 specific recommendations, 47 of which have been addressed by the BBL. Specifically, the Committee recommended the BBL continue to support science

  3. 50 MW C-band pulse klystron; 50MW C band pulse klystron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    C-band pulse klystron E3746 with an output of 50 MW class was developed jointly with the High-Energy Accelerator Research Organization in the Ministry of Education as the klystron for a linear accelerator. For a large-sized linear accelerator in the next generation, a klystron with higher operating frequency has been required to obtain a compact and efficient accelerator. In E3746, the problem of power resistance during high-frequency operation was solved by mounting a traveling-wave multi-cell output circuit. Moreover, stable operation in the pulse width of 2.5 {mu}s and the output of 54 MW was performed at the same operation efficiency (44%) as the conventional S-band tube by using the frequency (in a C-band frequency band) that is two times as high as the conventional general accelerator. (translated by NEDO)

  4. GPM GROUND VALIDATION NOAA S-BAND PROFILER ORIGINAL DWELL DATA MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The S-band Profiler Original Dwell dataset in the netCDF format was gathered during the Midlatitude Continental Convective Clouds Experiment (MC3E) in Oklahoma...

  5. Generation of nanosecond S band microwave pulses based on superradiance

    International Nuclear Information System (INIS)

    Ginzburg, N.S.; Zotova, I.V.; Rozental, R.M.

    2002-01-01

    Modeling carried out demonstrates possibility of generation of gigawatt power level S band microwave pulse with duration of several nanoseconds using superradiation of short electron beam moving along slow-wave periodical structure. A 10 ns / 500 keV / 5 kA accelerator of Kanazawa University can be used in such experiments. It is shown that significant increasing peak power can be obtained by optimization of voltage and current pulses waveforms. Required increasing of electron energy and current by the end of electron pulse can be achieved by using self-acceleration of a short beam passing through a system of passive cavities. (author)

  6. Generation of nanosecond S band microwave pulses based on superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N.S.; Zotova, I.V.; Rozental, R.M. [Russian Academy of Science, Institute of Applied Physics, Nizhny Novgorod (RU)] [and others

    2002-06-01

    Modeling carried out demonstrates possibility of generation of gigawatt power level S band microwave pulse with duration of several nanoseconds using superradiation of short electron beam moving along slow-wave periodical structure. A 10 ns / 500 keV / 5 kA accelerator of Kanazawa University can be used in such experiments. It is shown that significant increasing peak power can be obtained by optimization of voltage and current pulses waveforms. Required increasing of electron energy and current by the end of electron pulse can be achieved by using self-acceleration of a short beam passing through a system of passive cavities. (author)

  7. Structure design for a 500 GeV S-band linear collider

    International Nuclear Information System (INIS)

    Hahne, P.; Holtkamp, N.; Klatt, R.; Weiland, T.

    1991-01-01

    Constant gradient structures with an accelerating gradient of 20 MeV per meter are commonly used with S-band frequency. The well known features of these travelling wave tubes provide a dedicated design for their use in the next generation linear collider. Some of the required design parameters for this tubes are presented within the whole concept of this collider with an active length of about 30 km. The choice of these parameters is explained and calculations concerning the structure are presented

  8. Polarization sensitive behaviour of the band-edge transitions in ReS2 and ReSe2 layered semiconductors

    International Nuclear Information System (INIS)

    Ho, C H; Lee, H W; Wu, C C

    2004-01-01

    The polarization sensitive behaviour of the band-edge transitions in ReS 2 and ReSe 2 layered compounds was studied using polarized-transmission and polarized-thermoreflectance (PTR) measurements with polarization angles from θ = 0 deg. (Evector parallel b-axis) to θ = 90 deg. (Evector perpendicular b-axis) at 300 K. The polarization dependence of the polarized energy gaps of ReS 2 and ReSe 2 shows a sinusoidal-like variation with respect to the angular change of the linearly polarized light. The angular dependences of the polarized energy gaps of ReS 2 and ReSe 2 were evaluated. The polarization sensitive behaviour of the band-edge excitons in rhenium disulfide and diselenide was characterized using angular dependent PTR measurements from θ = 0 deg. to 90 deg. The polarized transition intensities of the band-edge excitons (E 1 ex and E 2 ex ) of ReX 2 (X = S, Se) demonstrate a sinusoidal variation with respect to the angular change of the linearly polarized light. The angular dependence of the polarized transition probabilities of E 1 ex and E 2 ex is analysed. The polarization sensitive behaviours of ReX 2 (X = S, Se) layers are discussed

  9. Intermixing, band alignment and charge transport in AgIn5S8/CuI heterojunctions

    International Nuclear Information System (INIS)

    Konovalov, I.; Makhova, L.; Hesse, R.; Szargan, R.

    2005-01-01

    Possibilities of creating photovoltaic devices using CuI/AgIn 5 S 8 heterojunctions are considered. Among other properties, preferential formation of polar (111) surfaces makes n-type AgIn 5 S 8 an attractive candidate for absorber layers of top cells in 4-terminal tandem structures. Cu-Ag exchange at the interface with p-type CuI was observed. This intermixing results in an additional component of Ag 3d5 photoelectron line after deposition of CuI, in the Cu (but not I) contamination of the surface after a chemical removal of CuI, and in a photoelectric sensitivity of the junction at energies below the band gaps. Valence band offsets of 0.4 and 0.5 eV (cliff) were found at interfaces with thin film and bulk AgIn 5 S 8 , supporting a conduction mechanism through interface recombination. Pinning conflict at the interface between materials with contradictory doping limitations is likely to promote the intermixing

  10. Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well

    KAUST Repository

    Tangi, Malleswarara

    2017-08-31

    The valence and conduction band offsets (VBO and CBO) at the semiconductor heterojunction are crucial parameters to design the active region of contemporary electronic and optoelectronic devices. In this report, to study the band alignment parameters at the In0.15Al0.85N/MoS2 lattice matched heterointerface, large area MoS2 single layers are chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N films and vice versa. We grew InAlN having an in-plane lattice parameter closely matching with that of MoS2. We confirm that the grown MoS2 is a single layer from optical and structural analyses using micro-Raman spectroscopy and scanning transmission electron microscopy. The band offset parameters VBO and CBO at the In0.15Al0.85N/MoS2 heterojunction are determined to be 2.08 ± 0.15 and 0.60 ± 0.15 eV, respectively, with type-I band alignment using high-resolution x-ray photoelectron spectroscopy in conjunction with ultraviolet photoelectron spectroscopy. Furthermore, we design a MoS2 quantum well structure by growing an In0.15Al0.85N layer on MoS2/In0.15Al0.85N type-I heterostructure. By reducing the nitrogen plasma power and flow rate for the overgrown In0.15Al0.85N layers, we achieve unaltered structural properties and a reasonable preservation of photoluminescence intensity with a peak width of 70 meV for MoS2 quantum well (QW). The investigation provides a pathway towards realizing large area, air-stable, lattice matched, and eventual high efficiency In0.15Al0.85N/MoS2/In0.15Al0.85N QW-based light emitting devices.

  11. Karyotype characterization of Crotalaria juncea (L. by chromosome banding and physical mapping of 18S-5.8S-26S and 5S rRNA gene sites

    Directory of Open Access Journals (Sweden)

    Mateus Mondin

    2007-01-01

    Full Text Available The chromosomes of Crotalaria juncea, a legume of agronomic interest with a 2n = 16 karyotype composed of metacentric chromosomes, were analyzed using several cytogenetic techniques. C-banding revealed heterochromatic regions around the centromeres in all chromosomes and adjacent to the secondary constriction on the chromosome 1 short arm. Fluorescent staining with the GC-specific chromomycin A3 (CMA highlighted these heterochromatic regions and a tiny site on the chromosome 1 long arm while the AT-specific stain 4'-6-diamidino-2-phenylindole (DAPI induced a reversed pattern. Staining with CMA combined with AT-specific distamycin A (DA counterstaining quenched the pericentromeric regions of all chromosomes, but enhanced fluorescence was observed at the heterochromatic regions around the secondary constriction and on the long arms of chromosomes 1 and 4. Fluorescence in situ hybridization (FISH revealed 18S-5.8S-26S rRNA gene sites (45S rDNA on chromosomes 1 and 4, and one 5S rDNA locus on chromosome 1. All the rDNA sites were co-located with the positive-CMA/DA bands, suggesting they were very rich in GC. Silver staining revealed signals at the main 45S rDNA locus on chromosome 1 and, in some cells, chromosome 4 was labeled. Two small nucleoli were detected in a few interphase cells, suggesting that the minor site on chromosome 4 could be active at some stages of the cell cycle.

  12. X-Band CubeSat Communication System Demonstration

    Science.gov (United States)

    Altunc, Serhat; Kegege, Obadiah; Bundick, Steve; Shaw, Harry; Schaire, Scott; Bussey, George; Crum, Gary; Burke, Jacob C.; Palo, Scott; O'Conor, Darren

    2015-01-01

    Today's CubeSats mostly operate their communications at UHF- and S-band frequencies. UHF band is presently crowded, thus downlink communications are at lower data rates due to bandwidth limitations and are unreliable due to interference. This research presents an end-to-end robust, innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat communication system demonstration between a balloon and a Near Earth Network (NEN) ground system. Since communication systems serve as umbilical cords for space missions, demonstration of this X-band communication system is critical for successfully supporting current and future CubeSat communication needs. This research has three main objectives. The first objective is to design, simulate, and test a CubeSat S- and X-band communication system. Satellite Tool Kit (STK) dynamic link budget calculations and HFSS Simulations and modeling results have been used to trade the merit of various designs for small satellite applications. S- and X-band antennas have been tested in the compact antenna test range at Goddard Space Flight Center (GSFC) to gather radiation pattern data. The second objective is simulate and test a CubeSat compatible X-band communication system at 12.5Mbps including S-band antennas, X-band antennas, Laboratory for Atmospheric and Space Physics (LASP) /GSFC transmitter and an S-band receiver from TRL-5 to TRL-8 by the end of this effort. Different X-band communication system components (antennas, diplexers, etc.) from GSFC, other NASA centers, universities, and private companies have been investigated and traded, and a complete component list for the communication system baseline has been developed by performing analytical and numerical analysis. This objective also includes running simulations and performing trades between different X-band antenna systems to optimize communication system performance. The final objective is to perform an end-to-end X-band CubeSat communication system

  13. Performance of high power S-band klystrons focused with permanent magnet

    International Nuclear Information System (INIS)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 % of the longitudinal field in the entire rf interaction region of the klystron. (author)

  14. Performance of high power S-band klystrons focused with permanent magnet

    Science.gov (United States)

    Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.

    1987-02-01

    Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.

  15. Design of a New ENG Metamaterial for S-Band Microwave Applications

    Directory of Open Access Journals (Sweden)

    ISLAM Sikder Sunbeam

    2014-10-01

    Full Text Available In this paper we propose a new metamaterial unit cell structure on FR-4 substrate material that shows resonance in the microwave S-Band frequency range and also shows negative permittivity at that frequency. The material shows better performances with two resonances and Double Negative characteristics if Rogers RT 6010 substrate material is used. In this design two separate split ring resonators is used. We have used the CST Microwave Studio simulation software to get the reflection and transmission parameters for this unit cell.

  16. Review of studies on conventional linear colliders in the S- and X-Band regime

    International Nuclear Information System (INIS)

    Loew, G.A.

    1992-07-01

    This paper gives a status report on the conventional approaches to linear colliders at DESY, KEK, SLAC and INP-Protvino in the S- and X-Band regime. Critical topics are reviewed and a discussion of global issues such as future R ampersand D requirements is included

  17. Characterestics of pico-second single bunch at the S-band linear accelerator

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru; Kozawa, Takahiro; Kobayashi, Toshiaki; Ueda, Toru; Miya, Kenzo

    1994-01-01

    Measurement of the bunch structure of a pico-second single bunch was performed using a femto-second streak camera at the S-band linear accelerator of the University of Tokyo. The aim of this research is to investigate the feasibility of the generation of a femto-second single bunch at the S-band linac. The details of the bunch structure and energy spectrum of an original single bunch were precisely investigated in several operation modes where the RF phases in accelerating tubes and a prebuncher were varied. The femto-second streak camera was utilized to measure the bunch structure by one shot via Cherenkov radiation emitted by the electrons in the bunch. Next, an experiment for magnetic pulse compression of the original single bunch was carried out. Pulse shapes of the compressed bunchs for different energy modulation were also obtained by measuring Cherenkov radiation by one shot using the femto-second streak camera. Prior to the experiment, numerical tracking analysis to determine operating parameters for the magnetic pulse compression was also done. Measured pulse widths were compared with calculated ones. Finally, a 2 ps (full width at half maximum; FWHM) single bunch with an electric charge of 0.3 nC could be generated by the magnetic pulse compression. ((orig.))

  18. Tuning band alignment by CdS layers using a SILAR method to enhance TiO2/CdS/CdSe quantum-dot solar-cell performance.

    Science.gov (United States)

    Zhang, Bingkai; Zheng, Jiaxin; Li, Xiaoning; Fang, Yanyan; Wang, Lin-Wang; Lin, Yuan; Pan, Feng

    2016-04-28

    We report tuning band alignment by optimized CdS layers using a SILAR method to achieve the recorded best performance with about 6% PCE in TiO2/CdS/CdSe QDSSCs. Combining experimental and theoretical studies, we find that a better lattices match between CdS and TiO2 assists the growth of CdSe, and the combined effect of charge transfer and surface dipole moment at the TiO2/CdS/CdSe interface shifts the energy levels of TiO2 upward and increases Voc of the solar cells. More importantly, the band gap of CdS buffer layers is sensitive to the distortion induced by lattice mismatch and numbers of CdS layers. For example, the barrier for charge transfer disappears when there are more than 4 layers of CdS, facilitating the charge injection from CdSe to TiO2.

  19. Design of a high repetition rate S-band photocathode gun

    International Nuclear Information System (INIS)

    Han Janghui; Cox, Matthew; Huang, Houcheng; Pande, Shivaji

    2011-01-01

    Photocathode RF guns have been developed in many laboratories for generating high quality electron beams for free-electron lasers based on linear accelerators. Such guns can generate electron beams with an exceptionally high peak current as well as a small transverse emittance. Their applications have been recently expanded for ultrafast electron diffraction, coherent terahertz radiation, and X-ray or γ-ray radiation by Compton scattering. In this paper, we design an S-band normal-conducting gun with capabilities of high quality beam generation and high repetition rate operation. The RF design and thermal analysis of the gun cavity and coupler are introduced. Optimal position of the gun focusing solenoid for low emittance beam generation is found by performing particle tracking simulations. Then, the gun system is designed to be able to afford the optimal solenoid position. The cooling-water channel surrounding the gun cavity and coupler is designed and analyzed numerically. The pressure in the gun is simulated with a vacuum model containing the detailed inner structure of the gun. An injector for a free-electron laser application is designed by using this gun and the beam dynamics simulation is shown. A cold test with a prototype gun for confirmation of the RF design is reported. - Highlights: → We design an S-band gun for low emittance beam generation and high repetition rate operation. → The RF design and thermal analysis of the gun cavity and coupler are studied. → An FEL injector is designed by using this gun and the beam dynamics simulation is shown. → A cold test with a prototype gun for confirmation of the RF design is reported.

  20. Composition-tuned band gap energy and refractive index in GaS{sub x}Se{sub 1−x} layered mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Mehmet, E-mail: mehmet.isik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836, Ankara (Turkey); Gasanly, Nizami [Department of Physics, Middle East Technical University, 06800, Ankara (Turkey); Virtual International Scientific Research Centre, Baku State University, 1148, Baku (Azerbaijan)

    2017-04-01

    Transmission and reflection measurements on GaS{sub x}Se{sub 1−x} mixed crystals (0 ≤ x ≤ 1) were carried out in the 400–1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaS{sub x}Se{sub 1−x} mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. - Highlights: • Transmission and reflection experiments were performed on GaS{sub x}Se{sub 1−x} mixed crystals. • Derivative spectra of transmittance and reflectance were used for analyses. • Compositional dependence of band gap energy and refractive index were reported.

  1. 80 Gbit/s 16-QAM Multicarrier THz Wireless Communication Link in the 400 GHz Band

    DEFF Research Database (Denmark)

    Jia, Shi; Yu, Xianbin; Hu, Hao

    2016-01-01

    We experimentally demonstrate a high-speed multicarrier THz wireless communication system operating in the 400 GHz band. The use of spectrally efficient 16-QAM modulation and broadband THz transceivers enable link data rates up to 80 Gbit/s....

  2. Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)

    2010-04-28

    We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)

  3. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  4. Induced absorption spectra of the infrared fundamental band of molecular deuterium at 77 K: S1( J)+S0( J) transitions

    International Nuclear Information System (INIS)

    Gillard, P.G.; Prasad, R.D.G.; Reddy, S.P.

    1984-01-01

    The collision-induced spectra of the fundamental band of normal D 2 in the high frequency region 3200--3700 cm -1 were recorded for gas densities in the range 80--140 amagat at 77 K with a 2 m absorption cell. The contribution to the intensity of the band in this region comes from the high frequency wings of quadrupolar transitions S 1 ( J) and Q 1 ( J)+S 0 ( J) with J = 0 and 1, and from the group of transitions S 1 (2) and Q 1 ( J)+S 0 (2) with J = 0, 1, and 2 as well as from the relatively weaker double rotational transitions of the type S 1 ( J)+S 0 ( J); the latter transitions arise from the intermolecular interaction between the anisotropic component of the polarizability of one of the colliding pairs of molecules and the quadrupole field of the other. The experimental profiles were analyzed by assuming appropriate line shape functions and using the theoretical matrix elements of the quadrupole moment, isotropic polarizability, and anisotropy of polarizability of the D 2 molecule. From this analysis the characteristic half-width parameters delta/sub q/2 and delta/sub q/4 of the quadrupolar transitions and the binary and ternary absorption coefficients of the S 1 ( J)+S 0 ( J) transitions have been obtained. The experimental value of the binary absorption coefficient of S 1 (0)+S 0 (0) is (2.2 +- 0.1) x 10 -9 cm -1 amagat -2 and the corresponding theoretical value is 1.53 x 10 -9 cm -1 amagat -2

  5. W-Band Transmission MeasurementS and X-Band Dielectric Properties Measurements for a Radome Material Sample

    Science.gov (United States)

    Cravey, Robin L.; Tiemsin, Pacita I.

    1997-01-01

    This paper describes measurements which were performed on a sample of radome material in the Electromagnetic Properties Measurements Laboratory (EPML). The purpose of the measurements described in this paper was to determine the one-way transmission loss through the flat panel of radome material for a frequency range of 84 to 94 GHz, for varying incidence angles. The panel, which was manufactured by Norton Performance Plastics Corporation, was provided to the EPML by TRW. The size of the panel is 40 in x 36 in x 0.422 in and consists of a foam material with one side coated with a smooth white coating (this side will be referred to as the front side). The dielectric properties of the foam material from the inside of the panel were also determined at X-band (8.2-12.4 GHz). The W-band free space measurements are presented first, followed by the X-band dielectric properties measurements.

  6. A model for calculating expected performance of the Apollo unified S-band (USB) communication system

    Science.gov (United States)

    Schroeder, N. W.

    1971-01-01

    A model for calculating the expected performance of the Apollo unified S-band (USB) communication system is presented. The general organization of the Apollo USB is described. The mathematical model is reviewed and the computer program for implementation of the calculations is included.

  7. Semiconductor band alignment from first principles: a new nonequilibrium Green's function method applied to the CZTSe/CdS interface for photovoltaics

    DEFF Research Database (Denmark)

    Palsgaard, Mattias Lau Nøhr; Crovetto, Andrea; Gunst, Tue

    2016-01-01

    In this paper we present a method to obtain the band offset of semiconductor heterointerfaces from Density Functional Theory together with the nonequilibrium Green's function method. Band alignment and detailed properties of the interface between Cu2ZnSnSe4 and CdS are extracted directly from first...... principles simulations. The interface is important for photovoltaics applications where in particular the band offsets are important for efficiency. The band bending pose a problem for accurate atomistic simulations of band offsets due to its long range. Here we investigate two different methods for dealing...... with band bending directly. One involves doping the materials to induce a shorter screening length. The other method is to apply a voltage bias across the interface to correct for the band bending. The calculated band offsets agree well with previous experimental and theoretical studies and, interestingly...

  8. Band-Structure of Thallium by the LMTO Method

    DEFF Research Database (Denmark)

    Holtham, P. M.; Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    by an energy gap. The 6d and 7s bands were found to be far above the Fermi level and the 5d states were found to be far below it. Fermi surface properties and the electronic specific heat are computed and compared with experiment. The joint density of states has also been computed and is in reasonable...... and p bands for the HCP structure. Energy bands have been evaluated both with and without spin-orbit coupling which is particularly large in thallium. Energy bands close to the Fermi level were found to be mainly 6p like in character. The 6s states lay below the 6p bands and were separated from them......The relativistic band structure of thallium has been calculated using the linear muffin-tin orbital (LMTO) method. The positions and extents of the bands were found to follow the Wigner-Seitz rule approximately, and the origin of the dispersion of the bands was established from the canonical s...

  9. The DSS-14 C-band exciter

    Science.gov (United States)

    Rowan, D. R.

    1989-01-01

    The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented.

  10. A PROFILE ANALYSIS OF RAMAN-SCATTERED O VI BANDS AT 6825 Å AND 7082 Å IN SANDULEAK’S STAR

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jeong-Eun; Lee, Hee-Won [Department of Physics and Astronomy, Sejong University, Seoul (Korea, Republic of); Angeloni, Rodolfo [Gemini Observatory, Casilla 603, La Serena (Chile); Mille, Francesco Di [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Palma, Tali, E-mail: jeung6145@gmail.com [Departamento de Ciencias Físicas, Universidad Andrés Bello, Fernández Concha 700, Las Condes, Santiago (Chile)

    2016-12-20

    We present a detailed modeling of the two broad bands observed at 6825 and 7082 Å in Sanduleak’s star, a controversial object in the Large Magellanic Cloud. These bands are known to originate from Raman scattering of O vi  λ λ 1032 and 1038 photons with atomic hydrogen and are only observed in bona fide symbiotic stars. Our high-resolution spectrum obtained with the Magellan Inamori Kyocera Echelle spectrograph at the Magellan-Clay Telescope reveals, quite surprisingly, that the profiles of the two bands look very different: while the Raman 6825 Å band shows a single broad profile with a redward extended bump, the Raman 7082 Å band exhibits a distinct triple-peak profile. Our model suggests that the O vi emission nebula can be decomposed into a red, blue, and central emission region from an accretion disk, a bipolar outflow, and a further compact, optically thick region. We also perform Monte Carlo simulations with the aim of fitting the observed flux ratio F (6825)/ F (7082) ∼ 4.5, which indicates that the neutral region in Sanduleak’s star is characterized by the column density N{sub Hi} ∼ 1 × 10{sup 23} cm{sup −2}.

  11. GPM GROUND VALIDATION NOAA S-BAND PROFILER RAW DATA NETCDF FORMAT MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The S-band Profiler Raw dataset was saved in two data formats: netCDF anda proprietary Vaisala SPC format. The numeric values in both formats are exactly the same....

  12. Size-dependent and intra-band photoluminescence of NiS2 nano-alloys synthesized by microwave assisted hydrothermal technique

    International Nuclear Information System (INIS)

    Linganiso, Ella Cebisa; Mhlanga, Sabelo Dalton; Coville, Neil John; Mwakikunga, Bonex Wakufwa

    2013-01-01

    Graphical abstract: Unexpected ultra-violet (UV) emission as well as near infra-red (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material. Enhanced UV and near IR PL emissions due to the smaller crystallite size of the capped NiS 2 nanostructures was also observed. Band energy and local density of states calculation for NiS 2 were used to support the experimentally observed luminescence results. The luminescence features at wavelengths of 400 nm (3.10 eV), 428 nm (2.90 eV), 447 nm (2.77 eV) and 464 nm (2.67) can be attributed to some of those electrons de-exciting from S (3p) levels down to the Ni (3d) (blue to UV emission) whereas those features at wavelengths of 710 nm (1.75 eV), 751 nm (1.65 eV), 754 nm (1.64 eV) [NiS 2 /HDA-capped NiS 2 ] and 784 nm (1.58 eV) respectively seem to result from de-excitations between either Ni(3d) or S (3s, 3p) levels and Ni–S hybridization levels (red to near IR emission). Highlights: ► Rapid solid state alloying of Ni and S from their liquid state precursor by microwaves. ► New photoluminescence data of NiS 2 system. ► Unexpected luminescence in the UV–Visible and near IR ranges for such a metal matrix alloy. ► Explanation of NiS 2 photoluminescence from ab initio calculations by electronic energy band structure and density of states. -- Abstract: Synthesis of nickel disulfide (NiS 2 ) nano-alloys capped and uncapped with hexadecylamine (HDA) was carried out. A cubic phase NiS 2 formation was confirmed by X-ray diffraction (XRD) analysis. An average crystallite size of 35 nm was obtained for the uncapped nanostructures and 9 nm was obtained for the capped nanostructures estimated using the Scherrer equation. Unexpected ultra-violet (UV) emission as well as near infrared (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material. Enhanced UV and near IR PL emissions

  13. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  14. Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells

    OpenAIRE

    Nematollahi, Mohammadreza; Yang, Xiaodong; Aas, Lars Martin Sandvik; Ghadyani, Zahra; Kildemo, Morten; Gibson, Ursula; Reenaas, Turid Worren

    2015-01-01

    We have investigated the structural and optical properties of Cr-doped ZnS (ZnS:Cr) thin films (0–7.5 at.% Cr) for use in intermediate band solar cells. The films were grown on Si(100) in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) equipments. Introducing Cr into ZnS resulted in Cr related subbandgap absorption, but also reduced the grain size. The sub-bandgap absorption increased with increasing Cr content, and with increasing growth temperature, but did not depend on the ...

  15. A high peak power S-band switching system for the Advanced Photon Source (APS) Linear Accelerator (Linac)

    International Nuclear Information System (INIS)

    Grelick, A. E.

    1998-01-01

    An S-band linear accelerator is the source of particles and front end of the Advanced Photon Source [1] injector. Additionally, it will be used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). To provide maximum linac availability for all uses, an additional modulator-klystron subsystem has been built,and a waveguide-switching and distribution subsystem is now under construction. The combined subsystems provide a hot spare for any of the five S-band transmitters that power the lina cand have been given the additional function of powering an rf gun test stand whenever they are not otherwise needed. Design considerations for the waveguide-switching subsystem, topology selection, timing, control, and system protection provisions are described

  16. 16O + 16O + valence neutrons in molecular orbitals structures of positive- and negative-parity superdeformed bands in 34S

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka

    2015-01-01

    The structures of superdeformed (SD) states in 34 S have been investigated using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16 O + 16 O + two valence neutrons in molecular orbitals around the two 16 O cores in a cluster picture. The configurations of the two valence neutrons are δ 2 and π 2 for the positive-parity SD bands and π 1 δ 1 for the negative-parity SD band. (author)

  17. 16O + 16O + valence neutrons in molecular orbitals structures of positive- and negative-parity superdeformed bands in 34S

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka

    2014-01-01

    The structures of superdeformed (SD) states in 34 S are investigated using the antisymmetrized molecular dynamics and generator coordinate method (GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity SD bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16 O + 16 O + two valence neutrons in molecular orbitals around the two 16 O cores in a cluster picture. The configurations of the two valence neutrons are δ 2 and π 2 for the positive-parity SD bands and π 1 δ 1 for the negative-parity SD band

  18. Production and testing of an s-band resonator with a Nb3Sn surface

    International Nuclear Information System (INIS)

    Peiniger, M.

    1983-01-01

    This report describes the preparation of a niobium s-band resonator with Nb3Sn surface using a special vapor phase deposition method. High-frequency superconductivity tests were performed on this resonator. Measurements of transition temperature, penetration depth, energy gap, and temperature dependence of surface conductivity of Nb3Sn, and resonator behaviour at high electrical field strengths are reported. (GSCH)

  19. Optical and electronic properties of 2 H -Mo S2 under pressure: Revealing the spin-polarized nature of bulk electronic bands

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Segura, Alfredo; Robles, Roberto; Canadell, Enric; Ordejón, Pablo; Sánchez-Royo, Juan F.

    2018-05-01

    Monolayers of transition-metal dichalcogenide semiconductors present spin-valley locked electronic bands, a property with applications in valleytronics and spintronics that is usually believed to be absent in their centrosymmetric (as the bilayer or bulk) counterparts. Here we show that bulk 2 H -Mo S2 hides a spin-polarized nature of states determining its direct band gap, with the spin sequence of valence and conduction bands expected for its single layer. This relevant finding is attained by investigating the behavior of the binding energy of A and B excitons under high pressure, by means of absorption measurements and density-functional-theory calculations. These results raise an unusual situation in which bright and dark exciton degeneracy is naturally broken in a centrosymmetric material. Additionally, the phonon-assisted scattering process of excitons has been studied by analyzing the pressure dependence of the linewidth of discrete excitons observed at the absorption coefficient edge of 2 H -Mo S2 . Also, the pressure dependence of the indirect optical transitions of bulk 2 H -Mo S2 has been analyzed by absorption measurements and density-functional-theory calculations. These results reflect a progressive closure of the indirect band gap as pressure increases, indicating that metallization of bulk Mo S2 may occur at pressures higher than 26 GPa.

  20. The formation of α-phase SnS nanorods by PVP assisted polyol synthesis: Phase stability, micro structure, thermal stability and defects induced energy band transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com

    2017-05-01

    We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.

  1. Electrodynamic characterisitcs measurements of higher order modes in S-band cavity

    Science.gov (United States)

    Donetsky, R.; Lalayan, M.; Sobenin, N. P.; Orlov, A.; Bulygin, A.

    2017-12-01

    The 800 MHz superconducting cavities with grooved beam pipes were suggested as one of the harmonic cavities design options for High Luminosity LHC project. Cavity simulations were carried out and scaled aluminium prototype having operational mode frequency of 2400 MHz was manufactured for testing the results of simulations. The experimental measurements of transverse shunt impedance with error estimation for higher order modes TM 110 and TE 111 for S-band elliptical cavity were done. The experiments using dielectric and metallic spherical beads and with ring probe were carried out. The Q-factor measurements for two-cell structure and array of two cells were carried out.

  2. Multibunch emittance growth and its corrections in S-Band linear collider

    International Nuclear Information System (INIS)

    Gao, J.

    1994-11-01

    Multibunch emittance growths caused by long range wake fields with the misalignments of accelerating structures and quadrupoles in S-Band linear collider are studied. Tolerances for the misalignment errors of accelerating structures and quadrupoles are given corresponding to different detuned+damped structures. At the end of main linac, emittance corrector (EC) is proposed to be used to reduce further the multibunch emittance. Numerical simulations show that the effect of EC is obvious (multibunch emittance can be reduced about one order of magnitude), and it is believed that this kind of EC will be necessary for future linear colliders. (author). 16 refs., 21 figs., 4 tabs

  3. What band rocks the MTB? (Invited)

    Science.gov (United States)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2013-12-01

    Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency

  4. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  5. Interface band gap narrowing behind open circuit voltage losses in Cu2ZnSnS4 solar cells

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Palsgaard, Mattias Lau Nøhr; Gunst, Tue

    2017-01-01

    We present evidence that bandgap narrowing at the heterointerface may be a major cause of the large open circuit voltage deficit of Cu2ZnSnS4/CdS solar cells. Bandgap narrowing is caused by surface states that extend the Cu2ZnSnS4valence band into the forbidden gap. Those surface states...... are consistently found in Cu2ZnSnS4, but not in Cu2ZnSnSe4, by first-principles calculations. They do not simply arise from defects at surfaces but are an intrinsic feature of Cu2ZnSnS4 surfaces. By including those states in a device model, the outcome of previously published temperature-dependent open circuit...... voltage measurements on Cu2ZnSnS4 solar cells can be reproduced quantitatively without necessarily assuming a cliff-like conduction band offset with the CdS buffer layer. Our first-principles calculations indicate that Zn-based alternative buffer layers are advantageous due to the ability of...

  6. Multi-wavelength fiber laser in the S-band region using a Sagnac loop mirror as a comb generator in an SOA gain medium

    International Nuclear Information System (INIS)

    Zulkifli, M Z; Hassan, N A; Awang, N A; Ahmad, H; Ghani, Z A; Harun, S W

    2010-01-01

    A simple design of multi-wavelength generation in the S-band region of the optical network transmission is proposed. The design consists of broad-band fiber Bragg grating (BB-FBG), which acts as a filter to enhance operation in the S-band region. A Sagnac loop mirror (SLM) is used to generate multiple wavelength oscillations in the ring cavity. The output consists of 60 lasing wavelengths oscillating simultaneously between 1464 nm and 1521 nm with a spacing of 0.92 nm and an output linewidth of 0.66 nm

  7. Observation of dark-current signals from the S-band structures of the SLAC linac

    International Nuclear Information System (INIS)

    Assmann, R.; Decker, F.J.; Seidel, M.; Siemann, R.H.; Whittum, D.

