WorldWideScience
 
 
1

Columbia River Basin Seasonal Volumes and Statistics, 1928-1989. 1990 Level Modified Streamflows Computed Seasonal Volumes 61-Year Statistics.  

Energy Technology Data Exchange (ETDEWEB)

This report was prepared by the A.G. Crook Company, under contract to Bonneville Power Administration, and provides statistics of seasonal volumes and streamflow for 28 selected sites in the Columbia River Basin.

A.G. Crook Company

1993-04-01

2

Water resources data Texas, water year 2004, volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, and intervening coastal basins  

Science.gov (United States)

Water-resources data for the 2004 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 72 gaging stations; stage only at 3 gaging stations; elevation at 29 lakes and reservoirs; content at 6 lakes and reservoirs; and water quality at 26 gaging stations. Also included are data for 9 partial-record stations comprised of 6 flood-hydrograph and 3 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

Long, Susan C. Aragon; Reece, Brian D.; Eames, Deanna R.

2005-01-01

3

Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945-2011  

Science.gov (United States)

The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

Czuba, Jonathan A.; Olsen, Theresa D.; Czuba, Christiana R.; Magirl, Christopher S.; Gish, Casey C.

2012-01-01

4

Water resources data Texas, water year 2004, volume 4. Colorado River basin, Lavaca River basin, and intervening coastal basins  

Science.gov (United States)

Water-resources data for the 2004 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 4 contains records for water discharge at 68 gaging stations; elevation at 14 lakes and reservoirs; and water quality at 30 gaging stations. Also included are data for 11 partial-record stations comprised of 3 flood-hydrograph, 7 low-flow, and 1 crest-stage station. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface- water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

Long, Susan C. Aragon; Reece, Brian D.; Eames, Deanna R.

2005-01-01

5

Water resources data Texas, water year 2004, volume 3. San Jacinto River basin, Brazos River basin, San Bernard River basin, and intervening coastal basins  

Science.gov (United States)

Water-resources data for the 2004 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 92 gaging stations; stage only at 6 gaging stations; elevation at 27 lakes and reservoirs; content at 6 lakes and reservoirs; and water quality at 33 gaging stations. Also included are data for 33 partial-record stations comprised of 15 flood-hydrograph, 8 low-flow, and 10 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

Long, Susan C. Aragon; Reece, Brian D.; Eames, Deanna R.

2005-01-01

6

09 river basin planning  

...prescribed timescales. r iver Basin Management: the river basin planning process is followed by the implementation...by the implementation of the management measures. The planning process together with the implementation of...objectives Public Participation RIVER BASIN MANAGEMENT PLANNING PROCESS...

7

ROANOKE RIVER BASIN DATA  

Science.gov (United States)

Data files for the Roanoke River Basin provided for use with the Roanoke River Basin Reservoir Model. Includes data on daily pan evaporation, monthly water usage and daily inflow. (see http://www.dwr.ehnr.state.nc.us/roanoke/index.htm)...

8

Water resources data Texas, water year 2004, volume 5. Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins  

Science.gov (United States)

Water-resources data for the 2004 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 86 gaging stations; stage only at 5 gaging stations; elevation at 3 lakes and reservoirs; content at 4 lakes and reservoirs;and water quality at 24 gaging stations. Also included are data for 16 partial-record stations comprised of 1 flood-hydrograph, 11 low-flow, and 4 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

Long, Susan C. Aragon; Reece, Brian D.; Eames, Deanna R.

2005-01-01

9

Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume I  

Energy Technology Data Exchange (ETDEWEB)

Environmental baseline data for the Snake River Plain known geothermal resource areas (KGRAs) are evaluated for geothermal development. The objective is to achieve a sound data base prior to geothermal development. These KGRAs are: Vulcan Hot Springs, Crane Creek, Castle Creek, Bruneau, Mountain Home, Raft River, Island Park, and Yellowstone. Air quality, meteorology, hydrology, water quality, soils, land use, geology, subsidence, seismicity, terrestrial and aquatic ecology, demography, socioeconomics, and heritage resources are analyzed. This program includes a summary of environmental concerns related to geothermal development in each of the KGRAs, an annotated bibliography of reference materials (Volume II), detailed reports on the various program elements for each of the KGRAs, a program plan identifying future research needs, and a comprehensive data file.

Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

1979-09-01

10

Methodologies for Assessing the Cumulative Environmental Effects of Hydroelectric Development of Fish and Wildlife in the Columbia River Basin, Volume 1, Recommendations, 1987 Final Report.  

Energy Technology Data Exchange (ETDEWEB)

This volume is the first of a two-part set addressing methods for assessing the cumulative effects of hydropower development on fish and wildlife in the Columbia River Basin. Species and habitats potentially affected by cumulative impacts are identified for the basin, and the most significant effects of hydropower development are presented. Then, current methods for measuring and assessing single-project effects are reviewed, followed by a review of methodologies with potential for use in assessing the cumulative effects associated with multiple projects. Finally, two new approaches for cumulative effects assessment are discussed in detail. Overall, this report identifies and reviews the concepts, factors, and methods necessary for understanding and conducting a cumulative effects assessment in the Columbia River Basin. Volume 2 will present a detailed procedural handbook for performing a cumulative assessment using the integrated tabular methodology introduced in this volume. 308 refs., 18 figs., 10 tabs.

Stull, Elizabeth Ann

1987-07-01

11

Dynamic reorganization of river basins.  

Science.gov (United States)

River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology. PMID:24604204

Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

2014-03-01

12

Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data  

Energy Technology Data Exchange (ETDEWEB)

The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

NONE

1994-12-31

13

Water resources data Texas, water year 2004, volume 2. Trinity River basin  

Science.gov (United States)

Water-resources data for the 2004 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 2 contains records for water discharge at 54 gaging stations; stage only at 4 gaging stations; elevation at 17 lakes and reservoirs; content at 8 lakes and reservoirs; and water quality at 22 gaging stations. Also included are data for 2 partial-record stations comprised of 1 flood-hydrograph and 1 crest-stage station. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

Long, Susan C. Aragon; Reece, Brian D.; Eames, Deanna R.

2005-01-01

14

Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data  

Energy Technology Data Exchange (ETDEWEB)

The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

1992-03-01

15

Large-volume gravity flow deposits in the Central Carpathian Paleogene Basin (Orava region, Slovakia): evidence for hyperpycnal river discharge in deep-sea fans  

Science.gov (United States)

The deep-water clastic systems of the Central Carpathian Paleogene Basin contain megabeds, which are developed in distinctive stratigraphic horizons and can be traced over long distances. These beds are characterized by great individual thickness (4-13 m), uniform lithology and internal structures. On the basis of their lithology, sedimentary structures and sequence development, the megabeds are characterized by 15 individual facies and interpreted from the viewpoint of flow hydrodynamics. The grain-size distribution and internal structures of the megabeds point to their deposition from uniform turbulent flows. The main controlling factor for generation of such large voluminous flows is inferred in the sea-level changes, when a relative rising of sea level during the Eocene/Oligocene boundary was responsible for long-lasting accumulation of the clastic supply at the basin margins. The large volume of detritus from river discharge and ravinement surfaces of flooded land was accumulated on the shore and in the conduit heads where the sediment was remobilized by other triggers. The flows generated by catastrophic floods during the early Rupelian sea-level lowstand are thought to be the most probably triggering mechanism. The large highly erosive hyperpycnal flows from flooding rivers could erode accumulated deposits in the conduit or on steeper basin-margin slopes and could cause progressive increase of the sand volume in the flow. Conduit flushing appears to be the most probable source of sediment for the very large voluminous flows that were responsible for deposition of the Orava megabeds

Starek, Dušan; Soták, Ján; Jablonský, Jozef; Marschalko, Róbert

2013-08-01

16

Public participation in river basin planning  

...Water Quality Improvement GrantPublic participation in river basin planningClimate ChangeEconomic Value...WMUDevelopment ManagementStormwater ManagementPublic participation in river basin planningLast updated: 10 September 2014...

17

OHIO RIVER BASIN ENERGY STUDY: AIR QUALITY AND RELATED IMPACTS. VOLUME III. SELECTED IMPACTS OF ELECTRIC UTILITY OPERATIONS IN THE OHIO RIVER BASIN (1976-2000): AN APPLICATION OF THE UTILITY SIMULATION MODEL  

Science.gov (United States)

This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multi-disciplinary research program supported by the Environmental Protection Agency. It presents selected results of a comprehensive evaluation of environmental, energy, economic and emissions impac...

18

Tools for river basin management  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Water resources management can be challenging when confronted with pollution, water shortage, floods, water-related diseases, climate change and variability. In this thesis, it is assessed how the management of a multi-functional river basin can be facilitated through the development and testing of analytical tools in data-poor and data-rich context. A variety of tools and strategies is developed and tested on a variety of stakeholder selected themes, namely: •Cost-effective improvement of ...

Cools, Jan

2012-01-01

19

Metabolic principles of river basin organization  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggest...

Rodriguez-iturbe, Ignacio; Caylor, Kelly K.; Rinaldo, Andrea

2011-01-01

20

Regionalization of River Basins Using Cluster Ensemble  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In the wake of global water scarcity, forecasting of water quantity and quality, regionalization of river basins has attracted serious attention of the hydrology researchers. It has become an important area of research to enhance the quality of prediction of yield in river basins. In this paper, we analyzed the data of Godavari basin, and regionalize it using a cluster ensemble method. Cluster Ensemble methods are commonly used to enhance the quality of clustering by combining multiple cluste...

Sangeeta Ahuja

2012-01-01

 
 
 
 
21

River basin management, Bulgarian case study  

Science.gov (United States)

The master plans for the management of river basins have been elaborated. The territory of Bulgaria is divided into four main hydrological zones - Danube, Black Sea, East and West Mediterranean hydrological zones. The rivers from Danube zone discharged directly to the Danube river, the North boundary of the country. All rivers from the eastern part of Bulgaria discharged directly to the Black Sea. The rivers from East and West Mediterranean hydrological zones discharged to Mediterranean Sea after flowing trough Greece and/or Turkey. The main river basins in Bulgaria were subjects to the evaluation of master plans. During the elaboration of the master plans the following elements have been investigated: Demographical characteristics of the stakeholders in the river basin. Economical overview of the stakeholders. Estimation of surface water availabilities and resources; Water quantity. Groundwater overview and estimation of available groundwater resources. Water quality of surface and ground water; sediment load. Estimation of water use for domestic, irrational, agricultural and industrial water supply. Ecosystems in the river basin; Tundja river basin ecosystems. Master Plans elaboration for 2010. Water balance calculations for 1998 and 2010. The aim of this paper is to present an overview of Tundja river basin management. Tundja is one of the biggest tributaries of Mariza river and it is join it in the territory of Turkey. The basin belongs to the East Mediterranean hydrological zone. The hydrological investigations and estimations of natural river flow along the main river body and it’s tributaries will be discussed in details. The calculations concern 1961-2004 study period. Long-term assessment has been performed. The characteristics of the monthly, annual, minimum and maximum river discharges have been obtained.

Gerassimov, Strahil; Bojilova, Elena

22

Bedrock geology and chemistry of rivers basins  

Science.gov (United States)

The lack of modern quantitative estimates of the Earth’s surface geology, one of the key parameters influencing river and ocean chemistry, is striking. While some attempts have been made to quantify the lithologic composition of bedrock in individual river basins (e.g., Reeder et al., 1972; Amiotte-Suchet et al., 2002), the geologic age distribution of bedrock in river basins has not been investigated. We have therefore initiated a project aimed at generating a worldwide dataset on the bedrock lithology and age distribution of river basins, using the latest digital geologic maps and modern geographic information system technology. To date we have completed analysis of the digital geologic maps North America. These data have been used in conjunction with digital river basin polygons (Revenga et al., 1998, World Resources Institute) to compute the lithologic composition and geologic age structure of major river basins in North America. The lithologic composition of 14 large river basins range from predominantly igneous rocks dominated (Frazer, Columbia), to those dominated by sedimentary rocks (Brazos, Susquehanna, Mississippi), to basins with an equal mix of igneous, metamorphic and sedimentary bedrock (Thelon). Subdividing sedimentary rocks into marine and continental rocks reveals that continental sediments account for no more than 25% of sedimentary rocks in these river basins (e.g., Nelson, Colorado, Mississippi). A further subdivision of igneous rocks into intrusive and volcanic rocks reveals the entire range of igneous composition, from basins dominated by intrusive rocks (Hudson, Mackenzie, Nelson) to those dominated by volcanic rocks (Susquehanna, Colorado, Frazer, Columbia). We are currently analyzing the age distribution of major lithologic units in each river basin. In cases where detailed hydrochemical data is available for major tributaries we will expand the analysis to sub-basins (e.g., Frazer, Mississippi). Basins smaller than about 40,000 km^2 will require analysis of higher-resolution digital geologic bedrock maps. In the next project phase we will combine bedrock data for major river basins with hydrochemical data to investigate the influence bedrock exerts on river chemistry, specifically radiogenic isotopes and macronutrients. Combining digital information on bedrock geology with digital maps of precipitation will allow us to use precipitation-weighted bedrock area rather than simple area-lithology relationships. Extending this analysis to pre-Quaternary periods is beyond the current focus of the project, but will be necessary to fully utilize reconstructions of ocean paleochemistry in models of global biogeochemical cycles (e.g., Bluth and Kump, 1991).

Peucker-Ehrenbrink, B.; Miller, M. W.

2003-04-01

23

Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995 : Volume III - Washington.  

Energy Technology Data Exchange (ETDEWEB)

Beaver Creek Hatchery is located on the Elochoman River about 10 miles upstream from the river mouth. The Elochoman River is a north bank tributary of the lower Columbia River, just downstream of Cathlamet, Washington. The facility consists of 10 intermediate raceways, 20 raceways, (1) earthen rearing pond, (2) adult holding ponds, and a hatchery building with 60 troughs. It is staffed with 4 FTE`s. Water rights total 16,013 gpm from three sources: Elochoman River, Beaver Creek and a well. Beaver Creek water is gravity flow while the other two sources are pumped. The Elochoman River is used in summer and fall while Beaver Creek water is used from mid-November through mid-May. Filtered well water (1 cfs) is used to incubate eggs and for early rearing of fry. Water use in summer is about 5,800 gpm. Gobar Pond, a 0.93-acre earthen rearing pond located on Gobar Creek (Kalama River tributary), is operated as a satellite facility.

Colville Confederated Tribes; US Fish and Wildlife Service; Washington Department of Fish and Wildlife; Yakama Indian Nation

1996-06-01

24

75 FR 38833 - Walker River Basin Acquisition Program  

Science.gov (United States)

...OF THE INTERIOR Bureau of Reclamation Walker River Basin Acquisition Program AGENCY...Environmental Impact Statement (EIS) for the Walker River Basin Acquisition Program (Acquisition...INFORMATION: Since 1882, diversions from the Walker River, primarily for irrigated...

2010-07-06

25

CONTRIBUTIONS TO MOLDOVA RIVER’S INFERIOR BASIN VEGETATION KNOWLEDGE  

Directory of Open Access Journals (Sweden)

Full Text Available Authors describes in this paper two vegetal associations (mesophyllus grasslands, Festuco rubrae-Agrostetum capillaris Horvati? 1951 and Trisetetum flavescentis R?bel 1911 from the inferior basin of Moldova river.

M?RIU?A CONSTANTIN

2004-01-01

26

Tritium hydrology of the Mississippi River basin  

Science.gov (United States)

In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of tritium through the Mississippi Basin and its tributaries was calculated during the years that tritium measurements were made. The cumulative fluxes, calculated in grams of 3II were: (i) 160 g for the Ohio (1961-1986), (ii) 98 g for the upper Missouri (1963-1997), (iii) 30 g for the Arkansas (1961-1997) and (iv) 780 g for the Mississippi (1961-1997). Published in 2004 by John Wiley and Sons, Ltd.

Michel, R.L.

2004-01-01

27

Metabolic principles of river basin organization.  

Science.gov (United States)

The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics. PMID:21670259

Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

2011-07-19

28

Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995, Volume I - Idaho.  

Energy Technology Data Exchange (ETDEWEB)

Clearwater Hatchery is located on the north bank of the North Fork of the Clearwater River, downstream from Dworshak Dam. It is approximately 72 miles from Lower Granite Dam, and 504 miles from the mouth of the Columbia River. Site elevation is approximately 994 feet above sea level. The hatchery is staffed with 8 FTE`s. Clearwater Hatchery has two pipelines from Dworshak Reservoir. One is attached to a floating platform and is capable of providing various temperatures at varying depths. The other is a stationary intake about 245 feet below the top of the dam. All water is gravity fed to the hatchery. An 18-inch intake pipe provides an estimated 10 cfs with temperature remaining constant at approximately 40T. The primary 42-inch intake pipe can draw water from 5 to 45 feet in depth with temperatures ranging from 55{degrees} to 60{degrees}F and 70 cfs of flow. This report describes the operations of the hatchery.

Idaho Department of Fish and Game; US Fish and Wildlife Service; Nez Perce Tribe

1996-06-01

29

Drainage divides, Massachusetts-Hudson River basin  

Science.gov (United States)

Drainage boundaries for selected subbasins in northern Berkshire County, Massachusetts, are delineated on five topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for rivers where the drainage area is greater than 3 square miles. Successive sites are indicated where the intervening area is at least 6 square miles on tributary streams and 10 square miles along the Hoosic or North Branch Noosic Rivers. (USGS)

Wandle, S. William, Jr.

1982-01-01

30

Integrated river basin management of Južna Morava River  

Directory of Open Access Journals (Sweden)

Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - pra?enje uticaja, adaptacija i ublažavanje, podprojekat br. 9: U?estalost buji?nih poplava, degradacija zemljišta i voda kao posledica globalnih promena

Borisavljevi? Ana

2012-01-01

31

Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography  

Energy Technology Data Exchange (ETDEWEB)

This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

1979-09-01

32

Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995 : Volume II, Oregon.  

Energy Technology Data Exchange (ETDEWEB)

Big Creek Hatchery is located 16 miles east of Astoria, Oregon and is approximately 3 miles upstream from Big Creek`s confluence with the Columbia River. The site elevation is approximately 75 feet above sea level. The facility includes 2 adult holding ponds, 30 raceways, 1 rearing pond, 64 troughs and 8 stacks of egg incubators. The adult collection and holding ponds are in poor condition and are inadequate to meet current program objectives. There are four water sources for the hatchery: Big Creek, Mill Creek and two springs. Current water rights total 36,158 gpm plus an additional 4.2 cfs reservoir water right. All water supplies are delivered by gravity but can be pumped for reuse if required. The facility is staffed with 9.25 FTE`s. Current practices at the hatchery are described.

Oregon Department of Fish and Wildlife; US Fish and Wildlife Service

1996-06-01

33

South Fork Holston River basin 1988 biomonitoring  

Energy Technology Data Exchange (ETDEWEB)

There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

Saylor, C.F.; Ahlstedt, S.A.

1990-06-01

34

Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data  

Energy Technology Data Exchange (ETDEWEB)

The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

NONE

1994-12-31

35

Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.  

Energy Technology Data Exchange (ETDEWEB)

This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

A.G. Crook Company; United States. Bonneville Power Administration

1993-07-01

36

Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)  

Science.gov (United States)

Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France) (in prep)

Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

2014-05-01

37

2015 wfd neagh bann river basin management plan summary  

...Northern Ireland Environment Agency Water Management Unit 17 Antrim Road Tonagh...update to the River Basin Management Plan.....................................................8 Supporting plans and...Draft Neagh Bann River Basin Management Plan www.ni-environment.gov...

38

Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).  

Energy Technology Data Exchange (ETDEWEB)

Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

Jamieson, Bob; Braatne, Jeffrey H.

2001-10-01

39

Altitudinal zonation of runoff in the Rasina River Basin  

Directory of Open Access Journals (Sweden)

Full Text Available The Rasina River Basin is located on the territory of Central Serbia. The aim of this paper is to determine the amount and spatial distribution of water resources, that is, to establish the participation of altitudinal zones in the formation of the total runoff in the Rasina River Basin area upstream from the "?elije" reservoir. In terms of methodology, determination of water volume is based on four separated petrological-hydrological complexes. Average weighted specific runoff in a given territory is 9 l/s/km2. Metamorphites and magmatites are in the first place per participation in the total water runoff of 42.8 %. The second place belongs to sedimentary rocks that make 39.6 % of the total runoff . Unbound sediments participate in the total runoff value with 10.5 % and limestone with 7.1%. [Projekat Ministarstva nauke Republike Srbije, br. 43007: The Research on Climate Change Influences on Environment: Influence Monitoring, Adaptation and Mitigation

Manojlovi? Predrag

2013-01-01

40

Regionalization of River Basins Using Cluster Ensemble  

Directory of Open Access Journals (Sweden)

Full Text Available In the wake of global water scarcity, forecasting of water quantity and quality, regionalization of river basins has attracted serious attention of the hydrology researchers. It has become an important area of research to enhance the quality of prediction of yield in river basins. In this paper, we analyzed the data of Godavari basin, and regionalize it using a cluster ensemble method. Cluster Ensemble methods are commonly used to enhance the quality of clustering by combining multiple clustering schemes to produce a more robust scheme delivering similar homogeneous basins. The goal is to identify, analyse and describe hydrologically similar catchments using cluster analysis. Clustering has been done using RCDA cluster ensemble algorithm, which is based on discriminant analysis. The algorithm takes H base clustering schemes each with K clusters, obtained by any clustering method, as input and constructs discriminant function for each one of them. Subsequently, all the data tuples are predicted using H discriminant functions for cluster membership. Tuples with consistent predictions are assigned to the clusters, while tuples with inconsistent predictions are analyzed further and either assigned to clusters or declared as noise. Clustering results of RCDA algorithm have been compared with Best of k-means and Clue cluster ensemble of R software using traditional clustering quality measures. Further, domain knowledge based comparison has also been performed. All the results are encouraging and indicate better regionalization of the Godavari basin data.

Sangeeta Ahuja

2012-07-01

 
 
 
 
41

Digital spatial data as support for river basin management: The case of Sotla river basin  

Directory of Open Access Journals (Sweden)

Full Text Available Many real-world spatially related problems, including river-basin planning and management, give rise to geographical information system based decision making, since the performance of spatial policy alternatives were traditionally and are still often represented by thematic maps. Advanced technologies and approaches, such as geographical information systems (GIS, offer a unique opportunity to tackle spatial problems traditionally associated with more efficient and effective data collection, analysis, and alternative evaluation. This paper discusses the advantages and challenges of the use of digital spatial data and geographical information systems in river basis management. Spatial data on social, environmental and other spatial conditions for the study area of 451.77 km2, the Slovenian part of the Sotla river basin, are used to study the GIS capabilities of supporting spatial decisions in the framework of river basin management.

Prah Klemen

2013-01-01

42

Saving the Mekong River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Mekong River (MR) is shared by six countries: China, Myanmar, Thailand, Laos, Cambodia, and Vietnam. Over the years there have been both conflict and cooperation on managing the water resources to meet population growth, climate change and the desire for economic development. Currently, the MR Committee (MRC) has weak policy instruments. This paper exploits an axiomatic bargaining approach to examine how China and the MRC might negotiate effective joint management. We investigate what wel...

Houba, Harold; Pham Do, Kim Hang; Zhu, Xueqin

2011-01-01

43

Nutrient mitigation in a temporary river basin.  

Science.gov (United States)

We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs. PMID:24306442

Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet

2014-04-01

44

Use of the RHS method in Golijska Moravica river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

River Habitat Survey (RHS) is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA)) and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC)) has been developed for reporting purposes. These are based ...

Milanovi? Ana; Urošev Marko; Milijaševi? Dragana

2006-01-01

45

Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume V of V; 1992 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

Virtually all fishery resources of the Columbia River Basin are affected by water resource development initiatives. Mitigation is an action taken to lessen or reduce impacts of projects on fishery resources. The Washington Department of Wildlife`s (WDW) mitigation goal has been one that replaces in-kind or substitutes fishery resources of equal value for those impacted. WDW mitigation efforts have focused on providing hatchery-reared fish of the proper strains needed to compensate for loss of naturally produced stocks. Stewardship of these resources is based on existing WDW policies. WDW policies are written statements designed to resolve a recurring management need or problem. They do not include program goals or organization statements. The existing policies which affect fish hatchery operations are described herein.

Weld, Enair

1993-04-01

46

Dynamic management of water transfer between two interconnected river basins  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper analyzes the dynamic interaction between two regions with interconnected river basins. Precipitation is higher in one river-basin while water productivity is higher in the other. Water transfer increases productivity in the recipient basin, but may cause environmental damage in the donor basin. The recipient faces a trade-off between paying the price of the water transfer, or investing in alternative water supplies to achieve a higher usable water capacity. We analyze the design of...

Cabo, F.; Erdlenbruch, K.; Tidball, M.

2014-01-01

47

Snowmelt Runoff Simulation for the Weber River Basin, Utah  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study is focused on simulating snowmelt runoff for the Weber River Basin using the US Department of Agriculture Snowmelt Runoff Model (SRM). The Weber River Basin covers 6400 square kilometers within the Great Salt Lake Basin, Utah. Major inputs to the SRM are temperature, precipitation, and snow covered area (SCA). The USGS DEM (10 m) is used to delineate and characterize the Weber basin. SCA is estimated from standard MODIS satellite data products. The MODIS 8-day binary product, SNOWM...

Han, Joo-yup; Forster, Richard; Salomonson, Vincent

2009-01-01

48

Morphometric analysis of the Marmara Sea river basins, Turkey  

Science.gov (United States)

The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems (GIS). This study shows that morphometric analysis of the basins in regional level are very important to understand general morphological characteristics of the basins. In this case, tectonic and lithological conditions of the basins have greatly affected the morphometric characteristics of the north and south basins of the Marmara Sea. References Abrahams, AD. 1984. Channel Networks: A Geomorphological Perspective. Water Resources Research, Volume 20, Issue 2, pages 161-188. Horton, R.E. 1932. Drainage basin characteristics. Trans Am Geophys Union 13:350-361. Keller, E.A., Pinter, N. 2002. Active Tectonics Earthquakes, Uplift, and Landscape, Second Edition, Prentice Hall, New Jersey. Ozdemir H., Bird D. 2009. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods, Environmental Geology, vol.56, pp.1405-1415. Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597-646. Strahler, A.N. 1957. Quantitative geomorphology of drainage and channel networks. In: Chow YT (ed) Handbook of appliecl hydrology. Me Graw Hill Book Company, New York. Verstappen, H.Th. 1983. Applied geomorphology. ITC, Enschede.

Elba??, Emre; Ozdemir, Hasan

2014-05-01

49

Scaling issues in sustainable river basin management  

Science.gov (United States)

Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting (national and international laws and agreements), the institutional setting (the formal networks), information management (the information collection and dissemination system), and financing systems (the public and private sources that cover the water management costs). These elements are usually designed for a specific level and are ideally aligned with the other levels. The presentation will go into detail on connecting the different elements of the water management regime between different levels as well as on the overarching governance issues that play a role and will present opportunities and limitations of the linking options.

Timmerman, Jos; Froebich, Jochen

2014-05-01

50

Frost risks in the Mantaro river basin  

Directory of Open Access Journals (Sweden)

Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

G. Trasmonte

2008-04-01

51

The Piracicaba River basin: isotope hydrology of a tropical river basin under anthropogenic stress.  

Science.gov (United States)

The stable isotope content of samples of precipitation and of the river water throughout the Piracicaba basin in Brazil was measured over a two-year period. The isotope values of precipitation follow a consistent pattern of relatively depleted values of both deuterium and oxygen 18 during the rainy summers and enriched ones during the dry winters, with all values aligned slightly above the Global Meteoric Water Line. The isotopic composition of the river water throughout the basin shows a remarkable spatial coherence and much smaller scatter of data than those of the precipitation. The isotope composition of river water is close to that of the precipitation in the rainy season, however, with a consistent lower d-excess value by 1/1000-2/1000. This is attributed to evaporative water loss in the basin, in part an expression of the recycling of water due to the anthropogenic activity in the region. The more divergent values are recorded during high-water stages in the rivers. In many cases, the floods during the beginning of the rainy season are characterized by an enrichment of the heavy isotopes and lower d-excess values when compared to the precipitation, with the opposite situation later in the rainy season. This is interpreted as resulting from the watershed/riverflow interaction pattern, and it thus suggests that the isotope composition can monitor the hydrologic situation in the basin and its changes. PMID:15085983

Martinelli, Luiz A; Gat, Joel R; de Camargo, Plínio B; Lara, Lucienne L; Ometto, Jean P H B

2004-03-01

52

Morphometric analysis of Suketi river basin, Himachal Himalaya, India  

Science.gov (United States)

Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.

Pophare, Anil M.; Balpande, Umesh S.

2014-10-01

53

SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING  

Energy Technology Data Exchange (ETDEWEB)

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

2009-12-03

54

Updating river basin models with radar altimetry  

DEFF Research Database (Denmark)

Hydrological models are widely used by water managers as a decision support tool for both real-time and long-term applications. Some examples of real-time management issues are the optimal management of reservoir releases, flood forecasting or water allocation in drought conditions. Long term-applications include the impact analysis of planned hydraulic structures or land use changes and the predicted impact of climate change on water availability. One of the obstacles hydrologists face in setting up river basin models is data availability, whether because the datasets needed do not exist or because of political unwillingness to share data which is a common problem in particular in transboundary settings. In this context, remote sensing (RS) datasets provide an appealing alternative to traditional in-situ data and much research effort has gone into the use of these datasets for hydrological applications. Many types of RS are now routinely used to set up and drive river basin models. One of the key hydrological state variables is river discharge. It is typically the output of interest for water allocation applications and is also widely used as a source of calibration data as it presents the integrated response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study, the potential for the use of RA over rivers for hydrological applications in data sparse environments is investigated. The research focused on discharge estimation from RA as well as the use of RA for data assimilation to routing models with the objective of improving river discharge forecasts. In the first paper included in this PhD study, the potential for using altimetry for level and discharge monitoring in the Zambezi River basin was assessed. Altimetric levels were extracted using a detailed river mask at 31 VS located on rivers down to 80 m wide. Root mean square errors relative to in-situ levels were found to be between 0.32 and 0.72 m. Discharge was estimated from the altimetric levels for three different data availability scenarios: availability of an in-situ rating curve at the VS, availability of one pair of simultaneous measurement of cross-section and discharge and availability of historical discharge data. For the few VS where in-situ data was available for comparison, the discharge estimates were found to be within 4.1 to 13.8% of mean annual gauged amplitude. One of the main obstacles to the use of RA in hydrological applications is the low temporal resolution of the data which has been between 10 and 35 days for altimetry missions until now. The location of the VS is also not necessarily the point at which measurements are needed. On the other hand, one of the main strengths of the dataset is its availability in near-real time. These characteristics make radar altimetry ideally suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data in a data assimilation framework. The approach chosen was to simulate reach storages using a simple Muskingum routing scheme driven by the output of a rainfall-runoff model and to carry out state updates using the Extended Kalman Filter. The data assimilation approach developed was applied in two case studies: the Brahmaputra and Zambezi River basins. In the Brahmaputra, data from 6 Envisat VS located along the main reach was assimilated. The assimilation improved model performance with Nash-Sutcliffe model efficiency increasing from 0.78 to 0.84 at the outlet of the basin. In the Zambezi River basin, data from 9 Envisat VS located within 2 distinct watersheds was assimilated. Because of the presence of the large Barotse floodplain in the

Michailovsky, Claire Irene B.

2013-01-01

55

75 FR 66389 - Colorado River Basin Salinity Control Advisory Council  

Science.gov (United States)

...The Colorado River Basin Salinity Control Advisory Council...by the Colorado River Basin Salinity Control Act of 1974 (Pub...Resort Hotel, 998 West Mission Bay Drive, San Diego, California...future activities to control salinity. Council members will be...

2010-10-28

56

Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia  

Science.gov (United States)

The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and management. In the past, shared and unclear responsibilities, a spatial mismatch between administrative and river basin boundaries, the lack of relevant information, financial resources and implementation capacity resulted in an uncoordinated and partially uncontrolled exploitation of water resources (Livingstone et al. 2009; Horlemann et al. 2012). The recent decision of the Mongolian government to develop river basin management plans and to provide for their implementation through river basin councils and administrations, and the comparatively good data availability resulting from the R&D project, resulted in the decision to jointly develop a science-based river basin management plan for the KRB as a model region for other river basins of the country. References: Hartwig, M.; Theuring, P.; Rode, M. & Borchardt, D. (2012): Suspended sediments in the Kharaa River catchment (Mongolia) and its impact on hyporheic zone functions. Environmental Earth Sciences 65(5):1535-1546. Hofmann, J.; Venohr, M.; Behrendt, H. & Opitz, D. (2010): Integrated Water Resources Management in Central Asia: Nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Science and Technology 62(2):353-363. Horlemann, L. & Dombrowsky, I. (2012): Institutionalising IWRM in developing and transition countries: the case of Mongolia. Environmental Earth Sciences 65(5):1547-1559. Karthe, D.; Borchardt, D. & Hufert, F. (2012a): Implementing IWRM: Experiences from a Central Asian Model Region. In: Pandya, A.B. (Ed.) (2012): India Water Week 2012. Water, Energy and Food Security: Call for Solutions, Part A3, pp. 1-15. Delhi: Ministry of Water Resources, Government of India. Karthe, D.; Sigel, K.; Scharaw, B. et al. (2012b): Towards an integrated concept for monitoring and improvements in water supply, sanitation and hygiene (WASH) in urban Mongolia. Water & Risk 20:1-5. Karthe, D.; Malsy, M.; Kopp, B. & Minderlein, S. (2013): Assessing Water Availibility and its Drivers in the Context of an Integrated Water Resources Man

Karthe, Daniel

2013-04-01

57

Long lasting dynamic disequilibrium in river basins  

Science.gov (United States)

The river basins of ancient landscapes such as the southeastern United States exhibit disequilibrium in the form of migrating divides and stream capture. This observation is surprising in light of the relatively short theoretical fluvial response time, which is controlled by the celerity of the erosional wave that propagates upstream the fluvial channels. The response time is believed to determine the time required for fluvial landscapes to adjust to tectonic, climatic, and base-level perturbations, and its global estimations range between 0.1 Myr and 10s Myr. To address this discrepancy, we develop a framework for mapping continuous dynamic reorganization of natural river basins, and demonstrate the longevity of disequilibrium along the river basins in the southeastern United States that are reorganizing in response to escarpment retreat and coastal advance. The mapping of disequilibrium is based on a proxy for steady-state elevation, ?, that can be easily calculated from digital elevation models. Disequilibrium is inferred from differences in the value of ? across water divides. These differences indicate that with the present day drainage area distribution and river topology the steady-state channels elevation across the divides differs, and therefore divides are expected to migrate in the direction of the higher ? value. We further use the landscape evolution model DAC to explore the source of the longevity of disequilibrium in fluvial landscapes. DAC solves accurately for the location of water divides, using a combination of an analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC simulations demonstrate topological, geometrical, and topographical adjustments that persist much longer than the theoretical response time, and consequently, extend the time needed to diminish disequilibrium in the landscape and to reach topological and topographical steady-state. This behavior is interpreted as resulting from a positive feedback between divide migration, which causes topological modifications and area change, on the one hand, and channel slope adjustments, which change the erosion rates on opposing sides of water divides and promote their migration, on the other hand. Furthermore, the constantly shifting drainage area and the changing topology of the drainage network are shown to be a possible source for autogenic sediment flux variations.

Goren, Liran; Willett, Sean D.; McCoy, Scott W.; Perron, J. Taylor; Chen, Chia-Yu

2014-05-01

58

Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin  

Science.gov (United States)

Spatiotemporal variations of water volume over inundated areas located in a large river basin have been determined using combined observations from a multisatellite inundation data set, the TOPEX/POSEIDON (T/P) altimetry satellite, and in situ hydrographic stations for the water levels over rivers and floodplains. We computed maps of monthly surface water volume change over the period of common availability of T/P and the multisatellite data (1993-2000). The basin of the Negro River, the largest tributary in terms of discharge to the Amazon River, was selected as a test site. A strong seasonal signal is observed with minima in October and maxima in June. A strong interannual component is also present, particularly important during ENSO years. The surface water change was estimated to be 167 ± 39 km3 between October 1995 (low water) and June 1996 (high water). This result is consistent with previous estimates obtained for the 1995-1996 hydrological cycle over the same area using the JERS mosaic data. The surface water volume change is then compared to the total water volume change inferred from the GRACE satellite for an average annual cycle. The difference between the surface storage change and the total storage change derived from GRACE was computed to estimate the contribution of the soil moisture and groundwater to the total storage change. Our study supports the hypothesis that total water storage is almost equally partitioned between surface water and the combination of soil moisture and groundwater for the Negro River basin. The water volume changes are also evaluated using in situ discharge measurements and the GPCP precipitation product (correlation of 0.61). The results show the high potential for the new technique to provide valuable information to improve our understanding of large river basin hydrologic processes.