    1997-07-01

    It is well known that the electro-magnetic fields in high-gradient RF structures can cause electron emission from the metallic structure walls. If the emitted electrons are captured and accelerated by the accelerating fields so-called dark-current is induced. Dark-currents have been measured and studied for various RF-structures. In this paper the authors present measurements of RF induced signals for the SLC S-band structures. For nominal gradients of 17 MV/m it is shown that the dark-current can be strong enough to significantly reduce the signal-to-noise ratio of the SLC beam wire scanners. They also show results from RF measurements in the dipole band. The measurements are compared to more direct observations of dark-current and it is tried to connect the results to possible effects on the accelerated particle beam

  8. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Song, Taewon [Energy lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Dongho, E-mail: dhlee0333@gmail.com; Nam, Junggyu [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Gaesin-dong, Heungdeok-gu, Cheongju, 361-763 (Korea, Republic of); Choi, Pyung-Ho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  9. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    Science.gov (United States)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  10. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    Science.gov (United States)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  11. Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well

    KAUST Repository

    Tangi, Malleswararao; Mishra, Pawan; Li, Ming-Yang; Shakfa, Mohammad Khaled; Anjum, Dalaver H.; Hedhili, Mohamed N.; Ng, Tien Khee; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    matching with that of MoS2. We confirm that the grown MoS2 is a single layer from optical and structural analyses using micro-Raman spectroscopy and scanning transmission electron microscopy. The band offset parameters VBO and CBO at the In0.15Al0.85N/MoS2

  12. 150-MW S-Band klystron program at the Stanford Linear Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    Sprehn, D.; Caryotakis, G.; Phillips, R.M. [Stanford Linear Accelerator Center, Stanford Univ., Stanford, CA (United States)

    1997-04-01

    Two S-Band klystrons operating at 150 MW have been designed, fabricated and tested at the Stanford Linear Accelerator Center (SLAC) during the past two years for use in an experimental accelerator at Deutsches Elektronen Synchrotron (DESY) in Hamburg, Germany. Both klystrons operate at the design power, 60 Hz repetition rate, 3 {mu}s pulsewidth, with an efficiency > 40%, and agreement between the experimental results and simulations is excellent. The 535 kV, 700 A electron gun was tested by constructing a solenoidal focused beam-stick which identified a source of oscillation, subsequently engineered out of the klystron guns. Design of the beam-stick and the two klystrons is discussed, along with observation and suppression of spurious oscillations. Differences in design and the resulting performance of the klystrons is emphasized. (author)

  13. Absorption band Q model for the earth

    International Nuclear Information System (INIS)

    Anderson, D.L.; Given, J.W.

    1982-01-01

    Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. With a simple absorption band model it is possible to satisfy the shear sensitive data over a broad frequency range. The quality factor Q/sub s/(ω) is proportional to ω/sup α/ in the band and to ω and ω -1 at higher and lower frequencies, respectively, as appropriate for a relaxation mechanism with a spectrum of relaxation time. The parameters of the band are Q(min) = 80, α = 0.15, and width, 5 decades. The center of the band varies from 10 1 seconds in the upper mantle, to 1.6 x 10 3 seconds in the lower mantle. The shift of the band with depth is consistent with the expected effects of temperature, pressure and stress. High Q, regions of the mantle are attributed to a shift of the absorption band to longer periods. To satisfy the gravest fundamental spheroidal modes and the ScS data, the absorption band must shift back into the short-period seismic band at the base of the mantle. This may be due to a high temperature gradient or high shear stresses. A preliminary attempt is also made to specify bulk dissipation in the mantle and core. Specific features of the absorption band model are low Q in the body wave band at both the top and the base of the mantle, low Q for long-period body waves in the outer core, an inner core Q 2 that increases with period, and low Q/sub p//Q/sub s/ at short periods in the middle mantel. The short-period Q/sub s/ increases rapidly at 400 km and is relatively constant from this depth to 2400 km. The deformational Q of the earth at a period of 14 months is predicted to be 463

  14. Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument

    Science.gov (United States)

    Goldie, D. J.; Glowacka, D. M.; Withington, S.; Chen, Jiajun; Ade, P. A. R.; Morozov, D.; Sudiwala, R.; Trappe, N. A.; Quaranta, O.

    2016-07-01

    We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting β-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/ √ Hz and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 μm and S-band 34 - 60 μm .

  15. Left regular bands of groups of left quotients

    International Nuclear Information System (INIS)

    El-Qallali, A.

    1988-10-01

    A semigroup S which has a left regular band of groups as a semigroup of left quotients is shown to be the semigroup which is a left regular band of right reversible cancellative semigroups. An alternative characterization is provided by using spinned products. These results are applied to the case where S is a superabundant whose set of idempotents forms a left normal band. (author). 13 refs

  16. Head and hand detuning effect study of narrow-band against wide-band mobile phone antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    Wide-band (WB) and narrow-band (NB) antennas in terms of performance are compared, when interacting with the user’s right head and hand (RHH). The investigations are done through experimental measurements, using standardised head phantom and hand. It is shown that WB antennas detune more than NB ...

  17. Optical properties and band structure of atomically thin MoS2

    Science.gov (United States)

    Shan, Jie; Mak, Kin Fai; Lee, Changgu; Hone, James; Heinz, Tony

    2010-03-01

    Atomically thin layers of materials can be expected to exhibit distinct electronic structure and novel properties compared to their bulk counterparts. Layered compounds, for which stable atomically thin samples can be produced, are ideal candidates for such studies. Graphene, a monolayer slice of the graphite crystal, is an illustrative example of both the stability and of the interest and importance of such materials. Here we report a study of thin layers of MoS2, a hexagonal layered bulk semiconductor with an indirect band gap of 1.3 eV. MoS2 samples with layer thickness N down to a monolayer were obtained by mechanical exfoliation. We observed an enhancement of the luminescence quantum yield by more than a factor of 100 in monolayer MoS2 compared to the bulk material. The combination of absorption, photoluminescence, and photoconductivity measurements indicates that a transition to a direct-gap material occurs in the limit of the single MoS2 layer. This result is supported by an earlier first-principles calculation [J. Phys. Chem. C 2007, 111, 16192]. Further, by varying the thickness of the samples, we were able to probe the evolution of the electronic structure for N = 1 -- 6 layers.

  18. Size-dependent and intra-band photoluminescence of NiS{sub 2} nano-alloys synthesized by microwave assisted hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Linganiso, Ella Cebisa [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050 (South Africa); Mhlanga, Sabelo Dalton; Coville, Neil John [Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050 (South Africa); DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050 (South Africa); Mwakikunga, Bonex Wakufwa, E-mail: bmwakikunga@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); Department of Physics and Biochemical Sciences, University of Malawi, The Polytechnic, Private Bag 303, Chichiri, Blantyre 3 (Malawi)

    2013-03-05

    Graphical abstract: Unexpected ultra-violet (UV) emission as well as near infra-red (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material. Enhanced UV and near IR PL emissions due to the smaller crystallite size of the capped NiS{sub 2} nanostructures was also observed. Band energy and local density of states calculation for NiS{sub 2} were used to support the experimentally observed luminescence results. The luminescence features at wavelengths of 400 nm (3.10 eV), 428 nm (2.90 eV), 447 nm (2.77 eV) and 464 nm (2.67) can be attributed to some of those electrons de-exciting from S (3p) levels down to the Ni (3d) (blue to UV emission) whereas those features at wavelengths of 710 nm (1.75 eV), 751 nm (1.65 eV), 754 nm (1.64 eV) [NiS{sub 2}/HDA-capped NiS{sub 2}] and 784 nm (1.58 eV) respectively seem to result from de-excitations between either Ni(3d) or S (3s, 3p) levels and Ni–S hybridization levels (red to near IR emission). Highlights: ► Rapid solid state alloying of Ni and S from their liquid state precursor by microwaves. ► New photoluminescence data of NiS{sub 2} system. ► Unexpected luminescence in the UV–Visible and near IR ranges for such a metal matrix alloy. ► Explanation of NiS{sub 2} photoluminescence from ab initio calculations by electronic energy band structure and density of states. -- Abstract: Synthesis of nickel disulfide (NiS{sub 2}) nano-alloys capped and uncapped with hexadecylamine (HDA) was carried out. A cubic phase NiS{sub 2} formation was confirmed by X-ray diffraction (XRD) analysis. An average crystallite size of 35 nm was obtained for the uncapped nanostructures and 9 nm was obtained for the capped nanostructures estimated using the Scherrer equation. Unexpected ultra-violet (UV) emission as well as near infrared (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material

  19. Block 3 X-band receiver-exciter

    Science.gov (United States)

    Johns, C. E.

    1987-01-01

    The development of an X-band exciter, for use in the X-Band Uplink Subsystem, was completed. The exciter generates the drive signal for the X-band transmitter and also generates coherent test signals for the S- and X-band Block 3 translator and a Doppler reference signal for the Doppler extractor system. In addition to the above, the exciter generates other reference signals that are described. Also presented is an overview of the exciter design and some test data taken on the prototype. A brief discussion of the Block 3 Doppler extractor is presented.

  20. Computer-aided design of the RF-cavity for a high-power S-band klystron

    Science.gov (United States)

    Kant, D.; Bandyopadhyay, A. K.; Pal, D.; Meena, R.; Nangru, S. C.; Joshi, L. M.

    2012-08-01

    This article describes the computer-aided design of the RF-cavity for a S-band klystron operating at 2856 MHz. State-of-the-art electromagnetic simulation tools SUPERFISH, CST Microwave studio, HFSS and MAGIC have been used for cavity design. After finalising the geometrical details of the cavity through simulation, it has been fabricated and characterised through cold testing. Detailed results of the computer-aided simulation and cold measurements are presented in this article.

  1. X-band RF power sources for accelerator applications

    International Nuclear Information System (INIS)

    Kirshner, Mark F.; Kowalczyk, Richard D.; Wilsen, Craig B.; True, Richard B.; Simpson, Ian T.; Wray, John T.

    2011-01-01

    The majority of medical and industrial linear accelerators (LINACs) in use today operate at S-band. To reduce size and weight, these systems are gradually migrating toward X-band. The new LINACs will require suitable RF components to power them. In anticipation of this market, L-3 Communications Electron Devices Division (EDD) has recently developed a suite of RF sources operating at 9.3 GHz to complement our existing S-band product line. (author)

  2. Up to 40 Gb/s wireless signal generation and demodulation in 75-110 GHz band using photonic techniques

    DEFF Research Database (Denmark)

    Sambaraju, R.; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Record wireless signal capacity of up to 40 Gb/s is demonstrated in the 75-110 GHz band. All-optical OFDM and photonic up-conversion are used for generation and digital coherent detection for demodulation....

  3. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.

    Science.gov (United States)

    Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin

    2015-06-23

    A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.

  4. Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: Thickness scaling

    Science.gov (United States)

    Jain, Prateek; Rastogi, Priyank; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh

    2017-07-01

    The direct and indirect valleys in Germanium (Ge) are separated by a very small offset, which opens up the prospect of direct tunneling in the Γ valley of an extended Ge source tunnel field effect transistor (TFET). We explore the impact of thickness scaling of extended Ge source lateral TFET on the band to band tunneling (BTBT) current. The Ge source is extended inside the gate by 2 nm to confine the tunneling in Ge only. We observe that as the thickness is scaled, the band alignment at the Si/Ge heterojunction changes significantly, which results in an increase in Ge to Si BTBT current. Based on density functional calculations, we first obtain the band structure parameters (bandgap, effective masses, etc.) for the Ge and Si slabs of varying thickness, and these are then used to obtain the thickness dependent Kane's BTBT tunneling parameters. We find that electrostatics improves as the thickness is reduced in the ultra-thin Ge film ( ≤ 10 nm). The ON current degrades as we scale down in thickness; however, the subthreshold slope ( S S AVG ) improves remarkably with thickness scaling due to subsurface BTBT. We predict that 8 nm thin devices offer the best option for optimized ON current and S S AVG .

  5. Intra-annual patterns in adult band-tailed pigeon survival estimates

    Science.gov (United States)

    Casazza, Michael L.; Coates, Peter S.; Overton, Cory T.; Howe, Kristy H.

    2015-01-01

    Context: The band-tailed pigeon (Patagioenas fasciata) is a migratory species occurring in western North America with low recruitment potential and populations that have declined an average of 2.4% per year since the 1960s. Investigations into band-tailed pigeon demographic rates date back to the early 1900s, and existing annual survival rate estimates were derived in the 1970s using band return data.

  6. Band alignment of HfO{sub 2}/multilayer MoS{sub 2} interface determined by x-ray photoelectron spectroscopy: Effect of CHF{sub 3} treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke; He, Jiazhu; Tang, Dan; Jia, Fang; Lu, Youming, E-mail: ymlu@szu.edu.cn; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie, E-mail: casan@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS,865 Chang Ning Road, Shanghai 200050 (China); Pan, Jisheng [Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 117602 (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore)

    2015-09-07

    The energy band alignment between HfO{sub 2}/multilayer (ML)-MoS{sub 2} was characterized using high-resolution x-ray photoelectron spectroscopy. The HfO{sub 2} was deposited using an atomic layer deposition tool, and ML-MoS{sub 2} was grown by chemical vapor deposition. A valence band offset (VBO) of 1.98 eV and a conduction band offset (CBO) of 2.72 eV were obtained for the HfO{sub 2}/ML-MoS{sub 2} interface without any treatment. With CHF{sub 3} plasma treatment, a VBO and a CBO across the HfO{sub 2}/ML-MoS{sub 2} interface were found to be 2.47 eV and 2.23 eV, respectively. The band alignment difference is believed to be dominated by the down-shift in the core level of Hf 4d and up-shift in the core level of Mo 3d, or the interface dipoles, which caused by the interfacial layer in rich of F.

  7. The electronic band parameters calculated by the Kronig-Penney method for Cd1-xZnxS quantum dot superlattices

    International Nuclear Information System (INIS)

    Sakly, A.; Safta, N.; Mejri, H.; Lamine, A. Ben

    2009-01-01

    This work reports on a theoretical study of superlattices based on Cd 1-x Zn x S quantum dots embedded in an insulating material. We show, in particular, how this system can be assumed to a series of flattened cylindrical quantum dots with a finite barrier height at the boundary. In this paper, are also reviewed the approximations needed to calculate the band edges of the Cd 1-x Zn x S superlattices with use of the Kronig-Penney model. The electronic states and the electron effective masses of both Γ 1 - and Γ 2 -minibands have been computed as a function of zinc composition for different inter-quantum dot separations. As is found, the CdS system is appropriate to give rise a superlattice behavior for conduction electrons in a relatively large range of inter-sheet separations. An attempt to explain the electron band parameters calculated will be presented.

  8. S-Band AlGaN/GaN power amplifier MMIC with over 20 Watt output power

    NARCIS (Netherlands)

    van Heijningen, M; Visser, G.C.; Wurfl, J.; van Vliet, Frank Edward

    2008-01-01

    Abstract This paper presents the design of an S-band HPA MMIC in AlGaN/GaN CPW technology for radar TR-module application. The trade-offs of using an MMIC solution versus discrete power devices are discussed. The MMIC shows a maximum output power of 38 Watt at 37% Power Added Efficiency at 3.1 GHz.

  9. S-Band AlGaN/GaN Power Amplifier MMIC with over 20 Watt Output Power

    NARCIS (Netherlands)

    Heijningen, M. van; Visser, G.C.; Wuerfl, J.; Vliet, F.E. van

    2008-01-01

    This paper presents the design of an S-band HPA MMIC in AlGaN/GaN CPW technology for radar TR-module application. The trade-offs of using an MMIC solution versus discrete power devices are discussed. The MMIC shows a maximum output power of 38 Watt at 37% Power Added Efficiency at 3.1 GHz. An output

  10. TlHgInS 3 : An Indirect-Band-Gap Semiconductor with X-ray Photoconductivity Response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Malliakas, Christos D.; Han, Fei; Chung, Duck Young; Kanatzidis, Mercouri G.

    2015-08-11

    The quaternary compound TlHgInS3 crystallizes in a new structure type of space group, C2/c, with cell parameters a = 13.916(3) angstrom, b = 3.9132(8) angstrom, c = 21.403(4) angstrom, beta = 104.16(3)degrees, V = 1130.1(8) angstrom(3), and rho = 7.241 g/cm(3). The structure is a unique three-dimensional framework with parallel tunnels, which is formed by (1)(infinity)[InS33-] infinite chains bridged by linearly coordinated Hg2+ ions. TlHgInS3 is a semiconductor with a band gap of 1.74 eV and a resistivity of similar to 4.32 G Omega cm. TlHgInS3 single crystals exhibit photocurrent response when exposed to Ag X-rays. The mobility-lifetime product (mu tau) of the electrons and holes estimated from the photocurrent measurements are (mu tau)(e) approximate to 3.6 x 10(-4) cm(2)/V and (mu tau)(h) approximate to 2.0 x 10(-4) cm(2)/V. Electronic structure calculations at the density functional theory level indicate an indirect band gap and a relatively small effective mass for both electrons and holes. Based on the photoconductivity data, TlHgInS3 is a potential material for radiation detection applications.

  11. Measurement of IR atmospheric band dayglow by S-520-4 rocket

    International Nuclear Information System (INIS)

    Makino, Tadao; Yamamoto, Hiromasa; Sekiguchi, Hiroyuki

    1984-01-01

    The measurement of IR atmospheric band dayglow was made by rocket S-520-4 flown from Uchinoura at 1000 JST on Sept. 5, 1981. The instrument loaded on the rocket was the same type as the one loaded on EXOS-C satellite which will be launched in 1984 in order to observe the mesospheric ozone. This rocket experiment was performed for the purpose of testing the functions of this instrument in flight. The 1.27 μm filter radiometer consisted of three plane mirros, a camera lens, a chopper and a PbS detector array. The PbS array (4x5=20 elements) was operated at about -4 0 C with a thermoelectric cooler. We obtained the following results from the rocket experiment: (i) this instrument worked well during the flight, (ii) the intensities of the solar radiation scattered by the sea and clouds were obtained at 1.27 μm, and (iii) the baffle designed to permit the daytime measurement of the atmospheric emission could attenuate the off-axis radiation as weak as possible. The altitude distribution of the daytime mesospheric ozone density derived from the downleg data was in agreement with the previous profile obtained in twilight condition. (author)

  12. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael

    2014-01-01

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  13. Observations of the Galaxy NGC 3077 in the Narrow-Band [S II] and Hα Filters

    Directory of Open Access Journals (Sweden)

    Andjelić M.

    2011-09-01

    Full Text Available We present observations of the H I tidal arm near a dwarf galaxy NGC 3077 (member of the M81 galaxy group in the narrow-band [S II] and Hα filters. Observations were carried out in 2011 March with the 2 m RCC telescope at the NAO Rozhen, Bulgaria. Our search for possible supernova remnant candidates (identified as sources with enhanced [S II] emission relative to their Hα emission in this region yielded no sources of this kind. Nevertheless, we found a number of objects with significant Hα emission that probably represent uncatalogued, low brightness H II regions.

  14. Bunch Compressor Beamlines for the Tesla and S Band Linear Colliders

    CERN Document Server

    Emma, P

    2003-01-01

    A detailed design for a single stage beam bunch length compressor for both the TESLA and the S-Band Linear Collider (SBLC) is presented. Compression is achieved by introducing an energy-position correlation along the bunch with an rf section at zero-crossing phase followed by a short bending section with energy dependent path length (momentum compaction). The motivation for a wiggler design is presented and many of the critical single bunch tolerances are evaluated. A solenoid based spin rotator is included in the design and transverse emittance tuning elements, diagnostics and tuning methods are described. Bunch length limitations due to second order momentum compaction and sinusoidal rf shape are discussed with options for compensation. Finally, the disadvantages of bunch compression using a 180 sup o arc are discussed.

  15. Visible bands of ammonia: band strengths, curves of growth, and the spatial distribution of ammonia on Jupiter

    International Nuclear Information System (INIS)

    Lutz, B.L.; Owen, T.

    1980-01-01

    We report room-temperature laboratory studies of the 5520 A (6ν 1 ) and 6475 A (5ν 1 ) bands of self-broadened ammonia at column densities ranging from 1.7--435.7 meter-amagats (m-am). Detailed equivalent-width measurements at 24 different pressure-pathlength combinations corresponding to four pressures between 44 and 689 torr and pathlengths between 32 and 512 m are used to determin curves of growth and integrated band strengths. The band strengths for the 6ν 1 and 5ν 1 overtones are 5520 A: S=0.096 +- 0.005 cm -1 (m-am) -1 and 6475 A: S=0.63 +- 0.03 cm -1 (m-am) -1 , respectively.Using these band strengths and curves of growth, we analyze new spatially resolved spectra of Jupiter showing a nonhomogeneous distribution of ammonia in the Jovian atmosphere. The observed variations in the CH 4 /NH 3 mixing ratio are interpreted as evidence of altitude-dependent depletion of ammonia in the atmosphere

  16. Intrinsic properties of high-spin band structures in triaxial nuclei

    Science.gov (United States)

    Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.

    2017-12-01

    The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.

  17. Application of high precision two-way S-band ranging to the navigation of the Galileo Earth encounters

    Science.gov (United States)

    Pollmeier, Vincent M.; Kallemeyn, Pieter H.; Thurman, Sam W.

    1993-01-01

    The application of high-accuracy S/S-band (2.1 GHz uplink/2.3 GHz downlink) ranging to orbit determination with relatively short data arcs is investigated for the approach phase of each of the Galileo spacecraft's two Earth encounters (8 December 1990 and 8 December 1992). Analysis of S-band ranging data from Galileo indicated that under favorable signal levels, meter-level precision was attainable. It is shown that ranginging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. Explicit modeling of ranging bias parameters for each station pass is used to largely remove systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle finding capabilities of the data. The accuracy achieved using the precision range filtering strategy proved markedly better when compared to post-flyby reconstructions than did solutions utilizing a traditional Doppler/range filter strategy. In addition, the navigation accuracy achieved with precision ranging was comparable to that obtained using delta-Differenced One-Way Range, an interferometric measurement of spacecraft angular position relative to a natural radio source, which was also used operationally.

  18. Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Jemangin, M H; Harun, S W

    2013-01-01

    A novel S-band multimode Brillouin–Raman random fiber laser based on distributed feedback of Rayleigh scattered light is demonstrated. It relies on a short length, 7.7 km long angle-cleaved dispersion compensating fiber in a mirror-less open cavity. Two 1425 nm laser diodes at a modest operating power amplify a Brillouin pump (BP) signal, which in turn generates a multi-wavelength laser output through the stimulated Brillouin scattering. Eleven Brillouin Stokes lines, spanning from 1515.15 to 1516.00 nm, were obtained at a Raman pump power of 361.66 mW. Out of these, five odd Brillouin Stokes lines were generated with a flat peak power of about 0 dBm. (letter)

  19. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    Science.gov (United States)

    Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  20. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana; Jensen, Soren A.; Kuciauskas, Darius; Glynn, Stephen; Barnes, Teresa; Metzger, Wyatt; Burst, James; Jiang, Chun-Sheng; Dippo, Patricia; Harvey, Steve; Teeter, Glenn; Perkins, Craig; Egaas, Brian; Zakutayev, Andriy; Alsmeier, J.-H.; Lussky, T.; Korte, L.; Wilks, R. G.; Bar, M.; Yan, Y.; Lany, Stephan; Zawadzki, Pawel; Park, Ji-Sang; Wei, Suhuai

    2016-06-16

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  1. The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice

    OpenAIRE

    Fujioka, Masaya; Shibuya, Taizo; Nakai, Junya; Yoshiyasu, Keigo; Sakai, Yuki; Takano, Yoshihiko; Kamihara, Yoichi; Matoba, Masanori

    2012-01-01

    The thermoelectric properties and electronic band structures for Se-doped Co3SnInS2 were examined. The parent compound of this material (Co3Sn2S2) has two kinds of Sn sites (Sn1 and Sn2 sites). The density functional theory (DFT) calculations show that the indium substitution at the Sn2 site induces a metallic band structure, on the other hand, a semiconducting band structure is obtained from substitution at the Sn1 site. However, according to the previous reports, since the indium atom prefe...

  2. A 7MeV S-Band 2998MHz Variable Pulse Length Linear Accelerator System

    CERN Document Server

    Hernandez, Michael; Mishin, Andrey V; Saverskiy, Aleksandr J; Skowbo, Dave; Smith, Richard

    2005-01-01

    American Science and Engineering High Energy Systems Division (AS&E HESD) has designed and commissioned a variable pulse length 7 MeV electron accelerator system. The system is capable of delivering a 7 MeV electron beam with a pulse length of 10 nS FWHM and a peak current of 1 ampere. The system can also produce electron pulses with lengths of 20, 50, 100, 200, 400 nS and 3 uS FWHM with corresponding lower peak currents. The accelerator system consists of a gridded electron gun, focusing coil, an electrostatic deflector system, Helmholtz coils, a standing wave side coupled S-band linac, a 2.6 MW peak power magnetron, an RF circulator, a fast toroid, vacuum system and a PLC/PC control system. The system has been operated at repetition rates up to 250pps. The design, simulations and experimental results from the accelerator system are presented in this paper.

  3. Effective shunt impedance comparison between s-band standing wave accelerators with on-axis and off-axis couplers

    International Nuclear Information System (INIS)

    Schriber, S.O.; Funk, L.W.; Hutcheon, R.M.

    1976-01-01

    The effective shunt impedances of a side-coupled S-band standing wave accelerating structure and a structure employing on-axis couplers have been compared by measuring the energy of accelerated electrons. Criteria for choosing an on-axis coupled structure compared to side-coupled and ''disk and washer'' accelerating structures are given. (author)

  4. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.

    Science.gov (United States)

    Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu

    2014-12-28

    The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.

  5. Structural parameter based modification of energy conscious ESPAR antenna system through optimization for WLAN’s dual-band operability

    CSIR Research Space (South Africa)

    Bembe, MJ

    2010-11-01

    Full Text Available single device. In this study the focus is on the modification of the antenna designs for dual-band functionality which is limited on the ESPAR antenna’s structural parameter. This modification should result in an antenna system which operates in both 2...

  6. Determination of the flat band potential for In sub 2 S sub 3 /electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herrasti, P; Fatas, E [Universidad Autonoma, Madrid (ES). Dept. de Quimica; Herrero, J; Ortega, J [CIEMAT, Madrid (ES). Inst. de Energias Renovables

    1990-02-01

    Flat band potentials V{sub fb} of In{sub 2}S{sub 3} polycrystalline thin films obtained by chalcogenization of electroplated metallic indium films on Ti substrates with a flowing stream of H{sub 2}S gas have been obtained. The variation of this potential with different redox couples, solution concentration and pH values has been studied. Photoelectrochemical characterization of the electrodes was accomplished in aqueous polysulphide solutions and the application of the Gartner-Butler model to the semiconductor/electrolyte interface makes it possible to obtain the semiconductor energy gap. The value obtained is 2.06 eV, corresponding to a direct allowed transition. (author).

  7. 40-Gb/s PDM-QPSK signal transmission over 160-m wireless distance at W-band.

    Science.gov (United States)

    Xiao, Jiangnan; Yu, Jianjun; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long

    2015-03-15

    We experimentally demonstrate a W-band optical-wireless transmission system over 160-m wireless distance with a bit rate up to 40 Gb/s. The optical-wireless transmission system adopts optical polarization-division-multiplexing (PDM), multiple-input multiple-output (MIMO) reception and antenna polarization diversity. Using this system, we experimentally demonstrate the 2×2 MIMO wireless delivery of 20- and 40-Gb/s PDM quadrature-phase-shift-keying (PDM-QPSK) signals over 640- and 160-m wireless links, respectively. The bit-error ratios (BERs) of these transmission systems are both less than the forward-error-correction (FEC) threshold of 3.8×10-3.

  8. S-band multiple-access interference study for advanced tracking and data relay satellite systems

    Science.gov (United States)

    Peng, Wei-Chung; Yang, Chau-Chin

    1990-01-01

    The results of a study on the effect of mutual interference among S-band multiple access (SMA) system users of advanced tracking and data relay satellite system (ATDRSS) are presented. In the ATDRSS era, the SMA system is required to support data rates ranging from 10 kb/s to 3 Mb/s. The system will consist of four advanced tracking and data relay satellites (ATDRS) each supporting up to five telemetry links. All users have 10 MHz bandwidth with their carrier frequency equal to 2.2875 GHz. A hybrid SDMA/CDMA scheme is used to mitigate the effect of the interference among system users. SMA system interference probability is evaluated with CLASS software. User link margin degradation due to mutual interference between two users is evaluated. System interference probability is evaluated for the projected 1996 mission model, a reference mission model, and a modified reference mission model.

  9. An S-band high gain relativistic klystron amplifier with high phase stability

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Li, Z. H.; Xu, Z.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China)

    2014-11-15

    For the purpose of coherent high power microwave combining, an S-band high gain relativistic klystron amplifier with high phase stability is presented and studied. By the aid of 3D particle-in-cell code and circuit simulation software, the mechanism of parasitic oscillation in the device is investigated. And the RF lossy material is adopted in the simulation and experiment to suppress the oscillation. The experimental results show that with an input RF power of 10 kW, a microwave pulse with power of 1.8 GW is generated with a gain of 52.6 dB. And the relative phase difference fluctuation between output microwave and input RF signal is less than ±10° in 90 ns.

  10. Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1−xOx (Y = S, Se, Te) semiconductors by first-principles calculations

    International Nuclear Information System (INIS)

    Wu Kong-Ping; Zhou Meng-Ran; Huang You-Rui; Gu Shu-Lin; Ye Jian-Dong; Zhu Shun-Ming; Zhang Rong; Zheng You-Dou; Tang Kun

    2013-01-01

    The structural, energetic, and electronic properties of lattice highly mismatched ZnY 1−x O x (Y = S, Se, Te) ternary alloys with dilute O concentrations are calculated from first principles within the density functional theory. We demonstrate the formation of an isolated intermediate electronic band structure through diluted O-substitute in zinc-blende ZnY (Y = S, Se, Te) at octahedral sites in a semiconductor by the calculations of density of states (DOS), leading to a significant absorption below the band gap of the parent semiconductor and an enhancement of the optical absorption in the whole energy range of the solar spectrum. It is found that the intermediate band states should be described as a result of the coupling between impurity O 2p states with the conduction band states. Moreover, the intermediate bands (IBs) in ZnTeO show high stabilization with the change of O concentration resulting from the largest electronegativity difference between O and Te compared with in the other ZnSO and ZnSeO. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients

    DEFF Research Database (Denmark)

    Svane, Axel; Christensen, Niels Egede; Cardona,, M.

    2010-01-01

    The electronic band structures of PbS, PbSe, and PbTe in the rocksalt structure are calculated with the quasiparticle self-consistent GW (QSGW) approach with spin-orbit coupling included. The semiconducting gaps and their deformation potentials as well as the effective masses are obtained. The GW...

  12. SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS

    NARCIS (Netherlands)

    ESKES, H; SAWATZKY, GA

    1991-01-01

    The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following

  13. Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures

    Science.gov (United States)

    Li, Guanpeng; Yao, Kailun; Gao, Guoying

    2018-01-01

    Using first-principle calculations combined with Boltzmann transport theory, we investigate the biaxial strain effect on the electronic and phonon thermal transport properties of a 1 T (CdI2-type) structural TiS2 monolayer, a recent experimental two-dimensional (2D) material. It is found that the electronic band structure can be effectively modulated and that the band gap experiences an indirect-direct-indirect transition with increasing tensile strain. The band convergence induced by the tensile strain increases the Seebeck coefficient and the power factor, while the lattice thermal conductivity is decreased under the tensile strain due to the decreasing group velocity and the increasing scattering chances between the acoustic phonon modes and the optical phonon modes, which together greatly increase the thermoelectric performance. The figure of merit can reach 0.95 (0.82) at an 8 percent tensile strain for the p-type (n-type) doping, which is much larger than that without strain. The present work suggests that the TiS2 monolayer is a good candidate for 2D thermoelectric materials, and that biaxial strain is a powerful tool with which to enhance thermoelectric performance.

  14. Design and analysis of an integrated pulse modulated s-band power amplifier in gallium nitride process

    Energy Technology Data Exchange (ETDEWEB)

    Sedlock, Steve [Kansas State Univ., Manhattan, KS (United States)

    2012-01-01

    The design of power amplifiers in any semi-conductor process is not a trivia exercise and it is often encountered that the simulated solution is qualitatively different than the results obtained. Phenomena such as oscillation occurring either in-band or out of band and sometimes at subharmonic intervals, continuous spectrum noticed in some frequency bands, often referred to as chaos, and jumps and hysteresis effects can all be encountered and render a design useless. All of these problems might have been identified through a more rigorous approach to stability analysis. Designing for stability is probably the one area of amplifier design that receives the least amount of attention but incurs the most catastrophic of effects if it is not performed properly. Other parameters such as gain, power output, frequency response and even matching may suitable mitigation paths. But the lack of stability in an amplifier has no mitigating path. In addition to of loss of the design completely there are the increased production cycle costs, costs involved with investigating and resolving the problem and the costs involved with schedule slips or delays resulting from it. The Linville or Rollett stability criteria that many microwave engineers follow and rely exclusively on is not sufficient by itself to ensure a stable and robust design. It will be shown that the universal belief that unconditional stability is obtained through an analysis of the scattering matrix S to determine if 1 and |{Delta}{sub S}| < 1 is only part of the procedure and other tools must be used to validate the criteria. The research shown contributes to the state of the art by developing a more thorough stability design technique for designing amplifiers of any class, whether that be current mode or switch mode, than is currently undertaken with the goal of obtaining first pass design success.

  15. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  16. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method.

    Science.gov (United States)

    Malashchonak, Mikalai V; Mazanik, Alexander V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I

    2015-01-01

    The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100-120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  17. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR method

    Directory of Open Access Journals (Sweden)

    Mikalai V. Malashchonak

    2015-11-01

    Full Text Available The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3 and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR method have been studied as a function of the CdS deposition cycle number (N. The incident photon-to-current conversion efficiency (IPCE passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (EU, spectral width of the CdS longitudinal optical (LO phonon band and the relative intensity of the surface optical (SO phonon band in the Raman spectra. Maximal values of EU (100–120 meV correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles, indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  18. Band structure of CdTe under high pressure

    International Nuclear Information System (INIS)

    Jayam, Sr. Gerardin; Nirmala Louis, C.; Amalraj, A.

    2005-01-01

    The band structures and density of states of cadmium telluride (CdTe) under various pressures ranging from normal to 4.5 Mbar are obtained. The electronic band structure at normal pressure of CdTe (ZnS structure) is analyzed and the direct band gap value is found to be 1.654 eV. CdTe becomes metal and superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The equilibrium lattice constant, bulk modulus and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(E F )) gets enhanced after metallization, which leads to the superconductivity in CdTe. In our calculation, the metallization pressure (P M = 1.935 Mbar) and the corresponding reduced volume ((V/V 0 ) M = 0.458) are estimated. Metallization occurs via direct closing of band gap at Γ point. (author)

  19. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    Howard Bender; Dave Schwellenbach; Ron Sturges; Rusty Trainham

    2008-01-01

    We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials

  20. Mechanical design considerations of a standing wave s-band accelerator with on-axis couplers

    International Nuclear Information System (INIS)

    Hodge, S.B.; Funk, L.W.; Schriber, S.O.