Frappart, FréDéRic; Papa, Fabrice; Famiglietti, James S.; Prigent, Catherine; Rossow, William B.; Seyler, FréDéRique

2008-11-01

59

The water footprint of agricultural products in European river basins  

Science.gov (United States)

This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

Vanham, D.; Bidoglio, G.

2014-05-01

60

Lake Murray, Fly and Strickland River Basins, Papua, New Guinea  

Science.gov (United States)

Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

1991-01-01

 
 
 
 
61

Caracterización de las superficies agrícolas y sus volúmenes de irrigación en la cuenca del río San Juan, México / Characterization of agricultural areas and irrigation volumes in the San Juan river basin, Mexico  

Scientific Electronic Library Online (English)

Full Text Available SciELO Mexico | Language: Spanish Abstract in spanish El manejo sustentable de los recursos hidrológicos de la cuenca del rio San Juan es prioritario para el desarrollo regional del nordeste de México. En este trabajo se cualificaron las superficies agrícolas con riego y se predijeron los caudales necesarios para irrigar la superficie bajo tres diferen [...] tes escenarios de precipitación, como una forma de inventariar la necesidad de agua por el sector agrícola. La superficie agrícola total ascendió a 172 000 ha los cultivos más comunes fueron el maíz, el sorgo y los cítricos. Los caudales de agua necesarios para irrigar la superficie agrícola se aproximaron a 1 319, 1 688 y 188 mm³ año-1 cuando se presentan precipitaciones con un 50, 20 y 80% de ocurrencia en la cuenca del río San Juan. La agricultura bajo riego contribuye a disminuir el gasto, conllevar una mayor extracción de agua de los ríos para satisfacer los usos consuntivos de los cultivos cuando existen sequías. Se enfatiza la necesidad de implementar prácticas de manejo sustentable de recursos hidrológicos como una alternativa para amortiguar los cambios potenciales en las superficies agrícolas. Abstract in english The sustainable management of hydrological resources in the San Juan river basin is top-priority for the regional development of Northeastern Mexico. This research report quantified irrigated agricultural areas, and water volumes required for irrigation were predicted under three rainfall scenarios, [...] as an approach to build an inventory of water requirements by the farming sector. The total agricultural area amounted 172 999 hectares, the commonest crops being corn, sorghum and citric fruits. Water volumes required for irrigation approximated 1 319, 1 688 and 188 mm3 year-1 under probability of rainfall occurrence scenarios of 50, 20 and 80% the San Juan river basin. Irrigation agriculture contributes to reduce expenses, leads to a higher water extraction from rivers to satisfy farming consumption when drought periods occur. The need to implement sustainable hydrological resource management practices is stressed, as an alternative to ameliorate potential changes in agricultural areas.

José, Návar; Efraín, Rodríguez Téllez.

2002-04-01

62

Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume IV of V; 1992 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

Operational plans for Cowlitz, Elokomin, Grays River, Kalama Falls, Lewis River and Speelyai, Lower Kalama, Lyons Ferry, Methow, Priest Rapids, Ringold Springs, Rock Island, Toutle, Washougal, and Wells Salmon Hatcheries are individually described.

Peck, Larry

1993-04-01

63

Land Use and Land Cover Changes in a Tropical River Basin: A Case from Bharathapuzha River Basin, Southern India  

Directory of Open Access Journals (Sweden)

Full Text Available A study of the spatial and temporal changes in land use and land cover (LULC was conducted using Remote Sensing and GIS. We analyzed the LULC of Bharathapuzha river basin, south India using multispectral LANDSAT imageries of 1973-2005 time periods. 31% depletion in the natural vegetation cover and 8.7% depletion in wetland agriculture area were seen in the basin during the period. On the other hand the urban spread in the basin increased by 32%. The study highlights the need for a scientific management plan for the sustainability of the river basin, keeping in view the recent climatic anomalies and hydrological conditions of the basin.

P. A. Azeez

2010-10-01

64

The agricultural water footprint of EU river basins  

Science.gov (United States)

This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

Vanham, Davy

2014-05-01

65

Use of the RHS method in Golijska Moravica river basin  

Directory of Open Access Journals (Sweden)

Full Text Available River Habitat Survey (RHS is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.

Milanovi? Ana

2006-01-01

66

Digital spatial data as support for river basin management: The case of Sotla river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Many real-world spatially related problems, including river-basin planning and management, give rise to geographical information system based decision making, since the performance of spatial policy alternatives were traditionally and are still often represented by thematic maps. Advanced technologies and approaches, such as geographical information systems (GIS), offer a unique opportunity to tackle spatial problems traditionally associated with more efficient and effective data collec...

Prah Klemen; Lisec Andrej; Lisec Anka

2013-01-01

67

Erosion and sediment transport in the Ganges river basin (India)  

Science.gov (United States)

Based on sampling of the entire region of the Ganges basin, chemical and sediment load supplied at various parts of the basin have been computed. Annual flux of materials from sub-basin into the main basin and input to the Hoogly estuary have been calculated and compared to major river systems of the world. The total annual load at Calcutta (mouth of the river) was calculated as 411 · 10 6 t (328 · 10 6 t sediment load + 83 · 10 6 t chemical load). Erosion rate (549 t km -2 yr. -1) is among the highest in this river system and controlling factors on a global scale, such as basin area, are discussed in detail. Annual decrease in basin elevation indicates a rapid process of denudation and such rates have a bearing on rates of shelf sediment accumulation.

Abbas, Nazar; Subramanian, V.

1984-02-01

68

Taxonomic revision of the Rineloricaria species (Siluriformes: Loricariidae) from the Paraguay River basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Species of the genus Rineloricaria from the Paraguay River basin were revised, the following species and geographic distributional patterns were found: R. aurata, Paraguay River basin in Brazil and Paraguay, rio Guaporé in Brazil; R. cacerensis, Paraguay River near Cáceres in Brazil; R. lanceolata, Paraguay River basin in Brazil and Paraguay, Guaporé, Ji-Paraná, Purus, Solimões, and Araguaia rivers in Brazil, Marañón and Madre de Dios rivers in Peru; R. parva, Paraguay River basin in B...

Vera-alcaraz, He?ctor S.; Pavanelli, Carla S.; Zawadzki, Cla?udio H.

2012-01-01

69

Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978  

International Nuclear Information System (INIS)

The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

70

LANDSCAPE ECOLOGY ASSESSMENT OF THE TENSAS RIVER BASIN, MISSISSIPPI RIVER DELTA REGION, AND GULF OF MEXICO  

Science.gov (United States)

A group of landscape ecological indicators were applied to biophysical data masked to the Tensas River Basin. The indicators were use to identify and prioritize sources of nutrients in a Mississippi River System sub-basin. Remotely sensed data were used for change detection a...

71

Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin  

Science.gov (United States)

The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

Skoog, A.

2007-12-01

72

An ecosystem services approach in the Tisza river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Tisza River Basin in Hungary and Romania is increasingly impacted by floods and droughts. Ecosystems have the capacity to mitigate the effect of these weather extremes. The provision of ecosystem services – the benefits people obtain from ecosystems – is strongly affected by the way in which ecosystems are managed. This research assesses the influence of land and water management and weather extremes on ecosystems services as well as their importance in the Tisza River Basin. It is co...

Minca, E. L.; Petz, K.; Werners, S. E.

2008-01-01

73

Integrated River Basin Management: A Case for Collaboration.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Integrated river basin management (IRBM) is an approach that has been interpreted in a number of different ways during the last 100 years. Current support for IRBM is based on a ‘myth’ of inter-agency co-ordination. However, increasing complexity and uncertainty in river basin systems has created ‘wicked’ or ‘messy’ land and water management problems. The limited capacity of state institutions to deal effectively with such conditions suggests that the current ‘myth’ must be re...

Watson, Nigel

2004-01-01

74

Development of a Systemwide Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, Volume 1, 1992 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

Results of the second year are reported of a basinwide program to harvest northern squawfish in an effort to reduce mortality due to squawfish predation on juvenile salmonids during their migration from natal streams to the ocean. Six papers are included in this report. They are entitled: feasibility investigation of a commercial longline fishery for northern squawfish in the Columbia River downstream from Bonneville dam; evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers; controlled angling for northern squawfish at selected dams on the Columbia and Snake Rivers in 1992; evaluation of harvest technology for squawfish control in Columbia River reservoirs; effectiveness of predator-removal for protecting juvenile fall chinook salmon released from Bonneville Hatchery; and Northern squawfish sport-reward payments.

Ward, David L.

1994-06-01

75

Glof Study in Tawang River Basin, Arunachal Pradesh, India  

Science.gov (United States)

Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a lead for the qualitative approximation of the amount of bed load transported along the river reach and thus hydropower project sites.

Panda, R.; Padhee, S. K.; Dutta, S.

2014-11-01

76

Amazon river mouth Basin; Bacia da foz do Amazonas  

Energy Technology Data Exchange (ETDEWEB)

Stratigraphic maps of the sedimentary Amazon River Mouth Basin, its formation, geographic localization, geological age, rocks characterization on its several layers are presented. Based on PETROBRAS internal works, the stratigraphic maps shows the facies distribution, depositional sequences, lithology, and geological structure of the basin. 7 figs., 5 refs.

Brandao, J.A.S.L.; Feijo, F.J. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

1994-01-01

77

Runoff generation dynamics within a humid river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The present paper introduces an analytical approach for the description of the soil water balance and runoff production within a schematic river basin. The model is based on a stochastic differential equation where the rainfall is interpreted as an additive noise in the soil water balance and is assumed uniform over the basin, the basin heterogeneity is characterized by a parabolic distribution of the soil water storage capacity and the runoff production occurs for saturation excess. The mode...

Manfreda, S.

2008-01-01

78

Groundwater issues in the Potomac River Basin  

Science.gov (United States)

Great strides have been made by the states of Maryland and Pennsylvania, along with the Commonwealth of Virginia and the District of Columbia, in protecting water quality in the Chesapeake Bay and its tributaries. Since these entities joined forces in a renewed effort to protect water quality in the Chesapeake Bay area, a number of useful programs have been established and public awareness has been raised.The Association of Ground Water Scientists and Engineers and several regional co-sponsors presented Ground Water Issues and Solutions in the Potomac River Basin/Chesapeake Bay Region Conference March 14 at George Washington University, Washington, D.C., to provide insight into groundwater-related issues. Attendance at the conference included 150 groundwater professionals from state, county and private agencies, along with a significant number of students from area universities. More than 30 papers were presented dealing with research projects and field studies. Topics included geohydrologic relationships, groundwater quality impacts, impact of industrial processes on groundwater quality, saltwater intrusion, groundwater protection in the Chesapeake Bay area, land-use impacts on groundwater quality, groundwater modeling, groundwater withdrawals, and policy issues. In addition to the technical sessions, a debate of “How clean is clean?” was held.

Lehr, Jay

79

Greater Green River Basin Production Improvement Project  

Energy Technology Data Exchange (ETDEWEB)

The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

DeJarnett, B.B.; Lim, F.H.; Calogero, D.

1997-10-01

80

Fish, Cubatão River basin, Atlantic Rainforest stream, Paraná, Brazil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The freshwater ichthyofauna of the Cubatão River basin was studied. This drainage belongs to the Atlantic rainforestbiome in Paraná state coastal region, southern Brazil. Considering fish collection data and extensive new collections, 41species were listed of the families Characidae, Erythrinidae, Crenuchidae, Curimatidae, Heptapteridae,Pseudopimelodidae, Callichthyidae, Trichomycteridae, Loricariidae, Gymnotidae, Cichlidae, Anablepidae, Poeciliidae,and Synbranchidae. The river studied show...

Bastos, L. P.; Abilhoa, V.

2009-01-01

 
 
 
 
81

Spatiotemporal variations of precipitation regimes across Yangtze River Basin, China  

Science.gov (United States)

Daily precipitation data during the period of 1960 to 2005 from 147 rain gauging stations over the Yangtze River Basin are analyzed to investigate precipitation variations based on precipitation indices and also consecutive rainfall regimes in both space and time. Results indicate decreasing annual/monthly mean precipitation. Distinct decreases in rainfall days are observed over most parts of the Yangtze River Basin, but precipitation intensity is increasing over most parts of the Yangtze River Basin, particularly the lower Yangtze River Basin. Besides, durations of precipitation regimes are shortening; however, the fractional contribution of short-lasting precipitation regimes to the total precipitation amount is increasing. In this sense, the precipitation processes in the Yangtze River Basin are dominated by precipitation regimes of shorter durations. These results indicate intensified hydrological cycle reflected by shortening precipitation regimes. This finding is different from that in Europe where the intensifying precipitation changes are reflected mainly by lengthening precipitation regimes, implying different regional responses of hydrological cycle to climate changes. The results of this study will be of considerable relevance in basin-scale water resources management, human mitigation of natural hazards, and in understanding regional hydrological responses to changing climate at regional scales.

Zhang, Qiang; Peng, Juntai; Xu, Chong-Yu; Singh, Vijay P.

2014-02-01

82

Drainage basins features and hydrological behaviour river Minateda basin  

International Nuclear Information System (INIS)

Nine basin variables (shape, size and topology) have been analyzed in four small basins with non-permanent run off (SE of Spain). These geomorphological variables have been selected for their high correlation with the Instantaneous unit hydrograph parameters. It is shown that the variables can change from one small basin to another within a very short area; because of it, generalizations about the behaviour of the run off are not possible. In conclusion, it is stated that the variations in geomorphological aspects between different basins, caused mainly by geological constraints, are a very important factor to be controlled in a study of geoecological change derived from climatic change

83

Implication of drainage basin parameters of a tropical river basin of South India  

Science.gov (United States)

Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

Babu, K. J.; Sreekumar, S.; Aslam, Arish

2014-07-01

84

Powder River Basin Coal: Powering America  

Directory of Open Access Journals (Sweden)

Full Text Available Powder River Basin (PRB coal in Wyoming and Montana is used to produce 18 percent of the electricity consumed in the United States. Coal production from the PRB more than doubled between 1994 and 2009. PRB coal companies produced greater amounts of coal at declining real prices over much of this period through investment in equipment and production systems that achieved massive economies of scale. The bulk of PRB coal is shipped to the middle part of America from Texas in the south to Michigan in the north and New York in the east. States that consume significant amounts of PRB coal have electricity rates well below the national average. The largest industrial users of electricity are in these regions. Replacing PRB coal would require almost 5.5 trillion cubic feet of natural gas per year, representing a 26 percent increase in demand. Such an increase in gas consumption would increase prices for natural gas by roughly 76 percent. In such a world, U.S. energy users would pay $107 billion more each year for electricity and natural gas. Hence, by using PRB coal, the U.S. economy avoids $107 billion per year in higher energy costs. Estimates reported in the literature indicate that the gross environmental damages from PRB coal production are $27 billion. Hence, the net social benefits of PRB coal are $80 billion per year. Given the large size and low cost of these reserves, PRB coal will likely supply societal energy needs well into the future as long as the public and their elected officials are willing to accept the environmental impacts in return for the substantial economic benefits from using PRB coal.

Timothy J. Considine

2013-12-01

85

Fish, Barra Bonita River, upper Paraná River basin, state of Paraná, Brazil.  

Directory of Open Access Journals (Sweden)

Full Text Available The Barra Bonita River is an affluent of the left margin of the Ivaí River, upper Paraná River basin. Fishsamples were conduced in November 2006 (spring and in February 2007 (summer, in three sampling stations alongthe Barra Bonita River, using gill nets, casting nets, and sieves. Thirty one fish species were collected, which belong tofive orders, 14 families, and 25 genera. Among them, five are probably new to science.

Bifi, A. G.

2008-01-01

86

Fish, Barra Bonita River, upper Paraná River basin, state of Paraná, Brazil.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Barra Bonita River is an affluent of the left margin of the Ivaí River, upper Paraná River basin. Fishsamples were conduced in November 2006 (spring) and in February 2007 (summer), in three sampling stations alongthe Barra Bonita River, using gill nets, casting nets, and sieves. Thirty one fish species were collected, which belong tofive orders, 14 families, and 25 genera. Among them, five are probably new to science.

Bifi, A. G.; Grac?a, W. J.; Zawadzki, C. H.; Maier, A.

2008-01-01

87

Variations in the total water storage in the major river basins of India from GRACE satellite gravity data  

Science.gov (United States)

We present an estimate of total water storage variations of the major river basins of India during the period of 2002 to mid 2008 from modelling of time-variable gravity field observed by GRACE satellite by utilising the scheme of Swenson and Wahr, (2002). The largest annual volume change is observed over the upper Ganga basin, followed by the lower Gnaga basin and the Yamuna basin of northern India. Basins of northern India show a declining trend of water storage over this time period, whereas the Godavari basin, the largest basin of central south India, as well as basins in central India show similar seasonal variations but increasing trends. It is interesting to note that these trends are prevalent over a decadal time period of ground water level and therefore the trend observed from GRACE data can be extrapolated backward. If these trends are sustained over a long time period, northern India and Bangladesh will lead to a major water crisis

Tiwari, V. M.; Wahr, J. M.; Swenson, S.

2008-12-01

88

Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study  

Directory of Open Access Journals (Sweden)

Full Text Available Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically-based and distributed modelling schemes employing data assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. This study is funded by the European Space Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-source software tools to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic–hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators. The forecasting system delivers competitive forecasts for the Kavango River, which are reliable and sharp. Results indicate that the value of the forecasts is greatest for intermediate lead times between 4 and 7 days.

P. Bauer-Gottwein

2014-10-01

89

Quantifying the extent of river fragmentation by hydropower dams in the Sarapiqui?? River Basin, Costa Rica  

Science.gov (United States)

1. Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiqui?? River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (< 15 m tall) and operate as water diversion projects. 2. While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiqui?? River Basin. 3. Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiqui?? River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km). 4. Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiqui?? River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity. Copyright ?? 2007 John Wiley & Sons, Ltd.

Anderson, E.P.; Pringle, C.M.; Freeman, M.C.

2008-01-01

90

Quantifying the extent of river fragmentation by hydropower dams in the Sarapiqui River Basin, Costa Rica  

Science.gov (United States)

1. Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiqui River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (< 15 m tall) and operate as water diversion projects. 2. While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiqui River Basin. 3. Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiqui River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9km) and Lower Montane Rain Forest (168.2km). 4. Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiqui River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

Anderson, E.P.; Pringle, C.M.; Freeman, M.C.

2008-01-01

91

Digital Earth system based river basin data integration  

Science.gov (United States)

Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

Zhang, Xin; Li, Wanqing; Lin, Chao

2014-12-01

92

River Basin Water Assessment and Balance in fast developing areas in Viet Nam  

Science.gov (United States)

Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less water-demanding crops, water treatment and recycling and other ‘best water management' practices.

Le, Van Chin; Ranzi, Roberto

2010-05-01

93

PREDICTION OF MINERAL QUALITY OF IRRIGATION RETURN FLOW. VOLUME III. SIMULATION MODEL OF CONJUNCTIVE USE AND WATER QUALITY FOR A RIVER SYSTEM OR BASIN  

Science.gov (United States)

This volume of the report documents the development of a digital computer coded simulation model to predict the effect of irrigation of agricultural lands on the resulting irrigation return flow quality. The model is capable of simulating conjunctive uses of water, however, valid...

94

SUGGESTIONS ON RURAL DEVELOPMENT FOR TUZLA RIVER BASIN (NW TURKEY  

Directory of Open Access Journals (Sweden)

Full Text Available Rural development consists of a wide variety of new activities such as organic farming and livestock, region-specific products, nature conservation and landscape management, rural tourism, and the development of short supply changes. This research aimed to use a SWOT analysis to identify strategies for rural development in the Tuzla River Basin.The Tuzla River Basin is located on the southern side of the Marmara Region and extends in northeast-southwest direction from the Aegean Sea to the western slope of Mt. Ida. This basin is divided into three sections, namely upper, middle and lower sections along the Tuzla River Basin. Some nine villages which represented three basins were selected from 35 villages using the methods of stratified sampling for this study. Some 200 surveys were performed in regard to the household number of each village and at 95% confidence level. According to the survey results, the investigated relation between the form of rural economic activity and the rural development characteristics was determined. SWOT and QSPM analysis techniques were used to explain poor conditions and future possibilities of rural development in the basin. In the rural areas of the basin, the form of agriculture, low-income animal husbandry carried out under natural & traditional conditions, emigration and traditional lifestyle are the causes of obstacles to rural development.

Vedat ÇALI?KAN

2012-12-01

95

Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume IV of IV; Washington: Rocky Reach Hatchery Addendum, 1992 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

Rocky Reach Hatchery is located along the Columbia Paver, just downstream from Rocky Reach Dam. Site elevation is 800 feet above sea level. The Turtle Rock Island facility, located 2 miles upstream, is operated as a satellite facility (shared with the Washington Department of Wildlife). The facility is staffed with 2.75 FTE`S. The hatchery was originally designed as a mile-long spawning channel at Turtle Rock Island. Rearing units consist of eight vinyl raceways at Rocky Reach and four rearing ponds at Turtle Rock. Water rights are held by Chelan County PUD and total 3,613 gpm from the Columbia River. Water available for use in the Turtle Rock rearing ponds averages 12,000 gpm from the Columbia River. Rocky Reach Hatchery and the Turtle Rock satellite facility are owned by Chelan County PUD. They are operated as mitigation facilities for the fishery impacts caused by the construction and operation of Rocky Reach Dam. Rocky Reach Hatchery is used for incubation and early rearing of upriver bright (URB) fall chinook. Fingerlings are later transferred to the Turtle Rock facility for final rearing and release.

Peck, Larry

1993-08-01

96

Continuous flow simulation in the Bârlad river basin, Romania  

Science.gov (United States)

This paper presents the partial results obtained into the project CLIMHYDEX ("Changes in Climate Extremes and associated impact on hydrological events in Romania") project that, among others, have as objectives the development of hydrological models at different spatial and temporal scales and the impact of climate change on extreme runoff in Bârlad catchment. To estimate the impact of climate change and variability on the flow regime in Bârlad catchment CONSUL hydrological model, with lumped parameters, was used. This rainfall-runoff deterministic model simulates the most significant hydrological processes within a hydrographic basin: snow-melting, interception, retention in the depressions, evapotranspiration, infiltration, surface runoff, hypodermic runoff, percolation, base runoff. According to the schematic representation (physiographic modelling) of how water flows and collects in a river basin the model computes the discharge hydrographs on selected simulation points on the river network and then performs their routing and composition on the main river and tributaries. After physiographic modelling resulted for Bârlad river basin: 56 sub-basins and 30 river reaches. CONSUL model was calibrated using historical data in Bârlad river basin by simulating the flow during 1975-2010. Calculation of average precipitation and air temperature (hydrological model input data) for each sub-basin was performed using a pre-processing program of meteorological data from original rectangular grid nodes corresponding to Bârlad river basin, averaging being achieved as weighted values based on the representativeness of these nodes for each analyzed sub-basin. In order to estimate the initial values of CONSUL model parameters the generalization relationships of these parameters based on morphometric characteristics of the river basin or river reach were used. Calibration of model parameters was performed in two stages: (i) individual and (ii) globally. (i) Individual calibration on model structures was made based on the 25 rainfall-runoff events, chosen to cover a wide range of possible situations in the case of floods formation. First step was to determine, by individual basin calibration, the infiltration and unit hydrograph parameters, for the sub-basins controlled by gauging stations in the Bârlad river basin. These parameters allowed then the parameters estimation for the ungauged sub-basins. (ii) Global calibration of rainfall-runoff model parameters was done by simulating the flow on considered calibration period. This second stage allowed the recalibration of infiltration and unit hydrograph parameters at the sub-basins uncontrolled hydrometric as well the calibration of routing equation parameters. CONSUL model simulation results showed that the model gives the best results, in particular in the case of floods generated by precipitation evenly distributed in space. Deviations of flow hydrographs simulated by CONSUL and observed are due to both model errors and insufficient meteorological and hydrological data. The main errors are caused by the uncertainty related to the average precipitation computed values on each basin and its variable spatial and temporal distribution.

Corbu?, Ciprian; Mic, Rodica Paula; M?trea??, Marius

2014-05-01

97

Tritium concentrations in the Yukon River Basin and their implications  

International Nuclear Information System (INIS)

The tritium transient, produced by atmospheric nuclear weapons testing in the 1950s and 1960s, has been used to determine timescales for large-scale hydrologic processes such as the movement of water through river basins. A long-term tritium data base is available from downstream stations on the Yukon River from 1961 to the present. This data has been analyzed using a lumped-sum parameter model to obtain estimates of fraction of base flow and timescales for flow of water through the basin. The data shows that 63% of the water exported by the Yukon River has been retained in the basin less than a year. The average residence time for the older water is approximately 17 years. (author)

98

Uncertainties in river basin data at various support scales – Example from Odense Pilot River Basin  

Directory of Open Access Journals (Sweden)

Full Text Available In environmental modelling studies field data usually have a spatial and temporal scale of support that is different from the one at which models operate. This calls for a methodology for rescaling data uncertainty from one support scale to another. In this paper data uncertainty is assessed for various environmental data types collected for monitoring purposes from the Odense river basin in Denmark by use of literature information, expert judgement and simple data analyses. It is demonstrated how such methodologies can be applied to data that vary in space or time such as precipitation, climate variables, discharge, surface water quality, soil parameters, groundwater abstraction, heads and groundwater quality variables. Data uncertainty is categorised and assessed in terms of probability density functions and temporal or spatial autocorrelation functions. The autocorrelation length scales are crucial when support scale is changing and it is demonstrated how the assumption used when estimating the autocorrelation parameters may limit the applicability of these autocorrelation functions.

J. C. Refsgaard

2006-08-01

99

Scenarios of changes of selected components of hydrosphere and biosphere in catchment basin of Hron River and Vah River as consequence of climatic change  

International Nuclear Information System (INIS)

This text-book consist of the following parts: (1) Hydrologic and climatic relationship of catchment basins; (2) Space interpretation of outputs of climatic scenarios in catchment basins of Hron River and Vah River by geostatistical methods; (3) Teleconnection of annual overflows with SO, NAO, AO and QBO phenomenons; (4) Snow; (5) Mathematical model for modelling of influence of climatic changes on runoff processes; (6) Multi-linear model of transformation of runoff in river-basins; (7) Influence of climatic change on capacity utilization of reserve volume of water reservoir Orava River; (8) Quality of surface waters; (9) Influence of climatic changes on biological factors and soil hydrology; (10) Proposal of framing adaptation arrangements.

100

Backwater effects in the Amazon River basin of Brazil  

Science.gov (United States)

The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

1991-01-01

 
 
 
 
101

Dynamic water accounting in heavily committed river basins  

Science.gov (United States)

Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

Tilmant, Amaury; Marques, Guilherme

2014-05-01

102

Modeling of the river discharge from the Lena River Basin  

Science.gov (United States)

Climatic model of the river runoff with 1/3 degree resolution is presented in the paper. The model is the linear reservoir model i.e., each cell in the model is the reservoir or the cascade of the reservoirs. Data of the ERA40 and MERRA reanalysis for the numerical modeling of the river runoff for the Lena River was used as well as the comparison with the observational data. The control data concerning the river discharge was taken from the results of the measurements on the hydrological station Lena - Kusur. The river discharge model vas also adapted to the delta zone with the 1.8 km resolution.

Kuzin, Viktor I.; Lapteva, Natalya A.

2014-11-01

103

Optimal water allocation in the Mekong river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Mekong River is the dominant geo-hydrological structure in mainland Southeast Asia, originating in China and flowing through or bordering Myanmar, Laos, Thailand, Cambodia, and Vietnam. Whereas water resources in the wet season are more than adequate to fulfill basin needs, there are regional water shortages during the dry season, when only 1-2% of the annual flow reaches the Delta. Recent rapid agricultural and economic development in the basin has led to increasing competition among the...

Ringler, Claudia

2001-01-01

104

Study of chemical and geochemical qualities of Bouregreg river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

By studying, since the summer of 2003 until the winter of 2005 on various matrices (rocks, sediments, suspended matter, colloidal phase and dissolved phase), a geochemical statement (major and trace elements) was established on the Bouregreg river basin in Morocco. Geochemical study of waters and solid products or colloid transported on the whole of the basin can be particularly effective on the one hand to understand the transport and exchange processes of natural and anthropic constituents ...

Bounouira, Hamid

2007-01-01

105

THE CONFLUENCE RATIO OF THE TRANSYLVANIAN BASIN RIVERS  

Digital Repository Infrastructure Vision for European Research (DRIVER)

There are many possibilities to assess the hydrological and geomorphological evolution of a territory. Among them, one remarks the confluence ratio of the rivers belonging to different catchment areas. The values of this indicator may provide information regarding the stage of evolution of the fluvial landforms in the Transylvanian Basin. Also, the values may serve for the calculation of other parameters of catchment areas like: the degree of finishing of the drainage basin for its correspond...

RO?IAN GH.; Rusu, R.; -l, Muntean O.; Ma?cica?s?an, V.; HORVATH CS; Arghius?, V.; Baciu, N.; Dobrei, G.

2014-01-01

106

[Monogenea of the fishes from Chu River basin].  

Science.gov (United States)

Results of the long-term faunistic study of Monogenea from fishes of the Chu River basin are reported. Fauna of Monogenea in the studied area was found to include 51 species of 11 genera and 5 families. Thirteen parasite species occurred in the mountain part of the basin, and 40 species inhabit the valley zone, including 10 species of the Amur faunistic complex probably introduced to Kyrgyzstan together with acclimatized fishes. PMID:18825925

Karabekova, D U

2008-01-01

107

Impact of GRACE signal leakage over the Congo River Basin  

Science.gov (United States)

The Congo Basin is the world's third largest in size, and second only to the Amazon River in discharge. The impact and connections of this hydrologic flux with the region's climate, biogeochemical cycling, and terrestrial water storage (TWS), especially in wetlands, is clearly of great importance. Yet, there is a great lack of published research documenting the Congo Basin terrestrial water balance. This lack of research is related in part to the limited amount of in-situ data; however, the abundance of spaceborne data suggests an opportunity for discovery. The Congo River is the only major river to cross the equator twice. In doing so, the basin lies in both the Northern and Southern Hemisphere such that it receives year-round rainfall from the migration of Inter-Tropical Convergence Zone (ITCZ). After the north has its wet season in the spring and summer, the ITCZ moves south and the remainder of the basin receives large amounts of rain. Consequently, the movement of ITCZ can also be observed from the Gravity Recovery and Climate Experiment (GRACE) TWS changes over the northern and southern boundaries over the Congo. This spatial pattern of the TWS variations are different from that over the Amazon Basin, where the strongest positive or negative annual water storage anomalies are observed to be centered inside the basin. In this study, we examine individual monthly geographical distribution of GRACE TWS changes from various RL05 products, and determine the leakage-contaminated monthly solutions by comparison with reproduced TWS variations from Hillslope River Routing (HRR) model in sub-basin scale. We also present a methodology to empirically remove the signal leakage, and consequently improve the GRACE TWS estimates over the entire Congo Basin.

Lee, H.; Beighley, R. E.; Duan, J.; Shum, C.; Alsdorf, D. E.; Andreadis, K.

2013-05-01

108

Constructal view of scaling laws of river basins  

Digital Repository Infrastructure Vision for European Research (DRIVER)

River basins are examples of naturally organized flow architectures whose scaling properties have been noticed long ago. Based on data of geometric characteristics, Horton [Horton, R.E., 1932. Drainage basin characteristics. EOS Trans. AGU 13, 350–361.], Hack [Hack, J.T., 1957. Studies of longitudinal profiles in Virginia and Maryland. USGS Professional Papers 294-B, Washington DC, pp. 46–97.], and Melton [Melton, M.A, 1958. Correlation structure of morphometric properties of dra...

Reis, A. Heitor

2006-01-01

109

Seismism as genetic factor of landslides in Belica River basin  

Directory of Open Access Journals (Sweden)

Full Text Available During map in Belica River Basin, it was found two areas with continuously developed landslides that could mark as sliding belt. Genetic analysis established that the development of the sliding belts can not be fully explained on the basis of geological or geomorphologic features. Therefore, it was accessed, in this paper, to seismic analysis as potential genetic factor of this colluvial process. This analysis is required to analyze of recent seismism as well as paleoseismism. Genetic characteristic of the earthquake has been analyzed on the basis of data collected during instrumental period as well as the structural and morphological characteristics of the river basin and its surroundings.

Miloševi? Marko V.

2008-01-01

110

Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

2003-03-01

111

Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

2003-03-01

112

Monitoring the Water Quality of the Nation's Large Rivers: Columbia River Basin NASQAN Program  

Science.gov (United States)

In 1995, the U.S. Geological Survey's (USGS) National Stream Quality Accounting Network (NASQAN) Program began monitoring the water quality of the Columbia River Basin, applying a basinwide approach in order to understand water quality on a regional scale. A primary objective of the Columbia NASQAN Program is to provide an ongoing characterization of the concentrations and mass flux (amount of material or load passing a location per unit time, generally expressed as tons per day) of sediment and chemicals at key locations in the basin. These data can then be used to determine regional source areas for these materials, and to assess the effect of human influences on observed concentrations and constituent loads. NASQAN complements the ongoing USGS National Water Quality Assessment (NAWQA) Program, which is performing a detailed assessment in three subbasins of the Columbia River Basin. NASQAN monitors the larger rivers in the basin, downstream of NAWQA study units.

Kelly, Valerie J.; Hooper, Richard P.

1998-01-01

113

Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The objective of this study is to determine spatio-temporal variations of water volume over inundated areas located in large river basins using combined observations from the Synthetic Aperture Radar (SAR) onboard the Japanese Earth Resources Satellite (JERS-1), the Topex/Poseidon (T/P) altimetry satellite, and in-situ hydrographic stations. Ultimately, the goal is to quantify the role of floodplains for partitioning water and sediment fluxes over the great fluvial basins of the world. SAR im...

Frappart, Fre?de?ric; Seyler, Fre?de?rique; Martinez, Jean-michel; Leon, Juan Gabriel; Cazenave, A.

2005-01-01

114

Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin  

Science.gov (United States)

During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15 Danube monitoring sites in Germany, Austria, Slovakia, Hungary, Slovenia and Serbia. Most of these sites have continuous stable isotope and tritium records of over 10 years. The longest and most complete record of isotopes in precipitation and the Danube is from Vienna, which contains continuous tritium and stable isotope records since the 1960s. Previous estimates of residence time using tritium in the upper Danube are about 3-5 years (Rank et al., 1998, Yurtsever, 1999). However, these estimates were based on a tritium record up to 1995 and some of the parts of the observed time series were not represented well by the models. We are now re-evaluating the upper Danube residence time using a complete record covering the entire tritium transient created by atmospheric nuclear weapons testing (1964-2005). Several combinations of lumped parameter models are being tested using MULTIS and LUMPY. The models assume two main water components in parallel; a "fast" component that represents water with a short residence time (less than one year), resulting from recent precipitation and fast runoff, and a "slow" or "old" component representing discharge of older groundwaters to the river. Preliminary results obtained during this exercise, as well as those determined using other environmental tracers, are providing new insights into the age distribution of water in the upper Danube. Initial calculations with the complete tritium record for Vienna suggest that the mean residence time is substantially older than previous estimates. This study also demonstrates the value of the GNIP/GNIR/WISER dataset for examining dynamics of surface water systems.

Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

2010-05-01

115

Land Use and Land Cover Changes in a Tropical River Basin: A Case from Bharathapuzha River Basin, Southern India  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A study of the spatial and temporal changes in land use and land cover (LULC) was conducted using Remote Sensing and GIS. We analyzed the LULC of Bharathapuzha river basin, south India using multispectral LANDSAT imageries of 1973-2005 time periods. 31% depletion in the natural vegetation cover and 8.7% depletion in wetland agriculture area were seen in the basin during the period. On the other hand the urban spread in the basin increased by 32%. The study highlights the need for a scientific...

Azeez, P. A.; Nikhil Raj, P. P.

2010-01-01

116

Impacts of urbanization on river system structure: a case study on Qinhuai River Basin, Yangtze River Delta.  

Science.gov (United States)

Stream structure is usually dominated by various human activities over a short term. An analysis of variation in stream structure from 1979 to 2009 in the Qinhuai River Basin, China, was performed based on remote sensing images and topographic maps by using ArcGIS. A series of river parameters derived from river geomorphology are listed to describe the status of river structure in the past and present. Results showed that urbanization caused a huge increase in the impervious area. The number of rivers in the study area has decreased and length of rivers has shortened. Over the 30 years, there was a 41.03% decrease in river length. Complexity and stability of streams have also changed and consequently the storage capacities of river channels in intensively urbanized areas are much lower than in moderately urbanized areas, indicating a greater risk of floods. Therefore, more attention should be paid to the urban disturbance to rivers. PMID:25116497

Ji, Xiaomin; Xu, Youpeng; Han, Longfei; Yang, Liu

2014-01-01

117

Regional cooperation efforts in the Mekong River Basin : mitigating river-related security threats and promoting regional development  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs), established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to po...