    1976-01-01

    The mechanical design of S-band standing wave accelerator structures with on-axis coupling cells includes material selection, cavity design, segment production, rf tuning and brazing procedures. Pre-assembly tuning operations have been minimized by determining segment dimensions and tolerances so that segments can easily be fabricated in a near-finished condition by a commercial machining firm. Final tuning, if necessary, is easily achieved by removal of material from the cavity wall or drift tube nose. Considerations in choosing brazing procedures were vacuum integrity, resistivity of brazing alloy, joint thickness, alignment of the structure assembly and restriction of grain growth. (author)

  1. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    H. Bender; D. Schwellenbach; R. Sturges; R. Trainham

    2008-01-01

    This paper describes the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as x-ray and electron beam diagnostic development, and recently, electron diffraction studies of phase transitions in shocked materials

  2. The development for C-band whole sealed vacuum accelerating tuber

    International Nuclear Information System (INIS)

    Zhou Wenzhen; Zhang Xiangyang; Ding Shulin; Hu Jinquan; Yang Zhenyuan

    1999-01-01

    S-Band standing wave electron linacs have got wide-ranging application for industry nondestructive testing and formed varied kinds of products. X-band electron linac for NDT has been developed by Schonberg Company USA in 1985. Because of bigger structure of S-band linac and difficult machining of X-Band linac, an C-band portable linac for NDT has been developed in CIAE at present, a whole sealed vacuum accelerating tuber will be given here. It consists of 4 cavities, the phase velocity of the first two cavities is 0.5 and 0.9, respectively, and that of the second two cavities is 1. The high power testing proved that the design of the accelerating tuber is good for 1.5 MeV electron linac for NDT

  3. Trends on band alignments: Validity of Anderson's rule in SnS2- and SnSe2-based van der Waals heterostructures

    Science.gov (United States)

    Koda, Daniel S.; Bechstedt, Friedhelm; Marques, Marcelo; Teles, Lara K.

    2018-04-01

    Van der Waals (vdW) heterostructures are promising candidates for building blocks in novel electronic and optoelectronic devices with tailored properties, since their electronic action is dominated by the band alignments upon their contact. In this work, we analyze 10 vdW heterobilayers based on tin dichalcogenides by first-principles calculations. Structural studies show that all systems are stable, and that commensurability leads to smaller interlayer distances. Using hybrid functional calculations, we derive electronic properties and band alignments for all the heterosystems and isolated two-dimensional (2D) crystals. Natural band offsets are derived from calculated electron affinities and ionization energies of 11 freestanding 2D crystals. They are compared with band alignments in true heterojunctions, using a quantum mechanical criterion, and available experimental data. For the hBN/SnSe 2 system, we show that hBN suffers an increase in band gap, while leaving almost unchanged the electronic properties of SnSe2. Similarly, MX2 (M = Mo, W; X = S, Se) over SnX2 preserve the natural discontinuities from each side of the heterobilayer. Significant charge transfer occurs in junctions with graphene, which becomes p-doped and forms an Ohmic contact with SnX2. Zirconium and hafnium dichalcogenides display stronger interlayer interactions, leading to larger shifts in band alignments with tin dichalcogenides. Significant orbital overlap is found, which creates zero conduction band offset systems. The validity of the Anderson electron affinity rule is discussed. Failures of this model are traced back to interlayer interaction, band hybridization, and quantum dipoles. The systematic work sheds light on interfacial engineering for future vdW electronic and optoelectronic devices.

  4. 10Gb/s Ultra-Wideband Wireless Transmission Based on Multi-Band Carrierless Amplitude Phase Modulation

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    In this paper, for the first time, a record UWB transmission of 10Gb/s is experimentally demonstrated employing a multi-band approach of carrierless amplitude phase modulation (MultiCAP). The proposed solution complies with the restrictions on the effective radiated power established by both...... the United States Federal Communications Commission and the European Electronic Communications Committee, achieving a BER below the limit for a 7% overhead FEC of 3.8 · 10−3 up to respective wireless distances of 3.5m and 2m....

  5. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    Science.gov (United States)

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  6. Transition metal atoms absorbed on MoS2/h-BN heterostructure: stable geometries, band structures and magnetic properties.

    Science.gov (United States)

    Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin

    2018-06-15

    We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.

  7. Exciter For X-Band Transmitter And Receiver

    Science.gov (United States)

    Johns, Carl E.

    1989-01-01

    Report describes developmental X-band exciter for X-band uplink subsystem of Deep Space Network. X-band transmitter-exciting signal expected to have fractional frequency stability of 5.2 X 10 to negative 15th power during 1,000-second integration period. Generates coherent test signals for S- and X-band Block III translator of Deep Space Network, Doppler-reference signal for associated Doppler-extractor system, first-local-oscillator signal for associated receiver, and reference signal for associated ranging subsystem. Tests of prototype exciter show controlling and monitoring and internal phase-correcting loops perform according to applicable design criteria. Measurements of stability of frequency and of single-sideband noise spectral density of transmitter-exciting signal made subsequently.

  8. Workshop: Western hemisphere network of bird banding programs

    Science.gov (United States)

    Celis-Murillo, A.

    2007-01-01

    Purpose: To promote collaboration among banding programs in the Americas. Introduction: Bird banding and marking provide indispensable tools for ornithological research, management, and conservation of migratory birds on migratory routes, breeding and non-breeding grounds. Many countries and organizations in Latin America and the Caribbean are in the process of developing or have expressed interest in developing national banding schemes and databases to support their research and management programs. Coordination of developing and existing banding programs is essential for effective data management, reporting, archiving and security, and most importantly, for gaining a fuller understanding of migratory bird conservation issues and how the banding data can help. Currently, there is a well established bird-banding program in the U.S.A. and Canada, and programs in other countries are being developed as well. Ornithologists in many Latin American countries and the Caribbean are interested in using banding and marking in their research programs. Many in the ornithological community are interested in establishing banding schemes and some countries have recently initiated independent banding programs. With the number of long term collaborative and international initiatives increasing, the time is ripe to discuss and explore opportunities for international collaboration, coordination, and administration of bird banding programs in the Western Hemisphere. We propose the second ?Western Hemisphere Network of Bird Banding Programs? workshop, in association with the SCSCB, to be an essential step in the progress to strengthen international partnerships and support migratory bird conservation in the Americas and beyond. This will be the second multi-national meeting to promote collaboration among banding programs in the Americas (the first meeting was held in October 8-9, 2006 in La Mancha, Veracruz, Mexico). The Second ?Western Hemisphere Network of Bird Banding Programs

  9. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    NARCIS (Netherlands)

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of

  10. First experience with the InfiniBand interconnect

    International Nuclear Information System (INIS)

    Schwickerath, Ulrich; Heiss, Andreas

    2004-01-01

    A test cluster of dual Intel-Xeon processor server nodes has been equipped with 10 GBit/s InfiniBand interconnect. Capabilities of this new technique were tested and compared to Gigabit-Ethernet (GE) with respect to both High-Performance Computing (MPI-based parallel computing applications) and High-Throughput Computing (HTC). RFIO, a protocol for fast and efficient file transfers, has been ported to make immediate use of InfiniBand, utilizing the remote direct memory access (RDMA) capabilities of the InfiniBand hardware. The performance is compared to Gigabit-Ethernet

  11. Status report of a 500 GeV S-band linear collider study

    International Nuclear Information System (INIS)

    Balewski, K.; Bieler, M.; Bothe, W.; Bredehoeft, K.; Brinkmann, R.; Choroba, S.; Dwersteg, B.; Ebert, M.; Febel, A.; Fischer, R.; Floettmann, K.; Holzer, B.; Juergensen, H.; Kouptsidis, J.; Kumpfert, H.; Loeffler, F.; Marx, M.; Narciss, H.; Neumann, R.; Peters, F.; Peters, M.; Pillat, P.; Rossbach, J.; Schumann, G.; Schwarz, W.; Vilcins, S.; Voss, G.A.; Werner, M.; Wipf, S.; Wuempelmann, H.; Beyer, H.G.; Dehler, M.; Dohlus, M.; Ebeling, F.; Hahne, P.; Holtkamp, N.; Klatt, R.; Krawczyk, F.; Tsakanov, V.; Rienen, U. van; Wanzenberg, R.; Weiland, T.; Wolter, H.

    1991-12-01

    This paper describes the status of a feasibility study of a 500 GeV center of mass linear collider, which is based almost entirely on conventional rf-technology. The basic components are S-band travelling wave, constant-gradient accelerating structures and 130 MW klystrons. 3 GeV damping rings are used to produce extremely small emittances in both planes which are in the same range as those of the next generation synchrotron light sources. Very strong focussing in the linear accelerator and near the interaction region, as well as a dedicated chromatic correction scheme, are necessary to achieve spot sizes that have not been produced yet. The methods envisaged to stabilize the motion of the tiny beam along the 15 km long linac seem promising and give rise to be assumption that the proposed values can be reached with todays' available technology. (orig.)

  12. Design of a low emittance and high repetition rate S-band photoinjector

    Science.gov (United States)

    Han, Jang-Hui

    2014-09-01

    As an electron beam injector of X-ray free-electron lasers (FELs), photoinjectors have been developed for the past few decades. Such an injector starting with a photocathode RF gun provides high brightness beams and therefore it is being adopted as an injector of X-ray FELs. In this paper we show how to improve photoinjector performance in terms of emittance and repetition rates by means of injector components optimization, especially with the gun. Transverse emittance at the end of an injector is reduced by optimizing the gun design, gun solenoid position, and accelerating section position. The repetition rate of an injector mainly depends on the gun. It is discussed that a repetition rate of 1 kHz at a normal-conducting S-band photoinjector is feasible by adopting a coaxial RF coupler and improving cooling-water channels surrounding the gun.

  13. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  14. Phenomenological descriptions of the Yrast bands in sup(160,162,164,166)Yb nuclei band crossings and moments of inertia

    International Nuclear Information System (INIS)

    El Zaiki, M.I.; Nafie, H.O.; Abd El Mageed, K.E.

    1992-01-01

    Two methods of calculations have been used to fit the previously presented data on rotationally aligned quasiparticle bands in sup(160,162,164,166)Yb. Backbendings of moment of inertia of the Yrast states can be reproduced reasonably well. The energy levels and the effective moment of inertia for both gs and s-band are calculated and compared with the experimental data. Band crossing interpretations are discussed for each nucleus. The interaction strength calculations are presented. (author). 17 refs., 7 figs., 4 tabs

  15. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  16. Photoreflectance study of the near-band-edge transitions of chemical vapor deposition-grown mono- and few-layer MoS{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kuang-I, E-mail: kilin@mail.ncku.edu.tw [Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, Yen-Jen; Wang, Bo-Yan; Cheng, Yung-Chen [Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan (China); Chen, Chang-Hsiao, E-mail: chsiaoc@fcu.edu.tw [Department of Automatic Control Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-03-21

    Room-temperature photoreflectance (PR) and reflectance (R) spectroscopy are utilized to investigate the near-band-edge transitions of molybdenum disulfide (MoS{sub 2}) thin films grown on sapphire substrates by a hot-wall chemical vapor deposition system. The layer thickness and optical properties of the MoS{sub 2} thin films are confirmed by Raman spectroscopy, atomic force microscope, and photoluminescence (PL) analysis. The B exciton shows relatively weak PL intensity in comparing with the A exciton even for monolayer MoS{sub 2} films. In the R spectrum of few‐layer MoS{sub 2}, it is not possible to clearly observe exciton related features. The PR spectra have two sharp, derivative-like features on a featureless background. Throughout the PR lineshape fitting, the transition energies are designated as the A and B excitons at the K-point of the Brillouin zone, but at room temperature there seems to be no distinguishable feature corresponding to an H‐point transition for the mono- and few-layer MoS{sub 2} films unlike in bulk. These transition energies are slightly larger than those obtained by PL, which is attributed to the Stokes shifts related to doping level. The obtained values of valence-band spin-orbit splitting are in good agreement with those from other experimental methods. By comparing the PR lineshapes, the dominant modulation mechanism is attributed to variations of the exciton transition energies due to change in the built-in electric field. On the strength of this study, PR spectroscopy is demonstrated as a powerful technique for characterizing the near-band-edge transitions of MoS{sub 2} from monolayer to bulk.

  17. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  18. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  19. Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells

    OpenAIRE

    Piliego, Claudia; Manca, Marianna; Kroon, Renee; Yarema, Maksym; Szendrei, Krisztina; Andersson, Mats R.; Heiss, Wolfgang; Loi, Maria A.

    2012-01-01

    We have demonstrated efficient hybrid solar cells based on lead sulfide (PbS) nanocrystals and a narrow band gap polymer, poly[{2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl}-alt-{[2,2'-(1,4-phenylene)bis-thiophene]-5,5'-diyl}], (PDPPTPT). An opportune mixing of the two materials led to the formation of an energetically favorable bulk hetero-junction with a broad spectral response. Using a basic device structure, we reached a power conversion efficiency of s...

  20. Fan-shaped antennas: Realization of wideband characteristics and generation of stop bands

    Science.gov (United States)

    Nakano, H.; Morishita, K.; Iitsuka, Y.; Mimaki, H.; Yoshida, T.; Yamauchi, J.

    2008-08-01

    This paper presents four fan-shaped antennas: U.S.-FAN, CROSS-FAN, CROSS-FAN-W, and CROSS-FAN-S. Each of these antennas stands upright above a ground plane, and has edges expressed by an exponential function and a circle function. The four antennas are investigated using frequencies from 1.5 GHz to 11 GHz. The CROSS-FAN is found to have a lower VSWR over a wide frequency band compared to the U.S.-FAN. The CROSS-FAN-W and CROSS-FAN-S are modified versions of the CROSS-FAN, each designed to have a stop band (a high VSWR frequency range) for interference cancellation. The stop band for the CROSS-FAN-W is controlled by a wire (total length 4Lwire) that connects the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a wire segment length Lwire of half the wavelength. It is also found that the stop band in the CROSS-FAN-S can be controlled by four slots, one cut into each of the fan-shaped elements. The center frequency of the stop band fstop is close to the frequency corresponding to a slot length Lslot of one-quarter of the wavelength. Experimental work is performed to confirm the theoretical results, using the CROSS-FAN-S.

  1. Sub-band-gap laser micromachining of lithium niobate

    DEFF Research Database (Denmark)

    Christensen, F. K.; Müllenborn, Matthias

    1995-01-01

    method is reported which enables us to do laser processing of lithium niobate using sub-band-gap photons. Using high scan speeds, moderate power densities, and sub-band-gap photon energies results in volume removal rates in excess of 106µm3/s. This enables fast micromachining of small piezoelectric...

  2. Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints.

    Science.gov (United States)

    Heuer, H; Hartung, K; Wieland, G; Kramer, I; Smalla, K

    1999-03-01

    Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.

  3. 16 Gb/s QPSK Wireless-over-Fibre Link in 75-110GHz Band Employing Optical Heterodyne Generation and Coherent Detection

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2010-01-01

    We report on the first demonstration of QPSK based Wireless-over-Fibre link in 75-110GHz band with a record capacity of up to 16Gb/s. Photonic wireless signal generation by heterodyne beating of free-running lasers and baud-rate digital coherent detection are employed....

  4. Finite-size effects on band structure of CdS nanocrystallites studied by positron annihilation

    International Nuclear Information System (INIS)

    Kar, Soumitra; Biswas, Subhajit; Chaudhuri, Subhadra; Nambissan, P.M.G.

    2005-01-01

    Quantum confinement effects in nanocrystalline CdS were studied using positrons as spectroscopic probes to explore the defect characteristics. The lifetime of positrons annihilating at the vacancy clusters on nanocrystalline grain surfaces increased remarkably consequent to the onset of such finite-size effects. The Doppler broadened line shape was also found to reflect rather sensitively such distinct changes in the electron momentum redistribution scanned by the positrons, owing to the widening of the band gap. The nanocrystalline sizes of the samples used were confirmed from x-ray diffraction and high resolution transmission electron microscopy and the optical absorption results supported the quantum size effects. Positron annihilation results indicated distinct qualitative changes between CdS nanorods and the bulk sample, notwithstanding the identical x-ray diffraction pattern and close resemblance of the optical absorption spectra. The results are promising in the event of positron annihilation being proved to be a very successful tool for the study of such finite-size effects in semiconductor nanoparticles

  5. Determination of the valence-band offset of CdS/CIS solar cell devices by target factor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Niles, D.W.; Contreras, M.; Ramanathan, K.; Noufi, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    X-ray photoemission spectroscopy (XPS) is used to determine and compare the valence-band offsets ({Delta}E{sub v}) for CdS grown by chemical bath deposition on single-crystal and thin-film CuInSe{sub 2} (CIS). The thin-film CIS device was suitable for photovoltaic energy production. By sputtering through the CdS/CIS interface and reducing the depth profile with target factor analysis, the magnitude of {Delta}E{sub v} was determined to be {Delta}E{sub v} = 1.06 {+-} 0.15 eV for both the single-crystal and thin-film interfaces. This determination of {Delta}E{sub v} is about 0.25 eV larger than many previously reported estimations CdS grown by physical vapor deposition on CIS and helps explain the record performance of CdS/CIS photovoltaic devices.

  6. An efficient atomistic quantum mechanical simulation on InAs band-to-band tunneling field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, Xiang-Wei; Li, Shu-Shen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-24

    We have presented a fully atomistic quantum mechanical simulation method on band-to-band tunneling (BTBT) field-effect transistors (FETs). Our simulation approach is based on the linear combination of bulk band method with empirical pseudopotentials, which is an atomist method beyond the effective-mass approximation or k.p perturbation method, and can be used to simulate real-size devices (∼10{sup 5} atoms) efficiently (∼5 h on a few computational cores). Using this approach, we studied the InAs dual-gate BTBT FETs. The I-V characteristics from our approach agree very well with the tight-binding non-equilibrium Green's function results, yet our method costs much less computationally. In addition, we have studied ways to increase the tunneling current and analyzed the effects of different mechanisms for that purpose.

  7. The Noisiness of Low-Frequency One-Third Octave Bands of Noise. M.S. Thesis - Southampton Univ.

    Science.gov (United States)

    Lawton, B. W.

    1975-01-01

    This study examined the relative noisiness of low frequency one-third octave bands of noise bounded by the bands centered at 25 Hz and 200 Hz, with intensities ranging from 50 db sound pressure level (SPL) to 95 db SPL. The thirty-two subjects used a method-of-adjustment technique, producing comparison-band intensities as noisy as standard bands centered at 100 Hz and 200 Hz with intensities of 60 db SPL and 72 db SPL. Four contours of equal noisiness were developed for one-third octave bands, extending down to 25 Hz and ranging in intensity from approximately 58 db SPL to 86 db SPL. These curves were compared with the contours of equal noisiness of Kryter and Pearsons. In the region of overlap (between 50 Hz and 200 Hz) the agreement was good.

  8. Coherent resonance stop bands in alternating gradient beam transport

    Science.gov (United States)

    Ito, K.; Okamoto, H.; Tokashiki, Y.; Fukushima, K.

    2017-06-01

    An extensive experimental study is performed to confirm fundamental resonance bands of an intense hadron beam propagating through an alternating gradient linear transport channel. The present work focuses on the most common lattice geometry called "FODO" or "doublet" that consists of two quadrupoles of opposite polarities. The tabletop ion-trap system "S-POD" (Simulator of Particle Orbit Dynamics) developed at Hiroshima University is employed to clarify the parameter-dependence of coherent beam instability. S-POD can provide a non-neutral plasma physically equivalent to a charged-particle beam in a periodic focusing potential. In contrast with conventional experimental approaches relying on large-scale machines, it is straightforward in S-POD to control the doublet geometry characterized by the quadrupole filling factor and drift-space ratio. We verify that the resonance feature does not essentially change depending on these geometric factors. A few clear stop bands of low-order resonances always appear in the same pattern as previously found with the sinusoidal focusing model. All stop bands become widened and shift to the higher-tune side as the beam density is increased. In the space-charge-dominated regime, the most dangerous stop band is located at the bare betatron phase advance slightly above 90 degrees. Experimental data from S-POD suggest that this severe resonance is driven mainly by the linear self-field potential rather than by nonlinear external imperfections and, therefore, unavoidable at high beam density. The instability of the third-order coherent mode generates relatively weak but noticeable stop bands near the phase advances of 60 and 120 degrees. The latter sextupole stop band is considerably enhanced by lattice imperfections. In a strongly asymmetric focusing channel, extra attention may have to be paid to some coupling resonance lines induced by the Coulomb potential. Our interpretations of experimental data are supported by theoretical

  9. Unified calculations of the optical band positions and EPR g factors for NaCrS2 crystal

    International Nuclear Information System (INIS)

    Mei, Yang; Zheng, Wen-Chen; Zhang, Lin

    2014-01-01

    Six optical band positions and EPR g factors g || , g ⊥ for the trigonal Cr 3+ octahedral clusters in NaCrS 2 crystal are calculated together through the complete diagonalization (of energy matrix) method based on the two-spin–orbit-parameter model, where besides the contribution due to the spin–orbit parameter of central d n ion in the conventional crystal-field theory, the contribution due to the spin–orbit parameter of ligand ion via the covalence effect is also considered. In the calculations, the crystal-field parameters B kl are obtained from the superposition model with the structural data of Cr 3+ octahedral clusters in NaCrS 2 crystal measured exactly by the X-ray diffraction method. The calculated optical and EPR spectral data are in a reasonable agreement with the observed values. So, the reliability of the superposition model in the studies of crystal-field parameters for d n ions in crystals is confirmed, and the complete diagonalization (of energy matrix) method based on the two-spin–orbit-model is effective in the unified calculations of optical and EPR spectral data for d n ions in crystals. - Highlights: • Six optical band positions and g factors g || , g ⊥ of NaCrS 2 are calculated together. • Calculation is using the complete diagonalization (of energy matrix) method. • The diagonalization method is based on the two-spin–orbit-parameter model. • Reliability of superposition model in the studies of CF parameters is confirmed

  10. Real-time 2.5  Gbit/s spatial circuit switching on W-band wireless links

    DEFF Research Database (Denmark)

    Rodríguez, Sebastián; Morales Vicente, Alvaro; Gallardo, Omar

    2017-01-01

    A spatial circuit switching system based on a beam steering application for W-band wireless links is proposed and experimentally demonstrated. The system enables two simultaneous transmissions of a 2.5 Gbit∕s data signal over a carrier of 81 GHz, while allowing the receiver to dynamically switch...... between them. The performance of the system is tested with the real-time measurements of the BER, achieving values below the FEC limit for 7% of overhead and serving to prove the viability of wireless spatial circuit switching in the next generation of wireless access networks....

  11. Band 3 in aging and neurological disease.

    Science.gov (United States)

    Kay, M M

    1991-01-01

    Senescent cell antigen appears on old cells and marks them for death by initiating the binding of IgG autoantibody and subsequent removal by phagocytes in mammals and other vertebrates. We have created a synthetic aging antigen that blocks binding of IgG to senescent cells in vitro. Synthetic senescent cell antigen might be effective in preventing cellular destruction in vivo in certain diseases, and can be used to manipulate cellular life span in situ. Senescent cell antigen is generated by the modification of an important structural and transport membrane molecule, protein band 3. Band 3 is present in cellular, nuclear, Golgi, and mitochondrial membranes as well as in cell membranes. Band 3 proteins in nucleated cells participate in cell surface patching and capping. Band 3 maintains acid-base balance by mediating the exchange of anions (e.g., chloride, bicarbonate), and is the binding site for glycolytic enzymes. It is responsible for CO2 exchange in all tissues and organs. Thus, it is the most heavily used anion transport system in the body. Band 3 is a major transmembrane structural protein which attaches the plasma membrane to the internal cell cytoskeleton by binding to band 2.1 (ankyrin). Oxidation generates senescent cell antigen in situ. Band 3 is present in the central nervous system, and differences have been described in band 3 between young and aging brain tissue. One autosomal recessive neurological disease, choreoacanthocytosis, is associated with band 3 abnormalities. The 150 residues of the carboxyl terminus segment of band 3 appear to be altered. In brains from Alzheimer's disease patients, antibodies to aged band 3 label the amyloid core of classical plaques and the microglial cells located in the middle of the plaque in tissue sections, and an abnormal band 3 in immunoblots. Band 3 protein(s) in mammalian brain performs the same functions as that of erythroid band 3. These functions is anion transport, ankyrin binding, and generation of

  12. Evaluation of a color fused dual-band NVG

    NARCIS (Netherlands)

    Hogervorst, M.A.; Toet, A.

    2009-01-01

    We have tested a prototype dual-band NVG system consisting of two NVGs fitted with filters that split the NVG sensitive range into a short (visual) and a long wavelength (NIR) band. The Color-the-night technique (see Hogervorst & Toet, SPIE D&S ‘08) was used to fuse the images of the two sensors. We

  13. Ab-initio electronic band structure calculations for beryllium chalcogenides

    International Nuclear Information System (INIS)

    Kalpana, G.; Pari, G.; Yousuf, Mohammad

    1997-01-01

    The first principle tight-binding linear muffin-tin orbital method within the local density approximation (LDA) has been used to calculate the ground state properties, structural phase transition and pressure dependence of band gap of BeS, BeSe and BeTe. We have calculated the energy-volume relations for these compounds in the B3 and B8 phases. The calculated lattice parameters, bulk modulus and the pressure-volume relation were found to be in good agreement with the recent experimental results. The calculated B3→B8 structural transition pressure for BeS, BeSe and BeTe agree well with the recent experimental results. Our calculations show that these compounds are indirect band gap (Γ-X) semiconductors at ambient conditions. The calculated band gap values are found to be underestimated by 20-30% which is due to the usage of LDA. After the structural transition to the B8 phase, BeS continues to be indirect band gap semiconductors and ultimately above 100 GPa it metallises, BeSe and BeTe are metallic at the B3→B8 structural transition. (author)

  14. The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice

    Science.gov (United States)

    Fujioka, Masaya; Shibuya, Taizo; Nakai, Junya; Yoshiyasu, Keigo; Sakai, Yuki; Takano, Yoshihiko; Kamihara, Yoichi; Matoba, Masanori

    2014-12-01

    The thermoelectric properties and electronic band structures for Se-doped Co3SnInS2 were examined. The parent compound of this material (Co3Sn2S2) has two kinds of Sn sites (Sn1 and Sn2 sites). The density functional theory (DFT) calculations show that the indium substitution at the Sn2 site induces a metallic band structure, on the other hand, a semiconducting band structure is obtained from substitution at the Sn1 site. However, according to the previous reports, since the indium atom prefers to replace the tin atom at the Sn1 site rather than the Sn2 site, the resistivity of Co3SnInS2 shows semiconducting-like behavior. In this study we have demonstrated that metallic behavior and a decrease in resistivity for Se-doped Co3SnInS2 occurs without suppression of the Seebeck coefficient. From the DFT calculations, when the selenium content is above 0.5, the total crystallographic energy shows that a higher indium occupancy at Sn2 site is more stable. Therefore, it is suggested that the selenium doping suppress the site preference for indium substitution. This is one of the possible explanations for the metallic conductivity observed in Se-doped Co3SnInS2

  15. Reward banding to determine reporting rate of recovered mourning dove bands

    Science.gov (United States)

    Tomlinson, R.E.

    1968-01-01

    Reward bands placed on the other leg of certain regularly banded immature mourning doves (Zenaidura macroura) were used to develop information on reporting rates of recovered dove bands. Reports from 15 widely separated sections of the United States showed considerable variation in recovery rate of doves both with and without reward bands. The overall percentages of banded doves that were reported as recovered were 9.69% for those with reward bands and 3.83% for controls. The bandreporting rate for states influenced by publicity was 66%; that for states not influenced was 32%.

  16. Study of band gap and determination of size of PbS quantum dots synthesized by colloidal solution

    Directory of Open Access Journals (Sweden)

    M. S. Ghamsari

    2005-03-01

    Full Text Available   PbS semiconductor non-crystals have been synthesized in order to study the modification of their electronic structures and optical properties in relation to their size. The synthesis has been carried out by using the techniques of colloidal chemistry. Strong quantum confinement behavior has been observed based on the analysis of optical spectra of these particles. The average particle size approximated by x-ray line width and hyperbolic band model calculation. Heterogeneous broadening of optical spectrum is studied finally.

  17. Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2017-09-01

    We present a detailed study of the electronic structure of the layered semiconductor InSe. We calculate the band structure of the monolayer and bulk material using density functional theory, hybrid functionals, and G W . The band gap of the monolayer InSe is calculated to be 2.4 eV in screened exchange hybrid functional, close to the experimental photoluminescence gap. The electron affinities and band offsets are calculated for vertical stacked-layer heterostructures, and are found to be suitable for tunnel field effect transistors (TFETs) in combination with WS e2 or similar. The valence-band edge of InSe is calculated to lie 5.2 eV below the vacuum level, similar to that for the closed shell systems HfS e2 or SnS e2 . Hence InSe would be suitable to act as a p -type drain in the TFET. The intrinsic defects are calculated. For Se-rich layers, the Se adatom (interstitial) is found to be the most stable defect, whereas for In-rich layers, the Se vacancy is the most stable for the neutral state. Antisites tend to have energies just above those of vacancies. The Se antisite distorts towards a bond-breaking distortion as in the EL2 center of GaAs. Both substitutional donors and acceptors are calculated to be shallow, and effective dopants. They do not reconstruct to form nondoping configurations as occurs in black phosphorus. Finally, the Schottky barriers of metals on InSe are found to be strongly pinned by metal induced gap states (MIGS) at ˜0.5 eV above the valence-band edge. Any interfacial defects would lead to a stronger pinning at a similar energy. Overall, InSe is an effective semiconductor combining the good features of 2D (lack of dangling bonds, etc.) with the good features of 3D (effective doping), which few others achieve.

  18. Magnon band structure and magnon density in one-dimensional magnonic crystals

    International Nuclear Information System (INIS)

    Qiu, Rong-ke; Huang, Te; Zhang, Zhi-dong

    2014-01-01

    By using Callen's Green's function method and the Tyablikov and Anderson–Callen decoupling approximations, we systematically study the magnon band structure and magnon density perpendicular to the superlattice plane of one-dimensional magnonic crystals, with a superlattice consisting of two magnetic layers with ferromagnetic (FM) or antiferromagnetic (AFM) interlayer exchange coupling. The effects of temperature, interlayer coupling, anisotropy and external magnetic field on the magnon-energy band and magnon density in the K x -direction are investigated in three situations: a) the magnon band of magnetic superlattices with FM interlayer coupling, b) separate and c) overlapping magnon bands of magnetic superlattices with AFM interlayer coupling. In the present work, a quantum approach is developed to study the magnon band structure and magnon density of magnonic crystals and the results are beneficial for the design of magnonic-crystal waveguides or gigahertz-range spin-wave filters. - Highlights: • A quantum approach has been developed to study the magnon band of magnonic crystals. • The separate and overlapping magnon bands of magnetic superlattices are investigated. • The results are beneficial for the design of gigahertz-range spin-wave filters

  19. Magnon band structure and magnon density in one-dimensional magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com [Shenyang University of Technology, Shenyang 110870 (China); Huang, Te [Shenyang University of Technology, Shenyang 110870 (China); Zhang, Zhi-dong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2014-11-15

    By using Callen's Green's function method and the Tyablikov and Anderson–Callen decoupling approximations, we systematically study the magnon band structure and magnon density perpendicular to the superlattice plane of one-dimensional magnonic crystals, with a superlattice consisting of two magnetic layers with ferromagnetic (FM) or antiferromagnetic (AFM) interlayer exchange coupling. The effects of temperature, interlayer coupling, anisotropy and external magnetic field on the magnon-energy band and magnon density in the K{sub x}-direction are investigated in three situations: a) the magnon band of magnetic superlattices with FM interlayer coupling, b) separate and c) overlapping magnon bands of magnetic superlattices with AFM interlayer coupling. In the present work, a quantum approach is developed to study the magnon band structure and magnon density of magnonic crystals and the results are beneficial for the design of magnonic-crystal waveguides or gigahertz-range spin-wave filters. - Highlights: • A quantum approach has been developed to study the magnon band of magnonic crystals. • The separate and overlapping magnon bands of magnetic superlattices are investigated. • The results are beneficial for the design of gigahertz-range spin-wave filters.

  20. New bands and spin-parity assignments in 111Ru

    International Nuclear Information System (INIS)

    Urban, W.; Rzaca-Urban, T.; Droste, C.; Rohozinski, S.G.; Durell, J.L.; Phillips, W.R.; Smith, A.G.; Varley, B.J.; Schulz, N.; Ahmad, I.; Pinston, J.A.

    2004-01-01

    The 111 Ru nucleus, populated in the spontaneous fission of 248 Cm has been studied by means of prompt gamma spectroscopy using the EUROGAM2 array. Spin and parity assignments, based on angular correlations, linear polarization, and conversion coefficient measurements differ from those available in the literature. New bands are reported, which incorporate γ transitions seen previously but not placed in the scheme of 111 Ru or placed incorrectly. The bands are interpreted as neutron excitations into subshells originating predominantly from the h 11/2 , g 7/2 and s 1/2 spherical orbitals. The s 1/2 band, strongly mixed with the d 3/2 , d 5/2 and g 7/2 configurations, is observed for the first time in this region. (orig.)

  1. The quasiparticle band structure of zincblende and rocksalt ZnO.

    Science.gov (United States)

    Dixit, H; Saniz, R; Lamoen, D; Partoens, B

    2010-03-31

    We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the p-d hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong p-d hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn(20+) pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ∼ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong p-d hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.

  2. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    KAUST Repository

    Chiu, Ming-Hui

    2016-09-20

    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km of Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels

    DEFF Research Database (Denmark)

    Kobayashi, Takayuki; Nakamura, M.; Hamaoka, F.

    2017-01-01

    We demonstrate the first 1-Pb/s unidirectional inline-amplified transmission over 205.6-km of single-mode 32-core fiber within C-band only. 96-Gbaud LDPC-coded PDM-16QAM channels with FEC redundancy of 12.75% realize high-aggregate spectral efficiency of 217.6 b/s/Hz...