Susanne Schmeier

2009-01-01

118

Trophic ecology of Saccodon dariensis (Pisces: Parodontidae in Guatapé River tributaries, Magdalena River Basin, Colombia  

Directory of Open Access Journals (Sweden)

Full Text Available Objective. To study the trophic ecology of Saccodon dariensis in the Peñoles and El Cardal streams, Guatape River mid-basin, Magdalena River Basin, Colombia. Materials and methods. To compare differences in size between individuals from the two streams in terms of hydrologic periods, oral polymorphisms or sexes, an analysis of variance was conducted (ANOVA. Volume percentages, frequency of occurrence and the food importance index (FII were determined; a principal component analysis (PCA and an ANOVA was carried out to determine the diet differences between streams, climatic periods, oral polymorphism, sexes and developmental states, as well as a Mann-Whitney pairwise comparison test for each food category. Results. A significant difference was found in size between individuals of the two streams with different oral polymorphism. Algae are the most important food item (FII: 91.9%, followed by Trichoptera and insect remains (FII: 4.3%, and vegetal material (FII: 1.8%. The PCA did not indicate significant differences in diet between streams, climatic periods, oral polymorphisms, sexes or developmental states, but the ANOVA and Mann-Whitney pairwise comparison test indicated differences in oral morphotype, where individuals with a straight mouth consumed more vegetal material. We also observed different proportions in consumption of different algae genera, and increased consumption of insects in ontogeny, this being higher in individuals with a straight mouth. Conclusions. The species is algaevorous. The oral morphotypes of S. dariensis may be related to a trophic polymorphism that confers different trophic habits and differential access to the items that constitute their diet.

Ana Restrepo-Gómez

2014-03-01

119

Digital Atlas of the Upper Washita River Basin, Southwestern Oklahoma  

Science.gov (United States)

Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

2008-01-01

120

AEROBIC DENITRIFICATION: IMPLICATIONS FOR THE MOM RIVER BASIN  

Science.gov (United States)

Each year about 1.6 million metric tons of nitrogen, mostly from agriculture, is discharged from the lower Mississippi/Atchafalaya River Basin into the Gulf of Mexico, and each spring this excess nitrogen fuels the formation of a huge hypoxic zone in the Gulf. In the Mississippi...

 
 
 
 
121

Biomorphological structure of the flora of Vychegda River water basin  

Directory of Open Access Journals (Sweden)

Full Text Available The annotated list and biomorphological analysis of water flora from the basin of Vychegda River are represented. Flora of water bodies is mostly represented by perennial herbaceous plants which have high expansion potential. A lot of species from these flora belong to the special biomorphological group of polycarpous long-lived plants.

Boris Yu. Teteryuk

2013-04-01

122

Biomorphological structure of the flora of Vychegda River water basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The annotated list and biomorphological analysis of water flora from the basin of Vychegda River are represented. Flora of water bodies is mostly represented by perennial herbaceous plants which have high expansion potential. A lot of species from these flora belong to the special biomorphological group of polycarpous long-lived plants.

Boris Yu. Teteryuk

2013-01-01

123

Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin -Upper Blue Nile Basin of Ethiopia.  

Science.gov (United States)

Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin. PMID:24250755

Dile, Yihun Taddele; Berndtsson, Ronny; Setegn, Shimelis G

2013-01-01

124

RUNOFF POTENTIAL OF MURE? RIVER UPPER BASIN TRIBUTARIES  

Directory of Open Access Journals (Sweden)

Full Text Available Runoff Potential of Mure? River Upper Basin Tributaries. The upper basin of the Mure? River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

V. SOROCOVSCHI

2012-03-01

125

Analysis of drought determinants for the Colorado River Basin  

Energy Technology Data Exchange (ETDEWEB)

Ongoing drought in the Colorado River Basin, unprecedented urban growth in the watershed, and numerical model simulations showing higher temperatures and lower precipitation totals in the future have all combined to heighten interest in drought in this region. In this investigation, we use principal components analysis (PCA) to independently assess the influence of various teleconnections on Basin-wide and sub-regional winter season Palmer Hydrological Drought Index (PHDI) and precipitation variations in the Basin. We find that the Pacific Decadal Oscillation (PDO) explains more variance in PHDI than El Nino-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the planetary temperature combined for the Basin as a whole. When rotated PCA is used to separate the Basin into two regions, the lower portion of the Basin is similar to the Basin as a whole while the upper portion, which contains the high-elevation locations important to hydrologic yield for the watershed, demonstrates poorly defined relationships with the teleconnections. The PHDI for the two portions of the Basin are shown to have been out of synch for much of the twentieth century. In general, teleconnection indices account for 19% of the variance in PHDI leaving large uncertainties in drought forecasting.

Balling Jr, R.C. [Department of Geography, Arizona State University, Tempe, AZ 85287 (United States); Goodrich, G.B. [Department of Geography and Geology, Western Kentucky University, Bowling Green, KY 42101 (United States)

2007-05-15

126

Hydrological modeling of the Mun River basin in Thailand  

Science.gov (United States)

SummarySources of pollution in river basins are increasing due to rapid changes in land uses and excessive nutrient application to crops which lead to degraded instream water quality. In this connection, the Mun River basin, one of the important and largest river basins in Thailand, has been studied. Comparative figures of nutrients in the Mun's water over a decade showed an increased total nitrogen (TN) and phosphorus (TP) ratio in the Lower Mun region (TN:TP > 14). Laboratory analysis of weekly water samples showed a realistic nutrient response when daily rainfall was compared to the seasonal water quality data collected by the Pollution Control Department (PCD). The Hydrologic Simulation Program - FORTRAN (HSPF) was calibrated and used to assess the effects of different land uses on river water quality. Model parameters related to hydrology and sediment were calibrated and validated using relevant measurements by the Royal Irrigation Department (RID). With a reasonable and acceptable model performance (r2 = 0.62), the highest simulated runoff was observed in urban areas. The trend of agricultural land (as a percentage of total area) - total nitrogen showed a linear relationship of a good correlation (i.e. r2 = 0.85). Based on the findings, it can be concluded that this model is expected to provide vital information for developing suitable land management policies and strategies to improve river water quality.

Akter, Aysha; Babel, Mukand S.

2012-07-01

127

Colorado River Basin Water Supply and Demand Study  

Science.gov (United States)

The Colorado River Basin Water Supply & Demand Study (Study), part of the Basin Study Program under the Department of the Interior's WaterSMART Program, is being conducted by the Bureau of Reclamation and agencies representing the seven Colorado River Basin States. The purpose of the Study is to assess future water supply and demand imbalances in the Colorado River Basin over the next 50 years and develop and evaluate options and strategies to resolve those imbalances. The Study is being conducted over the period from January 2010 to September 2012 and contains four major phases: Water Supply Assessment, Water Demand Assessment, System Reliability Analysis, and Development and Evaluation of Opportunities for balancing supply and demand. To address the considerable amount of uncertainty in projecting the future state of the Colorado River system, the Study has adopted a scenario planning approach that has resulted in four water supply scenarios and up to six water demand scenarios. The water supply scenarios consider hydrologic futures derived from the observed historical and paleo-reconstructed records as well as downscaled global climate model (GCM) projections. The water demand scenarios contain differing projections of parameters such as population growth, water use efficiency, irrigated acreage, and water use for energy that result in varying projections of future demand. Demand for outdoor municipal uses as well as agricultural uses were adjusted based on changing rates of evapotranspiration derived from downscaled GCM projections. Water supply and demand scenarios are combined through Reclamation's long-term planning model to project the effects of future supply and demand imbalances on Colorado River Basin resources. These projections lend to an assessment of the effectiveness of a broad range of options and strategies to address future imbalances.

Prairie, J. R.; Jerla, C.

2012-12-01

128

Palaeoclimatological perspective on river basin hydrometeorology: case of the Mekong Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Globally, there have been many extreme weather events in recent decades. A challenge has been to determine whether these extreme weather events have increased in number and intensity compared to the past. This challenge is made more difficult due to the lack of long-term instrumental data, particularly in terms of river discharge, in many regions including Southeast Asia. Thus our main aim in this paper is to develop a river basin scale approach for assessing interannual hydrometeorological a...

Ra?sa?nen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.

2013-01-01

129

Development of a System-Wide Program, Volume II : Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, 1992 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

The authors report their results of studies to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Three papers are included in this report. They are entitled: (1) Development of a Systemwide Predator Control Program: Indexing and Fisheries Evaluation; (2) Economic, Social and Legal Feasibility of Commercial Sport, and Bounty Fisheries on Northern Squawfish; (3) Columbia River Ecosystem Model (CREM): Modeling Approach for Evaluation of Control of Northern Squawfish Populations using Fisheries Exploitation.

Ward, David L.; Nigro, Anthony A. (Oregon Department of Fish and Wildlife); Willis, Charles F. (S.P. Cramer and Associates., Gresham, OR)

1994-06-01

130

Information technology and decision support tools for stakeholder-driven river basin salinity management  

Energy Technology Data Exchange (ETDEWEB)

Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

Quinn, N.W.T; Cozad, D.B.; Lee, G.

2010-01-01

131

Quality of surface waters in the lower Columbia River Basin  

Science.gov (United States)

This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the chemical composition of the streams. The maximum dissolved-solids concentration and hardness of water observed in major irrigation areas were 507 and 262 parts per million, respectively, for the. Walla Walla River near Touchet, Wash. In terms of the U.S. Salinity Laboratory Staff classification (1954, p. 80), water in most streams in the basin has low salinity and sodium hazards and is suitable for irrigation. A salt-balance problem does exist in the Hermiston-Stanfield, Oreg., area of the Umatilla River basin, and because of poor drainage, improper irrigation practices could cause salt-balance problems in the Willamette River Valley, Oreg., in which irrigation is rapidly increasing. Pollution by sewage disposal has reached undesirable levels in the Walla Walla River, in the Willamette River from Eugene to Portland, Oreg., and in the Columbia River from Portland to Puget Island. In the lower reaches of the Willamette River, the pollution load from sewage and industrial-waste disposal at times depletes the dissolved oxygen in the water to concentrations below what is considered necessary for aquatic life. Water in most of the tributaries to the lower Columbia River is of excellent quality and after some treatment could be used for industrial and municipal supplies. The principal treatment required would be disinfection and turbidity removal.

Santos, John F.

1965-01-01

132

Demarcation of Groundwater Prospective Zones in Humid Tropical River Basin: A Geospatial Approach  

Digital Repository Infrastructure Vision for European Research (DRIVER)

roundwater, being a vital resource, needs to be developed with proper understanding about its occurrence in time and space. Unscientific sand mining is a dominant environmental issue in this humid tropical river basin namely Bharathapuzha river basin geographically on central part of Kerala state, southwest part of India. The sandy layers along the river course declines its water holding capacity due to indiscriminate sand mining throughout the river basin. For a sustainable development of wa...

Girish Gopinath; Sreela Reghu; Reji Srinivas; Rajesh Regunath; Kurian Sajan

2013-01-01

133

Hydrological study of La Paz river basin  

International Nuclear Information System (INIS)

This work aims to determine the hydrological parameters for the La Paz river, by using tracer techniques and also the determination of the water quality parameters for the study of the behavior along the stream. This study intends the prediction and control of the water contamination by using mathematical modelling

134

Paleofloods in the Red River Basin  

Science.gov (United States)

This site describes flooding of the Red River, which crosses the United States/Canadian Border at the Minnesota-North Dakota Boundary. It has sections on dendrochronology, past floods, climate change and related publications. The site also links to many other geologic sites.

135

Development of river flood model in lower reach of urbanized river basin  

Science.gov (United States)

Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in the region.

Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

2014-05-01

136

Hazardous materials in aquatic environments of the Mississippi River Basin  

International Nuclear Information System (INIS)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy's programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993

137

Water Quality of the upper Litani River Basin, Lebanon  

Science.gov (United States)

Water pollution is a major problem in Lebanon, which is has been exacerbated lately. However, surface water sources are most exploited, and more certainly the water from rivers. The Litani River has been lately subjected to several aspects of deterioration in its quality. This includes the major physiochemical characteristics. The aims of this study are to assess the seasonal variations in water quality in the Upper Litani River Basin, including the Qaraaoun Lake. The collected samples were from representative sites along the river, and this was carried out at several dates during 2010 and 2011. The carried analysis implies the physical (pH, T°, TDS, EC), chemicals (Na+, Ca2+, Mg2+, Cl-, SO2-4, NH3+, NO-3, PO2-4, K+, Heavy metals. This resulted numeric data are being compared with WHO guidelines. In addition, PCA was applied to evaluate the data accuracy. It can be conclude that the measured variables used are creditable for the assessment.

Haydar, Chaden Moussa; Nehme, Nada; Awad, Sadek; Koubaissy, Bachar; Fakih, Mohamad; Yaacoub, Ali; Toufaily, Joumana; Villeras, Frederic; Hamieh, Tayssir

138

Powder River Basin: bright light in the west  

International Nuclear Information System (INIS)

Annual production of coal from the Powder River Basin, USA has increased by 31% during the past five years. The coal has low sulphur content and a low price. In 1990 utility coal shipments from the PRB exceeded 194 million tons and are expected to increase to 40 million tpy by the year 2000. Coal prices for utility deliveries are expected to increase only marginally during the next few years. The market for PRB coal is discussed. Utility market price indicators for the Illinois Basin are tabulated. The information was extracted from Resource Data International Inc.'s studies. 2 figs., 2 tabs

139

Mg isotopes geochemistry in the Han River basin, Korea  

Science.gov (United States)

The Han River basin is the largest river system in South Korea, consisting of two major branches: the North Han River (NHR) and South Han River (SHR). Distinct differences in the lithology between the NHR and SHR (silicates vs. carbonates) allow us to constrain the behavior of Mg isotopes during chemical weathering. We collected water samples as well as rock samples in summer 2011. The lithological difference between the NHR and SHR is reflected in major ions and dissolved Sr isotope compositions; lower major ion concentrations and high 87Sr/86Sr ratios in the NHR but higher major ion concentrations and low 87Sr/86Sr ratios in the SHR. Dissolved Mg in the NHR yielded heavier Mg isotope compositions, ranging from -1.14 to -0.67‰ of ?26MgDSM3 with an average of -0.85‰ (n=6), than that in the SHR, ranging from -1.34 to -0.74‰ of ?26MgDSM3 with an average of -1.15‰ (n=6). The river waters draining only carbonates have much lower ?26MgDSM3 values (-1.34 to -1.27‰, n=3), similar to other rivers draining carbonates. This implies that biological fractionation such as plant uptake would be limited because a geographical environment in the Han River basin is almost same. Mineral saturation indices indicate that the river waters are undersaturated with respect to primary and secondary minerals such as smectite but waters draining the carbonates are oversaturated with respect to calcite and dolomite. Hence, the lower ?26MgDSM3 values in the NHR relative to source rocks could be mainly attributed to the fractionation during silicate mineral dissolution. Contrary to the NHR, ?26MgDSM3 values in the SHR indistinguishable from those of the carbonates imply that carbonates dissolution/precipitation would not fractionate Mg isotopes. This study indicates that Mg isotopes could be used to constrain riverine Mg sources.

Ryu, J.; Lee, S.; Lee, K.; Shin, H.

2012-12-01

140

A Review of Integrated River Basin Management for Sarawak River  

Directory of Open Access Journals (Sweden)

Full Text Available Problem statement: Sarawak River was a life-sustaining water source for the residents in Kuching City and surrounding areas. Raw water is treated at Batu Kitang Water Treatment Plant (BKWTP that supplies more than 98% of the total water production in Kuching City. The raw water supply to BKWTP is not adequate to meet the ever increasing water demand. In order to overcome this problem, four projects had been implemented along Sarawak River for managing and securing water supply to BKWTP. Approach: These four projects are construction of 1.5m height storage weir across Sungai Sarawak Kiri river channel, Kuching Barrage and Shiplock, Bengoh Dam and Kuching Centralized Wastewater Management System (KCWMS. In 2005, 1.5 m height submersible weir was constructed across Sungai Sarawak Kiri channel for increasing the safe yield that can last until year 2010. Kuching Barrage and Shiplock were commissioned in 2000 as barrier to avoid the saline intrusion reaching upper catchment. 24 telemetry stations were installed along Sarawak River for monitoring and regulating the water level. This will preserve high quality water storage at upper catchment of Sarawak River. In year 2010, Bengoh Dam was constructed to ensure adequate raw water will be supplied to BKWTP for meeting the increasing water demand from 2010-2030. This reservoir will store 144 million m3 of fresh water covering reservoir area of 8.77km2. Beyond 2030, the water supply shall not depend solely on fresh water. Results: Black and grey water in Sarawak Catchment was treated through Kuching Centralized Wastewater Management System (KCWMS and recycled for daily used. Conclusion: The treated water that comply Standard A water quality, can distribute for domestic, industrial and irrigation used in nearest future. This will reduce the water demand solely on raw water and create a sustainable living in Kuching City. Beyond 2030, a few alternatives are also proposed for conserving and securing water supply for Kuching city.

Kuok K. Kuok

2011-01-01

 
 
 
 
141

Fish, Cubatão River basin, Atlantic Rainforest stream, Paraná, Brazil  

Directory of Open Access Journals (Sweden)

Full Text Available The freshwater ichthyofauna of the Cubatão River basin was studied. This drainage belongs to the Atlantic rainforestbiome in Paraná state coastal region, southern Brazil. Considering fish collection data and extensive new collections, 41species were listed of the families Characidae, Erythrinidae, Crenuchidae, Curimatidae, Heptapteridae,Pseudopimelodidae, Callichthyidae, Trichomycteridae, Loricariidae, Gymnotidae, Cichlidae, Anablepidae, Poeciliidae,and Synbranchidae. The river studied showed the ichthyofaunistic pattern of the coastal drainages of the Atlanticrainforest biome of southeastern Brazil, characterized by a high degree of endemism. A key for species identification isprovided.

Bastos, L. P.

2009-01-01

142

Floods in the English River basin, Iowa  

Science.gov (United States)

An appraisal-level engineering economic cost analysis was performed for two primary types of irrigation systems in a portion of the Columbia Basin Project- a surface-water irrigation system in which water is supplied via canals and laterals, and a system in which surface water is brought to recharging wells and eventually to farms using the transmissive properties of the aquifer and pumping. At 1979 electric power rates, the artificial-recharge irrigation scheme is a viable alternative to surface-distributed irrigation systems, but as electric rates increase, its viability decreases. At three times the 1979 rate, the recharge scheme is uneconomical. (USGS)

Heinitz, A.J.; Riddle, D.E.

1981-01-01

143

Current and future water resources of the Congo River basin  

Science.gov (United States)

The water resources of the Congo Basin are under enormous pressure due to decreases in the Oubangui River discharge for the last three decades and the shrinking of Lake Chad. We report on a systematic analysis of the hydrology and water resources of the entire Congo Basin, and that part of the basin within the geographical boundaries of each of the countries across which it flows. We used hydrological models, data from global data bases, and future climate scenarios. We address both historical and future state of water resources management (availability, flood and drought occurrence, dams/reservoirs, and water infrastructure) using the on-going development of a basin scale climate change impact assessment within the Wageningen Universiy -Congo Basin project frame work. Detailed analysis of potential impacts of climate change on the basin's water availability are assessed using two hydrological and water resources models (VIC, Variable Infiltration Capacity and LPJ, Lund-Potsdam-Jena). We use EU-WATCH historical data, three global climate models with two emissions scenarios downscaled and bias corrected using the statistical bias correction procedure described in EU-WATCH project.

Sonessa, M.; Beyene, T.; Lettenmaier, D. P.; Kabat, P.; Fulco, L.; Franssen, W.

2011-12-01

144

Generation of synthetic seasonal hydrographs for a large river basin  

Science.gov (United States)

SummaryThis paper describes a methodology for the generation of synthetic seasonal stage hydrographs with a number of flood waves for a large braided river basin based on statistical analysis of the historical stage records. The synthetic seasonal hydrographs in a river is required for different purposes such as assessing the hydraulic performances of various river training structures, morphological predictions, environmental impact analysis. The typical stage hydrograph of such a river has two components: flood waves and seasonal (monsoonal) response. Using historical stage records, flood waves in a seasonal stage record were identified and their characteristics were approximated using Maxwell distribution. The extracted characteristics of flood waves such as time of occurrence and successive flood lifts were analysed with various probability distribution function to find out their best distribution. The frequency analysis of the annual maximum flood lift was carried out. Beside this, seasonal responses were also approximated using Maxwell distribution. A relationship between the seasonal lift and total monsoonal rainfall was established. For a given total seasonal rainfall and return period of annual maximum flood wave lift, synthetic seasonal hydrograph is generated by superimposing both seasonal response and flood waves. The generated hydrographs are evaluated by comparing the cumulative frequency function of river stage and relative frequency of daily stage changes (rise/fall) for three seasons with different flood wave return periods, at two river gauging stations for the river Brahmaputra, India.

Karmaker, Tapas; Dutta, Subashisa

2010-02-01

145

Trend Analysis on Streamflow in the Snake River Basin  

Science.gov (United States)

Recent research has suggested that the streamflow are continuously showing decreasing trend in the Pacific Northwest. This research focuses on trend analysis on streamflow data particularly located in the Snake River Basin. First, the trend analysis on streamflow was done using three different statistical tests: Man-Kendall, Spearman's Rho and Linear Regression. Second, the autocorrelation of the time series was determined. Third, the USGS Seasonal Kendall statistical tool was used to do the trend analysis since the most of the streamflow data showed significantly high autocorrelation. Streamflow data were obtained from United States Geological Service (USGS) web site. Monthly time step was considered for the analysis. The multiple statistical tests provided confidence on significant changes on trend analysis. Results indicated that streamflows are experiencing a decreasing trend in mid-snake river basin. This research provides improved understanding of the historical trend of surface water in the region, and will guide water mangers for future water management.

Timilsena, J.; Parkinson, S.

2011-12-01

146

Integrated geophysical studies of the Fort Worth Basin (Texas), Harney Basin (Oregon), and Snake River Plain (Idaho)  

Science.gov (United States)

Geophysical methods such as seismic, gravity, magnetics, electric, and electromagnetics are capable of identifying subsurface features but each has a different spatial resolution. Although, each of these methods are stand-alone tools and have produced wonderful and reliable results for decades to solve geological problems, integrating geophysical results from these different methods with geological and geospatial data, adds an extra dimension towards solving geological problems. Integration techniques also involve comparing and contrasting the structural and tectonic evolution of geological features from different tectonic and geographic provinces. I employed 3D and 2D seismic data, passive seismic data, and gravity and magnetic data in three studies and integrated these results with geological, and geospatial data. Seismic processing, and interpretation, as well as filtering techniques applied to the potential filed data produced many insightful results. Integrated forward models played an important role in the interpretation process. The three chapters in this dissertation are stand-alone separate scientific papers. Each of these chapters used integrated geophysical methods to identify the subsurface features and tectonic evolution of the study areas. The study areas lie in the southeast Fort Worth Basin, Texas, Harney Basin, Oregon, and Snake River Plain, Idaho. The Fort Worth Basin is one of the most fully developed shale gas fields in North America. With the shallow Barnett Shale play in place, the Precambrian basement remains largely unknown in many places with limited published work on the basement structures underlying the Lower Paleozoic strata. In this research, I show how the basement structures relate to overlying Paleozoic reservoirs in the Barnett Shale and Ellenburger Group. I used high quality, wide-azimuth, 3D seismic data near the southeast fringe of the Fort Worth Basin. The seismic results were integrated with gravity, magnetic, well log, and geospatial data to understand the basement and sub-basement structures in the study area. Major tectonic features including the Ouachita thrust-fold belt, Lampasas arch, Llano uplift, and Bend arch surround the southeast Fort Worth Basin. The effects of these tectonic units in the basement were imaged in form of faulted and folded basement and sub-basement layers. Euler deconvolution and integrated forward gravity modeling were employed to extend the interpretations beyond the 3D seismic survey into a regional context. The Harney Basin is a relatively flat lying depression in the northeast portion of the enigmatic High Lava Plains volcanic province in eastern Oregon. In addition to the High Lava Plains active source seismic data, I also employed gravity, magnetic, digital elevation, geologic maps, and other geospatial data in this integrated study. I generated an upper crustal 3D seismic tomographic model of the Harney Basin and surrounding area using the active source seismic data. I then integrated it with gravity, magnetic, and geologic data to produce a geophysical model of the upper crustal structure, which reveals that the basin reaches as deep as 6 km in the central areas. I observed two major caldera shaped features within the basin. These calderas reveal seismic low velocity areas along with low gravity and magnetic anomalies. I interpreted the extent of these calderas with the help of integrated geophysical results. I propose a nested caldera complex in the northern Harney Basin and another caldera in the southern part. The Snake River Plain is an arcuate-shaped topographic low that lies in southern Idaho. This rifted valley is filled by large volume of mafic magma with numerous exposures of silicic volcanic centers. The scientific discussion on the structural complexities and evolution of the Snake River Plain and the role of extension in its formation has been going on for decades. Similarly, high gravity and magnetic anomalies are associated with the Snake River Plains, and their possible causes are still the subject of many studies. Numerous recent

Khatiwada, Murari

147

Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges  

Science.gov (United States)

Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights—a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions—a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m3—enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

Stillwell, Ashlynn S.; Clayton, Mary E.; Webber, Michael E.

2011-07-01

148

“Morphometric Analysis of Kurunda River Basin in Maharashtra, India”  

Directory of Open Access Journals (Sweden)

Full Text Available The present study was undertaken to determine the relationships between drainage characteristics and environmental aspects of Kurunda river basinusing the topographical maps on a scale of 1:50000. Environmental situations have affecting the morphometry of the basin. The combine outcomes have establishes the topographical and even recent developmental situations of the region. It will change the setup of the region also. It is therefore needs to analyze micro level parameters of drainage and environment for suitable planning and management of any developmental plan. The total area of Kurunda river basin is 102.17 sq km and it is divided into eight micro subbasins for in-depth analysis. Drainage pattern of this river is dendritic one. The Morphometric parameters of the stream have been analyzed and calculated by applying standard methods and techniques viz. Horton, 1945; Miller, 1953, Strahler, 1964. The results of primary leveled morphometric analysis have been correlated with soil and its physio-chemical characters. The Stream frequency and Stream length ratio of the basin is 1.55 and 8.39 respectively. The dimensional factors like Form factor (0.42, Elongation Ratio (0.36 and Circulatory Ratio (0.56 have also been calculated. In case of intensity of dissection, Drainage density, Drainage texture and Bifurcation ratio have calculated and it is 1.78 sq km, 0.98 and 13.61 with mean of 3.40 respectively. It is observed that the comparative analysis within the sub-basins have different types of situations and therefore it is recommended that micro-leveled analysis with environmental perspectives of the basin.

Balaji Avhad

2013-07-01

149

Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and com...

Bopp, R. F.; Chillrud, S. N.; Shuster, E. L.; Simpson, H. J.; Estabrooks, F. D.

1998-01-01

150

Exposure of the Main Italian River Basin to Pharmaceuticals  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study give a preliminary survey of pharmaceutical contamination and accumulation in surface waters and sediments along the river Po basin (74,000?km2, the largest in Italy), a strategic region for the Italian economy: it collects sewage from a vast industrialized area of Italy (Autorità di Baciono del fiume Po, 2006, 2009). 10 pharmaceuticals (atenolol, propanolol, metoprolol, nimesulide, furosemide, carbamazepine, ranitidine, metronidazole, paracetamol, and atorvastatin) from several...

Ettore Capri; Marco Trevisan; Ulaszewska, Maria M.; Matteo Balderacchi; Agata Gallipoli; Federico Ferrari

2011-01-01

151

Spatial heterogeneity study of vegetation coverage at Heihe River Basin  

Science.gov (United States)

Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0?28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

2014-11-01

152

An indicator system for surface water quality in river basins  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Public utilities, agricultural and industrial economical sectors and ecosystems depend on the water supplied by the natura environment. These water needs, the European Water Framework Directive requirements and the key surface water pollution problems identified at a River Basin scale, lead to the development of a water quality indicator system for surface waters. This is an environmental tool, which allows the assessment of the pressure-stateimpact of human activities on surface water...

Oliveira, R. E. S.; Lima, M. M. C. L.; Vieira, J. M. Pereira

2005-01-01

153

REGIONAL GROUNDWATER FLOW MODELLING OF GASH RIVER BASIN, SUDAN  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The three-dimensional groundwater flow model was performed to evaluate the groundwater potentiality and assess the effect of groundwater withdrawal to the regional water level and flow direction in the Gash River basin of Sudan. Data used include periodic water level measurements, meteorological data, digital elevation data and well logs from scientific test wells and domestic water wells drilled in the study area. Transient visual MODFLOW model code was calibrated. Numerical simulation indic...

Ibrahim, Abdalla E.; ADIL BALLA ELKRAIL

2008-01-01

154

PATTERNS IN ECOLOGY AND GEOMORPHOLOGY OF RIVER BASIN ECOSYSTEMS  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Some possible interactions between the hydrological, geomorphological, and ecological features and processes have been studied here at different spatial scales and resolutions in ecosystems. The ecohydrological framework is to perform an interdisciplinary research to detect with essential models the broad and complex patterns in biological, ecology, geomorphology and hydrology of river basins, in which water plays a key role. Starting from the evidence of the invariance and universality of...

Convertino, Matteo

2009-01-01

155

Covenant action to facilitate integrated river basin management  

Scientific Electronic Library Online (English)

Full Text Available SciELO South Africa | Language: English Abstract in english This paper outlines elements of best practice integrated river basin management and explores a procedure to implement IRBM. The procedure identifies a 'road map' for improved governance based on a best practice approach, with initial trialling in a UNESCO HELP basin in North America showing some app [...] lication. But even with best practices understood, action is often only minimal and flexible, adaptable institutions are needed to underpin basin management. The covenant concept is one such institution, based on the idea of harnessing mutual trust and obligation between stakeholders. A covenant is 'signed' as a social contract and the idea of covenant described in this paper results from observations of intractable water sharing problems. This paper also outlines the components of a covenant, the factors which require consideration for implementation and ways forward.

Bruce P, Hooper.

2008-04-01

156

Northern Rivers Basins human health monitoring program : report  

International Nuclear Information System (INIS)

The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs

157

Northern Rivers Basins human health monitoring program : report  

Energy Technology Data Exchange (ETDEWEB)

The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs.

Gabos, S. [Alberta Health, Edmonton, AB (Canada). Health Surveillance

1999-04-01

158

Equations for estimating timber volume in the region of the River Basin of Ituxi, Lábrea, Amazon, Brazil Equações para estimativa de volume de madeira para a região da bacia do Rio Ituxi, Lábrea, AM  

Digital Repository Infrastructure Vision for European Research (DRIVER)

To quantify the stock of commercial timber in forests demands efficient methods, making possible to estimate efficiently and accurately the present and future timber volume. The aim of this work was to  adjust the mathematical models used to estimate timber volume, allowing the determination of the timber potential of a region with greater accuracy and lower cost. The study was conducted at Lábrea, State of  Amazonas, Brazil in an area of 6,000 ha, inserted in the Project Forest M...

Fabio Thaines; Evaldo Muñoz Braz; Patricia Povoa de Mattos; Andreia Aparecida Ribeiro Thaines

2010-01-01

159

Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado  

Science.gov (United States)

The San Miguel River Basin encompasses 4,130 square kilometers of which about two-thirds is in the southeastern part of the Paradox Basin. The Paradox Basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds of mostly salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. A water budget for the lower aquifer has only two equal, unestimated elements, subsurface outflow and recharge from precipitation. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. No brines have been sampled and no brine discharges have been identified in the basin. Salt water has been reported for petroleum-exploration wells, but no active salt solution has been identified. (USGS)

Ackerman, D.J.; Rush, F.E.

1984-01-01

160

Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.  

Energy Technology Data Exchange (ETDEWEB)

In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the Snake River Basin averaged 0.45% (SE=0.11%), including age-1-ocean returns, for release years 1996 through 2003. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2003), it was estimated that on average approximately 86% of the total integrated mortality for nontransported, tagged hatchery spring and summer Chinook, and 74% for steelhead, occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the systemwide T/I are weighted averages of the dam-specific T/I ratios for each transport dam (with {ge} 5,000 tagged fish transported), weighted by the probabilities of being transported at each dam. The systemwide T/I compares the observed SAR under the existing transportation system with the expected SAR if the transportation system had not been operated. Estimates of 1.0 indicate that the systemwide transportation program has no effect on SAR, while estimates > 1.0 indicate that the transportation program increases SAR. Excluding the 2001 release group, the geometric mean of the systemwide T/I estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.15 (SE=0.03) for release years 1997 through 2003. The geometric mean of the systemwide T/I estimates for hatchery summer Chinook salmon from the Snake River Basin was 1.28 (SE=0.13) for release years 1997 through 2000 and 2003. Estimates were much higher for the 2001 release groups. These estimates reflect transportation from Lower Granite and/or Little Goose for most release years, depending on the number of tagged smolts actually transported at each dam during each release year. Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Excluding the 2001 release year, the geometric mean of the D estimates for hatchery spring Chinook salmon from the Snake Ri

Buchanan, Rebecca A.; Skalski, John R.

2007-12-07

 
 
 
 
161

Erosion and sediment budget of the 2008 Wenchuan earthquake: A case study on Mianyuan River basin  

Directory of Open Access Journals (Sweden)

Full Text Available The Wenchuan Earthquake caused a large number of avalanches and landslides at different scales. It is extremely significant to evaluate the sediment in the earthquake river basins. Along the 38 km long upper Mianyuan River 196 landslides and avalanches happened during the earthquake, which have formed 25 landslide dams and quake lakes. The total volume of sediment erosion due to earthquake was about 115 million m3, which is 75 times higher than the soil erosion in normal years. Only a part of the solid material could be transported by the river water flow as suspended load and bed load. The total volume of bed load deposit in the river and the quake lakes was 1.43 million m3. Moreover the quake lakes had also trapped 0.12 million m3 suspended load. Only 0.18 million m3 of fine sediment had been drifted through the quake lakes and transported into the lower reaches of the Mianyuan River. The wide range of size distributions of sediment from earthquake erosion caused the extreme difference in the amounts of sediment erosion and transportation. Most of the sediment from earthquake erosion can be only transported for a short distance by landslides and debris flows. Less than 0.2% of the total volume of sediment from earthquake erosion may be transported into large rivers. Therefore, earthquake erosion has little effect on the sediment transportation and fluvial processes in the large rivers.

Lijian Qi

2012-08-01

162

Development of streamflow projections under changing climate conditions over Colorado River basin headwaters  

Directory of Open Access Journals (Sweden)

Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month forecasts determined by the Colorado Basin River Forecast Center (CBRFC using the National Weather Service (NWS River Forecasting System (RFS hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8 % increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

W. P. Miller

2011-07-01

163

THE CONFLUENCE RATIO OF THE TRANSYLVANIAN BASIN RIVERS  

Directory of Open Access Journals (Sweden)

Full Text Available There are many possibilities to assess the hydrological and geomorphological evolution of a territory. Among them, one remarks the confluence ratio of the rivers belonging to different catchment areas. The values of this indicator may provide information regarding the stage of evolution of the fluvial landforms in the Transylvanian Basin. Also, the values may serve for the calculation of other parameters of catchment areas like: the degree of finishing of the drainage basin for its corresponding order, the density of river segments within a catchment area etc. To calculate the confluence ratio, 35 catchment areas of different orders have been selected. The confluence ratio varies between 3.04 and 6.07. The large range of values demonstrates the existence of a heterogeneous lithology and of morphological and hydrographical contrasts from one catchment area to the other. The existence of values above 5, correlated also with observations in the field, reveals an accelerated dynamics of the geomorphological processes in those catchment areas. This dynamic is mainly supported by the high landform fragmentation due to the first order rivers. In contrast, the catchment areas that have a confluence ratio below 5 are in a more advanced stage of evolution with stable slopes, unable to initiate new first order river segments.

RO?IAN GH.

2014-03-01

164

XXI Century Climatology of Snow Cover for the Western River Basins of the Indus River System  

CERN Document Server

Under changing climate, freshwater resources of Hindu Kush-Karakoram-Himalaya (HKH) region can be affected by changes in temperature and in amount, type and distribution of precipitation. This can have serious implications for the water supply and in turn threaten the food security and economic wellbeing of Indus basin. Using MODIS daily snow products (Terra & Aqua), this study focuses on the assessment of the 2000-2010 snow cover dynamics on seasonal/annual basis against geophysical parameters (aspect, elevation and slope) for the so called western river basins of Indus River System (IRS), namely Indus, Kabul, Jhelum, Astore, Gilgit, Hunza, Swat, Shigar and Shyok basins. Results show that inputs from MODIS instrument provide unprecedented better opportunity to study by using GIS techniques the snow cover dynamics in the remote areas like HKH region at such hyper-temporal and finer planar resolution. Adapted non-spectral cloud filtering techniques have significantly reduced cloud coverage and improved sno...