  4. Early Changes in Alpha Band Power and DMN BOLD Activity in Alzheimer’s Disease: A Simultaneous Resting State EEG-fMRI Study

    Directory of Open Access Journals (Sweden)

    Katharina Brueggen

    2017-10-01

    Full Text Available Simultaneous resting state functional magnetic resonance imaging (rsfMRI–resting state electroencephalography (rsEEG studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN regions. Negative associations were found in occipital regions. In Alzheimer’s disease (AD, rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC. We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI–EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8–12 Hz, 8–10 Hz, and 10–12 Hz was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≥ 50 voxels. This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD

  5. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi' an 710300 (China); Wang, Ye Feng [School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an 710062 (China); Wei, Dong; Chen, Yu; Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province and School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Cui, Bin [School of Chemistry and Materials Science, Northwestern University, Xi' an 710620 (China)

    2016-06-20

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn{sup 2+} is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the “loss-in-potential,” inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  6. Energy bands and gaps near an impurity

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Schulman, L. S.

    2016-01-01

    Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016

  7. Dual-band frequency selective surface with large band separation and stable performance

    Science.gov (United States)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  8. Electronic band structure study of colossal magnetoresistance in Tl 2Mn 2O 7

    Science.gov (United States)

    Seo, D.-K.; Whangbo, M.-H.; Subramanian, M. A.

    1997-02-01

    The electronic structure of Tl 2Mn 2O 7 was examined by performing tight binding band calculations. The overlap between the Mn t 2g- and Tl 6 s-block bands results in a partial filling of the Tl 6 s-block bands. The associated Fermi surface consists of 12 cigar-shape electron pockets with each electron pocket about {1}/{1000} of the first Brillouin zone in size. The Tl 6 s-block bands have orbital contributions from the Mn atoms, and the carrier density is very low. These are important for the occurrence of a colossal magnetoresistance in Tl 2Mn 2O 7.

  9. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  10. SHARPENDING OF THE VNIR AND SWIR BANDS OF THE WIDE BAND SPECTRAL IMAGER ONBOARD TIANGONG-II IMAGERY USING THE SELECTED BANDS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI onboard the Tiangong-II has 14 visible and near-infrared (VNIR spectral bands covering the range from 403–990 nm and two shortwave infrared (SWIR bands covering the range from 1230–1250 nm and 1628–1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  11. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  12. Dual-band frequency selective surface with large band separation and stable performance

    International Nuclear Information System (INIS)

    Zhou Hang; Qu Shao-Bo; Lin Bao-Qin; Wang Jia-Fu; Ma Hua; Zhang Jie-Qiu; Peng Wei-Dong; Bai Peng; Wang Xu-Hua; Xu Zhuo

    2012-01-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Fivefold Symmetric Photonic Quasi-Crystal Fiber for Dispersion Compensation from S- to L-Band and Optimized at 1.55 μm

    Directory of Open Access Journals (Sweden)

    Sivacoumar Rajalingam

    2015-01-01

    Full Text Available A highly dispersive dual core quasi-periodic photonic crystal fiber is proposed for chromatic dispersion compensation. The dispersion for the dual concentric core fiber is optimized to compensate the chromatic dispersion with a high negative dispersion, accomplishing the communication bandwidth from S-band (1460 nm to L-band (1625 nm. By precise control of structural parameter we have achieved a maximum dispersion of −18,838 ps/nm-km with the phase matching wavelength centred around 1.55 μm. We also numerically investigate the influence of structural parameter and doping effects and its response on peak dispersion parameter.

  14. Structure of dipole bands in 106In

    International Nuclear Information System (INIS)

    Deo, A. Y.; Palit, R.; Naik, Z.; Joshi, P. K.; Mazumdar, I.; Sihotra, S.; Mehta, D.; Kumar, S.; Chakrabarti, R.; Kshetri, R.; Jain, H. C.

    2009-01-01

    High spin states in neutron-deficient 106 In were investigated using 78 Se( 32 S,p3n) reaction at 125 MeV. The level scheme is extended up to 7 MeV of excitation energy for the negative parity states constituting four dipole bands, and the positive parity states which mainly exhibit single-particle excitations are extended up to 5 MeV. Projected deformed Hartree-Fock calculations were carried out to understand the configurations of different bands in this nucleus.

  15. Experimental studies of narrow band effects in the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds.

  16. Experimental studies of narrow band effects in the actinides

    International Nuclear Information System (INIS)

    Brodsky, M.B.

    1976-01-01

    In many actinide metallic systems the f-electrons exhibit band behavior. This is a consequence of direct f-f wave function overlap or hybridization of f-electrons with s-, p-, and d-electrons. The f-bands can be responsible for large electronic densities of states at the Fermi level which may lead to band magnetism of various types. Although the concept of valence instabilities must be approached cautiously especially in the light actinides, it would not be surprising to observe them in the future, especially in Am compounds

  17. X-band uplink feedcone capabilities, components, and layout

    Science.gov (United States)

    Marlin, H.; Freiley, A.; Hartop, R.

    1986-01-01

    Two new X-(7.2 GHz up, 8.4 GHz down) and S-band (2.1 to 2.3 Ghz) common aperture (XSC) feedcones are being added to the DSS 45 and DSS 65 34-Meter Efficiency Antennas. These new feedcones are modifications of the existing SXC feedcone design incorporating a new high power (20-kW) X-band transmitter. The modified Antenna Microwave Subsystem design also incorporates two additional X-band low noise amplifiers and greater phase stability performance to meet both the increased stability requirements for Galileo gravity wave experiments and requirements for spacecraft navigation near the Sun. A third XSC will be constructed for DSS 15 later.

  18. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  19. Effect of correlation on the band structure of α-cerium

    International Nuclear Information System (INIS)

    Rao, R.S.; Singh, R.P.

    1975-01-01

    The electronic band structure of f.c.c. phase of the rare earth metal cerium (α-cerium) has been calculated using a formulation of the crystal potential where correlation also has been included in addition to exchange. The Green's function method of Korringa-Kohn and Rostoker has been used due to obvious advantages in calculation. The calculations indicate that the s-d bands are hybridized with the f-levels but the f-bands are fairly narrow and lie slightly above the Fermi level. The structure of the bands is qualitatively similar to those of calculations by others except for a general shift of the entire set of bands by about 0.1 Ryd. Thd density of states has also been calculated from the bands obtained. The spin susceptibility of α-cerium has also been calculated using the Kohn-Sham method. However, the calculated additional contributions to the band structure values cannot still explain the large experimental values reported in the literature. (author)

  20. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  1. Amniotiese Bande by 'n Baba na Abdominale Swangerskap | du P ...

    African Journals Online (AJOL)

    A baby, delivered by Caesarean section after a 36-week extra-uterine pregnancy, with deformities due to amniotic bands, is described. The mechanism of amniotic band deformities and the paediatric risks of extra-uterine pregnancy are briefly discussed. S. Afr. Med. J., 48, 1106 (1974) ...

  2. Non-toxic novel route synthesis and characterization of nanocrystalline ZnS{sub x}Se{sub 1−x} thin films with tunable band gap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Agawane, G.L., E-mail: agawaneganesh@gmail.com [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Vanalakar, S.A. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Electrochemical Mat. Lab., Department of Physics, Shivaji University, Kolhapur 416-004 (India); Gurav, K.V.; Suryawanshi, M.P. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, Jeong Yong [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Yun, Jae Ho, E-mail: yunjh92@kier.re.kr [Photovoltaic Research Group, KIER, Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-07-01

    Highlights: • A simple, inexpensive, and non-toxic CBD route is used to deposit ZnS thin films. • The ZnS{sub x}Se{sub 1−x} thin films formation takes place via annealing of ZnS thin films in Se atmosphere. • S/(S + Se) ratio found to be temperature dependent and easy tuning of band gap has been done by Se atom deposition. - Abstract: An environmentally benign chemical bath deposition (CBD) route was employed to deposit zinc sulfide (ZnS) thin films. The CBD-ZnS thin films were further selenized in a furnace at various temperatures viz. 200, 300, 400, and 500 °C and the S/(S + Se) ratio was found to be dependent on the annealing temperature. The effects of S/(S + Se) ratio on the structural, compositional and optical properties of the ZnS{sub x}Se{sub 1−x} (ZnSSe) thin films were investigated. EDS analysis showed that the S/(S + Se) ratio decreased from 0.8 to 0.6 when the film annealing temperature increased from 200 to 500 °C. The field emission scanning electron microscopy and atomic force microscopy studies showed that all the films were uniform, pin hole free, smooth, and adhered well to the glass substrate. The X-ray diffraction study on the ZnSSe thin films showed the formation of the cubic phase, except for the unannealed ZnSSe thin film, which showed an amorphous phase. The X-ray photoelectron spectroscopy revealed Zn-S, Zn-Se, and insignificant Zn-OH bonds formation from the Zn 2p{sub 3/2}, S 2p, Se 3d{sub 5/2}, and O 1s atomic states, respectively. The ultraviolet–visible spectroscopy study showed ∼80% transmittance in the visible region for all the ZnSSe thin films having various absorption edges. The tuning of the band gap energy of the ZnSSe thin films was carried out by selenizing CBD-ZnS thin films, and as the S/(S + Se) ratio decreased from 0.8 to 0.6, the band gap energy decreased from 3.20 to 3.12 eV.

  3. Ultrawide band gap amorphous oxide semiconductor, Ga–Zn–O

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Miyokawa, Norihiko; Sekiya, Takumi; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-09-01

    We fabricated amorphous oxide semiconductor films, a-(Ga{sub 1–x}Zn{sub x})O{sub y}, at room temperature on glass, which have widely tunable band gaps (E{sub g}) ranging from 3.47–4.12 eV. The highest electron Hall mobility ~ 7 cm{sup 2} V{sup −1} s{sup −1} was obtained for E{sub g} = ~ 3.8 eV. Ultraviolet photoemission spectroscopy revealed that the increase in E{sub g} with increasing the Ga content comes mostly from the deepening of the valence band maximum level while the conduction band minimum level remains almost unchanged. These characteristics are explained by their electronic structures. As these films can be fabricated at room temperature on plastic, this achievement extends the applications of flexible electronics to opto-electronic integrated circuits associated with deep ultraviolet region. - Highlights: • Incorporation of H/H{sub 2}O stabilizes the amorphous phase. • Ultrawide band gap (~ 3.8 eV) amorphous oxide semiconductor was fabricated. • The increase in band gap comes mostly from the deepening of the valence band maximum level. • Donor level is more likely aligned to the valence band maximum level.

  4. Short-arc orbit determination using coherent X-band ranging data

    Science.gov (United States)

    Thurman, S. W.; Mcelrath, T. P.; Pollmeier, V. M.

    1992-01-01

    The use of X-band frequencies in ground-spacecraft and spacecraft-ground telecommunication links for current and future robotic interplanetary missions makes it possible to perform ranging measurements of greater accuracy than previously obtained. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. The application of high-accuracy S/X-band and X-band ranging to orbit determination with relatively short data arcs is investigated in planetary approach and encounter scenarios. Actual trajectory solutions for the Ulysses spacecraft constructed from S/X-band ranging and Doppler data are presented; error covariance calculations are used to predict the performance of X-band ranging and Doppler data. The Ulysses trajectory solutions indicate that the aim point for the spacecraft's February 1992 Jupiter encounter was predicted to a geocentric accuracy of 0.20 to 0.23/microrad. Explicit modeling of range bias parameters for each station pass is shown to largely remove systematic ground system calibration errors and transmission media effects from the Ulysses range measurements, which would otherwise corrupt the angle finding capabilities of the data. The Ulysses solutions were found to be reasonably consistent with the theoretical results, which suggest that angular accuracies of 0.08 to 0.1/microrad are achievable with X-band ranging.

  5. Phase change and optical band gap behavior of Se0.8S0.2 chalcogenide glass films

    International Nuclear Information System (INIS)

    Abdel Rafea, M.; Farid, Huda

    2009-01-01

    Se 0.8 S 0.2 chalcogenide glass films have been prepared by thermal vacuum evaporation technique with thickness 583 nm. Annealing process at T ≥ 333 K crystallizes the films and nanostructured films are formed. The crystallite size was increased to 24 nm as the annealing temperature increased to 373 K. Orthorhombic crystalline system was identified for the annealed films. SEM micrographs show that films consist of two parallel surfaces and the thickness was determined by cross section imaging. The optical transmittance is characterized by interference patterns as a result of these two parallel surfaces, besides their average value at longer wavelength decreases as a result of annealing process. The band gap, E g is red shifted due to crystallization by annealing. As the phase of the films changes from amorphous to crystalline in the annealing temperature range 333-363 K, a non sharp change of the band gap (E g ) is observed. This change was explained by Brus's model of the energy gap confinement behavior of the nanostructured films. The optical refractive index increases suddenly when the system starts to be crystallized by annealing

  6. Adhesives for fixed orthodontic bands.

    Science.gov (United States)

    Millett, Declan T; Glenny, Anne-Marie; Mattick, Rye Cr; Hickman, Joy; Mandall, Nicky A

    2016-10-25

    Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors

  7. Superconducting correlations in the one- and two-band Hubbard models

    International Nuclear Information System (INIS)

    Jain, K.P.; Ramakumar, R.; Chancey, C.C.

    1989-01-01

    An approximate expression is derived for the generalized energy gap function Δ kμ for a system of interacting electrons in a narrow s-band. This function has the virtue that it interpolates between the weak interaction limit (BCS) and the intermediate coupling regime. Starting from the Cooper pairing state, the authors investigate the build-up of pairing correlations and study the properties of the generalized gap in these two regimes as a function of the band filling. The coupled equations for the gap and the band filling define the self-consistency conditions. A recent extension of this analysis to the two-band model is also discussed

  8. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  9. Two-layer radio frequency MEMS fractal capacitors in PolyMUMPS for S-band applications

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    In this Letter, the authors fabricate for the first time MEMS fractal capacitors possessing two layers and compare their performance characteristics with the conventional parallel-plate capacitor and previously reported state-of-the-art single-layer MEMS fractal capacitors. Explicitly, a capacitor with a woven structure and another with an interleaved configuration were fabricated in the standard PolyMUMPS surface micromachining process and tested at S-band frequencies. The self-resonant frequencies of the fabricated capacitors were close to 10GHz, which is better than that of the parallel-plate capacitor, which measured only 5.5GHz. Further, the presented capacitors provided a higher capacitance when compared with the state-of-the-art-reported MEMS fractal capacitors created using a single layer at the expense of a lower quality factor. © 2012 The Institution of Engineering and Technology.

  10. An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data

    Science.gov (United States)

    Chen, Shih-Ping; Bilitza, Dieter; Liu, Jann-Yenq; Caton, Ronald; Chang, Loren C.; Yeh, Wen-Hao

    2017-09-01

    Modern society relies heavily on the Global Navigation Satellite System (GNSS) technology for applications such as satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations can severely impact GNSS systems and their related applications. In this study, a global empirical ionospheric scintillation model is constructed with S4-index data obtained by the FORMOSAT-3/COSMIC (F3/C) satellites during 2007-2014 (hereafter referred to as the F3CGS4 model). This model describes the S4-index as a function of local time, day of year, dip-latitude, and solar activity using the index PF10.7. The model reproduces the F3/C S4-index observations well, and yields good agreement with ground-based reception of satellite signals. This confirms that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.

  11. The dependence of the tunneling characteristic on the electronic energy bands and the carrier’s states of Graphene superlattice

    Science.gov (United States)

    Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.

    2016-09-01

    Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.

  12. Band Alignment Determination of Two-Dimensional Heterojunctions and Their Electronic Applications

    KAUST Repository

    Chiu, Ming-Hui

    2018-05-09

    Two-dimensional (2D) layered materials such as MoS2 have been recognized as high on-off ratio semiconductors which are promising candidates for electronic and optoelectronic devices. In addition to the use of individual 2D materials, the accelerated field of 2D heterostructures enables even greater functionalities. Device designs differ, and they are strongly controlled by the electronic band alignment. For example, photovoltaic cells require type II heterostructures for light harvesting, and light-emitting diodes benefit from multiple quantum wells with the type I band alignment for high emission efficiency. The vertical tunneling field-effect transistor for next-generation electronics depends on nearly broken-gap band alignment for boosting its performance. To tailor these 2D layered materials toward possible future applications, the understanding of 2D heterostructure band alignment becomes critically important. In the first part of this thesis, we discuss the band alignment of 2D heterostructures. To do so, we firstly study the interlayer coupling between two dissimilar 2D materials. We conclude that a post-anneal process could enhance the interlayer coupling of as-transferred 2D heterostructures, and heterostructural stacking imposes similar symmetry changes as homostructural stacking. Later, we precisely determine the quasi particle bandgap and band alignment of the MoS2/WSe2 heterostructure by using scan tunneling microscopy/spectroscopy (STM/S) and micron-beam X-ray photoelectron spectroscopy (μ-XPS) techniques. Lastly, we prove that the band alignment of 2D heterojunctions can be accurately predicted by Anderson’s model, which has previously failed to predict conventional bulk heterostructures. In the second part of this thesis, we develop a new Chemical Vapor Deposition (CVD) method capable of precisely controlling the growth area of p- and n-type transition metal dichalcogenides (TMDCs) and further form lateral or vertical 2D heterostructures. This

  13. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jia, S.; Hu, Hao

    2016-01-01

    To accommodate the ever increasing wireless traffic in the access networks, considerable efforts have been recently invested in developing photonics-assisted wireless communication systems with very high data rates. Superior to photonic millimeter-wave systems, terahertz (THz) band (300 GHz-10 THz...

  14. Accurate calculation of superdeformed bands in Hg and Pb

    International Nuclear Information System (INIS)

    Lei Yian; Zeng Jinyan

    1993-01-01

    The superdeformed (SD) rotational bands in Hg and Pb are analyzed by means of the abc expression for rotational bands, which was derived from the Bohr Hamiltonian. The agreement between calculated and observed transition energies is incredibly well. The deviation of the calculated E' γ s from the observed results turns out to be absolute value δ ≤0.5 keV (except for a few cases, 0.5 kev ≤ absolute value δ ≤ 0.7 keV). Some transitions which have not been observed yet in these SD bands are also predicted, which may be useful for experimental investigation

  15. Design of dual band FSS by using quadruple L-slot technique

    Science.gov (United States)

    Fauzi, Noor Azamiah Md; Aziz, Mohamad Zoinol Abidin Abd.; Said, Maizatul Alice Meor; Othman, Mohd Azlishah; Ahmad, Badrul Hisham; Malek, Mohd Fareq Abd

    2015-05-01

    This paper presents a new design of dual band frequency selective surface (FSS) for band pass microwave transmission application. FSS can be used on energy saving glass to improve the transmission of wireless communication signals through the glass. The microwave signal will be attenuate when propagate throughout the different structure such as building. Therefore, some of the wireless communication system cannot be used in the optimum performance. The aim of this paper is designed, simulated and analyzed the new dual band FSS structure for microwave transmission. This design is based on a quadruple L slot combined with cross slot to produce pass band at 900 MHz and 2.4 GHz. The vertical of pair inverse L slot is used as the band pass for the frequency of 2.4GHz. While, the horizontal of pair inverse L slot is used as the band pass at frequency 900MHz. This design is simulated and analyzed by using Computer Simulation Technology (CST) Microwave Studio (MWS) software. The characteristics of the transmission (S21) and reflection (S11) of the dual band FSS were simulater and analyzed. The bandwidth of the first band is 118.91MHz which covered the frequency range from 833.4MHz until 952.31MHz. Meanwhile, the bandwidth for the second band is 358.84MHz which covered the frequency range from 2.1475GHz until 2.5063GHz. The resonance/center frequency of this design is obtained at 900MHz with a 26.902dB return loss and 2.37GHz with 28.506dB a return loss. This FSS is suitable as microwave filter for GSM900 and WLAN 2.4GHz application.

  16. Band tailing and efficiency limitation in kesterite solar cells

    Science.gov (United States)

    Gokmen, Tayfun; Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.

    2013-09-01

    We demonstrate that a fundamental performance bottleneck for hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells with efficiencies reaching above 11% can be the formation of band-edge tail states, which quantum efficiency and photoluminescence data indicate is roughly twice as severe as in higher-performing Cu(In,Ga)(S,Se)2 devices. Low temperature time-resolved photoluminescence data suggest that the enhanced tailing arises primarily from electrostatic potential fluctuations induced by strong compensation and facilitated by a lower CZTSSe dielectric constant. We discuss the implications of the band tails for the voltage deficit in these devices.

  17. Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridisation

    NARCIS (Netherlands)

    Lim, K.B.; Wennekes, J.; Jong, de J.H.S.G.M.; Jacobsen, E.; Tuyl, van J.M.

    2001-01-01

    Detailed karyotypes of Lilium longiflorum and L. rubellum were constructed on the basis of chromosome arm lengths, C-banding, AgNO3 staining, and PI-DAPI banding, together with fluorescence in situ hybridisation (FISH) with the 5S and 45S rDNA sequences as probes. The C-banding patterns that were

  18. Gas Distributions in Comet ISON’s Coma: Concurrent Integral-Field Spectroscopy and Narrow-band Imaging.

    Science.gov (United States)

    Schmidt, Carl; Johnson, Robert E.; Baumgardner, Jeffrey; Mendillo, Michael

    2014-11-01

    At a solar distance of 0.44 AU, Oort cloud comet C/2012 S1 (ISON) exhibited an outburst phase that was observed by small telescopes at the McDonald Observatory. In conjunction with narrow-band (14Å) imaging over a wide-field, an image-slicer spectrograph ( 20,000) simultaneously measured the spatial distribution of ISON’s coma over a 1.6 x 2.7 arcminute field made up of 246 individual spectra. More than fifty emission lines from C2, NH2, CO, H2O+ and Na were observed within a single Echelle order spanning 5868Å to 5930Å. Spatial reconstructions of these species reveal that ISON’s coma was quite elongated several thousand km along the axis perpendicular to its motion. The ion tail appeared distinctly broader than the neutral Na tail, providing strong evidence that Na in the coma did not originate by dissociative recombination of a sodium bearing molecular ion. Production rates increased from 1.6 ± 0.3 x 1023 to 5.8 ± 1 x 1023 Na atoms/s within 24 hours, outgassing much less than comparable comets relative to ISON’s water production. The anti-sunward Na tail was imaged >106 km from the nucleus. Its distribution indicates origins both near the nucleus and in the dust tail, with the ratio of these Na sources varying on hourly timescales due to outburst activity.

  19. Intercomparison of attenuation correction algorithms for single-polarized X-band radars

    Science.gov (United States)

    Lengfeld, K.; Berenguer, M.; Sempere Torres, D.

    2018-03-01

    Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing

  20. Ab Initio factorized LCAO calculations of the electronic band structure of ZnSe, ZnS, and the (ZnSe)1(ZnS)1 strained-layer superlattice

    International Nuclear Information System (INIS)

    Marshall, T.S.; Wilson, T.M.

    1992-01-01

    The authors report on the results of electronic band structure calculations of bulk ZnSe, bulk ZnS and the (ZnSe) 1 (ZnS) 1 , strained-layer superlattice (SLS) using the ab initio factorized linear combination of atomic orbitals method. The bulk calculations were done using the standard primitive nonrectangular 2-atom zinc blende unit cell, while the SLS calculation was done using a primitive tetragonal 4-atom unit cell modeled from the CuAu I structure. The analytic fit to the SLS crystalline potential was determined by using the nonlinear coefficients from the bulk fits. The CPU time saved by factorizing the energy matrix integrals and using a rectangular unit cell is discussed

  1. Morphological and isozymic banding pattern study of white grubs (Coleoptera: Melolonthidae as pest of bark crop in mounth Merapi’s slope.

    Directory of Open Access Journals (Sweden)

    SUGIYARTO

    2008-07-01

    Full Text Available White grub (Coleoptera: Melolonthidae is a group of soil pest at any agrosystem., especially at Salak pondoh (Salacca zalacca (Gaert. Voss. crop. The characteristics of this specimen were very crucial to be studied in order to find the exact biocontrol. The aim of this research was to know the characteristics of white grubs (Melolonthidae: Coleoptera based on morphological and isozyme banding patterns. This research was conducted on August - November 2007 at Sleman and Magelang districts for the morphological purposes, while for the isozyme data were conducted at Sub Laboratory Biology, Central Laboratory of Sebelas Maret University Surakarta. Sample was taken by using stratified random sampling method, on five stations. Polyacrylamide gel electrophoresis (PAGE using the vertical type was taken to isozyme analysis. The enzyme used in this research were peroxidase and esterase to detect the isozyme banding patterns. The results showed that there was no morphological variation of white grubs (Melolonthidae: Coleoptera at salak pondoh agroecosystem in Mounth Merapi’s slope. Based on this character, there was one species of white grub found, i.e. Holotrichia javana. There was a genetic variation based on the variation of isozyme banding patterns.

  2. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C.; Nair, P.K.; Nair, M.T.S., E-mail: mtsn@ier.unam.mx

    2017-02-28

    Highlights: • Zinc oxy-sulfide thin films, 175–240 nm, deposited by rf-sputtering from targets of ZnO + ZnS. • Oxygen content in thin films is enhanced 3–4 times compared with that in ZnO:ZnS targets. • Thin film ZnO{sub x}S{sub 1−x} with x = 0.88–0.27 and optical band gap 2.8–3.2 eV is suitable for solar cells. • The conduction band offset with SnS of cubic structure studied by XPS are +0.41 to −0.28 eV. - Abstract: Zinc oxy-sulfide, ZnO{sub x}S{sub 1−x}, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnO{sub x}S{sub 1−x}/SnS-CUB interface, in which the ZnO{sub x}S{sub 1−x} thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (E{sub g}) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO{sub 0.27}S{sub 0.73} and −0.28 eV for SnS-CUB/ZnO{sub 0.88}S{sub 0.12} interfaces. Thin films of ZnO{sub x}S{sub 1−x} with 175–240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO{sub 0.27}S{sub 0.73} with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO{sub 0.88}S{sub 0.12}. The optical band gap of the ZnO{sub x}S{sub 1−x} thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  3. The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xingjun; Zhang, Jun; Zhong, Huihuang; Qian, Baoliang; Wang, Haitao [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-03

    The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator (RBWO) are presented. The operation frequency tuning can be easily achieved by merely altering the inner-conductor length. The key effects of the inner-conductor length contributing to the mechanical frequency tunability are investigated theoretically and experimentally. There is a specific inner-conductor length where the operation frequency can jump from one mode to another mode, which belongs to a different operation band. In addition, the operation frequency is tunable within each operation band. During simulation, the L-band microwave with a frequency of 1.61 GHz is radiated when the inner-conductor length is 39 cm. Meanwhile, the S-band microwave with a frequency of 2.32 GHz is radiated when the inner-conductor length is 5 cm. The frequency adjustment bandwidths of L-band and S-band are about 8.5% and 2%, respectively. Moreover, the online mechanical tunability process is described in detail. In the initial experiment, the generated microwave frequencies remain approximately 1.59 GHz and 2.35 GHz when the inner-conductor lengths are 39 cm and 5 cm. In brief, this technical route of the band-agile coaxial RBWO is feasible and provides a guide to design other types of band-agile high power microwaves sources.

  4. [Gastric band erosion: Alternative management].

    Science.gov (United States)

    Echaverry-Navarrete, Denis José; Maldonado-Vázquez, Angélica; Cortes-Romano, Pablo; Cabrera-Jardines, Ricardo; Mondragón-Pinzón, Erwin Eduardo; Castillo-González, Federico Armando

    2015-01-01

    Obesity is a public health problem, for which the prevalence has increased worldwide at an alarming rate, affecting 1.7 billion people in the world. To describe the technique employed in incomplete penetration of gastric band where endoscopic management and/or primary closure is not feasible. Laparoscopic removal of gastric band was performed in five patients with incomplete penetrance using Foley catheterization in the perforation site that could lead to the development of a gastro-cutaneous fistula. The cases presented include a leak that required surgical lavage with satisfactory outcome, and one patient developed stenosis 3 years after surgical management, which was resolved endoscopically. In all cases, the penetration site closed spontaneously. Gastric band erosion has been reported in 3.4% of cases. The reason for inserting a catheter is to create a controlled gastro-cutaneous fistula, allowing spontaneous closure. Various techniques have been described: the totally endoscopic, hybrid techniques (endoscopic/laparoscopic) and completely laparoscopic. A technique is described here that is useful and successful in cases where the above-described treatments are not viable. Copyright © 2015. Published by Masson Doyma México S.A.

  5. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  6. Coloured leg bands affect male mate-guarding behaviour in the bluethroat

    Science.gov (United States)

    Johnsen; Lifjeld; Rohde

    1997-07-01

    Artificial traits such as coloured leg bands may affect an individual's mating success, as shown for some birds. One explanation is that colour-matching with a sexual ornament affects the individual's sexual attractiveness. This study reports a colour-band experiment with free-living bluethroats, Luscinia s. svecicaa species where males have a distinct blue and chestnut throat and upper breast. There was no apparent difference in pairing success between males with ornament-matching colour bands (blue and orange) and males with non-ornamental colour bands. However, males with ornamental bands guarded their mates less intensely and spent more time singing, performing song flights and intruding into neighbours' territories than males with non-ornamental bands. We conclude that colour bands affect the trade-off between mate guarding and advertisement behaviour in a way that is consistent with the hypothesis that bands with ornamental colours improve a male's attractiveness. The results are in concordance with a previous study of the same population, showing that males with experimentally reduced attractiveness guarded their mates more closely and advertised less for additional mates, than non-manipulated males.

  7. Design and development of low level S-Band RF control system for IRFEL injector LINAC

    International Nuclear Information System (INIS)

    Mohania, Praveen; Mahawar, Ashish; Singh, Adarsh Pratap; Namdeo, Rajkumar; Baxy, Deodatta; Shrivastava, Purushottam

    2015-01-01

    A low level RF system has been designed and developed for phase and amplitude stabilization of S- Band microwave power being fed to fundamental buncher cavity and the injector LINAC structure of the Infra Red Free Electron Laser being developed at RRCAT Indore. The system uses analog phase shifters and voltage variable attenuators to control the phase and amplitude respectively, the control voltages for phase shifters and attenuators are generated using a 12 Bit ADC and is software controlled. The system has a slow feedback to correct phase and amplitude drifts occurring due to thermal variations and a fast feed forward mechanism to vary amplitude and phase of the output pulse to compensate beam loading and to shape the klystron output power. The present paper describes the design aspects of the LLRF system. (author)

  8. Band gap engineering for graphene by using Na+ ions

    International Nuclear Information System (INIS)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W.

    2014-01-01

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E g ) at DP in a controlled way by depositing positively charged Na + ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na + ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E g . The band gap increases with increasing Na + coverage with a maximum E g ≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na + ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na + ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  9. Testing and Implementation Progress on the Advanced Photon Source (APS) Linear Accelerator (Linac) High-Power S-band Switching System

    OpenAIRE

    Grelick, A. E.; Arnold, N.; Berg, S.; Dohan, D.; Goeppner, G.; Kang, Y. W.; Nassiri, A.; Pasky, S.; Pile, G.; Smith, T.; Stein, S. J.

    2000-01-01

    An S-band linear accelerator is the source of particles and the front end of the Advanced Photon Source injector. In addition, it supports a low-energy undulator test line (LEUTL) and drives a free-electron laser (FEL). A waveguide-switching and distribution system is now under construction. The system configuration was revised to be consistent with the recent change to electron-only operation. There are now six modulator-klystron subsystems, two of which are being configured to act as hot sp...

  10. Stor forskel på kommuners bande-exit

    DEFF Research Database (Denmark)

    Mørck, Line Lerche

    2015-01-01

    DEBAT: Kommunerne har meget forskellige exit-tilbud til bande- og rockermedlemmer. Der er brug for mere indgående forskning, så vi ved, hvad der virker bedst, skriver Line Lerche Mørck, lektor i pædagogisk psykologi....

  11. Development of a Polarized Electron Gun Based on an S-Band PWT Photoinjector

    CERN Document Server

    Clendenin, J E; Yu, D; Newsham, D; Luo, Y; Smirnov, A

    2003-01-01

    An RF polarized electron gun utilizing the unique features of an integrated, plane-wave-transformer (PWT) photoelectron injector [1] is being developed by DULY Research Inc. in collaboration with SLAC. Modifications to a DULY S-band device [2] include: a re-design of the photocathode/RF backplane interface to accommodate a GaAs cathode; change in the design of the vacuum ports to provide 10-11 Torr operation; the inclusion of a load-lock photocathode replacement system to allow for reactivation and cessation of the GaAs photocathode in a vacuum; and alteration of the magnet field coils to make room for the load-lock. The use of a stainless steel outer tank and cooling rods without copper plating may also provide better vacuum performance at the expense of diminished Q factor. The effectiveness of both the standard cooling rods and synthetic diamond heat sinks for disk cooling is investigated for future linear collider applications operating at a rep rate of 180 Hz and a bunch charge of 2 nC.

  12. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    Directory of Open Access Journals (Sweden)

    Avanish Pratap Singh

    2011-06-01

    Full Text Available β–Naphthalene sulphonic acid (β–NSA doped polyaniline (PANI–flyash (FA composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37–21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D–VRH model. SEM images demonstrate that β–NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ′- iɛ″ and permeability (μ*=μ′- iμ″ of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21 using theoretical calculations given in Nicholson–Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 – 12.4 GHz & Ku–Band (12.4 – 18 GHz frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  13. 78 FR 23855 - Improving Public Safety Communications in the 800 MHz Band; New 800 MHz Band Plan for U.S.-Mexico...

    Science.gov (United States)

    2013-04-23

    ... rebanding as of the 18th month of the transition period to determine whether additional time is needed based... that ``the rule will not, if promulgated, have a significant economic impact on a substantial number of... nationwide problem of interference created by a fundamentally incompatible mix of technologies in the band...

  14. Congenital Constriction Band Syndrome

    OpenAIRE

    Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh

    2008-01-01

    Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.

  15. Building Entry Loss and Delay Spread Measurements on a Simulated HAP-to-Indoor Link at S-Band

    Directory of Open Access Journals (Sweden)

    Delgado-Penín JA

    2008-01-01

    Full Text Available Results from a measurement campaign emulating the high altitude platform (HAP-to-indoor communication channel at S-band are presented in this paper. A link was established between a transmitter carried by a helicopter, representing the HAP, and a receiver placed at several locations in different building types including an airport, an office building, a shopping mall, a residential house, and a skyscraper. A wideband, directive channel sounder was used to measure building entry loss and time delay spread. Results of the building entry loss are presented as a function of building type, elevation, and building entry angle. Results of delay spread for each building are also provided.