Hasson, Shabeh ul; Lucarini, Valerio

2012-01-01

165

Development of streamflow projections under changing climate conditions over Colorado River Basin headwaters  

Directory of Open Access Journals (Sweden)

Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by forecasts determined by the Colorado Basin River Forecast Center (CBRFC. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force a hydrologic model utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study.

Additionally, the CBRFC hydrologic model is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands over the Gunnison resulted in a 6% to 13% average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates.

Streamflow projections derived using projections of future climate and the CBRFC's hydrologic model resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10% to 15% average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5% to 8% increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

W. P. Miller

2010-08-01

166

The Challenges of Integrated Management of Mekong River Basin in Terms of People’s Livelihood  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Mekong River Basin is a life for many people in six south East Asian countries. The river basin is very productive and has crucial activities like: fishing, agriculture, hydroelectric power, transportation, biodiversity and so on. However, due to mismanagement, political intentions and one way interest only for development, the river basin has already started experiencing complications. The major challenges found out were, huge hydroelectric dam constructions and other projects, high populati...

Arafat, Badandi; Haq, Shah Md Atiqul; Belay, Alebel Abebe; Chien, Vuong Quoc

2010-01-01

167

Development of streamflow projections under changing climate conditions over Colorado River basin headwaters  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting System (RFS) hydrologic...

Miller, W. P.; Piechota, T. C.; Gangopadhyay, S.; Pruitt, T.

2011-01-01

168

Resilience in Transboundary Water Governance: the Okavango River Basin  

Directory of Open Access Journals (Sweden)

Full Text Available When the availability of a vital resource varies between times of overabundance and extreme scarcity, management regimes must manifest flexibility and authority to adapt while maintaining legitimacy. Unfortunately, the need for adaptability often conflicts with the desire for certainty in legal and regulatory regimes, and laws that fail to account for variability often result in conflict when the inevitable disturbance occurs. Additional keys to resilience are collaboration among physical scientists, political actors, local leaders, and other stakeholders, and, when the commons is shared among sovereign states, collaboration between and among institutions with authority to act at different scales or with respect to different aspects of an ecological system. At the scale of transboundary river basins, where treaties govern water utilization, particular treaty mechanisms can reduce conflict potential by fostering collaboration and accounting for change. One necessary element is a mechanism for coordination and collaboration at the scale of the basin. This could be satisfied by mechanisms ranging from informal networks to the establishment of an international commission to jointly manage water, but a mechanism for collaboration at the basin scale alone does not ensure sound water management. To better guide resource management, study of applied resilience theory has revealed a number of management practices that are integral for adaptive governance. Here, we describe key resilience principles for treaty design and adaptive governance and then apply the principles to a case study of one transboundary basin where the need and willingness to manage collaboratively and iteratively is high--the Okavango River Basin of southwest Africa. This descriptive and applied approach should be particularly instructive for treaty negotiators, transboundary resource managers, and should aid program developers.

Olivia O. Green

2013-06-01

169

Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China  

Directory of Open Access Journals (Sweden)

Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr?1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" component of WF was 811 million m3 yr?1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than green WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

Z. Zeng

2012-05-01

170

Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China  

Directory of Open Access Journals (Sweden)

Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr?1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" (surface- and groundwater component of WF was 811 million m3 yr?1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than "green" (soil water WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

Z. Zeng

2012-08-01

171

Multi-linear model of transformation of runoff in river-basins  

International Nuclear Information System (INIS)

The component part of atmospheric precipitations-runoff model of Hron River is a individual model of transformation of flows in river network, too, which transforms runoff from separate partial catchment basin into terminal profile. This component of precipitations-runoff model can also be used as individual hydrologic transformation model of runoff waves in river-basin. Identification and calibration of this model is realised independently on precipitations-runoff model of Hron River, which is described in this chapter in detail.

172

Water Cycle Dynamics in the Snake River Basin, Alaska  

Science.gov (United States)

Alaska’s Seward Peninsula is underlain in the south by areas of near-freezing, continuous and discontinuous permafrost. These conditions make it susceptible to changing climatic conditions such as acceleration of the hydrologic cycle or general atmospheric warming. This study looks at the hydrologic record of the Snake River over the mid-twentieth century through present. The Snake River basin drains an area of about 22 square kilometers into Norton Sound near the Bering Strait, off the western coast of Alaska. Climate for this area is maritime in summer and somewhat continental in winter once the sea ice forms. Hydrometeorological parameters have been measured locally for more than fifty years with temperature being measured regularly over the last 100 years. Discharge has been measured in the Snake River intermittently over that time period as well. This study looks closely at drivers of inter-annual variations in soil moisture in the basin over the observational record using a physically based numerical hydrological model. Unlike many areas of Alaska, the meteorological record at Nome, located at the mouth of the watershed, shows no statistically significant increase in precipitation over either the last 30 years or the last 100 years. However, there has been a small increase in temperature over the 100 year time period.

Busey, R.; Hinzman, L. D.

2009-12-01

173

GIS-based River Flood Hazard Mapping in Urban Area (A Case Study in Kayu Ara River Basin, Malaysia  

Directory of Open Access Journals (Sweden)

Full Text Available In the past decades, thousands of lives have been lost, directly or indirectly, by flooding. In fact, of all natural hazards, floods pose the most widely distributed natural hazard to life today. Sungai Kayu Ara river basin which is located in the west part of the Kuala Lumpur in Malaysia was the case study of this research. In order to perform river flood hazard mapping HEC-HMS and HEC-RAS were utilized as hydrologic and hydraulic models, respectively. The generated river flood hazard was based on water depth and flow velocity maps whichwere prepared according to hydraulic model results in GIS environment. The results show that, magnitude of rainfall event (ARI and river basin land-use development condition have significant influences on the river flood hazard maps pattern. Moreover, magnitude of rainfall event caused more influences on the river flood hazard map in comparison with land-use development condition for Sungai Kayu Ara river basin.

Behdokht Vosoogh

2010-12-01

174

Fish, Corumbataí and Jacaré-Pepira river basins, São Paulo State, Brazil  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Fish were studied in two river basins (Corumbataí and Jacaré-Pepira) subjected to strong human pressure, in the interior of the State of São Paulo, southeastern Brazil. In the Corumbataí basin, four sites were sampled: Cabeça river, Lapa stream, Passa-Cinco river, and Corumbataí river; in the Jacaré-Pepira basin, three sites were sampled: Tamanduá stream, Jacaré-Pepira river, and Água Branca stream. A total of 4,050 specimens belonging to 48 species and 13 families were caught and a...

Braga, F. M. S.; Gomiero, L. M.

2006-01-01

175

Collaboration in River Basin Management: The Great Rivers Project  

Science.gov (United States)

The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or chosen from a predefined tag taxonomy. These comments and tag clouds may be used by the community to filter results and identify models or simulations of interest, e.g, by region, modeling approach, spatiotemporal resolution, etc. Users may discuss methods or results in real-time with a built-in chat feature. Separate user groups may be defined for logical groups of collaboration partners, e.g., expert modelers, land managers, policy makers, school children, or the general public, to optimize the collaboration signal-to-noise ratio for all.

Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

2008-12-01

176

The politics of model maintenance: The Murray Darling and Brantas River Basins compared  

Directory of Open Access Journals (Sweden)

Full Text Available This paper explores river basin management in two highly developed basins whose basin governance arrangements are currently undergoing transition: the Murray-Darling basin of Australia and the Brantas basin of Indonesia. Though basin-scale management has been longstanding in both of these cases and the respective models for carrying out integrated river basin management have been considered noteworthy for other countries looking to develop basin institutions, these basin-level arrangements are under flux. This paper indicates some of the difficulties that exist for even widely favoured 'textbook' cases to maintain institutional efficacy within their given shifting contexts. This paper explores drivers behind policy reform and change in scale at which authority is held, concluding with a discussion of the nature of institutional transition given political realities in these basins.

Anjali Bhat

2008-09-01

177

Human impacts on river ice regime in the Carpathian Basin  

Science.gov (United States)

River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime. Climate change and river ice regime research should also take into account these anthropogenic imp

Takács, Katalin; Nagy, Balázs; Kern, Zoltán

2014-05-01

178

Towards improving river discharge estimation in ungauged basins: calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Rainfall-runoff models are common tools for river discharge estimation in the field of hydrology. In ungauged basins, the dependence on observed river discharge data for calibration restricts applications of rainfall-runoff models. The strong correlation between quantities of river cross-sectional water surface width obtained from remote sensing and corresponding in situ gauged river discharge has been verified by many researchers. In this study, a calibration scheme of rainfall-runoff models...

Sun, W. C.; Ishidaira, H.; Bastola, S.

2010-01-01

179

The cost of noncooperation in international river basins  

Science.gov (United States)

In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

Tilmant, A.; Kinzelbach, W.

2012-01-01

180

Residence times in river basins as determined by analysis of long-term tritium records  

Science.gov (United States)

The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km 2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources—prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the fitted regression lines ranged from 0.95 to 1.01 (correlation coefficient > 0.96) for the basins studied. Values for the residence time of waters within the basins and average relative contributions of the within-year and long-term reservoirs to outflow were obtained. Values for river basin residence times ranged from 2 years for the Kissimmee River basin to 20 years for the Potomac River basin. The residence times indicate the time scale in which the basin responds to anthropogenic inputs. The modeled tritium concentrations for the basins also furnish input data for urban and agricultural settings where these river waters are used.

Michel, Robert L.

1992-01-01

 
 
 
 
181

SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499  

Energy Technology Data Exchange (ETDEWEB)

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and approximately 3,900 cubic yards (2,989 cubic meters) of structural concrete which will be placed over about an eighteen month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

2010-01-04

182

Tennessee and Cumberland River Basins radionuclide transport: a case study  

International Nuclear Information System (INIS)

The current estimates of increased utilization of nuclear power have brought into focus the problem of the cumulative interaction of several nuclear facilities with the biosphere of a region. An engineering analysis tool to make the necessary calculations from which reasonable estimates of potential radiation dose and dose commitment to individuals and population groups in such a region has been devised by Hanford Engineering Development Laboratory (HEDL). This paper discusses the application of the radionuclide transport elements of this computer code to the Tennessee and Cumberland River Basins. The radionuclide transport simulator codes (HERMES) were designed to evaluate the environment impact of nuclear facilities in or near the year 2000

183

A History of Flooding in the Red River Basin  

Science.gov (United States)

The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, local, tribal, and academic entities to ensure that accurate and timely data are available for making decisions regarding public welfare and property during natural disasters and to increase public awareness of the hazards that occur with such disasters. The Red River of the North Basin has a history of flooding and this poster is designed to increase public awareness of that history and of the factors that contribute to flooding.

Ryberg, Karen R.; Macek-Rowland, Kathleen M.; Banse, Tara A.; Wiche, Gregg J.

2007-01-01

184

Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.  

Energy Technology Data Exchange (ETDEWEB)

The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release groups were pooled across the entire Snake River Basin upstream of Lower Granite Dam for this report. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.92% with an estimated standard error (dSE) of 0.25% for wild spring and summer Chinook salmon for tagged groups released from 1996 through 2004, omitting age-1-ocean (jack) returns. Only for the 1999 and 2000 release years did the wild Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for wild steelhead from the Snake River Basin averaged 0.63% (dSE = 0.15%), including age-1-ocean returns, for release years 1996 through 2004. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2004), it was estimated that on average approximately 83% of the total integrated mortality for nontransported, tagged wild spring and summer Chinook, and 78% for steelhead (omitting the 2001 release year), occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the dam-specific T/I for Lower Granite Dam were available for the 2003 and 2004 release years for both wild Chinook salmon and wild steelhead. The estimated T/I for Lower Granite was significantly > 1.0 for Chinook in 2004 (P < 0.0001) and for steelhead in both 2003 (P < 0.0001) and 2004 (P < 0.0001), indicating that for these release years, wild fish transported at Lower Granite returned there in higher proportions than fish that were returned to the river at Lower Granite, or that passed Lower Granite without detection as juveniles. Annual estimates of the dam-specific T/I for Little Goose Dam were available for wild Chinook salmon for both 2003 and 2004. The estimated T/I for Little Goose was significantly > 1.0 for wild Chinook in 2004 (P = 0.0024), but not in 2003 (P = 0.1554). Differential post-Bonneville mortality (D) is the ra

Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

2008-12-03

185

Drivers on carbon dioxide emissions from the Scheldt river basin  

Science.gov (United States)

Inland waters are a key component of the global carbon (C) cycle that transport organic and inorganic C from the terrestrial biosphere to the coastal ocean and emit CO2 to the atmosphere at a significant rate for global CO2 budgets. Yet, mechanisms underlying this CO2 emission to the atmosphere remain poorly understood and seldom modelled mechanistically. For this application a module describing the carbonate system and CO2 air-water exchange was added to the biogeochemical Seneque/Riverstrahler model describing transformation of C, N, P, Si occurring within hydrological networks. The model was applied to the human impacted Scheldt basin and the evolution of the partial pressure of CO2 (pCO2) and air-water CO2 flux was simulated for the year 1997 when data of dissolved inorganic carbon (DIC), total alkalinity (TA) and pCO2 are available for model validation. The model reproduces reasonably well the seasonal and spatial variations of the DIC, TA and pCO2 within the 5 main rivers of the Scheldt basin where data are available. At the annual level, the studied rivers act as major sources of CO2 to the atmosphere. Results show that the longitudinal variations of pCO2 are mainly controlled by the importance of air-water CO2 exchange. However, the choice of the parameterization of the gas transfer coefficient does not appear critical for this particular system. Biological activity also locally modulates the longitudinal variations of pCO2, while diffuse inputs from the watershed determine the initial conditions in the river without significantly altering the patterns observed from the upstream to the downstream. Both diffuse and punctual sources of C and TA are important drivers of the CO2 exchange in the river. In particular, model application evidences the sensitivity of the simulated CO2 fluxes to the description of human activities on the watershed.

Gypens, Nathalie; Passy, Paul; Garnier, Josette; Billen, Gilles; Silvestre, Marie; Borges, Alberto V.

2014-05-01

186

Application of the coupled model to the Somme river basin  

Science.gov (United States)

SummaryHydrological modeling of the Somme river basin situated in the north of France was made with special emphasis on the stream-aquifer interaction. Due to immense groundwater storage in the chalk aquifer, a damaging flood took place in the basin in spring 2001. To best represent the phenomena occurring in the basin, the coupled model also known as MODCOU was selected to be applied to this particular basin. The whole model structure consists of several components, namely, surface model, groundwater model, unsaturated zone model, and the coupled model. In order to run the surface model, meteorological forcing, land use, and soil type data were acquired. By using land use and soil type data, production zones were obtained. The surface model partitions the precipitation between surface runoff, infiltration, and actual evapotranspiration according to the parameters of production zones. The unsaturated zone model computes the recharge of groundwater by using infiltration from the surface using a Nash cascade model. By using the groundwater model, a steady-state piezometric head distribution is obtained to serve as an initial condition to the coupled model. The unsteady groundwater and surface flow simulations are carried out by the coupled model. Initially, spatial information on the basin was extracted by using Digital Elevation Model (DEM) analysis. After acquiring the necessary spatial data, the surface and aquifer grids were generated by using nested grid generators which make refinement on the stream network and subcatchment boundaries in order to increase the accuracy of numerical solution. A very detailed calibration was performed by following a step-by-step procedure in which the best fit in flow and piezometric head hydrographs was sought. In the surface model, concentration time and parameters of production zones are calibrated. For coupled surface-groundwater flows transmissivity, specific yield and discharge coefficient; and for flow in unsaturated zone storage constant were calibrated. During the simulations, intense and interrupted exfiltrations were observed over the basin. Two algorithms were developed in order to correct the issue caused by the coarse resolution of the DEM: (1) a 'fill' algorithm was used to remove the sinks and obtain a smoother surface; and (2) a correction procedure for river cell elevations is proposed to acquire continuous exfiltration along the stream network. Validation of the model was made using the discharges at two points on the Somme, namely, Hangest-Sur-Somme and Peronne, which had not been used in any stage of the modeling process and satisfactory results were obtained. The groundwater behavior, its effect on the surface flow and the flood of 2001 are satisfactorily represented.

Korkmaz, Serdar; Ledoux, Emmanuel; Önder, Halil

2009-03-01

187

Identification of Flood Source Areas in Pahang River Basin, Peninsular Malaysia  

Directory of Open Access Journals (Sweden)

Full Text Available The roles of upland watersheds in flood source contribution towards downstream areas in a river basin system are generally neglected in the inclusion of management strategy related to downstream flood management. In this study an assessment on the flood source area of Pahang river basin was attempted. The concept of unit flood response as an index of hydrologic response was used in identifying the flood source areas for the basin. The results indicated that among the 16 sub-basins of Pahang river basin, sub-basin of Sungai Pahang is ranked first in production of flood discharge while Sungai Perting sub-basin is ranked last in term of production of flood discharge. Comparison between maximum daily discharge of upper and lower segments of Pahang river basin indicated that up-stream watershed contributes significantly high and more flood (94.78% than down-stream (5.22%. In addition, the upland watersheds were found to more efficient in producing surface runoff and send the floodwater to the lower receiving basin of Sungai Pahang. Considering that basin flood response is generally a nonlinear function of many factors, the sub-basins that are located nearest to and most distance from the basin outlet do not necessarily generate the highest and lowest contribution to the flood peak at the outlet. Similarly, sub-basins producing the highest or lowest absolute or specific discharge at their own outlet may not necessarily ranked first and last in flood index.

Wan Nor Azmin Sulaiman

2010-01-01

188

Iron cycling in the Amazon River Basin: the isotopic perspective  

Science.gov (United States)

With the global climate change and increasing anthropic pressure on nature, it is important to find new indicators of the response of complex systems like the Amazon River Basin. In particular, new tracers like iron isotopes may tell us much on processes such as the chemical exchanges between rivers, soils and the biosphere. Pioneering studies revealed that for some river waters, large ?57Fe fractionations are observed between the suspended and dissolved load (Bergquist and Boyle, 2006), and isotopic variations were also recognized on the suspended matter along the hydrological cycle (Ingri et al., 2006). On land, soil studies from various locations have shown that ?57Fe signatures depend mostly on the weathering regime (Fantle and DePaolo, 2004; Emmanuel et al., 2005; Wiederhold et al., 2007; Poitrasson et al., 2008). It thus seems that Fe isotopes could become an interesting new tracer of the exchanges between soils, rivers and the biosphere. We therefore conducted Fe isotope surveys through multidisciplinary field missions on rivers from the Amazon Basin. It was confirmed that acidic, organic-rich black waters show strong Fe isotope fractionation between particulate and dissolved loads. Furthermore, this isotopic fractionation varies along the hydrological cycle, like previously uncovered in boreal waters suspended matter. In contrast, unfiltered waters show very little variation with time. It was also found that Fe isotopes remain a conservative tracer even in the case of massive iron loss during the mixing of chemically contrasted waters such as the Negro and Solimões tributaries of the Amazon River. Given that >95% of the Fe from the Amazon River is carried as detrital materials, our results lead to the conclusion that the Fe isotope signature delivered to the Atlantic Ocean is undistinguishable from the continental crust value, in contrast to previous inferences. The results indicate that Fe isotopes in rivers represent a promising indicator of the interaction between organic matter and iron in rivers, and ultimately the nature of their source in soils. As such, they may become a powerfull tracer of changes occurring on the continents in response to both weathering context and human activities. References: Bergquist, B.A., Boyle, E.A., 2006. Iron isotopes in the Amazon River system: Weathering and transport signatures. Earth and Planetary Science Letters, 248: 54-68. Emmanuel, S., Erel, Y., Matthews, A., Teutsch, N., 2005. A preliminary mixing model for Fe isotopes in soils. Chemical Geology, 222: 23-34. Fantle, M.S., DePaolo, D.J., 2004. Iron isotopic fractionation during continental weathering. Earth and Planetary Science Letters, 228: 547-562. Ingri, J., Malinovsky, D., Rodushkin, I., Baxter, D.C., Widerlund, A., Andersson, P., Gustafsson, O., Forsling, W., Ohlander, B., 2006. Iron isotope fractionation in river colloidal matter. Earth and Planetary Science Letters, 245: 792-798. Poitrasson, F., Viers, J., Martin, F., Braun, J.J., 2008. Limited iron isotope variations in recent lateritic soils from Nsimi, Cameroon: Implications for the global Fe geochemical cycle. Chemical Geology, 253: 54-63. Wiederhold, J.G., Teutsch, N., Kraemer, S.M., Halliday, A.N., Kretzchmar, R., 2007. Iron isotope fractionation in oxic soils by mineral weathering and podzolization. Geochimica et Cosmochimica Acta, 71: 5821-5833.

Poitrasson, Franck; Vieira, Lucieth; Mulholland, Daniel; Seyler, Patrick; Sondag, Francis; Allard, Thierry

2014-05-01

189

Sustainable Development in Transboundary Water Resource Management : A Case Study of the Mekong River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Global climate change, environmental degradation and demographic changes has emphasizedthe sustainable development of Mekong river basin. The research uses the theoreticalframework that sustainable development in the transboundary water resource management ismost likely to be achieved through the policy making based on the ‘regional approach’ andthe ‘alternative development strategy.’ The aim of this research is to investigate themanagement of Mekong river basin within the theoretical...

Kim, Kyungmee

2011-01-01

190

River basin planning project: social learning (Science Report SC050037/SR1)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This report documents the findings of a 12-month Environment Agency science project on social learning for river basin planning. Our aim was to use social learning approaches and soft system methods to inform the development of the River Basin Planning Strategy and improve the effectiveness of the Environment Agency's Water Framework Directive (WFD) Programme

Collins, Kevin; Ison, Ray; Blackmore, Chris

2005-01-01

191

Quantifying Changes in Accessible Water in the Colorado River Basin  

Science.gov (United States)

The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

2013-12-01

192

The Amazon. Bio-geochemistry applied to river basin management  

International Nuclear Information System (INIS)

A hydrochemical model, using hydrograph separation, developed for the Niger basin, has been proposed as a strategic tool for studying the watershed dynamics at any time and space scales. The model is applied to the Amazon basin, including the main channel and its major tributaries. The database corresponds to a sampling and analytical program developed over 8 cruises at 9 stations (about 70 samples), collected in the framework of the CAMREX Project (1982-1984). The model, based on a hydrograph separation of 3 reservoirs, is successful in extrapolating and predicting the geochemical and environmental behaviour of such large basins, naturally submitted to large secular or annual, regular or even catastrophic climatic oscillations. Several topics have been considered. (1) Coherence among the physico-chemical analyses: dissolved species (pH, NH4+, Na+, K+, Ca2+, Mg2+, NO3-, HCO3-, Cl-, DOC-, SO42-, HPO42-, SiO2, O2 and CO2), and inorganic or organic suspended load (fine and coarse fractions FSS, CSS, POCF, POCC). (2) Hydrograph separation in 3 reservoir contributions: RS, the superficial or rapid runoff, RI, the hypodermic or intermediate runoff, including the flood plain contributions, and RB the ground water or base flow. (3) Estima the ground water or base flow. (3) Estimation of the isotopic and physico-chemical features of each of the 3 flow components: RS, RI, and RB. (4) Determination of the 3 hydrological parameters (size of the reservoir, drying up coefficient, and residence time of water), characterizing each of the 3 flow components (RS, RI, and RB), in each of the 9 basins considered. (5) Hydrological and geochemical balances for all the parameters analysed either (a) cruise by cruise for all tributaries and the Amazon River at Obidos, or (b) among each of the 3 river flow components. (6) Isotopic data set of ?18O in waters, tests of coherence of the hydrograph separation model. (7) Relationships between isotopic signatures and morphological or hydroclimatical parameters characterizing the river-soil-vegetation systems. The developed procedure presents a new tool in environmental predictions, emphasizing the potentiality of geochemical interpretation of complex hydrochemical data sets

193

Hydrological forecast of maximal water level in Lepenica river basin and flood control measures  

Directory of Open Access Journals (Sweden)

Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

Milanovi? Ana

2006-01-01

194

Yakima River Basin Phase II Fish Screen Evaluations, 2001.  

Energy Technology Data Exchange (ETDEWEB)

In the summer and fall of 2001 the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. Data were collected to determine if velocities in front of the screens and in the bypasses met current National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. Based on our studies in 2001, we concluded that: in general, water velocity conditions at the screen sites met fish passage criteria set forth by the NMFS; most facilities efficiently protected juvenile fish from entrainment, impingement, or migration delay; automated cleaning brushes generally functioned properly; chains and other moving parts were well greased and operative; and removal of sediment build-up and accumulated leafy and woody debris are areas that continue to improve. Continued periodic screen evaluations will increase the effectiveness of screen operation and maintenance practices by confirming the effectiveness (or ineffectiveness) of screen operating procedures at individual sites. Where procedures are being followed and problems still occur, evaluation results can be used to suggest means to better protect fish at screening facilities. There has been a progressive improvement in the maintenance and effectiveness of fish screen facilities in the Yakima River Basin during the last several years, in part, as a result of regular screen evaluations and the rapid feedback of information necessary to improve operations and design of these important fish protection devices. Continued periodic screen evaluations will increase the effectiveness of screen operation and maintenance practices by confirming the effectiveness (or ineffectiveness) of screen operating procedures at individual sites. Where procedures are being followed and problems still occur, evaluation results can be used to suggest means to better protect fish at screening facilities. There has been a progressive improvement in the maintenance and effectiveness of fish screen facilities in the Yakima River Basin during the last several years, in part, as a result of regular screen evaluations and the rapid feedback of information necessary to improve operations and design of these important fish protection devices.

Carter, J.A.; McMichael, Geoffrey A.; Chamness, M.A.

2002-01-01

195

Thermal springs in the Salmon River basin, central Idaho  

Science.gov (United States)

The Salmon River basin drains approximately 13,000 square miles in central Idaho underlain by the Idaho batholith. Geologic units in the basin include igneous, sedimentary, and metamorphic rocks and granitic rocks predominate. Water from thermal springs ranges in temperature from 20.5 degrees to 94.0 degrees Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30 degrees to 184 degrees Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old and may be considerably older. Stable-isotope data indicate it is unlikely that a single area of recharge or a single hot-water reservoir supplies all hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 27 million calories per second. (USGS)

Young, H.W.; Lewis, R.E.

1982-01-01

196

Perspectives in using a remotely sensed dryness index in distributed hydrological models at river basin scale  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In a previous study a spatially distributed hydrological model, based on the MIKE SHE code, was constructed and validated for the 375 000 km2 Senegal River basin in West Africa. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time-series of precipitation from 112 stations in the basin. The model was calibrated and validated based on river discharge data from nine stations in the basin for 11 years. Calibration and...

Andersen, J.; Sandholt, I.; Jensen, Karsten Høgh; Refsgaard, J. C.; Gupta, H.

2006-01-01

197

Mapping and assessment of degraded land in the Heihe River Basin, arid northwestern China  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Land degradation is a great threat in the Heihe River Basin, located in the arid inland of northwestern China and land desertification is one of the main aspects of environmental changes in this basin. Previous studies have focused on water resource utilization and soil erosion, but the status of degraded land in the Heihe River Basin, such as its distribution, extent and precise characteristics is often inadequately known. Based on field observations and TM images from the year 2003, this st...

Yumin Cai; Shanzhong Qi

2007-01-01

198

River monitoring from satellite radar altimetry in the Zambezi River basin  

DEFF Research Database (Denmark)

Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

Michailovsky, Claire Irene B.; McEnnis, S.

2012-01-01

199

River monitoring from satellite radar altimetry in the Zambezi River basin  

Directory of Open Access Journals (Sweden)

Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

C. I. Michailovsky

2012-07-01

200

On the water hazards in the trans-boundary Kosi River basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Kosi River is an important tributary of the Ganges River, which passes through China, Nepal and India. With a basin area of 71 500 km2, the Kosi River has the largest elevation drop in the world (from 8848 m of Mt Everest to 60 m of the Ganges Plain) and covers a broad spectrum of climate, soil, vegetation and socioeconomic zones. The basin suffers from multiple water related hazards including glacial lake outburst, debris flow, landslides, flooding, drought, ...

Sh Chen, N.; Sh Hu, G.; Deng, W.; Khanal, N.; Zhu, Y. H.; Han, D.

2013-01-01

 
 
 
 
201

Incorporation of GIS Based Program into Hydraulic Model for Water Level Modeling on River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Water resources management usually requires that hydraulic, ecological, and hydrological models be linked. The Hy- drologic Engineering Center River Analysis System (HEC-RAS) hydraulic model and the Hydrologic Engineering Center Geospatial River Analysis System (HEC-GEORAS), imitates flow and water profiles in the Neka river basin’s downstream flood plain. Hydrograph phases studied during the flood seasons of 1986-1999 and from 2002-2004 were used to calibrate and verify the hydraulic model...

Hadi Memarian; Majid Mirzaei; Lee Teang Shui; Ali Haghizadeh

2012-01-01

202

Surface Water Pollution Control by Appropriate Effluent Taxation: The Thachin River Basin Study, Thailand  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This research aims to determine the appropriate effluent tax scheme and construct an optimized mathematical decision making model in order to maximize profits while bearing economic and environmental constraints in the Thachin River basin. The Thachin River is ranked as the most polluted river in Thailand where pig farms, urban communities, aquaculture and industries significantly contribute to deteriorating water quality in the basin. Therefore, the comparison of applied mathematical models ...

Nantana Gajaseni; Charit Tingsabadh; Rachasak Klayklung

2010-01-01

203

Drainage basin security of hazardous chemical fluxe in the Yodo River basin.  

Science.gov (United States)

The Yodo River basin consists of three major tributary basins (and other small river basins) namely Uji, Katsura and Kizu, which overlap respectively Shiga, Kvoto and Nara prefectures' administrative areas. Lake Biwa, the largest lake in Japan, drains water through the Uji river. The water quality of the lake, in terms of BOD, continuously improved over the last decade. However, the quality in terms of COD did not show any improvement in spite of a large amount of infrastructure finance being introduced. Eutrophication of the lake still continues, showing no improvement in the nitrogen concentration level. Non-point as well as point source control is not strong enough. There is a gap between BOD and COD evaluations of the lake water quality. Hazardous chemical fluxes are estimated based upon PRTR reports of Japan (2001). PCBs are still discharged into the lake, although the report of Shiga Prefecture showed zero discharge. Dace fish monitoring clearly showed that PCB contamination of the fish had not changed since the 1980s in spite of a ban on use and production of PCBs in the 1970s. There is still leakage of PCBs into the lake. The major exposure of dioxins to Japanese is fish rather than meat and eggs. The risk of water contamination must take into consideration not only drinking water safety but also ecological magnification of food chains in water. The ecological health aspect of hazardous chemicals is also important, such as organotins with imposex of sea snails. Finally, public participation in hazardous chemical management is very important using the method of risk communication based upon the annual report of PRTR in Japan. PMID:15195438

Matsui, S

2004-01-01

204

Late quaternary geology in Desaguadero river basin, San Luis, Argentina  

International Nuclear Information System (INIS)

Absolute radiocarbon datings of the sedimentary successions have come to knowledge enabling us to distinguish the Pleistocene deposits from the supra-lying Holocene ones. A palaeo-environmental evolution is proposed considering climatic fluctuations at the time, their relation with the river unloadings of the Andean glaciers and that proposed for the palaeo-lake of Salina del Bebedero. Sediments are described on the basis of a detailed field sampling, textural analysis (sieved and Bouyoucos) and laboratory geo-chemicals. Their interpretation of the geologic evolution is considered to be very important since it is the only river course on this arid-semi-arid region linked to the reduction of glaciers in the Andes. The sedimentary succession is dominated by high percentages of laminated limes and with green-yellowish to greyish-brown-reddish tones deposited in watery environments of low energy such as lacustrine basins and extended plains of flood, which is why the evolution of the deposit is characterized by the contrast of the values of insolubles (clastic sediment and carbonate) versus solubles (insoluble saline). The climatic cycles dominant and proposed for the center-east Argentine region are identified considering the influence of Andean glaciers on the river systems and the water balances in plain semi-arid environments. (author)

205

Early 21st century climatology of snow cover for the western river basins of the Indus River System  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River System (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow products from Terra (MOD) and Aqua (MYD) have been first improved and then analysed on seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our applied cl...

Hasson, Shabeh Ul; Lucarini, Valerio; Khan, Mobushir Riaz; Petitta, Marcello; Bolch, Tobias; Gioli, Giovanna

2012-01-01

206

Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin  

Science.gov (United States)

Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2–4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

Jean-François, Crétaux; Sylvain, Biancamaria; Adalbert, Arsen; Muriel, Bergé-Nguyen; Mélanie, Becker

2015-01-01

207

SWOT data assimilation for reservoir operations in the upper Niger river basin  

Science.gov (United States)

Our objective is to evaluate the potential for swath altimetry (SWOT) data to improve reservoir operations in the upper Niger river basin where two reservoirs are (or will be) used to sustain water demand, mainly for irrigation. We coupled the LISFLOOD-FP hydrodynamics model to the VIC hydrology model to compute the "true" state of the system which we used with a SWOT simulator to provide synthetic water levels and surface extent for both the Niger River channel and the two reservoirs. The simulated states were obtained by running the models with perturbed inputs (meteorological forcings to the VIC model, and water level in the two reservoirs). We integrated a reservoir rule model with the river hydrodynamics and hydrology models in order to define dam releases for each reservoir depending on available water in the river reach and downstream water demand. We then assimilated in situ and SWOT data into the coupled models to correct for model and forcing errors. We considered four scenarios: no assimilation, assimilation of in situ data only, assimilation of SWOT data only, and assimilation of both data sources. We computed performance of each scenario from the total volume of released water and the ability of the system to satisfy water demand.

Munier, Simon; Lettenmaier, Dennis; Polebitski, Austin; Brown, Casey

2013-04-01

208

Modelling seasonal N and P loads in three contrasting large river basins using global datasets - Mississippi, Mekong and Rhine River  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Nutrients are important components of the global biochemical cycle, and are key controls of the quality of inland and coastal waters. Quantification of the nutrient fluxes from large river basins to the oceans still relies on long-term yearly-load estimates; existing models are essentially empirical budget models that relate total annual basin output to estimates of basin-wide nutrient emissions. In this type of models identification of the source areas, as well as quantificati...

Loos, S.; Middelkoop, H.; Perk, M.; Beek, L. P. H.

2011-01-01

209

Clayey materials in river basin enhancing microbial contamination of river water  

Science.gov (United States)

Mineral constituents of clay materials may promote interaction, adsorption and attachment of microorganisms, often resulting in biofilms' formation. In this study investigation is made to determine how littoral clayey materials on the shores of a river promote accumulation of bacteria and increase contamination of river water. Clayey samples were collected at various points along the shore of a river around Mondeor in Johannesburg and the mineralogical composition was determined using XRD and XRF. Microorganisms in clay-biofilm and river water were identified by DNA sequencing and plate count. Results showed that total coliforms, Escherichia coli, Pseudomonas sp. and presumptive indigenous microorganisms attached to littoral clayey materials containing the mineral muscovite (characterising argillaceous soils). Bacteria number on clayey materials was significantly higher than on overlying water especially before rainy season. However a decrease of the number of bacteria in clayey materials concurrent with an increase in the number of suspended bacteria after rain events, was the result of the action of high and fast flows in the basin, eroding the biofilms. Attachment of microorganisms in clayey material as observed in this study could be ascribed to the glue-like aspect of soil (due to muscovite) that facilitates adhesion. It therefore demonstrates the potential of clayey materials to encourage biofilm formation and enhance microbial contamination of river water as shown here.

Fosso-Kankeu, E.; Mulaba-Bafubiandi, A. F.; Barnard, T. G.