  16. Building Entry Loss and Delay Spread Measurements on a Simulated HAP-to-Indoor Link at S-Band

    Directory of Open Access Journals (Sweden)

    P. Valtr

    2008-07-01

    Full Text Available Results from a measurement campaign emulating the high altitude platform (HAP-to-indoor communication channel at S-band are presented in this paper. A link was established between a transmitter carried by a helicopter, representing the HAP, and a receiver placed at several locations in different building types including an airport, an office building, a shopping mall, a residential house, and a skyscraper. A wideband, directive channel sounder was used to measure building entry loss and time delay spread. Results of the building entry loss are presented as a function of building type, elevation, and building entry angle. Results of delay spread for each building are also provided.

  17. Cranking model interpretation of weakly coupled bands in Hg isotopes

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.

    1982-01-01

    The positive-parity yrast states of the transitional sup(189-198)Hg isotopes are interpreted within the Bengtsson and Frauendorf version of the cranking model. The very sharp backbendings can be explained by small interaction matrix elements between the ground and s-bands. The experimentally observed large aligned angular momenta and the low band-crossing frequencies are well reproduced in the calculations. (orig.)

  18. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    Science.gov (United States)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  19. Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting, E-mail: WT323@mail.nwpu.edu.cn [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia); Sheng, Mei-Ping [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); Qin, Qing-Hua [College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia)

    2016-02-05

    Flexural vibration suppression in an Euler–Bernoulli beam with attached lateral local resonators (LLR) is studied theoretically and numerically. Hamilton's principle and Bloch's theorem are employed to derive the dispersion relation which reveals that two band gaps are generated. Within both band gaps, the flexural waves are partially transformed into longitudinal waves through a four-link-mechanism and totally blocked. The band gaps can be flexibly tuned by changing the geometry parameter of the four-link-mechanism and the spring constants of the resonators. Frequency response function (FRF) from finite element analysis via commercial software of ANSYS shows large flexural wave attenuation within the band gaps and the effect of damping from the LLR substructures which helps smooth and lower the response peaks at the sacrifice of the band gap effect. The existence of the multi-flexural band gaps can be exploited for the design of flexural vibration control of beams. - Highlights: • A metamaterial beam with lateral local resonance is proposed. • The metamaterial beam can generate multi-band gaps for flexural wave suppression. • The substructure can transform the flexural wave into longitudinal wave and absorb the waves. • Damping from different part has different influence on the band gaps. • The design of the metamaterial beam can be used for multi-flexural vibration control.

  20. Fallout plutonium and natural radionuclides in annual bands of the coral Montastrea annularis, St. Croix, U.S. Virgin Islands

    International Nuclear Information System (INIS)

    Benninger, L.K.; Dodge, R.E.

    1986-01-01

    We have investigated the banded coral Montastrea annularis as a recorder of the history of fallout Pu in surface seawater. Thirty annual growth bands representing growth during 'coral years' 1951-1980, were subsampled from M. annularis collected at St. Croix, U.S. Virgin Islands. sup(239,240)Pu was finite in coral years 1954-1980, and the coral Pu record is very simply related to the fallout history of 90 Sr. Peaks in coral Pu in coral years 1959 and 1964 correspond to fallout peaks in 1959 and 1963, respectively. Peak broadening and time lags in the coral Pu record, as compared to the 90 Sr fallout record are consistent with retention of fallout Pu in surface seawater for about two years (characteristic removal time) during the period of major fallout, and possibly longer thereafter. The simplicity of the coral Pu record and its close correspondence with fallout history suggest that sup(239,240)Pu was incorporated into the coral skeleton with constant discrimination relative to Ca; the effects of speciation and oxidation state upon Pu incorporation are presently unknown. (author)

  1. Single-Band and Dual-Band Infrared Detectors

    Science.gov (United States)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  2. Real-time recursive hyperspectral sample and band processing algorithm architecture and implementation

    CERN Document Server

    Chang, Chein-I

    2017-01-01

    This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author’s books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.

  3. Sulfur L{sub 2,3} soft-x-ray fluorescence of CdS and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Callcott, T.A.; Jia, J.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    The II-VI sulfur compounds CdS and ZnS have important electro-optics applications. In addition, they have well characterized and relatively simple structures so that they are good candidates for theoretical model development in solid-state physics. Some experimental results on density of states have been reported, mostly determined from photoemission measurements, and theoretical calculations are available for both materials. Nevertheless the electronic properties of these elements are still not completely understood. It has been established that the d-bands, derived from Cd or Zn, lie in a subband gap between a lower valence band (LVB) derived from the S 3s orbital and an upper valence band (UVB) derived from the 3p states of S and the 4(3)s states of Cd(Zn). The locations of these bands within the gap disagree with the best available calculations, however. The principal problem is that experimental photoemission measurements locate the d-bands about 2 eV lower in the band gap than the best available calculations. Some authors argue that the hole in the d-band in the final state of the photoemission process increases the binding of the d-electrons. In any case, band gaps, band widths and the precise location of d-bands are important parameters for comparing experiment and theory, and no current calculations give good agreement with all of these parameters. Moreover, photoemission data does not adequately define all of these experimental parameters, because the d-state photoemission dominates that from s and p states and sample charging effects can modify the energy of emitted electrons. The authors report photon excited soft x-ray fluorescence (SXF) S L{sub 2,3} spectra from CdS and ZnS. Using excitation between the L{sub 2} and L{sub 3} thresholds, the L{sub 2} spectrum is suppressed, which permits the authors to accurately determine features of the UVB and LVB as well as the placement of the Cd(Zn) d-bands between the UVB and LVB.

  4. OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J. T.; Martens, P. C. H.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-03-10

    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for days and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.

  5. Satellite bands of the RbCs molecule in the range of highly excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rakić, Mario; Beuc, Robert; Skenderović, Hrvoje, E-mail: hrvoje@ifs.hr [Institute of Physics, Bijenička cesta 46, Zagreb 10000 (Croatia); Bouloufa-Maafa, Nadia; Dulieu, Olivier; Vexiau, Romain [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, Bât. 505, Campus d’Orsay, Orsay Cedex 91405 (France); Pichler, Goran [Physics Department, Kuwait University, PO Box 5969, Safat—13060 (Kuwait)

    2016-05-28

    We report on the observation of three RbCs satellite bands in the blue and green ranges of the visible spectrum. Absorption measurements are performed using all-sapphire cell filled with a mixture of Rb and Cs. We compare high resolution absorption spectrum of Rb-Cs vapor mixture with pure Rb and Cs vapor spectra from the literature. After detailed analysis, the new satellite bands of RbCs molecule at 418.3 nm, 468.3, and 527.5 nm are identified. The origin of these bands is discussed by direct comparison with difference potentials derived from quantum chemistry calculations of RbCs potential energy curves. These bands originate from the lower Rydberg states of the RbCs molecule. This study thus provides further insight into photoassociation of lower Rydberg molecular states, approximately between Cs(7s) + Rb(5s) and Cs(6s) + Rb(6p) asymptotes, in ultracold gases.

  6. Design and analysis of X-band femtosecond linac

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, M; Kozawa, T; Takeshita, A; Kobayashi, T; Ueda, T; Miya, K [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1997-03-01

    Femtosecond quantum phenomena research project is proposed at Nuclear Engineering Research Laboratory, University of Tokyo. The research facility consists of an X-band (11.424GHz) femtosecond electron linac, a femtosecond wavelength tunable laser, two S-band (2.856GHz) picosecond electron linacs and measuring equipments. Especially, we aim to generate a 100 fs (FWHM) electron single bunch with more than 1 nC at the X-band femtosecond linac. Ultrafast processes in radiation physics, chemistry, material science and microscopic electromagnetic phenomena are going to be analyzed there. Here the design and analysis of an X-band femtosecond linac is presented. The simulation of electron dynamics is carried out including magnetic pulse compression by using PARMELA and SUPERFISH. It is found by the simulation that the 600 ps (tail-to-tail) electron emission from a 200 kV thermionic gun can be bunched and compressed to 110 fs (FWHM) with the charge of 0.8 nC which gives 7.3 kA. We plan to use one high power X-band klystron which can supply 60 MW with more than 200 ns pulse duration. The flatness of plateau of the pulse should be 0.2% for stable ultrashort bunch generation. (author)

  7. Observing the semiconducting band-gap alignment of MoS{sub 2} layers of different atomic thicknesses using a MoS{sub 2}/SiO{sub 2}/Si heterojunction tunnel diode

    Energy Technology Data Exchange (ETDEWEB)

    Nishiguchi, Katsuhiko, E-mail: nishiguchi.katsuhiko@lab.ntt.co.jp; Yamaguchi, Hiroshi; Fujiwara, Akira [NTT Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Castellanos-Gomez, Andres; Zant, Herre S. J. van der; Steele, Gary A. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands)

    2015-08-03

    We demonstrate a tunnel diode composed of a vertical MoS{sub 2}/SiO{sub 2}/Si heterostructure. A MoS{sub 2} flake consisting four areas of different thicknesses functions as a gate terminal of a silicon field-effect transistor. A thin gate oxide allows tunneling current to flow between the n-type MoS{sub 2} layers and p-type Si channel. The tunneling-current characteristics show multiple negative differential resistance features, which we interpret as an indication of different conduction-band alignments of the MoS{sub 2} layers of different thicknesses. The presented tunnel device can be also used as a hybrid-heterostructure device combining the advantages of two-dimensional materials with those of silicon transistors.

  8. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  9. Identification of C5+ extraband of butyrylcholinesterase and two protein bands cathodic to it

    OpenAIRE

    F. D. Suyatna; R. Setiabudy; O. Tjandra; E. Herwana

    2001-01-01

    Electrophoresis of human plasma yields 4 butyrylcholinesterase (BChE) protein bands, i.e. C1, C2, C3, C4 and in some individuals also an extraband C5+. In addition to that other protein bands called "S" bands are also invariably detected. In order to know whether the C5+ and the "S" bands are related to the BChE protein, we have carried out immunological and peptide mapping studies on these proteins. The immunology approach was done by raising polyclonal antibodies against each protein bands ...

  10. Symmetries and band gaps in nanoribbons

    Science.gov (United States)

    Zhang, Zhiwei; Tian, Yiteng; Fernando, Gayanath; Kocharian, Armen

    In ideal graphene-like systems, time reversal and sublattice symmetries preserve the degeneracies at the Dirac point(s). We have examined such degeneracies in the band structure as well as the transport properties in various arm-twisted (graphene-related) nanoribbons. A twist angle is defined such that at 0 degrees the ribbon is a rectangular ribbon and at 60 degrees the ribbon is cut from a honeycomb lattice. Using model Hamiltonians and first principles calculations in these nanoribbons with Z2 topology, we have monitored the band structure as a function of the twist angle θ. In twisted ribbons, it turns out that the introduction of an extra hopping term leads to a gap opening. We have also calculated the size and temperature broadening effects in similar ribbons in addition to Rashba-induced transport properties. The authors acknowledge the computing facilities provided by the Center for Functional Nanomaterials, Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No.DE-AC02- 98CH10886.

  11. Modelling the metal–semiconductor band structure in implanted ohmic contacts to GaN and SiC

    International Nuclear Information System (INIS)

    Pérez-Tomás, A; Fontserè, A; Placidi, M; Jennings, M R; Gammon, P M

    2013-01-01

    Here we present a method to model the metal–semiconductor (M–S) band structure to an implanted ohmic contact to a wide band gap semiconductor (WBG) such as GaN and SiC. The performance and understanding of the M–S contact to a WBG semiconductor is of great importance as it influences the overall performance of a semiconductor device. In this work we explore in a numerical fashion the ohmic contact properties to a WBG semiconductor taking into account the partial ionization of impurities and analysing its dependence on the temperature, the barrier height, the impurity level band energy and carrier concentration. The effect of the M–S Schottky barrier lowering and the Schottky barrier inhomogeneities are discussed. The model is applied to a fabricated ohmic contact to GaN where the M–S band structure can be completely determined. (paper)

  12. Noise exposure in marching bands

    Science.gov (United States)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  13. Performance Analysis of Downlink Inter-band Carrier Aggregation in LTE-Advanced

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus

    2011-01-01

    CC can be different. In this paper, we investigate the downlink resource allocation for inter-band CA, i.e., how to assign carrier(s) to different UEs. A simple yet effective G-factor based carrier selection algorithm, which takes both traffic load and radio channel characteristics......Carrier aggregation (CA) is one of the most distinct features for LTE-Advanced systems, which can support a much wider transmission bandwidth up to 100 MHz by aggregating two or more individual component carriers (CCs) belonging to the same (intra-band) or different (inter-band) frequency bands....... With CA, it is possible to schedule a user equipment (UE) on multiple CCs simultaneously. From radio resource management (RRM) perspective, CC selection plays an important role in optimizing the system performance, especially in the case of inter-band CA where the radio propagation characteristics of each...

  14. Relationship of status of polymorphic rapd bands with genotypic ...

    African Journals Online (AJOL)

    Relationship of status of polymorphic rapd bands with genotypic adaptation in early finger millet genotypes. S Das, RC Misra, GR Rout, MC Pattanaik, S Aparajita. Abstract. Molecular characterisation of the 15 early duration finger millet (Eleusine coracana G) genotypes was done through RAPD markers. Twenty-five ...

  15. UNITED STATES DEPARTMENT OF TRANSPORTATION GLOBAL POSITIONING SYSTEM (GPS) ADJACENT BAND COMPATIBILITY ASSESSMENT

    Science.gov (United States)

    2018-04-01

    The goal of the U.S. Department of Transportation (DOT) Global Positioning System (GPS) Adjacent Band Compatibility Assessment is to evaluate the maximum transmitted power levels of adjacent band radiofrequency (RF) systems that can be tolerated by G...

  16. Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

    Directory of Open Access Journals (Sweden)

    Sungyoun Hwang

    2018-04-01

    Full Text Available In this paper, a method of designing a Vivaldi type phased array antenna (PAA which operates at S-band (2.8–3.3 GHz is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a 1 × 8 array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ±53° based on a −10 dB active reflection coefficient. The operation of the scan angle is possible within ±60° with a little larger reflection coefficient (−7 dB to −8 dB. The proposed design with BC-SRRs is expected to be useful for PAA applications.

  17. 180 MW/180 KW pulse modulator for S-band klystron of LUE-200 linac of IREN installation of JINR

    Science.gov (United States)

    Su, Kim Dong; Sumbaev, A. P.; Shvetsov, V. N.

    2014-09-01

    The offer on working out of the pulse modulator with 180 MW pulse power and 180 kW average power for pulse S-band klystrons of LUE-200 linac of IREN installation at the Laboratory of neutron physics (FLNP) at JINR is formulated. Main requirements, key parameters and element base of the modulator are presented. The variant of the basic scheme on the basis of 14 (or 11) stage 2 parallel PFN with the thyratron switchboard (TGI2-10K/50) and six parallel high voltage power supplies (CCPS Power Supply) is considered.

  18. B(M1) values in the band-crossing of shears bands in 197Pb

    Science.gov (United States)

    Krücken, R.; Cooper, J. R.; Beausang, C. W.; Novak, J. R.; Dewald, A.; Klug, T.; Kemper, G.; von Brentano, P.; Carpenter, M.; Wiedenhöver, I.

    We present details of the band crossing mechanism of shears bands using the example of 197Pb. Absolute reduced matrix elements B(M1) were determined by means of a RDM lifetime measurement in one of the shears bands in 197Pb. The experiment was performed using the New Yale Plunger Device (NYPD) in conjunction with the Gammasphere array. Band mixing calculations on the basis of the semi-classical model of the shears mechanism are used to describe the transition matrix elements B(M1) and energies throughout the band-crossing regions. Good agreement with the data was obtained and the detailed composition of the states in the shears band are discussed.

  19. A class of non-symmetric band determinants with the Gaussian q ...

    African Journals Online (AJOL)

    A class of symmetric band matrices of bandwidth 2r+1 with the binomial coefficients entries was studied earlier. We consider a class of non-symmetric band matrices with the Gaussian q-binomial coefficients whose upper bandwith is s and lower bandwith is r. We give explicit formulæ for the determinant, the inverse (along ...

  20. Observations of copolar correlation coefficient through a bright band at vertical incidence

    Science.gov (United States)

    Zrnic, D. S.; Raghavan, R.; Chandrasekar, V.

    1994-01-01

    This paper discusses an application of polarimetric measurements at vertical incidence. In particular, the correlation coefficients between linear copolar components are examined, and measurements obtained with the National Severe Storms Laboratory (NSSL)'s and National Center for Atmospheric Research (NCAR)'s polarimetric radars are presented. The data are from two well-defined bright bands. A sharp decrease of the correlation coefficient, confined to a height interval of a few hundred meters, marks the bottom of the bright band.

  1. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals

    Science.gov (United States)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-01-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to approximately100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  2. Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy

    DEFF Research Database (Denmark)

    Gilbert, B.; Frandsen, Cathrine; Maxey, E.R.

    2009-01-01

    Chemical and photochemical processes at semiconductor surfaces are highly influenced by the size of the band gap, and ability to control the band gap by particle size in nanomaterials is part of their promise. The combination of soft x-ray absorption and emission spectroscopies provides band......-gap determination in bulk and nanoscale itinerant electron semiconductors such as CdS and ZnO, but this approach has not been established for materials such as iron oxides that possess band-edge electronic structure dominated by electron correlations. We performed soft x-ray spectroscopy at the oxygen K...

  3. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Fallone, B. G.; Steciw, S.

    2013-01-01

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d max is at 2.15 cm for a 10 × 10 cm 2 field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  4. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source.

    Science.gov (United States)

    Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S

    2013-04-01

    To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV∕m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show dmax is at 2.15 cm for a 10 × 10 cm(2) field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  5. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    Energy Technology Data Exchange (ETDEWEB)

    Baillie, Devin [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Aubin, J. St. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Steciw, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2013-04-15

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  6. ISM band to U-NII band frequency transverter and method of frequency transversion

    Science.gov (United States)

    Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO

    2006-09-12

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  7. Band width and multiple-angle valence-state mapping of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, I.; Terminello, L.J.; Sutherland, D.G.J. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The band width may be considered the single most important parameter characterizing the electronic structure of a solid. The ratio of band width and Coulomb repulsion determines how correlated or delocalized an electron system is. Some of the most interesting solids straddle the boundary between localized and delocalized, e.g. the high-temperature superconductors. The bulk of the band calculations available today is based on local density functional (DF) theory. Even though the Kohn-Sham eigenvalues from that theory do not represent the outcome of a band-mapping experiment, they are remarkably similar to the bands mapped via photoemission. Strictly speaking, one should use an excited state calculation that takes the solid`s many-body screening response to the hole created in photoemission into account. Diamond is a useful prototype semiconductor because of its low atomic number and large band width, which has made it a long-time favorite for testing band theory. Yet, the two experimental values of the band width of diamond have error bars of {+-}1 eV and differ by 3.2 eV. To obtain an accurate valence band width for diamond, the authors use a band-mapping method that collects momentum distributions instead of the usual energy distributions. This method has undergone extensive experimental and theoretical tests in determining the band width of lithium fluoride. An efficient, imaging photoelectron spectrometer is coupled with a state-of-the-art undulator beam line at the Advanced Light Source to allow collection of a large number of data sets. Since it takes only a few seconds to take a picture of the photoelectrons emitted into a 84{degrees} cone, the authors can use photon energies as high as 350 eV where the cross section for photoemission from the valence band is already quite low, but the emitted photoelectrons behave free-electron-like. This make its much easier to locate the origin of the inter-band transitions in momentum space.

  8. Status of the C-band RF System for the SPARC-LAB high brightness photo-injector

    CERN Document Server

    Boni, R.; Bellaveglia, M.; Di Pirro, G.; Ferrario, M.; Gallo, A.; Spataro, B.; Mostacci, A.; Palumbo, L.

    2013-01-01

    The high brightness photo-injector in operation at the SPARC-LAB facility of the INFN-LNF, Italy, consists of a 150 MeV S-band electron accelerator aiming to explore the physics of low emittance high peak current electron beams and the related technology. Velocity bunching techniques, SASE and Seeded FEL experiments have been carried out successfully. To increase the beam energy so improving the performances of the experiments, it was decided to replace one S-band travelling wave accelerating cavity, with two C-band cavities that allow to reach higher energy gain per meter. The new C-band system is in advanced development phase and will be in operation early in 2013. The main technical issues of the C-band system and the R&D activities carried out till now are illustrated in detail in this paper.

  9. Experimental and simulation analysis of the W-band SC-FDMA hybrid optical-wireless transmission

    DEFF Research Database (Denmark)

    Dogadaev, Anton Konstantinovich; Pang, Xiaodan; Deng, Lei

    2014-01-01

    We report on the experimental demonstration of the W-band hybrid optical-wireless SC-FDMA with 1.49 Gbit/s transmission over up to 2.3 m of air propagation. Provided simulation performance analysis proves a potential to reach 12.1 Gbit/s.......We report on the experimental demonstration of the W-band hybrid optical-wireless SC-FDMA with 1.49 Gbit/s transmission over up to 2.3 m of air propagation. Provided simulation performance analysis proves a potential to reach 12.1 Gbit/s....

  10. Design of a side-band-separating heterodyne mixer for band 9 of ALMA

    NARCIS (Netherlands)

    Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W

    2005-01-01

    A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of

  11. Structural study and electronic band structure investigations of the solid solution Na xCu1-xIn5S8 and its impact on the Cu(In,Ga)Se2/In2S3 interface of solar cells

    International Nuclear Information System (INIS)

    Lafond, A.; Guillot-Deudon, C.; Harel, S.; Mokrani, A.; Barreau, N.; Gall, S.; Kessler, J.

    2007-01-01

    The present work reports investigations on the new In 2 S 3 containing Cu and/or Na compounds, which are expected to be formed at the Cu(In,Ga)Se 2 /In 2 S 3 interface. The knowledge of these materials properties is very important in order to better understand the operation of the devices based on these junction partners. It has been observed that a solid solution Na x Cu 1-x In 5 S 8 exists from CuIn 5 S 8 (x = 0) to NaIn 5 S 8 (x = 1) with a spinel-like structure. The single crystal structure determination shows that indium, copper and sodium atoms are statistically distributed on the tetrahedral sites. XPS investigations on the CuIn 5 S 8 , Na 0.5 Cu 0.5 In 5 S 8 and NaIn 5 S 8 compounds combined with the band gap changes reported in a previous work show that these variations are mainly due to valence band maximum shift; it is moved downward when x increases from 0 to 1. These observations are confirmed by the electron structure calculations based on the density functional theory, which additionally demonstrate that the pure sodium compound has direct gap whereas the copper-containing compounds have indirect gaps

  12. Kinetics of singlet and triplet excitons in a wide-band-gap copolymer

    NARCIS (Netherlands)

    Loi, MA; Gadermaier, C; List, EJW; Leising, G; Graupner, W; Bongiovanni, G; Mura, A; Pireaux, JJ; Kaeriyama, K

    2000-01-01

    Transient and photomodulation spectroscopy is used in order to determine decay times and densities of both emitting and absorbing species in the wide band-gap semiconductor poly-2,5-diheptyl-1,4-phenylene-alt-2, S-thienylene (PDHPT). The wide band gap of this material is a consequence of the large

  13. Use of GPS TEC Maps for Calibrating Single Band VLBI Sessions

    Science.gov (United States)

    Gordon, David

    2010-01-01

    GPS TEC ionosphere maps were first applied to a series of K and Q band VLBA astrometry sessions to try to eliminate a declination bias in estimated source positions. Their usage has been expanded to calibrate X-band only VLBI observations as well. At K-band, approx.60% of the declination bias appears to be removed with the application of GPS ionosphere calibrations. At X-band however, it appears that up to 90% or more of the declination bias is removed, with a corresponding increase in RA and declination uncertainties of approx.0.5 mas. GPS ionosphere calibrations may be very useful for improving the estimated positions of the X-only and S-only sources in the VCS and RDV sessions.

  14. Dosimetry of narrow band UVB treatments

    International Nuclear Information System (INIS)

    Goode, D.H.; Mannering, D.M.

    1996-01-01

    narrow band treatment schedule has been developed which is based on the patient' s MED. Before commencing treatments the patient is given an MED test using untanned skin on the inner surface of the forearm. The initial dose is 70% of the MED and each subsequent exposure is increased by a constant increment, namely 21.4% of the initial dose. This progression continues until the dose reaches three times the MED at which time it is held constant. Treatments are given twice per week up to a maximum of 30 treatments or until the psoriasis clears. If mild erythema occurs the next treatment is held at the previous dose while for more severe erythema it is missed entirely. This schedule is similar to the one in use at The Royal Victoria Infirmary, Newcastle upon Tyne, but with two minor exceptions. In Newcastle the increments are larger (on average 45% of the initial dose) but they only occur once a week. The transfer from broad band to narrow band was accomplished successfully without any incidence of erythema. After four months experience the 31 patients who were currently following the MED based protocol were reviewed. The lowest MED measured was 500 mJ/cm 2 while the highest (three in number) exceeded 1110 mJ/cm 2 . Eleven of the patients exhibited erythema at some point in their treatment but it was only necessary to reduce the dose increment in one case. Of the remaining 20 patients, 13 who showed poor clearing of their psoriasis were placed on a dose schedules in which the dose increments were increased by between 20 % to 33%. In view of the fact almost equal numbers of patients received too large or too small a dose the schedule can be considered to be a good compromise

  15. Study on electromagnetic constants of rotational bands

    International Nuclear Information System (INIS)

    Abdurazakov, A.A.; Adib, Yu.Sh.; Karakhodzhaev, A.K.

    1991-01-01

    Values of electromagnetic constant S and rotation bands of odd nuclei with Z=64-70 within the mass number change interval A=153-173 are determined. Values of γ-transition mixing parameter with M1+E2 multipolarity are presented. ρ parameter dependence on mass number A is discussed

  16. Electronic band structure of Two-Dimensional WS2/Graphene van der Waals Heterostructures

    Science.gov (United States)

    Henck, Hugo; Ben Aziza, Zeineb; Pierucci, Debora; Laourine, Feriel; Reale, Francesco; Palczynski, Pawel; Chaste, Julien; Silly, Mathieu G.; Bertran, François; Le Fèvre, Patrick; Lhuillier, Emmanuel; Wakamura, Taro; Mattevi, Cecilia; Rault, Julien E.; Calandra, Matteo; Ouerghi, Abdelkarim

    2018-04-01

    Combining single-layer two-dimensional semiconducting transition-metal dichalcogenides (TMDs) with a graphene layer in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these heterostructures. Here, we report the electronic and structural properties of transferred single-layer W S2 on epitaxial graphene using micro-Raman spectroscopy, angle-resolved photoemission spectroscopy measurements, and density functional theory (DFT) calculations. The results show good electronic properties as well as a well-defined band arising from the strong splitting of the single-layer W S2 valence band at the K points, with a maximum splitting of 0.44 eV. By comparing our DFT results with local and hybrid functionals, we find the top valence band of the experimental heterostructure is close to the calculations for suspended single-layer W S2 . Our results provide an important reference for future studies of electronic properties of W S2 and its applications in valleytronic devices.

  17. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2'-deoxyuridine Incorporation

    International Nuclear Information System (INIS)

    Hoshi, Osamu; Ushiki, Tatsuo

    2011-01-01

    A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with incorporated EdU showed a banding pattern similar to G-banding of normal human chromosomes. Imaging by atomic force microscopy (AFM) in liquid conditions showed that the structure of the chromosomes was well preserved even after EdU treatment. Comparison between fluorescence microscopy and AFM images of the same chromosome 1 indicated the presence of ridges and grooves in the chromatid arm, features that have been previously reported in relation to G-banding. These results suggest an intimate relationship between EdU-induced replication bands and G- or R-bands in human chromosomes. This technique is thus useful for analyzing the structure of chromosomes in relation to their banding patterns following DNA replication in the S phase

  18. 100-Gb/s 80-km transmission of PIM-SSB-OFDM at C-band using a single-end photodetector

    Science.gov (United States)

    Huo, Jiahao; Zhou, Xian; Zhong, Kangping; Gui, Tao; Tan, Fengze; Tu, Jiajing; Yuan, Jinhui; Zhang, Hongyu; Long, Keping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2017-10-01

    Polarization-interleave-multiplexed (PIM) with single-sideband orthogonal frequency-division multiplexing (SSB-OFDM) based on direct detection is proposed for short-reach applications transmitted up to 80 km in which the guard band can be shared for the two SSB signals with interleave electrical center frequencies. Based on two dual-drive Mach-Zehnder modulators with one single-end photodetector (PD), 100-Gb/s PIM-SSB-OFDM transmission over a 80-km standard single-mode fiber is successfully demonstrated. After 80-km transmission, the optical signal-to-noise ratio requirement is 29.1 dB with respect to the bit error rate threshold of 7% hard decision-forward error correction overhead.

  19. Side-band-separating heterodyne mixer for band 9 of ALMA.

    NARCIS (Netherlands)

    Mena, F. P.; Baryshev, A. M.; Kooi, J.; Lodewijk, C. F. J.; Gerlofsma, G.; Hesper, R.; Wild, W.; Shen, XC; Lu, W; Zhang, J; Dou, WB

    2006-01-01

    Here we present the realization of a side-band-separating (2SB) heterodyne mixer for the frequency range from 602 to 720 GHz (corresponding to ALMA band 9). The mixer, in brief, consists of a quadrature hybrid, two LO injectors, two SIS junctions, and three dumping loads. All the parts were modeled

  20. Synchro-Betatron Stop-Bands Due to a Single Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A

    2004-06-17

    We analyze the stop-band due to crab cavities for horizontal tunes that are either close to integers or close to half integers. The latter case is relevant for today's electron/positron colliders. We compare this stop-band to that created by dispersion in an accelerating cavity and show that a single typical crab cavity creates larger stop-bands than a typical dispersion at an accelerating cavity. We furthermore analyze whether it is beneficial to place the crab cavity at a position where the dispersion and its slope vanish. We find that this choice is worth while if the horizontal tune is close to a half integer, but not if it is close to an integer. Furthermore we find that stop-bands can be avoided when the horizontal tune is located at a favorable side of the integer or the half integer. While we are here concerned with the installation of a single crab cavity in a storage ring, we show that the stop-bands can be weakened, although not eliminated, significantly when two crab cavities per ring are chosen suitably.

  1. Search for superdeformed bands in {sup 154}Dy

    Energy Technology Data Exchange (ETDEWEB)

    Nisius, D.; Janssens, R.V.F.; Khoo, T.L. [and others

    1995-08-01

    The island of superdeformation in the vicinity of the doubly magic {sup 152}Dy yrast superdeformed (SD) band is thought to be well understood in the framework of cranked mean field calculations. In particular, the calculations suggested that in {sup 154}Dy there should be no yrast or near yrast SD minimum in the 40-60 h spin range, where SD bands in this mass region are thought to be {sup 153}Dy nucleus, it is populated. However, with the presence of five SD bands in the neighboring necessary to ascertain if the addition of one single neutron diminishes the importance of shell effects to the extent that superdeformation can no longer be sustained. In an experiment utilizing the increased resolving power of the early implementation phase of Gammasphere, the reaction {sup 122}Sn({sup 36}S,4n) at 165 MeV was employed to populate high spin states in {sup 154}Dy. In a four-day run with 36 detectors, over one billion triple and higher fold coincidence events were recorded. One new SD band was identified and was assigned to {sup 154}Dy. From comparisons with the Im{sup (2)} moments of inertia of the SD bands in {sup 152}Dy and {sup 153}Dy, a configuration based on (514)9/2{sup 2} neutrons coupled to the {sup 152}Dy SD core was proposed. One unexpected and as yet unexplained feature of this new SD band is that the transition energies are almost identical to those of an excited SD band in {sup 153}Dy. It is also worth noting that the feeding of the yrast states is similar to that achieved by the deexcitation from the ensemble of all entry states in the reaction. This observation emphasizes the statistical nature of the decay-out process. A paper reporting these results was accepted for publication.

  2. Graded band-gap engineering for increased efficiency in CZTS solar cells

    Science.gov (United States)

    Ferhati, H.; Djeffal, F.

    2018-02-01

    In this paper, we propose a potential high efficiency Cu2ZnSn(S,Se)4/CdS (CZTS) solar cell design based on graded band-gap engineering that can offer the benefits of improved absorption behavior and reduced recombination effects. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to determinate the optimal band-gap profile of the amended CZTS absorber layer to achieve further efficiency enhancement. It is found that the proposed design exhibits superior performance, where a high efficiency of 16.9% is recorded for the optimized solar cell with a relative improvement of 92%, compared with the reference cell efficiency of 8.8%. Likewise, the optimized CZTS solar cell with a graded band-gap enables achieving a higher open circuit voltage of 889 mV, a short-circuit current of 28.5 mA and a fill factor of 66%. Therefore, the optimized CZTS-based solar cell with graded-band gap paradigm pinpoints a new path toward recording high-efficiency thin-film solar cells through enhancing carrier collection and reducing the recombination rate.

  3. Soil-vegetation relationships on a banded ironstone 'island', Carajás Plateau, Brazilian Eastern Amazonia.

    Science.gov (United States)

    Nunes, Jaquelina A; Schaefer, Carlos E G R; Ferreira Júnior, Walnir G; Neri, Andreza V; Correa, Guilherme R; Enright, Neal J

    2015-01-01

    Vegetation and soil properties of an iron-rich canga (laterite) island on the largest outcrop of banded-iron formation in Serra de Carajás (eastern Amazonia, Brazil) were studied along a topographic gradient (738-762 m asl), and analyzed to test the hypothesis that soil chemical and physical attributes play a key role in the structure and floristic composition of these plant communities. Soil and vegetation were sampled in eight replicate plots within each of the four vegetation types. Surface (0-10 cm) soil samples from each plot were analyzed for basic cations, N, P and plant species density for all species was recorded. CCA ordination analysis showed a strong separation between forest and non-forest sites on the first axis, and between herbaceous and shrubby campo rupestre on the second axis. The four vegetation types shared few plant species, which was attributed to their distinctive soil environments and filtering of their constituent species by chemical, physical and hydrological constraints. Thus, we can infer that Edaphic (pedological) factors are crucial in explaining the types and distributions of campo rupestre vegetation associated with ferruginous ironstone uplands (Canga) in Carajás, eastern Amazonia, therefore the soil properties are the main drivers of vegetation composition and structure on these ironstone islands.