210

SEA of river basin management plans : incorporating climate change  

DEFF Research Database (Denmark)

In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental assessment (SEA). An important environmental factor for the water sector is climate change, especially the changes it causes to the water environment. However, based on an argument of an inadequate knowledge base regarding climate change impacts, the prospect of Danish authorities including climate change in their SEAs of RBMPs is weak. In this paper the connections between climate change and water are reviewed. As a result, it is suggested that climate change needs to be considered in three ways: mitigation, adaptation and baseline adaptation. Udgivelsesdato: December

Larsen, Sanne Vammen; KØrnØv, Lone

2009-01-01

211

Systems-taking Heihe River Basin as a Case  

Directory of Open Access Journals (Sweden)

Full Text Available With increasing occurrence of environmental emergencies in China in recent years, risk management has becoming an important subject in environmental management. Past studies on risk assessment and management have focused on chemical risk but rarely on the ecosystem level risk. Based on the theories of landscape ecology and advanced Geographic Information Systems (GIS technologies, this study built a set of index system and constructed a quantitative method suitable for the arid areas in this study. The Eco-Risk Index (ER in time series could be used to monitor changes of eco-risk caused by natural disasters and human activities. This study also conducted a case study on the middle part of Heihe River Basin which is a typical area in Gansu province in western China. The results have shown a decrease Eco-risk Probability (EP due to the fewer and fewer interference from human activities and natural disaster since 2000. The stability of landscape also improved significantly with Landscape Stability Index (LSI decreased from 0.48 to 0.41, signifying worse landscape stability. But the net primary productivity (NPP’ index increased from 0.67 to 0.94 for the area of interest which indicated improved natural light and temperature. The final Eco-risk Indexes (ER have decreased from 0.83 to 0.58 in the past 11 years because of a significant reduction of the eco-risk factor in the studied region. All the above indicators points to the improvement of the eco-system at Heihe River Basin region. The current research also confirmed that the area of study is in the moderate risk level.

Wang Ruofan

2014-01-01

212

Estimating Vadose Zone Drainage From a Capped Seepage Basin, F Area, Savannah River Site  

Science.gov (United States)

Large volumes of waste solutions were commonly discharged into unlined seepage basins at many different facilities in the past. Plutonium was extracted from depleted uranium from 1955 to 1988 at the F-Area within the Savannah River Site, with contaminated process waters disposed of in permeable seepage basins. The primarily acidic solutions contained radioactive components (including tritium, 129I, and multiple isotopes of U, Pu, Sr, and Cs), elevated nitrate, and some metals (Hg, Pb, Cd). Basin 3 was the largest F-Area seepage basin, covering 2.0 hectare, with the water table typically at about 20 m below the soil surface. The local groundwater flows at an average velocity of 200 m/y in the approximately 10 m thick shallow aquifer, and is underlain by the low permeability Tan Clay. We used nearly 20 years of groundwater quality data from a monitoring well immediately downstream of Basin 3 to estimate the post-closure drainage of waste solutions through its underlying vadose zone, into the shallow aquifer. The measurements of tritium, nitrate, and specific conductance, were used as plume tracers in our estimates of vadose zone drainage. These calculations indicate that early stages of post-closure waste drainage occurred with high fluxes (? 1 m/y), and quickly declined. However, even after 20 years, drainage continues at a low but significant rate of several cm/y. These estimated drainage fluxes can help constrain predictions on the waste plume behavior, especially with respect to its emerging trailing gradient and anticipated time scales suitable for monitored natural attenuation.

Wan, J.; Tokunaga, T. K.; Denham, M.

2011-12-01

213

Assessing interannual water balance of La Plata river basin  

Scientific Electronic Library Online (English)

Full Text Available SciELO Mexico | Language: English Abstract in spanish El río Paraná es el más importante de la Cuenca de La Plata, sustentando economías regionales en tres países. Durante las últimas décadas, se han producido cambios significativos en la cuenca del Paraná, debido a la deforestación y sustitución de cultivos. Esto pudo haber modificado la respuesta de [...] la cuenca en términos de caudales del río Paraná. El objetivo principal de este trabajo es analizar la estructura de la serie temporal de evapotranspiración (ET(t)) de la Cuenca Superior del Paraná. En primer lugar se estudió la relación entre las variables en la ecuación del balance hídrico y luego se aplicó un análisis de espectro singular (SSA, por sus siglas en inglés) para determinar las señales presentes en las series de ET(t). El estudio de correlación muestra que ET(t) está correlacionada con las precipitaciones en las subcuencas del norte y no está correlacionada en la más austral. Las series temporales ET(t)1 ET(t)3 y ET(t)4 muestran una señal de baja frecuencia mientras que las señales dentro del rango ENSO son estadísticamente significativas en ET(t)1, y ET(t)4 , aunque están presentes en las otras subcuencas (ET(t)2, y ET(t)3)como señales débiles. En la Cuenca de La Plata ET(t) estaría afectada tanto por los cambios en las propiedades físicas de la cuenca como por la presencia de la señal en el rango ENSO de las precipitaciones. Abstract in english The Paraná river is the most important component of the La Plata basin, sustaining regional economies in three countries. In the last decades, significant regional changes such as deforestation and crop substitution have been taken place in the Paraná basin. This fact could have modified the basin r [...] esponse in terms of the Paraná streamflow. The main objective of this paper is to analyze the structure of the evapotranspiration (ET(t)) time series of the upper Paraná basin. We analyzed the relationship between the variables in the water balance equation, then we applied a singular spectral analysis (SSA) to learn more about the temporal structure of the ET(t) time series. The correlation study shows that ET(t) is correlated with precipitations in the northern sub-basins but it is not correlated at all in the southern basin. The time structure of ET(t)1 ET(t)3 and ET(t)4 exhibit low-frequency signals while the ENSO-range signals are statistically significant in ET(t)1 and ET(t)4 although it also appears in ET(t)2 and ET(t)3 as a weak signals. Looking at the whole basin, ET(t) would be affected either by changes in the basin physical properties or by the ENSO-range signals present in precipitation.

C. M., KREPPER; V., VENTURINI.

2009-10-01

214

Archival precipitation data set for the Mississippi River Basin: Evaluation  

Science.gov (United States)

The goals of the Global Energy and Water Cycle Experiment Continental-Scale International Project (GCIP) point to the need for high resolution data sets on all elements of the land surface and atmospheric hydrologic cycle. A high resolution precipitation data set has been derived from radar reflectivity observations taken from the National Weather Service WSR-88D radars in the continental U.S. To evaluate the product the authors provide several case studies of radar-rain gauge comparisons at locations throughout the Mississippi River Basin. They present bias, root mean square difference, fractional standard difference, and correlation coefficient statistics for radar-rain gauge comparisons for the hourly, daily, monthly, yearly and warm season temporal scale. These point (gauge) and pixel (radar) comparisons show large discrepancies at the hourly scale, on the order of 600-800%. An evaluation of the differences associated with temporally integrated estimates shows marked reduction in these discrepancies. At the long-term (warm season), these reduce to about 10%. An estimate of the difference in the comparison of the long term accumulation of gridded gauge based estimates and radar estimates at 0.25° × 0.25° shows values in the range of 20% but decrease to about 15% after applying filtering techniques in the basin-wide comparisons.

Nelson, Brian R.; Krajewski, Witold F.; Smith, James A.; Habib, Emad; Hoogenboom, Gerrit

2005-09-01

215

Analysis of GIUH model by using GIS in river basin  

Energy Technology Data Exchange (ETDEWEB)

This study aims at the analysis of the geomorphological instantaneous unit hydrograph model(GIS-GIUH) with geographic information system for the rainfall-runoff analysis of the watershed which is ungaged or doesn't have sufficient hydrologic data. The rainfall-runoff analysis was performed in Wi stream(Dongkok, Koro, Miseung, Byeungchun, Hyoreung, Museung) which is a representative experimental river basin of IHP. In the process of analysis of the GIUH model, developed GIS-GIUH model and Rosso-GIUH model were applied the study basin and computed hydrographs by these models were compared with observed hydrograph. The GIS-GIUH model shows more closely to the observed hydrograph than Rosso-GIUH model in the peak discharge of the hydrograph. For the development of the GIS-GIUH model, Gamma function factor N was given by N = 3.25(R{sub B}/R{sub A}){sup 0.126}{center_dot}R{sub L}{sup -0.055}, which is the relation of the watershed geomorphological factor, K was also obtained as K 1.50(R{sub A}/R{sub B}{center_dot}R{sub L}){sup 0.10}{center_dot}((L{sub {omega}}+L{sub {omega}}{sub -1})/V){sup 0.37}. As the results of analysis, it was found that GIS-GIUH model can be applied to an ungaged watersheds. (author). 20 refs., 4 tabs., 8 figs.

Heo, Chang-Hwan [Chungju National University, Chungju(Korea); Lee, Soon-Tak [Yeungnam University, Kyungsan(Korea)

2002-06-30

216

Alternative Water Allocation in Kyrgyzstan: Lessons from the Lower Colorado River Basin and New South Wales  

Directory of Open Access Journals (Sweden)

Full Text Available Focus group discussions and a modeling approach were applied to determine policy and regulatory refinements for current water allocation practices in Kyrgyzstan. Lessons from the Lower Colorado River basin, Texas and New South Wales, Australia were taken into consideration. The paper analyzes the impact of adopting some of these interventions within the socio-environmental context that currently prevails in Kyrgyzstan. The optimization model for water distribution at the river-basin scale was developed using GAMS 2.25 software. Application of the model to the Akbura River basin indicated efficiencies in the proposed institutional rules especially in low water years.

Nazir Mirzaev

2010-08-01

217

Enhanced Drought Monitoring in the Upper Colorado River Basin  

Science.gov (United States)

As a part of the National Integrated Drought Information System's Upper Colorado River Basin pilot project, an aggressive collaborative drought monitoring and communication process was initiated in 2010. Weekly climate, drought and water supply assessments were begun which included webinars during critical times of the year -- primarily late January through mid summer. A diverse set of stakeholders ranging from ski area operators, river commissioners, state and federal agency representatives, public land managers, municipal water providers, agricultural interests and media from a 3-state area were invited to participate along with National Weather Service forecast office personal, state climate office representatives and other information providers. The process evolved to become a weekly drought monitoring "committee" providing detailed input to the U.S. Drought Monitor national author. In 2012 this new system was put to the test as dry winter conditions exploded into extreme and widespread drought as the normal spring storms failed to materialize and instead long-duration above average temperatures added evaporative stress to the already limited water supplies. This presentation examines this effort with an emphasis on stakeholder engagement. The overall impact of the 2012 drought appears, so far, to be less than what was experienced in 2002 although measured stream flow appears tp be similar. To what extent this could be attributed to the enhanced drought monitoring and communication will be discussed. The sustainability of this aggressive monitoring effort will also be assessed.

Doesken, N.; Smith, R.; Ryan, W.; Schwalbe, Z.; Verdin, J. P.

2012-12-01

218

Flood forecasting and early warning system for Dungun River Basin  

International Nuclear Information System (INIS)

Floods can bring such disasters to the affected dweller due to loss of properties, crops and even deaths. The damages to properties and crops by the severe flooding are occurred due to the increase in the economic value of the properties as well as the extent of the flood. Flood forecasting and warning system is one of the examples of the non-structural measures which can give early warning to the affected people. People who live near the flood-prone areas will be warned so that they can evacuate themselves and their belongings before the arrival of the flood. This can considerably reduce flood loss and damage and above all, the loss of human lives. Integrated Flood Analysis System (IFAS) model is a runoff analysis model converting rainfall into runoff for a given river basin. The simulation can be done using either ground or satellite-based rainfall to produce calculated discharge within the river. The calculated discharge is used to generate the flood inundation map within the catchment area for the selected flood event using Infowork RS.

219

Reservoirs promote the taxonomic homogenization of fish communities within river basins  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Most studies analyzing patterns in biotic homogenization of fish communities have used large-scale approaches, while the community-level effects of species intro- ductions and local extinctions within river basins have been sparsely analyzed. In this article, we examine patterns in freshwater fish a- and b-diversity in relation to the presence of reservoirs in a Mediterranean river (Guadiana river; Iberian Peninsula). We used fish samples from 182 river localities and 59 reservoir ones to add...

Clavero, Miguel; Hermoso, Virgilio

2011-01-01

220

Exposure assessment of pesticides in German river basins  

Science.gov (United States)

To assure the quality of surface water-bodies in integrated catchment management, the input and fate of agriculturally used plant protection products are essential factors to take into consideration. In the context of authorizing pesticides by governmental bodies within the European Union, modeling their environmental fate grew to be the focus of research activity being a rather inexpensive and effective alternative to monitoring campaigns. User-friendly Decision Support Systems (DSS) offer decision makers easy access to these models generally providing powerful tools for regional risk-assessment. DRIPS (Drainage Runoff Input of Pesticides in Surface Water), a GIS-DSS based on model algorithms describing the major pathways of pesticide entry into surface waters, was developed on behalf of the German Federal Environmental Agency (Umweltbundesamt, UBA). The tool estimates the quantity of pesticide input from non-point sources via surface runoff, tile drainage and spraydrift. Furthermore, the resulting predicted environmental concentration (PEC surface water) of active ingredients (a.i.) can be retrieved considering the mean daily input of an a.i. into various types of river-basins characterized by their daily discharge. A Graphical User Interface (GUI) was created to enable potential users of the DSS to interact with the model algorithms. Model parameters like dose rate, DT50, Koc of a.i., date of pesticides application et cetera can be modified by the user in order to generate customized scenarios for a choice of 11 field crops, orchards and vineyards. For river basin management purposes the probability of a set quantity of surface water pollution by a selected a.i. passing a defined threshold for selected months can be simulated after setting the parameters in the GUI. In order to calculate PEC spatial information, such as river-morphology, land-use, soil, precipitation et cetera is associated with the estimated input via the known pathways of entry. Daily catchment specific PEC were calculated for the 60 most commonly applied a.i. for approximately 400 catchments covering the territory of Germany. The probability of a certain concentration level to be reached was also determined for all a.i. in every catchment. With DRIPS, decision makers are provided with a probability based risk assessment DSS for predicting regionally differentiated pesticide contamination of surface water on a catchment scale featuring a spatial resolution of 1km(2) per pixel.

Röpke, B.; Bach, M.; Frede, H.-G.

2003-04-01

 
 
 
 
221

Li-Zn-Pb multi isotopic characterization of the Loire River Basin, France  

Science.gov (United States)

The Loire River in France is approximately 1010 km long and drains an area of 117 800 km2. Upstream, the Loire River flows following a south to north direction from the Massif Central down to the city of Orléans, 650 km from its source. The Loire River is one of the main European riverine inputs to the Atlantic Ocean. Over time, its basin has been exposed to numerous sources of anthropogenic metal pollutions, such as metal mining, industry, agriculture and domestic inputs. The Loire River basin is thus an excellent study site to develop new isotope systematics for tracking anthropogenic sources of metal pollutions (Zn and Pb) and also to investigate Li isotope tracing that can provide key information on the nature of weathering processes at the Loire River Basin scale. Preliminary data show that Li-Zn-Pb concentrations and isotopic compositions span a wide range in river waters of the Loire River main stream and the main tributaries. There is a clear contrast between the headwaters upstream and rivers located downstream in the lowlands. In addition, one of the major tributaries within the Massif Central (the Allier River) is clearly influenced by inputs resulting from mineralizations and thermomineral waters. The results showed that, on their own, each of these isotope systematics reveals important information about the geogenic or anthropogenic origin Li-Zn-Pb. Considered together, they are however providing a more integrated understanding of the overall budgets of these elements at the scale of the Loire River Basin.

Millot, R.; Desaulty, A.; Widory, D.; Bourrain, X.

2013-12-01

222

Cross-Comparison of Climate Change adaptation Strategies Across Large River Basins in Europe, Africa and Asia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A cross-comparison of climate change adaptation strategies across regions was performed, considering six large river basins as case study areas. Three of the basins, namely the Elbe, Guadiana, and Rhine, are located in Europe, the Nile Equatorial Lakes region and the Orange basin are in Africa, and the Amudarya basin is in Central Asia. The evaluation was based mainly on the opinions of policy makers and water management experts in the river basins. The adaptation strategies were evaluated co...

Krysanova, Valentina; Dickens, Chris; Timmerman, Jos; Varela Ortega, Consuelo; Schlu?ter, Maja; Roest, Koen; Huntjens, Patrick; Jaspers, Fons; Buiteveld, Hendrik; Moreno, Edinson; Pedraza Carrera, Javier; Sla?mova, Romana; Marti?nkova?, Marta; Blanco Gutie?rrez, Irene; Esteve Bengoechea, Paloma

2010-01-01

223

Predicting Future Regime Shifts in Flow of the Gunnison River Basin  

Science.gov (United States)

Previous research and paleo-reconstructions of past streamflow note persistent dry and wet regimes over the Colorado River Basin. These persistent dry and wet periods may impact water supply and management conditions for Colorado River stakeholders and the U.S. Bureau of Reclamation (Reclamation). Streamflow projections by Reclamation and other water management agencies have traditionally been based upon historical streamflow records and have assumed that past observations of streamflow are characteristic of future conditions. Under changing climate conditions, the assumption that past hydrology is representative of future conditions may no longer be valid. The Gunnsion River Basin contributes approximately 16% of the annual natural streamflow to the Upper Colorado River Basin. Current studies indicate that under projections of future climate, streamflow over the Gunnison River Basin may decrease on the order of 10% through 2099. In this study, past regime change characteristics over the Gunnison River Basin are compared to projections of future regime change in an attempt to understand how the frequency and duration of persistent dry and wet periods may change as the impacts of climate change are realized over the Gunnison River Basin.

Miller, W. P.; DeRosa, G.

2011-12-01

224

Detection of Flooding Responses at the River Basin Scale Enhanced by Land use Change  

Science.gov (United States)

The Georges Creek watershed (area 187.5 sq km) in western Maryland (United States) has experienced land use changes (>17% of area) associated with surface mining of coal. The adjacent Savage River watershed (area 127.2 sq km) is unmined. Moments of flood frequency distributions indicated that climatic variability affected both watersheds similarly. Normalizing annual maximum flows by antecedent streamflow and causative precipitation helped identify trends in flooding response. Analysis of contemporary storm events using Next Generation Weather Radar (NEXRAD) stage III precipitation data showed that Georges Creek floods are characterized by higher peak runoff and a shorter centroid lag than Savage River floods, likely attributable to differences in current land use. Interestingly, Georges Creek produces only two thirds of the storm-flow volume as Savage River, apparently because of infiltration into abandoned deep mine workings and an associated transbasin diversion constructed circa 1900. Empirical trend analysis is thus complicated by both hydroclimatic variability and the legacy of deep mining in the basin.

McCormick, Brian C.; Eshleman, Keith N.; Griffith, Jeff L.; Townsend, Philip A.

2009-01-01

225

Hydrologic model framework for river basins with a range of hydroclimatic and bioclimatic conditions  

Science.gov (United States)

This presentation reports on the first steps in the development of a regional scale runoff modelling framework for a river basin that features a wide range of diverse hydroclimatic and landscape conditions across the basin. A new approach will be tested based on an ecohydrologically and water balance oriented landscape classification concept. As starting point the Holdridge life zone system concept will be used which is based on indices of precipitation, evapotranspiration and temperature and differentiates landscapes with respect to climatic and elevation zones. Further steps of the projects will include the search for additional indices that can be used to define the controls on the dominant runoff processes in relations to water balance and landscapes chatacteristics, respectively. The final model framework will be constructed around a group of modules, each of the modules representing specific conditions with respect to the geomorphologic and ecohydrologic characteristics of the particular landscape type. The selected test river basins are located in 2 regions of Peru, the Piura region (24,000 Km2) and the Lambayeque region (10,000 Km2). They feature a wide range of hydroclimatic and landcover situations with diversity of landscapes (from high mountaneous andean areas to flat coastal areas, from forested areas to desert areas, and from permanent to ephemeral lakes). A very particular feature exists in the form of the lake Ramon next to the coast of the sea which exhibits a strong bild-up in the time of ENSO/El Niño episodes, reaching an extent of about 2,000 Km2 in area and around 8,000 million m3 in volume in the ENSO event 1997-98, and a strong redrawal at the end of such an episode.

Cárdenas Gaudry, María.; Gutknecht, Dieter

2010-05-01

226

Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China  

Directory of Open Access Journals (Sweden)

Full Text Available Zhalong National Nature Preserve is a large wetland reserve on the Songnen Plain in Northeast China. Wetlands in the preserve play a key role in maintaining regional ecosystem function and integrity. Global climate change and intensified anthropogenic activities in the region have raised great concerns over the change of natural flow regime, wetland degradation and loss. In this study, two key hydrologic components in the preserve, water surface area and water volume, as well as their variations during the period 1985–2006, were investigated with a spatially-distributed hydrologic modeling system (SWAT. A wetland module was incorporated into the SWAT model to represent hydrological linkages between the wetland and adjacent upland areas. The modified modeling system was calibrated with streamflow measurements from 1987 to 1989 and was validated for the period 2005–2006. The calibration achieved a Nash efficiency coefficient (Ens of 0.86, and the validation yielded an Ens of 0.66. In the past 20 yr, water surface area in the Zhalong wetland fluctuated from approximately 200 km2 to 1145 km2 with a rapid decreasing trend through the early 2000s. Consequently, water volume decreased largely in the preserve, especially in the dry seasons. The situation changed following the implementation of a river diversion in 2001. Overall, the modeling yielded plausible estimates of hydrologic changes in this large wetland reserve, building a foundation for assessing ecological water requirements and developing strategies and plans for future water resources management within the river basin.

X. Q. Feng

2013-07-01

227

Seed banks and their implications of rivers with different trophic levels in Chaohu Lake Basin, China.  

Science.gov (United States)

The seed banks of three rivers, with different trophic levels in Chaohu Lake Basin, China, were investigated to explore the dynamics of seed bank under the pressure of eutrophication. A total of 60 species from 25 family 43 genera were identified from the seed banks of the three rivers. In the eutrophic Paihe River, the species richness and mean seed density were the highest, followed by the oligotrophic Hangbuhe River and the hypereutrophic Nanfeihe River. Various compositions of three functional group assemblage of hydro-ecotypes were found in different rivers. The dominant and endemic species were aquatic, wetland, and terrestrial species in Hangbuhe River, Paihe River, and Nanfeihe River, respectively. The shift trend of seed bank in three rivers probably presented past vegetation dynamics under the trophic process in the rivers of Chaohu Lake Basin. Seed bank in the river bed might be quickly assessed by its trophic level. Additionally, it might imply that the seed bank with more aquatic species in the oligotrophic river would be a potential seed resource for vegetation restoration of severely degraded river ecosystems. PMID:25178861

Cui, Naxin; Wu, Juan; Zhong, Fei; Yang, Lihua; Xiang, Dongfang; Cheng, Shuiping; Zhou, Qi

2015-02-01

228

Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent  

Science.gov (United States)

The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

Zhao, T. H.; Yin, Z.; Song, Y. Z.

2012-11-01

229

Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent  

International Nuclear Information System (INIS)

The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

230

Geochemical behavior of radionuclides and heavy metals in soils from Corumbatai River basin (SP), Brazil  

International Nuclear Information System (INIS)

The purpose of this research was to study the geochemical behavior of radionuclides and heavy metals in soils of agricultural use at Corumbatai River basin (SP). The natural concentration and variability in sedimentary rocks at Corumbatai river basin follow the trend Ca > Mg > K > Na, with the concentration of heavy metals and radionuclides. The distribution of exposure rate in soils shows the occurrence of higher values towards south of the Corumbatai river basin, region where are applied phosphate fertilizers, amendments and 'vinhaca' in sugar cane crops. Heavy metals and radionuclides incorporated in phosphate fertilizers and amendments are annually added during the fertilization process in the sugar cane crops, but if they are utilized in accordance with the recommended rate, they do not rise the concentration levels in soils up to hazards levels. Thus, they are lower transferred from soils to sugar cane at Corumbatai river basin, not offering hazard to the ecosystem and animal or human health. (author)

231

RELATION OF ENVIRONMENTAL CHARACTERISTICS TO FISH ASSEMBLAGES IN THE UPPER FRENCH BROAD RIVER BASIN, NORTH CAROLINA  

Science.gov (United States)

Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...

232

HENRY'S FORK AND SNAKE RIVER BASIN, IDAHO - WATER QUALITY REPORT, 1973  

Science.gov (United States)

Reported problems in the Henrys Fork and Snake River Basin (17040202, 17040203, 17040201) include bacteria levels exceeding water quality standards, dissolved oxygen standards violations, and excessive algal blooms resulting in aesthetic problems and contributing to DO depression...

233

A New Hydrological Method for Estimating the River Bed and Drainage Basin Components of Erosion and Suspended Sediment Fluxes in River Basins  

Directory of Open Access Journals (Sweden)

Full Text Available This paper uses the results of river suspended sediment flux (SSF analysis to propose a new hydrological method for quantitatively estimating the river bed and drainage basin (sheet erosion, rill and gully erosion components of total erosion intensity in river basins. The suggested method is based on the establishment of the functional power connection between mean monthly water discharges (WD, Q i and suspended sediment fluxes (r i calculated for the low-water-discharge phases of a river?s hydrological regime in various (on mean annual water discharges years: r i = a×Q i (where a, ì are some empirical coefficients, and further extrapolation of this connection for other phases of the hydrological regime. Thus, the extrapolation allows us to calculate (in a long-term annual SSF the proportions of sediments originating in river beds and drainage basins. The proposed method is tested using a long-term (not less than 10 years series of observations for WD and SSF of 124 chiefly small and midsize rivers of the East-European plain, the Urals, the Eastern Carpathians, the Ciscaucasia and the Caucasus, and Central Asian mountains, containing data on the mean monthly values of WD and SSF. The paper also compares the method with other methods for estimating the components of erosion intensity and SSF..

A.V. Gusarov

2012-04-01

234

Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin  

Directory of Open Access Journals (Sweden)

Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

Y. Jun Xu

2013-04-01

235

Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985  

Science.gov (United States)

The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

Kuzmiak, John M.; Strickland, Hyla H.

1994-01-01

236

Assessing the Resilience of a River Management Regime: Informal Learning in a Shadow Network in the Tisza River Basin  

Directory of Open Access Journals (Sweden)

Full Text Available Global sources of change offer unprecedented challenges to conventional river management strategies, which no longer appear capable of credibly addressing a trap: the failure of conventional river defense engineering to manage rising trends of disordering extreme events, including frequency and intensity of floods, droughts, and water stagnation in the Hungarian reaches of the Tisza River Basin. Extreme events punctuate trends of stagnation or decline in the ecosystems, economies, and societies of this river basin that extend back decades, and perhaps, centuries. These trends may be the long-term results of defensive strategies of the historical river management regime that reflect a paradigm dating back to the Industrial Revolution: "Protect the Landscape from the River." Since then all policies have defaulted to the imperatives of this paradigm such that it became the convention underlying the current river management regime. As an exponent of this convention the current river management regimes' methods, concepts, infrastructure, and paradigms that reinforce one another in setting the basin's development trajectory, have proven resilient to change from wars, political, and social upheaval for centuries. Failure to address the trap makes the current river management regime's resilience appear detrimental to the region's future development prospects and prompts demand for transformation to a more adaptive river management regime. Starting before transition to democracy, a shadow network has generated multiple dialogues in Hungary, informally exploring the roots of this trap as part of a search for ideas and methods to revitalize the region. We report on how international scientists joined one dialogue, applying system dynamics modeling tools to explore barriers and bridges to transformation of the current river management regime and develop the capacity for participatory science to expand the range of perspectives that inform, monitor, and revise learning, policy, and the practice of river management.

Geza Molnar

2008-06-01

237

Uncertainty in climate change projections of discharge for the Mekong River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Mekong River Basin comprises a key regional resource in Southeast Asia for sectors that include agriculture, fisheries and electricity production. Here we explore the potential impacts of climate change on freshwater resources within the river basin. We quantify uncertainty in these projections associated with GCM structure and climate sensitivity, as well as from hydrological model parameter specification. This is achieved by running pattern-scaled GCM output through a semi-distr...

Kingston, D. G.; Thompson, J. R.; Kite, G.

2010-01-01

238

Uncertainty in climate change projections of discharge for the Mekong River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Mekong River Basin is a key regional resource in Southeast Asia for sectors that include agriculture, fisheries and electricity production. Here we explore the potential impacts of climate change on freshwater resources within the river basin. We quantify uncertainty in these projections associated with GCM structure and climate sensitivity, as well as from hydrological model parameter specification. This is achieved by running pattern-scaled GCM scenarios through a semi-distributed hydro...

Kingston, D. G.; Thompson, J. R.; Kite, G.

2011-01-01

239

Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?  

Digital Repository Infrastructure Vision for European Research (DRIVER)

River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper pr...

Eduard Interwies; Nicole Kranz; Erik Mostert; Raadgever, G. T.; Timmerman, Jos G.

2008-01-01

240

Real-time remote sensing driven river basin modeling using radar altimetry  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models. In this study, we evaluate the potential of informing a river basin model with real-time rada...

Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-gottwein, Peter; Berry, P. A. M.; Smith, R. G.; Yakovlev, A.; Siegfried, T. U.

2011-01-01

 
 
 
 
241

Alternative Water Allocation in Kyrgyzstan: Lessons from the Lower Colorado River Basin and New South Wales  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Focus group discussions and a modeling approach were applied to determine policy and regulatory refinements for current water allocation practices in Kyrgyzstan. Lessons from the Lower Colorado River basin, Texas and New South Wales, Australia were taken into consideration. The paper analyzes the impact of adopting some of these interventions within the socio-environmental context that currently prevails in Kyrgyzstan. The optimization model for water distribution at the river-basin scale was...

Nazir Mirzaev; Jusipbek Kazbekov; Andrew Noble; Oyture Anarbekov; Kahramon Jumabaev; Murat Yakubov; Akmal Karimov; Ahmad Alimdjanov

2010-01-01

242

Water Accounting Plus for Water Resources Reporting and River Basin Planning:  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This thesis introduces Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. WA+ is a simple, yet comprehensive and understandable water accounting framework that provides a standardized way of data collection and a presentation system that describes the overall land and water management situation in complex river basins. WA+ tracks water depletions rather than withdrawals...

Karimi, P.

2014-01-01

243

Temporal & Spatial Variation and Benefit Analysis of Farmers Fertilizer at Tarim River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Along with the continuous development of the fertilizer industry, it provides a large extent of impetus to cultivation. This paper analyzes based on the temporal & spatial variation and planting efficiency of farmers fertilizer at Tarim River Basin, it finds that farmers fertilizer provides a large extent of impetus to cultivation. Therefore, using cointegration method to analyze influence of planting efficiency with farmers fertilizer at Tarim River Basin, the model results show that ...

Su, Yang; Ma, Huilan; Yan, Lu

2012-01-01

244

Large-scale hydrologic and hydrodynamic modelling of the Amazon River basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this paper, a hydrologic/hydrodynamic modeling of the Amazon River basin iscpresented using the MGB-IPH model with a validation using remotely sensed observations. Moreover, the sources of model errors by means of the validation and sensitivity tests are investigated, and the physical functioning of the Amazon basin is also explored. The MGBIPH is a physically based model resolving all land hydrological processes and here using a full 1-D river hydrodynamic module with a simple floodplain ...

Paiva, Rodrigo; Buarque, Diogo; Collischonn, Walter; Bonnet, Marie-paule; Frappart, Fre?de?ric; Calmant, Ste?phane; Mendes, Carlos

2013-01-01

245

Comparison of Flood Management options for the Yang River Basin, Thailand  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Yang River Basin, Thailand, has always been subjected to flooding, but due to recent developments in land use there is an increase in the vulnerability in several parts of the river basin. To mitigate impacts of flooding, both structural and non-structural measures can be taken. This paper discusses three scenario simulations focusing on flood retardation, retention, and damage mitigation measures. A main tributary was simulated by a process-based hydrological model (SWAT) and coupled to ...

Kunitiyawichai, K.; Schultz, B.; Uhlenbrook, S.; Suryadi, F. X.; Griensven, A.

2011-01-01

246

Effects of climate variability on water storage in the Colorado river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Understanding the long-term (interannual–decadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed precipitation, and discharge spanning 74 yr in the Colorado River basin and relate them to climate indices that describe variability of sea surface temperature and sea level pressure in the tropical and extratropical Pacific. El Niño–Southern Oscill...

Hurkmans, R. T. W. L.; Troch, P. A. A.; Uijlenhoet, R.; Torfs, P. J. J. F.; Durcik, M.

2009-01-01

247

GIS-FMADM for Land Use Management at Mamasa River Basin South Sulawesi, Indonesia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In the recent years, the function of Mamasa River Basin can not be performed optimally in maintaining sustainability hydrologic function of Garugu dam. It is indicated by the occurrence of floods in rainy season and in contrary water shortage in dry season. Unexpected hydrology functions can be attributed to inappropriate land use at the upstream. Therefore, in order to maintain the hydrologic function of the dam, it is necessary to formulate suitable land use at upstream of the river basin. ...

Faridah, Sitti Nur

2014-01-01

248

Real-time remote sensing driven river basin modelling using radar altimetry  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models.

In this study, we evaluate the potential of informing a river basin mode...

Pereira-cardenal, S. J.; Riegels, N. D.; Berry, P. A. M.; Smith, R. G.; Yakovlev, A.; Siegfried, T. U.; Bauer-gottwein, P.

2010-01-01

249

Real-time remote sensing driven river basin modeling using radar altimetry  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models.

In this study, we evaluate the potential of informing a river basin mode...

Pereira-cardenal, S. J.; Riegels, N. D.; Berry, P. A. M.; Smith, R. G.; Yakovlev, A.; Siegfried, T. U.; Bauer-gottwein, P.

2011-01-01

250

Evaluation of Groundwater Chemistry of a Central Kerala River Basin, India using Multivariate Analysis  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Statistical processing of data was necessary to arrive at a reasonable conclusion regarding the chemical behavior of groundwater in a river basin. Multivariate analysis was done to elucidate the groundwater chemistry of a Central Kerala River basin. Hydrochemical parameters like EC, pH, TDS, TH, Ca, Mg, Na, K, Cl, F, HCO 3 +CO 3 , SO 4 , total Fe were estimated in the pre- monsoon and post-monsoon seasons. Factor and cluster analysis differentiated two distinct contributing components to the ...

Girish Gopinath; Resmi T. R.

2011-01-01

251

Geospatial Information Systems Analysis of Regional Environmental Change along the Savannah River Basin of Georgia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper uses remote sensing and geographic information systems (GIS); and descriptive statistics in the assessment of environmental change along the Savannah River Basin of Georgia. Results of the study show that Savannah River basin side of Georgia has been experiencing environmental change due to several decades of relentless pressure induced by anthropocentric activities and host of other socio-economic factors. Normalized Difference Vegetation Index (NDVI) analysis of the area also sho...

Merem, Edmund C.; Twumasi, Yaw A.

2008-01-01

252

The Impact of Rainstorm Stochasticity on Hillslope Sediment Supply to River Channels in Dryland Basins  

Science.gov (United States)

Climate interacts with hillslopes supplying sediment to river channels, and impacting drainage basin functioning and evolution. In particular, coarse sediment supply from hillslopes exerts a strong control on channel bed material grain-size distributions (GSD) which feeds back on bedload flux and consequently affects long-term rates of valley incision/aggradation. However, process-based understanding of sediment supply from hillslopes is poorly constrained because it is spatially and temporally variable as a result of interactions between rainstorm attributes (frequency, intensity, duration, size) and hillslope characteristics within a basin (length, gradient, infiltration rates, GSD). Drylands are particularly sensitive to climatic forcing because they are subjected to infrequent, short-lived, but high intensity rainfall events, which are spatially-variable and often smaller than the basin area. These climatic factors coupled with thin, stony soils typical of drylands, produce dynamic and variable sediment supply to channels, with a high proportion of coarse material that remains in channel beds over long timescales. Currently there is limited understanding of how variability and nonstationarity in regional climate affect hillslope sediment supply to valley floors in dryland basins. In these landscapes, the discrete and spatially variable nature of convective rainstorms and other catchment characteristics create challenges for deterministic modelling of the interaction between climate and sediment transport. Here we represent climate as a stochastic process characterized by probability density functions of storm properties (total annual rainfall, location, size, duration, peak rainfall intensity). This stochastic driver is coupled to a physics-based hillslope sediment transport model in order to investigate the decadal impact of climatic variability on longitudinal hillslope coarse (> 2 mm) sediment supply (flux and GSD) to a mainstem channel within a 170 km2 basin in SE Spain. We also test a number of plausible scenarios of regional climate change and compare all our results against GSDs measured in the channel. Results show highly discontinuous and variable sediment supply along the river reach which is sensitive to rainstorm characteristics as manifested in runoff changes. The interaction between hillslope characteristics and rainstorm attributes results in a non-linear relationship between climate forcing and sediment supply and has significant implications for changing volume and GSD of sediment delivered to the channel.

Michaelides, K.; Singer, M. B.