  4. Transport in bilayer and trilayer graphene: band gap engineering and band structure tuning

    Science.gov (United States)

    Zhu, Jun

    2014-03-01

    Controlling the stacking order of atomically thin 2D materials offers a powerful tool to control their properties. Linearly dispersed bands become hyperbolic in Bernal (AB) stacked bilayer graphene (BLG). Both Bernal (ABA) and rhombohedral (ABC) stacking occur in trilayer graphene (TLG), producing distinct band structures and electronic properties. A symmetry-breaking electric field perpendicular to the sample plane can further modify the band structures of BLG and TLG. In this talk, I will describe our experimental effort in these directions using dual-gated devices. Using thin HfO2 film deposited by ALD as gate dielectric, we are able to apply large displacement fields D > 6 V/nm and observe the opening and saturation of the field-induced band gap Eg in bilayer and ABC-stacked trilayer graphene, where the conduction in the mid gap changes by more than six decades. Its field and temperature dependence highlights the crucial role played by Coulomb disorder in facilitating hopping conduction and suppressing the effect of Eg in the tens of meV regime. In contrast, mid-gap conduction decreases with increasing D much more rapidly in clean h-BN dual-gated devices. Our studies also show the evolution of the band structure in ABA-stacked TLG, in particular the splitting of the Dirac-like bands in large D field and the signatures of two-band transport at high carrier densities. Comparison to theory reveals the need for more sophisticated treatment of electronic screening beyond self-consistent Hartree calculations to accurately predict the band structures of trilayer graphene and graphenic materials in general.

  5. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  6. Commissioning of indigenous microwave test facility for development and pilot production of 2 MW S-band magnetrons

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Wanmode, Y.D.; Hannurkar, P.R.; Prasad, Sharda

    2005-01-01

    To have self reliance in the field of microwave devices and to have consistent supply of pulsed magnetrons for the Indian accelerator programme. CAT initiated development of 2 MW S-Band pulsed magnetrons in collaboration with CEERI, Pilani. The design, development and testing of the microwave test facilities for ageing. conditioning and performance testing of Indian magnetrons, was successfully done by CAT indigenously. After the rigorous testing. the test facility was shifted, installed and commissioned at CEERI, Pilani by CAT. Over a period of 10 years, nine prototypes were aged and tested, two magnetrons were life tested and five magnetrons under production programme have been successfully conditioned and tested. Testing of more numbers is underway. The system details. commissioning aspects are discussed, results are shown. (author)

  7. Band gap tuning and fluorescence properties of lead sulfide Pb0.9A0.1S (A: Fe, Co, and Ni) nanoparticles by transition metal doping

    Science.gov (United States)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-02-01

    Transition metal-doped lead sulfide nanoparticles (PbS-NPs) were synthesized by co-precipitation method. The crystallite phase and morphological studies were carried out by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical studies were performed by UV-Visible absorption, fluorescence emission spectroscopy and Fourier transforms infrared spectroscopy (FTIR). XRD analysis reveals that the pure and transition metal-doped PbS- NPs have a single crystalline phase with cubic structure devoided of any other secondary phase. The notable effect on optical absorbance and band gap was observed with transition metal doping in lead sulphide. The optical energy band gap values were found to increase with the doping of transition metal. UV-Visible absorption and fluorescence emission spectra display a blue shift with subsequent transition metal doping which may arise due to quantum confinement effect making it worth for having applications in optoelectronic devices.

  8. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    Science.gov (United States)

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  9. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar, E-mail: joslm@rediffmail.com [Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research, Pilani (India); Chakravarthy, D.P.; Dixit, Kavita [Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  10. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    International Nuclear Information System (INIS)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar; Chakravarthy, D.P.; Dixit, Kavita

    2011-01-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  11. Photonic band gap spectra in Octonacci metamaterial quasicrystals

    Science.gov (United States)

    Brandão, E. R.; Vasconcelos, M. S.; Albuquerque, E. L.; Fulco, U. L.

    2017-02-01

    In this work we study theoretically the photonic band gap spectra for a one-dimensional quasicrystal made up of SiO2 (layer A) and a metamaterial (layer B) organized following the Octonacci sequence, where its nth-stage Sn is given by the inflation rule Sn =Sn - 1Sn - 2Sn - 1 for n ≥ 3 , with initial conditions S1 = A and S2 = B . The metamaterial is characterized by a frequency dependent electric permittivity ε(ω) and magnetic permeability μ(ω) . The polariton dispersion relation is obtained analytically by employing a theoretical calculation based on a transfer-matrix approach. A quantitative analysis of the spectra is then discussed, stressing the distribution of the allowed photonic band widths for high generations of the Octonacci structure, which depict a self-similar scaling property behavior, with a power law depending on the common in-plane wavevector kx .

  12. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    Science.gov (United States)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  13. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Lohaus, Christian [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Reiser, Patrick [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); InnovationLab GmbH, Speyerer Straße 4, 69115 Heidelberg (Germany); Dimesso, Lucangelo [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Wang, Xiucai; Yang, Tongqing [Tongji University, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and Engineering, Cao’an Road 4800, Shanghai 201804 (China)

    2017-06-15

    Highlights: • Energy band alignment of antiferroelectric PLZST studied by XPS. • A deconvolution procedure is applied to study band alignment of insulating materials. • Contribution of Pb 6s orbitals leads to higher valence band maximum. • Ferroelectric polarization does not contribute to valence band maximum energy. • The variation of Schottky barrier heights indicates no Fermi level pinning in PLZST. - Abstract: The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3} is studied with photoelectron spectroscopy using interfaces with high work function RuO{sub 2} and low work function Sn-doped In{sub 2}O{sub 3} (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O{sub 3} is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO{sub 3}. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O{sub 3} should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  14. The band gap of II-Vi ternary alloys in a tight-binding description

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Daniel; Blanquero, Rafael [Instituto Politecnico Nacional, Mexico, D.F (Mexico); De Coss, Romeo [Instituto Politecnico Nacional, Yucatan (Mexico)

    2001-02-01

    We present tight-binding calculations for the band gap of II-Vi pseudobinary ternary alloys. We use an sp{sup 3} s* tight-binding Hamiltonian which include spin-orbit coupling. The band gap composition dependence is calculated using a extended version of the virtual crystal approximation, which introduce an empirical correction factor that takes into account the non-linear dependence of the band gap with the composition. The results compare quite well with the experimental data, both for the ternary alloys with wide band gap and for the narrow band gap ones. [Spanish] Presentamos el calculo de la banda de energia prohibida de aleaciones ternarias de compuestos II-VI. El calculo, que incluye interaccion espin-orbita, se hace con el metodo de enlace fuerte, utilizando una base ortogonal de cinco orbitales atomicos por atomo (sp{sup 3} s*), en conjunto con la aproximacion del cristal virtual. En la aproximacion del cristal virtual, incluimos un factor de correccion que toma en cuenta la no linealidad de la banda de energia prohibida como funcion de la concentracion. Con esta correccion nuestros resultados reproducen aceptablemente los datos experimentales hallados en la literatura.

  15. Origin of Spectral Band Patterns in the Cosmic Unidentified Infrared Emission

    Science.gov (United States)

    Álvaro Galué, Héctor; Díaz Leines, Grisell

    2017-10-01

    The cosmic unidentified infrared emission (UIE) band phenomenon is generally considered as indicative of free-flying polycyclic aromatic hydrocarbon molecules in space. However, a coherent explanation of emission spectral band patterns depending on astrophysical source is yet to be resolved under this attribution. Meanwhile astronomers have restored the alternative origin as due to amorphous carbon particles, but assigning spectral patterns to specific structural elements of particles is equally challenging. Here we report a physical principle in which inclusion of nonplanar structural defects in aromatic core molecular structures (π domains) induces spectral patterns typical of the phenomenon. We show that defects in model π domains modulate the electronic-vibration coupling that activates the delocalized π -electron contribution to aromatic vibrational modes. The modulation naturally disperses C =C stretch modes in band patterns that readily resemble the UIE bands in the elusive 6 - 9 μ m range. The electron-vibration interaction mechanics governing the defect-induced band patterns underscores the importance of π delocalization in the emergence of UIE bands. We discuss the global UIE band regularity of this range as compatible with an emission from the delocalized s p2 phase, as π domains, confined in disordered carbon mixed-phase aggregates.

  16. Dual-band infrared camera

    Science.gov (United States)

    Vogel, H.; Schlemmer, H.

    2005-10-01

    Every year, numerous accidents happen on European roads due to bad visibility (fog, night, heavy rain). Similarly, the dramatic aviation accidents of year 2001 in Milan and Zurich have reminded us that aviation safety is equally affected by reduced visibility. A dual-band thermal imager was developed in order to raise human situation awareness under conditions of reduced visibility especially in the automotive and aeronautical context but also for all transportation or surveillance tasks. The chosen wavelength bands are the Short Wave Infrared SWIR and the Long Wave Infrared LWIR band which are less obscured by reduced visibility conditions than the visible band. Furthermore, our field tests clearly show that the two different spectral bands very often contain complementary information. Pyramidal fusion is used to integrate complementary and redundant features of the multi-spectral images into a fused image which can be displayed on a monitor to provide more and better information for the driver or pilot.

  17. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  18. Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes

    Science.gov (United States)

    Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo

    2017-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.

  19. NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    Science.gov (United States)

    McCarthy, Kevin P.; Stocklin, Frank J.; Geldzahler, Barry J.; Friedman, Daniel E.; Celeste, Peter B.

    2010-01-01

    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs

  20. Cost-effectiveness of gastric band surgery for overweight but not obese adults with type 2 diabetes in the U.S.

    Science.gov (United States)

    Wentworth, John M; Dalziel, Kim M; O'Brien, Paul E; Burton, Paul; Shaba, Frackson; Clarke, Philip M; Laiteerapong, Neda; Brown, Wendy A

    2017-07-01

    To determine the cost-effectiveness of gastric band surgery in overweight but not obese people who receive standard diabetes care. A microsimulation model (United Kingdom Prospective Diabetes Study outcomes model) was used to project diabetes outcomes and costs from a two-year Australian randomized trial of gastric band (GB) surgery in overweight but not obese people (BMI 25 to 30kg/m 2 ) on to a comparable population of U.S. adults from the National Health and Nutrition Examination Survey (N=254). Estimates of cost-effectiveness were calculated based on the incremental cost-effectiveness ratios (ICERs) for different treatment scenarios. Costs were inflated to 2015 U.S. dollar values and an ICER of less than $50,000 per QALY gained was considered cost-effective. The incremental cost-effectiveness ratio for GB surgery at two years exceeded $90,000 per quality-adjusted life year gained but decreased to $52,000, $29,000 and $22,000 when the health benefits of surgery were assumed to endure for 5, 10 and 15 years respectively. The cost-effectiveness of GB surgery was sensitive to utility gained from weight loss and, to a lesser degree, the costs of GB surgery. However, the cost-effectiveness of GB surgery was affected minimally by improvements in HbA1c, systolic blood pressure and cholesterol. GB surgery for overweight but not obese people with T2D appears to be cost-effective in the U.S. setting if weight loss endures for more than five years. Health utility gained from weight loss is a critical input to cost-effectiveness estimates and therefore should be routinely measured in populations undergoing bariatric surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Microstructure evolution associated with adiabatic shear bands and shear band failure in ballistic plug formation in Ti-6Al-4V targets

    International Nuclear Information System (INIS)

    Murr, L.E.; Ramirez, A.C.; Gaytan, S.M.; Lopez, M.I.; Martinez, E.Y.; Hernandez, D.H.; Martinez, E.

    2009-01-01

    The microstructures and microstructure evolution associated with adiabatic shear band (ASB) formation in ballistic plugging in thick (2.5 cm) Ti-6Al-4V targets impacted by cylindrical, 4340 steel projectiles (2.0 cm in height) at impact velocities ranging from 633 m/s to 1027 m/s (just above the ballistic limit) were investigated by optical and transmission electron microscopy. ASB width increased from 10 μm to 21 μm as the velocity increased. ASB evolution was accompanied by the evolution of dark deformation bands composed of α' martensite platelets which increased in density with increasing impact velocity. The corresponding Vickers microindentation hardness also increased from HV 619 to HV 632 in contrast to the surrounding matrix microindentation hardness of HV 555. These deformation bands were not necessarily precursors to ASB formation. The ASB average Vickers microindentation hardness was essentially constant at HV 645, a 16% increase over the matrix. This constant microindentation hardness was characterized by a consistent DRX grain structure which varied from equiaxed, defect-free grains (∼2 μm diameter) to heavily dislocated, equiaxed grains. Cracks nucleating and propagating within the ABSs were observed to increase from 8% to 87% of the ASB length with increasing impact velocity.

  2. Ka-Band, Multi-Gigabit-Per-Second Transceiver

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.; Smith, Francis J.; Harris, Johnny M.; Landon, David G.; Haddadin, Osama S.; McIntire, William K.; Sun, June Y.

    2011-01-01

    A document discusses a multi-Gigabit-per-second, Ka-band transceiver with a software-defined modem (SDM) capable of digitally encoding/decoding data and compensating for linear and nonlinear distortions in the end-to-end system, including the traveling-wave tube amplifier (TWTA). This innovation can increase data rates of space-to-ground communication links, and has potential application to NASA s future spacebased Earth observation system. The SDM incorporates an extended version of the industry-standard DVB-S2, and LDPC rate 9/10 FEC codec. The SDM supports a suite of waveforms, including QPSK, 8-PSK, 16-APSK, 32- APSK, 64-APSK, and 128-QAM. The Ka-band and TWTA deliver an output power on the order of 200 W with efficiency greater than 60%, and a passband of at least 3 GHz. The modem and the TWTA together enable a data rate of 20 Gbps with a low bit error rate (BER). The payload data rates for spacecraft in NASA s integrated space communications network can be increased by an order of magnitude (>10 ) over current state-of-practice. This innovation enhances the data rate by using bandwidth-efficient modulation techniques, which transmit a higher number of bits per Hertz of bandwidth than the currently used quadrature phase shift keying (QPSK) waveforms.

  3. A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band.

    Science.gov (United States)

    Tang, Chanjuan; Yu, Jianjun; Li, Xinying; Chi, Nan; Xiao, Jiangnan; Tian, Yumin; Zhang, Junwen

    2014-01-13

    We propose and experimentally demonstrate a full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band (75-100 GHz) with the speed up to 15 Gb/s for both 95.4 GHz link and 88.6 GHz link for the first time. The generation of millimeter-wave (mm-wave) wireless signal is based on the photonic technique by heterodyne mixing of an optical quadrature-phase-shift-keying (QPSK) signal with a free-running light at different wavelength. After 20 km fiber transmission, up to 30 Gb/s mm-wave signal is delivered over 2 m wireless link, and then converted to the optical signal for another 20 km fiber transmission. At the wireless receiver, coherent detection and advanced digital signal processing (DSP) are introduced to improve receiver sensitivity and system performance. With the OSNR of 15 dB, the bit error ratios (BERs) for 10 Gb/s signal transmission at 95.4 GHz and 88.6 GHz are below the forward-error-correction (FEC) threshold of 3.8 × 10(-3) whether post filter is used or not, while the BER for 15 Gb/s QPSK signal employing post filter in the link of 95.4 GHz is 2.9 × 10(-3).

  4. Hazard banding in compliance with the new Globally Harmonised System (GHS) for use in control banding tools.

    Science.gov (United States)

    Arnone, Mario; Koppisch, Dorothea; Smola, Thomas; Gabriel, Stefan; Verbist, Koen; Visser, Remco

    2015-10-01

    Many control banding tools use hazard banding in risk assessments for the occupational handling of hazardous substances. The outcome of these assessments can be combined with advice for the required risk management measures (RMMs). The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has resulted in a change in the hazard communication elements, i.e. Hazard (H) statements instead of Risk-phrases. Hazard banding schemes that depend on the old form of safety information have to be adapted to the new rules. The purpose of this publication is to outline the rationales for the assignment of hazard bands to H statements under the GHS. Based on this, this publication proposes a hazard banding scheme that uses the information from the safety data sheets as the basis for assignment. The assignment of hazard bands tiered according to the severity of the underlying hazards supports the important principle of substitution. Additionally, the set of assignment rules permits an exposure-route-specific assignment of hazard bands, which is necessary for the proposed route-specific RMMs. Ideally, all control banding tools should apply the same assignment rules. This GHS-compliant hazard banding scheme can hopefully help to establish a unified hazard banding strategy in the various control banding tools. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A Shear Banding Model for Penetration Calculations

    Science.gov (United States)

    2000-04-01

    mechanism of strength reduction to zero within a shear band in three different steels, includ- ing AISI 4340 with RHC 44, which is reasonably similar to RHA...TECH LIB CHINA LAKE CA 93555-6001 CDR NAVAL SUR WAR CTR C S COFFEY PPARK FZERILLI CODE 4140 R K GARRET JR JMCKIRGAN TECH LIB 101 STRAUSS AVE

  6. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  7. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  8. Multi-band Modelling of Appearance

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Larsen, Rasmus

    2003-01-01

    the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...

  9. Multi-band Modelling of Appearance

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Larsen, Rasmus

    2002-01-01

    the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...

  10. Portable, x-band, linear accelerator systems

    International Nuclear Information System (INIS)

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for nondestructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  11. Portable, x-band, linear accelerator systems

    International Nuclear Information System (INIS)

    Schonberg, R.G.; Deruyter, H.; Fowkes, W.R.; Johnson, W.A.; Miller, R.H.; Potter, J.M.; Weaver, J.N.

    1985-01-01

    Three light-weight, x-band, electron accelerators have been developed to provide a series of highly portable sources of x-rays and neutrons for non-destructive testing. The 1.5 MeV x-ray unit has a 200 kW magnetron for an RF source and an air-cooled, traveling wave accelerating structure to minimize its weight. The 4 and 6 MeV units share the same drive system which contains a 1.2 MW magnetron. The 4 MeV unit uses a traveling-wave guide to produce x-rays and the 6MeV unit uses a standing-wave guide to produce x-rays or neutrons. The choice of 9.3 GHz was dictated by the availability of a high power coaxial magnetron and by the obvious dimensional and weight advantages of a higher frequency over the more common S-band frequencies around 3 GHz

  12. Systematic study of β-band and correlation with g- band using power law and soft rotor formula

    International Nuclear Information System (INIS)

    Katoch, Vikas; Kaushik, Reetu; Sharma, S.; Gupta, J.B.

    2014-01-01

    The nuclear structure of even Z even N medium mass transitional nuclei consist of ground state band, K π =0 1 β-band, K π =2 1 γ- band and other higher bands. As we move away from closed shell, energy levels are low lying from spherical to deformed nuclei and energy deviated from ideal rotor behavior. The energy of these transitional nuclei in ground band can also be studied using Bohr Mottelson energy expression, Soft Rotor Formula (SRF), Power Law (PL) etc. Recently, Gupta et al. (2013) modified SRF for non zero band head K π =2 1 γ-band and reproduced the level energies. Here same formula applied for K π =0 1 β-band and the level energies are reproduced and compared with experimental energies. The power law is also used for recalculation of level energies and for useful comparison

  13. Table of members of quasi-bands

    International Nuclear Information System (INIS)

    Sakai, Mitsuo.

    1984-04-01

    The probable members of the quasi-bands in even-even nuclei for Z between 6 and 100 are listed in this table. The terms quasi-bands have been introduced in the so-called spherical regions as the counter parts of the collective bands in the deformed regions. In the present compilation, the data for deformed nuclei are classified for convenience under the same titles, Quasi-Ground Band, Quasi-Beta Band and Quasi-Gamma Band, as are used for other nuclear regions. The present edition covers the literature through September, 1983. Fifteen newly discovered nuclides are included. The classification of energy level into quasi-bands is made on the basis of the systematic trend in the data over large groups of nuclei. (Kato, T.)

  14. 25 Gbit/s QPSK Hybrid Fiber-Wireless Transmission in the W-Band (75–110 GHz) With Remote Antenna Unit for In-Building Wireless Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Caballero Jambrina, Antonio; Dogadaev, Anton Konstantinovich

    2012-01-01

    In this paper, we demonstrate a photonic up-converted 25 Gbit/s fiber-wireless quadrature phase shift-keying (QPSK) data transmission link at the W-band (75–110 GHz). By launching two free-running lasers spaced at 87.5 GHz into a standard single-mode fiber (SSMF) at the central office, a W...

  15. ELECTRONIC-STRUCTURE OF THE MISFIT-LAYER COMPOUND (SNS)(1.17)NBS2 DEDUCED FROM BAND-STRUCTURE CALCULATIONS AND PHOTOELECTRON-SPECTRA

    NARCIS (Netherlands)

    FANG, CM; ETTEMA, ARHF; HAAS, C; WIEGERS, GA; VANLEUKEN, H; DEGROOT, RA

    1995-01-01

    In order to understand the electronic structure of the misfit-layer compound (SnS)(1.17)NbS2 we carried out an ab initio band-structure calculation of the closely related commensurate compound (SnS)(1.20)NbS2. The band structure is compared with calculations for NbS2 and for hypothetical SnS with

  16. Band parameters of phosphorene

    International Nuclear Information System (INIS)

    Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)

  17. Amniotic constriction bands

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Amniotic band sequence URL of this page: //medlineplus.gov/ency/ ... birth. The baby should be delivered in a medical center that has specialists experienced in caring for babies ... or partial loss of function of a body part. Congenital bands affecting large parts of the body cause the ...

  18. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  19. Kinematics of deformation bands in an austenitic FeMnC TWIP steel

    International Nuclear Information System (INIS)

    Chateau, J P; Jacques, A; Lebedkina, T A; Lebyodkin, M A; Allain, S

    2010-01-01

    Tensile tests on a Fe22Mn0.6C steel at room temperature and different strain rates show serrations on the curves similar to Portevin-Le Chatelier (PLC) serrations of type A, associated with negative strain rate sensitivity. Propagation of deformation bands have been observed by high-rate extensometry over more than two orders of magnitude of the applied strain rate. This constitutes a remarkable difference with the PLC effect which shows a transition to static bands (type B or C) when the applied strain rate decreases. In this steel, bands moving as slow as a few tenth of mm/s are observed instead of static bands, which is two orders of magnitude lower than what is reported for type A PLC bands. This emphasises a strong correlation between plastic events, also confirmed by multifractal analysis of the tensile curves. Twinning which is responsible of the high strain hardening rate of this steel at room temperature is discussed as one of mechanisms of correlation between instabilities.

  20. Timescale stretch parameterization of Type Ia supernova B-band light curves

    International Nuclear Information System (INIS)

    Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R.A.; Lidman, C.; McMahon, R.; Nugent, P.E.; Pain, R.; Panagia, N.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.A.; York, T.

    2001-01-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w identically equal to s times (1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ''composite curve.'' The same procedure is applied to 18 low-redshift Calan/Tololo SNe with Z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z, and applies equally well to the declining and rising parts of the light curve. In fact, the B band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi 2/DoF ∼ 1, thus as well as any parameterization can, given the current data sets. The measurement of the data of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1 + z light-cure time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects

  1. TDRSS S-shuttle unique receiver equipment

    Science.gov (United States)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  2. Development of C-band Accelerating Section for SuperKEKB

    CERN Document Server

    Kamitani, T; Ikeda, M; Kakihara, K; Ohsawa, S; Oogoe, T; Sugimura, T; Takatomi, T; Yamaguchi, S; Yokoyama, K

    2004-01-01

    For the luminosity upgrade of the present KEK B-factory to SuperKEKB, the injector linac has to increase the positron acceleration energy from 3.5 to 8.0 GeV. In order to double the acceleration field gradient from 21 to 42 MV/m, design studies on C-band accelerator module has started in 2002. First prototype 1-m long accelerating section has been fabricated based upon a design which is half scale of the present S-band section. High power test of the C-band section has been performed at a test stand and later at an accelerator module in the KEKB injector linac. In a beam acceleration test, a field gradient of 41 MV/m is achieved with 43 MW RF power from a klystron. This paper report on the recent status of the high-power test and also the development of a second prototype section.

  3. Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunnelling effects in subthreshold regime

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Mondal, Partha; Akram, M. W.; Bal, Punyasloka; Salimath, Akshay Kumar

    2014-01-01

    We propose a hetero-gate-dielectric double gate junctionless transistor (HGJLT), taking high-k gate insulator at source side and low-k gate insulator at drain side, which reduces the effects of band-to-band tunnelling (BTBT) in the sub-threshold region. A junctionless transistor (JLT) is turned off by the depletion of carriers in the highly doped thin channel (device layer) which results in a significant band overlap between the valence band of the channel region and the conduction band of the drain region, due to off-state drain bias, that triggers electrons to tunnel from the valence band of the channel region to the conduction band of the drain region leaving behind holes in the channel. These effects of band-to-band tunnelling increase the sub-threshold leakage current, and the accumulation of holes in the channel forms a parasitic bipolar junction transistor (n–p–n BJT for channel JLT) in the lateral direction by the source (emitter), channel (base) and drain (collector) regions in JLT structure in off-state. The proposed HGJLT reduces the subthreshold leakage current and suppresses the parasitic BJT action in off-state by reducing the band-to-band tunnelling probability. (semiconductor devices)

  4. 47 CFR 90.531 - Band plan.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Band plan. 90.531 Section 90.531...-805 MHz Bands § 90.531 Band plan. This section sets forth the band plan for the 763-775 MHz and 793... and portables subject to Commission-approved regional planning committee regional plans. Transmitter...

  5. Seasonally reversing current bands across 15 degrees N in the Arabian Sea and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Shenoi, S.S.C.; Gopalakrishna, V.V.; Murty, C.S.; Rao, D.P.; Murty, V.S.N.; Sastry, J.S.

    Geostrophic currents computed from hydrographic data collected in different months from a section along 15 degrees N in the Arabian Sea show alternate N-S current bands. Flow directions of these bands are found to reverse with the change in season...

  6. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  7. Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory

    OpenAIRE

    Whittles, TJ; Burton, LA; Skelton, JM; Walsh, A; Veal, TD; Dhanak, VR

    2016-01-01

    Tin sulfide solar cells show relatively poor efficiencies despite attractive photovoltaic properties, and there is difficulty in identifying separate phases, which are also known to form during Cu2ZnSnS4 depositions. We present X-ray photoemission spectroscopy (XPS) and inverse photoemission spectroscopy measurements of single crystal SnS, SnS2, and Sn2S3, with electronic-structure calculations from density functional theory (DFT). Differences in the XPS spectra of the three phases, including...

  8. Two-band superconductor magnesium diboride

    International Nuclear Information System (INIS)

    Xi, X X

    2008-01-01

    This review focuses on the most important features of the 40 K superconductor MgB 2 -the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB 2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB 2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB 2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB 2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher T c superconductors

  9. SPATIALLY RESOLVED M-BAND EMISSION FROM IO’S LOKI PATERA–FIZEAU IMAGING AT THE 22.8 m LBT

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Albert; Veillet, Christian [LBT Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Kleer, Katherine de; Pater, Imke de [University of California at Berkeley, Berkeley, CA 94720 (United States); Leisenring, Jarron; Defrère, Denis; Hinz, Philip; Skemer, Andy [University of Arizona, 1428 E. University Blvd., Tucson, AZ 85721 (United States); Camera, Andrea La; Bertero, Mario; Boccacci, Patrizia [DIBRIS, University of Genoa, Via Dodecaneso 35, I-16146 Genova (Italy); Arcidiacono, Carmelo [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany); Kürster, Martin [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Rathbun, Julie [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States); Skrutskie, Michael [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Spencer, John [Southwest Research Institute, 1050 Walnut Ste. Suite 300, Boulder, CO 80302 (United States); Woodward, Charles E., E-mail: aconrad@lbto.org [Minnesota Institute for Astrophysics, 116 Church St., Minneapolis, MN 55455 (United States)

    2015-05-15

    The Large Binocular Telescope Interferometer mid-infrared camera, LMIRcam, imaged Io on the night of 2013 December 24 UT and detected strong M-band (4.8 μm) thermal emission arising from Loki Patera. The 22.8 m baseline of the Large Binocular Telescope provides an angular resolution of ∼32 mas (∼100 km at Io) resolving the Loki Patera emission into two distinct maxima originating from different regions within Loki’s horseshoe lava lake. This observation is consistent with the presence of a high-temperature source observed in previous studies combined with an independent peak arising from cooling crust from recent resurfacing. The deconvolved images also reveal 15 other emission sites on the visible hemisphere of Io including two previously unidentified hot spots.

  10. Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Juliano S. Cabral

    2006-01-01

    Full Text Available We investigated four orchids of the genus Maxillaria (M. discolor, M. acicularis, M. notylioglossa and M. desvauxiana in regard to the position of heterochromatin blocks as revealed using chromomycin A3 (CMA and 4'-6-diamidino-2-phenylindole (DAPI fluorochrome staining and 5S and 45S rDNA sites using fluorescence in situ hybridization (FISH. The species showed differences in chromosome number and a diversified pattern of CMA+ and DAPI+ bands, including heteromorphism for CMA+ bands. The 5S and 45S rDNA sites also varied in number and most of them were co-localized with CMA+ bands. The relationship between 5S rDNA sites and CMA+ bands was more evident in M. notylioglossa, in which the brighter CMA+ bands were associated with large 5S rDNA sites. However, not all 5S and 45S rDNA sites were co-localized with CMA+ bands, probably due to technical constraints. We compare these results to banding data from other species and suggest that not all blocks of tandemly repetitive sequences, such as 5S rDNA sites, can be observed as heterochromatin blocks.

  11. Comparison of band-to-band tunneling models in Si and Si—Ge junctions

    International Nuclear Information System (INIS)

    Jiao Yipeng; Wang Taihuan; Wei Kangliang; Du Gang; Liu Xiaoyan

    2013-01-01

    We compared several different band-to-band tunneling (BTBT) models with both Sentaurus and the two-dimensional full-band Monte Carlo simulator in Si homo-junctions and Si—Ge hetero-junctions. It was shown that in Si homo-junctions, different models could achieve similar results. However, in the Si—Ge hetero-junctions, there were significant differences among these models at high reverse biases (over 2 V). Compared to the nonlocal model, the local models in Sentaurus underrated the BTBT rate distinctly, and the Monte Carlo method was shown to give a better approximation. Additionally, it was found that in the Si region near the interface of the Si—Ge hetero-junctions, the direct tunneling rates increased largely due to the interaction of the band structures of Si and Ge. (semiconductor physics)

  12. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    Science.gov (United States)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  13. Deep-Space Ka-Band Flight Experience

    Science.gov (United States)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  14. Elastic band prediction equations for combined free-weight and elastic band bench presses and squats.

    Science.gov (United States)

    Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C

    2010-01-01

    Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.

  15. Increased theta band EEG power in sickle cell disease patients

    Directory of Open Access Journals (Sweden)

    Case M

    2017-12-01

    Full Text Available Michelle Case,1 Sina Shirinpour,1 Huishi Zhang,1 Yvonne H Datta,2 Stephen C Nelson,3 Karim T Sadak,4 Kalpna Gupta,2 Bin He1,5 1Department of Biomedical Engineering, 2Department of Medicine, University of Minnesota, 3Pediatric Hematology-Oncology, Children’s Hospitals and Clinics of Minnesota, 4Pediatric Hematology-Oncology, University of Minnesota Masonic Children’s Hospital, 5Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA Objective: Pain is a major issue in the care of patients with sickle cell disease (SCD. The mechanisms behind pain and the best way to treat it are not well understood. We studied how electroencephalography (EEG is altered in SCD patients. Methods: We recruited 20 SCD patients and compared their resting state EEG to that of 14 healthy controls. EEG power was found across frequency bands using Welch’s method. Electrophysiological source imaging was assessed for each frequency band using the eLORETA algorithm. Results: SCD patients had increased theta power and decreased beta2 power compared to controls. Source localization revealed that areas of greater theta band activity were in areas related to pain processing. Imaging parameters were significantly correlated to emergency department visits, which indicate disease severity and chronic pain intensity. Conclusion: The present results support the pain mechanism referred to as thalamocortical dysrhythmia. This mechanism causes increased theta power in patients. Significance: Our findings show that EEG can be used to quantitatively evaluate differences between controls and SCD patients. Our results show the potential of EEG to differentiate between different levels of pain in an unbiased setting, where specific frequency bands could be used as biomarkers for chronic pain. Keywords: sickle cell disease, electroencephalography, chronic pain, electrophysiological source imaging, thalamocortical dysrhythmia

  16. Small Bowel Obstruction due to Anomalous Congenital Bands in Children

    Directory of Open Access Journals (Sweden)

    Basak Erginel

    2016-01-01

    Full Text Available Introduction. The aim of the study was to evaluate our children who are operated on for anomalous congenital band while increasing the awareness of this rare reason of intestinal obstruction in children which causes a diagnostic challenge. Patients and Methods. We retrospectively reviewed the records of fourteen children treated surgically for intestinal obstructions caused by anomalous congenital bands. Results. The bands were located between the following regions: the ascending colon and the mesentery of the terminal ileum in 4 patients, the jejunum and mesentery of the terminal ileum in 3 patients, the ileum and mesentery of the terminal ileum in 2 patients, the ligament of Treitz and mesentery of the jejunum in one patient, the ligament of Treitz and mesentery of the terminal ileum in one patient, duodenum and duodenum in one patient, the ileum and mesentery of the ileum in one patient, the jejunum and mesentery of the jejunum in one patient, and Meckel’s diverticulum and its ileal mesentery in one patient. Band excision was adequate in all of the patients except the two who received resection anastomosis for intestinal necrosis. Conclusion. Although congenital anomalous bands are rare, they should be considered in the differential diagnosis of patients with an intestinal obstruction.

  17. Comparison of the Giemsa C-banded and N-banded karyotypes of two Elymus species, E. dentatus and E. glaucescens (Poaceae; Triticeae)

    DEFF Research Database (Denmark)

    Linde-Laursen, I.; Seberg, O.; Salomon, B.

    1994-01-01

    The karyotypes of Elymus dentatus from Kashmir and E. glaucescens from Tierra del Fuego, both carrying genomes S and H, were investigated by C- and N-banding. Both taxa had 2n = 4x = 28. The karyotype of E. dentatus was symmetrical with large chromosomes. It had 18 metacentric, four submetacentric...

  18. A C-band broadband ortho-mode transducer for radioastronomy polarimetry.

    Science.gov (United States)

    Ferreira, Ivan S; Tello, Camilo; Bergano, Miguel; Villela, Thyrso; Barbosa, Domingos; Smoot, George F

    2016-01-01

    We describe the design, the construction and performance of a narrow band ortho-mode transducer, currently used in the 5 GHz polarimetric receiver of the Galactic Emission Mapping project. The ortho-mode transducer was designed to achieve a high degree of transmission within the 400 MHz of the GEM band around the 5 GHz (4.8-5.2 GHz). It is composed of a circular-to-square waveguide transition, a septum polarizer, a thin waveguide coupler and a smooth square-to-rectangular waveguide transition with custom waveguide bends to the output ports. Our simulations and measurements show a very low level of cross-polarization of about -60 dB and a good impedance match for all three ports (S11; S22; S33 < -30 dB) with only 0:25 dB of insertion loss offset across the 400 MHz (4.8-5.2 GHz) of the reception bandwidth.

  19. A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna

    Directory of Open Access Journals (Sweden)

    Biao Li

    2016-01-01

    Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.

  20. Solid State KA-Band, Solid State W-Band and TWT Amplifiers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I of the proposal describes plans to develop a state of the art transmitter for the W-Band and KA -Band Cloud Radar system. Our focus will be concentrated in...

  1. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  2. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    International Nuclear Information System (INIS)

    Gomez, Jorge A.; Kinoshita, Angela; Leonor, Sergio J.; Belmonte, Gustavo C.; Baffa, Oswaldo

    2011-01-01

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  3. Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jorge A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Kinoshita, Angela [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Leonor, Sergio J. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Belmonte, Gustavo C. [Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Baffa, Oswaldo, E-mail: baffa@usp.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2011-09-15

    In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.

  4. C-band RF-system development for e{sup +}e{sup -} linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, T.; Akasaka, N.; Matsumoto, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Oh, J.S.; Yoshida, M.; Watanabe, K.; Ohkubo, Y.; Yonezawa, H.; Baba, H.

    1998-11-01

    Hardware R and D on the C-band (5712 MHz) RF-system for an electron/positron linear collider started in 1996 at KEK. During two years R and D, we have developed a 50-MW C-band klystron (TOSHIBA E3746), a 'Smart Modulator', a traveling-wave resonator (TWR) and a cold model of the rf-pulse compressor. A C-band accelerating structure, which uses the choke-mode cavity, is under development. Its HOM damping performance will be tested using short-bunch beams of ASSET beam-line at SLAC in this year. The C-band system is able to accelerate a high-current beam at an accelerating gradient higher than that in a conventional S-band system, therefore, there will be various applications in the future beside the linear collider. For example, we can build an injector for a SR-ring and for various physics experiments within a short site-length. Additionally, since the C-band components are compact, it has a big potentiality to be widely used in various medical and industrial applications, such as an electron-beam radiotherapy machine, or a compact non-destructive X-ray imaging system. (author)

  5. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  6. Thematic mapper studies band correlation analysis

    Science.gov (United States)

    Ungar, S. G.; Kiang, R.

    1976-01-01

    Spectral data representative of thematic mapper candidate bands 1 and 3 to 7 were obtained by selecting appropriate combinations of bands from the JSC 24 channel multispectral scanner. Of all the bands assigned, only candidate bands 4 (.74 mu to .80 mu) and 5 (.80 mu to .91 mu) showed consistently high intercorrelation from region to region and time to time. This extremely high correlation persisted when looking at the composite data set in a multitemporal, multilocation domain. The GISS investigations lend positive confirmation to the hypothesis, that TM bands 4 and 5 are redundant.

  7. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Science.gov (United States)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the "CVBs interaction" that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  8. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    International Nuclear Information System (INIS)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-01-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices

  9. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland)

    2015-06-21

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  10. Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O/sub 6.5/

    International Nuclear Information System (INIS)

    Hsu, W.Y.; Kasowski, R.V.; Miller, T.; Chiang, T.

    1988-01-01

    The band structure of Bi 2 Ru 2 O 7 and Pb 2 Ru 2 O/sub 6.5/ has been computed self-consistently from first principles for the first time by the pseudofunction method. We discover that the 6s bands of Bi and Pb are very deep and unlikely to contribute to the metallic behavior as previously believed. The unoccupied 6p bands, however, are only several eV above the Fermi energy and are mixed with the Ru 4d band at the Fermi surface via the framework O atoms, leading to band conduction and delocalized magnetic moments. The predicted location of the 6s bands and the location and width of the O 2p band are confirmed by synchrotron radiation and ultraviolet electron spectroscopy of single crystals

  11. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles

    International Nuclear Information System (INIS)

    Aguilera, I.; Palacios, P.; Wahnon, P.

    2008-01-01

    The optical properties of a novel potential high-efficiency photovoltaic material have been studied. This material is based on a chalcopyrite-type semiconductor (CuGaS 2 ) with some Ga atom substituted by Ti and is characterized by the formation of an isolated transition-metal band between the valence band and the conduction band. We present a study in which ab-initio density functional theory calculations within the generalized gradient approximation are carried out to determine the optical reflectivity and absorption coefficient of the materials of interest. Calculations for the host semiconductor are in good agreement with experimental results within the limitations of the approach. We find, as desired, that because of the intermediate band, the new Ti-substituted material would be able to absorb photons of energy lower than the band-gap of the host chalcopyrite. We also analyze the partial contributions to the main peaks of its spectrum

  12. Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam

    2017-01-01

    A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.

  13. Superdeformed bands in 64147Gd83, a possible test of the existence of octupole correlations in superdeformed bands

    International Nuclear Information System (INIS)

    Zuber, K.; Balouka, D.; Beck, F.A.; Byrski, T.; Curien, D.; Duchene, G.; Gehringer, C.; Haas, B.; Merdinger, J.C.; Romain, P.; Santos, D.; Styczen, J.; Vivien, J.P.; Dudek, J.; Szymanski, Z.; Werner, T.

    1990-01-01

    Two discrete superdeformed bands (SD) have been identified in the nucleus 147 Gd. The transitions energies of the SD yrast band lie halfway between the γ-ray energies of the yrast SD band in 146 Gd while the transition energies of the excited band lie half way between the transition energies of the yrast SD band in 148 Gd. These two bands are shown to exhibit the presence of the pseudo SU(3) symmetry and also indicate the possible existence of octupole correlations at large elongations and high spins. (orig.)

  14. Full C-band Tunable MEMS-VCSEL for Next Generation G.metro Mobile Front- and Backhauling

    DEFF Research Database (Denmark)

    Wagner, Christoph; Zou, Shihuan Jim; Ortsiefer, Markus

    2017-01-01

    We report full C-band tunable, 10 Gbit/s capability, directly modulated MEMS-VCSEL for next generation converged mobile fronthaul and backhaul applications. Bit error rates below 10(-9) were achieved over up to 40 km SSMF.......We report full C-band tunable, 10 Gbit/s capability, directly modulated MEMS-VCSEL for next generation converged mobile fronthaul and backhaul applications. Bit error rates below 10(-9) were achieved over up to 40 km SSMF....

  15. Band engineering in twisted molybdenum disulfide bilayers

    Science.gov (United States)

    Zhao, Yipeng; Liao, Chengwei; Ouyang, Gang

    2018-05-01

    In order to explore the theoretical relationship between interlayer spacing, interaction and band offset at the atomic level in vertically stacked two-dimensional (2D) van der Waals (vdW) structures, we propose an analytical model to address the evolution of interlayer vdW coupling with random stacking configurations in MoS2 bilayers based on the atomic-bond-relaxation correlation mechanism. We found that interlayer spacing changes substantially with respect to the orientations, and the bandgap increases from 1.53 eV (AB stacking) to 1.68 eV (AA stacking). Our results reveal that the evolution of interlayer vdW coupling originates from the interlayer interaction, leading to interlayer separations and electronic properties changing with stacking configurations. Our predictions constitute a demonstration of twist engineering the band shift in the emergent class of 2D crystals, transition-metal dichalcogenides.

  16. Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor

    Science.gov (United States)

    Örd, Teet; Rägo, Küllike; Vargunin, Artjom; Litak, Grzegorz

    2018-01-01

    We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.

  17. Band Gap Grading of Stacked Cu(In,Ga)S{sub 2} Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seonghyun; Sohn, So Hyeong; Shim, Hyeong Seop; Park, Seung Min; Song, Jae Kyu [Kyung Hee University, Seoul (Korea, Republic of); Min, Byoung Koun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2016-01-15

    The band gap energy of CIGS, which depends on the composition variation and strain effect, can influence the collection and recombination of photocarriers. The solar cell efficiency is improved by the graded band gap in the absorber layer due to the enhanced carrier collection and the reduced carrier recombination. In our previous study, the photovoltaic performance of solar cells was affected by the stacking combination of layers, where the solar cell with dense-bottom and porous-top layers showed better performance than that with a reversely stacked structure. We studied the stacking effect of CIGS thin films. The stacking did not change E {sub g} of each layer, which led to the double grading of E {sub g} along the depth of the stacked films, mainly due to the difference in E {sub g} between the dense and porous layers. The higher degree of the grading in A+B+A improved J {sub sc}. However, the higher density of the defect states in A+B+A reduced V {sub oc}, which was inferred by the short lifetime of the carriers and the broad bandwidth of photoluminescence. Overall, the efficiency of A+B+A was only slightly improved compared to that of B+A.

  18. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  19. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  20. Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters

    International Nuclear Information System (INIS)

    Kim, Won Mok; Kim, Jin Soo; Jeong, Jeung-hyun; Park, Jong-Keuk; Baik, Young-Jun; Seong, Tae-Yeon

    2013-01-01

    Polycrystalline ZnO thin films both undoped and doped with various types of impurities, which covered the wide carrier concentration range of 10 16 –10 21 cm −3 , were prepared by magnetron sputtering, and their optical-band gaps were investigated. The experimentally measured optical band-gap shifts were analyzed by taking into account the carrier density dependent effective mass determined by the first-order nonparabolicity approximation. It was shown that the measured shifts in optical band-gaps in ZnO films doped with cationic dopants, which mainly perturb the conduction band, could be well represented by theoretical estimation in which the band-gap widening due to the band-filling effect and the band-gap renormalization due to the many-body effect derived for a weakly interacting electron-gas model were combined and the carrier density dependent effective mass was incorporated. - Highlights: ► Optical band-gaps of polycrystalline ZnO thin films were analyzed. ► Experimental carrier concentration range covered from 10 16 to 10 21 cm −3 . ► Nonparabolic conduction band parameters were used in theoretical analysis. ► The band-filling and the band-gap renormalization effects were considered. ► The measured optical band-gap shifts corresponded well with the calculated ones

  1. Wavelength conversion from C- to L-band at 10 Gbit/s including transmission over 80 km of SSMF

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Buxens Azcoaga, Alvaro Juan; Clausen, Anders

    2000-01-01

    As the need for capacity increases, means to accommodate the growth is getting increasingly important. Hence, higher bit rates and an ever increasing number of WDM channels is being employed. This has led to the introduction of the L-band (ranging from 1570 to 1610 nm) as the new transmission...... window, opening up for-in conjunction with the C-band-an astonishing 80 nm of available bandwidth. However, as the number of wavelength channels increases, the need for wavelength conversion is becoming ever more pronounced. To perform the wavelength conversion, interferometric structures...... such as the monolithically integrated Mach-Zehnder interferometers (SOA-MZI) using semiconductor optical amplifiers as phase-shifting elements have proven excellent candidates. Here we present the conversion and transmission properties of a fully packaged device capable of wavelength conversion from C- to L-band having more...

  2. Modelling band-to-band tunneling current in InP-based heterostructure photonic devices

    NARCIS (Netherlands)

    van Engelen, J.P.; Shen, L.; van der Tol, J.J.G.M.; Smit, M.K.; Kockaert, P.; Emplit, P.; Gorza, S.-P.; Massar, S.

    2015-01-01

    Some semiconductor photonic devices show large discontinuities in the band structure. Short tunnel paths caused by this band structure may lead to an excessive tunneling current, especially in highly doped layers. Modelling of this tunnelling current is therefore important when designing photonic

  3. Change in optimum genetic algorithm solution with changing band discontinuities and band widths of electrically conducting copolymers

    Science.gov (United States)

    Kaur, Avneet; Bakhshi, A. K.

    2010-04-01

    The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.

  4. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  5. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    Science.gov (United States)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  6. Wide Band to ''Double Band'' upgrade

    International Nuclear Information System (INIS)

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs

  7. Secure Multi-Gigabit Ultra-Wide Band Communications for Personal Area Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Puerta Ramírez, Rafael; Tafur Monroy, Idelfonso

    2016-01-01

    scenarios where the user may be located in public spaces. We propose to use Ultra-Wideband communications, which can be seamlessly transported over fiber or wireless, and show different transmission experiments ranging from 2 Gbit/s to 35 Gbit/s. To achieve these record bit rates, the multi-band approach...

  8. 193Hg collective oblate band with Ex>5.7 MeV

    International Nuclear Information System (INIS)

    Roy, N.; Henry, E.A.; Becker, J.A.

    1993-01-01

    Rotational bands in the neutron-deficient Pb nuclei 192,194,196-201 Pb have been reported recently. Band members are connected by L = 1 transitions, with crossover L = 2 transitions observed at the higher γ-ray energies. Regular and irregular patterns of γ-ray energies are observed. Conversion coefficients determined from intensity balance suggest the L = 1 transitions are M1. The bands have generally been interpreted as collective oblate, involving deformation aligned high-j proton configurations such as π(s 1/2 -2 h 9/2 i 13/2 ), and rotation aligned i 13/2 -n neutrons. Evidence for a similar band in 193 Hg has been obtained. 193 Hg was populated in the reaction 176 Yb( 22 Ne,5n) at E i ( 22 Ne) = 110 MeV. Reaction γ rays were detected with the Ge detector array HERA. A new 'collective' structure was observed with E x >5.7 MeV. States of the structure extend from I≥47/2 to I +10, and they decay with competing dipole and quadrupole transitions. The ratio B(M1)/B(E2), ∼ 2μ 2 /(e b) 2 , is approximately 10x lower in 193 Hg than in the Pb bands. The lowest member is produced with ∼20% of the 193 Hg cross section. Evidence for a similar band in 196 Hg will be presented at this meeting

  9. Thermal evolution of the band edges of 6H-SiC: X-ray methods compared to the optical band gap

    International Nuclear Information System (INIS)

    Miedema, P.S.; Beye, M.; Könnecke, R.; Schiwietz, G.; Föhlisch, A.

    2014-01-01

    Highlights: • Conduction band minima (CBM) of 6H-SiC are estimated with Si 2p XAS. • Valence band maxima (VBM) of 6H-SiC are estimated with non-resonant Si 2p XES. • Temperature-dependent VBM and CBM of 6H-SiC show asymmetric band gap closing. • XAS, XES and RIXS band gap estimates are compared with the optical band gap. • XAS + XES versus optical band gap provides core-excitonic screening energies. - Abstract: The band gap of semiconductors like silicon and silicon carbide (SiC) is the key for their device properties. In this research, the band gap of 6H-SiC and its temperature dependence were analyzed with silicon 2p X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) allowing for a separate analysis of the conduction-band minimum (CBM) and valence-band maximum (VBM) components of the band gap. The temperature-dependent asymmetric band gap shrinking of 6H-SiC was determined with a valence-band slope of +2.45 × 10 −4 eV/K and a conduction-band slope of −1.334 × 10 −4 eV/K. The apparent asymmetry, e.g., that two thirds of the band-gap shrinking with increasing temperature is due to the VBM evolution in 6H-SiC, is similar to the asymmetry obtained for pure silicon before. The overall band gap temperature-dependence determined with XAS and non-resonant XES is compared to temperature-dependent optical studies. The core-excitonic binding energy appearing in the Si 2p XAS is extracted as the main difference. In addition, the energy loss of the onset of the first band in RIXS yields to values similar to the optical band gap over the tested temperature range

  10. Experimental comparison of simultaneous transmission of LTE-A multi-band and gigabit/s 4-PAM signals up to 50 m of large-core graded-index POF

    NARCIS (Netherlands)

    Forni, F.; Shi, Y.; Van Den Boom, H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2016-01-01

    This paper reports the experimental results of the co-transmission of a multi-band LTE-A and gigabit/s baseband 4-PAM signals over 35 m and over 50 m of 1 mm core diameter PMMA GI-POF, using low-cost components. Both links used a red light 650nm laser diode and p-i-n photodiode with transimpedance

  11. UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band

    Science.gov (United States)

    Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei

    2017-12-01

    A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.

  12. Band-type microelectrodes for amperometric immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ga-Yeon; Chang, Young Wook; Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kang, Min-Jung [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2016-07-20

    A band-type microelectrode was made using a parylene-N film as a passivation layer. A circular-type, mm-scale electrode with the same diameter as the band-type microelectrode was also made with an electrode area that was 5000 times larger than the band-type microelectrode. By comparing the amperometric signals of 3,5,3′,5′-tetramethylbenzidine (TMB) samples at different optical density (OD) values, the band-type microelectrode was determined to be 9 times more sensitive than the circular-type electrode. The properties of the circular-type and the band-type electrodes (e.g., the shape of their cyclic voltammograms, the type of diffusion layer used, and the diffusion layer thickness per unit electrode area) were characterized according to their electrode area using the COMSOL Multiphysics software. From these simulations, the band-type electrode was estimated to have the conventional microelectrode properties, even when the electrode area was 100 times larger than a conventional circular-type electrode. These results show that both the geometry and the area of an electrode can influence the properties of the electrode. Finally, amperometric analysis based on a band-type electrode was applied to commercial ELISA kits to analyze human hepatitis B surface antigen (hHBsAg) and human immunodeficiency virus (HIV) antibodies. - Highlights: • A band-type microelectrode was made using a parylene-N film as a passivation layer. • The band-type microelectrode was 14-times more sensitive than circular-type electrode. • The influence of geometry on microelectrode properties was simulated using COMSOL. • The band-type electrode was applied to ELISA kits for hHBsAg and hHIV-antibodies.

  13. Convex Banding of the Covariance Matrix.

    Science.gov (United States)

    Bien, Jacob; Bunea, Florentina; Xiao, Luo

    2016-01-01

    We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.

  14. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β -Ga2O3

    Science.gov (United States)

    Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2017-12-01

    We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.

  15. Temporal patterns of inflammatory gene expression in local tissues after banding or burdizzo castration in cattle

    OpenAIRE

    Sweeney Torres; Earley Bernadette; Pang Wanyong; Gath Vivian; Crowe Mark A

    2009-01-01

    Abstract Background Castration of male cattle has been shown to elicit inflammatory reactions and acute inflammation is initiated and sustained by the participation of cytokines. Methods Sixty continental × beef bulls (Mean age 12 ± (s.e.) 0.2 months; Mean weight 341 ± (s.e.) 3.0 kg) were blocked by weight and randomly assigned to one of three treatments (n = 20 animals per treatment): 1) untreated control (Con); 2) banding castration at 0 min (Band); 3) Burdizzo castration at 0 min (Burd). S...

  16. Intruder bands in Z = 51 nuclei

    International Nuclear Information System (INIS)

    LaFosse, D.R.

    1993-01-01

    Recent investigations of h 11/2 proton intruder bands in odd 51 Sb nuclei are reported. In addition to experiments performed at SUNY Stony Brook and Chalk River, data from Early Implementation of GAMMASPHERE (analysis in progress) are presented. In particular, the nuclei 109 Sb and 111 Sb are discussed. Rotational bands based on the πh 11/2 orbital coupled to a 2p2h deformed state of the 50 Sn core have been observed. These bands have been observed to high spin, and in the case of 109 Sb to a rotational frequency of 1.4 MeV, the highest frequency observed in a heavy nucleus. The dynamic moments of inertia in these bands decrease slowly with frequency, suggesting a gradual band termination. The systematics of such bands in 109-119 Sb will be discussed

  17. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    Science.gov (United States)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep

  18. Design and evaluation of noise suppression sheet for GHz band utilizing magneto-elastic effect

    Science.gov (United States)

    Igarashi, Toshiyuki; Kondo, Koichi; Yoshida, Shigeyoshi

    2017-12-01

    Feasibility of realizing a noise suppression sheet (NSS) coping with the low SHF band such as the 5 GHz band was investigated, which was composed of soft magnetic metal flakes dispersed in a polymer. For suppressing noises, the higher frequency one of the bimodal frequency dispersion (lower frequency one: Dispersion DII, higher frequency one: Dispersion DIII) seen in the imaginary permeability (μ″; magnetic loss component) spectrum of the NSS was aimed to utilize. Referring to the previous finding that Dispersion DIII is originated from a magneto-elastic effect, several magnetic composite sheets were prepared using various alloy flakes with different saturation magnetostriction (λs), and their frequency (fr(DIII)) and magnitude (μ″(DIII)) of Dispersion DIII were investigated. It was found that the NSS containing flakes with higher λs exhibited higher fr(DIII) and higher μ″(DIII)/μ″(DII), which was ratio of μ″(DIII) to the magnitude of Dispersion DII (μ″(DII)). The fr(DIII) for the NSS having the highest λs containing Fe-Co alloy flake reached 7.45 GHz and μ″ in the 5 GHz band was approximately twice as high as the conventional NSS containing Fe-Si-Al alloy flake. For transmission attenuation power ratio (Rtp) when an NSS was placed on a microstrip line with characteristic impedance of 50 Ω, NSS with larger fr(DIII)2 · μ″(DIII) ∝ Ms2 (Ms: saturation magnetization), which theoretically gave the frequency limit of imaginary permeability for a thin film, exhibited larger Rtp in the low SHF band. These results suggested that an NSS containing a magnetic flake material with both large λs and Ms was suitable for suppressing low SHF band noises.

  19. First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1-xTMxS (TM = Fe, Co and Ni)

    KAUST Repository

    Saeed, Yasir

    2010-10-01

    We report a first-principles study of structural, electronic and magnetic properties of crystalline alloys Zn1-xTMxS (TM = Fe, Co and Ni) at x = 0.25. Structural properties are computed from the total ground state energy convergence and it is found that the cohesive energies of Zn 1-xTMxS are greater than that of zincblende ZnS. We also study the spin-polarized electronic band structures, total and partial density of states and the effect of TM 3d states. Our results exhibit that Zn 0.75Fe0.25S, Zn0.75Co0.25S and Zn0.75Ni0.25S are half-metallic ferromagnetic with a magnetic moment of 4μB, 3μB and 2μB, respectively. Furthermore, we calculate the TM 3d spin-exchange-splitting energies Δx (d), Δx (x-d), exchange constants N0α and N0β, crystal field splitting (ΔEcrystEt2g-Eeg), and find that p-d hybridization reduces the local magnetic moment of TM from its free space charge value. Moreover, robustness of Zn1-xTMxS with respect to the variation of lattice constants is also discussed. © 2010 Elsevier B.V. All rights reserved.

  20. Energy correlations for mixed rotational bands

    International Nuclear Information System (INIS)

    Doessing, T.

    1985-01-01

    A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)

  1. The influence of band Jahn-Teller effect and magnetic order on the magneto-resistance in manganite systems

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, Department of Applied Physics and Ballistics, F.M. University, Balasore, Orissa 756019 (India); Parhi, Nilima [Department of Physics, M.P.C. (Autonomous) College, Baripada, Orissa 757001 (India); Behera, S.N. [Institute of Material Science, Bhubaneswar 751004 (India)

    2009-08-01

    A model calculation is presented in order to study the magneto-resistivity through the interplay between magnetic and structural transitions for the manganite systems. The model consists of an orbitally doubly degenerate conduction band and a periodic array of local moments of the t{sub 2g} electrons. The band electrons interact with the local t{sub 2g} electrons via the s-f hybridization. The phonons interact with the band electrons through static and dynamic band Jahn-Teller (J-T) interaction. The model Hamiltonian including the above terms is solved for the single particle Green's functions and the imaginary part of the self-energy gives the electron relaxation time. Thus the magneto-resistivity (MR) is calculated from the Drude formula. The MR effect is explained near the magnetic and structural transition temperatures.

  2. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    International Nuclear Information System (INIS)

    Pradhan, Jitendra K; Behera, Gangadhar; Anantha Ramakrishna, S; Agarwal, Amit K; Ghosh, Amitava

    2017-01-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR–LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated. (paper)

  3. Monte Carlo study of superconductivity in the three-band Emery model

    International Nuclear Information System (INIS)

    Frick, M.; Pattnaik, P.C.; Morgenstern, I.; Newns, D.M.; von der Linden, W.

    1990-01-01

    We have examined the three-band Hubbard model for the copper oxide planes in high-temperature superconductors using the projector quantum Monte Carlo method. We find no evidence for s-wave superconductivity

  4. Simultaneous multi-band channel sounding at mm-Wave frequencies

    DEFF Research Database (Denmark)

    Müller, Robert; Häfner, Stephan; Dupleich, Diego

    2016-01-01

    The vision of multi Gbit/s data rates in future mobile networks requires the change to millimeter wave (mm-Wave) frequencies for increasing bandwidth. As a consequence, new technologies have to be deployed to tackle the drawbacks of higher frequency bands, e.g. increased path loss. Development an...

  5. A Minimized MIMO-UWB Antenna with High Isolation and Triple Band-Notched Functions

    Science.gov (United States)

    Kong, Yuanyuan; Li, Yingsong; Yu, Kai

    2016-11-01

    A compact high isolation MIMO-UWB antenna with triple frequency rejection bands is proposed for UWB communication applications. The proposed MIMO-UWB antenna consists of two identical UWB antennas and each antenna element has a semicircle ring shaped radiation patch fed by a bend microstrip feeding line for covering the UWB band, which operates from 2.85 GHz to 11.79 GHz with an impedance bandwidth of 122.1 %. By etching a L-shaped slot on the ground plane, and embedding an "anchor" shaped stub into the patch and integrating an open ring under the semicircle shaped radiation patch, three notch bands are realized to suppress WiMAX (3.3-3.6 GHz), WLAN(5.725-5.825 GHz) and uplink of X-band satellite (7.9-8.4 GHz) signals. The high isolation with S21<-20 dB in most UWB band is obtained by adding a protruded decoupling structure. The design procedure of the MIMO-UWB antenna is given in detail. The proposed MIMO-UWB antenna is simulated, fabricated and measured. Experimental results demonstrate that the proposed MIMO-UWB antenna has a stable gain, good impedance match, high isolation, low envelope correlation coefficient and good radiation pattern at the UWB operating band and it can provide three designated notch bands.

  6. CZTS stoichiometry effects on the band gap energy

    International Nuclear Information System (INIS)

    Malerba, Claudia; Biccari, Francesco; Azanza Ricardo, Cristy Leonor; Valentini, Matteo; Chierchia, Rosa; Müller, Melanie; Santoni, Antonino; Esposito, Emilia; Mangiapane, Pietro; Scardi, Paolo; Mittiga, Alberto

    2014-01-01

    Highlights: • CZTS films with different compositions were grown from stacked-layer precursors. • The band-gap energy varies from 1.48 to 1.63 eV as the [Sn]/[Cu] ratio increases. • The Zn content seems not to be a critical parameter for the optical properties. • PDS data show an increase of the sub-gap absorption as the Sn content is reduced. • Formation of defects at low Sn content was proposed to explain the Eg variation. -- Abstract: The considerable spread of Cu 2 ZnSnS 4 (CZTS) optical properties reported in the literature is discussed in terms of material stoichiometry. To this purpose, kesterite thin films were prepared by sulfurization of multilayered precursors of ZnS, Cu and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy were used for structural and compositional analysis. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric and Photothermal Deflection Spectroscopy (PDS) measurements to assess the absorption coefficient of samples with different compositions. The PDS data show an increase of the sub-band absorption as the Sn content decreases. The results are interpreted assuming the formation of additional defects as the tin content is reduced. Those defects can also be responsible for the decrease of the band gap energy value as the Sn/Cu ratio is decreased

  7. Enhancement of computer program SPECTRAN to provide optional synthesis of 1/12 octave-band and critical-band spectra from 1/3 octave-band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young-Soo [Argonne National Lab., IL (United States); Liebich, R.E. [Raytheon Environmental Services Company, Cambridge, MA (United States)

    1997-07-01

    This paper describes greatly enhanced version of the computer program SPECTRAN, which was initially presented in Paper No. 96-RA104.01, at the A&WMA 89th Annual Meeting in June 1996. The program has had three basic upgrades since that time. The first is provision of an option to use either batch-mode input from previously prepared data files or a {open_quotes}user-friendly{close_quotes} interactive input routine. The latter is primarily for first-time users and those having only one, or very few, spectra to process. The second improvement is the synthesis of 1/12 octave-band spectra from 1/3 octave-band spectra, with {open_quotes}tone correction,{close_quotes} in a manner similar to that used in the original version of the program. The third fundamental improvement is addition of a unique new capability to synthesize classic {open_quotes}critical-band{close_quotes} spectra from 1/3 octave-band input spectra. Critical-band spectra are also termed {open_quotes}equivalent-rectangular-bandwidth (ERB){close_quotes} and {open_quotes}equal-contribution-to-speech (ECS){close_quotes} spectra.

  8. Preliminary Analysis of X-Band and Ka-Band Radar for Use in the Detection of Icing Conditions Aloft

    Science.gov (United States)

    Reehorst, Andrew L.; Koenig, George G.

    2004-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. Radar has been identified as a strong tool for this work. However, since the remote detection of icing conditions with the intent to identify areas of icing hazard is a new and evolving capability, there are no set requirements for radar sensitivity. This work is an initial attempt to quantify, through analysis, the sensitivity requirements for an icing remote sensing radar. The primary radar of interest for cloud measurements is Ka-band, however, since NASA is currently using an X-band unit, this frequency is also examined. Several aspects of radar signal analysis were examined. Cloud reflectivity was calculated for several forms of cloud using two different techniques. The Air Force Geophysical Laboratory (AFGL) cloud models, with different drop spectra represented by a modified gamma distribution, were utilized to examine several categories of cloud formation. Also a fundamental methods approach was used to allow manipulation of the cloud droplet size spectra. And an analytical icing radar simulator was developed to examine the complete radar system response to a configurable multi-layer cloud environment. Also discussed is the NASA vertical pointing X-band radar. The radar and its data system are described, and several summer weather events are reviewed.

  9. Band Subset Selection for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Chunyan Yu

    2018-01-01

    Full Text Available This paper develops a new approach to band subset selection (BSS for hyperspectral image classification (HSIC which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS, rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS, as most traditional band selection methods do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is a linearly constrained minimum variance (LCMV derived from adaptive beamforming in array signal processing which can be used to model misclassification errors as the minimum variance. To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as sequential (SQ and successive (SC algorithms are also developed for LCMV-based SMMBS, called SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has advantages over SQMBS.

  10. Optical band gap tuning and electrical properties of polyaniline and its nanocomposites for hybrid solar cell application

    Science.gov (United States)

    Singh, R.; Choudhary, R. B.; Kandulna, R.

    2018-05-01

    Hcl doped conducting polyaniline-CdS nanocomposite has been prepared via In-situ polymerization in which cadmium nitrate was used as a source for cadmium. The structural morphology was investigated using FESEM and the presence of fibrous polyaniline and CdS nanoparticles. The synthesis of CdS and polyaniline was confirmed using the XRD analysis. I-V characteristic was used to explore the electrical behavior of PANI and its nanocoposites. Optical properties were studied and minimum band gap with highest band absorbance was found for synergistic concentration PANI-CdS (10%) for solar cells application.

  11. An i{sub 13/2} neutron intruder band in {sup 141}Gd

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, S M; Omar, A; Persson, L; Prevost, D; Waddington, J C [McMaster Univ., Hamilton, ON (Canada); Andrews, H R; Ball, G C; Galindo-Uribarri, A; Janzen, V P; Radford, D C; Ward, D [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Drake, T E [Toronto Univ., ON (Canada). Dept. of Physics; Fossan, D B; Lafosse, D; Vaska, P; Waring, M [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics; Wadsworth, R [York Univ. (United Kingdom). Dept. of Physics

    1992-08-01

    The nucleus {sup 141}Gd has been investigated at high spins for the first time following the reactions {sup 112}Sn({sup 32}S,2pn){sup 141}Gd at 155 MeV and {sup 112}Sn({sup 33}S,2p2n){sup 141}Gd at 170 MeV. The methods of in-beam {gamma}-ray spectroscopy were used to establish a number of different structures, including a band which has been assigned as being based on the {nu}i{sub 13/2}[660]1/2{sup +} Nilsson intruder orbital. This is the heaviest nucleus thus far in which this type of intruder band has been identified. (author). 11 refs., 3 figs.

  12. Mini-stop bands in single heterojunction photonic crystal waveguides

    KAUST Repository

    Shahid, N.; Amin, M.; Naureen, S.; Anand, S.

    2013-01-01

    Spectral characteristics of mini-stop bands (MSB) in line-defect photonic crystal (PhC) waveguides and in heterostructure PhC waveguides having one abrupt interface are investigated. Tunability of the MSB position by air-fill factor heterostructure PhC waveguides is utilized to demonstrate different filter functions, at optical communication wavelengths, ranging from resonance-like to wide band pass filters with high transmission. The narrowest filter realized has a resonance-like transmission peak with a full width at half maximum of 3.4 nm. These devices could be attractive for coarse wavelength selection (pass and drop) and for sensing applications. 2013 Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License.

  13. Entrance-channel effects in the population of superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.; Haas, B.; Alderson, A.; Ali, I.; Beausang, C.W.; Bentley, M.A.; Dagnall, P.; Fallon, P.; de France, G.; Forsyth, P.D.; Huttmeier, U.; Romain, P.; Santos, D.; Twin, P.J.; Vivien, J.P. (Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 3BX (United Kingdom) Centre de Recherches Nucleaires, F-67037 Strasbourg CEDEX (France) Sciences and Engineering Research Council, Daresbury Laboratory, Warrington WA44AD (United Kingdom))

    1992-01-13

    In order to investigate whether entrance-channel effects influence the production of superdeformed nuclei, we have measured the yield of the yrast superdeformed band in {sup 152}Dy populated via nearly mass-symmetric ({sup 82}Se+{sup 74}Ge) and mass-asymmetric ({sup 48}Ca+{sup 108}Pd, {sup 36}S+{sup 120}Sn) fusion reactions leading to the same compound nucleus at similar excitation energies and angular momenta. Large differences in the relative intensity of the band compared with the total yield of the nucleus are observed in the various reactions. This effect indicates that the competition between fission and neutron evaporation is affected by the mode of formation of the fusing system.