2013-12-01

253

Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River basin, Canada  

Directory of Open Access Journals (Sweden)

Full Text Available Glacier melt provides important contributions to streamflow in many mountainous regions. Hydrologic model calibration in glacier-fed catchments is difficult because errors in modelling snow accumulation can be offset by compensating errors in glacier melt. This problem is particularly severe in catchments with modest glacier cover, where goodness-of-fit statistics such as the Nash-Sutcliffe model efficiency may not be highly sensitive to the streamflow variance associated with glacier melt. While glacier mass balance measurements can be used to aid model calibration, they are absent for most catchments. We introduce the use of glacier volume change determined from repeated glacier mapping in a guided GLUE (generalized likelihood uncertainty estimation procedure to calibrate a hydrologic model. We also explicitly account for changes in glacier area through the calibration and test periods. The approach is applied to the Mica basin in the Canadian portion of the Columbia River basin using the HBV-EC hydrologic model. Use of glacier volume change in the calibration procedure effectively reduced parameter uncertainty and helped to ensure that the model was accurately predicting glacier mass balance as well as streamflow. The seasonal and interannual variations in glacier melt contributions were assessed by running the calibrated model with historic glacier cover and also after converting all glacierized areas to alpine land cover in the model setup. Although glaciers in the Mica basin only cover 5 % of the watershed, glacier ice melt contributes up to 25 % and 35 % of streamflow in August and September, respectively, and is particularly important during periods of warm, dry weather following winters with low accumulation and early snowpack depletion. The approach introduced in this study provides an effective and widely applicable approach for calibrating hydrologic models in glacier fed catchments, as well as for quantifying the magnitude and timing of glacier melt contributions to streamflow.

G. Jost

2011-05-01

254

Riverton Dome Gas Exploration and Stimulation Technology Demonstration, Wind River Basin, Wyoming  

Energy Technology Data Exchange (ETDEWEB)

This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends. The Institute for Energy Research has taken a unique approach to building a new exploration strategy for low-permeability gas accumulations in basins characterized by anomalously pressured, compartmentalized gas accumulations. Key to this approach is the determination and three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes, and the detection and delineation of areas of enhanced storage capacity and deliverability below this boundary. This new exploration strategy will be demonstrated in the Riverton Dome? Emigrant Demonstration Project (RDEDP) by completing the following tasks: 1) detect and delineate the anomalous pressure boundaries, 2) delineate surface lineaments, fracture and fault distribution, spacing, and orientation through remote sensing investigations, 3) characterize the internal structure of the anomalous pressured volume in the RDEDP and determine the scale of compartmentalization using produced water chemistry, 4) define the prospects and well locations as a result on this new exploration technology, and 5) utilize new completion techniques that will minimize formation damage and optimize production.

Ronald C. Surdam

1998-11-15

255

Geological remote sensing of Palaeogene rocks in the Wind River Basin, Wyoming, USA  

Science.gov (United States)

Remote sensing studies of Palaeogene sediments in the Wind River Basin (Wyoming) were used for mapping stratigraphic units, sedimentary features and facies, and structural patterns. Thematic Mapper principal component images for the central and eastern Wind River Basin along with geological investigations and spectral analyses allowed: mapping of the Fort Union, Wind River, and Wagon Bed formations (Fm) and their subunits; recognition of two subunits in the Wind River Fm, one of which can be traced for 75 km; determination of sediment source and depositional environment of units within the Wind River Fm; correlation of the Wagon Bed Fm across the basin; and apparent confirmation of different sources of volcanic debris in the western and southeastern exposures of the Wagon Bed Fm.

Krishtalka, L.; Stucky, R. K.; Redline, A. D.

1988-01-01

256

Uranium isotopic investigations and radiocarbon measurements of river-groundwater systems, Sabarmati Basin, Gujarat, India  

International Nuclear Information System (INIS)

Measurements of uranium concentrations, and 234U/238U activity ratios along the Sabarmati River and adjacent phreatic aquifers, and radiocarbon in confined aquifers in the Watrak-Shedi sub-basin, part of the Sabarmati basin, have been carried out. The uranium isotope distributions show marked seasonal variations in river waters, whereas they are within experimental uncertainties in the groundwaters adjacent to the river bed. The observed seasonal variations indicate the presence of a groundwater component in the Sabarmati River, and its contribution to the total river flow appears to be maximum during summer. Apparent radiocarbon ages of confined aquifers in the Watrak-Shedi sub-basin show that the groundwater flow is in the NE-SW direction with a velocity of 6-7m/a. (author)

257

Uranium isotopic investigations and radiocarbon measurements of river-groundwater systems, Sabarmati basin, Gujarat, India  

International Nuclear Information System (INIS)

Measurements of uranium concentrations, 234U/238U activity ratios along the Sabarmati river and adjacent phreatic aquifers and radiocarbon in confined aquifers in the Watrak-Shedi sub-basin, part of Sabarmati basin, have been carried out. The uranium isotope distributions show marked seasonal variations in river waters, whereas they are within experimental uncertainties in the groundwaters adjacent to the river bed. The observed seasonal variations indicate the presence of a groundwater component in Sabarmati river, and its contribution to the total river flow appears to be maximum during summer. Apparent radiocarbon ages of confined aquifers in Watrak-Shedi sub-basin show that the groundwater flow is in the NE-SW direction with a velocity of 6-7 m/a. (orig.)

258

Applicability of the SWAT model for hydrologic simulation in Paraopeba river basin, MG  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The SWAT model (Soil and Water Assessment Tool) was applied for simulating the hydrologic pattern of Paraopeba river basin, in Minas Gerais state, under different land use and occupation scenarios, looking to support basin management actions. The model parameters were calibrated and validated, with respect to the data observed from 1983 to 2005. The basin was assessed at the ‘Porto do Mesquita’ gauging station and change in land use and occupation was based on the annual growth scenarios ...

Matheus Fonseca Durães; Carlos Rogério de Mello; Mauro Naghettini

2011-01-01

259

Relationship between River Flow, Rainfall and Groundwater pumpage in Mikkes Basin (Morocco)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper investigates the relationship between river flow, rainfall and groundwater pumpage in the Mikkes stream during the period 1968-2009. The Mikkes basin is located in the north center of Morocco and consists of three different zones that represent diversified geologies. This basin includes a phreatic and confined aquifer in Saïs basin and a shallow aquifer in the Tabular Middle Atlas. Analysis of monthly medium flows between 1968 and 2009 shows an approximate oceanic system which is ...

Belhassan, K.

2011-01-01

260

Climate change in Guadiana river basin and its impacts on crop water demand  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study evaluates climate change tendencies over several climatic parameters observed in the Guadiana river basin, south Portugal and its potential impacts on crop water and irrigation requirements. Parameters analyzed were annual rainfall and its seasonal distribution, temperature and evapotranspiration, collected from available regional meteorological data from a 46-year period (1963-2009). The impacts of climate change in Guadiana basin’s irrigated crops was studied running long-term ...

Valverde, Pedro; Serralheiro, Ricardo; Carvalho, Ma?rio; Shahidian, Shakib

2013-01-01

 
 
 
 
261

Comparing impacts of climate change on streamflow in four large African river basins  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study aims to compare impacts of climate change on streamflow in four large representative African river basins: the Niger, the Upper Blue Nile, the Oubangui and the Limpopo. We set up the eco-hydrological model SWIM (Soil and Water Integrated Model) for all four basins individually. The validation of the models for four basins shows results from adequate to very good, depending on the quality and availability of input and calibration data. For the climat...

Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Mu?ller, E. N.; Hattermann, F. F.

2014-01-01

262

Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study explores the teleconnection of two climatic patterns, namely the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in southern China, particularly on a sub-basin-scale basis. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the mo...

Niu, J.; Chen, J.; Sivakumar, B.

2014-01-01

263

Soil loss prediction in Guaraíra river experimental basin, Paraíba, Brazil based on two erosion simulation models  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this study, two hydrological models to estimate soil losses and sediment yield due to sheet and channel erosion, at the basin outlet, are applied to Guaraíra River Experimental Basin, located in Paraíba State, northeastern Brazil. The soil erosion models are (a) the classical Universal Soil Loss Equation (USLE), which is used to simulate annual and monthly soil losses; and (b) Kineros model, which is used to simulate the sediment yield within the basin. Kineros model is a physically-base...

Da Costa Silva, Jorge Fla?vio Caze? B.; Celso Augusto Guimarães Santos; Silva, Leonardo Pereira E.; Richarde Marques da Silva

2007-01-01

264

Hydrogeochemical and isotopic investigations of the Han River basin, South Korea  

Science.gov (United States)

SummaryThe Han River, the largest river in South Korea draining approximately 26,000 km 2, comprises two major tributaries: the North and the South Han Rivers. Seasonal and spatial variations in the major ion chemistry and isotope compositions of the Han River were monitored for one year at 14-23 locations, covering about 80% of the entire drainage basin. Compared to the South Han River (SHR), the North Han River (NHR) was much lower in total dissolved solids (TDS), Sr, and major ion concentrations, but higher in Si concentration, ? 34S SO 4 values, and 87Sr/ 86Sr ratios. These observations suggest strong influence of prevailing rock types in the drainage basins on the chemical and isotopic compositions of the river waters. These are silicate rocks in the NHR basin and carbonate rocks in the SHR basin. The headwaters of the NHR basin, where several flood control dams have been constructed, show enrichment in deuterium and oxygen-18, indicating evaporative loss. The ? 34S SO 4 data suggest dissolved sulfates in the NHR and SHR are mostly derived from atmospheric deposition, and variable mixtures of atmospheric deposition and sulfide oxidation, respectively. The 87Sr/ 86Sr ratios are much higher in the NHR (0.71793-0.72722) than in the SHR (0.71495-0.71785) with one exception, indicating weathering of Precambrian and Mesozoic granitic rocks and marine carbonates, respectively.

Ryu, Jong-Sik; Lee, Kwang-Sik; Chang, Ho-Wan

2007-10-01

265

River basin flood potential inferred using GRACE gravity observations at several months lead time  

Science.gov (United States)

The wetness of a watershed determines its response to precipitation, leading to variability in flood generation. The importance of total water storage--which includes snow, surface water, soil moisture and groundwater--for the predisposition of a region to flooding is less clear, in part because such comprehensive observations are rarely available. Here we demonstrate that basin-scale estimates of water storage derived from satellite observations of time-variable gravity can be used to characterize regional flood potential and may ultimately result in longer lead times in flood warnings. We use a case study of the catastrophic 2011 Missouri River floods to establish a relationship between river discharge, as measured by gauge stations, and basin-wide water storage, as measured remotely by NASA's Gravity Recovery and Climate Experiment (GRACE) mission. Applying a time-lagged autoregressive model of river discharge, we show that the inclusion of GRACE-based total water storage information allows us to assess the predisposition of a river basin to flooding as much as 5-11 months in advance. Additional case studies of flood events in the Columbia River and Indus River basins further illustrate that longer lead-time flood prediction requires accurate information on the complete hydrologic state of a river basin.

Reager, J. T.; Thomas, B. F.; Famiglietti, J. S.

2014-08-01

266

Enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins: experiences from the Lower Mekong River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper analyses the design and impact of capacity building programmes aimed at enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins. Case study is a programme developed by the Mekong River Commission (MRC). A post training evaluation was applied to assess its impact in terms of individual capacity enhancement and change (use and application of knowledge, factors hampering application, and change in function and opport...

Douven, W.; Mul, M. L.; A?lvarez, B. F.; Son, L. H.; Bakker, N.; Radosevich, G.; Zaag, P.

2012-01-01

267

Fluvial dynamics of an anabranching river system in Himalayan foreland basin, Baghmati river, north Bihar plains, India  

Science.gov (United States)

Anabranching river systems are now regarded as a separate class in river classifications owing to their distinctive morphological/hydrological characteristics and fluvial processes. A better understanding of anabranching rivers still needs detailed data from different environmental and geographical settings. This paper presents a detailed account of an anabranching river system from the Himalayan foreland basin. The Baghmati river system from north Bihar Plains, eastern India provides a typical example of an anabranching river system located in the interfan area between the Kosi and the Gandak megafans. The river system is braided in upstream reaches and meandering in downstream reaches, but the midstream anabranching reach is characterized by low width-depth ratio (11-16), gentle gradient (0.00018-0.00015), variable peak discharge, frequent flooding and high sediment load. The anabranching in the midstream reaches is a response to its inability to transport high sediment load due to gentle channel slope and dominance of aggradation process. The development of anabranches is related to rapid and frequent avulsions of the river channels with eight major avulsions observed in the 30-km-wide floodplain in the last 230 years. The decadal scale avulsion history of the Baghmati river system makes it 'hyperavulsive' and the major causative factors for such channel instability are sedimentological readjustments and active tectonics in the basin area.

Jain, Vikrant; Sinha, R.

2004-05-01

268

Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming  

Science.gov (United States)

The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

U.S. Geological Survey

2006-01-01

269

LIVING WITH FLOOD AND SUSTAINABLE LIVELIHOOD DEVELOPMENT IN LOWER BRAHMAPUTRA RIVER BASIN, ASSAM  

Directory of Open Access Journals (Sweden)

Full Text Available River basin is considered as the basic hydrologic unit for planning and development of water resources and livelihood. Assam's Brahmaputra valley represents one of the most acutely hazard-prone regions in the country, having a total flood prone area of 3.2 million hectare. The lower Brahmaputra basin, Assam has caused the hazards of annual floods and erosion, bringing misery to the people and shattering the fragile agro-economic base of the region. The important factors causing floods in Assam are heavy rainfall, inadequate capacity of river, severe soil erosion, river bed silting, landslides, earthquakes, poor drainage, deforestation and practice of shifting cultivation or Jhoom as well as physical and anthropogenic causes. This paper focuses on the managing floods through specific structural measures such as reservoirs, embankments, channel improvement, town protection, river turning works, watershed management, inter-basin transfer, bank protection and anti-erosion work. Nonstructural methods to control the floods and soil erosion should be through flood forecasting, flood plain zoning, changing cropping pattern and public participation in management works. The paper also provides various flood mitigation processes for the challenges faced in the lower Brahmaputra basin, Assam for sustainable development. This paper mainly focuses on measurement of vulnerability and identification of vulnerable issues of Lower Brahmaputra basin with respect to various magnitude levels. The present study attempts to formulate a kind of sustainable livelihood development strategy for the development of lower Brahmaputra river basin, Assam. An analysis of major resources as well as critical problems has been done in order to identify the potential and challenges for the river basin, so that a sustainable development strategy can be formulated. It has been attempted to look into the integration at the spatial, sectoral and institutional level, while identifying the sustainable strategy for river basin, Assam.

R. B. Singh

2014-04-01

270

Data-based scale-extrapolation: estimating regional water resources using data from small river basins  

Science.gov (United States)

Estimation of world water resources under a changing climate is a key scientific issue for many environmental research areas with profound socio-economic significance. A new data-based scale-extrapolation method (Gong 2012) is proposed to estimate continental and regional water resources. The new method builds upon the assumption (Gong 2012) that, the dynamic interaction between climate and hydrology of a large river basin can be equally well resembled by multiple small regions, each characterized by a number of small river basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small river basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics of the large region. Therefore, those multiple small regions can provide an ensemble of water recourse estimations for the large basin. The new method makes it possible for regional water resource estimations to benefit from a multitude of readily available measurements from small river basins. The scale-extrapolation methods also made it possible to study the interaction between climate and hydrology, and the climate change impact in un-gauged or partially gauged large river basins from data alone. The method offers ensemble predictions that bracket the estimation uncertainty. Because the scale-extrapolation uses different data and method compared to the modelling approach, it provides a unique opportunity to be compared with modelling results. Gong L., 2012. Data-based discharge extrapolation: estimating annual discharge for a partially gauged large river basin from its small sub-basins. Hydrol. Earth Syst. Sci. Discuss., 9, 6829-6856, 2012. doi:10.5194/hessd-9-6829-2012.

Gong, Lebing

2013-04-01

271

Walla Walla River Basin Fish Screens Evaluations, 2006 Annual Report.  

Energy Technology Data Exchange (ETDEWEB)

Pacific Northwest National Laboratory evaluated Gardena Farms, Little Walla Walla, and Garden City/Lowden II Phase II fish screen facilities and provided underwater videography beneath a leaking rubber dam in the Walla Walla River basin in 2006. Evaluations of the fish screen facilities took place in early May 2006, when juvenile salmonids are generally outmigrating. At the Gardena Farms site, extended high river levels caused accumulations of debris and sediment in the forebay. This debris covered parts of the bottom drum seals, which could lead to early deterioration of the seals and drum screen. Approach velocities were excessive at the upstream corners of most of the drums, leading to 14% of the total approach velocities exceeding 0.4 feet per second (ft/s). Consequently, the approach velocities did not meet National Marine Fisheries Service (NMFS) design criteria guidelines for juvenile fish screens. The Little Walla Walla site was found to be in good condition, with all approach, sweep, and bypass velocities within NMFS criteria. Sediment buildup was minor and did not affect the effectiveness of the screens. At Garden City/Lowden II, 94% of approach velocities met NMFS criteria of 0.4 ft/s at any time. Sweep velocities increased toward the fish ladder. The air-burst mechanism appears to keep large debris off the screens, although it does not prevent algae and periphyton from growing on the screen face, especially near the bottom of the screens. In August 2006, the Gardena Farm Irrigation District personnel requested that we look for a leak beneath the inflatable rubber dam at the Garden City/Lowden II site that was preventing water movement through the fish ladder. Using our underwater video equipment, we were able to find a gap in the sheet piling beneath the dam. Erosion of the riverbed was occurring around this gap, allowing water and cobbles to move beneath the dam. The construction engineers and irrigation district staff were able to use the video footage to resolve the problem within a couple weeks. We had hoped to also evaluate the effectiveness of modifications to louvers behind the Nursery Bridge screens when flows were higher than 350 cubic feet per second, (cfs) but were unable to do so. Based on the one measurement made in early 2006 after the modified louvers were set, it appears the modified louvers may help reduce approach velocities. The auxiliary supply water system gates also control water through the screens. Evaluating the effect of different combinations of gate and louver positions on approach velocities through the screens may help identify optimum settings for both at different river discharges.

Chamness, Mickie; Abernethy, Scott; Tunnicliffe, Cherylyn [Pacific Northwest National Laboratory

2007-01-01

272

Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins  

Science.gov (United States)

Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

Vink, Rona; Behrendt, Horst

2002-11-01

273

Pesticides in the Hudson River Basin, 1994-96  

Science.gov (United States)

The occurrence, distribution, and temporal patterns of pesticide concentrations were studied in the Hudson River Basin during 1994 - 96. This article presents the results of three separate pesticide studies conducted as part of the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) program. Pesticides were found in all three studies, but rarely at concentrations exceeding any U.S. Environmental Protection Agency drinking-water standards. The highest concentrations were detected during and immediately after the first runoff following pesticide applications in the late spring and early summer. The herbicides atrazine and metolachlor were the most commonly detected pesticides and were present in nearly every sample collected from streams draining agricultural areas; they also were detected in many streams draining areas with other land uses. Herbicides were most often detected, and had the highest concentrations, in samples from streams draining agricultural areas, whereas insecticides such as diazinon were most commonly detected, and had the highest concentrations, in samples from streams draining urban areas.

Wall, G.R.; Phillips, P.J.

1998-01-01

274

REGIONAL GROUNDWATER FLOW MODELLING OF GASH RIVER BASIN, SUDAN  

Directory of Open Access Journals (Sweden)

Full Text Available The three-dimensional groundwater flow model was performed to evaluate the groundwater potentiality and assess the effect of groundwater withdrawal to the regional water level and flow direction in the Gash River basin of Sudan. Data used include periodic water level measurements, meteorological data, digital elevation data and well logs from scientific test wells and domestic water wells drilled in the study area. Transient visual MODFLOW model code was calibrated. Numerical simulation indicated that, a sharp drop of hydraulic head can be observed at the center of the model area, generated cone of depressions and a continuous decline of head with respect to the time as a result of heavy groundwater abstraction. The central part of the area, represent relatively high permeability zone and the model confirmed it to be the most productive region in the area and can be used for storing additional groundwater. Observation wells elaborate the reasonable match between the observed and calculated heads through the entire simulation period.

ABDALLA E. IBRAHIM

2008-12-01

275

Adaptive Governance and Resilience: the Columbia River Basin  

Science.gov (United States)

Ecologists have made progress in developing criteria for describing the resilience of an ecological system. Expansion of that effort to social-ecological systems has begun the identification of institutional changes to the social system necessary to foster ecological resilience including the use of adaptive management and integrated ecosystem management. But the changes in governance needed to foster ecosystem resilience will not be adopted by democratic societies without careful attention to their effect on the social system itself. Increased flexibility by resource management agencies in the form of adaptive management must be exercised in a manner that is legitimate and responsive to the social system. In addition, any change in governance must begin with the current complexities in which jurisdictional boundaries do not mimic those of ecosystems, and economic dependency on development imposes risk on any management change. We use the concept of legitimacy in governance as a necessary component of any change to achieve greater social-ecological resilience and turn to network theory as a means to facilitate legitimacy across existing geographic and subject matter jurisdictional boundaries. In application to the Columbia River Basin shared by the US and Canada, we explore the concept of resilience in a complex multi-jurisdictional watershed, taking the position that while adaptive management may foster ecological resilience, it is only one factor in the institutional changes needed to foster social-ecological resilience captured in the concept of adaptive governance.

Cosens, B.; Boll, J.; Fremier, A. K.

2012-12-01

276

Thallium distribution in sediments from the Pearl river basin, China  

Energy Technology Data Exchange (ETDEWEB)

Thallium (Tl) is a rare element of high toxicity. Sediments sampled in three representative locations near industries utilizing Tl-containing raw materials from the Pearl River Basin, China were analyzed for their total Tl contents and the Tl contents in four sequentially extracted fractions (i.e., weak acid exchangeable, reducible, oxidizable, and residual fraction). The results reveal that the total Tl contents (1.25-19.1 {mu}g/g) in the studied sediments were slightly high to quite high compared with those in the Chinese background sediments. This indicates the apparent Tl contamination of the investigated sediments. However, with respect to the chemical fractions, Tl is mainly associated with the residual fraction (>60%) of the sediments, especially of those from the mining area of Tl-bearing pyrite minerals, indicating the relatively low mobility, and low bioavailability of Tl in these sediments. This obviously contrasts with the previous findings that Tl is mainly entrapped in the first three labile fractions of the contaminated samples. Possible reasons were given for the dominating association of Tl with the residual fraction (>95%) of the mining area sediments. The significant role of certain K-containing silicates or minerals of these sediments on retaining Tl in the residual fraction, discovered by this study, provides a special field of research opportunity for the Tl-containing wastewater treatment. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

Liu, Juan [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Jin; Chen, Yongheng [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Qi, Jianying [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Lippold, Holger [Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Chunlin [Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

2010-10-15

277

Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 1998.  

Energy Technology Data Exchange (ETDEWEB)

Pacific Northwest National Laboratory (PNNL) evaluated 19 Phase II screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. The sites were examined to determine if they were being effectively operated and maintained to provide fish a safe, efficient return to the Yakima River.

Blanton, S.L.; McMichael, Geoffrey A.; Neitzel, D.A.

1999-12-01

278

Elements for an integrated resource planning in the framework of river basins: a study for the Cuiaba River Basin; Elementos para um planejamento integrado de recursos no ambito de bacias hidrograficas: um estudo para a bacia do rio Cuiaba  

Energy Technology Data Exchange (ETDEWEB)

A new approach in energy planning in Brazil, IRP - Integrated Resources Planning for River Basins, gathers three main determinants of development: water, electricity and piped gas. This paper argues, briefly, the need of this planning, of indicative character, integrated with the River Basin Plans, and it presents a retrospective analysis concerning water, electricity and LPG demands of the economy sectors from Cuiaba River Basin region, priority elements to aid the prospective studies and to carry out process related to the IRP. (author)

Dorileo, Ivo Leandro; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Dept. de Energia], e-mail: ildorileo@sigmanet.com.br, e-mail: bajay@fem.unicamp.br

2008-07-01

279

Early 21st century snow cover state over the western river basins of the Indus River system  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001–2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by appl...

Hasson, S.; Lucarini, V.; Khan, M. R.; Petitta, M.; Bolch, T.; Gioli, G.

2014-01-01

280

Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?  

Directory of Open Access Journals (Sweden)

Full Text Available River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper presents such an overview, focused on transboundary river basin management. It inventories the features that have been claimed to be central to effective transboundary river basin management and refines them using adaptive management literature. It then collates these features into a framework describing actor networks, policy processes, information management, and legal and financial aspects. Subsequently, this framework is applied to the Orange and Rhine basins. The paper concludes that the framework provides a consistent and comprehensive perspective on transboundary river basin management regimes, and can be used for assessing their capacity to support adaptive management.

Eduard Interwies

2008-06-01

 
 
 
 
281

Decadal Variation in the Rainfall Characteristics over River Basins across the Western Ghats of India  

Science.gov (United States)

Rainfall over a river basin have high impact on the human life in the coastal region, in particular during monsoon season. In the present work the rainfall characteristics over Uttara Kannada district of Karnataka, India is studied in decadal to annual scale. The specialty of the district is, here a network of five river basins exist and all rivers flow into the Arabian Sea in the west coast of India. Being a part of the Western Ghats region all these rivers have different hydrological and geological properties. All the rivers are mainly rain fed in nature. The Significant uncertainties in annual precipitation and extreme precipitation events over the basin are due to the uncertainties in the atmospheric parameters like temperature, offshore wind, humidity etc. In this study, TRMM, GPCP and India Meteorological Department (IMD) measured rainfall data were used to analyze the decadal rainfall analysis over the basin. It is found that the overall trend of rainfall is decreasing from 1951 to 2000 where as the monsoon (June-September) rainfall seems to be normal. The extreme rainfall events seem to have increased in the recent decade compare to the earlier decades. The rainfall decreases towards East compared to the west part of the basin. The surface water potential, evapo transpiration, soil temperature, soil moisture of the basin is studied and empirical relation with the rainfall presented in this work.

Bhat, R.; Gouda, K. C.; Murthy, A.; Prabhuraj, D. K.; Laxmikantha, B. P.

2012-12-01

282

Mapping and Assessment of Degraded Land in the Heihe River Basin, Arid Northwestern China  

Directory of Open Access Journals (Sweden)

Full Text Available Land degradation is a great threat in the Heihe River Basin, located in the aridinland of northwestern China and land desertification is one of the main aspects ofenvironmental changes in this basin. Previous studies have focused on water resourceutilization and soil erosion, but the status of degraded land in the Heihe River Basin, suchas its distribution, extent and precise characteristics is often inadequately known. Based onfield observations and TM images from the year 2003, this study provides classificationand evaluation information concerning the degraded land in the basin of the Heihe River.There are five types of degraded land types in the Heihe River Basin: water eroded in thesouthern mountains, sandified and vegetation degraded near the oases, aridized in the lowreaches, and salinized in the lowlands. The total degraded area covers 29,355.5 km2,22.58% of the land in the study area. Finally, degraded land in the Heihe River Basin wasevaluated according to changes in the physical structure and chemical components of soils,land productivity, secondary soil salt, and water conditions.

Yumin Cai

2007-10-01

283

Pb-Zn-Cd-Hg multi isotopic characterization of the Loire River Basin, France  

Science.gov (United States)

The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition (major ions and pollutants such as metals) of the dissolved load of rivers. Furthermore, this influence can also be evidenced in the suspended solid matter known to play an important role in the transport of heavy metals through river systems. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. Initially, the Loire upstream flows in a south to north direction originating in the Massif Central, and continues up to the city of Orléans, 650 km from the source. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The Loire River then follows a general east to west direction to the Atlantic Ocean. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for heavy metals Zn-Cd-Pb-Hg in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for these metals for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. The main objective of this study is to characterize the sources and the behavior of these heavy metals in the aquatic environment, and their spatial distribution using a multi-isotope approach. Each of these isotope systematics on their own reveals important information about their geogenic or anthropogenic origin but, considered together, provide a more integrated understanding of the budgets of these pollutants within the Loire River Basin.

Millot, R.; Widory, D.; Innocent, C.; Guerrot, C.; Bourrain, X.; Johnson, T. M.

2012-12-01

284

Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands  

Science.gov (United States)

The Yellow River Basin is of the utmost importance for China in terms of food production, natural resources management, and socioeconomic development. Water withdrawals for agriculture, industry, and households in the past decade have seriously depleted environmental and ecological water requirements in the basin. This study presents a modeling scenario analysis of some water development strategies to harmonize water withdrawal demand and ecological water demand in the Yellow River Basin through water savings and interbasin water transfers. A global water and food analysis model including the Yellow River Basin as one of the modeling units is applied for the analysis. The model demonstrates that there is little hope of resolving the conflict between agriculture water demand and ecological water demand in the basin if the current water use practices continue. Trade-offs exist between irrigation water use and ecological water use, and these trade-offs will become more intense in future years with population growth, urbanization, and industrial development as well as growing food demand. Scenario analysis in this study concludes that increasing basin water use efficiency to 0.67 first and then supplementary water availability by interbasin water transfer through the South-North Water Transfer Project may provide a solution to water management of the Yellow River Basin in the next 25 years.

Cai, Ximing; Rosegrant, Mark W.

2004-08-01

285

Ground-water data on the Hudson River basin, New York  

Science.gov (United States)

Ground water in the Hudson River basin occurs in unconsolidated deposits and consolidated rock. Sand and gravel units of the unconsolidated deposits, which occur principally in valley bottoms, form the best aquifers and commonly provide well yields of several hundred gallons per minute. Carbonate aquifers are the most productive consolidated rock units. Ground water in the Hudson River basin is generally hard and may contain appreciable amounts of iron, salts in solution, or sulfur locally. Basic data on the availability of ground water in the Hudson River drainage area are compiled in (1) a hydrogeologic map of the drainage basin; (2) a table of well depths, yields, concentrations of selected chemical constituents, and hardness of ground water, listed by county and aquifer type; (3) a short text describing the occurrence of ground water in the basin; and (4) a bibliography of ground-water reports pertinent to the area studied. (Woodard-USGS)

Hammond, Deborah S.; Heath, Ralph C.; Waller, Roger Milton

1978-01-01

286

Modelling native fish richness to evaluate the effects of hydromorphological changes and river restoration (Júcar River Basin, Spain)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The richness of native fish is considered to be an indicator of aquatic ecosystem health, and improving richness is a key goal in the management of river ecosystems. An artificial neural network (ANN) model based on field data from 90 sample sites distributed throughout the Júcar River Basin District was developed to predict the native fish species richness (NFSR). The Levenberg-Marquardt learning algorithm was used for model training. When constructing the model, we tried different numbers ...

Olaya Mari?n, Esther Julia; Martinez-capel, Francisco; Soares Costa, Rui Manuel; Alcaraz-herna?ndez, Juan Diego

2012-01-01

287

Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River basin, China  

Science.gov (United States)

Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. Instead of focusing on WF from the perspective of administrative regions, we built a framework in which the input-output (IO) model, the structural decomposition analysis (SDA) model and the generating regional IO tables (GRIT) method are combined to implement decomposition analysis for WF in a river basin. This framework is illustrated in the WF in Haihe River basin (HRB) from 2002 to 2007, which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1 to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF. However, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy-making in other water-limited river basins.

Zhi, Y.; Yang, Z. F.; Yin, X. A.

2014-05-01

288

Malheur River Basin cooperative bull trout/redband trout research project, annual report FY 1999; ANNUAL  

International Nuclear Information System (INIS)

The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetryof the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99

289

Cross-Border organisations as an adaptive water management response to clmate change: the case of the Guadiana river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

In this paper we analyse the role played by cross-border organisations in the Guadiana river basin in Iberia, and the extent to which new emerging institutional arrangements carry on adaptive management practice as a response to mounting climate change risks in the river basin. Particular attention is paid to the new transboundary agencies, as promoted by the EU INTERREG programmes, and their potential for mainstreaming climate change considerations into Guadiana river basin development strat...

Cots, F.; Tabara, J. D.; Mcevoy, D.; Werners, S. E.; Roca, E.

2009-01-01

290

Geographical Information Systems for International River Basin Management in the Third World  

Energy Technology Data Exchange (ETDEWEB)

This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

Kammerud, Terje Andre

1997-12-31

291

BASIN MORPHOLOGY AND LAND USEWITH SPECIAL REFFERENCE TO PANCHANOI RIVER BASIN, A MICRO WATERSHED OF MAHANANDA RIVER SYSTEM, INDIA  

Directory of Open Access Journals (Sweden)

Full Text Available Micro watershed is defined as a small watershed, in which a certain number of families live, make use and manage the resources of the area, mainly the soil, water, vegetation,including crops and native vegetation, and fauna, including domestic and wild animals. From the operational point of view, the micro watershed has an area that may be planned by a technician counting on local resources and/or a number of families that may be treated as a social nucleus that shares some common interests and here the use of land is very much associated with the local physiography and that is why the study about land use should give emphasis on the relief characteristics. The present paper is based on a small river basin and its changing land use. So here it is very important to study about the drainage morphology as a whole or especially on that particular area where the changing tendency of land use has already been recognized. At the same time it is also to be noticed that the land use pattern may also be affected by the anthropogenic effect. So it is also very

SUBHADIP GUPTA

2013-03-01

292

THE FLOOD RISK IN THE IALOMITA RIVER BASIN CASE STUDY: THE JULY 1975 FLASH FLOOD  

Directory of Open Access Journals (Sweden)

Full Text Available Te flood risk in the Ialomita river basin case study: the july 1975 flash flood. Since over the last four decades the Ialomita River Basin has been affected by several catastrophic hydrological events, of which the most important were the ones in 1975, 2001 and 2005, for a better management of the extreme situations generated by such episodes we propose a new methodology regarding the estimation of the flash-flood appearance potential in this particular river basin, as well as an analysis of such an event that occurred in July 1975 and affected large swaths of the geographic area we have taken into consideration. In order to identify the regions which are vulnerable to the processes caused by slope run-off we have used the Flash Flood Potential Transmission Index (FFPTI, first proposed and used by Smith (2003 in the “Western Region Flash Flood Project” (WRFFP and then by several researchers from Romania, such as G. Minea (2011, M. M?trea?? (2011 and M. Borcan (2011. The main purpose of this method is the estimation of an index that would synthetically express the flashflood potential for both a major river basin (such as Ialomita River Basin as well as for a minor river basin (usually sub-components of major river basins. The quantification of the impact that the major physical-geographic factors (slope, soil texture and land use and the main run-off causing factor, rainfall, have gives the magnitude of this flash-flood potential transmission index.

M. RETEGAN

2014-05-01

293

Estimation of erosion and sedimentation yield in the Ucayali river basin, a Peruvian tributary of the Amazon River, using ground and satellite methods  

Science.gov (United States)

Since 2003, the works of HYBAM observatory (www.ore-hybam.org) has allowed to quantify with accuracy, precision and over a long period Amazon's main rivers discharges and sediments loads. In Peru, a network of 8 stations is regularly gauged and managed in association with the national meteorological and Hydrological service (SENAMHI), the UNALM (National Agrological University of La Molina) and the National Water Agency (ANA). Nevertheless, some current processes of erosion and sedimentation in the foreland basins are still little known, both in volumes and in localization. The sedimentary contributions of Andean tributaries could be there considerable, masking a very strong sedimentation in subsidence zones localized between the control points of the HYBAM's network. The development of spatial techniques such as the Altimetry and reflectance measurement allows us today to complete the ground's network: HYBAM's works have allowed establishing a relation between surface concentration and reflectance in Amazonian rivers (Martinez et al., 2009, Espinoza et al., 2012) and reconstituting water levels series (Calmant et al., 2006, 2008). If the difficulty of calibration of these techniques increases towards the upstream, their use can allow a first characterization of the tributaries contributions and sedimentation zones. At world level, erosion and sedimentation yields in the upper Ucayali are exceptional, favored by a marked seasonality in this region (Espinoza et al., 2009, Lavado, 2010, Pépin et al., 2010) and the presence of cells of extreme precipitation ("Hotspots") (Johnson et al., 1976, Espinoza et al, 2009a). The upper Ucayali drainage basin is a Piggyback where the River run with a low slope, parallel to the Andean range, deposing by gravity hundred millions a year of sands, silts and clays. In this work, we thus propose an estimation of sedimentation and erosion yield in the Ucayali river basin using ground and satellite methods.