  14. Experimental study of energy harvesting in UHF band

    International Nuclear Information System (INIS)

    Bernacki, Ł; Gozdur, R; Salamon, N

    2016-01-01

    A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments. (paper)

  15. The Low Band Observatory (LOBO): Expanding the VLA Low Frequency Commensal System for Continuous, Broad-band, sub-GHz Observations

    Science.gov (United States)

    Kassim, Namir E.; Clarke, Tracy E.; Helmboldt, Joseph F.; Peters, Wendy M.; Brisken, Walter; Hyman, Scott D.; Polisensky, Emil; Hicks, Brian

    2015-01-01

    The Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) are currently commissioning the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) on a subset of JVLA antennas at modest bandwidth. Its bounded scientific goals are to leverage thousands of JVLA on-sky hours per year for ionospheric and transient studies, and to demonstrate the practicality of a prime-focus commensal system on the JVLA. Here we explore the natural expansion of VLITE to a full-antenna, full-bandwidth Low Band Observatory (LOBO) that would follow naturally from a successful VLITE experience. The new Low Band JVLA receivers, coupled with the existing primary focus feeds, can access two frequency bands: 4 band (54 - 86 MHz) and P band (236-492 MHz). The 4 band feeds are newly designed and now undergoing testing. If they prove successful then they can be permanently mounted at the primary focus, unlike their narrow band predecessors. The combination of Low Band receivers and fixed, primary-focus feeds could provide continuous, broad-band data over two complimentary low-frequency bands. The system would also leverage the relatively large fields-of-view of ~10 degrees at 4 band, and ~2.5 degrees at P band, coupling an excellent survey capability with a natural advantage for serendipitous discoveries. We discuss the compelling science case that flows from LOBO's robust imaging and time domain capabilities coupled with thousands of hours of wide-field, JVLA observing time each year. We also touch on the possibility to incorporate Long Wavelength Array (LWA) stations as additional 'dishes' through the LOBO backend, to improve calibration and sensitivity in LOBO's 4 band.

  16. Decreasing patient identification band errors by standardizing processes.

    Science.gov (United States)

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  17. Unidentified bands lambda lambda 6830, 7088 in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1980-01-01

    About 60 stars are known which show broad emission bands centred at wavelengths of 6830 and 7088 A. The stars are all classified as symbiotic, since they combine high-excitation emission and M-type absorption spectra. From the behaviour of the bands in the evolution of slow novae as they approach the symbiotic phase, and from the occurrence of the bands in stars of different excitation, it is concluded that the ions responsible have ionization potentials near 100 eV. The similarity of behaviour and profile of the two suggests that both arise in the same species. No suitable identification appears possible at this time, because of the lack of data on highly ionized species. Arguments are presented which narrow the range of possibilities, the most notable argument being the absence of O VI emission. It is suggested that Fe VII or Fe VI may be responsible. In particular, it is recommended that transitions from the z/sup 3/P/sup 0/ and z/sup 1/F/sup 0/ levels of Fe VII be examined in detail. The differing, and time-varying profiles of the 6830 and 7088 bands in the stars observed are best explained in terms of velocity broadening. Velocities in excess of 1000 km s/sup -1/ are present. Rotation is a more credible form of the mass motion than expansion, because of the tendency to double profiles in these bands. If rotation is responsible, these velocities imply that the objects central to the emission nebulae are more compact than main sequence stars.

  18. Interpolation of band-limited discrete-time signals by minimising out-of-band energy

    NARCIS (Netherlands)

    Janssen, A.J.E.M.; Vries, L.B.

    1984-01-01

    An interpolation method for restoring burst errors in discrete—time, band—limited signals is presented. The restoration is such that the restored signal has minimal out—of—band energy. The filter coefficients depend Only on the burst length and on the size of the band to which the signal is assumed

  19. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    Czech Academy of Sciences Publication Activity Database

    Yadav, S.K.; Uberuaga, B.P.; Nikl, Martin; Jiang, C.; Stanek, C.R.

    2015-01-01

    Roč. 4, č. 5 (2015), "054012-1"-"054012-9" ISSN 2331-7019 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : scintillator * electronic band gap structure * garnets * band gap engineering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.061, year: 2015

  20. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zehai; Zhang Jun; Shu Ting; Qi Zumin [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2012-09-15

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  1. Design and analysis of a radio frequency extractor in an S-band relativistic klystron amplifier

    Science.gov (United States)

    Zhang, Zehai; Zhang, Jun; Shu, Ting; Qi, Zumin

    2012-09-01

    A radio frequency (RF) extractor converts the energy of a strongly modulated intense relativistic electron beam (IREB) into the energy of high power microwave in relativistic klystron amplifier (RKA). In the aim of efficiently extracting the energy of the modulated IREB, a RF extractor with all round coupling structure is proposed. Due to the all round structure, the operating transverse magnetic mode can be established easily and its resonant property can be investigated with an approach of group delay time. Furthermore, the external quality factor can be low enough. The design and analysis of the extractor applied in an S-band RKA are carried out, and the performance of the extractor is validated with three-dimensional (3D) particle-in-cell simulations. The extraction efficiency reaches 27% in the simulation with a totally 3D model of the whole RKA. The primary experiments are also carried out and the results show that the RF extractor with the external quality factor of 7.9 extracted 22% of the beam power and transformed it into the high power microwave. Better results are expected after the parasitic mode between the input and middle cavities is suppressed.

  2. Performance characteristics of a perforated shadow band under clear sky conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Michael J. [School of Mechanical Engineering, University of KwaZulu-Natal, Durban (South Africa)

    2010-12-15

    A perforated, non-rotating shadow band is described for separating global solar irradiance into its diffuse and direct normal components using a single pyranometer. Whereas shadow bands are normally solid so as to occult the sensor of a pyranometer throughout the day, the proposed band has apertures cut from its circumference to intermittently expose the instrument sensor at preset intervals. Under clear sky conditions the device produces a saw tooth waveform of irradiance data from which it is possible to reconstruct separate global and diffuse curves. The direct normal irradiance may then be calculated giving a complete breakdown of the irradiance curves without need of a second instrument or rotating shadow band. This paper describes the principle of operation of the band and gives a mathematical model of its shading mask based on the results of an optical ray tracing study. An algorithm for processing the data from the perforated band system is described and evaluated. In an extended trial conducted at NREL's Solar Radiation Research Laboratory, the band coupled with a thermally corrected Eppley PSP produced independent curves for diffuse, global and direct normal irradiance with low mean bias errors of 5.6 W/m{sup 2}, 0.3 W/m{sup 2} and -2.6 W/m{sup 2} respectively, relative to collocated reference instruments. Random uncertainties were 9.7 W/m{sup 2} (diffuse), 17.3 W/m{sup 2} (global) and 19.0 W/m{sup 2} (direct). When the data processing algorithm was modified to include the ray trace model of sensor exposure, uncertainties increased only marginally, confirming the effectiveness of the model. Deployment of the perforated band system can potentially increase the accuracy of data from ground stations in predominantly sunny areas where instrumentation is limited to a single pyranometer. (author)

  3. Evolution with Composition of the d-Band Density of States at the Fermi Level in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Kuhns, P. L.; Hoch, M. J. R.; Reyes, A. P.; Moulton, W. G.; Wang, L.; Leighton, C.

    2006-04-01

    Highly spin polarized (SP) and half-metallic ferromagnetic systems are of considerable current interest and of potential importance for spintronic applications. Recent work has demonstrated that Co1-xFexS2 is a highly polarized ferromagnet (FM) where the spin polarization can be tuned by alloy composition. Using Co59 FM-NMR as a probe, we have measured the low-temperature spin relaxation in this system in magnetic fields from 0 to 1.0 T for 0≤x≤0.3. The Co59 spin-lattice relaxation rates follow a linear T dependence. Analysis of the data, using expressions for a FM system, permits information to be obtained on the d-band density of states at the Fermi level. The results are compared with independent density of states values inferred from electronic specific heat measurements and band structure calculations. It is shown that FM-NMR can be an important method for investigating highly SP systems.

  4. Treatment of Patellar Lower Pole Fracture with Modified Titanium Cable Tension Band Plus Patellar Tibial Tunnel Steel "8" Reduction Band.

    Science.gov (United States)

    Li, Jiaming; Wang, Decheng; He, Zhiliang; Shi, Hao

    2018-01-08

    To determine the efficacy of modified titanium tension band plus patellar tendon tunnel steel 8 "reduction band" versus titanium cable tension band fixation for the treatment of patellar lower pole fracture. 58 patients with lower patella fracture were enrolled in this study, including 30 patients treated with modified titanium cable tension band plus patellar tibial tunnel wire "8" tension band internal fixation (modified group), and 28 patients with titanium cable tension band fixation. All patients were followed up for 9∼15 months with an average of 11.6 months. Knee flexion was significantly improved in the modified group than in the titanium cable tension band group (111.33 ± 13 degrees versus 98.21 ± 21.70 degrees, P = 0.004). The fracture healing time showed no significant difference. At the end of the follow-up, the improvement excellent rate was 93.33% in the modified group, and 82.14% in the titanium cable tension band group. Titanium cable tension band internal fixation loosening was found in 2 cases, including 1 case of treatment by two surgeries without loose internal fixation. The modified titanium cable tension band with "8" tension band fixation showed better efficacy for lower patella fractures than titanium cable tension band fixation.

  5. A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

    Directory of Open Access Journals (Sweden)

    Bo Yan

    2013-01-01

    Full Text Available A novel ultrawideband (UWB antenna which has a triple-band notch function is presented. The proposed antenna can block interfering signals from C-band satellite communication systems, IEEE802.11a, and HIPERLAN/2 WLAN systems for example. The antenna is excited by using novel common direction rectangular complementary split-ring resonators (CSRR fabricated on radiating patch of the dielectric substrate with coplanar waveguide (CPW feed strip line. The voltage standing wave ratio (VSWR of the proposed antenna is less than 2.0 in the frequency band from 2.8 to 12 GHz, while showing a very sharp band-rejection performance at 3.9 GHz, 5.2 GHz, and 5.9 GHz. The measurement results show that the proposed antenna provides good omnidirectional field pattern over its whole frequency band excluding the rejected band, which is suitable for UWB applications.

  6. Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  7. 47 CFR 15.713 - TV bands database.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false TV bands database. 15.713 Section 15.713... TV bands database. (a) Purpose. The TV bands database serves the following functions: (1) To... databases. (b) Information in the TV bands database. (1) Facilities already recorded in Commission databases...

  8. The S-NPP VIIRS Day-Night Band On-Orbit Calibration/Characterization and Current State of SDR Products

    Directory of Open Access Journals (Sweden)

    Shihyan Lee

    2014-12-01

    Full Text Available The launch of VIIRS on-board the Suomi-National Polar-orbiting Partnership (S-NPP on 28 October 2011, marked the beginning of the next chapter on nighttime lights observation started by the Defense Meteorological Satellite Program’s (DMSP OLS sensor more than two decades ago. The VIIRS observes the nighttime lights on Earth through its day-night band (DNB, a panchromatic channel covering the wavelengths from 500 nm to 900 nm. Compared to its predecessors, the VIIRS DNB has a much improved spatial/temporal resolution, radiometric sensitivity and, more importantly, continuous calibration using on-board calibrators (OBCs. In this paper, we describe the current state of the NASA calibration and characterization methodology used in supporting mission data quality assurance and producing consistent mission-wide sensor data records (SDRs through NASA’s Land Product Evaluation and Analysis Tool Element (Land PEATE. The NASA calibration method utilizes the OBCs to determine gains, offset drift and sign-to-noise ratio (SNR over the entire mission. In gain determination, the time-dependent relative spectral response (RSR is used to correct the optical throughput change over time. A deep space view acquired during an S-NPP pitch maneuver is used to compute the airglow free dark offset for DNB’s high gain stage. The DNB stray light is estimated each month from new-moon dark Earth surface observations to remove the excessive stray light over the day-night terminators. As the VIIRS DNB on-orbit calibration is the first of its kind, the evolution of the calibration methodology is evident when the S-NPP VIIRS’s official calibrations are compared with our latest mission-wide reprocessing. In the future, the DNB calibration methodology is likely to continue evolving, and the mission-wide reprocessing is a key to providing consistently calibrated DNB SDRs for the user community. In the meantime, the NASA Land PEATE provides an alternative source to obtain

  9. Two band superconductivity for MgB2: Tc and isotope exponent α as a function of the carrier number n and the role of the center of the band

    International Nuclear Information System (INIS)

    Rodriguez-Nunez, J.J.; Schmidt, A.A.; Bianconi, A.; Perali, A.

    2005-08-01

    We study a two band superconducting, assuming that we have two tight binding bands, ε 2 (k-vector) = ε 2 (0) - t 2 [cos(k x ) + cos(k y ) + s 2 cos(k z )] - μ and ε 3 (k-vector) ε 3 (0) - t 3 [cos(k x ) + cos(k y )+s 3 cos(k z )] - μ. We solve the two gap equations at T = T c and calculate T c x n and μ x n for various values of pairing interaction, V, and Debye frequency, ω D . Also, from an expression developed in a previous paper by two of the present authors, we calculate α x n, where n is the number of carriers per site per band and α is the isotope exponent. We take only interband scattering, V, as a first approach. We find that in order to have superconductivity (T c ≠ 0), large values of V are necessary. Also, for V/ω D > 1, we obtain α > 1.00 and for V/ω D >1.00, the isotope exponent becomes less than 1. (author)

  10. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  11. Development of cataclastic foliation in deformation bands in feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil

    Science.gov (United States)

    Nicchio, Matheus A.; Nogueira, Francisco C. C.; Balsamo, Fabrizio; Souza, Jorge A. B.; Carvalho, Bruno R. B. M.; Bezerra, Francisco H. R.

    2018-02-01

    In this work we describe the deformation mechanisms and processes that occurred during the evolution of cataclastic deformation bands developed in the feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil. We studied bands with different deformation intensities, ranging from single cm-thick tabular bands to more evolved clustering zones. The chemical identification of cataclastic material within deformation bands was performed using compositional mapping in SEM images, EDX and XRD analyses. Deformation processes were identified by microstructural analysis and by the quantification of comminution intensity, performed using digital image processing. The deformation bands are internally non homogeneous and developed during five evolutionary stages: (1) moderate grain size reduction, grain rotation and grain border comminution; (2) intense grain size reduction with preferential feldspar fragmentation; (3) formation of subparallel C-type slip zones; (4) formation of S-type structures, generating S-C-like fabric; and (5) formation of C‧-type slip zones, generating well-developed foliation that resembles S-C-C‧-type structures in a ductile environment. Such deformation fabric is mostly imparted by the preferential alignment of intensely comminuted feldspar fragments along thin slip zones developed within deformation bands. These processes were purely mechanical (i.e., grain crushing and reorientation). No clays or fluids were involved in such processes.

  12. A Compact 5 MeV S-Band Electron Linac Based X-Ray Source for Industrial Radiography

    CERN Document Server

    Auditore, Lucrezia; De Pasquale, Domenico; Emanuele, Umberto; Italiano, Antonio; Trifirò, Antonio; Trimarchi, Marina

    2005-01-01

    A compact and reliable X-ray source, based on a 5 MeV, 1 kW, S-band electron linac, has been set up at the Dipartimento di Fisica, Universit\\'a di Messina. This source, coupled with a GOS scintillator screen and a CCD camera, represents an innovative transportable system for industrial radiography and X-ray tomography. Optimization of the parameters influencing the e-gamma conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 code. The converter choice is the result of the study of the e-gamma conversion performances for different materials and materials thicknesses. Also the converter position with respect to the linac exit window was studied. The chosen converter consists in a Ta-Cu target inserted close to the linac window. The Cu layer acts as a filter both on the electrons from the source and on the low energy X-rays. The X-ray beam angular profile was studied by means of GafChromic films with and without collimation. In the final source project, a collimation system pr...

  13. Study of the High Resolution Spectrum of the S18O16O Molecule in the Hot 2ν2 + ν3 - ν2 Band

    Science.gov (United States)

    Ziatkova, A. G.; Gromova, O. V.; Ulenikov, O. N.

    2018-05-01

    The hot 2ν2 + ν3 - ν2 hybrid band of the S18O16O molecule is assigned in the range 1800-1900 cm-1 for the first time. The spectrum is analyzed based on the method of combination differences. 56 energy levels (Jmax = 15, {K}a^{max}=12 ) are determined based on the experimental data obtained. Rotational parameters of the (021) vibrational state are determined.

  14. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  15. Construct and Concurrent Validation of a New Resistance Intensity Scale for Exercise with Thera-Band® Elastic Bands

    Directory of Open Access Journals (Sweden)

    Juan C. Colado, Xavier Garcia-Masso, N. Travis Triplett, Joaquin Calatayud, Jorge Flandez, David Behm, Michael E. Rogers

    2014-12-01

    Full Text Available The construct and concurrent validity of the Thera-Band Perceived Exertion Scale for Resistance Exercise with elastic bands (EB was examined. Twenty subjects performed two separate sets of 15 repetitions of both frontal and lateral raise exercise over two sessions. The criterion variables were myoelectric activity and heart rate. One set was performed with an elastic band grip width that permitted 15 maximum repetitions in the selected exercise, and another set was performed with a grip width 50% more than the 15RM grip. Following the final repetition of each set, active muscle (AM and overall body (O ratings of perceived exertion (RPE were collected from the Thera-Band® resistance exercise scale and the OMNI-Resistance Exercise Scale of perceived exertion with Thera-Band® resistance bands (OMNI-RES EB. Construct validity was established by correlating the RPE from the OMNI-RES EB with the Thera-Band RPE scale using regression analysis. The results showed significant differences (p ≤ 0.05 in myoelectric activity, heart rate, and RPE scores between the low- and high-intensity sets. The intraclass correlation coefficient for active muscles and overall RPE scale scores was 0.67 and 0.58, respectively. There was a positive linear relationship between the RPE from the OMNI-RES EB and the Thera-Band scale. Validity coefficients for the RPE AM were r2 = 0.87 and ranged from r2 = 0.76 to 0.85 for the RPE O. Therefore, the Thera-Band Perceived Exertion Scale for Resistance Exercise can be used for monitoring elastic band exercise intensity. This would allow the training dosage to be better controlled within and between sessions. Moreover, the construct and concurrent validity indicates that the OMNI-RES EB measures similar properties of exertion as the Thera-Band RPE scale during elastic resistance exercise.

  16. Design of Dual-Band Two-Branch-Line Couplers with Arbitrary Coupling Coefficients in Bands

    Directory of Open Access Journals (Sweden)

    I. Prudyus

    2014-12-01

    Full Text Available A new approach to design dual-band two-branch couplers with arbitrary coupling coefficients at two operating frequency bands is proposed in this article. The method is based on the usage of equivalent subcircuits input reactances of the even-mode and odd-mode excitations. The exact design formulas for three options of the dual-band coupler with different location and number of stubs are received. These formulas permit to obtain the different variants for each structure in order to select the physically realizable solution and can be used in broad range of frequency ratio and power division ratio. For verification, three different dual-band couplers, which are operating at 2.4/3.9 GHz with different coupling coefficients (one with 3/6 dB, and 10/3 dB two others are designed, simulated, fabricated and tested. The measured results are in good agreement with the simulated ones.

  17. Low-cost approach for a software-defined radio based ground station receiver for CCSDS standard compliant S-band satellite communications

    Science.gov (United States)

    Boettcher, M. A.; Butt, B. M.; Klinkner, S.

    2016-10-01

    A major concern of a university satellite mission is to download the payload and the telemetry data from a satellite. While the ground station antennas are in general easy and with limited afford to procure, the receiving unit is most certainly not. The flexible and low-cost software-defined radio (SDR) transceiver "BladeRF" is used to receive the QPSK modulated and CCSDS compliant coded data of a satellite in the HAM radio S-band. The control software is based on the Open Source program GNU Radio, which also is used to perform CCSDS post processing of the binary bit stream. The test results show a good performance of the receiving system.

  18. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    Science.gov (United States)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  19. The marginal band system in nymphalid butterfly wings.

    Science.gov (United States)

    Taira, Wataru; Kinjo, Seira; Otaki, Joji M

    2015-01-01

    Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.

  20. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  1. Fluctuation diamagnetism in two-band superconductors

    Science.gov (United States)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  2. Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom(s) in rock-salt phase- a first principle based theoretical initiative

    Science.gov (United States)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.

  3. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    Directory of Open Access Journals (Sweden)

    Jiulong Jiang

    2016-11-01

    Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  4. High Efficiency Ka-Band Spatial Combiner

    Directory of Open Access Journals (Sweden)

    D. Passi

    2014-12-01

    Full Text Available A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC Solid State Power Amplifiers (SSPA's. A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.

  5. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex.

    Science.gov (United States)

    Wittenberg, Marc André; Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2018-04-01

    Neuronal oscillations are a ubiquitous phenomenon in the human nervous system. Alpha-band oscillations (8-12 Hz) have been shown to correlate negatively with attention and performance, whereas gamma-band oscillations (40-150 Hz) correlate positively. Here, we studied the relation between prestimulus alpha-band power and poststimulus gamma-band power in a suprathreshold tactile discrimination task. Participants received two electrical stimuli to their left index finger with different SOAs (0 msec, 100 msec, intermediate SOA, intermediate SOA ± 10 msec). The intermediate SOA was individually determined so that stimulation was bistable, and participants perceived one stimulus in half of the trials and two stimuli in the other half. We measured neuronal activity with magnetoencephalography (MEG). In trials with intermediate SOAs, behavioral performance correlated inversely with prestimulus alpha-band power but did not correlate with poststimulus gamma-band power. Poststimulus gamma-band power was high in trials with low and high prestimulus alpha-band power and low for intermediate prestimulus alpha-band power (i.e., U-shaped). We suggest that prestimulus alpha activity modulates poststimulus gamma activity and subsequent perception: (1) low prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that two stimuli were perceived; (2) intermediate prestimulus alpha-band power leads to low gamma-band power (interpreted as inefficient stimulus processing), consequently, perception was not biased in either direction; and (3) high prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that only one stimulus was perceived.

  6. Photoresponse Enhancement in Monolayer ReS2 Phototransistor Decorated with CdSe-CdS-ZnS Quantum Dots.

    Science.gov (United States)

    Qin, Jing-Kai; Ren, Dan-Dan; Shao, Wen-Zhu; Li, Yang; Miao, Peng; Sun, Zhao-Yuan; Hu, PingAn; Zhen, Liang; Xu, Cheng-Yan

    2017-11-15

    ReS 2 films are considered as a promising candidate for optoelectronic applications due to their direct band gap character and optical/electrical anisotropy. However, the direct band gap in a narrow spectrum and the low absorption of atomically thin flakes weaken the prospect for light-harvesting applications. Here, we developed an efficient approach to enhance the performance of a ReS 2 -based phototransistor by coupling CdSe-CdS-ZnS core-shell quantum dots. Under 589 nm laser irradiation, the responsivity of the ReS 2 phototransistor decorated with quantum dots could be enhanced by more than 25 times (up to ∼654 A/W) and the rising and recovery time can be also reduced to 3.2 and 2.8 s, respectively. The excellent optoelectronic performance is originated from the coupling effect of quantum dots light absorber and cross-linker ligands 1,2-ethanedithiol. Photoexcited electron-hole pairs in quantum dots can separate and transfer efficiently due to the type-II band alignment and charge exchange process at the interface. Our work shows that the simple hybrid zero- and two-dimensional hybrid system can be employed for photodetection applications.

  7. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  8. Three new chalcohalides, Ba4Ge2PbS8Br2, Ba4Ge2PbSe8Br2 and Ba4Ge2SnS8Br2: Syntheses, crystal structures, band gaps, and electronic structures

    International Nuclear Information System (INIS)

    Lin, Zuohong; Feng, Kai; Tu, Heng; Kang, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng

    2014-01-01

    Highlights: • Three new chalcohalides: Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have been synthesized. • The MQ 5 Br octahedra and GeQ 4 tetrahedra form a three-dimensional framework with Ba 2+ in the channels. • Band Gaps and electronic structures of the three compounds were studied. - Abstract: Single crystals of three new chalcohalides: Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have been synthesized for the first time. These isostructural compounds crystallize in the orthorhombic space group Pnma. In the structure, the tetra-valent Ge atom is tetrahedrally coordinated with four Q (Q = S, Se) atoms, while the bi-valent M atom (M = Pb, Sn) is coordinated with an obviously distorted octahedron of five Q (Q = S, Se) atoms and one Br atom, showing the stereochemical activity of the ns 2 lone pair electron. The MQ 5 Br (M = Sn, Pb; Q = S, Se) distorted octahedra and the GeQ 4 (Q = S, Se) tetrahedra are connected to each other to form a three-dimensional framework with channels occupied by Ba 2+ cations. Based on UV–vis–NIR spectroscopy measurements and the electronic structure calculations, Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have indirect band gaps of 2.054, 1.952, and 2.066 eV respectively, which are mainly determined by the orbitals from the Ge, M and Q atoms (M = Pb, Sn; Q = S, Se)

  9. InfiniBand-Experiences at the Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Schwickerath, Ulrich; Heiss, Andreas

    2006-01-01

    The Institute for Scientific Computing (IWR) at the Forschungszentrum Karlsruhe has been evaluating the InfiniBand [InfiniBand Trade Association, InfiniBand Architecture Specification, Release 1.0, October 24, 2000] technology since end of the year 2002. The performance of the interconnect has been tested on different platforms and architectures using MPI. Sequential file transfer performance was measured with the RFIO protocol running on native InfiniBand [Ulrich Schwickerath, Andreas Heiss, Nucl. Instr. and Meth. A 534 (2004) 130, http://www.fzk.de/infiniband], and a newly developed InfiniBand-enabled version of the XROOTD

  10. Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-03-01

    The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.

  11. Multiflash whistlers in ELF-band observed at low latitude

    Directory of Open Access Journals (Sweden)

    A. K. Singh

    2011-01-01

    Full Text Available Multiflash whistler-like event in the ELF-band, observed during March 1998 at low latitude station Jammu, is reported. The most prominent feature of these events is the multiflash nature along with the decrease in frequency within a very short span of time resembling similar to terrestrial whistlers. The events have a significantly smaller time duration (0.5–3.5 s than those reported earlier from high, mid and low latitudes and also display a diurnal maximum occurring around 09:30 h (IST. There have been similar reportings from other latitudes, but whistlers in the ELF-band with a multiflash nature along with a precursor emission have never been reported. Lightning seems to be the dominant source for the ELF whistlers reported here.

  12. New results on the superdeformed {sup 196}Pb nucleus: The decay of the excited bands to the yrast band

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Azaiez, F.; Duprat, J. [IPN, Orsay (France)] [and others

    1996-12-31

    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. In addition to the known yrast and two lowest excited SD bands, a third excited SD band has been seen. All of the three excited bands were found to decay to the yrast SD band through, presumably, E1 transitions, allowing relative spin and excitation energy assignments. Comparisons with calculations using the random-phase approximation suggest that all three excited bands can be interpreted as octupole vibrational structures.

  13. Whistler Triggered Upper Band Chorus Observed in Alaska

    Science.gov (United States)

    Hosseini, P.; Golkowski, M.

    2017-12-01

    VLF radiation from lightning discharges is one of several sources of energy injection into the inner magnetosphere from the Earth. Lightning discharges initially produce a broadband impulse or `sferic' but after propagation in the dispersive magnetosphere this waveform soon becomes quasi narrow band with the characteristic spectrographic form of the whistler. Most of the lightning induced VLF wave energy injected into the magnetosphere will be unducted with a k-vector which becomes increasingly oblique. Although unducted radiation is ubiquitous throughout the inner magnetosphere, it is generally of a low amplitude due to Landau damping and is not expected to produce strong nonlinear phenomena such as triggered emissions and chorus waves. However, VLF wave energy ducted or trapped in field-aligned plasma density enhancements can have relatively large amplitudes due to focusing and also linear cyclotron resonance growth. Therefore high amplitude ducted whistler waves can trigger a number of complex nonlinear phenomena. These include the triggering of VLF emissions and triggering of VLF hiss or chorus. Such phenomena are generally considered to result from nonlinear electron cyclotron phase trapping. Observation of such VLF emissions triggered by natural whistlers have been reported since the 1970s in Antarctica. We present observations of whistlers triggered upper band chorus emission from Alaska. Dispersion analyze of whistlers determine the L-shell range to be 4.5 clear frequency band gap between upper and lower band of the observed chorus emissions. The observations point to ducted chorus generation in the vicinity of the plasmapause boundary.

  14. Development of Personalized Urination Recognition Technology Using Smart Bands

    Directory of Open Access Journals (Sweden)

    Sung-Jong Eun

    2017-04-01

    Full Text Available Purpose This study collected and analyzed activity data sensed through smart bands worn by patients in order to resolve the clinical issues posed by using voiding charts. By developing a smart band-based algorithm for recognizing urination activity in patients, this study aimed to explore the feasibility of urination monitoring systems. Methods This study aimed to develop an algorithm that recognizes urination based on a patient’s posture and changes in posture. Motion data was obtained from a smart band on the arm. An algorithm that recognizes the 3 stages of urination (forward movement, urination, backward movement was developed based on data collected from a 3-axis accelerometer and from tilt angle data. Real-time data were acquired from the smart band, and for data corresponding to a certain duration, the absolute value of the signals was calculated and then compared with the set threshold value to determine the occurrence of vibration signals. In feature extraction, the most essential information describing each pattern was identified after analyzing the characteristics of the data. The results of the feature extraction process were sorted using a classifier to detect urination. Results An experiment was carried out to assess the performance of the recognition technology proposed in this study. The final accuracy of the algorithm was calculated based on clinical guidelines for urologists. The experiment showed a high average accuracy of 90.4%, proving the robustness of the proposed algorithm. Conclusions The proposed urination recognition technology draws on acceleration data and tilt angle data collected via a smart band; these data were then analyzed using a classifier after comparative analyses with standardized feature patterns.

  15. Warm-Up Activities of Middle and High School Band Directors Participating in State-Level Concert Band Assessments

    Science.gov (United States)

    Ward, Justin P.; Hancock, Carl B.

    2016-01-01

    The purpose of this study was to examine the warm-ups chosen by concert band directors participating in state-level performance assessments. We observed 29 middle and high school bands and coded the frequency and duration of warm-up activities and behaviors. Results indicated that most bands rehearsed music and played scales, long tones, and…

  16. Does the chromatic Mach bands effect exist?

    Science.gov (United States)

    Tsofe, Avital; Spitzer, Hedva; Einav, Shmuel

    2009-06-30

    The achromatic Mach bands effect is a well-known visual illusion, discovered over a hundred years ago. This effect has been investigated thoroughly, mainly for its brightness aspect. The existence of Chromatic Mach bands, however, has been disputed. In recent years it has been reported that Chromatic Mach bands are not perceived under controlled iso-luminance conditions. However, here we show that a variety of Chromatic Mach bands, consisting of chromatic and achromatic regions, separated by a saturation ramp, can be clearly perceived under iso-luminance and iso-brightness conditions. In this study, observers' eye movements were recorded under iso-brightness conditions. Several observers were tested for their ability to perceive the Chromatic Mach bands effect and its magnitude, across different cardinal and non-cardinal Chromatic Mach bands stimuli. A computational model of color adaptation, which predicted color induction and color constancy, successfully predicts this variation of Chromatic Mach bands. This has been tested by measuring the distance of the data points from the "achromatic point" and by calculating the shift of the data points from predicted complementary lines. The results suggest that the Chromatic Mach bands effect is a specific chromatic induction effect.

  17. Band Structure Analysis of La0.7Sr0.3MnO3 Perovskite Manganite Using a Synchrotron

    Directory of Open Access Journals (Sweden)

    Hong-Sub Lee

    2015-01-01

    Full Text Available Oxide semiconductors and their application in next-generation devices have received a great deal of attention due to their various optical, electric, and magnetic properties. For various applications, an understanding of these properties and their mechanisms is also very important. Various characteristics of these oxides originate from the band structure. In this study, we introduce a band structure analysis technique using a soft X-ray energy source to study a La0.7Sr0.3MnO3 (LSMO oxide semiconductor. The band structure is formed by a valence band, conduction band, band gap, work function, and electron affinity. These can be determined from secondary electron cut-off, valence band spectrum, O 1s core electron, and O K-edge measurements using synchrotron radiation. A detailed analysis of the band structure of the LSMO perovskite manganite oxide semiconductor thin film was established using these techniques.

  18. In-Sample Confidence Bands and Out-of-Sample Forecast Bands for Time-Varying Parameters in Observation Driven Models

    NARCIS (Netherlands)

    Blasques, F.; Koopman, S.J.; Lasak, K.A.; Lucas, A.

    2016-01-01

    We study the performances of alternative methods for calculating in-sample confidence and out-of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty, while the out-of-sample bands reflect not only parameter uncertainty, but also innovation

  19. Description and Performance of an L-Band Radiometer with Digital Beamforming

    Directory of Open Access Journals (Sweden)

    Juan F. Marchan-Hernandez

    2010-12-01

    Full Text Available This paper presents the description and performance tests of an L-band microwave radiometer with Digital Beamforming (DBF, developed for the Passive Advanced Unit (PAU for ocean monitoring project. PAU is an instrument that combines, in a single receiver and without time multiplexing, a microwave radiometer at L-band (PAU-RAD and a GPS-reflectometer (PAU-GNSS-R. This paper focuses on the PAU‑RAD beamformer’s first results, analyzing the hardware and software required for the developed prototype. Finally, it discusses the first results measured in the Universitat Politècnica de Catalunya (UPC anechoic chamber.

  20. Defect-band mediated ferromagnetism in Gd-doped ZnO thin films

    KAUST Repository

    Venkatesh, S.

    2015-01-07

    Gd-doped ZnO thin films prepared by pulsed laser deposition with Gd concentrations varying from 0.02–0.45 atomic percent (at. %) showed deposition oxygen pressure controlled ferromagnetism. Thin films prepared with Gd dopant levels (band formed due to oxygen deficiency related defect complexes. Mott\\'s theory of variable range of hopping conduction confirms the formation of the impurity/defect band near the Fermi level.