Santini, William; Martinez, Jean-Michel; Guyot, Jean-Loup; Espinoza, Raul; Vauchel, Philippe; Lavado, Waldo

2014-05-01

294

The Quality of Water Discharging From the New River and Clear Fork Basins, Tennessee  

Science.gov (United States)

The quality of water discharging from a strip-mined basin and a relatively unmined basin on the Cumberland Plateau in Tennessee are examined and compared. The chemical and aesthetic quality of these waters will directly affect the chemical and aesthetic quality of the water flowing through a proposed national river and recreation area. Water from the heavily mined New River basin is characterized by neutral pH, low dissolved solids (less than 300 milligrams per liter), and high concentrations of suspended sediment. More than 90 percent of the suspended sediment is silt and clay. Suspended-sediment concentrations in the thousands of milligrams per liter are not uncommon for New River and often impart a highly turbid appearance to the water. Approximately 590,000 tons of suspended sediment were discharged from the New River basin in 1977, as compared to an estimated 20,000 tons from the relatively unmined Clear Fork basin. In association with these fine-grain suspended sediments are sorbed trace metals. In 1977 the New River basin discharged an estimated 17,000 tons of suspended iron while Clear Fork discharged an estimated 600 tons. Suspended-sediment concentration was found to be highly correlated with both suspended and total trace-metal concentrations. This correlation coupled with the nearly neutral pH of the water indicates that trace metals are transported primarily in the suspended phase. The most promising indicator of the presence of coal mining was found to be dissolved sulfate. All unmined basins sampled in this study showed dissolved sulfate concentrations less than 20 milligrams per liter, whereas all mined basins had dissolved-sulfate concentrations in excess of 20 milligrams per liter regardless of basin size or discharge.

Parker, R.S.; Carey, W.P.

1980-01-01

295

Hydrological long-term dry and wet periods in the Xijiang River basin, South China  

Directory of Open Access Journals (Sweden)

Full Text Available In this study, hydrological long-term dry and wet periods are analyzed for the Xijiang River basin in South China. Daily precipitation data of 118 stations and data on daily discharge at Gaoyao hydrological station at the mouth of the Xijiang River for the period 1961–2007 are used. At a 24-month timescale, the standardized precipitation index (SPI-24 for the six sub-basins of the Xijiang River and the standardized discharge index (SDI-24 for Gaoyao station are applied. The monthly values of the SPI-24 averaged for the Xijiang River basin correlate highly with the monthly values of the SDI-24. Distinct long-term dry and wet sequences can be detected.

The principal component analysis is applied and shows spatial disparities in dry and wet periods for the six sub-basins. The correlation between the SPI-24 of the six sub-basins and the first principal component score shows that 67% of the variability within the sub-basins can be explained by dry and wet periods in the east of the Xijiang River basin. The spatial dipole conditions (second and third principal component explain spatiotemporal disparities in the variability of dry and wet periods. All sub-basins contribute to hydrological dry periods, while mainly the northeastern sub-basins cause wet periods in the Xijiang River. We can also conclude that long-term dry events are larger in spatial extent and cover all sub-basins while long-term wet events are regional phenomena.

A spectral analysis is applied for the SPI-24 and the SDI-24. The results show significant peaks in periodicities of 11–14.7 yr, 2.8 yr, 3.4–3.7 yr, and 6.3–7.3 yr. The same periodic cycles can be found in the SPI-24 of the six sub-basins but with some variability in the mean magnitude. A wavelet analysis shows that significant periodicities have been stable over time since the 1980s. Extrapolations of the reconstructed SPI-24 and SDI-24 represent the continuation of observed significant periodicities at given magnitudes until 2030. The projected hydrological long-term dry and wet periods can be used for planning purposes in water resources management. The applied methodologies prove to be able to identify spatial disparities, and to detect significant periodicities in hydrological long-term dry and wet periods in the Xijiang River basin.

T. Fischer

2013-01-01

296

Analysis of efficiency of pollution reduction measures in rural basin using MIKE Basin model. Case study: Olšava River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This paper presents the results of testing the applicability of the MIKE Basin model for simulating the effi-ciency of scenarios for reducing water pollution. The model has been tested on the Olšava River Basin (520 km2) which is a typical rural region with a heterogeneous mix of pollution sources with variable topography and land use. The study proved that the model can be calibrated successfully using even the limited amount of data typically available in rural ba-sins. The scenarios of po...

Kaiglova?, Jana; Langhammer, Jakub

2014-01-01

297

Impact of deforestation on local precipitation patterns over the Da River basin, Vietnam  

Science.gov (United States)

Change in land cover, e.g. from forest to bare soil, might severely impact the hydrological cycle at the river basin scale by altering the balance between rainfall and evaporation, ultimately affecting streamflow dynamics. These changes generally occur over decades, but they might be much more rapid in developing countries, where economic growth and growing population may cause abrupt changes in landscape and ecosystem. Detecting, analysing and modelling these changes is an essential step to design mitigation strategies and adaptation plans, balancing economic development and ecosystem protection. In this work we investigate the impact of land cover changes on the water cycle in the Da River basin, Vietnam. More precisely, the objective is to evaluate the interlink between deforestation and precipitation. The case study is particularly interesting because Vietnam is one of the world fastest growing economies and natural resources have been considerably exploited to support after-war development. Vietnam has the second highest rate of deforestation of primary forests in the world, second to only Nigeria (FAO 2005), with associated problems like abrupt change in run-off, erosion, sediment transport and flash floods. We performed land cover evaluation by combining literature information and Remote Sensing techniques, using Landsat images. We then analysed time series of precipitation observed on the period 1960-2011 in several stations located in the catchment area. We used multiple trend detection techniques, both state-of-the-art (e.g., Linear regression and Mann-Kendall) and novel trend detection techniques (Moving Average on Shifting Horizon), to investigate trends in seasonal pattern of precipitation. Results suggest that deforestation may induce a negative trend in the precipitation volume. The effect is mainly recognizable at the beginning and at the end of the monsoon season, when the local mechanisms of precipitation formation prevail over the large scale ones.

Anghileri, Daniela; Spartà, Daniele; Castelletti, Andrea; Boschetti, Mirco

2014-05-01

298

Using Collaborative Modeling to Inform Policy Decisions in the Bow River Basin  

Science.gov (United States)

The Bow River in Alberta, Canada serves a wide range of municipal, agricultural, recreational, and industrial purposes in the province. In 2006, the basin was deemed over-allocation and closed to new licenses. The Calgary region, however, continues to expand. In the next 60 to 70 years, population levels are expected to reach 2.8 million (more than double the current 1.2 million) with 800,000 new jobs. This increasing pressure led several stakeholders to work together in the development of a new management model to improve the management of the system as an integrated watershed. The major previous model of the system allowed only limited flexibility in management, focusing instead on strict license based operations. Over a 6 month period, with numerous multi-party meetings, the group developed the Bow River Operations Model (BROM). Based in OASIS software, this model integrated input from the major water users in the region to emulate the real-life decisions that are actually made on a daily bases, even when technically in violation of the strict license agreements (e.x. junior licensees receiving water despite senior priority due to exceedingly low volume requirements). Using historical records as forecasts, and performance measures developed with the best available science through expert opinion, participants jointly developed a new reservoir operation strategy. Even with such a short timeframe, the BROM exercise showed that there was substantial room for improvement. Utilizing a "Water Bank" of purchased storage, downstream flows could be significantly improved without affecting quality. Additional benefits included fishery improvement, new recreation opportunities, dissolved oxygen improvement during critical periods, and the ability to accommodate long-term demand forecasts for surrounding municipalities. This strategy has been presented to, and favorably received by, the Alberta Minister of Environment for guidance during negotiations with the local hydropower utility. Work continues on implementation and new areas of the basin are being considered for similar processes.

Sheer, A. S.; Sheer, D. P.; Hill, D.

2011-12-01

299

The Role of Geomorphology in Managing the Minnesota River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Minnesota River is an important tributary to the Mississippi River, both in terms of water quantity and water quality. The geologic history of the Minnesota River plays an important role in contributing to the water quality impairment of the Mississippi River. This talk will examine how the geomorphology of the Minnesota River influences the watershed management actions available and will also present the results of a modeling effort aimed at elucidating the connections between possible ...

Byrd, Aaron

2009-01-01

300

Analysis of future precipitation in the Koshi river basin, Nepal  

Science.gov (United States)

We analyzed precipitation projections for the Koshi river basin in Nepal using outputs from 10 General Circulation Models (GCMs) under three emission scenarios (B1, A1B and A2). The low resolution future precipitation data obtained from the GCMs was downscaled using the statistical downscaling model LARS-WG. The data was downscaled for 48 stations located in the six physiographic regions in the Koshi basin. The precipitation projections for three future periods, i.e. 2020s, 2055s and 2090s, are presented using empirical Probability Density Functions (PDFs) for each physiographic region. The differences between the mean values of individual GCM projections and the mean value of the multi-model for the three scenarios allow for the estimation of uncertainty in the projections. We also analyzed the precipitation of the baseline and future periods using six indices that are recommended by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Results indicate that not all GCMs agree on weather changes in precipitation will be positive or negative. A majority of the GCMs and the average values of all the GCMs for each scenario, indicate a positive change in summer, autumn and annual precipitation but a negative change in spring precipitation. Differences in the GCM projections exist for all the three future periods and the differences increase with time. The estimated uncertainty is higher for scenario A1B compared to B1 and A2. Differences among scenarios are small during the 2020s, which become significant during the 2055s and 2090s. The length of the wet spell is expected to increase, whereas the length of the dry spell is expected to decrease in all three future periods. There is a large scatter in the values of the indices: number of days with precipitation above 20 mm, 1-day maximum precipitation, 5-day maximum precipitation, and amount of precipitation on the days with precipitation above 95th percentile, both in direction and magnitude of the change.

Agarwal, Anshul; Babel, Mukand S.; Maskey, Shreedhar

2014-05-01

 
 
 
 
301

Distribution and dispersal of two invasive crayfish species in the Drava River basin, Croatia  

Directory of Open Access Journals (Sweden)

Full Text Available The aim of this work is to explore the current distribution and dispersal rates of two nonindigenous crayfish species (NICS recorded in Croatia: the signal crayfish (Pacifastacus leniusculus and spiny-cheek crayfish(Orconectes limosus. Both NICS have been recorded in the Drava River basin, with signal crayfish spreading downstream from the north-west along the Drava’s tributary the Mura River, and spiny-cheek crayfish spreading upstream from the east from the Danube River throughout the Drava River. Signal crayfish distribution in the Mura River has been recorded up to 3 km from the confluence with the Drava River. Based on literature data and the current recorded distribution front, the downstream dispersal rate was between 18 and 24.4 km·yr?1. Spiny-cheek crayfish distribution has been recorded 15 km upstream of the Drava River mouth into the Danube River. Its upstream dispersal in the Drava River has been calculated at 2.5 km·yr ?1. Both NICS could have an impact on native crayfish populations recorded within the Drava River basin in Croatia: the noble crayfish (Astacus astacus and the narrow-clawed crayfish (Astacus leptodactylus. In the Mura River no noble crayfish have been recorded since 2007, and the watercourse is at the moment dominated by the signal crayfish. Spiny-cheek crayfish populations have been found in coexistence with narrow-clawed crayfish populations, with O. limosus dominating by 16:1.

S. Hudina

2009-01-01

302

Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada  

Science.gov (United States)

The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area includes parts of Montana, North Dakota, South Dakota, and Wyoming in the United States and Manitoba and Saskatchewan in Canada. The glacial aquifer system is contained within glacial drift consisting primarily of till, with smaller amounts of glacial outwash sand and gravel deposits. The lower Tertiary and Upper Cretaceous aquifer systems are contained within several formations of the Tertiary and Cretaceous geologic systems, which are hydraulically separated from underlying aquifers by a basal confining unit. The lower Tertiary and Upper Cretaceous aquifer systems each were divided into three hydrogeologic units that correspond to one or more lithostratigraphic units. The period prior to 1960 is defined as the predevelopment period when little groundwater was extracted. From 1960 through 1990, numerous flowing wells were installed near the Yellowstone, Little Missouri and Knife Rivers, resulting in local groundwater declines. Recently developed technologies for the extraction of petroleum resources, which largely have been applied in the study area since about 2005, require millions of gallons of water for construction of each well, with additional water needed for long-term operation; therefore, the potential for an increase in groundwater extraction is high. In this study, groundwater recharge and discharge components were estimated for the period 1981–2005. Groundwater recharge primarily occurs from infiltration of rainfall and snowmelt (precipitation recharge) and infiltration of streams into the ground (stream infiltration). Total estimated recharge to the Williston and Powder River control volumes is 4,560 and 1,500 cubic feet per second, respectively. Estimated precipitation recharge is 26 and 15 percent of total recharge for the Williston and Powder River control volumes, respectively. Estimated stream infiltration is 71 and 80 percent of total recharge for the Williston and Powder River control volumes, respectively. Groundwater discharge primarily is to streams and springs and is estimated to be about 97 and 92 percent of total discharge for the W

Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.

2014-01-01

303

Adverse effects on Alfeios River Basin and an integrated management framework based on sustainability.  

Science.gov (United States)

The Alfeios River, the longest and highest flow-rate river in Peloponnisos, constitutes an important water resource and ecosystem in Greece. In the present study, human activities in the Alfeios River Basin are described, and their impacts on water quality and the ecosystem are analyzed; effects resulting from interventions on river geomorphology between Flokas Dam and the river delta are determined. These actions have caused significant adverse impacts on the infrastructure (the dam, railroad, and road bridges), the level of aquifer water table and area water uses, and the aquatic and riparian ecosystem. A general integrated management strategy is formulated and a master management plan is proposed for resolving management problems in river basins. The plan considers local conditions and national requirements and complies with the European Communities legislation; it would help prevent further basin deterioration, improve water quality, and protect water resources and ecosystems in the area in accordance to sustainable development. The Alfeios River Basin serves as a case study in the development of the plan. PMID:15559949

Manariotis, Ioannis D; Yannopoulos, Panayotis C

2004-08-01

304

Process-based distributed modeling approach for analysis of sediment dynamics in a river basin  

Directory of Open Access Journals (Sweden)

Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions of the various components and the results of its application on case study areas.

M. A. Kabir

2010-08-01

305

Process-based distributed modeling approach for analysis of sediment dynamics in a river basin  

Directory of Open Access Journals (Sweden)

Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions of the various components and the results of its application on two case study areas.

M. A. Kabir

2011-04-01

306

Multi-scale analysis of the fluxes between terrestrial water storage, groundwater, and stream discharge in the Columbia River Basin  

Science.gov (United States)

The temporal relationships between the measurements of terrestrial water storage (TWS), groundwater, and stream discharge were analyzed at three different scales in the Columbia River Basin (CRB) for water years 2004 - 2012. Our nested watershed approach examined the Snake River ...

307

Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)  

Science.gov (United States)

The Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. ?13C of dissolved inorganic carbon ranged between -28.1‰ and -5.8‰, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin.

Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.

2014-06-01

308

Characterizing, Monitoring and Forecasting of Drought in Jordan River Basin  

Directory of Open Access Journals (Sweden)

Full Text Available Jordan is very vulnerable to drought because of its location in the arid to semi-arid part of the Middle East. Droughts coupled with water scarcity are becoming a serious threat to the economic growth, social cohesion and political stability. Rainfall time series from four rain stations covering the Jordan River Basin were analyzed for drought characterization and forecasting using standardized precipitation index (SPI, Markov chain and autoregressive integrated moving average (ARIMA model. The 7-year moving average of Amman data showed a decreasing trend while data from the other three stations were stable or showed an increasing trend. The frequency analysis indicated 2-year return period for near zero SPI values while the return period for moderate drought was 7 years. Successive droughts had occurred at least three times during the past 40 years. Severe droughts are expected once every 20 - 25 year period at all rain stations. The extreme droughts were rare events with return periods between 80 and 115 years. There are equal occurrence probabilities for drought and wet conditions in any given year, irrespective, of the condition in the previous year. The results showed that ARIMA model was successful in predicting the overall statistics with a given period at annual scales. The overall number of predicted/observed droughts during the validation periods were 2/2 severe droughts for Amman station and, 0/1, 1/1, 0/1 extreme droughts for Amman, Irbid and Mafraq stations, respectively. In addition, the ARIMA model also predicted 3 out of 4 actual moderate droughts for Amman and Mafraq stations. It was concluded that early warning of developing droughts can be deduced form the monthly Markov transitional probabilities. ARIMA models can be used as a forecasting tool of the future drought trends. Using the first and second order Markov probabilities can complement the ARIMA predictions.

Khaldoun Shatanawi

2013-12-01

309

Compliance benefits of powder river basin coal and coal reburning  

Energy Technology Data Exchange (ETDEWEB)

Cyclone-fired boilers are typically high emitters of NO{sub x}, simply as a result of cyclone furnace design requirements. Babcock & Wilcox (B&W) developed the cyclone furnace originally to burn lower grade coals, high in ash and sulfur contents, with unremarkable heating values. Standard low NO{sub x} burner combustion technologies are not applicable for cyclone-equipped boiler operation. The emerging reburning technology offers cyclone boiler owners a promising alternative to expensive flue gas cleanup techniques for NO{sub x} emission reduction. Reburning involves the injection of a supplemental fuel (natural gas, oil or coal) into the main furnace to produce locally reducing conditions which convert NO{sub x} produced in the main combustion zone to molecular nitrogen, thereby reducing overall NO{sub x} emissions. B&W has obtained encouraging results from engineering feasibility studies, pilot-scale proof of concept testing, and a U.S. Department of Energy Clean Coal II project to demonstrate the cyclone coal reburning technology on a full size utility boiler. The host site for the demonstration was Wisconsin Power & Light`s (WP&L) 110 MW{sub e} Nelson Dewey Station. It was at Nelson Dewey that the benefits of fuel switching to a Powder River Basin (PRB) coal as an SO{sub 2} compliance strategy with coal reburning for NO{sub x} emissions reduction became apparent. The addition of a reburn system capable of providing up to 30% additional fuel input to the furnace means that a utility could switch to lower Btu compliance coal and minimize or eliminate a derate. This paper describes the emissions and impact on boiler operations of coal switching and reburning on Nelson Dewey Unit No. 2.

Maringo, G.J.; Yagiela, A.S. [Babcock & Wilcox, Baberton, OH (United States); Newell, R.J. [Wisconsin Power & Light, Madison, WI (United States)

1994-12-31

310

Impact of the Farakka Dam on Thresholds of the Hydrologic Flow Regime in the Lower Ganges River Basin (Bangladesh)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The variation of river flow within a natural range plays an important role in promoting the social-ecological sustainability of a river basin. In order to determine the extent of the natural range of variation, this study assesses hydrologic flow thresholds for the Lower Ganges River Basin. The flow threshold was calculated using twenty-two “Range of Variability (RVA)” parameters. The impact of Farakka Dam on the Lower Ganges River flow was calculated by comparing threshold parameters for...

Gain, Animesh K.; Carlo Giupponi

2014-01-01

311

Multi-model comparison of a major flood in the groundwater-fed basin of the Somme River (France)  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Somme River Basin is located above a chalk aquifer and the discharge of the somme River is highly influenced by groundwater inflow (90% of river discharge is baseflow). In 2001, the Somme River Basin suffered from a major flood causing damages estimated to 100 million Euro (Deneux and Martin, 2001). The purpose of the present research is to evaluate the ability of four hydrologic models to reproduce flood events in the Somme River Basin over an 18-year period, by comparison with observed ...

Habets, F.; Gascoin, S.; Korkmaz, S.; Thie?ry, D.; Zribi, M.; Amraoui, N.; Carli, M.; Ducharne, A.; Leblois, E.; Ledoux, E.; Martin, E.; Noilhan, J.; Ottle?, C.; Viennot, P.

2010-01-01

312

Prospects for Learning in River Management: Exploring the Initial Implementation of the Water Framework Directive in a Swedish River Basin  

Science.gov (United States)

This case study explores the initial implementation of the EU Water Framework Directive (WFD) in the Lule River basin, Sweden, examining how and to what extent administrative procedures enable learning through dialogue and stakeholder collaboration. Theorising on adaptive co-management and social learning is used to structure what is to be learnt,…

Lundmark, Carina; Jonsson, Gunnar

2014-01-01

313

Sensitivity of the hydrologic cycle in Tana river basin to climate change  

International Nuclear Information System (INIS)

The Tana River basin in Kenya has four distinct climates along it's gradient from cool humid in mount Kenya region through arid and semi arid in the lower plains to semi humid coastal climate. From the highlands of mount Kenya to the plateau on the lowlands, the river traverses some sections which have high potential for hydro-electric power generation. The government has constructed water reovirus to collect water for electricity generation. The influence of the reovirus have also caused climate modification. The aim of the study was to investigate the sensitivity of the river flows in the Tana river to climate change. The study indicates that, as long as temperature increment of up to 2 degrees centigrade are accompanied by positive changes (greater than 10%) in rainfall over the basin, then the hydrologic cycle adjust itself accordingly to give a positive response (increased runoff) in terms of the river at the outlet

314

Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae from the Ivaí River, upper Paraná River basin, Brazil  

Directory of Open Access Journals (Sweden)

Full Text Available Two allopatric morphotypes of the genus Rinelocaria were compared through the allozyme electrophoresis technique: one morphotype, R. pentamaculata, from the Keller River in the middle stretch of the Ivaí River basin and the other, R. aff. pentamaculata, from the São João River in the upper portion of the Ivaí River basin. The morphotype from the São João River was collected upstream from the São João waterfall, which is about 80 m deep. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD were analyzed, which allowed to score 22 loci. Only loci Aat-2, Est-3 and Mdh-C showed polymorphism. The two samples differed in allele frequencies at the three polymorphic loci. The average expected heterozygosity for all loci was 0.0806 ± 0.0447 in the Keller River sample. For the São João River morphotype, this value was 0.0489 ± 0.0350. Nei' s genetic identity and distance between the two populations were respectively 0.9789 and 0.0213. Wright's F IS, F IT and F STover all loci were estimated as 0.3121, 0.4021 and 0.1309, respectively. We consider that the two morphotypes represent species in statu nascendi.

Daniel M. Limeira

2009-01-01

315

Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae) from the Ivaí River, upper Paraná River basin, Brazil  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english Two allopatric morphotypes of the genus Rinelocaria were compared through the allozyme electrophoresis technique: one morphotype, R. pentamaculata, from the Keller River in the middle stretch of the Ivaí River basin and the other, R. aff. pentamaculata, from the São João River in the upper portion o [...] f the Ivaí River basin. The morphotype from the São João River was collected upstream from the São João waterfall, which is about 80 m deep. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD) were analyzed, which allowed to score 22 loci. Only loci Aat-2, Est-3 and Mdh-C showed polymorphism. The two samples differed in allele frequencies at the three polymorphic loci. The average expected heterozygosity for all loci was 0.0806 ± 0.0447 in the Keller River sample. For the São João River morphotype, this value was 0.0489 ± 0.0350. Nei' s genetic identity and distance between the two populations were respectively 0.9789 and 0.0213. Wright's F IS, F IT and F STover all loci were estimated as 0.3121, 0.4021 and 0.1309, respectively. We consider that the two morphotypes represent species in statu nascendi.

Daniel M., Limeira; Erasmo, Renesto; Cláudio H., Zawadzki.

316

Tracing nutrient sources in the Mississippi River Basin, United States of America  

International Nuclear Information System (INIS)

To provide information for the development of management strategies to reduce N loads and enhance N attenuation mechanisms, isotopic techniques have been used to investigate the sources and cycling of nutrients at a number of sites in the Mississippi Basin (which includes the Ohio and Missouri River Basins). About half of the POM in the Mississippi (and other big rivers in the USA) is composed of plankton and/or heterotrophic bacteria. This suggests that in-situ productivity may be a significant source of bioavailable organic matter contributing to the hypoxia in the Gulf of Mexico. Monthly samples from 19 river sites in the Basin sampled over 5 years showed that ? 15N and ? 13C were quite useful in discriminating among four major categories of POM: terrestrial soil, fresh terrestrial vegetation, aquatic macrophytes, and plankton/bacteria The isotopic data, along with ancillary chemical and hydrologic measurements, were also useful for documenting seasonal changes in in-situ processes. A pilot study in 2000-2001, designed to investigate the usefulness of isotopic techniques for determining nutrient sources in 24 medium and large watersheds in the Basin, found that nitrate and POM from basins with different land uses (e.g., row crops, animal farming, urban development, and undeveloped) had moderately distinctive isotopic compositions. The nitrate ? 18O and ? 15N values of the large rivers sites resembled the compositions vers sites resembled the compositions seen in sites dominated by row crops. Sites with livestock tended to have high ? 15N values characteristic of manure, and urban and undeveloped sites tended to have higher ? 18O values characteristic of a significant fraction of atmospheric nitrate. The ? 18O data were critical in showing abrupt changes in nitrate sources with discharge. A more thorough study of nutrient sources in the Ohio River Basin was initiated in 2002. For this study, nitrate, POM, and water were collected 15-20 times each year at 6 small NAWQA-program watersheds in the White River- Miami River basins, and at the 7 large river NASQAN-program sites in the Ohio River Basin. Nitrate samples were analyzed for ? 15N and ? 18O, POM for ? 15N and ? 13C, and water for ? 18O and ? 2H. The ? 15N and ? 13C of fish were used as indicators of nutrient sources. Other studies have indicated that POM consists primarily of phytoplankton and is transported in the water column, particularly size fractions < 1-mm diameter, were the primary food source for food webs in the Ohio and Upper Mississippi Rivers

317

Impact of Impervious Surface on River Discharge in Lake Kasumigaura Basin, Japan  

Science.gov (United States)

Impervious Surface Area (ISA) is defined as the constructed surface that prevents water from infiltrating into the soil. The ISA has emerged not only as an indicator of the degree of urbanization, but also as a major indicator of environmental quality for drainage basin management. This study focused on the relation between ISA ratio calculated by remote sensing technology and river discharge in Lake Kasumigaura Basin, Japan. ISA ratio was estimated by satellite image using Prescreened and Normalized Multiple Endmember Spectral Mixture Analysis (PNMESMA) developed for drainage basin with the estimating error smaller than 10%. Three types (vegetation, impervious surface, soil) of endmember were selected from the image, and the fraction of each endmember was calculated based on linear mixing model. River discharge dataset was collected from Kasumigaura River Office. Since the monitoring sites do not locate in the down stream, the up stream river basins of the monitoring sites were extracted by hydrological model in Geographic Information System (GIS) instead of the existing basin map. Digital Elevation Model (DEM) data with spatial resolution of 10m was collected from Geospatial Information Authority of Japan (GSI) to estimate the area of drainage. For the extracted drainage basins, the statistical relation between ISA ratio and river discharge were studied in 2000 and 2007 since the Landsat images used to estimate the fraction of ISA were in good image quality. The long-term change of river discharge was also investigated to provide the background value of this research. Results of spatial analysis suggested that the increase of the ISA raised the discharge in the rainy season, and reduced the discharge in the period of water shortage in Lake Kasumigaura Basin.

Yang, F.; Matsushita, B.; Fukushima, T.; Lab of Environmental Modeling; Creation

2011-12-01

318

Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin  

Science.gov (United States)

The role of externally imposed sediment supplies on the evolution of meandering rivers and their floodplains is poorly understood, despite analytical advances in our physical understanding of river meandering. The Amazon river basin hosts tributaries that are largely unaffected by engineering controls and hold a range of sediment loads, allowing us to explore the influence that sediment supply has on river evolution. Here we calculate average annual rates of meander migration within 20 reaches in the Amazon Basin from Landsat imagery spanning 1985-2013. We find that rivers with high sediment loads experience annual migration rates that are higher than those of rivers with lower sediment loads. Meander cutoff also occurs more frequently along rivers with higher sediment loads. Differences in meander migration and cutoff rates between the study reaches are not explained by differences in channel slope or river discharge. Because faster meander migration and higher cutoff rates lead to increased sediment-storage space in the resulting oxbows, we suggest that sediment supply modulates the reshaping of floodplain environments by meandering rivers. We conclude that imposed sediment loads influence planform changes in lowland rivers across the Amazon.

Constantine, José Antonio; Dunne, Thomas; Ahmed, Joshua; Legleiter, Carl; Lazarus, Eli D.

2014-12-01

319

Scale effects on specific sediment yield in the Yellow River basin and geomorphological explanations  

Science.gov (United States)

Based on data from 199 stations in the Yellow River drainage basin for which more than 5 years of data are available, the relationship between specific sediment yield ( Ys) and drainage area ( A) has been studied. This relationship for the Yellow River basin is different from those for many other rivers of the world, both at the scale of whole basin and at local scales. With increasing basin area, the specific sediment yield increases, reaches a maximum, and then declines. The non-linear variation in the Ys- A relationship can be explained by, first, surface material distribution; second, adjustment of the basin at macro time- and space-scales; and the third, the variation of energy expenditure with drainage-basin scale. As the loess deposits in the high-relief headwater areas is thin, it can be exhausted much more rapidly by flowing water erosion than in other areas, so the underlying erosion-resistant bedrock may be exposed much earlier. In many rivers in the study area, bedrock is exposed in the upper part of the drainage basin, and loess appears in the middle part, with a thickness that increases downstream to a peak, followed by a decline. Due to the influence of these spatial patterns of surface material distribution, a spatial pattern of specific sediment yield appears. The non-linear Ys- A relationship may be interpreted as an indication that the fluvial system of the Yellow River is still at the stage of strong adjustment to the environmental change of Pleistocene-Holocene transition, especially to the change of dominant geomorphic agency from wind to flowing water. This non-linear relationship can also be explained by the variation of stream power with the drainage basin scale. The stream power increases with drainage area to a peak value, and subsequently decreases, a trend that is similar to the trend of the Ys- A relationship.

Jiongxin, Xu; Yunxia, Yan

2005-06-01

320

Pollutant sources investigation and remedial strategies development for the Kaoping River Basin, Taiwan.  

Science.gov (United States)

The Kaoping River Basin, located in southern Taiwan, flows through approximately 171 km and drains towards the South Taiwan Strait. It is the largest and the most intensively used river basin in Taiwan. Based on the results from the pollutant sources investigation and water quality analysis, the main water pollution sources of the Kaoping River were livestock wastewater from hog farms, municipal wastewater, industrial wastewater, leachate from riverbank landfills, and non-point source (NPS) pollutants from agricultural areas in the upper catchment. Concern about the deteriorating condition of the river led the Government of Taiwan to amend the relevant legislation and strengthen the enforcement of the discharge regulations to effectively manage the river and control the pollution. The following remedial strategies have been taken to improve the river water quality since 2001: (1) hog ban in the upper catchment of the Kaoping River Basin, thus, 510 thousand hogs have been removed/relocated; (2) removal of riverbank landfills; (3) enforcement of the industrial wastewater discharge standards; (4) sewer system construction in five cities along the river corridor; (5) application of best management practices for NPS pollutant control; (6) application of natural wastewater treatment systems (e.g. land treatment, constructed wetland, overland flow, riverbank sedimentation/aeration pond) for domestic wastewater treatment in rural areas; and (7) construction of the watershed geographical information system (GIS) and real time water quality monitoring system to effectively monitor and manage the watershed. Recent water quality investigation results indicate that the biochemical oxygen demand (BOD) and nutrient loadings to the Kaoping River have been significantly reduced and the water quality has been improved after the implementation of the remedial strategies described above. Results and experience obtained from this study will be helpful in designing the watershed management strategies for other similar river basins. PMID:14653639

Kao, C M; Wu, F C; Chen, K F; Lin, T F; Yen, Y E; Chiang, P C

2003-01-01

 
 
 
 
321

Soil productive potential of the river basins located in European part of Russia  

Science.gov (United States)

The search for integral monitoring indicators of natural ecosystems biosphere functions assessment is becoming really urgent nowadays. From the point of view of ecologic and economic indicators, characterizing ecosystems structure and functioning, soil fertility and vegetation productivity parameters, which have been studied for a long time as biosphere and environment forming functions rank first priority. For integrated characteristic of ecosystems soil and vegetation condition we have suggested to apply the index of "soil-productive potential" (SPP), characterizing the ability of nature and nature-anthropogenic ecosystems for sustained product (phytomass) reproduction under specific soil-bioclimatic conditions. It characterizes ecosystem reserve via the index expressed in numbers and averages the following parameters: • specific phytomass reserve (all living elevated and underground parts of plants in terms of total dry mass t/ hectare are considered); • specific productivity (phytomass augmentation for a year per unit area); • natural soil fertility (humus content, % as a characteristic); • crop-producing power (grain crop-producing power is considered, centner/hectare); • bioclimatic parameters (integrated index, including the sum of biologically active temperatures and moistening coefficient); • soil-ecologic index (SEI). Soil-productive potential allows the assessment of average perennial area resource for phytomass production by natural and nature-anthropogenic ecosystems. For more convenient comparative estimation, characteristics are ranked by dividing them into equal intervals according to 5-number scale with consequent numbers summation to overall index. As a result both soil-productive potential of natural eco-systems and total soil-productive potential of the whole area with a glance to the condition of available agrocenosis are calculated. Soil-productive potential of 12 first-rank major river basins of the European part of Russia have been assessed. Within the largest basin in terms of watershed area of the Volga, the Oka and the Kama (2-nd rank river basins) have been singled out and characterized separately. The method of river basins boundaries overlapping (in digital map scaled 1:1000000) on zonal spaces in «Arc GIS» has been applied. The biggest phytomass reserve is concentrated in the Neva and the Oka river basins, in the southern direction phytomass reserve is gradually declining due to the decrease of forest area. The most productive areas are the Don, the Ural, the Kuban basins. Productivity of the Volga basin ecosystems as a whole is medial (the highest values are typical for the Oka basin). The highest humus content is registered in the Kuban river basin, the lowest - in the North Dvina basin. The most favourable bioclimatic conditions are observed in the Dnieper basin. As a result high values of soil-productive potential are typical for the ecosystems of the Dnieper, the Kuban and the Volga basins where this value is high only due to the Oka basin area. The received values of soil-productive potential were correlated to hydraulogic characteristics of these basins, peculiarities of land use and arable land condition (according to SEI and crop capacity). High discharge module is stated to be typical for the northern rivers basins of little soil-productive potential (the Pechora, the Mezen); river basins of high soil-productive potential are characterized by low or average values of discharge module (the Dnieper, the Oka, the Kuban). The most agriculturally developed area is the Don basin, as here agricultural load reaches the highest limit, about 60% of the area is ploughed up though natural ecosystems and agricultural systems potential is not the highest, that may threaten the proper functioning of the basin. Ecosystem high soil-productive potential in the Kuban basin corresponds to good condition of arable lands, high crop capacity and great agricultural development of the area.

Mishchenko, Natalia; Shoba, Sergei; Trifonova, Tatiana

2014-05-01

322

Isotope characterization of major rivers of Indus Basin, Pakistan  

International Nuclear Information System (INIS)

Pakistan lies between latitudes 24 deg. and 37 deg. North and longitudes 61 deg. to 76 deg. east. It possesses quite complicated and attractive physiographical features. There are very often a series of mountain ranges possessing deep broad valleys in-between. It includes the famous valley of the Indus having Indus River, which is one of the longest rivers in the World. It has five major tributaries: Bias, Satlej, Ravi, Chenab and Jhelum joining from the eastern side, while a number of small rivers join the Indus on the right side. All these main rivers are perennial. They originate from the mountains. Physiography and climate of the catchments of these rivers vary widely. Going from the catchment of the River Satlej to the catchment of Indus River, altitude increases and temperature decreases. In Northern Areas, mountains are covered with glaciers and some of the peaks are higher than 8000m, which get snowfall even in summer season. The basic sources of these rivers are snowmelt, rainfall and under certain conditions seepage from the formations. From the middle of March to the breaking of monsoon, in mid July, river water is drawn from the melting of snow. During monsoon, rainfall run-off is added to the rivers over and above of snowmelt, so their discharge increases manifold. During 1980-84, samples were collected on monthly basis from the river Satlej at Sulimanki, the river Ravi at Baloki (upstream including Qadirabad-Baloki Link Canal originating from the river Cki Link Canal originating from the river Chenab) and Sidnai including two link canals originating from Trimu Headworks (just after the confluence of the rivers Chenab and Jhelum), Panjnad (combination of five eastern tributaries) and the river Indus at Tarbela and Taunsa. The samples were analyzed for 18O,2H and 3H isotopes. The isotopic data (ranges, mean values) and ?18O-?2H correlations are tabulated

323

Assessment of in-place oil shale resources of the Green River Formation, Greater Green River Basin in Wyoming, Colorado, and Utah  

Science.gov (United States)

The U.S. Geological Survey (USGS) recently (2011) completed an assessment of in-place oil shale resources, regardless of grade, in the Eocene Green River Formation of the Greater Green River Basin in southwestern Wyoming, northwestern Colorado, and northeastern Utah. Green River Formation oil shale also is present in the Piceance Basin of western Colorado and in the Uinta Basin of eastern Utah and western Colorado, and the results of these assessments are published separately. No attempt was made to estimate the amount of oil that is economically recoverable because there has not yet been an economic method developed to recover the oil from Green River Formation oil shale.

Johnson, R.C.; Mercier, T.J.; Brownfield, M.E.

2011-01-01

324

Free-living and particle-associated bacterioplankton in large rivers of the Mississippi River Basin demonstrate biogeographic patterns.  

Science.gov (United States)

The different drainage basins of large rivers such as the Mississippi River represent interesting systems in which to study patterns in freshwater microbial biogeography. Spatial variability in bacterioplankton communities in six major rivers (the Upper Mississippi, Missouri, Illinois, Ohio, Tennessee, and Arkansas) of the Mississippi River Basin was characterized using Ion Torrent 16S rRNA amplicon sequencing. When all systems were combined, particle-associated (>3 micron) bacterial assemblages were different from free-living bacterioplankton in terms of overall community structure, partly because of differences in the proportional abundance of sequences affiliated with major bacterial lineages (Alphaproteobacteria, Cyanobacteria, Planctomycetes). Both particle-associated and free-living communities ordinated by river system, a pattern that was apparent even after rare sequences or those affiliated with Cyanobacteria were removed from the analyses. Ordination of samples by river system correlated with environmental characteristics of each river, such as nutrient status and turbidity. Communities in the Upper Mississippi and the Missouri, and the Ohio and the Tennessee, pairs of rivers that join each other, contained similar taxa in terms of presence/absence data, but differed in the proportional abundance of major lineages. The most common sequence types detected in particle-associated communities were picocyanobacteria in the Syn/Pro clade, while free-living communities also contained a high proportion of LD12 (SAR11/Pelagibacter)-like Alphaproteobacteria. This research shows that while different tributaries of large river systems such as the Mississippi River harbor distinct bacterioplankton communities, there is also microhabitat variation such as that between free-living and particle-associated assemblages. PMID:25217018

Jackson, Colin R; Millar, Justin J; Payne, Jason T; Ochs, Clifford A

2014-09-12

325

Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli  

Energy Technology Data Exchange (ETDEWEB)

At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species` historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river`s major tributaries.

Neitzel, D.A. [Pacific Northwest Lab., Richland, WA (United States); Frest, T.J. [Deixis Consultants, Seattle, WA (United States)

1992-08-01

326

Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin  

Science.gov (United States)

The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni-Madeira River. This river has a larger difference in the Sr isotopic composition between the diluted and solid phases, which has been assigned to the high level of weathering of its sediment source area. In the Beni-Madeira River sub-basin dominates weathering of silicate rocks, while in the Marañón-Solimões River sub-basin there also weathering of carbonate and evaporitic rocks.

Hatting, Karina; Santos, Roberto V.; Sondag, Francis

2014-05-01

327

Initial Sediment Transport Model of the Mining-Affected Aries River Basin, Romania  

Science.gov (United States)

The Romanian government is interested in understanding the effects of existing and future mining activities on long-term dispersal, storage, and remobilization of sediment-associated metals. An initial Soil and Water Assessment Tool (SWAT) model was prepared using available data to evaluate hypothetical failure of the Valea Sesei tailings dam at the Rosia Poieni mine in the Aries River basin. Using the available data, the initial Aries River Basin SWAT model could not be manually calibrated to accurately reproduce monthly streamflow values observed at the Turda gage station. The poor simulation of the monthly streamflow is attributed to spatially limited soil and precipitation data, limited constraint information due to spatially and temporally limited streamflow measurements, and in ability to obtain optimal parameter values when using a manual calibration process. Suggestions to improve the Aries River basin sediment transport model include accounting for heterogeneity in model input, a two-tier nonlinear calibration strategy, and analysis of uncertainty in predictions.

Friedel, Michael J.; Linard, Joshua I.

2008-01-01

328

Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10  

Science.gov (United States)

Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, a reconnaissance was done to assess contaminant concentrations directly contributed to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments and to evaluate instantaneous loadings to the Columbia River Basin from these inputs.

Morace, Jennifer L.

2012-01-01

329

Warming may create substantial water supply shortages in the Colorado River basin  

Science.gov (United States)

The high demand for water, the recent multiyear drought (1999-2007), and projections of global warming have raised questions about the long-term sustainability of water supply in the southwestern United States. In this study, the potential effects of specific levels of atmospheric warming on water-year streamflow in the Colorado River basin are evaluated using a water-balance model, and the results are analyzed within the context of a multi-century tree-ring reconstruction (1490-1998) of streamflow for the basin. The results indicate that if future warming occurs in the basin and is not accompanied by increased precipitation, then the basin is likely to experience periods of water supply shortages more severe than those inferred from the longterm historical tree-ring reconstruction. Furthermore, the modeling results suggest that future warming would increase the likelihood of failure to meet the water allocation requirements of the Colorado River Compact.

McCabe, G.J.; Wolock, D.M.

2007-01-01

330

Ensemble streamflow forecasting experiments in a tropical basin: The São Francisco river case study  

Science.gov (United States)

The present study shows experiments of ensemble forecasting applied to a large tropical river basin, where such forecasting methodologies have many potential applications. The case study is the Três Marias hydroelectric power plant basin (Brazil), on the São Francisco river, where forecast results are particularly important for reservoir operation and downstream flood control. Results showed some benefits in the use of ensembles, particularly for the reservoir inflow on flooding events, and in comparison to the deterministic values given by the control member of the ensemble and by the ensemble mean. The study also discusses the improvements that must be tested and implemented in order to achieve better results, what is particularly important for the smaller basins within the study case. Despite the necessary improvements mentioned, the results suggest that benefits can result from the application of ensemble forecasts for hydropower plants with large basins within the Brazilian energy system.

Fan, Fernando Mainardi; Collischonn, Walter; Meller, Adalberto; Botelho, Luiz César Mendes

2014-11-01

331

Description of water-systems operations in the Arkansas River basin, Colorado  

Science.gov (United States)

To facilitate a current project modeling the hydrology of the Arkansas River basin in Colorado, a description of the regulation of water in the basin is necessary. The geographic and climatic setting of the Arkansas River basin that necessitates the use, reuse, importation, and storage of water are discussed. The history of water-resource development in the basin, leading to the present complex of water systems, also is discussed. Municipal, irrigation, industrial, and multipurpose water systems are described. System descriptions are illustrated with schematic line drawings, and supplemented with physical data tables for the lakes, tunnels, conduits, and canals in the various systems. Copies of criteria under which certain of the water systems operate, are included. (USGS)

Abbott, P.O.

1985-01-01

332

Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli  

Energy Technology Data Exchange (ETDEWEB)

At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries.

Neitzel, D.A. (Pacific Northwest Lab., Richland, WA (United States)); Frest, T.J. (Deixis Consultants, Seattle, WA (United States))

1992-08-01

333

Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli  

International Nuclear Information System (INIS)

At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries

334

Water governance and adaptation to climate change in the Indus River Basin  

Science.gov (United States)

Conflicting approaches to water governance at multiple scales within large international river basins may have detrimental effects on the productivity of water resources and consequently the economic activities of the basin. In the Indus River Basin, local scale water productivity decisions are affected by international and intra-national scale water governance. Water availability and productivity is modulated by the Indus Waters Treaty between India and Pakistan, and within Pakistan by the agreements governing water allocation between and within provinces. Much of the literature on governance at multiple scales in the Indus basin, and others, has employed qualitative methods of institutional analysis. This paper extends that approach with quantitative modeling of surface water allocation rules at multiple scales and the consequent economic impact on water use and productivity in the Indus River of Pakistan. The effects of the existing water allocation mechanisms on the ability to adapt to possible future climate conditions are examined. The study is conducted using the Indus Basin Model Revised - Multi-Year (IBMR-MY), a hydro-agro-economic model of the Indus River within Pakistan that simulates river and canal flows, groundwater pumping, water use and economic activities with a distributed, partial equilibrium model of the local scale agro-economic activities in the basin. Results suggest that without changes in response to changing conditions, the current governance mechanisms impede the provinces' ability to adapt to changing climate conditions, in ways that are significant, inflicting economic costs under both high and low flow conditions. However surface water allocation between the provinces does not appear to hinder adaptation. The greatest gains for economic water allocation are achieved at the sub-provincial level. The results imply that adaptive mechanisms for water allocation that allow response to changing climate conditions within provinces may be a promising adaptive response in the Indus Basin.

Yang, Yi-Chen E.; Brown, Casey; Yu, Winston; Wescoat, James; Ringler, Claudia

2014-11-01

335

Tracing Sources of Nitrate and Organic Matter in the Willamette River Basin During Summer Baseflow Conditions using Isotopic Techniques  

Science.gov (United States)

The effect of land use on water quality at the large river basin scale is poorly understood. In particular, quantifying the sources of water, nutrients, and organic matter to the river and linking these sources to specific land uses and point-sources of pollution is problematic in large basins. The Willamette River in Oregon is the 13th largest river by volume in the USA and drains a watershed of approximately 30,000 km2. The watershed contains more than 70 percent of Oregon's population and is under increasing pressure from continued urbanization. To better understand the sources of water, nutrients, and organic matter to the Willamette River and how these sources are linked to land uses, we conducted a synoptic sampling of the Willamette River and its major tributaries under summer baseflow conditions in late August 2006. We collected samples from the entire length of the Willamette River, from its confluence with the McKenzie, Middle Fork, and Coast Fork Rivers north to its confluence with the Columbia River in Portland, a distance of greater than 275 km. Grab-samples were collected mid-river from the Willamette River at sites selected to provide both uniform geographic coverage plus samples of different sources of nitrate, including feedlot operations, urban sewer and septic drainage, industrial effluent, and agriculture. In addition, near-shore grab-samples were collected from all major tributaries near their confluence with the Willamette River, from the mouths of minor tributaries to the Willamette River that had largely urban or agricultural land use, and from major sub-tributaries, reservoirs, or other sites of local hydrologic interest. All these samples will be analyzed for nitrate, ammonium, and DOC concentrations, conductivity, water-d18O and d2H, nitrate d15N and d18O, and POM d15N, d13C, and C:N. Nitrate concentrations in the Willamette River during the summer are typically much lower than in the winter, and generally show little variation downstream. The turbidity is also lower during the summer, and very low concentrations of POM were observed during our synoptic sampling. We will assess whether nitrate isotopes might be useful at identifying relatively subtle changes in nutrient sources to the river that are not apparent with nitrate concentrations alone. We will also determine whether POM isotopes can identify spatial changes in organic matter sources to the river. Finally, during the winter, high concentrations of nitrate in the Willamette River are correlated with storm events that flush nitrate from soils from different land uses and which presumably represent different sources of nitrate. We plan a second synoptic sampling run in Winter 2007 to explore these mechanisms and seasonal differences in nitrate concentrations.

Kendall, C.; Lajtha, K.; McDonnell, J. J.; Johnson, H.; Anderson, C.; Frentress, J.; Griffith, S. M.; Grove, R. A.

2006-12-01

336

Channel Slopes on Amazon Basin Rivers From the SRTM DEM  

Science.gov (United States)

Changes in surface water storage (S) and discharge (Q) are poorly known globally but are critical for constraining the terrestrial branch of the water cycle. To date, only the SRTM mission provides global measurements of both surface water area and elevation. However, little is known about the instrument performance for collecting delta-S and Q. The Amazon Basin is a particularly appealing target given its sparse gauge density, lack of continuous and reliable slope data that can be used in the estimation of discharge, and complexity of flow hydraulics. We have used SRTM elevation data in conjunction with flow distance to estimate water surface slope for the area 0S-8S, 72W-54W. Using a 3rd order polynomial fit to the distance-elevation data, slope values of the mainstem Amazon range from less than 0.5 cm km-1 downstream of Obidos to 4.10 cm km-1 3000 km upstream of this location. The central Amazon slope ranges from 1.86 cm km-1 to 3.10 cm km-1 from Manaus to the Rio Japura (about 800 km upstream). Local slopes for specific gauge locations were achieved using both a linear fit to the data and the polynomial fit. The slope value at Itapeua, about 430 km upstream of Manaus, was found to be 3.22 cm km-1 using a linear fit, and 2.65 - 2.79 cm km-1 using a 3rd order polynomial fit, for a reach of 24 km. The slope value for Manacapuru, about 90 km upstream of Manaus, was determined to be 3.56 cm km-1 using a linear fit and 1.97 - 2.12 cm km-1 for a reach of 70 km centered on the local gauge. This slope is used in the Manning equation (n = 0.03) with depth values from navigation charts and river width measured from JERS-1 SAR imagery to yield discharge values for Manacapuru of 93,500 m3 sec-1and for Itapeua of 81,900 m3 sec-1. The observed discharge value at the Manacapuru gauge is 96,300 m3 sec-1 over an 11-day average in February for the years 1973-1991. The average observed discharge value for Itapeua is 83,100 m3 sec-1 for the same time period.

Hendricks, G.; Alsdorf, D. E.

2004-12-01

337

Quaternary colluvial episodes (Upper Paraná River Hydrographic Basin, Brazil)  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in portuguese Depósitos coluviais ocorrem extensivamente na Bacia Hidrográfica do Alto Rio Paraná, no sudeste, sul e centro-oeste do Brasil. Esses depósitos foram reconhecidos como uma unidade aloestratigráfica, e são interpretados como depósitos formados por processos de rastejo durante o Quaternário. Cada perfi [...] l coluvial estudado é muito homogêneo, e indica relativamente períodos longos de estabilidade da paisagem, suficiente para desenvolvimento de espessa cobertura. Estes depósitos foram datados por luminescência para estabelecer cronologicamente períodos de deposição coluvial mais intensa entre 6 e 220 ky B.P. Estes eventos correspondem aproximadamente às transições entre os estágios de isótopos do oxigênio 2-3-4 e 5-6, sugerindo que essa agradação esteve influenciada por mudanças climáticas. Desenvolvimento aluvionar foi correlacionado ao Peniglacial médio a superior da Glaciação Wisconsiana. Os períodos de intensidade ou frequência maior de precipitação que ocorre durante as transições climáticas estão provavelmente correlacionados com os eventos de agradação. A regularidade do registro coluvionar sugere constante soerguimento acompanhado de deposição sedimentar por toda UPRHB devido à atividade neotectônica durante o último milhão de anos. Abstract in english Colluvial deposits occur extensively in the Upper Paraná River Hydrographic Basin (UPRHB) in Southeastern,Southern, and Western central Brazil. These deposits were recognized as an allostratigraphic unit and related to creeping during the Quaternary. Every studied colluvial profile is homogeneous, w [...] hich indicates relatively long periods of landscape stability that is sufficient for the development of a thick soil cover. The deposits were dated by luminescence and indicate periods of more intense colluvial deposition between 6 and 220 ky B.P. These events correspond approximately to the transitions between the oxygen isotope stages 2-3-4 and 5-6, suggesting that this aggradation was influenced by climatic changes. However, the most important alluviation episode was tentatively correlated with the Middle to Upper Pleniglacial of the Wisconsin glaciation. The most intensive and frequent periods of precipitation that occurred during climate transitions are probably correlated with aggradation events. The regularity of the colluvial deposits suggests continuous uplift accompanied by sediment deposition throughout the UPRHB due to neotectonic activity during the last million years.

Alethea E.M., Sallun; Kenitiro, Suguio.

2010-09-01

338

HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN  

Energy Technology Data Exchange (ETDEWEB)

In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

John A. McLachlan

2003-12-01

339

Antecedent flow conditions and nitrate concentrations in the Mississippi River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The influence of antecedent flow conditions on nitrate concentrations was explored at eight sites in the Mississippi River Basin, USA. Antecedent moisture conditions have been shown to influence nutrient export from small, relatively homogenous basins, but this influence has not been observed at a regional or continental scale. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record (Q ra...

Murphy, J. C.; Hirsch, R. M.; Sprague, L. A.

2013-01-01

340

Teleconnection analysis of runoff and soil moisture over the Pearl River basin in South China  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study explores the teleconnection of two climatic patterns, namely the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in South China. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the monthly runoff and soil moisture anomalies for its ten sub-...

Niu, J.; Chen, J.; Sivakumar, B.

2013-01-01

 
 
 
 
341

A stochastic approach for the description of the water balance dynamics in a river basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption is particularly t...

Manfreda, S.; Fiorentino, M.

2008-01-01

342

Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China  

Digital Repository Infrastructure Vision for European Research (DRIVER)

A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological processes include evapotranspiration, infiltration, runoff, groundwater flow, interaction between groundwa...

Jia, Y.; Ding, X.; Qin, C.; Wang, H.

2009-01-01

343

On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC) macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM)...

Rosenberg, E. A.; Clark, E. A.; Steinemann, A. C.; Lettenmaier, D. P.

2013-01-01

344

Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma transformation, is applied to improve the frequency and amount of raw GCM precipitation at the grid...

Sharma, D.; Das Gupta, A.; Babel, M. S.

2007-01-01

345

LIVING WITH FLOOD AND SUSTAINABLE LIVELIHOOD DEVELOPMENT IN LOWER BRAHMAPUTRA RIVER BASIN, ASSAM  

Directory of Open Access Journals (Sweden)

Full Text Available River basin is considered as the basic hydrologic unit for planning and development of water resources and livelihood. Assam's Brahmaputra valley represents one of the most acutely hazard-prone regions in the country, having a total flood prone area of 3.2 million hectare. The lower Brahmaputra basin, Assam has caused the hazards of annual floods and erosion, bringing misery to the people and shattering the fragile agro-economic base of the region

R. B. Singh

2014-05-01

346

A LAND USE ANALYSIS OF EXISTING AND POTENTIAL COAL SURFACE MINING AREAS IN THE OHIO RIVER BASIN ENERGY STUDY REGION  

Science.gov (United States)

This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. It reports on the land use changes resulting from the surface mining of coal in the Ohio River Basin, which...

347

The design and analysis of salmonid tagging studies in the Columbia basin. Volume 8: A new model for estimating survival probabilities and residualization from a release-recapture study of fall chinook salmon (Oncorhynchus tschawytscha) smolts in the Snake River  

International Nuclear Information System (INIS)

Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake river fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging. These models do not utilize available capture history data from this second year and, thus, produce negatively biased estimates of survival probabilities. A new multinomial likelihood model was developed that results in biologically relevant, unbiased estimates of survival probabilities using the full two years of capture history data. This model was applied to 1995 Snake River fall chinook hatchery releases to estimate the true survival probability from one of three upstream release points (Asotin, Billy Creek, and Pittsburgh Landing) to Lower Granite Dam. In the data analyzed here, residualization is not a common physiological response and thus the use of CJS models did not result in appreciably different results than the true survival probability obtained using the new multinomial likelihood model

348

Discharge, gage height, and elevation of 100-year floods in the Hudson River basin, New York  

Science.gov (United States)

The flood discharge that may be expected to be equaled or exceeded on the average of once in 100 years (100-year flood) was computed by the log-Pearson Type-III frequency relation for 72 stations in the Hudson River basin. These discharges and, where available, their corresponding gage height and elevation above mean sea level are presented in tabular form. A short explanation of computation methods is included. The data are to be used as part of a federally funded study of the water resources and related land resources of the Hudson River basin. (Woodard-USGS)

Archer, Roger J.

1978-01-01

349

Demarcation of Groundwater Prospective Zones in Humid Tropical River Basin: A Geospatial Approach  

Directory of Open Access Journals (Sweden)

Full Text Available roundwater, being a vital resource, needs to be developed with proper understanding about its occurrence in time and space. Unscientific sand mining is a dominant environmental issue in this humid tropical river basin namely Bharathapuzha river basin geographically on central part of Kerala state, southwest part of India. The sandy layers along the river course declines its water holding capacity due to indiscriminate sand mining throughout the river basin. For a sustainable development of water resources, it is imperative to make a quantitative estimation of the available water resources. The purpose of the study is to identify the groundwater potential zones in the Bharathapuzha river basin in Kerala state, India based on Remote Sensing and GIS technology. Thematic layers considered in the study are geomorphology, land use, and lineament derived from IRS P6 LISS IV digital data; drainage network contour and slope maps are generated using toposheets; geology from GSI geology maps, with the help of Arc GIS Software and Erdas Software. Storativity and transmissivity of the study area was prepared using pumping test data. The thematic layers were over layered by weighted overlay method using Arc GIS. Four groundwater potential zones were identified in the study area represented as very good, good, moderate and poor potential zones.

Girish Gopinath

2013-04-01

350

Development of a Systemwide Predator Control Program, Volume I : Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin, 1993 annual report.  

Energy Technology Data Exchange (ETDEWEB)

Modified Merwin trap nets were tested by an experimental fishery in the Columbia River downstream from McNary Dam to determine their effectiveness in selectively harvesting northern squawfish (Ptychocheilus oregonensis) over 11 inches in total length. The fishery was evaluated for its potential to supplement exploitation rates of the sportreward and dam-angling fisheries to achieve the objectives of the northern squawfish management program. Special consideration was given to the potential for, and impact on, incidental catches of adult salmonids (Oncorhynchus spp.) listed as threatened and endangered under the Endangered Species Act (ESA). Preseason site and data surveys identified suitable fishing locations where physical parameters are favorable to trap-net deployment and northern squawfish habitat was present. A total of 16 floating trap nets were operated from June 2 through August 4, 1993. We made 1,392 sets with a mean soak time of 2.9 hours. The total catch was 45,803 fishes including 10,440 (23% of the total catch) northern squawfish of which 1,688 (4% of the total catch) were large (greater than 11 inches in total length). Mean catch rate was 0.3 large northern squawfish per hour of soak time. Nearly all incidentally captured fishes were released alive and in good condition. Bycatch of adult salmonids totaled 1,036 fishes (2% of the total catch). Operational criteria, designed to limit incidental take of salmonids, restricted the fishing time, dates, and locations. In addition, lack of prior operating experience with the gear type and limited gear effectiveness in high velocities found in the free-flowing river below Bonneville Dam contributed to the low harvest rate for northern squawfish. We determined that a large scale floating trap-net fishery outside the boat restricted zones (BRZs) of hydropower projects would not significantly improve the exploitation rate of northern squawfish either above or below Bonneville Dam.

Willis, Charles F.; Ward, David L.

1995-06-01

351

Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We fi...

Ziv, Guy; Baran, Eric; Nam, So; Rodri?guez-iturbe, Ignacio; Levin, Simon A.

2012-01-01

352

Quantifying river form variations in the Mississippi Basin using remotely sensed imagery  

Digital Repository Infrastructure Vision for European Research (DRIVER)

Geographic variations in river form are often estimated using the framework of downstream hydraulic geometry (DHG), which links spatial changes in discharge to channel width, depth, and velocity through power-law models. These empirical relationships are derived from limited in situ data and do not capture the full variability in channel form. Here, we present a dataset of 1.2 × 106 river widths in the Mississippi Basin measured from the Landsat-derived Nation...

Miller, Z. F.; Pavelsky, T. M.; Allen, G. H.

2014-01-01

353

Factors controlling sediment yield in a major South American drainage basin: the Magdalena River, Colombia  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium- sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield ...

Restrepo, Juan D.; Kjerfve, Bjo Rn; Hermelin Arbaux, Michel; Restrepo, Juan C.

2005-01-01

354

Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, Southwestern India.  

Science.gov (United States)

The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water. PMID:24374620

Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N

2014-04-01

355

Spatial Distribution and Corresponding Factors of Heavy Metals Concentrations in the Dongjiang River Basin, Southeast China  

Digital Repository Infrastructure Vision for European Research (DRIVER)

The Dongjiang River Basin (Southeast China) is the world’s most populous and highly economic development region over the last few decades. The present study is the first systematic analysis of heavy metals of the aquatic environment in this area. Eighty seven samples were taken from the tributaries of the river network to investigate the characteristics of heavy metal pollutants within the catchment, which suggests a generally good water quality in terms of heavy metals, i.e., the mean meta...

Yuan Jiang; Zhenyu Ding; Qiuzhi Peng; Jianyu Liao; Leting Lv

2012-01-01

356

Status of organochlorine pesticides in Ganga river basin: anthropogenic or glacial?  

Digital Repository Infrastructure Vision for European Research (DRIVER)

This study reports the occurrences of organochlorine pesticides (OCPs) in Ganga river basin covering 3 states, i.e. Uttarakhand, Uttar Pradesh and Bihar covering 72% of total river stretch consisting of 82 sampling points covered through 3 sampling campaigns. Samples were monitored for 16 major OCPs, including HCHs, Endosulfan group, Aldrin group, DDTs and Heptachlor group pesticides.

The results showed the ng l?1 levels contamination of OCPs in a...

Mutiyar, P. K.; Mittal, A. K.

2012-01-01

357

Early 21st century snow cover state over the western river basins of the Indus River system  

Science.gov (United States)

In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by applying a validated non-spectral cloud removal technique. The improved snow product has been analysed on a seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (upper Indus basin (UIB), Astore, Hunza, Shigar and Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Seasonal average snow cover decreases during winter and autumn, and increases during spring and summer, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitudes/altitudes show higher variability than basins at lower latitudes/middle altitudes. Northeastern and northwestern aspects feature greater snow cover. The mean end-of-summer regional snow line altitude (SLA) zones range from 3000 to 5000 m a.s.l. for all basins. Our analysis provides an indication of a descending end-of-summer regional SLA zone for most of the studied basins, which is significant for the Shyok and Kabul basins, thus indicating a change in their water resources. Such results are consistent with the observed hydro-climatic data, recently collected local perceptions and glacier mass balances for the investigated period within the UIB. Moreover, our analysis shows a significant correlation between winter season snow cover and the North Atlantic Oscillation (NAO) index of the previous autumn. Similarly, the inter-annual variability of spring season snow cover and spring season precipitation explains well the inter-annual variability of the summer season discharge from most of the basins. These findings indicate some potential for the seasonal stream flow forecast in the region, suggesting snow cover as a possible predictor.

Hasson, S.; Lucarini, V.; Khan, M. R.; Petitta, M.; Bolch, T.; Gioli, G.

2014-10-01

358

Effects of oil production on water resources in the Kentucky River basin, Kentucky  

International Nuclear Information System (INIS)

As part of a comprehensive study of water quality in the Kentucky River basin, Kentucky, an area of intense oil-production activity was investigated. Groundwater sampling indicated that shallow groundwater in valley alluvial areas was probably not affected by oil-production activities, that water flooding had decreased the mineral content of water in the oil-production units but not in the overlying formations, and that the character of water in a shallow bedrock formation may reflect mixing of freshwater from the overlying alluvium and mineralized water from deeper units. Surface water from oil-production basins was determined to be a sodium chloride type water, differing from the calcium bicarbonate type water generally found in basins unaffected by oil production. The average annual yields of bromide, chloride, sodium, and strontium from one oil-production basin were at least 10 times greater than from a non-production basin. The largest concentrations of chloride and bromide in the Kentucky River downstream of the oil basins typically occur in the fall of the year, as precipitation and runoff increase following the dry late-summer months. Conceptually, these large concentrations are a result of the flushing of ionic constituents from the oil-production basins that have accumulated during the dry season

359

A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India  

Science.gov (United States)

The study indicates that analysis of morphometric parameters with the help of geographic information system (GIS) would prove a viable method of characterizing the hydrological response behaviour of the watershed. It is also well observed that remote sensing satellite data is emerging as the most effective, time saving and accurate technique for morphometric analysis of a basin. This technique is found relevant for the extraction of river basin and its stream networks through ASTER (DEM) in conjunction with remote sensing satellite data (Landsat etm+, 2013 and georeferenced survey of Indian toposheet, 1972). In this study, Kanhar basin a tributaries of Son River has been selected for detailed morphometric analysis. Seven sub-watersheds are also delineated within this basin to calculate the selected morphometric parameters. Morphometric parameters viz; stream order, stream length, bifurcation ratio, drainage density, stream frequency, form factor, circulatory ratio, etc., are calculated. The drainage area of the basin is 5,654 km2 and shows sub-dendritic to dendritic drainage pattern. The stream order of the basin is mainly controlled by physiographic and lithological conditions of the area. The study area is designated as seventh-order basin with the drainage density value being as 1.72 km/km2. The increase in stream length ratio from lower to higher order shows that the study area has reached a mature geomorphic stage.

Rai, Praveen Kumar; Mohan, Kshitij; Mishra, Sameer; Ahmad, Aariz; Mishra, Varun Narayan

2014-11-01

360

Change and persistence in land surface phenologies of the Don and Dnieper river basins  

International Nuclear Information System (INIS)

The formal collapse of the Soviet Union at the end of 1991 produced major socio-economic and institutional dislocations across the agricultural sector. The picture of broad scale patterns produced by these transformations continues to be discovered. We examine here the patterns of land surface phenology (LSP) within two key river basins-Don and Dnieper-using AVHRR (Advanced Very High Resolution Radiometer) data from 1982 to 2000 and MODIS (Moderate Resolution Imaging Spectroradiometer) data from 2001 to 2007. We report on the temporal persistence and change of LSPs as summarized by seasonal integration of NDVI (normalized difference vegetation index) time series using accumulated growing degree-days (GDDI NDVI). Three land cover super-classes-forest lands, agricultural lands, and shrub lands-constitute 96% of the land area within the basins. All three in both basins exhibit unidirectional increases in AVHRR GDDI NDVI between the Soviet and post-Soviet epochs. During the MODIS era (2001-2007), different socio-economic trajectories in Ukraine and Russia appear to have led to divergences in the LSPs of the agricultural lands in the two basins. Interannual variation in the shrub lands of the Don river basin has increased since 2000. This is due in part to the better signal-to-noise ratio of the MODIS sensor, but may also be due to a regional drought affecting the Don basin more than the Dnieper basin.

 
 
 
 
361

Soil loss prediction in Guaraíra river experimental basin, Paraíba, Brazil based on two erosion simulation models  

Directory of Open Access Journals (Sweden)

Full Text Available In this study, two hydrological models to estimate soil losses and sediment yield due to sheet and channel erosion, at the basin outlet, are applied to Guaraíra River Experimental Basin, located in Paraíba State, northeastern Brazil. The soil erosion models are (a the classical Universal Soil Loss Equation (USLE, which is used to simulate annual and monthly soil losses; and (b Kineros model, which is used to simulate the sediment yield within the basin. Kineros model is a physically-based distributed model that uses a cascade of planes and channels to represent the basin and to describe the processes of interception, infiltration, surface runoff and erosion within the basin. The USLE is computed using land use, soil erodibility, topographic digital maps, as well as observed rainfall data. It was found that Guaraíra river experimental basin has a low potential for soil losses; however, specific areas which are susceptible to the erosion process in the basin could be detected by the modeling techniques coupled to a GIS (Geographic Information System.

Jorge Flávio Cazé B. da Costa Silva

2007-12-01

362

Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin  

DEFF Research Database (Denmark)

Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements are converted to discharge using rating curves of simulated discharge versus observed altimetry. This approach makes it possible to use altimetry data from river cross sections where both in-situ rating curves and accurate river cross section geometry are not available. Model updating based on radar altimetry improved model performance considerably. The Nash-Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet.

Finsen, F.; Milzow, Christian

2014-01-01

363

Cytogenetic and morphological diversity in populations of Astyanax fasciatus (Teleostei, Characidae) from Brazilian northeastern river basins  

Scientific Electronic Library Online (English)

Full Text Available SciELO Brazil | Language: English Abstract in english In the present work, morphometric and cytogenetic analyses were carried out in populations of the fish Astyanax fasciatus (Characidae) from Contas and Recôncavo Sul River basins (State of Bahia, Brazil), providing new data on the genetic structure of this species along the region. Based on morpholog [...] ic measurements, we observed that populations from the same hydrographic basin were more similar to each other (Contas and Preto do Costa Rivers), and remarkably divergent from Recôncavo Sul (Mineiro Stream), as indicated by clustering analysis. Cytogenetic data revealed a same diploid number for all populations (2n = 48), but distinct karyotype formulae (8M+24SM+12ST+4A, FN = 92 in Contas River, 8M+24SM+10ST+6A, FN = 90 in Preto do Costa River, and 8M+18SM+16ST+6A, FN = 90 in Mineiro Stream). Ag-NORs were identified at telomeres on a subtelocentric chromosome pair, although multiple ribosomal sites have been detected in some specimens from Contas River. These results show that A. fasciatus populations from northeastern river basins are well differentiated and present peculiar cytogenetic features when compared to populations from other regions. Therefore, the apparent chromosomal plasticity of this species, likely to represent a complex of cryptic forms, is corroborated. Finally, we demonstrated that morphological features can be successfully used to support other sources of genetic information.

Aline Souza, Medrado; Alba Vivian Amaral, Figueiredo; Ana Maria, Waldschmidt; Paulo Roberto Antunes de Mello, Affonso; Paulo Luiz Souza, Carneiro.

364

Cytogenetic and morphological diversity in populations of Astyanax fasciatus (Teleostei, Characidae from Brazilian northeastern river basins  

Directory of Open Access Journals (Sweden)

Full Text Available In the present work, morphometric and cytogenetic analyses were carried out in populations of the fish Astyanax fasciatus (Characidae from Contas and Recôncavo Sul River basins (State of Bahia, Brazil, providing new data on the genetic structure of this species along the region. Based on morphologic measurements, we observed that populations from the same hydrographic basin were more similar to each other (Contas and Preto do Costa Rivers, and remarkably divergent from Recôncavo Sul (Mineiro Stream, as indicated by clustering analysis. Cytogenetic data revealed a same diploid number for all populations (2n = 48, but distinct karyotype formulae (8M+24SM+12ST+4A, FN = 92 in Contas River, 8M+24SM+10ST+6A, FN = 90 in Preto do Costa River, and 8M+18SM+16ST+6A, FN = 90 in Mineiro Stream. Ag-NORs were identified at telomeres on a subtelocentric chromosome pair, although multiple ribosomal sites have been detected in some specimens from Contas River. These results show that A. fasciatus populations from northeastern river basins are well differentiated and present peculiar cytogenetic features when compared to populations from other regions. Therefore, the apparent chromosomal plasticity of this species, likely to represent a complex of cryptic forms, is corroborated. Finally, we demonstrated that morphological features can be successfully used to support other sources of genetic information.

Aline Souza Medrado

2008-01-01

365

Simulation of blue and green water resources in the Wei River basin, China  

Science.gov (United States)

The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

Xu, Z.; Zuo, D.

2014-09-01

366

Atmospheric-hydrological modeling of severe precipitation and floods in the Huaihe River Basin, China  

Science.gov (United States)

SummaryOur study focuses on the simulation of heavy precipitation and floods over the Huaihe River Basin (270,000 km 2), one of the seven major river basins in China. The simulation covers two periods in 1998 (June 28-July 3, July 28-August 17) and a third period in 2003 (June 26-July 22). The former two periods, with eight meteorological cases each of duration 72-h, correspond to the Intensive Observation Period of HUBEX/MAGE (Huaihe River Basin Experiment/Monsoon Asian GEWEX Experiment). The period in 2003 with 10 cases is the second most severe flooding event on record. The Canadian atmospheric Mesoscale Compressible Community Model (MC2) is used for precipitation simulation in the hindcast mode for all cases. The Chinese Xinanjiang hydrological model driven by either rain gauge or MC2 precipitation is used to simulate hydrographs at the outlet of the Shiguanhe sub-basin (5930 km 2), part of the Huaihe River Basin. The MC2 precipitation is also evaluated using observations from rain gauges. Over the Huaihe River Basin, MC2 generally overestimates the basin-averaged precipitation. Three of the eight 1998 cases have a percentage error less than 50% with the fourth having an error of 54%, while six of the ten 2003 cases have errors less than 50%. The precipitation over five different sub-regions and the Shiguanhe sub-basin of the Huaihe River Basin from MC2 are also compared with values from the Chinese operational weather prediction model; the latter data are only available for the ten 2003 cases. An excellent result is obtained in the hydrological simulation using rain gauge precipitation as revealed by the Nash-Sutcliffe coefficients of 0.91 for both summers of 1998 and 2003. The simulation using MC2 precipitation shows a reasonable agreement of flood timing and peak discharges with Nash-Sutcliffe coefficients of 0.63 and 0.87 for the two 1998 periods, and 0.60 for 2003. The encouraging results demonstrate the potential of using mesoscale model precipitation for flood forecast, which provides a longer lead time compared to traditional methods such as those based on rain gauges, statistical forecast or radar nowcasts.

Lin, Charles A.; Wen, Lei; Lu, Guihua; Wu, Zhiyong; Zhang, Jianyun; Yang, Yang; Zhu, Yufei; Tong, Linying

2006-10-01

367

Resistant river basins as recorder of distributed crustal deformation: examples from New Zealand and Lebanon  

Science.gov (United States)

Rivers are useful markers of crustal deformation because they deform together with the rocks over which they flow. For instance, at the scale of individual faults, offset rivers and alluvial fans have been used to reconstruct past slip rates(1), while the basins of major rivers have been utilized to estimate pervasive crustal strain at the continental scale(2). However, river basins have also been claimed to reorganize into similar equilibrium forms(3) independently of the tectonic regime. According to this latter view, river basins cannot serve as reliable markers of deformation since their boundaries adjust dynamically during deformation by processes of capture and divide migration. Here we show that both views are correct under different conditions, as different basins in the same tectonic field may or may not be persistent and record the history of deformation, depending on the relation between their geomorphic position and the nature and directionality of the strain field. To demonstrate this new understanding we study the planform of drainage basins along two major transpressive plate boundaries that partly show patterns that are spatially consistent with the assumed tectonic regime: