WorldWideScience

Sample records for river basin volume

  1. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  2. Water Resources Data - Texas, Water Year 2002, Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.

    2003-01-01

    Water-resources data for the 2002 water year for Texas are presented in six volumes and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 91 gaging stations; stage only at 8 gaging stations; stage and contents at 32 lakes and reservoirs; water quality at 44 gaging stations; and data for 33 partial-record stations comprised of 15 flood-hydrograph, 8 low-flow, and 10 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  3. Water-Data Report--Texas 2003, Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.

    2004-01-01

    Water-resources data for the 2003 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 93 gaging stations; stage only at 8 gaging stations; stage and contents at 33 lakes and reservoirs; water quality at 23 gaging stations; and data for 35 partial-record stations comprised of 15 flood-hydrograph, 19 low-flow, and 1 miscellaneous stations. Also included are lists of discontinued surfacewater discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  4. Water Resources Data - Texas Water Year 1999, Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.; Jones, R.E.

    2000-01-01

    Water-resources data for the 1999 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 78 gaging stations; stage only at 7 gaging stations; stage and contents at 28 lakes and reservoirs; water quality at 27 gaging stations; and data for 48 partial-record stations comprised of 19 flood-hydrograph, 8 low-flow, and 17 crest-stage, and 4 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  5. Water Resources Data - Texas Water Year 2001, Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.

    2002-01-01

    Water-resources data for the 2001 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 83 gaging stations; stage only at 8 gaging stations; stage and contents at 32 lakes and reservoirs; water quality at 27 gaging stations; and data for 46 partial-record stations comprised of 21 flood-hydrograph, 22 low-flow, and 3 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface- water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  6. Water Resources Data - Texas Water Year 2000, Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 84 gaging stations; stage only at 9 gaging stations; stage and contents at 32 lakes and reservoirs; water quality at 25 gaging stations; and data for 43 partial-record stations comprised of 18 flood-hydrograph, 8 low-flow, 14 crest-stage, and 3 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  7. Water Resources Data, Texas Water Year 1998, Volume 2. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas are presented in four volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 2 contains records for water discharge at 74 gaging stations; stage only at 9 gaging stations; stage and contents at 21 lakes and reservoirs; water quality at 32 gaging stations; and data for 73 partial-record stations comprised of 43 flood-hydrograph, 9 low-flow, and 16 crest-stage, and 5 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  8. Water resources data Texas, water year 2004, volume 3. San Jacinto River basin, Brazos River basin, San Bernard River basin, and intervening coastal basins

    Science.gov (United States)

    Long, Susan C. Aragon; Reece, Brian D.; Eames, Deanna R.

    2005-01-01

    Water-resources data for the 2004 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 92 gaging stations; stage only at 6 gaging stations; elevation at 27 lakes and reservoirs; content at 6 lakes and reservoirs; and water quality at 33 gaging stations. Also included are data for 33 partial-record stations comprised of 15 flood-hydrograph, 8 low-flow, and 10 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  9. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  10. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  11. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  12. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  13. Models of Fractal River Basins

    OpenAIRE

    Cieplak, Marek; Giacometti, Achille; Maritan, Amos; Rinaldo, Andrea; Rodriguez-iturbe, Ignacio; Banavar, Jayanth R.

    1998-01-01

    Two distinct models for self-similar and self-affine river basins are numerically investigated. They yield fractal aggregation patterns following non-trivial power laws in experimentally relevant distributions. Previous numerical estimates on the critical exponents, when existing, are confirmed and superseded. A physical motivation for both models in the present framework is also discussed.

  14. The Rhine River Basin

    OpenAIRE

    Uehlinger, Urs F.; Wantzen, Karl M.; Leuven, Rob S.; Arndt, Hartmut

    2009-01-01

    Nine countries are in part or entirely situated within the Rhine catchment, namely Austria, Belgium, France, Germany, Italy (only 51 km²), Liechtenstein, Luxemburg, The Netherlands and Switzerland. With a total length of about 1250 km, a drainage area of 185 260 km² and an average discharge of about 2300 m³/s, the Rhine ranks 9th among Eurasian rivers. The Rhine is the primary artery of one of the most important economic regions of Europe (annual gross domestic product of 1750 billion US$)...

  15. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-10-28

    ...Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau...SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L....

  16. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-10-04

    ...Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau...SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L....

  17. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-04-19

    ...Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau...SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L....

  18. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-14

    ...Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau...SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L....

  19. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-04-22

    ...Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau...SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Public Law...

  20. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Lifeng Li

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  1. Deformed river basins of the Himalaya

    Science.gov (United States)

    Walcott, R.; Sinclair, H.

    2009-04-01

    Identification of the controls on basin morphology in mountain belts is needed to understand how landscapes evolve under changing conditions. Although river basins vary enormously in area, many of their morphological relationships, such as Hack's law, are scale invariant irrespective of mountain type. This suggests that, in most mountain belts, the fundamental process(es) that control basin morphology are also scale invariant and therefore largely insensitive to variations in tectonic activity. However, river basins in the Himalaya are anomalously wide when compared with basins developed on the flanks of other semi-linear ranges. We present a detailed study of Himalayan river basin morphology to determine how the evolution of this orogen may have influenced the shape of these unusual basins. We investigate, in particular, the statistical geometric properties of basins, such as the length, width and area of basins, with respect to the scale and the location of the basin within the mountain belt. Our results show that the anomalously wide basins found over much of the Himalaya have a limited scale range and distribution. These data therefore provide an indication of the significant control that the evolution of this mountain range has had on basin morphology at the local scale. The fact that these catchments have departed from what is perceived as a stable scaling relationship implies that, while their rivers can incise at a rate broadly comparable to the rate of rock uplift, their drainage divides can not migrate fast enough to reconfigure in response to tectonic shortening. As a result, long-term crustal shortening has significantly deformed the river network within the central and western Himalaya.

  2. CONTRIBUTIONS TO MOLDOVA RIVER’S INFERIOR BASIN VEGETATION KNOWLEDGE

    OpenAIRE

    M?RIU?A CONSTANTIN; Chifu, T.

    2004-01-01

    Authors describes in this paper two vegetal associations (mesophyllus grasslands), Festuco rubrae-Agrostetum capillaris Horvati? 1951 and Trisetetum flavescentis R?bel 1911 from the inferior basin of Moldova river.

  3. Water scarcity in the Jordan River basin.

    Science.gov (United States)

    Civic, M A

    1999-03-01

    This article reports the problem on water scarcity in the Jordan River basin. In the Jordan River basin, freshwater scarcity results from multiple factors and most severely affects Israel, Jordan, the West Bank, and the Gaza Strip. One of these multiple factors is the duration of rainfall in the region that only occurs in a small area of highlands in the northwest section. The varying method of water use parallels that of Israel that utilizes an estimated 2000 million cu. m. The national patterns of water usage and politically charged territorial assertions compound the competition over freshwater resources in the region. The combination of political strife, resource overuse, and contaminated sources means that freshwater scarcity in the Jordan River basin will reach a critical level in the near future. History revealed that the misallocation/mismanagement of freshwater from the Jordan River basin was the result of centuries of distinct local cultural and religious practices combined with historical influences. Each state occupying near the river basin form their respective national water development schemes. It was not until the mid-1990s that a shared-use approach was considered. Therefore, the critical nature of water resource, the ever-dwindling supply of freshwater in the Jordan River basin, and the irrevocability of inappropriate policy measures requires unified, definitive, and ecologically sound changes to the existing policies and practices to insure an adequate water supply for all people in the region. PMID:12290383

  4. Monitoring and evaluation of smolt migration in the Columbia Basin, Volume II: Evaluation of the 1996 predictions of the run-timing of wild migrant subyearling chinook in the Snake River Basin using Program RealTime.; TOPICAL

    International Nuclear Information System (INIS)

    This project was initiated in 1991 in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of this project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to aid management in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community

  5. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  6. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljevi? Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - pra?enje uticaja, adaptacija i ublažavanje, podprojekat br. 9: U?estalost buji?nih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  7. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  8. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems. Hot spot assessment included 100 gauge stations in the river basin with discharge measurement by ADCP, turbidity (T) and suspended sediment concentration (SSC), bed load by bed load traps, composition of salt, biochemical oxidation, nitrogen and phosphorous content in water, pH, redox and conductivity values, and also content of heavy metals in water, suspended matter and sediments. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu, and Mo in the Selenga River water which often are higher than MPC for water fishery. Most contrast distribution is characteristic for W and Mo, which is caused by mineral deposits in the Selenga basin. The most severe pollution of aquatic systems in the basin caused by mining activities is characteristic for a small river Modonkul, which flows into Dzhida River (left tributary of Selenga).

  9. Establishing river basin organisations inVietnam: Red River, Dong Nai River and Lower Mekong Delta.

    Science.gov (United States)

    Taylor, P; Wright, G

    2001-01-01

    River basin management is receiving considerable attention at present. Part of the debate, now occurring worldwide, concerns the nature of the organisations that are required to manage river basins successfully, and whether special-purpose river basin organisations (RBOs) are always necessary and in what circumstance they are likely to (i) add to the management of the water resources and (ii) be successful. The development of river basin management requires a number of important elements to be developed to a point where the river basin can be managed successfully. These include the relevant laws, the public and non-government institutions, the technical capabilities of the people, the understanding and motivation of people, and the technical capacity and systems, including information. A river basin organisation (or RBO) is taken to mean a special-purpose organisation charged with some part of the management of the water resources of a particular river basin. Generally speaking, such organisations are responsible for various functions related to the supply, distribution, protection and allocation of water, and their boundaries follow the watershed of the river in question. However, the same functions can be carried out by various organisations, which are not configured on the geographical boundaries of a river basin. This paper outlines recent work on river basin organisation in Vietnam, and makes some comparisons with the situation in Australia. PMID:11419135

  10. Sediment fluxes in transboundary Selenga river basin

    Science.gov (United States)

    Belozerova, Ekaterina

    2013-04-01

    Gathering reliable information on transboundary river systems remains a crucial task for international water management and environmental pollution control. Countries located in the lower parts of the river basins depend on water use and management strategies in adjacent upstream countries. One important issue in this context is sediment transport and associated contaminant fluxes across the state borders. The mass flows of dissolved ions, biogens, heavy metal concentrations, as far as suspended sediment concentration (SSC, mg/l) along upper Selenga river and its tributaries based on the literature review and results of field campaigns 2011-2012 were estimated. Based on the water discharges measurements Q, suspended load WR (t/day) and dissolved loads WL were calculated. In the Selenga basin the minimal WR (1,34-3,74 t/day) were found at small rivers. Maximal sediment loads (WR = 15 000 t/day) were found at the upper Orkhon river during flood event. The downstream point (Mongolia-Russia border) was characterized 2 220 t/day in 2011. Generally the prevalence of the accumulation is found through calculating sediment budget for all rivers (?W = WR (downstream) - WR (upstream) indicated along Tuul-Orkhon river system (right tributary of the Selenga river where Mongolia capital Ulaanbaator, gold mine Zaamar and few other mines). The results provide evidence on a connection between increased heavy metal concentrations in water-sediment systems of transboundary rivers and pollutant source zones at industrial and mining centers, both as in-channel erosion and land use.

  11. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

    1979-09-01

    This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

  12. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  13. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  14. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  15. Controls on River Longitudinal Profiles: Waipaoa River Basin, New Zealand

    Science.gov (United States)

    Livingston, D. M.; Gomez, B.

    2006-12-01

    In a regional sense, rivers adjust their gradient to discharge and the character of the rock or sediment that forms the channel boundary. Accordingly, as J.T. Hack demonstrated, rivers of the same size flowing across similar substrates tend to have similar profiles. The neighboring 222 km2 Mangatu and 239 km2 Upper Waipaoa catchments in the headwaters of the Waipaoa River basin, New Zealand, offer an ideal setting in which to examine the interaction of these and other variables on river longitudinal profiles. These two catchments are not only under laid by similar lithologies, but also have been subjected to a similar climatic regime and have experienced a similar rate of uplift during the past ~15 kyr. There is also little difference in total-relief, drainage density and the frequency distribution of slope angles between the two catchments, or in the median size of sediment present along the main stream channels. Yet, despite these similarities, the longitudinal profiles of the Mangatu and Upper Waipaoa rivers are quite different, and the upper reaches of the main stream in latter catchment are ~100-m lower than adjacent reaches along the neighboring Mangatu River. We attribute the difference in the longitudinal profiles to the way in which discharge increases in a downstream direction along the two rivers. Simply put, in the Mangatu catchment drainage area increases much more slowly with main stream channel length than it does in the Upper Waipaoa catchment. In the absence of obvious differences in the regional environment, the observed difference between the longitudinal profiles of similar sized rivers in neighboring basins serves to emphasize that the distribution of energy in the stream-channel system is dependent on the structure of the drainage network, and that an orderly empirical relationship between drainage basin area and the length of the main stream channel may not always apply.

  16. Altitudinal zonation of runoff in the Rasina River Basin

    Directory of Open Access Journals (Sweden)

    Manojlovi? Predrag

    2013-01-01

    Full Text Available The Rasina River Basin is located on the territory of Central Serbia. The aim of this paper is to determine the amount and spatial distribution of water resources, that is, to establish the participation of altitudinal zones in the formation of the total runoff in the Rasina River Basin area upstream from the "?elije" reservoir. In terms of methodology, determination of water volume is based on four separated petrological-hydrological complexes. Average weighted specific runoff in a given territory is 9 l/s/km2. Metamorphites and magmatites are in the first place per participation in the total water runoff of 42.8 %. The second place belongs to sedimentary rocks that make 39.6 % of the total runoff . Unbound sediments participate in the total runoff value with 10.5 % and limestone with 7.1%. [Projekat Ministarstva nauke Republike Srbije, br. 43007: The Research on Climate Change Influences on Environment: Influence Monitoring, Adaptation and Mitigation

  17. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

  18. Climate change adaptation in European river basins

    OpenAIRE

    Huntjens, P.; Pahl-wostl, C.; Grin, J.

    2010-01-01

    This paper contains an assessment and standardized comparative analysis of the current water management regimes in four case-studies in three European river basins: the Hungarian part of the Upper Tisza, the Ukrainian part of the Upper Tisza (also called Zacarpathian Tisza), Alentejo Region (including the Alqueva Reservoir) in the Lower Guadiana in Portugal, and Rivierenland in the Netherlands. The analysis comprises several regime elements considered to be important in adaptive and integrate...

  19. Caracterización de las superficies agrícolas y sus volúmenes de irrigación en la cuenca del río San Juan, México / Characterization of agricultural areas and irrigation volumes in the San Juan river basin, Mexico

    Scientific Electronic Library Online (English)

    José, Návar; Efraín, Rodríguez Téllez.

    2002-04-01

    Full Text Available El manejo sustentable de los recursos hidrológicos de la cuenca del rio San Juan es prioritario para el desarrollo regional del nordeste de México. En este trabajo se cualificaron las superficies agrícolas con riego y se predijeron los caudales necesarios para irrigar la superficie bajo tres diferen [...] tes escenarios de precipitación, como una forma de inventariar la necesidad de agua por el sector agrícola. La superficie agrícola total ascendió a 172 000 ha los cultivos más comunes fueron el maíz, el sorgo y los cítricos. Los caudales de agua necesarios para irrigar la superficie agrícola se aproximaron a 1 319, 1 688 y 188 mm³ año-1 cuando se presentan precipitaciones con un 50, 20 y 80% de ocurrencia en la cuenca del río San Juan. La agricultura bajo riego contribuye a disminuir el gasto, conllevar una mayor extracción de agua de los ríos para satisfacer los usos consuntivos de los cultivos cuando existen sequías. Se enfatiza la necesidad de implementar prácticas de manejo sustentable de recursos hidrológicos como una alternativa para amortiguar los cambios potenciales en las superficies agrícolas. Abstract in english The sustainable management of hydrological resources in the San Juan river basin is top-priority for the regional development of Northeastern Mexico. This research report quantified irrigated agricultural areas, and water volumes required for irrigation were predicted under three rainfall scenarios, [...] as an approach to build an inventory of water requirements by the farming sector. The total agricultural area amounted 172 999 hectares, the commonest crops being corn, sorghum and citric fruits. Water volumes required for irrigation approximated 1 319, 1 688 and 188 mm3 year-1 under probability of rainfall occurrence scenarios of 50, 20 and 80% the San Juan river basin. Irrigation agriculture contributes to reduce expenses, leads to a higher water extraction from rivers to satisfy farming consumption when drought periods occur. The need to implement sustainable hydrological resource management practices is stressed, as an alternative to ameliorate potential changes in agricultural areas.

  20. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    Science.gov (United States)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested system of observations, will intersect the important landforms, climate zones, ecology, and human activities of the basin. Characterizing how humans and climate impact the sustainability of water resources in the Susquehanna River Basin will require an evolutionary approach, involving coordination of historical information and a phased-design for the new observing system. Detecting change (past and present) requires that the atmosphere, vegetation, geochemistry, and hydrology of the Susquehanna, are all observed coherently from the headwaters to the Chesapeake, from the boundary layer to the water table. The River Basin Adaptive Monitoring and Modeling Plan (RAMP) represents the design strategy to coherently select and assess core monitoring sites as well as new sites targeted for both short-term and long term scientific campaigns. Rich in historical research and infrastructure, SRBHOS will serve as a fundamental resource for the hydrologic science community into the future, while providing a "characteristic" hydrologic node in the national network.

  1. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting (national and international laws and agreements), the institutional setting (the formal networks), information management (the information collection and dissemination system), and financing systems (the public and private sources that cover the water management costs). These elements are usually designed for a specific level and are ideally aligned with the other levels. The presentation will go into detail on connecting the different elements of the water management regime between different levels as well as on the overarching governance issues that play a role and will present opportunities and limitations of the linking options.

  2. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  3. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Science.gov (United States)

    Pophare, Anil M.; Balpande, Umesh S.

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.

  4. Powder River Basin Coal: Powering America

    OpenAIRE

    Considine, Timothy J.

    2013-01-01

    Powder River Basin (PRB) coal in Wyoming and Montana is used to produce 18 percent of the electricity consumed in the United States. Coal production from the PRB more than doubled between 1994 and 2009. PRB coal companies produced greater amounts of coal at declining real prices over much of this period through investment in equipment and production systems that achieved massive economies of scale. The bulk of PRB coal is shipped to the middle part of America from Texas in the south to M...

  5. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    2013-01-01

    Hydrological models are widely used by water managers as a decision support tool for both real-time and long-term applications. Some examples of real-time management issues are the optimal management of reservoir releases, flood forecasting or water allocation in drought conditions. Long term-applications include the impact analysis of planned hydraulic structures or land use changes and the predicted impact of climate change on water availability. One of the obstacles hydrologists face in setting up river basin models is data availability, whether because the datasets needed do not exist or because of political unwillingness to share data which is a common problem in particular in transboundary settings. In this context, remote sensing (RS) datasets provide an appealing alternative to traditional in-situ data and much research effort has gone into the use of these datasets for hydrological applications. Many types of RS are now routinely used to set up and drive river basin models. One of the key hydrological state variables is river discharge. It is typically the output of interest for water allocation applications and is also widely used as a source of calibration data as it presents the integrated response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study, the potential for the use of RA over rivers for hydrological applications in data sparse environments is investigated. The research focused on discharge estimation from RA as well as the use of RA for data assimilation to routing models with the objective of improving river discharge forecasts. In the first paper included in this PhD study, the potential for using altimetry for level and discharge monitoring in the Zambezi River basin was assessed. Altimetric levels were extracted using a detailed river mask at 31 VS located on rivers down to 80 m wide. Root mean square errors relative to in-situ levels were found to be between 0.32 and 0.72 m. Discharge was estimated from the altimetric levels for three different data availability scenarios: availability of an in-situ rating curve at the VS, availability of one pair of simultaneous measurement of cross-section and discharge and availability of historical discharge data. For the few VS where in-situ data was available for comparison, the discharge estimates were found to be within 4.1 to 13.8% of mean annual gauged amplitude. One of the main obstacles to the use of RA in hydrological applications is the low temporal resolution of the data which has been between 10 and 35 days for altimetry missions until now. The location of the VS is also not necessarily the point at which measurements are needed. On the other hand, one of the main strengths of the dataset is its availability in near-real time. These characteristics make radar altimetry ideally suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data in a data assimilation framework. The approach chosen was to simulate reach storages using a simple Muskingum routing scheme driven by the output of a rainfall-runoff model and to carry out state updates using the Extended Kalman Filter. The data assimilation approach developed was applied in two case studies: the Brahmaputra and Zambezi River basins. In the Brahmaputra, data from 6 Envisat VS located along the main reach was assimilated. The assimilation improved model performance with Nash-Sutcliffe model efficiency increasing from 0.78 to 0.84 at the outlet of the basin. In the Zambezi River basin, data from 9 Envisat VS located within 2 distinct watersheds was assimilated. Because of the presence of the large Barotse floodplain in the

  6. COLUMBIA RIVER BASIN CONTAMINANT AQUATIC BIOTA AND SEDIMENT DATA

    Science.gov (United States)

    Numerous studies have been done to determine the levels of chemical contaminants in fish and sediment in the Columbia River Basin. These studies were done because of concern that releases of toxic Chemicals into the Columbia River Basin may be impacting health and the environment...

  7. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and management. In the past, shared and unclear responsibilities, a spatial mismatch between administrative and river basin boundaries, the lack of relevant information, financial resources and implementation capacity resulted in an uncoordinated and partially uncontrolled exploitation of water resources (Livingstone et al. 2009; Horlemann et al. 2012). The recent decision of the Mongolian government to develop river basin management plans and to provide for their implementation through river basin councils and administrations, and the comparatively good data availability resulting from the R&D project, resulted in the decision to jointly develop a science-based river basin management plan for the KRB as a model region for other river basins of the country. References: Hartwig, M.; Theuring, P.; Rode, M. & Borchardt, D. (2012): Suspended sediments in the Kharaa River catchment (Mongolia) and its impact on hyporheic zone functions. Environmental Earth Sciences 65(5):1535-1546. Hofmann, J.; Venohr, M.; Behrendt, H. & Opitz, D. (2010): Integrated Water Resources Management in Central Asia: Nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Science and Technology 62(2):353-363. Horlemann, L. & Dombrowsky, I. (2012): Institutionalising IWRM in developing and transition countries: the case of Mongolia. Environmental Earth Sciences 65(5):1547-1559. Karthe, D.; Borchardt, D. & Hufert, F. (2012a): Implementing IWRM: Experiences from a Central Asian Model Region. In: Pandya, A.B. (Ed.) (2012): India Water Week 2012. Water, Energy and Food Security: Call for Solutions, Part A3, pp. 1-15. Delhi: Ministry of Water Resources, Government of India. Karthe, D.; Sigel, K.; Scharaw, B. et al. (2012b): Towards an integrated concept for monitoring and improvements in water supply, sanitation and hygiene (WASH) in urban Mongolia. Water & Risk 20:1-5. Karthe, D.; Malsy, M.; Kopp, B. & Minderlein, S. (2013): Assessing Water Availibility and its Drivers in the Context of an Integrated Water Resources Man

  8. A Water Resources Planning Tool for the Jordan River Basin

    OpenAIRE

    Christopher Bonzi; Brian Joyce; Holger Hoff; Katja Tielbörger

    2011-01-01

    The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle) Jordan River project—a basin-w...

  9. Long lasting dynamic disequilibrium in river basins

    Science.gov (United States)

    Goren, Liran; Willett, Sean D.; McCoy, Scott W.; Perron, J. Taylor; Chen, Chia-Yu

    2014-05-01

    The river basins of ancient landscapes such as the southeastern United States exhibit disequilibrium in the form of migrating divides and stream capture. This observation is surprising in light of the relatively short theoretical fluvial response time, which is controlled by the celerity of the erosional wave that propagates upstream the fluvial channels. The response time is believed to determine the time required for fluvial landscapes to adjust to tectonic, climatic, and base-level perturbations, and its global estimations range between 0.1 Myr and 10s Myr. To address this discrepancy, we develop a framework for mapping continuous dynamic reorganization of natural river basins, and demonstrate the longevity of disequilibrium along the river basins in the southeastern United States that are reorganizing in response to escarpment retreat and coastal advance. The mapping of disequilibrium is based on a proxy for steady-state elevation, ?, that can be easily calculated from digital elevation models. Disequilibrium is inferred from differences in the value of ? across water divides. These differences indicate that with the present day drainage area distribution and river topology the steady-state channels elevation across the divides differs, and therefore divides are expected to migrate in the direction of the higher ? value. We further use the landscape evolution model DAC to explore the source of the longevity of disequilibrium in fluvial landscapes. DAC solves accurately for the location of water divides, using a combination of an analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC simulations demonstrate topological, geometrical, and topographical adjustments that persist much longer than the theoretical response time, and consequently, extend the time needed to diminish disequilibrium in the landscape and to reach topological and topographical steady-state. This behavior is interpreted as resulting from a positive feedback between divide migration, which causes topological modifications and area change, on the one hand, and channel slope adjustments, which change the erosion rates on opposing sides of water divides and promote their migration, on the other hand. Furthermore, the constantly shifting drainage area and the changing topology of the drainage network are shown to be a possible source for autogenic sediment flux variations.

  10. Use of the RHS method in Golijska Moravica river basin

    Directory of Open Access Journals (Sweden)

    Milanovi? Ana

    2006-01-01

    Full Text Available River Habitat Survey (RHS is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.

  11. Zinc and Its Isotopes in the Loire River Basin, France

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with ?66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays ?66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  12. Uncertainties in river basin data at various support scales ? Example from Odense Pilot River Basin

    OpenAIRE

    Refsgaard, J.C.; Van Der Keur, P.; Nilsson, B; D.-I. Müller-Wohlfeil; Brown, J.

    2006-01-01

    In environmental modelling studies field data usually have a spatial and temporal scale of support that is different from the one at which models operate. This calls for a methodology for rescaling data uncertainty from one support scale to another. In this paper data uncertainty is assessed for various environmental data types collected for monitoring purposes from the Odense river basin in Denmark by use of literature information, expert judgement and simple data analyses. It is demonstrate...

  13. Slope control on the aspect ratio of river basins

    Science.gov (United States)

    Castelltort, S.; Simpson, G.; Darrioulat, A.

    2009-04-01

    River networks and their drainage basins have attracted a large attention due to their remarkable statistical properties (1-5). For example, although fluvial networks patterns seem to be influenced by diverse geological and climatic processes, the river basins that enclose them appear to mirror each other faithfully. Basin area A and length L of rivers from around the world consistently scale following L=cAexp(h) (2) with h often close to 0.5 (and c a constant) suggesting that river basins are self-similar (1, 6). Likewise, the main river basins that drain linear mountain ranges consistently manifest similar length-width aspect ratios between 1 and 5 (7). These observations question how the interplay between climate and tectonics is reflected in landscapes, and they highlight the challenge of inverting modern landscape records to reveal previous climates and tectonics. The invariance of river basins aspect-ratio is puzzling when compared against observations at smaller spatial scales (networks is influenced by surface slope (8-11). Steep surfaces develop narrow elongate basins with near-parallel rills, whereas flatter surfaces produce wider basins. Initial surface geometry is also important in setting rivers paths and certain landscape properties such as the slope-area relationship (12). Here we thus investigate the form of river basins developed on surfaces longer than 10 kilometres showing limited dissection such that the initial surface slopes can be measured. We find that, as for small scale basins, the form of large scale river basins is controlled by surface slope, with steep slopes developing narrower basins. This observation is interpreted to originate from the nature of water flow over rough surfaces, with steeper slopes causing less flow convergence and longer-narrower basins. We derive an empirical relationship that can be used to infer the slope of a surface on which a river basin acquired its geometry based solely on a measure of its basin form. This relation provides a unique means of inferring the relative chronology of river basin development with respect to surface tilting and therefore provides a direct link between river basin morphology and tectonics. Instead of viewing river basins as largely invariant, this work highlights the differences between basins that bear important information about tectonics and climate. 1.P. S. Dodds, D. H. Rothman, Ann. Rev. Earth Planet. Sci. 28, 571 (2000). 2.J. T. Hack, US Geol. Surv. Prof. Pap. 294-B, (1957). 3.R. E. Horton, Geol. Soc. Am. Bull. 56, 275 (1945). 4.J. W. Kirchner, Geology 21, 591 (1993). 5.I. Rodriguez-Iturbe, A. Rinaldo, Fractal river basins: chance and self-organization. (1997). 6.D. R. Montgomery, W. E. Dietrich, Science 255, 826 (1992). 7.N. Hovius, Basin Res. 8, 29 (1996). 8.R. S. Parker, Hydrology Papers, Colorado State University 90, 58 (1977). 9.J. D. Pelletier, Geomorphology 53, 183 (2003). 10.Schumm, The Fluvial System. (John Wiley & Sons, New York, 1977), pp. 338. 11.G. D. H. Simpson, F. Schlunegger, J. Geophys. Res 108, 2300 (2003). 12.N. Schorghofer, D. H. Rothman, Geophys. Res. Lett. 29, 1633 (2002).

  14. Seismicity in the Triassic Deep River Basin, North Carolina

    Science.gov (United States)

    Portner, D. E.; Wagner, L. S.; Fouch, M. J.; James, D. E.; Roman, D. C.; Golden, S.

    2013-12-01

    The Deep River Basin in central North Carolina is one of a series of Triassic rift basins along the east coast called the Newark Supergroup. Although the east coast lies on a passive plate margin, there is recorded seismicity within all of the coastal states, much of which is attributed to boundary faults of the Newark Supergroup basins. However, this seismicity is conspicuously absent around the Deep River Basin and most of North Carolina east of the Appalachian Mountains. In March 2012 we installed a 12 station broadband seismic network surrounding the Sanford Sub-Basin of the Deep River Basin to measure unrecorded seismicity. Through fifteen months of data collection, we have confidently detected and located more than 160 low magnitude seismic events within the array. However, the event locations cluster in four locations - three of which are near local rock quarries and one is near an unidentified anthropic feature. Further, these events consistently occur between the hours of 9am and 6pm local time, Monday through Friday indicating that they are anthropogenic. The Deep River Basin is one of the most likely places east of the Appalachian Mountains in North Carolina to be seismically active, yet we have measured no natural seismicity. Using receiver functions and known origins of the local seismic events we will be examining the crustal structure beneath the Deep River Basin to explain the conspicuous lack of local seismic activity.

  15. LANDSCAPE ECOLOGY ASSESSMENT OF THE TENSAS RIVER BASIN, MISSISSIPPI RIVER DELTA REGION, AND GULF OF MEXICO

    Science.gov (United States)

    A group of landscape ecological indicators were applied to biophysical data masked to the Tensas River Basin. The indicators were use to identify and prioritize sources of nutrients in a Mississippi River System sub-basin. Remotely sensed data were used for change detection a...

  16. Incorporating safety into surface haulage in the Powder River basin

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, W.; Jennings, C.

    1996-12-31

    The Powder River Basin (PRB) coal deposit extends from southeast Montana to northeast Wyoming. This paper describes a number of haulage practices and tools in use at several mines of the southern PRB and the way in which safety has been designed into and implemented for surface haulage of coal and overburden. Experiences described herein focus on the northeastern corner of Wyoming. All the mines in this area rely on safe and efficient movement of enormous volumes of material, and the results achieved in safety underscore the planning and attention to detail present in the PRB. There are currently 12 large surface mines (those greater than 10.0MM tons/year) operating in this area. In 1995, these mines produced over 230.0MM tons of coal.

  17. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiqui River Basin, Costa Rica

    Science.gov (United States)

    Anderson, Elizabeth P.; Pringle, C.M.; Freeman, Mary C.

    2008-01-01

    1. Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiqui River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiqui River Basin. 3. Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiqui River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9km) and Lower Montane Rain Forest (168.2km). 4. Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiqui River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  18. [Upper Steele Bayou Projects : Yazoo River Basin, Mississippi

    US Fish and Wildlife Service, Department of the Interior — This is a collection of documents related to four projects which were proposed by the U.S. Army, Corps of Engineers in the Yazoo River Basin. This is a collection...

  19. Water resource management model for a river basin

    OpenAIRE

    Jelisejeviene?, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  20. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  1. An ecosystem services approach in the Tisza river basin

    OpenAIRE

    Minca, E.L.; Petz, K.; Werners, S.E.

    2008-01-01

    The Tisza River Basin in Hungary and Romania is increasingly impacted by floods and droughts. Ecosystems have the capacity to mitigate the effect of these weather extremes. The provision of ecosystem services – the benefits people obtain from ecosystems – is strongly affected by the way in which ecosystems are managed. This research assesses the influence of land and water management and weather extremes on ecosystems services as well as their importance in the Tisza River Basin. It is co...

  2. Knowledge-based approaches for river basin management

    OpenAIRE

    Mikulecky?, P.; Ols?evic?ova?, K.; Ponce, D.

    2007-01-01

    Rare attempts to use knowledge technologies and other relevant approaches are found in the river basin management. Some applications of expert systems as well as utilization of soft computing techniques (as neural networks or genetic algorithms) are known in an experimental level. Knowledge management approaches still have not been used at all. In this paper we discuss knowledge-based approaches in the river basin management as a difficult yet important direction which could be proven to be h...

  3. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    Science.gov (United States)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a lead for the qualitative approximation of the amount of bed load transported along the river reach and thus hydropower project sites.

  4. Runoff generation dynamics within a humid river basin

    OpenAIRE

    Manfreda, S.

    2008-01-01

    The present paper introduces an analytical approach for the description of the soil water balance and runoff production within a schematic river basin. The model is based on a stochastic differential equation where the rainfall is interpreted as an additive noise in the soil water balance and is assumed uniform over the basin, the basin heterogeneity is characterized by a parabolic distribution of the soil water storage capacity and the runoff production occurs for saturation excess. The mode...

  5. Drops to the Ocean: A GIS Study of River Basins

    Science.gov (United States)

    Amy R. Taylor

    2009-04-01

    Water is a critical element of life. It plays a crucial role at many scales from singles cells to huge river systems. In this investigation, students explore local, regional, and global river basins using GIS as a tool. The study begins with an examinatio

  6. Development of a Systemwide Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, Volume 1, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.

    1994-06-01

    Results of the second year are reported of a basinwide program to harvest northern squawfish in an effort to reduce mortality due to squawfish predation on juvenile salmonids during their migration from natal streams to the ocean. Six papers are included in this report. They are entitled: feasibility investigation of a commercial longline fishery for northern squawfish in the Columbia River downstream from Bonneville dam; evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers; controlled angling for northern squawfish at selected dams on the Columbia and Snake Rivers in 1992; evaluation of harvest technology for squawfish control in Columbia River reservoirs; effectiveness of predator-removal for protecting juvenile fall chinook salmon released from Bonneville Hatchery; and Northern squawfish sport-reward payments.

  7. Vitrinite Reflectance Data for the Wind River Basin, Central Wyoming

    Science.gov (United States)

    Finn, Thomas M.; Roberts, Laura N.R.; Pawlewicz, Mark J.

    2006-01-01

    Introduction: The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 mi2 in central Wyoming. The basin boundaries are defined by fault-bounded Laramide uplifts that surround it, including the Owl Creek and Bighorn Mountains to the north, Wind River Range to the west, Granite Mountains to the south, and Casper Arch to the east. The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey assessment of undiscovered oil and gas resources of the Wind River Basin. One hundred and nineteen samples were collected from Jurassic through Tertiary rocks, mostly coal-bearing strata, in an effort to better understand and characterize the thermal maturation and burial history of potential source rocks.

  8. Fish, Barra Bonita River, upper Paraná River basin, state of Paraná, Brazil.

    Directory of Open Access Journals (Sweden)

    Bifi, A. G.

    2008-01-01

    Full Text Available The Barra Bonita River is an affluent of the left margin of the Ivaí River, upper Paraná River basin. Fishsamples were conduced in November 2006 (spring and in February 2007 (summer, in three sampling stations alongthe Barra Bonita River, using gill nets, casting nets, and sieves. Thirty one fish species were collected, which belong tofive orders, 14 families, and 25 genera. Among them, five are probably new to science.

  9. Implication of drainage basin parameters of a tropical river basin of South India

    Science.gov (United States)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2014-07-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  10. Assessment of Anthropogenic Impacts in La Plata River Basin

    Science.gov (United States)

    Garcia, N. O.; Venencio, M.

    2006-12-01

    An assessment of the variability of the streamflows in La Plata Basin (LPB), particularly in its major tributaries Paraná and Uruguay, is presented in this work. The La Plata Basin, the fifth largest basin in the world and second only to the Amazon in South America, is 3.6 million km2 and covers portions of 5 countries: Argentina, Brazil, Bolivia, Paraguay, and Uruguay. Sub-basins include the Bermejo, Paraná, Paraguay, Pilcomayo, and Uruguay. Major rivers of the basin are the Paraguay, the Uruguay and the Paraná. Streamflows in the LPB have been above normal in the last decades, e.g. the mean flow in the Paraná river during the 1971-1994 period was 34% higher than the mean flow during the 1931-1970 period. A similar analysis carried out on the precipitation records for the La Plata basin showed only a 14% increase during the same periods for the Upper Paraná basin and a 20% increase for the Uruguay basin. In this paper it is postulated that the increase in the streamflows, not explained by precipitation increases, is due to the changes in cultivation patterns in the upper basins of the Paraná and Uruguay. Particularly, the substitution of coffee plantations for annual crops, mainly soybeans, has produced a change in the infiltration patterns that influenced the discharges.

  11. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    Science.gov (United States)

    Bauer-Gottwein, P.; Jensen, I. H.; Guzinski, R.; Bredtoft, G. K. T.; Hansen, S.; Michailovsky, C. I.

    2015-03-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to develop open-source software tools to support hydrologic forecasting and integrated water resources management in Africa. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0-7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators and the performance is compared to persistence and climatology benchmarks. The forecasting system delivers useful forecasts for the Kavango River, which are reliable and sharp. Results indicate that the value of the forecasts is greatest for intermediate lead times between 4 and 7 days.

  12. Powder River Basin Coal: Powering America

    Directory of Open Access Journals (Sweden)

    Timothy J. Considine

    2013-12-01

    Full Text Available Powder River Basin (PRB coal in Wyoming and Montana is used to produce 18 percent of the electricity consumed in the United States. Coal production from the PRB more than doubled between 1994 and 2009. PRB coal companies produced greater amounts of coal at declining real prices over much of this period through investment in equipment and production systems that achieved massive economies of scale. The bulk of PRB coal is shipped to the middle part of America from Texas in the south to Michigan in the north and New York in the east. States that consume significant amounts of PRB coal have electricity rates well below the national average. The largest industrial users of electricity are in these regions. Replacing PRB coal would require almost 5.5 trillion cubic feet of natural gas per year, representing a 26 percent increase in demand. Such an increase in gas consumption would increase prices for natural gas by roughly 76 percent. In such a world, U.S. energy users would pay $107 billion more each year for electricity and natural gas. Hence, by using PRB coal, the U.S. economy avoids $107 billion per year in higher energy costs. Estimates reported in the literature indicate that the gross environmental damages from PRB coal production are $27 billion. Hence, the net social benefits of PRB coal are $80 billion per year. Given the large size and low cost of these reserves, PRB coal will likely supply societal energy needs well into the future as long as the public and their elected officials are willing to accept the environmental impacts in return for the substantial economic benefits from using PRB coal.

  13. Digital Earth system based river basin data integration

    Science.gov (United States)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  14. SUGGESTIONS ON RURAL DEVELOPMENT FOR TUZLA RIVER BASIN (NW TURKEY

    Directory of Open Access Journals (Sweden)

    Vedat ÇALI?KAN

    2012-12-01

    Full Text Available Rural development consists of a wide variety of new activities such as organic farming and livestock, region-specific products, nature conservation and landscape management, rural tourism, and the development of short supply changes. This research aimed to use a SWOT analysis to identify strategies for rural development in the Tuzla River Basin.The Tuzla River Basin is located on the southern side of the Marmara Region and extends in northeast-southwest direction from the Aegean Sea to the western slope of Mt. Ida. This basin is divided into three sections, namely upper, middle and lower sections along the Tuzla River Basin. Some nine villages which represented three basins were selected from 35 villages using the methods of stratified sampling for this study. Some 200 surveys were performed in regard to the household number of each village and at 95% confidence level. According to the survey results, the investigated relation between the form of rural economic activity and the rural development characteristics was determined. SWOT and QSPM analysis techniques were used to explain poor conditions and future possibilities of rural development in the basin. In the rural areas of the basin, the form of agriculture, low-income animal husbandry carried out under natural & traditional conditions, emigration and traditional lifestyle are the causes of obstacles to rural development.

  15. Scenarios of changes of selected components of hydrosphere and biosphere in catchment basin of Hron River and Vah River as consequence of climatic change

    International Nuclear Information System (INIS)

    This text-book consist of the following parts: (1) Hydrologic and climatic relationship of catchment basins; (2) Space interpretation of outputs of climatic scenarios in catchment basins of Hron River and Vah River by geostatistical methods; (3) Teleconnection of annual overflows with SO, NAO, AO and QBO phenomenons; (4) Snow; (5) Mathematical model for modelling of influence of climatic changes on runoff processes; (6) Multi-linear model of transformation of runoff in river-basins; (7) Influence of climatic change on capacity utilization of reserve volume of water reservoir Orava River; (8) Quality of surface waters; (9) Influence of climatic changes on biological factors and soil hydrology; (10) Proposal of framing adaptation arrangements.

  16. 75 FR 11554 - Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of Charter Renewal

    Science.gov (United States)

    2010-03-11

    ...the structure and implementation of the Yakima River Basin Water Conservation Program. In consultation with the State, the Yakama Nation, Yakima River basin irrigators, and other interested and related parties, six members are appointed to serve on...

  17. Transboundary water issues: The Ganga-Brahmaputra-Meghna River Basin

    International Nuclear Information System (INIS)

    Sharing of water of transboundary rivers among riparian nations has become a cause of major concern in different parts of the globe for quite sometime. The issue in the recent decades has been transformed into a source of international tensions and disputes resulting in strained relationships between riparian nations. Conflicts over sharing of water of the international rivers, like the Tigris, Euphrates and Jordan in the Middle East, the Nile in Northern Africa, the Mekong in South-East Asia, the Ganga-Brahmaputra-Meghna in the Indian subcontinent are widely known. The present paper discusses the water sharing -issue in the Ganga- Brahmaputra-Meghna basin located in the Indian sub continent covering five sovereign countries (namely India, Nepal, China, Bhutan and Bangladesh). Rapidly growing population, expanding agricultural and industrial activities besides the impacts of climate change have resulted in stressed condition in the arena of fresh water availability in the basin. Again occurrence of arsenic in sub-surface water in the lower reaches of the basin in India and Bangladesh has also added a new dimension to the problem. All the rivers of the GBM system exhibit wide variations between peak and lean flows as major part of the basin belongs to the monsoon region, where 80%-90 % of annual rainfall is concentrated in 4-5 months of South -West monsoon in the subcontinent. Over and above, the rivers in GBM system carry huge loads of sediments along with the floodwa loads of sediments along with the floodwater and receive huge quantum of different kinds of wastes contaminating the water of the rivers. Again high rate of sedimentation of the major rivers and their tributaries have been affecting not only the carrying capacity of the rivers but also drastically reduced their retention capacity. Almost every year during monsoon about 27% and nearly 60% of the GBM basin lying in India and Bangladesh respectively experience flood. The year round navigation in many rivers has also been affected. All these have serious impacts on the economy of this geo politically sensitive region. It was found that the total water resource of the GBM river system would be unable to meet the prevailing water requirements of the basin, not to speak of the rise in demand of water in the future. It was established that the judicious water demand management and effective control of the over-use, misuse and abuse of water in the respective river basins in each country should get preference over competition for access to additional supply of water to meet the requirements and also adoption of technology which helps that goal to achieve should be made.(Author)

  18. Sustainable development indicators: Case study for South Morava river basin

    Directory of Open Access Journals (Sweden)

    Veljkovi? Nebojša D.

    2013-01-01

    Full Text Available The subject of research is elaboration and evaluation of indicators of sustainable development in the field of river basin management. Aggregate indicator entitled Ecoregion Sustainable Development Index is identified by calculation of average value by the procedure of leveling of proportion changes of three key indicators (demographic emission index, water quality index, industrial production index. Developed aggregate indicator of sustainable development is calculated and analyzed for South Morava river basin in Serbia, for the period from 1980 to 2010. The beneficiaries of these indicators are the experts from the field of environmental protection and water management who should use it for elaboration of reports directed towards the creators of economic development policy and river basin management planning. Elaborated according to the given methodology, the indicator Ecoregion Sustainable Development Index is available for the decision makers on the national level, internationally comparative and it provides the conditions for further elaboration and application.

  19. Backwater effects in the Amazon River basin of Brazil

    Science.gov (United States)

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  20. The estimation of areal rainfall quantiles in Han River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Duk [Korea Infrastructure Safety and Technology Cooperation, Anyang(Korea); Kho, Youn-Woo; Heo, Jun-Haeng [Yonsei University, Seoul(Korea)

    2000-08-31

    It is very important to establish sufficiently long and reliable annual maximum rainfall data in estimating areal rainfall quantiles of Han River Basin. The data from 9 gauging stations measured by Korea Meteorological Administration may meet such a requirement, however the number of these data sets is too small to estimate overall areal rainfall quantiles in large basin such as Han River Basin. In order to solve such a problem, the space correlations of many sites' data measured by Korea Ministry of Construction and Transportation and Korea Water Resources Corporation (the number of sites is 59) were used for modification of rainfall measure density. And areal rainfall quantiles according to each sub-basin were estimated based on regression analysis. (author). 12 refs., 5 tabs., 4 figs.

  1. The Geography of Conflict in International River Basins

    Science.gov (United States)

    Beck, L.; Siegfried, T. U.

    2010-12-01

    In most transboundary surface water sharing problems, allocation outcomes are not primarily determined by economic considerations but by the distribution of political and bargaining power. For this reason, we present a hydro--political model to formalize the notion that upstream countries are using water to gain more power whereas downstream countries use power to gain more water. The model incorporates hydrological, political and economic asymmetries between basin stakeholders. We show that equilibrium outcomes are biased towards the more powerful riparian coalition and that absolute upstream or downstream basin dominance emerge as limiting case of the general model. In contrast to obvious situations with a dominating riparian country as for the case of the Nile or Euphrates/Tigris rivers, the model is illustrated in an ambiguous hydro--political environment with a case study on the Zambezi River Basin. The model quantifies negative basin welfare outcomes in function of particular upstream/downstream configurations.

  2. Constructal view of scaling laws of river basins

    Science.gov (United States)

    Reis, A. Heitor

    2006-08-01

    River basins are examples of naturally organized flow architectures whose scaling properties have been noticed long ago. Based on data of geometric characteristics, Horton [Horton, R.E., 1932. Drainage basin characteristics. EOS Trans. AGU 13, 350-361.], Hack [Hack, J.T., 1957. Studies of longitudinal profiles in Virginia and Maryland. USGS Professional Papers 294-B, Washington DC, pp. 46-97.], and Melton [Melton, M.A, 1958. Correlation structure of morphometric properties of drainage systems and their controlling agents. J. of Geology 66, 35-56.] proposed scaling laws that are considered to describe rather accurately the actual river basins. What we show here is that these scaling laws can be anticipated based on Constructal Theory, which views the pathways by which drainage networks develop in a basin not as the result of chance but as flow architectures that originate naturally as the result of minimization of the overall resistance to flow (Constructal Law).

  3. Uncertainties in river basin data at various support scales – Example from Odense Pilot River Basin

    Directory of Open Access Journals (Sweden)

    J. C. Refsgaard

    2006-08-01

    Full Text Available In environmental modelling studies field data usually have a spatial and temporal scale of support that is different from the one at which models operate. This calls for a methodology for rescaling data uncertainty from one support scale to another. In this paper data uncertainty is assessed for various environmental data types collected for monitoring purposes from the Odense river basin in Denmark by use of literature information, expert judgement and simple data analyses. It is demonstrated how such methodologies can be applied to data that vary in space or time such as precipitation, climate variables, discharge, surface water quality, soil parameters, groundwater abstraction, heads and groundwater quality variables. Data uncertainty is categorised and assessed in terms of probability density functions and temporal or spatial autocorrelation functions. The autocorrelation length scales are crucial when support scale is changing and it is demonstrated how the assumption used when estimating the autocorrelation parameters may limit the applicability of these autocorrelation functions.

  4. Uncertainties in river basin data at various support scales - Example from Odense Pilot River Basin

    Science.gov (United States)

    Refsgaard, J. C.; van der Keur, P.; Nilsson, B.; Müller-Wohlfeil, D.-I.; Brown, J.

    2006-08-01

    In environmental modelling studies field data usually have a spatial and temporal scale of support that is different from the one at which models operate. This calls for a methodology for rescaling data uncertainty from one support scale to another. In this paper data uncertainty is assessed for various environmental data types collected for monitoring purposes from the Odense river basin in Denmark by use of literature information, expert judgement and simple data analyses. It is demonstrated how such methodologies can be applied to data that vary in space or time such as precipitation, climate variables, discharge, surface water quality, soil parameters, groundwater abstraction, heads and groundwater quality variables. Data uncertainty is categorised and assessed in terms of probability density functions and temporal or spatial autocorrelation functions. The autocorrelation length scales are crucial when support scale is changing and it is demonstrated how the assumption used when estimating the autocorrelation parameters may limit the applicability of these autocorrelation functions.

  5. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  6. Wetland river flow interaction in a sedimentary formation of the white Volta basin, Ghana

    Science.gov (United States)

    Nyarko, B. K.; Diekkruger, B.; Van De Giesen, N.; Barry, B.

    2011-12-01

    Groundwater resources in the floodplain wetlands of the White Volta River basin of Ghana is a major source of water for irrigation activities of communities living around and baseflow to sustain the flow of the river. Hydrology of the floodplain wetlands in the basin are complex, characterized by temporally variable storage volumes with erratic contribution to streamflow. For the continual usage of groundwater resources in the floodplains there is a need to study the form of interaction between the main river and floodplain wetlands. The study, adopted the PM-WIN (MODFLOW) model for simulating the interaction between the wetland and stream. Additionally, the lower boundary discharge output from the HYDRUS-1D model is the estimated recharge. This input quantifies the temporal and spatial variations in sub-surfaces discharges in the floodplain wetland. The simulation of the sub-surface hydraulic head of the wetland indicates a systematic variation relative to the White Volta River response to changes in the rainfall pattern. The interaction conditions vary from season to season with March, April, and May showing the least leakage (estimated values of 0.03mm/day, 0.06mm/day, and 0.15 mm/day, respectively) from the river into the floodplain wetland. Notably, the interaction between the wetland and the river as simulated is bidirectional. With most of the flow coming out from the river into the floodplain wetland, this condition persists in the months of August and September.

  7. Optimal water allocation in the Mekong river basin

    OpenAIRE

    Ringler, Claudia

    2001-01-01

    The Mekong River is the dominant geo-hydrological structure in mainland Southeast Asia, originating in China and flowing through or bordering Myanmar, Laos, Thailand, Cambodia, and Vietnam. Whereas water resources in the wet season are more than adequate to fulfill basin needs, there are regional water shortages during the dry season, when only 1-2% of the annual flow reaches the Delta. Recent rapid agricultural and economic development in the basin has led to increasing competition among the...

  8. An environmental streamflow assessment for the Santiam River basin, Oregon

    Science.gov (United States)

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual framework for assessing possible geomorphic and ecological changes in response to river-flow modifications. Suggestions for future biomonitoring and investigations are also provided. This study was one in a series of similar tributary streamflow and geomorphic studies conducted for the Willamette Sustainable Rivers Project. The Sustainable Rivers Project is a national effort by the USACE and The Nature Conservancy to develop environmental flow requirements in regulated river systems.

  9. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  10. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  11. River monitoring from satellite radar altimetry in the Zambezi River Basin

    OpenAIRE

    Michailovsky, C. I.; Mcennis, S.; Berry, P. A. M.; Smith, R.; Bauer-gottwein, P.

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the...

  12. Palaeoclimatological perspective on river basin hydrometeorology: case of the Mekong Basin

    Directory of Open Access Journals (Sweden)

    T. A. Räsänen

    2013-05-01

    Full Text Available Globally, there have been many extreme weather events in recent decades. A challenge has been to determine whether these extreme weather events have increased in number and intensity compared to the past. This challenge is made more difficult due to the lack of long-term instrumental data, particularly in terms of river discharge, in many regions including Southeast Asia. Thus our main aim in this paper is to develop a river basin scale approach for assessing interannual hydrometeorological and discharge variability on long, palaeological, time scales. For the development of the basin-wide approach, we used the Mekong River basin as a case study area, although the approach is also intended to be applicable to other basins. Firstly, we derived a basin-wide Palmer Drought Severity Index (PDSI from the Monsoon Asia Drought Atlas (MADA. Secondly, we compared the basin-wide PDSI with measured discharge to validate our approach. Thirdly, we used basin-wide PDSI to analyse the hydrometeorology and discharge of the case study area over the study period of 1300–2005. For the discharge-MADA comparison and hydrometeorological analyses, we used methods such as linear correlations, smoothing, moving window variances, Levene type tests for variances, and wavelet analyses. We found that the developed basin-wide approach based on MADA can be used for assessing long-term average conditions and interannual variability for river basin hydrometeorology and discharge. It provides a tool for studying interannual discharge variability on a palaeological time scale, and therefore the approach contributes to a better understanding of discharge variability during the most recent decades. Our case study revealed that the Mekong has experienced exceptional levels of interannual variability during the post-1950 period, which could not be observed in any other part of the study period. The increased variability was found to be at least partly associated with increased El Niño Southern Oscillation (ENSO activity.

  13. COLUMBIA BASIN SALMON POPULATIONS AND RIVER ENVIRONMENT DATA

    Science.gov (United States)

    Data Access in Real Time (DART) provides an interactive data resource designed for research and management purposes relating to the Columbia Basin salmon populations and river environment. Currently, daily data plus historic information dating back to 1962 is accessible online. D...

  14. Biomorphological structure of the flora of Vychegda River water basin

    OpenAIRE

    Boris Yu. Teteryuk

    2013-01-01

    The annotated list and biomorphological analysis of water flora from the basin of Vychegda River are represented. Flora of water bodies is mostly represented by perennial herbaceous plants which have high expansion potential. A lot of species from these flora belong to the special biomorphological group of polycarpous long-lived plants.

  15. RUNOFF POTENTIAL OF MURE? RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mure? River Upper Basin Tributaries. The upper basin of the Mure? River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  16. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  17. Understanding Socio-Hydrology System in the Kissimmee River Basin

    Science.gov (United States)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards wetland restoration has more weight than the rural population's towards flood protection.

  18. Evaluation of remote sensing and automatic data techniques for characterization of wetlands. [Atchafalaya River Basin, Louisiana

    Science.gov (United States)

    Cartmill, R. H.

    1974-01-01

    This investigation has been conducted in the Atchafalaya River Basin of South Central Louisiana. This is a humid area of heavily forested swamps with a large volume of flow mostly from a diversion of the lower Mississippi River. Techniques to obtain enlarged imagery from computer compatible tapes of ERTS data without photographic enlargement is explained and illustrated. Techniques of extraction of environmental information from single bands and multiband pattern recognition procedures are explained and evaluated. A comparison of pattern recognition classifications of the Atchafalaya Basin by aircraft multispectral scanner and ERTS MSS data is made. Data for this comparison were gathered within three weeks of each other in the winter of 1973. Scorecards of the accuracy of the classifications are presented. Recommendations are made concerning the utilization of each sensor platform to perform specific tasks of wetlands characterization.

  19. Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins.

    Science.gov (United States)

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-09-01

    To meet good chemical and ecological status, Member States are required to monitor priority substances and chemicals identified as substances of concern at European Union and local/river-basin/national level, respectively, in surface water bodies, and to report exceedances of the environmental quality standards (EQSs). Therefore, standards have to be set at national level for river basin specific pollutants. Pesticides used in dominant crops of several agricultural areas within the catchment of Mediterranean river basins ('Mondego', 'Sado' and 'Tejo', Portugal) were selected for monitoring, in addition to the pesticides included in priority lists defined in Europe. From the 29 pesticides and metabolites selected for the study, 20 were detected in surface waters of the river basins, seven of which were priority substances: alachlor, atrazine, chlorfenvinphos, chlorpyrifos, endosulfan, simazine and terbutryn, all of which exceeded their respective EQS values. QSs for other specific pollutants were calculated using different extrapolation techniques (i.e. deterministic or probabilistic) largely based on the method described in view of the Water Framework Directive. Non-acceptable aquatic risks were revealed for molinate, oxadiazon, pendimethalin, propanil, terbuthylazine, and the metabolite desethylatrazine. Implications of these findings for the classification of the ecological status of surface water bodies in Portugal and at the European level are discussed. PMID:26002046

  20. Information technology and decision support tools for stakeholder-driven river basin salinity management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  1. Is fish passage technology saving fish resources in the lower La Plata River basin?

    OpenAIRE

    Norberto Oscar Oldani; Claudio Rafael Mariano Baigún; John Michael Nestler; Richard Andrew Goodwin

    2007-01-01

    Over 450 dams have been constructed in the upper Paraná River basin in Brazil during the past 40 years. River regulation by these dams is considered a primary factor in the reduction of fish diversity and depletion of migratory species. In contrast to the upper Paraná Basin, only two large dams (both with upstream fish passage) have been constructed in the lower La Plata River basin. Fishery managers in the lower basin are concerned that existing and planned dams will further deplete popula...

  2. Hydrochemistry of the Densu River Basin of Ghana

    International Nuclear Information System (INIS)

    Planned hydrochemical assessment of groundwater quality have been carried out to understand the sources of dissolved ions in the aquifers supporting groundwater systems in the Densu River basin. The basin is underlain mainly by the proterozoic basin type granitoids with associated gnesis, with dominant mineral such as plagioclase feldspars. The groundwater is Ca-HCO3 and Na-HCO3 facies, due to weathering and ion-exchange of minerals underlying the aquifers. The enrichment of the cation and anions are Na>Ca>Mg>K and HCO3>Cl>SO4>NO3 respectively. Some of the elevated values of both cations and anions may be due to seawater intrusions, ion-exchange, oxidation and anthropogenic activities. Based on these studies, proper management would be recommended to address groundwater quality in the basin. (au)

  3. Modelling chloride-discharge relationships in Krishna river basin.

    Science.gov (United States)

    Sekhar, M C; Indira, Ch

    2003-01-01

    Chloride discharge relationships at several monitoring stations on the River Krishna in South India are investigated, both qualitatively and quantitatively, to identify probable source contributions. The chloride behaviour along the waterway is studied in detail to assess the source contributions at various monitoring stations falling within the study area. Seasonal variations in the intensity of rainfall cause wide variations in the quality of the River Krishna. As there is strong seasonal dependence between the flow in the river and chlorides, seasonal models are developed for prediction of concentrations and loads. Linear regression analysis is carried out to determine the model parameters. The predicted concentrations and loads are in agreement with the observed values within the uncertainty of data. As the area is characterized by distinct dry and wet seasons (based on rainfall distribution over the year), mass balances are used to differentiate between point and non-point source contributions to the river. In large river basins, monitoring all individual sources is difficult and/or impossible and expensive; hence the presented approach based on receiving water quality and flow serves as an alternative for modeling chlorides in the river basin. Results of the study can be used to emphasise water pollution control strategies. PMID:14653634

  4. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the

  5. Demarcation of Groundwater Prospective Zones in Humid Tropical River Basin: A Geospatial Approach

    OpenAIRE

    Girish Gopinath; Sreela Reghu; Reji Srinivas; Rajesh Regunath; Kurian Sajan

    2013-01-01

    roundwater, being a vital resource, needs to be developed with proper understanding about its occurrence in time and space. Unscientific sand mining is a dominant environmental issue in this humid tropical river basin namely Bharathapuzha river basin geographically on central part of Kerala state, southwest part of India. The sandy layers along the river course declines its water holding capacity due to indiscriminate sand mining throughout the river basin. For a sustainable development of wa...

  6. LBA-ECO LC-02 Tributary Coordinates, Acre River, Tri-national River Basin: 2003-2004

    National Aeronautics and Space Administration — ABSTRACT: This data set provides coordinates for points at the mouth of tributaries of the Acre River in the Tri-national River Basin in South America. Three Global...

  7. Heavy metal distribution in the Godavari River basin

    Science.gov (United States)

    Biksham, G.; Subramanian, V.; Ramanathan, A. L.; van Grieken, R.

    1991-03-01

    Suspended and bed sediments collected from the entire region of the Godavari River basin were analyzed for Fe, Mn, Cr, Cu, Ni, and Zn. There are pronounced temporal and spatial variations in the heavy metal distributions. The concentrations of heavy metals in the suspended sediments are significantly higher than the bed sediments. Throughout the basin heavy metals are enriched in the finer fractions (river sediments. Heavy-metal concentration in the two shallow cores collected shows, to some extent, the influence of urbanization. When compared to the other tropical Indian rivers such as the Krishna, the Godavari appears to be a significant contributor of heavy metals to the Bay of Bengal. Considering the enormous sediment load of the Godavari River—170 million tons/yr, the heavy metal fluxes to the Bay of Bengal is very significant. Except for the Pranhita, other tributaries of the Godavari do not contribute significant loads of heavy metals. All the metals show high correlation among themselves and the correlation is more pronounced in suspended sediments than in the bed sediments. The heavy-metal distribution, fractionation, and its relationship with total suspended sediments and depth in various parts of the basin are discussed in detail.

  8. Heavy metal distribution in the Godavari River basin

    Energy Technology Data Exchange (ETDEWEB)

    Biksham, G. (Mineral Exploration Corp., Nagpur (India)); Subramanian, V.; Ramanathan, A.L. (Jawaharial Nehru Univ., New Delhi (India)); Van Grieken, R. (Univ. of Antwerp, Wilrijk (Belgium))

    Suspended and bed sediments collected from the entire region of the Godavari River basin were analyzed for Fe, Man, Cr, Cu, Ni, and Zn. There are pronounced temporal and spatial variations in the heavy metal distributions. The concentrations of heavy metals in the suspended sediments are significantly higher than the bed sediments. Throughout the basin heavy metals are enriched in the finer fractions (<2 {mu}m) of the bed sediments. The average heavy-metal composition of the sediments is higher when compared to the average Indian river sediments. Heavy-metal concentration in the two shallow cores collected shows, to some extent, the influence of urbanization. When compared to the other tropical Indian rivers such as the Krishna, the Godavari appears to be a significant contributor of heavy metals to the Bay of Bengal. Considering the enormous sediment load of the Godavari River - 170 million tons/yr, the heavy metal fluxes to the Bay of Bengal is very significant. Except for the Pranhita, other tributaries of the Godavari do not contribute significant loads of heavy metals. All the metals show high correlation among themselves and the correlation is more pronounced in suspended sediments than in the bed sediments. The heavy-metal distribution, fractionation, and its relationship with total suspended sediments and depth in various parts of the basin are discussed in detail.

  9. Hazardous materials in aquatic environments of the Mississippi River Basin

    International Nuclear Information System (INIS)

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy's programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993

  10. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    Science.gov (United States)

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  11. Water resources planning for a river basin with recurrent wildfires.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-09-01

    Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3km(2) of burned area) with an average flow of 16.4m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02mg·L(-1), while in a dry year (2005, 24.4km(2) of burned area) with an average flow of 2m(3)·s(-1) the maximum concentration was as high as 0.57mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species. PMID:25918888

  12. Development of a System-Wide Program, Volume II : Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Nigro, Anthony A. (Oregon Department of Fish and Wildlife); Willis, Charles F. (S.P. Cramer and Associates., Gresham, OR)

    1994-06-01

    The authors report their results of studies to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Three papers are included in this report. They are entitled: (1) Development of a Systemwide Predator Control Program: Indexing and Fisheries Evaluation; (2) Economic, Social and Legal Feasibility of Commercial Sport, and Bounty Fisheries on Northern Squawfish; (3) Columbia River Ecosystem Model (CREM): Modeling Approach for Evaluation of Control of Northern Squawfish Populations using Fisheries Exploitation.

  13. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  14. Hydrological study of La Paz river basin

    International Nuclear Information System (INIS)

    This work aims to determine the hydrological parameters for the La Paz river, by using tracer techniques and also the determination of the water quality parameters for the study of the behavior along the stream. This study intends the prediction and control of the water contamination by using mathematical modelling

  15. Multireservoir operations for flood management in Tanshui River basin, Taiwan

    Science.gov (United States)

    Mei, X.; van Gelder, P. H. A. J. M.; Sloff, C. J.; Prinsen, G.; Vrijling, J. K.

    2012-04-01

    This study assesses the effectiveness of the reservoir system under different design flood events based on SOBEK-RIVER modeling package. The balanced water level index is introduced to deal with the optimal approach for joint reservoir operations. The simulation results suggest that SOBEK-RIVER significantly facilitates the model establishment for studying the propagation of floods through different flood events. It is also found in this study that the joint operation policy performs better during flood emergencies by minimizing flood damage for downstream area. The approach is applied to the Tanshui River which is located in the north of Taiwan and consists of three major tributaries: Tahan River, Hsintien River and Keelung River. Two reservoirs (Shihmen and Festui) are located in the upstream (Tahan and Hsintien) for regulating water release to protect downstream areas from floods during typhoon strikes. To simulate the flood process, the river mouth is selected as the downstream boundary while the inflow into the river basin is controlled by the precipitation. The frequency-duration relationships derived from recorded intense bursts of rainfall of various durations are used to design the precipitation hydrographs. The storm tide distribution in the river mouth is analyzed with Monte Carlo simulations of the tide and storm surge distribution at river mouth to determine the occurrence probabilities of the extreme storm tides. All the scenario designs are based on the available data from typhoon Nari of the year 2001. The study models the flood behavior by the SOBEK-RIVER modeling system which was developed by DELTARES. The proposed procedure in this study involves three modules which are a rainfall runoff model, a reservoir operation model and a channel routing model respectively.

  16. GASTROPODS IN THE BASIN OF THE RIVER FOJNI?KA

    Directory of Open Access Journals (Sweden)

    Asia ?i?i?-Mo?i?

    2008-07-01

    Full Text Available The first detailed investigation of Gastropods in the basin of river Fojni?ka has been carried out in 2001–2002. The material has been sampled five times during four seasons (October 2001–September 2002 at 11 sites in the following waterways: the rivers Fojni?ka, Draga?a, Željeznica, Kreševka and Lepenica. Measurement of certain physical and chemical parameters (BOD5, water temperature, pH value, amount of dissolved oxygen, saturation with oxygen and one time measurement of concentration of nitrates and phosphates has been carried out together with collecting of macroinvertebrates of zoobenthos. Since the knowledge of biodiversity of Gastropods in Bosnia and Herzegovina is at the very low level, the main objective of this paper is to give an overview of distribution of Gastropods communities in the Fojni?ka river basin. In these investigations, 11 taxa of Gastropods and 1468 individuals have been determined. The Gastropods made 16% of total settlement of macroinvertebrates of zoobenthos. Dominant species at investigated sites was Ancylus fluviatilis, while species Acicula sp., Saxurinator sp. and Valvata piscinalis were just sporadically recorded. The largest number of individuals (657 and largest number of species (eight was recorded at the mouth of the river Fojni?ka into the river Bosna.

  17. Helminth parasites of freshwater fishes, Nazas River basin, northern Mexico

    Directory of Open Access Journals (Sweden)

    León, G. Pérez-Ponce

    2010-01-01

    Full Text Available This paper represents the first study of the helminth parasites of freshwater fishes from the Nazas River basinin northern Mexico. Between July 2005 and December 2008, 906 individual fish were collected and examined for helminthparasites in 23 localities along the river basin. Twenty-three species of fish were examined as a part of this inventory work.In total, 41 helminth species were identified: 19 monogeneans, 10 digeneans, seven cestodes, one acanthocephalan, andfour nematodes. The biogeographical implications of our findings are briefly discussed.

  18. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    International Nuclear Information System (INIS)

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m3-enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geogry supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  19. Vascular plants of oxbow lakes of Turvo River, Upper Paraná River basin, São Paulo State, Brazil

    OpenAIRE

    Araujo, R. B.; Langeani, F.; Ranga, N. T.

    2010-01-01

    Vascular plants were investigated in oxbow lakes of Turvo River, Upper Paraná River basin, between Icémand Nova Granada municipalities, state of São Paulo, Brazil. In this region, six lagoons were sampled: Ganzella, Mustafá,Braço Morto, 45, Federal, and Parente. The survey showed a total of 54 species, 36 genera and 22 families. The speciesrichest families were Poaceae, Cyperaceae, and Polygonaceae. Eichhornia crassipes (Pontederiaceae) was the single speciesencountered in all the six la...

  20. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    International Nuclear Information System (INIS)

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  1. K Basin spent fuel sludge treatment alternatives study. Volume 1, Regulatory options

    International Nuclear Information System (INIS)

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. Volume 1 of this two-volume report describes the regulatory options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  2. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale

    Science.gov (United States)

    Riegels, Niels; Jensen, Roar; Bensasson, Lisa; Banou, Stella; Møller, Flemming; Bauer-Gottwein, Peter

    2011-01-01

    SummaryResource costs of meeting EU WFD ecological status requirements at the river basin scale are estimated by comparing net benefits of water use given ecological status constraints to baseline water use values. Resource costs are interpreted as opportunity costs of water use arising from water scarcity. An optimization approach is used to identify economically efficient ways to meet WFD requirements. The approach is implemented using a river basin simulation model coupled to an economic post-processor; the simulation model and post-processor are run from a central controller that iterates until an allocation is found that maximizes net benefits given WFD requirements. Water use values are estimated for urban/domestic, agricultural, industrial, livestock, and tourism water users. Ecological status is estimated using metrics that relate average monthly river flow volumes to the natural hydrologic regime. Ecological status is only estimated with respect to hydrologic regime; other indicators are ignored in this analysis. The decision variable in the optimization is the price of water, which is used to vary demands using consumer and producer water demand functions. The price-based optimization approach minimizes the number of decision variables in the optimization problem and provides guidance for pricing policies that meet WFD objectives. Results from a real-world application in northern Greece show the suitability of the approach for use in complex, water-stressed basins. The impact of uncertain input values on model outcomes is estimated using the Info-Gap decision analysis framework.

  3. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale

    DEFF Research Database (Denmark)

    Riegels, Niels; Jensen, Roar

    2011-01-01

    Resource costs of meeting EU WFD ecological status requirements at the river basin scale are estimated by comparing net benefits of water use given ecological status constraints to baseline water use values. Resource costs are interpreted as opportunity costs of water use arising from water scarcity. An optimization approach is used to identify economically efficient ways to meet WFD requirements. The approach is implemented using a river basin simulation model coupled to an economic post-processor; the simulation model and post-processor are run from a central controller that iterates until an allocation is found that maximizes net benefits given WFD requirements. Water use values are estimated for urban/domestic, agricultural, industrial, livestock, and tourism water users. Ecological status is estimated using metrics that relate average monthly river flow volumes to the natural hydrologic regime. Ecological status is only estimated with respect to hydrologic regime; other indicators are ignored in this analysis. The decision variable in the optimization is the price of water, which is used to vary demands using consumer and producer water demand functions. The price-based optimization approach minimizes the number of decision variables in the optimization problem and provides guidance for pricing policies that meet WFD objectives. Results from a real-world application in northern Greece show the suitability of the approach for use in complex, water-stressed basins. The impact of uncertain input values on model outcomes is estimated using the Info-Gap decision analysis framework. © 2010 Elsevier B.V. All rights reserved.

  4. Sustainable development indicators: Case study for South Morava river basin

    OpenAIRE

    Veljkovi? Nebojša D.

    2013-01-01

    The subject of research is elaboration and evaluation of indicators of sustainable development in the field of river basin management. Aggregate indicator entitled Ecoregion Sustainable Development Index is identified by calculation of average value by the procedure of leveling of proportion changes of three key indicators (demographic emission index, water quality index, industrial production index). Developed aggregate indicator of sustainable development is calculated and analyzed fo...

  5. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    Science.gov (United States)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0?28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  6. Mississippi River Basin and Gulf of Mexico Hypoxia

    Science.gov (United States)

    Environmental Protection Agency

    This EPA site provides links to introductory information about the Gulf of Mexico dead zone. It offers answers to questions such as: what is the hypoxic zone, how did it form, what strategies are being implemented to remedy it, and what is the government doing. It also features links to various regions within the Mississippi River Basin, allowing users to explore issues in their own area.

  7. UV filters bioaccumulation in fish from Iberian river basins.

    Science.gov (United States)

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/gdryweight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. PMID:25777957

  8. Erosion and sediment budget of the 2008 Wenchuan earthquake: A case study on Mianyuan River basin

    Directory of Open Access Journals (Sweden)

    Lijian Qi

    2012-08-01

    Full Text Available The Wenchuan Earthquake caused a large number of avalanches and landslides at different scales. It is extremely significant to evaluate the sediment in the earthquake river basins. Along the 38 km long upper Mianyuan River 196 landslides and avalanches happened during the earthquake, which have formed 25 landslide dams and quake lakes. The total volume of sediment erosion due to earthquake was about 115 million m3, which is 75 times higher than the soil erosion in normal years. Only a part of the solid material could be transported by the river water flow as suspended load and bed load. The total volume of bed load deposit in the river and the quake lakes was 1.43 million m3. Moreover the quake lakes had also trapped 0.12 million m3 suspended load. Only 0.18 million m3 of fine sediment had been drifted through the quake lakes and transported into the lower reaches of the Mianyuan River. The wide range of size distributions of sediment from earthquake erosion caused the extreme difference in the amounts of sediment erosion and transportation. Most of the sediment from earthquake erosion can be only transported for a short distance by landslides and debris flows. Less than 0.2% of the total volume of sediment from earthquake erosion may be transported into large rivers. Therefore, earthquake erosion has little effect on the sediment transportation and fluvial processes in the large rivers.

  9. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    Science.gov (United States)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  10. Charles River lower basin artificial destratification project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ferullo, A.F.; DiPietro, P.J.; Shaughnessy, R.J.

    1981-06-01

    The Charles River Basin which was created by construction of a dam in 1910 has been stratified since that time with salt water intruding from Boston Harbor through a boat lock and leaky sluices. In order to eliminate nuisance conditions and fish kills caused by hydrogen sulfide from the anoxic bottom water, destratification by air-mixing was initiated in the spring of 1978. Six diffusers were installed on the bottom in the deep sections of the Basin and operated as necessary to induce sufficient circulation to maintain a minimum of 4.0 mg/1 dissolved oxygen throughout the water column. After two and a half years of operation, hydrogen sulfide has been eliminated and water quality has generally improved in the area of the Basin influenced by the diffusers.

  11. Detecting runoff variation in Weihe River basin, China

    Science.gov (United States)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  12. Northern Rivers Basins human health monitoring program : report

    International Nuclear Information System (INIS)

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs

  13. Knowledge-based approaches for river basin management

    Directory of Open Access Journals (Sweden)

    P. Mikulecký

    2007-06-01

    Full Text Available Rare attempts to use knowledge technologies and other relevant approaches are found in the river basin management. Some applications of expert systems as well as utilization of soft computing techniques (as neural networks or genetic algorithms are known in an experimental level. Knowledge management approaches still have not been used at all. In this paper we discuss knowledge-based approaches in the river basin management as a difficult yet important direction which could be proven to be helpful. We summarize the research done in the scope of the AQUIN project, one of first Czech knowledge management projects in the river basin management. The project was initiated by the water management company in Pilsen, where dispatchers make decisions about manipulations on the reservoir Nýrsko, the strategic source of drinking water for inhabitants of Pilsen. The project aim was to support dispatchers' decision making under a high degree of uncertainty or data shortage. The research is continued in the scope of a new project AQUINpro, planned for the period of 2006 to 2008.

  14. Trends in Surface Water Quality for Korean River basins

    Science.gov (United States)

    Chang, H.; Boeder, M.

    2006-05-01

    Water quality is an ongoing problem in many Korean river basins. Maintaining good water quality is essential for the sustainability of the country. While point source pollution has declined with stringent regulation and management (e.g., wastewater discharge permit and the installation of wastewater treatment facilities in major municipalities), nonpoint source pollution is a persistent problem in major metropolitan areas. We used the nonparametric seasonal Kendall's test to determine trends in surface water quality for the period between 1993 and 2002. For temperature, trends were detected only a small number of stations. pH increased significantly in more than half of the stations. Dissolved oxygen showed two opposite trends: upward trends at stations in the main stem river and the upper basin and downward trends at tributary stations. Suspended solids declined in major tributaries, but increased in tributaries adjacent to new suburban development areas. Total phosphorus and total nitrogen showed upward trends except for tributary stations in forested areas, suggesting the ineffectiveness of wastewater treatment facilities in removing these nutrients and confirming the importance of nonpoint source pollution. While urban land cover is positively associated with nitrogen and phosphorus concentrations, there are strong regional and local variations in water quality. The relationship between trends and land use change at the local scale did not reveal strong evidence of possible causation. This study demonstrates the complexity of identifying the causal mechanisms of water quality change in highly heterogeneous river basins.

  15. Occurrence and sources of perfluoroalkyl acids in Italian river basins.

    Science.gov (United States)

    Valsecchi, Sara; Rusconi, Marianna; Mazzoni, Michela; Viviano, Gaetano; Pagnotta, Romano; Zaghi, Carlo; Serrini, Giuliana; Polesello, Stefano

    2015-06-01

    This paper presents a survey on the occurrence and sources of 11 perfluoroalkyl acids (PFAA) in the main river basins in Italy, covering about 40% of the Italian surface area and 45% of the Italian population. Total concentrations of PFAA ranged fromdistribution: 39% PFBS, 32% PFOA, 22% short chain perfluorocarboxylic acids (PFCA), 6% PFOS and 1% long chain PFCA. PFOA and PFOS loads, evaluated in the present work, represent 10% and 2% of the estimated European loads, respectively. In Italy the most important sources of PFAA are two chemical plants which produce fluorinated polymers and intermediates, sited in the basin of rivers Po and Brenta, respectively, whose overall emission represents 57% of the total estimated PFAA load. Both rivers flow into the Adriatic Sea, raising concern for the marine ecosystem also because a significant PFOS load (0.3ty(-1)) is still present. Among the remaining activities, tanneries and textile industries are relevant sources of respectively PFBS and PFOA, together with short chain PFCA. As an example, the total PFAA load (0.12ty(-1)) from the textile district of Prato is equivalent to the estimated domestic emission of the whole population in all the studied basins. PMID:25108894

  16. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    Directory of Open Access Journals (Sweden)

    W. P. Miller

    2011-07-01

    Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month forecasts determined by the Colorado Basin River Forecast Center (CBRFC using the National Weather Service (NWS River Forecasting System (RFS hydrologic model. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force the NWS RFS utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates and contributes to a better understanding of how hydrologic processes change under varying climate conditions. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study. Additionally, the NWS RFS is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands resulted in a 6 % to 13 % average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates. Streamflow projections derived using projections of future climate and the NWS RFS provided by the CBRFC resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10 % to 15 % average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5 % to 8 % increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

  17. Towards improving river discharge estimation in ungauged basins: calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet

    Directory of Open Access Journals (Sweden)

    Wenchao Sun

    2010-06-01

    Full Text Available Rainfall-runoff models are common tools for river discharge estimation in the field of hydrology. In ungauged basins, the dependence on observed river discharge data for calibration restricts applications of rainfall-runoff models. The strong correlation between quantities of river cross-sectional water surface width obtained from remote sensing and corresponding in situ gauged river discharge has been verified by many researchers. In this study, a calibration scheme of rainfall-runoff models based on satellite observations of river width at basin outlet is illustrated. One distinct advantage is that this calibration is independent of river discharge information. The at-a-station hydraulic geometry is implemented to facilitate shifting calibration objective from river discharge to river width. The generalized likelihood uncertainty estimation methodology is applied to model calibration and uncertainty analysis. The calibration scheme is demonstrated through a case study for simulating river discharge at Pakse in the Mekong Basin. The effectiveness of calibration scheme and uncertainties associated with utilization of river width observations from space are examined from model input-state-output behaviour, capability of reproducing river discharge, and posterior parameter distribution. The results indicate that the satellite observation of river width is a competent surrogate of observed discharge for the calibration of rainfall-runoff model at Pakse and the proposed method has the potential for improving reliability of river discharge estimation in basins without any discharge gauging.

  18. Towards improving river discharge estimation in ungauged basins: calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet

    Directory of Open Access Journals (Sweden)

    W. C. Sun

    2010-10-01

    Full Text Available Rainfall-runoff models are common tools for river discharge estimation in the field of hydrology. In ungauged basins, the dependence on observed river discharge data for calibration restricts applications of rainfall-runoff models. The strong correlation between quantities of river cross-sectional water surface width obtained from remote sensing and corresponding in situ gauged river discharge has been verified by many researchers. In this study, a calibration scheme of rainfall-runoff models based on satellite observations of river width at basin outlet is illustrated. One distinct advantage is that this calibration is independent of river discharge information. The at-a-station hydraulic geometry is implemented to facilitate shifting the calibration objective from river discharge to river width. The generalized likelihood uncertainty estimation (GLUE is applied to model calibration and uncertainty analysis. The calibration scheme is demonstrated through a case study for simulating river discharge at Pakse in the Mekong Basin. The effectiveness of the calibration scheme and uncertainties associated with utilization of river width observations from space are examined from model input-state-output behaviour, capability of reproducing river discharge and posterior parameter distribution. The results indicate that the satellite observation of the river width is a competent surrogate of observed discharge for the calibration of rainfall-runoff model at Pakse and the proposed method has the potential for improving reliability of river discharge estimation in basins without any discharge gauging.

  19. Predicted riparian vegetation (Potential for Habitat Improvement in the Columbia River Basin)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  20. Predicted channel types (Potential for Habitat Improvement in the Columbia River Basin)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  1. Columbia River basin fish and wildlife program strategy for salmon

    International Nuclear Information System (INIS)

    Three species of Snake River salmon have been listed as threatened or endangered under the federal Endangered Species Act. In response, the Northwest Power Planning Council worked with the states of Idaho, Montana, Oregon and Washington, Indian tribes, federal agencies and interest groups to address the status of Snake River salmon runs in a forum known as the Salmon Summit. The Summit met in 1990 and 1991 and reached agreement on specific, short-term actions. When the Summit disbanded in April 1991, responsibility for developing a regional recovery plan for salmon shifted to the Council. The Council responded with a four-phased process of amending its Columbia River Basin Fish and Wildlife Program. The first three phases. completed in September 1992, pertain to salmon and steelhead. Phase four, scheduled for completion in October 1993, will take up issues of resident fish and wildlife. This paper deals with the first three phases, collectively known as Strategy for Salmon

  2. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River

    Science.gov (United States)

    Santini, W.; Martinez, J.-M.; Espinoza-Villar, R.; Cochonneau, G.; Vauchel, P.; Moquet, J.-S.; Baby, P.; Espinoza, J.-C.; Lavado, W.; Carranza, J.; Guyot, J.-L.

    2015-03-01

    Formation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.

  3. XXI Century Climatology of Snow Cover for the Western River Basins of the Indus River System

    CERN Document Server

    Hasson, Shabeh ul; Lucarini, Valerio

    2012-01-01

    Under changing climate, freshwater resources of Hindu Kush-Karakoram-Himalaya (HKH) region can be affected by changes in temperature and in amount, type and distribution of precipitation. This can have serious implications for the water supply and in turn threaten the food security and economic wellbeing of Indus basin. Using MODIS daily snow products (Terra & Aqua), this study focuses on the assessment of the 2000-2010 snow cover dynamics on seasonal/annual basis against geophysical parameters (aspect, elevation and slope) for the so called western river basins of Indus River System (IRS), namely Indus, Kabul, Jhelum, Astore, Gilgit, Hunza, Swat, Shigar and Shyok basins. Results show that inputs from MODIS instrument provide unprecedented better opportunity to study by using GIS techniques the snow cover dynamics in the remote areas like HKH region at such hyper-temporal and finer planar resolution. Adapted non-spectral cloud filtering techniques have significantly reduced cloud coverage and improved sno...

  4. Emergy-based energy and material metabolism of the Yellow River basin

    Science.gov (United States)

    Chen, B.; Chen, G. Q.

    2009-03-01

    The Yellow River basin is an opening ecosystem exchanging energy and materials with the surrounding environment. Based on emergy as embodied solar energy, the social energy and materials metabolism of the Yellow River basin is aggregated into emergetic equivalent to assess the level of resource depletion, environmental impact and local sustainability. A set of emergy indices are also established to manifest the ecological status of the total river basin ecosystem.

  5. Development of streamflow projections under changing climate conditions over Colorado River Basin headwaters

    OpenAIRE

    Miller, W. P.; Piechota, T. C.; Gangopadhyay, S.; Pruitt, T.

    2010-01-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting System (RFS) hydrologic...

  6. Development of streamflow projections under changing climate conditions over Colorado River Basin headwaters

    Directory of Open Access Journals (Sweden)

    W. P. Miller

    2010-08-01

    Full Text Available The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by forecasts determined by the Colorado Basin River Forecast Center (CBRFC. While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term projections of streamflow, particularly under changing climate conditions. In this study, a bias-corrected, statistically downscaled dataset of projected climate is used to force a hydrologic model utilized by the CBRFC to derive projections of streamflow over the Green, Gunnison, and San Juan River headwater basins located within the Colorado River Basin. This study evaluates the impact of changing climate to evapotranspiration rates. The impact to evapotranspiration rates is taken into consideration and incorporated into the development of streamflow projections over Colorado River headwater basins in this study.

    Additionally, the CBRFC hydrologic model is modified to account for impacts to evapotranspiration due to changing temperature over the basin. Adjusting evapotranspiration demands over the Gunnison resulted in a 6% to 13% average decrease in runoff over the Gunnison River Basin when compared to static evapotranspiration rates.

    Streamflow projections derived using projections of future climate and the CBRFC's hydrologic model resulted in decreased runoff in 2 of the 3 basins considered. Over the Gunnison and San Juan River basins, a 10% to 15% average decrease in basin runoff is projected through the year 2099. However, over the Green River basin, a 5% to 8% increase in basin runoff is projected through 2099. Evidence of nonstationary behavior is apparent over the Gunnison and San Juan River basins.

  7. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and indicators to use in the analytical evaluation. A software template guides users through this process. For demonstration, the RBAF-C template has been applied to address competing irrigation demand-anadromous fish flow requirements in the Lemhi Basin, Idaho, and the increase in municipal and industrial demand in the Upper Bhima River Basin, India, which affects water supply to downstream irrigation command areas. The RBAF-A is for quantitatively evaluating the current conditions of water resources in a river basin and testing potential scenarios with respect to the sustainability criterion. The primary foundation for quantifying water movement is a river basin model. Upon this, the RBAF-A Interface organizes input data, collects output data from each discipline, and reports the HWB. Within the RBAF-A Interface, the EGS-HWB Calculator collects output time series data, processes the data with respect to space and time, and computes the ecologic, economic, and social well-being. The Reporting Tool presents the scenario output as values and trends in well-being. To demonstrate the technology, the RBAF-A was applied to the Lemhi Basin, Idaho. The RBAF supports the IWRM process by providing a structured and transparent means to understand the water related issues, analyses to conduct, and indicators to select in assessing the sustainability of water programs and policies in river basins.

  8. Identification of Flood Source Areas in Pahang River Basin, Peninsular Malaysia

    OpenAIRE

    Wan Nor Azmin Sulaiman

    2010-01-01

    The roles of upland watersheds in flood source contribution towards downstream areas in a river basin system are generally neglected in the inclusion of management strategy related to downstream flood management. In this study an assessment on the flood source area of Pahang river basin was attempted. The concept of unit flood response as an index of hydrologic response was used in identifying the flood source areas for the basin. The results indicated that among the 16 sub-basins of Pahang r...

  9. Long Term Discharge Estimation for Ogoué River Basin

    Science.gov (United States)

    Seyler, F.; Linguet, L.; Calmant, S.

    2014-12-01

    Ogoué river basin is one the last preserved tropical rain forest basin in the world. The river basin covers about 75% of Gabon. Results of a study conducted on wall-to wall forest cover map using Landsat images (Fichet et al., 2014) gave a net forest loss of 0,38% from 1990 and 2000 and sensibly the same loss rate between 2000 and 2010. However, the country launched recently an ambitious development plan, with communication infrastructure, agriculture and forestry as well as mining projects. Hydrological cycle response to changes may be expected, in both quantitative and qualitative aspects. Unfortunately monitoring gauging stations have stopped functioning in the seventies, and Gabon will then be unable to evaluate, mitigate and adapt adequately to these environmental challenges. Historical data were registered during 42 years at Lambaréné (from 1929 to 1974) and during 10 to 20 years at 17 other ground stations. The quantile function approach (Tourian et al., 2013) has been tested to estimate discharge from J2 and ERS/Envisat/AltiKa virtual stations. This is an opportunity to assess long term discharge patterns in order to monitor land use change effects and eventual disturbance in runoff. Figure 1: Ogoué River basin: J2 (red) and ERS/ENVISAT/ALTIKa (purple) virtual stations Fichet, L. V., Sannier, C., Massard Makaga, E. K., Seyler, F. (2013) Assessing the accuracy of forest cover map for 1990, 2000 and 2010 at national scale in Gabon. In press IEEE Journal of Selected Topics in Applied Earth Observations and Remote SensingTourian, M. J., Sneeuw, N., & Bárdossy, A. (2013). A quantile function approach to discharge estimation from satellite altimetry (ENVISAT). Water Resources Research, 49(7), 4174-4186. doi:10.1002/wrcr.20348

  10. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  11. LBA-ECO LC-04 Macrohydrological Routing Data for the Amazon and Tocantins River Basin

    National Aeronautics and Space Administration — ABSTRACT: This data set provides continental-scale hydrological river flow routing parameter data for the Amazon and Tocantins River basins at 5 minute (~9 km)...

  12. Hydromorphological assessment as a tool for river basin management: The German field survey method

    Directory of Open Access Journals (Sweden)

    Georg Meir

    2013-02-01

    Full Text Available Physical habitat characteristics are of great importance for the ecological integrity of rivers and creeks. The assessment of these hydromorphological qualities is a fundamental component of sustainable river basin management and ecologically oriented river development.This paper describes the German field survey method for hydromorphological assessement of streams and points at its potential as a tool for river basin management. We present examples for the application of the method at different management scales: analyzing the overall hydromorphological state at the river basin scale, describing specific hydromorphological characteristics at the river reach scale and monitoring the success of restoration projects at the river segment scale.We show that the German field survey method proved to be an easy-to-apply and efficient tool for river basin management since its introduction in the year 2000. Beside the method’s potentials also several drawbacks have to be considered regarding its application in other regions of the world.

  13. Resilience in Transboundary Water Governance: the Okavango River Basin

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available When the availability of a vital resource varies between times of overabundance and extreme scarcity, management regimes must manifest flexibility and authority to adapt while maintaining legitimacy. Unfortunately, the need for adaptability often conflicts with the desire for certainty in legal and regulatory regimes, and laws that fail to account for variability often result in conflict when the inevitable disturbance occurs. Additional keys to resilience are collaboration among physical scientists, political actors, local leaders, and other stakeholders, and, when the commons is shared among sovereign states, collaboration between and among institutions with authority to act at different scales or with respect to different aspects of an ecological system. At the scale of transboundary river basins, where treaties govern water utilization, particular treaty mechanisms can reduce conflict potential by fostering collaboration and accounting for change. One necessary element is a mechanism for coordination and collaboration at the scale of the basin. This could be satisfied by mechanisms ranging from informal networks to the establishment of an international commission to jointly manage water, but a mechanism for collaboration at the basin scale alone does not ensure sound water management. To better guide resource management, study of applied resilience theory has revealed a number of management practices that are integral for adaptive governance. Here, we describe key resilience principles for treaty design and adaptive governance and then apply the principles to a case study of one transboundary basin where the need and willingness to manage collaboratively and iteratively is high--the Okavango River Basin of southwest Africa. This descriptive and applied approach should be particularly instructive for treaty negotiators, transboundary resource managers, and should aid program developers.

  14. GIS-based River Flood Hazard Mapping in Urban Area (A Case Study in Kayu Ara River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Behdokht Vosoogh

    2010-12-01

    Full Text Available In the past decades, thousands of lives have been lost, directly or indirectly, by flooding. In fact, of all natural hazards, floods pose the most widely distributed natural hazard to life today. Sungai Kayu Ara river basin which is located in the west part of the Kuala Lumpur in Malaysia was the case study of this research. In order to perform river flood hazard mapping HEC-HMS and HEC-RAS were utilized as hydrologic and hydraulic models, respectively. The generated river flood hazard was based on water depth and flow velocity maps whichwere prepared according to hydraulic model results in GIS environment. The results show that, magnitude of rainfall event (ARI and river basin land-use development condition have significant influences on the river flood hazard maps pattern. Moreover, magnitude of rainfall event caused more influences on the river flood hazard map in comparison with land-use development condition for Sungai Kayu Ara river basin.

  15. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (principal investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  16. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2012-05-01

    Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr?1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" component of WF was 811 million m3 yr?1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than green WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

  17. The politics of model maintenance: The Murray Darling and Brantas River Basins compared

    Directory of Open Access Journals (Sweden)

    Anjali Bhat

    2008-09-01

    Full Text Available This paper explores river basin management in two highly developed basins whose basin governance arrangements are currently undergoing transition: the Murray-Darling basin of Australia and the Brantas basin of Indonesia. Though basin-scale management has been longstanding in both of these cases and the respective models for carrying out integrated river basin management have been considered noteworthy for other countries looking to develop basin institutions, these basin-level arrangements are under flux. This paper indicates some of the difficulties that exist for even widely favoured 'textbook' cases to maintain institutional efficacy within their given shifting contexts. This paper explores drivers behind policy reform and change in scale at which authority is held, concluding with a discussion of the nature of institutional transition given political realities in these basins.

  18. Major Turbidity Events in the North Santiam River Basin, Oregon, Water Years 1999-2004

    Science.gov (United States)

    Sobieszczyk, Steven; Uhrich, Mark A.; Bragg, Heather M.

    2007-01-01

    Multiple high-turbidity events with values greater than 250 Formazin Nephelometric Units occurred in streams of the North Santiam River basin during water years 1999-2004. By using a combination of field reconnaissance, aerial photography, and geographic information systems, eight of these high-turbidity events were investigated and linked to at least one likely source area and became known as 'major turbidity events.' Sediment source type and location, the amount of material transported, and the results of any follow-up investigation of the source area were recorded for each event. Significant findings from this study include: * Although heavy precipitation caused basinwide erosion that increased turbidity in streams, a major turbidity event often required at least one landslide or similar type of contributing source to introduce enough sediment to raise the turbidity value to greater than 250 Formazin Nephelometric Units. * Different processes drove sediment loading at different times. In general, precipitation eroded sediment from source areas or induced landslides. However, in two cases, warm temperatures caused rapid snowmelt, which supplied the water necessary to erode unconsolidated glacial soils or other sediment material and increase turbidity. * Some source areas, such as existing earthflows, repeatedly supplied a large volume of sediment to streams, whereas other sources, such as landslides or debris flows, were unpredictable and sporadically supplied large volumes of sediment to streams. * Major turbidity events were well distributed throughout the North Santiam River basin; discrete events were observed in each of the five subbasins along unregulated streams. * Suspended-sediment loads and clay-water (persistently turbid water) volume estimates were event-specific and varied greatly between major turbidity events, even though, in some cases, the source area was the same; however, high yields generally were observed for events in the Blowout Creek, Breitenbush River, and Little North Santiam River subbasins. * Suspended-sediment loads for each 3-day precipitation-driven major turbidity event supplied greater than 36 percent of the annual load, and snowmelt-driven events supplied greater than 27 percent of the annual load in a single day. * Clay-water yields for event periods generally were highest in the Little North Santiam River subbasin. In addition, average annual percentage of clay-water volume during the period of record was highest in the Little North Santiam River. The second highest average was in Blowout Creek.

  19. Water reuse in river basins with multiple users: A literature review

    Science.gov (United States)

    Simons, G. W. H. (Gijs); Bastiaanssen, W. G. M. (Wim); Immerzeel, W. W. (Walter)

    2015-03-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface water resources, reuse of non-consumed water gets only marginal attention despite the potentially significant volumes. As a consequence, claims of water saving are often grossly exaggerated. It is the purpose of this paper to explore the processes associated with water reuse in a river basin among users of varying nature and review existing methods for directly or indirectly describing non-consumed water, recoverable flow and/or water reuse. First a conceptual representation of processes surrounding water withdrawals and associated definitions is discussed, followed by a section on connectivity between individual withdrawals and the complex dynamics arising from dependencies and tradeoffs within a river basin. The current state-of-the-art in categorizing basin hydrological flows is summarized and its applicability to a water system where reuse occurs is explored. The core of the paper focuses on a selection and demonstration of existing indicators developed for assessing water reuse and its impacts. It is concluded that although several methods for analyses of water reuse and recoverable flows have been developed, a number of essential aspects of water reuse are left out of existing indicators. Moreover, a proven methodology for obtaining crucial quantitative information on recoverable flows is currently lacking. Future studies should aim at spatiotemporal tracking of the recoverable portion of water withdrawals and showing the dependency of multiple water users on such flows to water policy makers.

  20. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime. Climate change and river ice regime research should also take into account these anthropogenic imp

  1. Collaboration in River Basin Management: The Great Rivers Project

    Science.gov (United States)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or chosen from a predefined tag taxonomy. These comments and tag clouds may be used by the community to filter results and identify models or simulations of interest, e.g, by region, modeling approach, spatiotemporal resolution, etc. Users may discuss methods or results in real-time with a built-in chat feature. Separate user groups may be defined for logical groups of collaboration partners, e.g., expert modelers, land managers, policy makers, school children, or the general public, to optimize the collaboration signal-to-noise ratio for all.

  2. A History of Flooding in the Red River Basin

    Science.gov (United States)

    Ryberg, Karen R.; Macek-Rowland, Kathleen M.; Banse, Tara A.; Wiche, Gregg J.

    2007-01-01

    The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, local, tribal, and academic entities to ensure that accurate and timely data are available for making decisions regarding public welfare and property during natural disasters and to increase public awareness of the hazards that occur with such disasters. The Red River of the North Basin has a history of flooding and this poster is designed to increase public awareness of that history and of the factors that contribute to flooding.

  3. Environmental state of aquatic systems in the Selenga River basin

    Science.gov (United States)

    Shinkareva, Galina; Lychagin, Mikhail

    2013-04-01

    The transboundary river system of Selenga is the biggest tributary of Lake Baikal (about 50 % of the total inflow) which is the largest freshwater reservoir in the world. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the environmental state of the river aquatic system. The main source of industrial waste in the Republic of Buryatia (Russia) is mining and in Mongolia it is mainly gold mining. Our study aimed to determine the present pollutant levels and main features of their spatial distribution in water, suspended matter, bottom sediments and water plants in the Selenga basin. The results are based on materials of the 2011 (July-August) field campaign carried out both in Russian and Mongolian part of the basin. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu and Mo in the Selenga River water which often are higher than maximum permissible concentrations for water fishery in Russia. In Russian part of the basin most contrast distribution is found for W and Mo, which is caused by mineral deposits in this area. The study showed that Mo and Zn migrate mainly in dissolved form, since more than 70% of Fe, Al, and Mn are bound to the suspended solids. Suspended sediments in general are enriched by As, Cd and Pb in relation to the lithosphere averages. Compared to the background values rather high contents of Mo, Cd, and Mn were found in suspended matter of Selenga lower Ulan-Ude town. Transboundary transport of heavy metals from Mongolia is going both in dissolved and suspended forms. From Mongolia in diluted form Selenga brings a significant amount of Al, Fe, Mn, Zn, Cu and Mo. Suspended solids are slightly enriched with Pb, Cu, and Mn, in higher concentration - Mo. The study of the Selenga River delta allowed determining biogeochemical specialization of the region: aquatic plants accumulate Mn, Fe, Cu, Cd, and to a lesser extent Zn. Plant species which are the most important for the biomonitoring were identified: Phragmites australis, Ceratophyllum demersum, different pondweeds (Potamogeton pectinatus, Potamogeton crispus, Potamogeton friesii), Myriophyllum spicatum, Batrachium trichophyllum. Among them some species are characterized by a group concentration of heavy metals: pondweeds (Mn, Fe, Cu), Myriophyllum spicatum (Fe, Mn, Cu), Batrachium trichophyllum (Cu, Fe, Mn, Zn). Hornwort (Ceratophyllum demersum) is a concentrator of Mn.

  4. Hydrogeologic data for the Upper Connecticut River Basin, Connecticut

    Science.gov (United States)

    Ryder, Robert B.; Weiss, L.A.

    1971-01-01

    This report contains geologic, ground-water, and quality-of-water data collected and compiled for a water resources investigation of the upper Connecticut River basin, Connecticut by the U.S. Geological Survey in financial cooperation with the Connecticut Department of Environmental Protection. These data, together with surface-water data, were collected at sites shown on plate A and are, with exceptions discussed below, presented herein. The interpretation of these data will be published separately in Connecticut Water Resources Bulletin No. 24.

  5. Hack's relation and optimal channel networks: The elongation of river basins as a consequence of energy minimization

    Science.gov (United States)

    Ijjasz-Vasquez, Ede J.; Bras, Rafael L.; Rodriguez-Iturbe, Ignacio

    1993-08-01

    As pointed by Hack (1957), river basins tend to become longer and narrower as their size increases. This work shows that this property may be partially regarded as the consequence of competition and minimization of energy expenditure in river basins.

  6. Heavy metal distribution in sediments of Krishna River basin, India

    Science.gov (United States)

    Ramesh, R.; Subramanian, V.; van Grieken, R.

    1990-05-01

    Suspended and bed sediments collected from the entire region of the Krishna River and its major tributaries were analyzed for heavy metals (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb) by the thin-film energy dispersive x-ray fluorescence technique. There is considerable variation in the concentration of elements towards downstream, which may be due to the variation in the subbasin geology and various degrees of human impact. Suspended particles are enriched in heavy metals throughout the basin relative to bed sediments. The heavy metals are enriched in coarse size fractions (10 90 µm) throughout the Krishna River except its tributary Bhima, where finer fractions (2 µm) dominate. Transition elements correlate very well with each other. There is a striking similarity between the bed sediments of Krishna River and the Indian average. When the annual heavy metal flux carried by the Krishna River was estimated, and viewed in relation to the other major riverine transport, the Krishna is seen to be a minor contributor of heavy metals to the Bay of Bengal.

  7. Geochemical variations during flash flooding, Meramec River basin, May 2000

    Science.gov (United States)

    Winston, W. E.; Criss, R. E.

    2002-08-01

    Severe flooding in the Meramec River basin followed an extraordinary rainfall event on May 7, 2000. Precipitation measurements for the 13-h event ranged from 12.7 to 39.9 cm over a 4100 km 2 region centered near Union, Missouri. Sample collections for isotopic and chemical analyses and field measurements of water temperature, specific conductivity, turbidity, and pH were made from three rivers during the course of the event. Relative to pre-storm values, flood water underwent a three to 10-fold decrease in conductivity, a 100-fold or more increase in turbidity, and pH fluctuations over a range of 1.0 unit. Concentration of major ions varied inversely (Ca, Mg, Na, Cl, SO 4) or directly (K) proportional to discharge. Oxygen isotope measurements were used to separate each discharge hydrograph into pre-event and event water components. Event water dominated during peak runoff on each of the rivers, a condition atypical of floodwaters in this region and the result of overland flow or rapid subsurface delivery of precipitation. The Bourbeuse River showed the largest event water component during this exceptional event, with storm water making up essentially 100% of the flow for more than 24 h.

  8. Sustainable Development in Transboundary Water Resource Management : A Case Study of the Mekong River Basin

    OpenAIRE

    Kim, Kyungmee

    2011-01-01

    Global climate change, environmental degradation and demographic changes has emphasizedthe sustainable development of Mekong river basin. The research uses the theoreticalframework that sustainable development in the transboundary water resource management ismost likely to be achieved through the policy making based on the ‘regional approach’ andthe ‘alternative development strategy.’ The aim of this research is to investigate themanagement of Mekong river basin within the theoretical...

  9. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    Science.gov (United States)

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate. PMID:21922685

  10. Iron cycling in the Amazon River Basin: the isotopic perspective

    Science.gov (United States)

    Poitrasson, Franck; Vieira, Lucieth; Mulholland, Daniel; Seyler, Patrick; Sondag, Francis; Allard, Thierry

    2014-05-01

    With the global climate change and increasing anthropic pressure on nature, it is important to find new indicators of the response of complex systems like the Amazon River Basin. In particular, new tracers like iron isotopes may tell us much on processes such as the chemical exchanges between rivers, soils and the biosphere. Pioneering studies revealed that for some river waters, large ?57Fe fractionations are observed between the suspended and dissolved load (Bergquist and Boyle, 2006), and isotopic variations were also recognized on the suspended matter along the hydrological cycle (Ingri et al., 2006). On land, soil studies from various locations have shown that ?57Fe signatures depend mostly on the weathering regime (Fantle and DePaolo, 2004; Emmanuel et al., 2005; Wiederhold et al., 2007; Poitrasson et al., 2008). It thus seems that Fe isotopes could become an interesting new tracer of the exchanges between soils, rivers and the biosphere. We therefore conducted Fe isotope surveys through multidisciplinary field missions on rivers from the Amazon Basin. It was confirmed that acidic, organic-rich black waters show strong Fe isotope fractionation between particulate and dissolved loads. Furthermore, this isotopic fractionation varies along the hydrological cycle, like previously uncovered in boreal waters suspended matter. In contrast, unfiltered waters show very little variation with time. It was also found that Fe isotopes remain a conservative tracer even in the case of massive iron loss during the mixing of chemically contrasted waters such as the Negro and Solimões tributaries of the Amazon River. Given that >95% of the Fe from the Amazon River is carried as detrital materials, our results lead to the conclusion that the Fe isotope signature delivered to the Atlantic Ocean is undistinguishable from the continental crust value, in contrast to previous inferences. The results indicate that Fe isotopes in rivers represent a promising indicator of the interaction between organic matter and iron in rivers, and ultimately the nature of their source in soils. As such, they may become a powerfull tracer of changes occurring on the continents in response to both weathering context and human activities. References: Bergquist, B.A., Boyle, E.A., 2006. Iron isotopes in the Amazon River system: Weathering and transport signatures. Earth and Planetary Science Letters, 248: 54-68. Emmanuel, S., Erel, Y., Matthews, A., Teutsch, N., 2005. A preliminary mixing model for Fe isotopes in soils. Chemical Geology, 222: 23-34. Fantle, M.S., DePaolo, D.J., 2004. Iron isotopic fractionation during continental weathering. Earth and Planetary Science Letters, 228: 547-562. Ingri, J., Malinovsky, D., Rodushkin, I., Baxter, D.C., Widerlund, A., Andersson, P., Gustafsson, O., Forsling, W., Ohlander, B., 2006. Iron isotope fractionation in river colloidal matter. Earth and Planetary Science Letters, 245: 792-798. Poitrasson, F., Viers, J., Martin, F., Braun, J.J., 2008. Limited iron isotope variations in recent lateritic soils from Nsimi, Cameroon: Implications for the global Fe geochemical cycle. Chemical Geology, 253: 54-63. Wiederhold, J.G., Teutsch, N., Kraemer, S.M., Halliday, A.N., Kretzchmar, R., 2007. Iron isotope fractionation in oxic soils by mineral weathering and podzolization. Geochimica et Cosmochimica Acta, 71: 5821-5833.

  11. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    OpenAIRE

    van der Sluis, T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is discussed and parameters are selected which are descriptive for biodiversity at both the landscape and stand level. Based on these parameters the biodiversity is assessed to describe or quantify imp...

  12. The role of snow in the hydrological cycle on the Sava River basin

    OpenAIRE

    Horvat, Anja

    2009-01-01

    The purpose of the master degree thesis was to determine the role of snow in the hydrological cycle on Sava River basin. The reason for choosing the Sava River basin is two-fold: it is the largest basin in Slovenia and its hinterland is in the mountains, where snow cover is present each winter. It is important to know and to be able to predict the flow of the Sava River because of flood safety and hydropower production of many hydropower plants on the Sava River. First, we discuss the geologi...

  13. Equations for estimating timber volume in the region of the River Basin of Ituxi, Lábrea, Amazon, Brazil Equações para estimativa de volume de madeira para a região da bacia do Rio Ituxi, Lábrea, AM

    Directory of Open Access Journals (Sweden)

    Fabio Thaines

    2010-12-01

    Full Text Available

    To quantify the stock of commercial timber in forests demands efficient methods, making possible to estimate efficiently and accurately the present and future timber volume. The aim of this work was to  adjust the mathematical models used to estimate timber volume, allowing the determination of the timber potential of a region with greater accuracy and lower cost. The study was conducted at Lábrea, State of  Amazonas, Brazil in an area of 6,000 ha, inserted in the Project Forest Management Seringal Iracema II. The forest is predominantly dense with emergent trees, also with the occurrence of open forest with bamboo and palms. For the process of adjusting the models to estimate the volume of commercial timber, 141 trees of commercial species were cubed by Smalian method. The equations developed for the Forest Management Project Seringal Iracema II are valid for diameters between 50 cm and 140 cm and for forests with similar structure; to standing trees due to its simplicity and accuracy, the best equation was Kopezki-Gehrardt (V = - 0.6870 + 0.00103 d²; for felling trees or for studies of biomass and carbon stock, the equation indicated is Schumacher-Hall (LnV = -9.5452 + 2.12837 Ln (d + 0.72209Ln (h.

    doi: 10.4336/2010.pfb.30.64.283

    A necessidade de quantificação do estoque de matéria-prima florestal, em floresta nativa, conduz para a busca de métodos eficientes de estimativa do volume de madeira, que possibilitem quantificar o estoque presente e futuro de maneira eficiente e precisa. O objetivo desse trabalho foi ajustar modelos matemáticos, para estimativa de volume comercial de madeira, permitindo a determinação do potencial madeireiro de uma região, com maior precisão e menor custo. O estudo foi realizado no Município de Lábrea, AM, em uma área de 6 mil ha, inserida no Projeto de Manejo Florestal Seringal Iracema II. A floresta é predominantemente densa com árvores emergentes, também com ocorrência de Foresta Aberta com bambu e palmeiras. Foram cubadas pelo método Smalian 141 árvores de diferentes espécies comerciais para a estimativa do volume de madeira comercial. As equações obtidas são válidas para os diâmetros entre 50 cm e 140 cm e para florestas com estrutura semelhante; para árvores em pé, devido a sua simplicidade e precisão, a melhor equação foi a de Kopezki-Gehrardt (V=-0,6870 + 0,00103 d². Para árvores derrubadas ou para estudos de biomassa e estoque de carbono, a equação indicada foi a de Schumacher-Hall (LnV = -9,5452 + 2,12837 Ln(d + 0,72209 Ln(hc.

  1. On the water hazards in the trans-boundary Kosi River basin

    OpenAIRE

    N. Sh. Chen; G. Sh. Hu; Deng, W.; N. Khanal; Zhu, Y. H.; Han, D

    2013-01-01

    The Kosi River is an important tributary of the Ganges River, which passes through China, Nepal and India. With a basin area of 71 500 km2, the Kosi River has the largest elevation drop in the world (from 8848 m of Mt Everest to 60 m of the Ganges Plain) and covers a broad spectrum of climate, soil, vegetation and socioeconomic zones. The basin suffers from multiple water related hazards including glacial lake outburst, debris flow, landslides, flooding, drought, soil erosio...

  2. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  3. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  4. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    Science.gov (United States)

    Jean-François, Crétaux; Sylvain, Biancamaria; Adalbert, Arsen; Muriel, Bergé-Nguyen; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2–4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  5. SWOT data assimilation for reservoir operations in the upper Niger river basin

    Science.gov (United States)

    Munier, Simon; Lettenmaier, Dennis; Polebitski, Austin; Brown, Casey

    2013-04-01

    Our objective is to evaluate the potential for swath altimetry (SWOT) data to improve reservoir operations in the upper Niger river basin where two reservoirs are (or will be) used to sustain water demand, mainly for irrigation. We coupled the LISFLOOD-FP hydrodynamics model to the VIC hydrology model to compute the "true" state of the system which we used with a SWOT simulator to provide synthetic water levels and surface extent for both the Niger River channel and the two reservoirs. The simulated states were obtained by running the models with perturbed inputs (meteorological forcings to the VIC model, and water level in the two reservoirs). We integrated a reservoir rule model with the river hydrodynamics and hydrology models in order to define dam releases for each reservoir depending on available water in the river reach and downstream water demand. We then assimilated in situ and SWOT data into the coupled models to correct for model and forcing errors. We considered four scenarios: no assimilation, assimilation of in situ data only, assimilation of SWOT data only, and assimilation of both data sources. We computed performance of each scenario from the total volume of released water and the ability of the system to satisfy water demand.

  6. Fluvial sediment in the little Arkansas River basin, Kansas

    Science.gov (United States)

    Albert, C.D.; Stramel, G.J.

    1966-01-01

    Characteristics and transport of sediment in the Little Arkansas River basin in south-central Kansas were studied to determine if the water from the river could be used as a supplemental source for municipal supply or would provide adequate recharge to aquifers that are sources of municipal and agricultural water supplies. During periods when overland 1low contributed a significant amount to streamflow, the suspended sediment in the Little Arkansas River at Valley Center averaged about 85 percent of clay, about 13 percent of silt, and about 2 percent of sand. The average annual suspended-sediment discharge for the water years 1958, 1959, 1960, and 1961 was about 306,000 tons, and about 80 percent of the load was transported during 133 days of the 1,461-day period. The average daily water discharge of 352 cubic feet per second for the period 1958-61 was more than the long-term (i}9-year) average of 245 cfs; therefore, the average annual sediment load for 1958-61 was probably greater than the average annual load for the same long-term period. Studies of seepage in a part of the channel of Kisiwa Creek indicated that an upstream gravel-pit operation yielded clays which, when deposited in the channel, reduced seepage. A change in plant operation and subsequent runoff that removed the deposited clays restored natural seepage conditions. Experiments by the Wichita Water Department showed that artificial recharge probably cannot be accomplished by using raw turbid water that is injected into wells or by using pits. Recharge by raw turbid water on large permeable areas or by seepage canals may be feasible. Studies of chemical quality of surface water at several sites in the Little Arkansas River basin indicate that Turkey. Creek is a major contributor of chloride and other dissolved solids to the Little Arkansas River and that the dissolved-solids content is probably highest during low-flow periods when suspended-sediment concentration is low. Data collected by the Wichita Water Department indicate that chloride concentrations are diminishing with time at sampled locations. and they receive recharge from rainwater and snowmelt moving through overlying alluvium and from storage in the De Chelly sandstone which encloses the east half of the diatreme. The quality of water from all areas is suitable for domestic use. However, special treatment may be necessary to make the water suitable for pulp processing.

  7. Development of a systemwide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Volume 2 -- Evaluation: 1993 Annual report

    International Nuclear Information System (INIS)

    An attempt was made to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Modeling simulations based on work in the John Day Reservoir from 1982 through 1988 indicated that if northern squawfish larger than 250 mm fork length were exploited, at a rate of 10--20%, reductions in their numbers and restructuring of their populations could reduce their predation on juvenile salmonids by 50% or more. The authors evaluated the success of three test fisheries conducted in 1993--a sport-reward fishery, a dam-angling fishery, and a trap-net fishery, to achieve a 10--20% exploitation rate on northern squawfish. The authors also began evaluating the response of northern squawfish populations to sustained fisheries. In addition, the authors gathered information regarding the economic, social, and legal feasibility of sustaining each fishery, and report on the structure and function of the fish collection and distribution system

  8. Isotope composition of iron delivered to the oceans by intertropical rivers: The Amazon River Basin case

    Science.gov (United States)

    Poitrasson, F.; Vieira, L. C.; Seyler, P.; dos Santos Pinheiro, G. M.; Mulholland, D. S.; Ferreira Lima, B. A.; Bonnet, M.; Martinez, J.; Prunier, J.

    2011-12-01

    Riverborne iron is a notable source for this biogeochemically key element to the oceans. Recent investigations have shown that its isotopic composition may vary significantly in oceanic waters. Hence, a proper understanding of the Fe cycle at the surface of the Earth requires a good characterization of the isotopic composition of its various reservoirs. However, as the database growths, it appears that the isotope composition of the riverborne Fe delivered to the oceans may be more varied than initially thought, in agreement with inferences from soil studies from different climatic contexts. It is therefore important to compare major rivers from different latitudes. We focused our attention on the Amazon River and its tributaries that represent ca. 20% of the freshwater delivered to the oceans by world rivers. Preliminary experiments suggest that water filtration may induce biases in stable Fe isotope composition. Therefore, we worked first on bulk waters, sampled during multidisciplinary field campaigns on the Amazon River and its tributaries, including the Solimoes, Negro, Madeira and Tapajos Rivers. Besides a complete sample physical-chemical characterization, Fe isotope determinations were conduced after water sample mineralization, iron purification and MC-ICP-MS analysis. Our first results reveal that most bulk water samples cluster close to the continental crust value (0.1% ?57FeIRMM-14) with an overall range of 0.2%. This is consistent with the restricted range found in lateritic soils elsewhere that represent 80% of the Amazon basin surface. Only black water rivers flowing over the podzols of the northern portion of the Amazon basin tend to show lighter isotopic compositions, down to -0.18%. However, sediment analyses suggest that this light Fe isotopic is lost through sedimentation on the river bed, thereby leading the waters to have Fe isotope compositions remaining close to that of the continental crust. This constant isotopic signature holds whatever the relative proportion of dissolved Fe in the bulk waters budget, that ranges from 5 to 50% in these waters, whatever the sample depth and whenever the samples were taken in the river cycle. Hence, given that several studies have shown that Fe loss through flocculation in estuaries does not affect Fe isotope signatures, we conclude that the bulk waters from the Amazon River delivered to the ocean should have an isotopic composition close to that of the continental crust.

  9. Environmental settings of the South Fork Iowa River basin, Iowa, and the Bogue Phalia basin, Mississippi, 2006-10

    Science.gov (United States)

    McCarthy, Kathleen A.; Rose, Claire E.; Kalkhoff, Stephen J.

    2012-01-01

    Studies of the transport and fate of agricultural chemicals in different environmental settings were conducted by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's Agricultural Chemicals Team (ACT) at seven sites across the Nation, including the South Fork Iowa River basin in central Iowa and the Bogue Phalia basin in northwestern Mississippi. The South Fork Iowa River basin is representative of midwestern agriculture, where corn and soybeans are the predominant crops and a large percentage of the cultivated land is underlain by artificial drainage. The Bogue Phalia basin is representative of corn, soybean, cotton, and rice cropping in the humid, subtropical southeastern United States. Details of the environmental settings of these basins and the data-collection activities conducted by the USGS ACT over the 2006-10 study period are described in this report.

  10. A Synoptic Survey of Nitrogen and Phosphorus in Tributary Streams and Great Rivers of the Upper Mississippi River Basin

    Science.gov (United States)

    We combined stream chemistry and hydrology data from surveys of 467 tributary stream sites and 447 great river sites in the Upper Mississippi River basin to provide a regional snapshot of baseflow total nitrogen (TN) and total phosphorus (TP) concentrations, and to investigate th...

  11. Environmental and hydrologic overview of the Yukon River basin, Alaska and Canada

    Science.gov (United States)

    Brabets, Timothy P.; Wang, Bronwen; Meade, Robert H.

    2000-01-01

    The Yukon River, located in northwestern Canada and central Alaska, drains an area of more than 330,000 square miles, making it the fourth largest drainage basin in North America. Approximately 126,000 people live in this basin and 10 percent of these people maintain a subsistence lifestyle, depending on the basin's fish and game resources. Twenty ecoregions compose the Yukon River Basin, which indicates the large diversity of natural features of the watershed, such as climate, soils, permafrost, and geology. Although the annual mean discharge of the Yukon River near its mouth is more than 200,000 cubic feet per second, most of the flow occurs in the summer months from snowmelt, rainfall, and glacial melt. Eight major rivers flow into the Yukon River. Two of these rivers, the Tanana River and the White River, are glacier-fed rivers and together account for 29 percent of the total water flow of the Yukon. Two others, the Porcupine River and the Koyukuk River, are underlain by continuous permafrost and drain larger areas than the Tanana and the White, but together contribute only 22 percent of the total water flow in the Yukon. At its mouth, the Yukon River transports about 60 million tons of suspended sediment annually into the Bering Sea. However, an estimated 20 million tons annually is deposited on flood plains and in braided reaches of the river. The waters of the main stem of the Yukon River and its tributaries are predominantly calcium magnesium bicarbonate waters with specific conductances generally less than 400 microsiemens per centimeter. Water quality of the Yukon River Basin varies temporally between summer and winter. Water quality also varies spatially among ecoregions

  12. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Science.gov (United States)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-04-01

    Since marine derived nutrients (MDN) are transported not only in river channels but also across the entire river basin, including via ground water and migratory animals, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen (TN) input across a river basin using stable isotope analysis (SIA) of nitrogen (?15N). The contribution of TN entering the river basin by salmon was 23.8 % relative to the total amount of TN exported from the river basin, providing a first estimate of MDN export for a river basin. The contribution of nitrogen from the ocean to the river basin soils was between 22.9 and 23.8 %. Furthermore, SIA showed that the transport of oceanic TN by sea eagles (Haliaeetus spp.) was greater than that by bears (Ursus arctos), which had previously been that bears are thought to be the major animal transporter of nutrients in the northern part of Japan.

  13. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Directory of Open Access Journals (Sweden)

    K. Nakayama

    2015-04-01

    Full Text Available Since marine derived nutrients (MDN are transported not only in river channels but also across the entire river basin, including via ground water and migratory animals, it is necessary to investigate the contribution of MDN to the forest floor (soils in order to quantify the true role of MDN at the river ecosystem scale. This study investigated the contribution of pink (Oncorhynchus gorbuscha and chum salmon (O. keta to total oceanic nitrogen (TN input across a river basin using stable isotope analysis (SIA of nitrogen (?15N. The contribution of TN entering the river basin by salmon was 23.8 % relative to the total amount of TN exported from the river basin, providing a first estimate of MDN export for a river basin. The contribution of nitrogen from the ocean to the river basin soils was between 22.9 and 23.8 %. Furthermore, SIA showed that the transport of oceanic TN by sea eagles (Haliaeetus spp. was greater than that by bears (Ursus arctos, which had previously been that bears are thought to be the major animal transporter of nutrients in the northern part of Japan.

  14. Investigation into impacts of land-use changes on floods in the upper Huaihe River basin, China

    Science.gov (United States)

    Yu, M.; Li, Q.; Lu, G.; Wang, H.; Li, P.

    2015-06-01

    To investigate the agricultural land-use change on flood regime, the upper Huaihe River basin above the Dapoling station was selected as the case study site. Based on topography, land-use, hydrological and meteorological data in 1990s and 2010s, the improved distributed Xinanjiang model, with potential evapotranspiration being computed by coupling a dual-source evapotranspiration model with a simplified plant growth model, was adopted to simulate the daily and hourly rainfall-runoff processes over 1990s and 2010s, and then the effects of land-use change on flood volume, flood peak, occurring time of flood peak, the percentage of surface runoff component were investigated respectively. The results was interesting and indicated that impacts of land-use change on flood characteristics varied significantly with land-use types. The outputs could provide valuable references for flood risk management and water resources management in the Huaihe River basin.

  15. Understanding wellbore stability challenges in Horn River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Safdar; Ansari, Sajjad; Han, Hongxue; Khosravi, Nader [Schlumberger (Canada)], email: safdar.khan@slb.com

    2011-07-01

    The industry must spend hundreds of millions of dollars each year because of wellbore instability problems. Shale formations are a major source of wellbore instabilities, and these problems have been particularly acute in the Horn River Basin (HRB), the largest gas shale field in Canada. Shale formations have laminated structures and, therefore, significant differences in mechanical properties parallel and perpendicular to bedding planes; anisotropic estimated horizontal stresses can be caused by these differences. Failure to consider this feature can have very serious consequences for drilling. The authors studied cases where operators had faced severe drilling challenges; then they performed a comprehensive post-mortem analysis of these wells, identified possible causes for problem zones and made recommendations for addressing these problems in future drilling. Three of the key reasons are that shale anisotropy was not properly characterized, that anisotropic stresses were not considered in the pre-spud analysis, and that the attack angle with respect to shale bedding planes was inappropriate.

  16. Environmental arsenic epidemiology in the Mekong river basin of Cambodia.

    Science.gov (United States)

    Phan, Kongkea; Kim, Kyoung-Woong; Hashim, Jamal Hisham

    2014-11-01

    We investigated relationship of arsenicosis symptoms with total blood arsenic (BAs) and serum albumin (SAlb) of residents in the Mekong River basin of Cambodia. We found that arsenicosis patients had significantly higher BAs and lower SAlb than asymptomatic villagers (Mann-Whitney U test, p44.3gL(-1) (OR=1.764, 95% CI=0.999-3.114) and 117.6% (2.176 times) as likely to occur among those with BAs>5.73µgL(-1) than for those having BAs?5.73µgL(-1) (OR=2.176, 95% CI=1.223-3.872). Furthermore, a significant negative correlation was also found between BAs and SAlb (rs (199)=-0.354, p<0.0001). As such, this study suggests that people with low SAlb and/or high BAs are likely to rapidly develop arsenicosis symptoms. PMID:25262072

  17. SEA of river basin management plans : incorporating climate change

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; KØrnØv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental assessment (SEA). An important environmental factor for the water sector is climate change, especially the changes it causes to the water environment. However, based on an argument of an inadequate knowledge base regarding climate change impacts, the prospect of Danish authorities including climate change in their SEAs of RBMPs is weak. In this paper the connections between climate change and water are reviewed. As a result, it is suggested that climate change needs to be considered in three ways: mitigation, adaptation and baseline adaptation. Udgivelsesdato: December

  18. Potential of using WATCH forcing data to model a low land river basin of the upper Murray-Darling basin in Australia

    Science.gov (United States)

    Kundu, D.; Van Ogtrop, F. F.; Vervoort, R. W.

    2014-12-01

    Scattered station based climate data is often not sufficient to describe the dynamics of the catchment processes and efficiently manage the water resources. Therefore, a lot of focus has been to identify alternative distributed data sources, such as; remotely sensed data or global re-analysis data. Hence, this study uses the Water and Global Change (WATCH) forcing data, based on 40 years ECMWF Re-Analysis (ERA-40), to model a semi-arid low land flood plain river basin in a data sparse region. The semi-distributed Soil Water Assessment Tool (SWAT) was used to model the river basin (Warrego, 52140.6 square km) located in the upper Murray-Darling basin in Eastern Australia. Multi station model calibration was achieved using the Sequential Uncertainty Fitting -2 (SUFI-2) algorithm with the Nash Sutcliffe Efficiency (NSE) as the goal function against monthly observed flow data. Modelling of a low land river system is highly challenging, due to topographic heterogeneity, nonlinear climatic behavior and sparse observed flow data with extended periods of zero flows. Preliminary simulation results indicate a NSE of 0.26 to 0.86 for the calibration period and 0.04 to 0.47 for the validation period. Furthermore, the volume fraction explained by the model ranged from 0.69 to 2.71 in the validation period. While the unsatisfactory results may be attributed to the SWAT modelling framework, which struggles with modelling flow in flat flood plains, the study does reveal the potential to use remotely sensed data in low land river basins with little or no climate data.

  19. Andean Basins Morphometry: Assesing South American Large Rivers' Source Areas

    Science.gov (United States)

    Bean, R. A.; Latrubesse, E. M.

    2014-12-01

    Presently there are no regional-scale morphometric analyses of Andean fluvial basins. Therefore, we created a continental-scale database of these basins. Our data covers over an area 1,000,000 km2 of the Andes, from Venezuela to Argentina. These basins are the source of some of the largest rivers in the world including the Amazon, Orinoco, Parana, and Magdalena. Morphometric parameters including shape factor, relief ratio, longitudinal profiles and different indices of basin elevation were calculated based on the CGIAR SRTM 4.1 DEM (~90 m resolution). FAO Hydrosheds were used to segment the DEM by major catchment and then manually cut at the Andean zone. In the North and Central Andes, this produced over 500,000 subcatchments, which we reduced to 619 by setting minimum catchment area to 100 km2. We then integrate lithologic data from DNPM geologic data. Our results indicate that sedimentary lithologies dominate Central Andean catchments (n=268,k=4), which cover an area 767,00 km2, while the Northern Andean catchments (covering 350,000 km2) are more varied, dominated by volcanics in the Pacific (n=78), a sedimentary (48%) dominant mix in the Caribbean (n=138) and 60% sedimentary in the Amazon-Orinoco subregion catchments (n=138). Elevation averages are smallest in the north Andes and average maximum elevations (6,026 m) in the Argentinian catchments (n=65) of the Central Andes are the highest. Shape factors range from 0.49 to 0.58 in the North and 0.52 to 0.58 in the Central Andes. There are clear differences in all categories between region and subregion, but that difference does not hinge on a single morphometric or geologic parameter. Morphometric parameters at a watershed scale (listed in Table) are analyzed and hydrologic data from gauging stations throughout the Andes (n=100) are used to compare morphometric parameters with lithology and characteristics from the basin hydrograph (peak discharge timing, minimum and maximum discharge, and runoff).

  20. Assessing the Resilience of a River Management Regime: Informal Learning in a Shadow Network in the Tisza River Basin

    OpenAIRE

    Geza Molnar; Attila Sarvari; Peter Balogh; Zsuzsanna Flachner; Piotr Magnuszewski; Jan Sendzimir; Zsuzsanna Nagy

    2008-01-01

    Global sources of change offer unprecedented challenges to conventional river management strategies, which no longer appear capable of credibly addressing a trap: the failure of conventional river defense engineering to manage rising trends of disordering extreme events, including frequency and intensity of floods, droughts, and water stagnation in the Hungarian reaches of the Tisza River Basin. Extreme events punctuate trends of stagnation or decline in the ecosystems, economies, and societi...

  1. Trends in Extremes Rainfall over the São Francisco River Basin

    Science.gov (United States)

    Valverde, M. C.; Marengo, J. A.

    2013-05-01

    The present study aims to analyze trends in rainfall extreme over the basin São Francisco (SF) using climate extreme indices (CEI). Also, it was analyzed the relationship between CEI and Southern Oscillation Index (SOI). São Francisco River system is one of Brazil's most significant water bodies; it is the fourth largest river system of the continent, one of the two main plateau rivers, and the largest river wholly within Brazil. Inside it are installed a series of hydroelectric dams and irrigation projects that sustain the energy and economy in the Northeast region of Brazil. In order to facilitate the spatial analysis of the trends São Francisco basin was divided in four sectors, called geo-morphological regions. From upstream to downstream, the sectors are: Upper (USF), Middle (MSF), Sub-Middle (SSF) and Lower São Francisco (LSF). The CEI were derived from daily precipitation of Climatic Prediction Center (CPCp) for period of 1979-2005, and from a set of 10 stations' records of daily precipitations within the period 1960-1999. Most of the CEI represent the frequency of heavy precipitation events (R30mm and R50mm) and flood events (RX5day, RX1day and R95p). Droughts (CDDd) are identified by means of two indicators: the longest dry period (CDD) and the cycle annual. Additionally, it was used the ETA_HadCM3 model in order to simulate the present climate (1961-1990) and future projections (2011- 2099) of climate extremes in the basin. The results showed a high interannual variability of the indices and a good relationship between the CEI and SOI. Drought (CDDd), and short period of rainfall (RX1day, RX5day and R30mm) occurred with more frequency and intensity in the El Niño events. This would suggest that extreme rainfall events in short periods of time (RX1day and RX5day) can occur in very rainy or dry years, the difference could be assessed in terms of their impacts. In wet years, with the highest frequency of days with rain and with a moist soil, an extreme event could cause flooding or landslides. Already, an extreme event in a dry year could compensate the deficit of water that the soil of that region can be suffering, not disregarding the possibility of severe impacts due to urbanization problems on river slopes. The spatial distribution of trends showed increase of CDD in Upper SF. R95p showed opposite tends in Upper SF (increase) and Lower SF (decrease). Increasing trend of RX5day was observed in Lower and Lower-Middle SF. Extreme events obtained from model ETA_HadCM3 for the period 1979-1990 are compared with the same obtained from the CPCp. It was showed that the model overestimated RX1day, RX5day and CDD, suggesting dry periods with greater magnitude and short-term precipitation more intense. In future scenarios, dry periods are projected to increase in length and frequency until 2071-2099, while RX1day will be more intense. It is suggested that model outputs are needed to be calibrated with the observed datasets in daily-scale, especially in obtaining rainfall extremes.

  2. Assessing interannual water balance of La Plata river basin

    Scientific Electronic Library Online (English)

    C. M., KREPPER; V., VENTURINI.

    2009-10-01

    Full Text Available El río Paraná es el más importante de la Cuenca de La Plata, sustentando economías regionales en tres países. Durante las últimas décadas, se han producido cambios significativos en la cuenca del Paraná, debido a la deforestación y sustitución de cultivos. Esto pudo haber modificado la respuesta de [...] la cuenca en términos de caudales del río Paraná. El objetivo principal de este trabajo es analizar la estructura de la serie temporal de evapotranspiración (ET(t)) de la Cuenca Superior del Paraná. En primer lugar se estudió la relación entre las variables en la ecuación del balance hídrico y luego se aplicó un análisis de espectro singular (SSA, por sus siglas en inglés) para determinar las señales presentes en las series de ET(t). El estudio de correlación muestra que ET(t) está correlacionada con las precipitaciones en las subcuencas del norte y no está correlacionada en la más austral. Las series temporales ET(t)1 ET(t)3 y ET(t)4 muestran una señal de baja frecuencia mientras que las señales dentro del rango ENSO son estadísticamente significativas en ET(t)1, y ET(t)4 , aunque están presentes en las otras subcuencas (ET(t)2, y ET(t)3)como señales débiles. En la Cuenca de La Plata ET(t) estaría afectada tanto por los cambios en las propiedades físicas de la cuenca como por la presencia de la señal en el rango ENSO de las precipitaciones. Abstract in english The Paraná river is the most important component of the La Plata basin, sustaining regional economies in three countries. In the last decades, significant regional changes such as deforestation and crop substitution have been taken place in the Paraná basin. This fact could have modified the basin r [...] esponse in terms of the Paraná streamflow. The main objective of this paper is to analyze the structure of the evapotranspiration (ET(t)) time series of the upper Paraná basin. We analyzed the relationship between the variables in the water balance equation, then we applied a singular spectral analysis (SSA) to learn more about the temporal structure of the ET(t) time series. The correlation study shows that ET(t) is correlated with precipitations in the northern sub-basins but it is not correlated at all in the southern basin. The time structure of ET(t)1 ET(t)3 and ET(t)4 exhibit low-frequency signals while the ENSO-range signals are statistically significant in ET(t)1 and ET(t)4 although it also appears in ET(t)2 and ET(t)3 as a weak signals. Looking at the whole basin, ET(t) would be affected either by changes in the basin physical properties or by the ENSO-range signals present in precipitation.

  3. Assessment of coal geology, resources, and reserves in the Southwestern Powder River Basin, Wyoming

    Science.gov (United States)

    Osmonson, Lee M.; Scott, David C.; Haacke, Jon E.; Luppens, James A.; Pierce, Paul E.

    2011-01-01

    The availability of abundant new borehole data from recent coal bed natural gas development was utilized by the U.S. Geological Survey for a comprehensive evaluation of coal resources and reserves in the southwestern part of the Powder River Basin in Wyoming. This report on the Southwestern Powder River Basin assessment area represents the third area within the basin to be assessed, the first being for coal resources and reserves in the Gillette coal field in 2008, and the second for coal resources and reserves in the northern Wyoming area of the basin in 2010.

  4. Changes in precipitation and temperature in Xiangjiang River Basin, China

    Science.gov (United States)

    Ma, Chong; Pan, Suli; Wang, Guoqing; Liao, Yufang; Xu, Yue-Ping

    2015-02-01

    Global warming brings a huge challenge to society and human being. Understanding historic and future potential climate change will be beneficial to regional crop, forest, and water management. This study aims to analyze the precipitation and temperature changes in the historic period and future period 2021-2050 in the Xiangjiang River Basin, China. The Mann-Kendall rank test for trend and change point analysis was used to analyze the changes in trend and magnitude based on historic precipitation and temperature time series. Four global climate models (GCMs) and a statistical downscaling approach, LARS-WG, were used to estimate future precipitation and temperature under RCP4.5. The results show that annual precipitation in the basin is increasing, although not significant, and will probably continue to increase in the future on the basis of ensemble projections of four GCMs. Temperature is increasing in a significant way and all GCMs projected continuous temperature increase in the future. There will be more extreme events in the future, including both extreme precipitation and temperature.

  5. Changes in precipitation extremes in Brazil (Paraná River Basin)

    Science.gov (United States)

    Zandonadi, Leandro; Acquaotta, Fiorella; Fratianni, Simona; Zavattini, João Afonso

    2015-02-01

    This research was aimed at addressing aspects related to variation in the amount of precipitation during the period from 1986 to 2011 in the Paraná River Hydrographical Basin, Brazil, for 32 meteorological stations using 11 climate indices created by the ETCCDI (Expert Team, ET, on Climate Change Detection and Indices, ETCCDI). The daily rainfall data were organized in spreadsheets, which were subjected to an intense quality control and an accurate historical research. For each pluviometric index, we have estimated the trends and the statistical significant of the slopes have been calculated. The results confirm that an increase in total precipitation in almost all analyzed stations was registered, and the extreme precipitations were the main contributors to such additions. In fact, the significant increase in total annual rainfall in north-central sector of the basin are related to higher rates of heavy rain, mainly above 95th percentile, as well as to the highest event of rainfall above 10 mm. Instead the northern part of the region, showed declining trends of extreme rainfall, caused mainly by the reduction in the rainfall occurrences over 95th percentile. In order to evaluate the impact that the increasing extreme rainfall may cause in large urban centers, we have investigated the data of two municipalities (Curitiba, PR and Goiânia, GO-Brazil), where the positive trend can cause inconvenience to the population (floods and inundations) suggesting, at least, the need of implementation of more effective urban planning for the future.

  6. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    Science.gov (United States)

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    The McKenzie River is a tributary to the Willamette River in northwestern Oregon. The McKenzie River is approximately 90 miles in length and has a drainage area of approximately 1,300 square miles. Two major flood control dams, a hydropower dam complex, and two hydropower canals significantly alter streamflows in the river. The structures reduce the magnitude and frequency of large and small floods while increasing the annual 7-day minimum streamflows. Stream temperatures also have been altered by the dams and other anthropogenic factors, such as the removal of riparian vegetation and channel simplification. Flow releases from one of the flood control dams are cooler in the summer and warmer in the fall in comparison to unregulated flow conditions before the dam was constructed. In 2006, the Oregon Department of Environmental Quality listed a total of 112.4, 6.3, and 55.7 miles of the McKenzie River basin mainstem and tributary stream reaches as thermally impaired for salmonid rearing, salmonid spawning, and bull trout, respectively. The analyses in this report, along with previous studies, indicate that dams have altered downstream channel morphology and ecologic communities. In addition to reducing the magnitude and frequency of floods, dams have diminished sediment transport by trapping bed material. Other anthropogenic factors, such as bank stabilization, highway construction, and reductions of in-channel wood, also have contributed to the loss of riparian habitat. A comparison of aerial photography taken in 1939 and 2005 showed substantial decreases in secondary channels, gravel bars, and channel sinuosity, particularly along the lower alluvial reaches of the McKenzie River. In addition, bed armoring and incision may contribute to habitat degradation, although further study is needed to determine the extent of these processes. Peak streamflow reduction has led to vegetation colonization and stabilization of formerly active bar surfaces. The large flood control dams on Blue River and South Fork McKenzie River likely have had the greatest effect on downstream habitats because these sediment and flood-rich tributaries historically contributed a disproportionate volume of bed material, wood, and peak flows in comparison with the spring-fed tributaries of the upper McKenzie River basin. The ecological effects of the dams were examined by focusing on nine exemplar aquatic and terrestrial species, including spring Chinook salmon, bull trout, Oregon chub, Pacific and western brook lamprey, red-legged frog, western pond turtle, alder, and cottonwood. The changes caused by the dams to streamflow hydrograph affect all these and other species in complex ways, although a few commonalities are apparent. A loss of channel complexity in the McKenzie River basin, which is associated with the reduction in flood events and widespread channel stabilization, is the primary factor related to the observed population declines for all nine exemplar species. The dams also have caused direct ecological effects by blocking access to habitat, changing the amount and timing of available critical habitat, and changing water temperature during important seasons for different life stages.

  7. Towards a decision support system for flood management in a river basin

    OpenAIRE

    Vieira, Lu??s Manuel Vasquez; Pinho, Jos?? L. S.; Schwanenberg, D.; Vieira, B??rbara

    2014-01-01

    A platform for flood forecasting (FEWS-LIMA) in the Portuguese river Lima basin was implemented applying Delft-FEWS software. This platform integrates SOBEK Sacramento hydrological model, SOBEK rivers hydrodynamic models (working together in predicting river hydrodynamics behaviour), and a comprehensive hydrological database. The calibration of these models was achieved using historical river flow data of different rainfall events for two different periods: after the dams construction and bef...

  8. Reservoirs promote the taxonomic homogenization of fish communities within river basins

    OpenAIRE

    Clavero, Miguel; Hermoso, Virgilio

    2011-01-01

    Most studies analyzing patterns in biotic homogenization of fish communities have used large-scale approaches, while the community-level effects of species intro- ductions and local extinctions within river basins have been sparsely analyzed. In this article, we examine patterns in freshwater fish a- and b-diversity in relation to the presence of reservoirs in a Mediterranean river (Guadiana river; Iberian Peninsula). We used fish samples from 182 river localities and 59 reservoir ones to add...

  9. Hydrological and geochemical studies on the Sahelo-Sudanian basin of the Niger River

    International Nuclear Information System (INIS)

    African drought and rainfall deficits observed during the last twenty years had important repercussions on the runoff of the Niger River (annual deficit of 20 % during the 70's and of 46 % during the 80's). A large reduction of the groundwater storage explains the persistent degradation of the hydrological resource. The inner Delta of the Niger River is a particular system submitted to Sahelian and sub-desertic climatic conditions, and is characterized by large flood plains. Time series of input water volumes in the inner Delta and of the water losses inside it show that the water losses, due to the intense evaporation, vary from 40 km3 to 6 km3. The water losses are maximum during the wettest years, up to 47 %, and minimum during the driest years, only 32 %, due to the reduction of the flooded area. Since 1990 the EQUANIS program associates hydrological and chemical measurements in the study of the dissolved and suspended matter flows in the Niger River's flows to the Sahel. The specific sediment load vary between 7 or 8 t dm2 year-1 for the upper Niger River and 3 t km2 year-1 for the Bani River. The specific dissolved load vary between 10 or 12 t km2 year-1 for the Niger River and 2,5 t km2 year-1 for the Bani River. The annual input in the inner Delta was about 2,2 Mt in 1992-1993. Seasonal variations of the matter fluxes are very different between the upp fluxes are very different between the upper and the lower parts of the inner Delta, due to the breaking of the annual flood and to the more important flood plains in the upper Delta. The preliminary results indicate that both rivers have a low level in dissolved element concentration. The inner Delta is not an old sedimentary basin and the actual deposits of matter should characterize its working during the lasting deficit of the water resources of the Niger River. (author)

  10. A new species of Tyttocharax (Characiformes: Characidae: Stevardiinae) from the Güejar river, Orinoco river Basin, Colombia

    OpenAIRE

    César Román-Valencia; Garci?a-alzate, Carlos A.; Ruiz-c, Raquel I.; Donald, C.; Taphorn, B.

    2012-01-01

    A new Tyttocharax species from the Güejar River system, near the Macarena Mountains in Colombia is described. This is the first record for the genus from the Orinoco basin. The combination of the following characters distinguish Tyttocharax metae from its congeners: presence of bony hooks on the pectoral and caudal-fin rays; bony hooks on the anal-fin rays larger than those on the pelvic-fin rays; pectoral-fin rays i,5-6,i; presence of three unbranched dorsal-fin rays; absence of an adipose ...

  11. Flood forecasting and early warning system for Dungun River Basin

    International Nuclear Information System (INIS)

    Floods can bring such disasters to the affected dweller due to loss of properties, crops and even deaths. The damages to properties and crops by the severe flooding are occurred due to the increase in the economic value of the properties as well as the extent of the flood. Flood forecasting and warning system is one of the examples of the non-structural measures which can give early warning to the affected people. People who live near the flood-prone areas will be warned so that they can evacuate themselves and their belongings before the arrival of the flood. This can considerably reduce flood loss and damage and above all, the loss of human lives. Integrated Flood Analysis System (IFAS) model is a runoff analysis model converting rainfall into runoff for a given river basin. The simulation can be done using either ground or satellite-based rainfall to produce calculated discharge within the river. The calculated discharge is used to generate the flood inundation map within the catchment area for the selected flood event using Infowork RS.

  12. Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil.

    Science.gov (United States)

    Rezende, Patrícia Sueli; Costa, Letícia Malta; Windmöller, Cláudia Carvalhinho

    2015-04-01

    Paracatu River Basin, Minas Gerais, Brazil, houses long areas of irrigated agriculture and gold-, lead-, and zinc-mining activities. This region has a prevalence of sulfide minerals and a natural occurrence of high levels of arsenopyrite. In this work, surface water, groundwater, sediments and local vegetable samples were collected in October 2010 and November 2011 and were analyzed to evaluate arsenic (As) distribution, mobility, and transport in these environmental compartments. All sediment samples (738-2,750 mg kg(-1)) and 37 % of the water samples [less than the limit of detection (LOD) to 110 µg L(-1)] from the rivers and streams of Paracatu had As concentrations greater than the quality standards established by national and international environmental organizations (5.9 mg kg(-1) for sediments and 10 µg L(-1) for water). Most vegetable samples had As concentrations within the normal range for plants (lower than the LOD to 120 mg kg(-1)). A correlation among As concentrations in water, sediment, and vegetable samples was verified. PMID:25672271

  13. Economic Peculiarities of the Romanian Tisa River Basin

    Directory of Open Access Journals (Sweden)

    ANA-MARIA POP

    2010-01-01

    Full Text Available A possible answer to the current challenges of the Tisa catchment area, correlated with water management, social and economic development, environmental conservation, is the transnational initiative of the five countries drained by the tributaries of the Tisa River. In this context, the spatial development has a major impact on the Romanian Tisa catchment area by providing the economic cohesion. The purpose of the present paper is to define the current status of economy in the Romanian Tisa River Basin, through the filter of achieving the level of competitiveness claimed by the national, European, or global authorities. By setting several quantitative indicators, analyzed for a standard territorial level (NUTS 3, for a definite time interval (2002-2007, those more or less competitive economic branches, activities or aspects of the analyzed territory were identified, and, at the same time, the elements that “hinder” development, the traditional remnants, or the existing entrepreneurial initiatives. On the basis of relevant indicators, the calculation of an index of competitiveness was proposed at territorial level, the results certifying a certain level of competitiveness for the region under consideration.

  14. Observed low flow trends in major US river basins

    Science.gov (United States)

    Pournasiri Poshtiri, M.; Pal, I.

    2014-12-01

    Changes in global climate would likely be associated with impacts on regional hydrological cycle, such as changes in variability of precipitation and stream flow. Hence, to formulate and implement climate risk management strategies, it is essential to detect where and when hydrological extremes have been changing and to what extent. This scientific research presents where and how low flow characteristics, particularly the occurrence, intensity and severity of hydrological extremes, have been changing in fourteen major river basins within the continental U.S. Of particular interest is to detect if monotonic trends in low flow characteristics shifted with decades, reflecting the known climatic shifts, particularly before and after 1980. Persistent low flow conditions in a river can directly influence water supply for domestic, agricultural, industrial, ecological, and other needs; and a monotonic trend in such persistent low flow condition can lead to chronic water scarcity—a main driver of societal and cross-boundary conflicts around the world. Thus, outcomes from this research are instrumental for the water managers to develop suitable adaptive management measures at the locations and times of need.

  15. Cross-Comparison of Climate Change adaptation Strategies Across Large River Basins in Europe, Africa and Asia

    OpenAIRE

    Krysanova, Valentina; Dickens, Chris; Timmerman, Jos; Varela Ortega, Consuelo; Schlu?ter, Maja; Roest, Koen; Huntjens, Patrick; Jaspers, Fons; Buiteveld, Hendrik; Moreno, Edinson; Pedraza Carrera, Javier; Sla?mova, Romana; Marti?nkova?, Marta; Blanco Gutie?rrez, Irene; Esteve Bengoechea, Paloma

    2010-01-01

    A cross-comparison of climate change adaptation strategies across regions was performed, considering six large river basins as case study areas. Three of the basins, namely the Elbe, Guadiana, and Rhine, are located in Europe, the Nile Equatorial Lakes region and the Orange basin are in Africa, and the Amudarya basin is in Central Asia. The evaluation was based mainly on the opinions of policy makers and water management experts in the river basins. The adaptation strategies were evaluated co...

  16. River monitoring from satellite radar altimetry in the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-03-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. In this study, retracked Envisat altimetry data was extracted over the Zambezi River Basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied the accuracies of the different methods were found to be comparable, with RMSE values ranging from 5.5 to 7.4 % terms of high flow estimation relative to in situ gauge measurements. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 8.2 and 25.8 % of the high flow estimates.

  17. Turbidity and suspended-sediment transport in the Russian River Basin, California

    Science.gov (United States)

    Ritter, John R.; Brown, William M., III

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  18. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    Science.gov (United States)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  19. Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China

    Directory of Open Access Journals (Sweden)

    X. Q. Feng

    2013-07-01

    Full Text Available Zhalong National Nature Preserve is a large wetland reserve on the Songnen Plain in Northeast China. Wetlands in the preserve play a key role in maintaining regional ecosystem function and integrity. Global climate change and intensified anthropogenic activities in the region have raised great concerns over the change of natural flow regime, wetland degradation and loss. In this study, two key hydrologic components in the preserve, water surface area and water volume, as well as their variations during the period 1985–2006, were investigated with a spatially-distributed hydrologic modeling system (SWAT. A wetland module was incorporated into the SWAT model to represent hydrological linkages between the wetland and adjacent upland areas. The modified modeling system was calibrated with streamflow measurements from 1987 to 1989 and was validated for the period 2005–2006. The calibration achieved a Nash efficiency coefficient (Ens of 0.86, and the validation yielded an Ens of 0.66. In the past 20 yr, water surface area in the Zhalong wetland fluctuated from approximately 200 km2 to 1145 km2 with a rapid decreasing trend through the early 2000s. Consequently, water volume decreased largely in the preserve, especially in the dry seasons. The situation changed following the implementation of a river diversion in 2001. Overall, the modeling yielded plausible estimates of hydrologic changes in this large wetland reserve, building a foundation for assessing ecological water requirements and developing strategies and plans for future water resources management within the river basin.

  20. Study of airborne gamma-ray spectrometer data procedures: Wind River Basin, Wyoming, Arminto Quadrangle

    International Nuclear Information System (INIS)

    This volume contains the following data for the Arminto Quadrangle, Wind River Basin, Wyoming: statistical summary tables; flight-line averages; geologic map units; geologic map with record locations; uranium mines and occurrences, uranium location map, eU symbol anomaly map; eU/eTh symbol anomaly map; eU/K symbol anomaly map; eTh symbol anomaly map; K symbol anomaly map; eTh/K symbol anomaly map; eU profile anomaly map; eU/eTh profile anomaly map; eU/K profile anomaly map; eTh profile anomaly map; K profile anomaly map; eTh/K profile anomaly map; preferred anomaly maps (4- and 7-point); combined 4- and 7-point preferred anomaly map; and stacked significance factor profiles

  1. Study of airborne gamma-ray spectrometer data procedures: Wind River Basin, Wyoming, Thermopolis Quadrangle

    International Nuclear Information System (INIS)

    This volume contains the following data from the Thermopolis Quadrangle, Wind River Basin, Wyoming: statistical summary tables; flight-line averages; geologic map units; geologic map with record locations; uranium mines and occurrences, uranium location map; eU symbol anomaly map; eU/eTh symbol anomaly map; eU/K symbol anomaly map; eTh symbol anomaly map; K symbol anomaly map; eU profile anomaly map; eU/eTh profile anomaly map; eU/K profile anomaly map; eTh profile anomaly map; K profile anomaly map; eTh/K profile anomaly map; preferred anomaly maps (4- and 7-point), combined 4- and 7-point preferred anomaly map; and stacked significance factor profiles

  2. Seed banks and their implications of rivers with different trophic levels in Chaohu Lake Basin, China.

    Science.gov (United States)

    Cui, Naxin; Wu, Juan; Zhong, Fei; Yang, Lihua; Xiang, Dongfang; Cheng, Shuiping; Zhou, Qi

    2015-02-01

    The seed banks of three rivers, with different trophic levels in Chaohu Lake Basin, China, were investigated to explore the dynamics of seed bank under the pressure of eutrophication. A total of 60 species from 25 family 43 genera were identified from the seed banks of the three rivers. In the eutrophic Paihe River, the species richness and mean seed density were the highest, followed by the oligotrophic Hangbuhe River and the hypereutrophic Nanfeihe River. Various compositions of three functional group assemblage of hydro-ecotypes were found in different rivers. The dominant and endemic species were aquatic, wetland, and terrestrial species in Hangbuhe River, Paihe River, and Nanfeihe River, respectively. The shift trend of seed bank in three rivers probably presented past vegetation dynamics under the trophic process in the rivers of Chaohu Lake Basin. Seed bank in the river bed might be quickly assessed by its trophic level. Additionally, it might imply that the seed bank with more aquatic species in the oligotrophic river would be a potential seed resource for vegetation restoration of severely degraded river ecosystems. PMID:25178861

  3. Point of Rocks, Black Butte faults, Green River Basin, Wyoming (grbfltg.shp)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a line representation of faults in a portion of the the Green River Basin. The fault data are part of the National Coal Resource...

  4. A history of early geologic research in the Deep River Triassic Basin, North Carolina

    Science.gov (United States)

    Clark, T.W.

    1998-01-01

    The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.

  5. Assessment on seasonal variation of groundwater quality of phreatic aquifers - A river basin system

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.

    2006-01-01

    Spatial distribution of pH, electrical conductivity (EC), total dissolved solids (TDS), fluoride and total iron content of ground water samples collected from the muvattupuzha river basin, Kerala, India, has been studied for pre monsoon and post...

  6. Organochlorine pesticides in fishes and sediments from the Tensas River Basin, Lousiana

    US Fish and Wildlife Service, Department of the Interior — The aquatic habitats of the Tensas River Basin in northeastern Louisiana have been heavily impacted by sediment and agrichemical runoff due to intensive drainage,...

  7. Aerial photo mosaic of the Tillamook and Trask Rivers, Tillamook basin, Oregon in 1939

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  8. Aerial photo mosaic of the Wilson and Kilchis Rivers, Tillamook basin, Oregon in 1939

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  9. Aerial photo mosaic of the Miami River, Tillamook basin, Oregon in 1939

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  10. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Slack Lineaments

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Slack, P. B., 1981, Paleotectonics and hydrocarbon...

  11. Landslide Deposit Boundaries for the Little North Santiam River Basin, Oregon

    U.S. Geological Survey, Department of the Interior — This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been...

  12. Digital geospatial dataset of the top of Paleozoic rocks in the Upper Colorado River Basin

    U.S. Geological Survey, Department of the Interior — These raster data of the top surface of the Paleozoic formation of the Upper Colorado River Basin (UCRB) were created for the purpose of developing a generalized...

  13. The Challenges of Integrated Management of Mekong River Basin in Terms of People’s Livelihood

    Directory of Open Access Journals (Sweden)

    Badandi ARAFAT

    2010-01-01

    Full Text Available Mekong River Basin is a life for many people in six south East Asian countries. The river basin is very productive and has crucial activities like: fishing, agriculture, hydroelectric power, transportation, biodiversity and so on. However, due to mismanagement, political intentions and one way interest only for development, the river basin has already started experiencing complications. The major challenges found out were, huge hydroelectric dam constructions and other projects, high population pressure, lack of cooperation among riparian states (especially upper Mekong region and lower one, and lack of proper management system. This leads to inequitable resource use, impact on water quality, biodiversity loss, and disasters like flooding. It is a high time to make a joint venture among riparian countries for sustainable use of the resource. Multi lateral cooperation and commitment among user countries by consulting all stakeholders will benefit all to use this precious resource equitably without major ecological impacts on the river basin.

  14. Thickness of the lower Fort Union aquifer in the Powder River structural basin

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the lower Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be...

  15. LBA-ECO CD-06 Physical, Political, and Hydrologic Maps, Ji-Parana River Basin, Brazil

    National Aeronautics and Space Administration — ABSTRACT: This data set contains physical, hydrologic, political, demographic, and societal maps for the Ji-Parana River Basin, in the state of Rondonia, Brazil....

  16. Geochemical behavior of radionuclides and heavy metals in soils from Corumbatai River basin (SP), Brazil

    International Nuclear Information System (INIS)

    The purpose of this research was to study the geochemical behavior of radionuclides and heavy metals in soils of agricultural use at Corumbatai River basin (SP). The natural concentration and variability in sedimentary rocks at Corumbatai river basin follow the trend Ca > Mg > K > Na, with the concentration of heavy metals and radionuclides. The distribution of exposure rate in soils shows the occurrence of higher values towards south of the Corumbatai river basin, region where are applied phosphate fertilizers, amendments and 'vinhaca' in sugar cane crops. Heavy metals and radionuclides incorporated in phosphate fertilizers and amendments are annually added during the fertilization process in the sugar cane crops, but if they are utilized in accordance with the recommended rate, they do not rise the concentration levels in soils up to hazards levels. Thus, they are lower transferred from soils to sugar cane at Corumbatai river basin, not offering hazard to the ecosystem and animal or human health. (author)

  17. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Structural Features

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Anna, L.O., 1986, Geologic framework of the ground water...

  18. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Anna Lineaments

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following U.S. Geological Survey Professional Paper: Anna, L.O., 1986, Geologic...

  19. 1:250,000-scale geology of the Carson River Basin, Nevada and California

    U.S. Geological Survey, Department of the Interior — This data set consists of digital continuous geologic data for the Carson River Basin, Nevada and California. It was compiled from individual county 1:250,000-scale...

  20. Head Scarp Boundary for the Landslides in the Little North Santiam River Basin, Oregon

    U.S. Geological Survey, Department of the Interior — Polygons represent head scarps and flank scarps associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part...

  1. Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10

    U.S. Geological Survey, Department of the Interior — This dataset represents the extent and spatial distribution of irrigated agricultural lands in the Upper Colorado River Basin for 2007-10. The boundaries in this...

  2. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Maughan and Perry Lineaments

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Maughan, E.K., and Perry, W.J., Jr., 1986, Lineaments and...

  3. Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana (prbclkg.shp)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representation of the Wyodak-Anderson clinker in the Powder River Basin, Wyoming and Montana. This theme was created...

  4. LBA-ECO CD-06 Amazon River Basin Land and Stream Drainage Direction Maps

    National Aeronautics and Space Administration — ABSTRACT: This data set provides high-resolution (~500 m) gridded land and stream drainage direction maps for the Amazon River basin, excluding the Rio Tocantins...

  5. A New Hydrological Method for Estimating the River Bed and Drainage Basin Components of Erosion and Suspended Sediment Fluxes in River Basins

    Directory of Open Access Journals (Sweden)

    A.V. Gusarov

    2012-04-01

    Full Text Available This paper uses the results of river suspended sediment flux (SSF analysis to propose a new hydrological method for quantitatively estimating the river bed and drainage basin (sheet erosion, rill and gully erosion components of total erosion intensity in river basins. The suggested method is based on the establishment of the functional power connection between mean monthly water discharges (WD, Q i and suspended sediment fluxes (r i calculated for the low-water-discharge phases of a river?s hydrological regime in various (on mean annual water discharges years: r i = a×Q i (where a, ì are some empirical coefficients, and further extrapolation of this connection for other phases of the hydrological regime. Thus, the extrapolation allows us to calculate (in a long-term annual SSF the proportions of sediments originating in river beds and drainage basins. The proposed method is tested using a long-term (not less than 10 years series of observations for WD and SSF of 124 chiefly small and midsize rivers of the East-European plain, the Urals, the Eastern Carpathians, the Ciscaucasia and the Caucasus, and Central Asian mountains, containing data on the mean monthly values of WD and SSF. The paper also compares the method with other methods for estimating the components of erosion intensity and SSF..

  6. Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin

    Directory of Open Access Journals (Sweden)

    Y. Jun Xu

    2013-04-01

    Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

  7. Air-Photograph Based Estimates of Channel Widening within the Minnesota River Basin

    Science.gov (United States)

    Echterling, C.; Conway, J.; Graves, J.; Lauer, J. W.

    2010-12-01

    The Minnesota River is a major tributary of the Mississippi River that has experienced a roughly two-fold increase in mean April-November discharge over the past century. Because the Minnesota River supplies the majority of sediment to the Mississippi at the confluence, sediment sources within the basin, and in particular within the Le Sueur River sub-basin, have recently been the subject of several detailed sediment budget studies. One of the potential sediment sources is associated with channel widening. In the present study, we focus on channel widening as a potential source of sediment in the Minnesota, Little Cobb, Maple, Blue Earth, Le Sueur, Redwood, Cottonwood, and Watonwan Rivers, Minnesota. Using aerial photographs, changes in channel bankfull width were measured over the period from 1937 to 2009. Historic photographs were georeferenced to recent high-resolution imagery using a minimum of ten ground control points and a second order polynomial transformation in ArcGIS 9.3. Water surface width and the width between vegetation lines (which we take to be equivalent to the bankfull width) were determined by hand for representative reaches of a minimum of ten meander bends along each river. We chose to digitize by hand to avoid computer misclassification associated with the highly variable color spectra in the historic photographs and because this allowed us to visually interpolate the bank line where scattered overhanging vegetation partially obscured the banks. In general, bankfull width has increased steadily by between 20 and 50 percent over the period of photographic record. However, because our basic method focuses only on the vegetation line, it is possible in principle that the observed changes in width are primarily related to ecological change (i.e. to a change in the elevation at which vegetation colonizes the banks) and not directly to an increase in channel volume (and hence to a net export of sediment from these reaches). To determine whether the increase in width is associated with actual geomorphic change, we developed local at-a-station hydraulic geometry relationships between average water surface width and mean daily discharge for all reaches with sufficiently long discharge records. At some sites, discharge was approximated using nearby gages. At each location, the local at-a-station hydraulic geometry was developed independently for three time periods (1930s-1960s, 1960s-1990s, and 1990s-2000s) and shows a clear shift over time, implying that changes in bank-full width are the result of a geometric change within the channel. While it is not clear how far upstream the widening extends, if our widening rates are extrapolated to all river reaches with drainage areas of at least 100 km2 within the Le Sueur basin (i.e. neglecting small and often highly modified 1st and 2nd order channels), and if the widening rate is assumed equivalent to the rate of expansion of channel cross-sectional area, the total widening-related production rate for silt/clay sediment is on the order of 4X104 Mg/yr. This is roughly 20 percent of an eight-year average TSS load for the Le Sueur basin estimate developed by the Minnesota Pollution Control Agency.

  8. Assessing the Resilience of a River Management Regime: Informal Learning in a Shadow Network in the Tisza River Basin

    Directory of Open Access Journals (Sweden)

    Geza Molnar

    2008-06-01

    Full Text Available Global sources of change offer unprecedented challenges to conventional river management strategies, which no longer appear capable of credibly addressing a trap: the failure of conventional river defense engineering to manage rising trends of disordering extreme events, including frequency and intensity of floods, droughts, and water stagnation in the Hungarian reaches of the Tisza River Basin. Extreme events punctuate trends of stagnation or decline in the ecosystems, economies, and societies of this river basin that extend back decades, and perhaps, centuries. These trends may be the long-term results of defensive strategies of the historical river management regime that reflect a paradigm dating back to the Industrial Revolution: "Protect the Landscape from the River." Since then all policies have defaulted to the imperatives of this paradigm such that it became the convention underlying the current river management regime. As an exponent of this convention the current river management regimes' methods, concepts, infrastructure, and paradigms that reinforce one another in setting the basin's development trajectory, have proven resilient to change from wars, political, and social upheaval for centuries. Failure to address the trap makes the current river management regime's resilience appear detrimental to the region's future development prospects and prompts demand for transformation to a more adaptive river management regime. Starting before transition to democracy, a shadow network has generated multiple dialogues in Hungary, informally exploring the roots of this trap as part of a search for ideas and methods to revitalize the region. We report on how international scientists joined one dialogue, applying system dynamics modeling tools to explore barriers and bridges to transformation of the current river management regime and develop the capacity for participatory science to expand the range of perspectives that inform, monitor, and revise learning, policy, and the practice of river management.

  9. MORPHOMETRIC ANALYSIS AND PRIORITIZATION OF WATERSHED FOR SOIL RESOURCE MANAGEMENT IN YERALA RIVER BASIN

    OpenAIRE

    R. S. Shikalgar

    2013-01-01

    The development of morphometric techniques was a major advance in the quantitative description of thegeometry of the drainage basins and its network. Watershed prioritization on the basis of morphometric parametersis necessary in order to develop a sustainable watershed management plan. The present study aims to assess thelinear and shape morphometric parameters and prioritization of twenty three sub-watersheds of Yerala river basinfor soil resource management. Yerala river basin has an area ...

  10. Comparison of Flood Management options for the Yang River Basin, Thailand

    OpenAIRE

    Kunitiyawichai, K.; Schultz, B; Uhlenbrook, S.; F.X. Suryadi; van Griensven, A.

    2011-01-01

    The Yang River Basin, Thailand, has always been subjected to flooding, but due to recent developments in land use there is an increase in the vulnerability in several parts of the river basin. To mitigate impacts of flooding, both structural and non-structural measures can be taken. This paper discusses three scenario simulations focusing on flood retardation, retention, and damage mitigation measures. A main tributary was simulated by a process-based hydrological model (SWAT) and coupled to ...

  11. Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?

    OpenAIRE

    Eduard Interwies; Nicole Kranz; Erik Mostert; Raadgever, G.T.; Jos G. Timmerman

    2008-01-01

    River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper pr...

  12. Compilation of references on geology and hydrology of the Snake River drainage basin above Weiser, Idaho

    Science.gov (United States)

    Bassick, M.D.

    1986-01-01

    More than 1,100 references concerning geology and hydrology of the Snake River drainage basin above Weiser, Idaho, are compiled as part of the U.S. Geological Survey 's RASA (Regional Aquifer-System Analysis) study of the Snake River Plain. The list of references is intended as a primary source of information for investigators concerned with previous studies in the basin. Reference numbers correlate with a key-word index to help the user select and locate desired references. (USGS)

  13. Water Accounting Plus for Water Resources Reporting and River Basin Planning:

    OpenAIRE

    Karimi, P.

    2014-01-01

    This thesis introduces Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. WA+ is a simple, yet comprehensive and understandable water accounting framework that provides a standardized way of data collection and a presentation system that describes the overall land and water management situation in complex river basins. WA+ tracks water depletions rather than withdrawals...

  14. Large-scale hydrologic and hydrodynamic modelling of the Amazon River basin

    OpenAIRE

    Paiva, Rodrigo; Buarque, Diogo; Collischonn, Walter; Bonnet, Marie-paule; Frappart, Fre?de?ric; Calmant, Ste?phane; Mendes, Carlos

    2013-01-01

    In this paper, a hydrologic/hydrodynamic modeling of the Amazon River basin iscpresented using the MGB-IPH model with a validation using remotely sensed observations. Moreover, the sources of model errors by means of the validation and sensitivity tests are investigated, and the physical functioning of the Amazon basin is also explored. The MGBIPH is a physically based model resolving all land hydrological processes and here using a full 1-D river hydrodynamic module with a simple floodplain ...

  15. Hydrological impact of rainwater harvesting in the Modder river basin of central South Africa

    OpenAIRE

    Welderufael, W A; Woyessa, Y E; D. C. Edossa

    2011-01-01

    Along the path of water flowing in a river basin are many water-related human interventions that modify the natural systems. Rainwater harvesting is one such intervention that involves harnessing of water in the upstream catchment. Increased water usage at upstream level is an issue of concern for downstream water availability to sustain ecosystem services. The upstream Modder River basin, located in a semi arid region in the central South Africa, is experiencing intermittent meteorological d...

  16. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale

    OpenAIRE

    Riegels, Niels; Jensen, Roar; Benasson, Lisa; Banou, Stella; Møller, Flemming; Bauer-gottwein, Peter

    2011-01-01

    Resource costs of meeting EU WFD ecological status requirements at the river basin scale are estimated by comparing net benefits of water use given ecological status constraints to baseline water use values. Resource costs are interpreted as opportunity costs of water use arising from water scarcity. An optimization approach is used to identify economically efficient ways to meet WFD requirements. The approach is implemented using a river basin simulation model coupled to an economic...

  17. Sediment supply as a driver of river evolution in the Amazon Basin

    Science.gov (United States)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling. Earth Surface Processes and Landforms, 36(1), 20-38.

  18. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  19. Uranium isotopic investigations and radiocarbon measurements of river-groundwater systems, Sabarmati Basin, Gujarat, India

    International Nuclear Information System (INIS)

    Measurements of uranium concentrations, and 234U/238U activity ratios along the Sabarmati River and adjacent phreatic aquifers, and radiocarbon in confined aquifers in the Watrak-Shedi sub-basin, part of the Sabarmati basin, have been carried out. The uranium isotope distributions show marked seasonal variations in river waters, whereas they are within experimental uncertainties in the groundwaters adjacent to the river bed. The observed seasonal variations indicate the presence of a groundwater component in the Sabarmati River, and its contribution to the total river flow appears to be maximum during summer. Apparent radiocarbon ages of confined aquifers in the Watrak-Shedi sub-basin show that the groundwater flow is in the NE-SW direction with a velocity of 6-7m/a. (author)

  20. Use of Precipitation - Runoff Models to Generate Hydrologic Scenarios in a High-altitude Andean Basin of the Ecuadorian Amazon Region. Case study of the Quijos River Basin.

    Science.gov (United States)

    Galarraga, R.; McClain, M.; Ortega, F.; Estacio, A.; Febres, A.

    2007-05-01

    Little is known of the hydrology and meteorology of the expansive Andean Amazon region in South America, which extends for approximately 600.000 Km2 and represents around the 10% of the total Amazon region. Climatic processes that occur in the Andean part of the Amazon influence the middle and lower parts of the Amazon Region. Consequently, there is a need to understand the hydro-climatic characteristics in the high lands of the Andean Amazon. Understanding hydrologic processes in the Andean Amazon is challenged by the lack of hydro meteorological data at all levels. Especially challenging is the absence of data at the appropriate scale for adequate calibration and verification of mathematical models, mainly for understanding precipitation - runoff of high altitude watersheds located on the western most part of the Amazon. The study area is located on the upper part of the Napo River named the Quijos river basin after the junction of the Oyacachi River with a surface area of about 2.500,00 Km2. It is composed mainly of high altitude lands named Paramo, Andean grass lands, primary cloudy forest known for their high water retention and regulatory capacity. The models used in the Quijos river basin in the upper part of the Amazon region of Ecuador are precipitation-runoff models widely used around the world. The Simulator for Water Resources in Rural Basins - Water Quality (SWRRBWQ ) (Arnold et. al. 1990, Williams et. al. 1985), works on a daily time steps basis with daily values of meteorological data both observed in the field or generated by the model, and by sub diving the main basin into a suitable number of sub basins with a meteorological station in it The second model used is the Hydrologic Modeling System from the Hydrologic Engineering Center which is a precipitation - runoff model run at a daily basis as well. Input data sets are basic climate data as precipitation, evapotranspiration, temperature, relative humidity basin wide at daily basis; land cover, soil type, soil characteristics, hydrographic characteristics, as well as registered discharge information in several control points of the basin, that were used for calibration purposes. Several runs of the models were done in order to assess parameter sensibility of the models using appropriate parameter for each case. Calibration for the two models were done for a period where enough information exists even though the time record for verification purposes is well ahead of time so it is assumed that basin wide conditions have not change in time. Three hydrologic scenarios for future discharge prediction based on conservation policies, urbanization, deforestation, or land use change on the area were generated by using HEC-HMS model for the January 1984 - December 1987 period because of its better performance in comparison to the SWRRBWQ model. Scenarios one and two showed almost no difference with the original discharge but scenario three showed an increase in water discharge with time. Results show that in high altitude basins the HEC-HMS performs better than SWRRBWQ model in determining mainly peak discharges but differed in reproducing the total volume of run-off, keeping a good agreement to reproduce seasonality patterns of water discharge. Better information of basin wide characteristics like soil antecedent moisture conditions, land cover, and surface albedo during the calibration period is needed in order to improve model results mainly in volume discharge.

  1. The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results

    Science.gov (United States)

    de Sherbinin, A. M.; Glennie, P.

    2014-12-01

    The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.

  2. The cathedral and the bazaar: Monocentric and polycentric river basin management

    Directory of Open Access Journals (Sweden)

    Bruce Lankford

    2010-01-01

    Full Text Available Two contemporary theories of river basin management are compared. One is centralised 'regulatory river basin management' with an apex authority that seeks hydrometric data and nationally agreed standards and procedures in decisions over water quality and allocation. This model is commonplace and can be identified in many water training curricula and derivatives of basin management policy. The other, 'polycentric river basin management', is institutionally, organisationally and geographically more decentralised, emphasising local, collective ownership and reference to locally agreed standards. The polycentric model is constructed from the creation of appropriate managerial subunits within river basins. This model emphasises the deployment of hydrologists, scientists and other service providers as mediating agents of environmental and institutional transformation, tackling issues arising within and between the basin subunits such as water allocation and distribution, productivity improvement and conflict resolution. Significantly, it considers water allocation between subunits rather than between sectors and to do this promulgates an experimental, step-wise pragmatic approach, building on local ideas to make tangible progress in basins where data monitoring is limited, basin office resources are constrained and regulatory planning has stalled. To explore these issues, the paper employs the 'Cathedral and Bazaar' metaphor of Eric Raymond. The discussion is informed by observations from Tanzania, Nigeria and the UK.

  3. River basin flood potential inferred using GRACE gravity observations at several months lead time

    Science.gov (United States)

    Reager, J. T.; Thomas, B. F.; Famiglietti, J. S.

    2014-08-01

    The wetness of a watershed determines its response to precipitation, leading to variability in flood generation. The importance of total water storage--which includes snow, surface water, soil moisture and groundwater--for the predisposition of a region to flooding is less clear, in part because such comprehensive observations are rarely available. Here we demonstrate that basin-scale estimates of water storage derived from satellite observations of time-variable gravity can be used to characterize regional flood potential and may ultimately result in longer lead times in flood warnings. We use a case study of the catastrophic 2011 Missouri River floods to establish a relationship between river discharge, as measured by gauge stations, and basin-wide water storage, as measured remotely by NASA's Gravity Recovery and Climate Experiment (GRACE) mission. Applying a time-lagged autoregressive model of river discharge, we show that the inclusion of GRACE-based total water storage information allows us to assess the predisposition of a river basin to flooding as much as 5-11 months in advance. Additional case studies of flood events in the Columbia River and Indus River basins further illustrate that longer lead-time flood prediction requires accurate information on the complete hydrologic state of a river basin.

  4. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    Science.gov (United States)

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Mackenzie, Keith K.

    2015-01-01

    This study provides information on channel and flood-plain processes and historical trends to guide effective restoration and monitoring strategies for the Sprague River Basin, a primary tributary (via the lower Williamson River) of Upper Klamath Lake, Oregon. The study area covered the lower, alluvial segments of the Sprague River system, including the lower parts of the Sycan River, North Fork Sprague River, South Fork Sprague River, and the entire main-stem Sprague River between the confluence of the North Fork Sprague and the South Fork Sprague Rivers and its confluence with the Williamson River at Chiloquin, Oregon. The study included mapping and stratigraphic analysis of flood-plain deposits and flanking features; evaluation of historical records, maps and photographs; mapping and analysis of flood-plain and channel characteristics (including morphologic and vegetation conditions); and a 2006 survey of depositional features left by high flows during the winter and spring of 2005–06.

  5. Enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins: Experiences from the Lower Mekong River Basin:

    OpenAIRE

    Douven, W.; Mul, M.L.; B. Fernández-Álvarez; S. Lam Hung; Bakker,N.; Radosevich, G.; P. van der Zaag

    2012-01-01

    This paper analyses the design and impact of capacity building programmes aimed at enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins. The case study is a programme developed by the Mekong River Commission (MRC). A post-training evaluation was applied to assess its impact in terms of individual capacity enhancement and change (use and application of knowledge, factors hampering application, and change in function and opport...

  6. Enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins: experiences from the Lower Mekong River Basin

    OpenAIRE

    Douven, W.; Mul, M.L.; B. F. Álvarez; L. H. Son; Bakker,N.; Radosevich, G.; P. van der Zaag

    2012-01-01

    This paper analyses the design and impact of capacity building programmes aimed at enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins. Case study is a programme developed by the Mekong River Commission (MRC). A post training evaluation was applied to assess its impact in terms of individual capacity enhancement and change (use and application of knowledge, factors hampering application, and change in function and opport...

  7. Isotope hydrogeochemistry of groundwater in Purna river basin, Maharashtra, India

    International Nuclear Information System (INIS)

    Two sets of water samples from Purna river (Surface water), Dug wells (Shallow aquifer) and tube wells (Deep aquifer) and six piezometer samples were collected from different parts of the Purna river basin and analysed for environmental isotopes as well as major, minor, and trace ions. The interpretation of the results was carried out in the light of other geological information to decipher cause of salinity and delineating recharge and discharge zones of the fresh groundwater in the area. The Piper trilinear plots for fresh waters and saline waters showed that fresh waters are generally Na-HCO3 type whereas saline samples are predominantly Na-Cl type. The hydrochemical facies in saline waters change from HCO3 to Cl type. The deep aquifers of the area have saline, brackish and fresh waters. The ? D - ? 18O plot indicates evaporative enrichment. The fresh waters fall near GMWL with a slope of about 8. Brackish waters, falling between saline and fresh waters seems to be mixture of the two waters. This is further inferred as well by the 3H values of the waters. ? 18O - Cl -1 plot showed that the salinity in the deep aquifers could be due to leaching of salts from the formation as well. The 3H values of the samples showed that the saline aquifers are isolated and not getting modern recharge. However, the brackish water aquifers do get partial recharge from a distant source. The 14C results of source. The 14C results of the highly saline groundwater samples suggested their uncorrected ages about 4 - 7 ka BP. The ? 34S values of the aqueous sulphate samples indicated their non-marine origin. From the study it was concluded that, the deeper saline waters are old waters; their salinity is predominantly Na-Cl type. The mechanism of salinisation appears to be owing to evaporation, dissolution, and leaching of salts from formation. The isotope study also indicates their non-marine origin of salinity

  8. LIVING WITH FLOOD AND SUSTAINABLE LIVELIHOOD DEVELOPMENT IN LOWER BRAHMAPUTRA RIVER BASIN, ASSAM

    Directory of Open Access Journals (Sweden)

    R. B. Singh

    2014-04-01

    Full Text Available River basin is considered as the basic hydrologic unit for planning and development of water resources and livelihood. Assam's Brahmaputra valley represents one of the most acutely hazard-prone regions in the country, having a total flood prone area of 3.2 million hectare. The lower Brahmaputra basin, Assam has caused the hazards of annual floods and erosion, bringing misery to the people and shattering the fragile agro-economic base of the region. The important factors causing floods in Assam are heavy rainfall, inadequate capacity of river, severe soil erosion, river bed silting, landslides, earthquakes, poor drainage, deforestation and practice of shifting cultivation or Jhoom as well as physical and anthropogenic causes. This paper focuses on the managing floods through specific structural measures such as reservoirs, embankments, channel improvement, town protection, river turning works, watershed management, inter-basin transfer, bank protection and anti-erosion work. Nonstructural methods to control the floods and soil erosion should be through flood forecasting, flood plain zoning, changing cropping pattern and public participation in management works. The paper also provides various flood mitigation processes for the challenges faced in the lower Brahmaputra basin, Assam for sustainable development. This paper mainly focuses on measurement of vulnerability and identification of vulnerable issues of Lower Brahmaputra basin with respect to various magnitude levels. The present study attempts to formulate a kind of sustainable livelihood development strategy for the development of lower Brahmaputra river basin, Assam. An analysis of major resources as well as critical problems has been done in order to identify the potential and challenges for the river basin, so that a sustainable development strategy can be formulated. It has been attempted to look into the integration at the spatial, sectoral and institutional level, while identifying the sustainable strategy for river basin, Assam.

  9. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    U.S. Geological Survey

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  10. Elements for an integrated resource planning in the framework of river basins: a study for the Cuiaba River Basin; Elementos para um planejamento integrado de recursos no ambito de bacias hidrograficas: um estudo para a bacia do rio Cuiaba

    Energy Technology Data Exchange (ETDEWEB)

    Dorileo, Ivo Leandro; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Dept. de Energia], e-mail: ildorileo@sigmanet.com.br, e-mail: bajay@fem.unicamp.br

    2008-07-01

    A new approach in energy planning in Brazil, IRP - Integrated Resources Planning for River Basins, gathers three main determinants of development: water, electricity and piped gas. This paper argues, briefly, the need of this planning, of indicative character, integrated with the River Basin Plans, and it presents a retrospective analysis concerning water, electricity and LPG demands of the economy sectors from Cuiaba River Basin region, priority elements to aid the prospective studies and to carry out process related to the IRP. (author)

  11. Metaphor in Natural Resource Gaming: Insights from the RIVER BASIN GAME

    Science.gov (United States)

    Lankford, Bruce; Watson, Drennan

    2007-01-01

    The RIVER BASIN GAME is a dialogue tool for decision makers and water users tested in Tanzania and Nigeria. It comprises a physical representation of a river catchment. A central channel flows between an upper watershed and a downstream wetland and has on it several intakes into irrigation systems. Glass marbles, representing water, roll down the…

  12. COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

    OpenAIRE

    Edilberto Guevara-Pérez; Ma?rquez, Adriana M.

    2007-01-01

    Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km², 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sedim...

  13. Early 21st century snow cover state over the western river basins of the Indus River system

    OpenAIRE

    Hasson, S; Lucarini, Valerio; Khan, Mobushir R; Petitta, Marcello; Bolch, Tobias; Gioli, Giovanna

    2014-01-01

    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001–2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by applying a validated non...

  14. Early 21st century snow cover state over the western river basins of the Indus River system

    OpenAIRE

    Hasson, S; Lucarini, V.; M.R. Khan; M. Petitta; T. Bolch; G. Gioli

    2012-01-01

    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001–2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by applyi...

  15. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  16. Pyomyositis in the upper Negro river basin, Brazilian Amazonia

    DEFF Research Database (Denmark)

    Borges, Alvaro Humberto Diniz; Faragher, Brian

    2012-01-01

    Pyomyositis remains poorly documented in tropical Latin America. We therefore performed a retrospective review of cases admitted to a hospital in the upper Negro river basin during 2002-2006. Seasonality was assessed by the cosinor model and independent predictors of outcome were identified by logistic regression. Determinants of time-to-fever resolution were analysed using Cox regression. No seasonal trend was observed (p=0.284) among 82 hospitalised patients. The disease predominated in young males and the most commonly affected part of the body was the lower limb (68 [63.5%] out of 107 lesions). Staphylococcus aureus was the only identified infecting organism (18 of 20 culture results, 90%). Complications occurred in 17 patients (20.7%) and the case fatality rate was 2.4%. Children were more likely to present with eosinophilia than adults (OR= 4.20, 95% CI 1.08-16.32, p=0.048), but no other significant differences regarding clinical presentation and outcomes were observed. The time-to-fever resolution was the only independent determinant of poor outcome (OR=1.52, 95% CI 1.22-1.92, p

  17. ????????????? Projection of Future Precipitation in the Lhasa River Basin

    Directory of Open Access Journals (Sweden)

    ???

    2012-08-01

    Full Text Available ????????????????????????????????????????????????????????????????????????????ERA-40?MIROC3.2_medres?????????????????Automated Statistical Downscaling(ASD?????????????????????????????2046~2065??2081~2100??????????????ASD??????????????????????????(R2??13%~22%??????????????(RMSE?????0.25?0.53???????????????????????????10.55%~17.25%???????????????????????????????19.03%~59.02%??????????????????????18.43%~40.93%?Under the impact of global warming, the Lhasa River Basin (LRB, located at the political, economic, and cultural center of Tibetan region, is experiencing significant climate change. It is important to undertake the climate studies over LRB. On the basis of observed precipitation at meteorological stations, ERA-40 reanalysis and MIROC3.2_medres data, statistical downscaling model—Automated Statistical Downscaling (ASD was employed to simulate historical daily precipitation. Future precipitation scenarios for the periods of 2046 - 2065 and 2081 - 2100 were generated by using ASD model. Results show that ASD model can simulate the basic features of precipitation well, with the explanation variance (R2 of each station reaching 13% - 22%. Root mean square errors (RSME during calibration and validation periods are around 0.25 and 0.53, respectively. Precipitation regime will change significantly in the future. Total amount of annual precipitation will decrease by 10.55% - 17.25%. Future precipitation will become more concentrated. In summer, precipitation will increase evidently, and the amplitude of change is 19.03% - 59.02%, while precipitation in spring, autumn and winter will experience obvious decreasing, with the ratio of 18.43% - 40.93%.

  18. Thallium distribution in sediments from the Pearl river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Jin; Chen, Yongheng [Guangzhou University, Key Laboratory of Waters Safety and Protection in the Pearl River Delta, Ministry of Education, Guangzhou (China); Qi, Jianying [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Lippold, Holger [Forschungszentrum Dresden-Rossendorf (FZD), Institute of Radiochemistry, Research Site Leipzig, Leipzig (Germany); Wang, Chunlin [Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2010-10-15

    Thallium (Tl) is a rare element of high toxicity. Sediments sampled in three representative locations near industries utilizing Tl-containing raw materials from the Pearl River Basin, China were analyzed for their total Tl contents and the Tl contents in four sequentially extracted fractions (i.e., weak acid exchangeable, reducible, oxidizable, and residual fraction). The results reveal that the total Tl contents (1.25-19.1 {mu}g/g) in the studied sediments were slightly high to quite high compared with those in the Chinese background sediments. This indicates the apparent Tl contamination of the investigated sediments. However, with respect to the chemical fractions, Tl is mainly associated with the residual fraction (>60%) of the sediments, especially of those from the mining area of Tl-bearing pyrite minerals, indicating the relatively low mobility, and low bioavailability of Tl in these sediments. This obviously contrasts with the previous findings that Tl is mainly entrapped in the first three labile fractions of the contaminated samples. Possible reasons were given for the dominating association of Tl with the residual fraction (>95%) of the mining area sediments. The significant role of certain K-containing silicates or minerals of these sediments on retaining Tl in the residual fraction, discovered by this study, provides a special field of research opportunity for the Tl-containing wastewater treatment. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Biodegradation of carbofuran in soils within Nzoia River Basin, Kenya.

    Science.gov (United States)

    Onunga, Daniel O; Kowino, Isaac O; Ngigi, Anastasiah N; Osogo, Aggrey; Orata, Francis; Getenga, Zachary M; Were, Hassan

    2015-06-01

    Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) has been used within the Nzoia River Basin (NRB), especially in Bunyala Rice Irrigation Schemes, in Kenya for the control of pests. In this study, the capacity of native bacteria to degrade carbofuran in soils from NRB was investigated. A gram positive, rod-shaped bacteria capable of degrading carbofuran was isolated through liquid cultures with carbofuran as the only carbon and nitrogen source. The isolate degraded 98% of 100-?g mL(-1) carbofuran within 10 days with the formation of carbofuran phenol as the only detectable metabolite. The degradation of carbofuran was followed by measuring its residues in liquid cultures using high performance liquid chromatography (HPLC). Physical and morphological characteristics as well as molecular characterization confirmed the bacterial isolate to be a member of Bacillus species. The results indicate that this strain of Bacillus sp. could be considered as Bacillus cereus or Bacillus thuringiensis with a bootstrap value of 100% similar to the 16S rRNA gene sequences. The biodegradation capability of the native strains in this study indicates that they have great potential for application in bioremediation of carbofuran-contaminated soil sites. PMID:25844859

  20. The Role of Cooperation and Information Exchange in Transnational River Basins: the Zambezi River case

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Soncini-Sessa, R.

    2012-12-01

    The presence of multiple, institutionally independent but physically interconnected decision-makers is a distinctive features of many water resources systems, especially of transnational river basins. The adoption of a centralized approach to study the optimal operation of these systems, as mostly done in the water resources literature, is conceptually interesting to quantify the best achievable performance, but of little practical impact given the real political and institutional setting. Centralized management indeed assumes a cooperative attitude and full information exchange by the involved parties. However, when decision-makers belong to different countries or institutions, it is very likely that they act considering only their local objectives, producing global externalities that negatively impact on other objectives. In this work we adopt a Multi-Agent Systems framework, which naturally allows to represent a set of self-interested agents (decision-makers and/or stakeholders) acting in a distributed decision-making process. According to this agent-based approach, each agent represents a decision-maker, whose decisions are defined by an explicit optimization problem considering only the agent's local interests. In particular, this work assesses the role of information exchange and increasing level of cooperation among originally non-cooperative agents. The Zambezi River basin is used to illustrate the methodology: the four largest reservoirs in the basin (Ithezhithezhi, Kafue-Gorge, Kariba and Cahora Bassa) are mainly operated for maximizing the economic revenue from hydropower energy production with considerably negative effects on the aquatic ecosystem in the Zambezi delta due to the alteration of the natural flow regime. We comparatively analyse the ideal centralized solution and the current situation where all the decision-makers act independently and non-cooperatively. Indeed, although a new basin-level institution called Zambezi Watercourse Commission (ZAMCON) should be established in the next future, Zambia recently refused to sign and ratify the ZAMCON Protocol and the road toward a fully cooperative framework is still long. Results show that increasing levels of information exchange can help in mitigating the conflict generated by a non-cooperative setting as it allows the downstream agents, i.e. Mozambique country, to better adapt to the upstream management strategies. Furthermore, the role of information exchange depends on the considered objectives and it is particularly relevant for environmental interests.

  1. Comprehensive flood mitigation and management in the Chi River Basin, Thailand

    OpenAIRE

    Kunitiyawichai, K.; Schultz, B; Uhlenbrook, S.; F.X. Suryadi; Corzo, G.A.

    2011-01-01

    Severe flooding of the flat downstream area of the Chi River Basin occurs frequently. This flooding is causing catastrophic loss of human lives, damage and economic loss. Effective flood management requires a broad and practical approach. Although flood disasters cannot completely be prevented, major part of potential loss of lives and damages can be reduced by comprehensive mitigation measures. In this paper, the effects of river normalisation, reservoir operation, green river (bypass), and ...

  2. Habitat selection of an expanding beaver (Castor fiber) population in central and upper Morava River basin

    OpenAIRE

    John, František; Baker, Shaun; Kostkan, Vlastimil

    2010-01-01

    Abstract Habitat selectivity by European beaver (Castor fiber L., 1758) was studied in 226 km of river channels during their colonization of the Morava River basin (the Czech Republic), which had not been occupied by beavers for hundreds of years. The colonization started after initial reintroductions in 1991 and 1992. Annual increases in colonization of the river system from 1995 to 2007 were 15.5?±?9.4 SD km year?1 and varied greatly between these years (min 0 km, max...

  3. Spatial and temporal variations in the occurrences of wet periods over major river basins in India

    Science.gov (United States)

    Deshpande, N. R.; Singh, N.

    2010-10-01

    This study highlights the hydro-climatic features of the five wet periods contributing in different percentages to the annual rainfall total over major river basins in India. Spatial and temporal variations in the parameters such as starting date, duration and rainfall intensity of these wet periods throughout India have been discussed using daily gridded rainfall data for the period 1951-2007. An attempt is also made here, to assess the impact of global SSTs on the start and duration of the wet periods in Indian river basins. It is observed that, for almost all river basins in India, the 10% wet period occurs in the months of July/August with an average duration of 1-3 days and rainfall intensity varying from 44 to 89mm/day. The duration of the wet period contributing 90% to the annual rainfall varies from 112 days in the central parts of India to 186 days in the northern parts of the country. Significant increase in the rainfall intensity has been observed in the case of some river basins of central India. The late start of 75% wet period along the West Coast and in peninsular river basins has been observed with increase in Nino 3.4 SSTs (MAM), while increase in the duration of the 75% wet period over the Krishna basin is associated with increase in Nino 3.4 SSTs (concurrent JJAS).

  4. Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?

    Directory of Open Access Journals (Sweden)

    Eduard Interwies

    2008-06-01

    Full Text Available River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper presents such an overview, focused on transboundary river basin management. It inventories the features that have been claimed to be central to effective transboundary river basin management and refines them using adaptive management literature. It then collates these features into a framework describing actor networks, policy processes, information management, and legal and financial aspects. Subsequently, this framework is applied to the Orange and Rhine basins. The paper concludes that the framework provides a consistent and comprehensive perspective on transboundary river basin management regimes, and can be used for assessing their capacity to support adaptive management.

  5. Contaminants of emerging concern in the lower Stillaguamish River Basin, Washington, 2008-11

    Science.gov (United States)

    Wagner, Richard J.; Moran, Patrick W.; Zaugg, Steven D.; Sevigny, Jennifer M.; Pope, Judy M.

    2014-01-01

    A series of discrete water-quality samples were collected in the lower Stillaguamish River Basin near the city of Arlington, Washington, through a partnership with the Stillaguamish Tribe of Indians. These samples included surface waters of the Stillaguamish River, adjacent tributary streams, and paired inflow and outflow sampling at three wastewater treatment plants in the lower river basin. Chemical analysis of these samples focused on chemicals of emerging concern, including wastewater compounds, human-health pharmaceuticals, steroidal hormones, and halogenated organic compounds on solids and sediment. This report presents the methods used and data results from the chemical analysis of these samples.

  6. [Effect of environmental factors on macroinvertebrate community structure in the Huntai River basin in the Huntai River basin].

    Science.gov (United States)

    Li, Yan-li; Li, Yan-fen; Xu, Zong-xue

    2015-01-01

    In May-June 2012, macroinvertebrates were investigated at 66 sampling sites in the Huntai River basin in Northeast of China. A total of 72 macrobenthos species were collected, of which, 51 species (70.83%) were aquatic insects, 10 species (13.89%) were mollusks, 7 species (9.72%) were annelids, and 4 species (5.56%) were arthropods. First, 13 candidate metrics (EPT taxa, Dominant taxon%, Ephemeroptera%, Trichoptera%, mollusks%, Heptageniidae/Ephemeroptera; Hydropsychidae/ Trichoptera, Oligochaeta%, intolerant taxon% , tolerant taxon%, Collector%, Clingers%, Shannon-wiener index.) which belonged to six types were chosen to represent macroinvertebrate community structure by correlation analysis. Then, relationships between anthropogenic and physiography pressures and macroinvertebrate community structure variables were measured using redundancy analysis. Then, this study compared the relative influences of anthropogenic and physiographic pressures on macroinvertebrate community structure and the relative influences of anthropogenic pressures at reach, riparian and catchment scales by pRDA. The results showed all environmental factors explained 72.23% of the variation of macroinvertebrate community structure. In addition, a large proportion of the explained variability in macroinvertebrate community structure was related to anthropogenic pressures (48.9%) and to physiographic variables (11.8%), anthropogenic pressures at reach scale influenced most significantly macroinvertebrate community structure which explained 35.3% of the variation of macroinvertebrate community structure. pH, habitat, TN, CODMn, hardness, conductivity, total dissolved particle and ammonia influenced respectively explained 4%, 3.6%, 1.8%, 1.7%, 1.7%, 0.9%, 0.9% and 0.9% of the variation of macroinvertebrate community structure. The land use at riparian and catchment scale respectively explained 10% and 7% of the variation of macroinvertebrate community structure. Finally, the relationships of land use at catchment and riparian scales and water quality factors, hydrological indicators, habitat, substrate types were analyzed. This study supports the idea that human pressures effects on river macroinvertebrate communities are linked at spatial scales and must be considered jointly. PMID:25898652

  7. Malheur River Basin cooperative bull trout/redband trout research project, annual report FY 1999; ANNUAL

    International Nuclear Information System (INIS)

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetryof the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99

  8. Regional Cooperation Efforts in the Mekong River Basin: Mitigating river-related security threats and promoting regional development

    Directory of Open Access Journals (Sweden)

    Susanne Schmeier

    2009-01-01

    Full Text Available The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs, established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to policy fields beyond the river itself. This article assesses the contribution of the Mekong River Commission (MRC and the Greater Mekong Sub-Region (GMS to the sustainable development of the Mekong Region as well as to the promotion of regional cooperation in mainland South-East Asia in general. --- Die Entwicklung grenzu?berschreitender Flu?sse wird oft mit Konflikten oder gar Kriegen um Wasser assoziiert. Wie jedoch die Entwicklung im Mekong-Becken zeigt, waren die vergangenen Jahrzehnte nicht nur von Kooperation gezeichnet, sondern Flussbeckenorganisationen konnten außerdem dazu beitragen, weitreichendere Kooperationsstrukturen zu entwickeln, die sich auf andere Politikfelder ausdehnen. Dieser Artikel bescha?ftigt sich mit dem Beitrag der Mekong River Commission (MRC und der Greater Mekong Sub-Region (GMS zur nachhaltigen Entwicklung in der Mekong Region sowie zur Fo?rderung allgemeiner regionaler Kooperation im Festla?ndischen Su?dostasien.

  9. River Modeling in Large and Ungauged Basins: Experience of Setting up the HEC RAS Model over the Ganges-Brahmaputra-Meghna Basins

    Science.gov (United States)

    Hossain, F.; Maswood, M.

    2014-12-01

    River modeling is the processing of setting up a physically-based hydrodynamic model that can simulate the water flow dynamics of a stream network against time varying boundary conditions. Such river models are an important component of any flood forecasting system that forecasts river levels in flood prone regions. However, many large river basins in the developing world such as the Ganges, Brahmaputra, Meghna (GBM), Indus, Irrawaddy, Salween, Mekong and Niger are mostly ungauged. Such large basins lack the necessary in-situ measurements of river bed depth/slope, bathymetry (river cross section), floodplain mapping and boundary condition flows for forcing a river model. For such basins, proxy approaches relying mostly on remote sensing data from space platforms are the only alternative. In this study, we share our experience of setting up the widely-used 1-D river model over the entire GBM basin and its stream network. Good quality in-situ measurements of river hydraulics (cross section, slope, flow) was available only for the downstream and flood prone region of the basin, which comprises only 7% of the basin area. For the remaining 93% of the basin area, we resorted to the use of data from the following satellite sensors to build a workable river model: a) Shuttle Radar Topography Mission (SRTM) for deriving bed slope; b) LANDSAT/MODIS for updating river network and flow direction generated by elevation data; c) radar altimetry data to build depth versus width relationship at river locations; d) satellite precipitation based hydrologic modeling of lateral flows into main stem rivers. In addition, we referred to an extensive body of literature to estimate the prevailing baseline hydraulics of rivers in the ungauged region. We measured success of our approach by systematically testing how well the basin-wide river model could simulate river level dynamics at two measured locations inside Bangladesh. Our experience of river modeling was replete with numerous hurdles that we did not anticipate, and often required a change in plan. In this study we summarize these key hurdles faced and offer a step by step approach to setting up river models for large ungauged river basins. Such a guide can be useful for the community wishing to set up RAS type models in basins such as Niger, Mekong, Irrawaddy, Indus etc.

  10. Estimation of erosion and sedimentation yield in the Ucayali river basin, a Peruvian tributary of the Amazon River, using ground and satellite methods

    Science.gov (United States)

    Santini, William; Martinez, Jean-Michel; Guyot, Jean-Loup; Espinoza, Raul; Vauchel, Philippe; Lavado, Waldo

    2014-05-01

    Since 2003, the works of HYBAM observatory (www.ore-hybam.org) has allowed to quantify with accuracy, precision and over a long period Amazon's main rivers discharges and sediments loads. In Peru, a network of 8 stations is regularly gauged and managed in association with the national meteorological and Hydrological service (SENAMHI), the UNALM (National Agrological University of La Molina) and the National Water Agency (ANA). Nevertheless, some current processes of erosion and sedimentation in the foreland basins are still little known, both in volumes and in localization. The sedimentary contributions of Andean tributaries could be there considerable, masking a very strong sedimentation in subsidence zones localized between the control points of the HYBAM's network. The development of spatial techniques such as the Altimetry and reflectance measurement allows us today to complete the ground's network: HYBAM's works have allowed establishing a relation between surface concentration and reflectance in Amazonian rivers (Martinez et al., 2009, Espinoza et al., 2012) and reconstituting water levels series (Calmant et al., 2006, 2008). If the difficulty of calibration of these techniques increases towards the upstream, their use can allow a first characterization of the tributaries contributions and sedimentation zones. At world level, erosion and sedimentation yields in the upper Ucayali are exceptional, favored by a marked seasonality in this region (Espinoza et al., 2009, Lavado, 2010, Pépin et al., 2010) and the presence of cells of extreme precipitation ("Hotspots") (Johnson et al., 1976, Espinoza et al, 2009a). The upper Ucayali drainage basin is a Piggyback where the River run with a low slope, parallel to the Andean range, deposing by gravity hundred millions a year of sands, silts and clays. In this work, we thus propose an estimation of sedimentation and erosion yield in the Ucayali river basin using ground and satellite methods.

  11. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1997-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  12. Soil erosion assessment of a Himalayan river basin using TRMM data

    Science.gov (United States)

    Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.

    2015-04-01

    In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.

  13. Distribution and dispersal of two invasive crayfish species in the Drava River basin, Croatia

    Directory of Open Access Journals (Sweden)

    S. Hudina

    2009-01-01

    Full Text Available The aim of this work is to explore the current distribution and dispersal rates of two nonindigenous crayfish species (NICS recorded in Croatia: the signal crayfish (Pacifastacus leniusculus and spiny-cheek crayfish(Orconectes limosus. Both NICS have been recorded in the Drava River basin, with signal crayfish spreading downstream from the north-west along the Drava’s tributary the Mura River, and spiny-cheek crayfish spreading upstream from the east from the Danube River throughout the Drava River. Signal crayfish distribution in the Mura River has been recorded up to 3 km from the confluence with the Drava River. Based on literature data and the current recorded distribution front, the downstream dispersal rate was between 18 and 24.4 km·yr?1. Spiny-cheek crayfish distribution has been recorded 15 km upstream of the Drava River mouth into the Danube River. Its upstream dispersal in the Drava River has been calculated at 2.5 km·yr ?1. Both NICS could have an impact on native crayfish populations recorded within the Drava River basin in Croatia: the noble crayfish (Astacus astacus and the narrow-clawed crayfish (Astacus leptodactylus. In the Mura River no noble crayfish have been recorded since 2007, and the watercourse is at the moment dominated by the signal crayfish. Spiny-cheek crayfish populations have been found in coexistence with narrow-clawed crayfish populations, with O. limosus dominating by 16:1.

  14. Water Availability in the Tigris-Euphrates River Basin and the Middle East from GRACE

    Science.gov (United States)

    Voss, K.; Famiglietti, J. S.; Lo, M.; de Linage, C.; Swenson, S. C.; Rodell, M.

    2010-12-01

    As water security becomes more tenuous, conflicts and disputes over the appropriate management and allocation of transboundary water resources are sure to arise. In particular, the Middle East faces extreme scarcity as a result of both natural climate variations and the impacts of water management decisions and policies. A recent drought, which began in 2007, caused regional hardships as precious water resources dwindled and collaboration between nations failed to accommodate shared needs. In this work, the area surrounding the Tigris and Euphrates River Basin was selected as a case study to evaluate trends in fresh water availability. Because few complete datasets exist for precipitation, streamflow, evapotranspiration, groundwater or surface water in the area, remote sensing techniques, including GRACE and altimetry, as well as land-surface models were utilized to develop an understanding of the regional hydrology. These observations and model results were used to estimate trends in total water storage and its individual components - soil moisture, snow water equivalent, surface water and groundwater. GRACE data show a clear decrease in total water storage in the Middle East from January 2003 to December 2009, and indicate that the selected region experienced a total volume loss of 143 km3 of water. Supporting datasets suggest that approximately two-thirds of this was a loss of groundwater. These results highlight the impacts of drought conditions on groundwater consumption and of agricultural expansion on available water resources in the region. Furthermore, they raise important political issues regarding water use in transboundary river basins and aquifers, while amplifying the need for increased monitoring and datasets for the core components of the water budget.

  15. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2010-08-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different surface grids and river nodes are modeled using one-dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions of the various components and the results of its application on case study areas.

  16. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Science.gov (United States)

    Kabir, M. A.; Dutta, D.; Hironaka, S.

    2011-04-01

    Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition) with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM), land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS)" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R-squared value) indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions of the various components and the results of its application on two case study areas.

  17. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions of the various components and the results of its application on two case study areas.

  18. BASIN MORPHOLOGY AND LAND USEWITH SPECIAL REFFERENCE TO PANCHANOI RIVER BASIN, A MICRO WATERSHED OF MAHANANDA RIVER SYSTEM, INDIA

    Directory of Open Access Journals (Sweden)

    SUBHADIP GUPTA

    2013-03-01

    Full Text Available Micro watershed is defined as a small watershed, in which a certain number of families live, make use and manage the resources of the area, mainly the soil, water, vegetation,including crops and native vegetation, and fauna, including domestic and wild animals. From the operational point of view, the micro watershed has an area that may be planned by a technician counting on local resources and/or a number of families that may be treated as a social nucleus that shares some common interests and here the use of land is very much associated with the local physiography and that is why the study about land use should give emphasis on the relief characteristics. The present paper is based on a small river basin and its changing land use. So here it is very important to study about the drainage morphology as a whole or especially on that particular area where the changing tendency of land use has already been recognized. At the same time it is also to be noticed that the land use pattern may also be affected by the anthropogenic effect. So it is also very

  19. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)

    Science.gov (United States)

    Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.

    2014-06-01

    The Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. ?13C of dissolved inorganic carbon ranged between -28.1‰ and -5.8‰, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin.

  20. SURVEY OF COLUMBIA RIVER BASIN STREAMS FOR COLUMBIA PEBBLESNAIL Fluminicola columbiana AND SHORTFACE LANX Fisherola nuttalli

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D. A.; Frest, T. J.

    1993-05-01

    At present, there are only two remaining sizable populations of Columbia pebblesnail Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington; the lower Salmon River and middle Snake River, Idaho; and possibly in Hells Canyon of the Snake River, Idaho, Washington, and Oregon; and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historical range. Large populations of the shortface lanx Fisherola nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach of the Columbia River, Washington; Hells Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde, Washington and Oregon; Imnaha and John Day rivers, Oregon; Bonneville Dam area of the Columbia River, Washington and Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River: Columbia pebblesnail to a population in the Hanford Reach plus six other sites that are separated by large areas of unsuitable habitat from those in the river's major mbutaries shortface lanx to two populations (in the Hanford Reach and near Bonneville Dam) plus nine other sites that are separated by large areas of unsuitable habitat from those in the river's major tributaries.

  1. Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae) from the Ivaí River, upper Paraná River basin, Brazil

    Scientific Electronic Library Online (English)

    Daniel M., Limeira; Erasmo, Renesto; Cláudio H., Zawadzki.

    Full Text Available Two allopatric morphotypes of the genus Rinelocaria were compared through the allozyme electrophoresis technique: one morphotype, R. pentamaculata, from the Keller River in the middle stretch of the Ivaí River basin and the other, R. aff. pentamaculata, from the São João River in the upper portion o [...] f the Ivaí River basin. The morphotype from the São João River was collected upstream from the São João waterfall, which is about 80 m deep. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD) were analyzed, which allowed to score 22 loci. Only loci Aat-2, Est-3 and Mdh-C showed polymorphism. The two samples differed in allele frequencies at the three polymorphic loci. The average expected heterozygosity for all loci was 0.0806 ± 0.0447 in the Keller River sample. For the São João River morphotype, this value was 0.0489 ± 0.0350. Nei' s genetic identity and distance between the two populations were respectively 0.9789 and 0.0213. Wright's F IS, F IT and F STover all loci were estimated as 0.3121, 0.4021 and 0.1309, respectively. We consider that the two morphotypes represent species in statu nascendi.

  2. Inorganic arsenic speciation at river basin scales: The Tinto and Odiel Rivers in the Iberian Pyrite Belt, SW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, A.M. [Department of Geology, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva (Spain)], E-mail: aguasanta.miguel@dgeo.uhu.es; Nieto, J.M. [Department of Geology, Faculty of Experimental Sciences, University of Huelva, 21071 Huelva (Spain); Casiot, C.; Elbaz-Poulichet, F.; Egal, M. [Laboratoire Hydrosciences, UMR 5569, Universite Montpellier 2, Place E. Bataillon, 34095 Montpellier cedex 05 (France)

    2009-04-15

    The Tinto and Odiel rivers are heavily affected by acid mine drainage from mining areas in the Iberian Pyrite Belt. In this work we have conducted a study along these rivers where surface water samples have been collected. Field measurements, total dissolved metals and Fe and inorganic As speciation analysis were performed. The average total concentration of As in the Tinto river (1975 {mu}g L{sup -1}) is larger than in the Odiel river (441 {mu}g L{sup -1}); however, the mean concentration of As(III) is almost four times higher in the Odiel. In wet seasons the mean pH levels of both rivers (2.4 and 3.2 for the Tinto and Odiel, respectively) increase slightly and the amount of dissolved total arsenic tend to decrease, while the As(III)/(V) ratio strongly increase. Besides, the concentration of the reduced As species increase along the water course. As a result, As(III)/(V) ratio can be up to 100 times higher in the lower part of the basins. An estimation of the As(III) load transported by both rivers into the Atlantic Ocean has been performed, resulting in about 60 kg yr{sup -1} and 2.7 t yr{sup -1} by the Tinto and Odiel rivers, respectively. - Total arsenic concentration decreases along the water basins, however the As(III)/(V) ratio increases.

  3. Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae from the Ivaí River, upper Paraná River basin, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel M. Limeira

    2009-01-01

    Full Text Available Two allopatric morphotypes of the genus Rinelocaria were compared through the allozyme electrophoresis technique: one morphotype, R. pentamaculata, from the Keller River in the middle stretch of the Ivaí River basin and the other, R. aff. pentamaculata, from the São João River in the upper portion of the Ivaí River basin. The morphotype from the São João River was collected upstream from the São João waterfall, which is about 80 m deep. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD were analyzed, which allowed to score 22 loci. Only loci Aat-2, Est-3 and Mdh-C showed polymorphism. The two samples differed in allele frequencies at the three polymorphic loci. The average expected heterozygosity for all loci was 0.0806 ± 0.0447 in the Keller River sample. For the São João River morphotype, this value was 0.0489 ± 0.0350. Nei' s genetic identity and distance between the two populations were respectively 0.9789 and 0.0213. Wright's F IS, F IT and F STover all loci were estimated as 0.3121, 0.4021 and 0.1309, respectively. We consider that the two morphotypes represent species in statu nascendi.

  4. Characterizing, Monitoring and Forecasting of Drought in Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Khaldoun Shatanawi

    2013-12-01

    Full Text Available Jordan is very vulnerable to drought because of its location in the arid to semi-arid part of the Middle East. Droughts coupled with water scarcity are becoming a serious threat to the economic growth, social cohesion and political stability. Rainfall time series from four rain stations covering the Jordan River Basin were analyzed for drought characterization and forecasting using standardized precipitation index (SPI, Markov chain and autoregressive integrated moving average (ARIMA model. The 7-year moving average of Amman data showed a decreasing trend while data from the other three stations were stable or showed an increasing trend. The frequency analysis indicated 2-year return period for near zero SPI values while the return period for moderate drought was 7 years. Successive droughts had occurred at least three times during the past 40 years. Severe droughts are expected once every 20 - 25 year period at all rain stations. The extreme droughts were rare events with return periods between 80 and 115 years. There are equal occurrence probabilities for drought and wet conditions in any given year, irrespective, of the condition in the previous year. The results showed that ARIMA model was successful in predicting the overall statistics with a given period at annual scales. The overall number of predicted/observed droughts during the validation periods were 2/2 severe droughts for Amman station and, 0/1, 1/1, 0/1 extreme droughts for Amman, Irbid and Mafraq stations, respectively. In addition, the ARIMA model also predicted 3 out of 4 actual moderate droughts for Amman and Mafraq stations. It was concluded that early warning of developing droughts can be deduced form the monthly Markov transitional probabilities. ARIMA models can be used as a forecasting tool of the future drought trends. Using the first and second order Markov probabilities can complement the ARIMA predictions.

  5. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will summarize recent results (Behrendt et al. 2009, Schernewski et al. 2009, Schernewski et al. in press, Schernewski et al. submitted) and give an overview how Climate Change and socio-economic transformation processes in the river basin will effect coastal water quality during the next decades. The opportunities and threats of a changing lagoon ecosystem for tourism and fisheries, the major economic activities, will be shown.

  6. Tracing nutrient sources in the Mississippi River Basin, United States of America

    International Nuclear Information System (INIS)

    To provide information for the development of management strategies to reduce N loads and enhance N attenuation mechanisms, isotopic techniques have been used to investigate the sources and cycling of nutrients at a number of sites in the Mississippi Basin (which includes the Ohio and Missouri River Basins). About half of the POM in the Mississippi (and other big rivers in the USA) is composed of plankton and/or heterotrophic bacteria. This suggests that in-situ productivity may be a significant source of bioavailable organic matter contributing to the hypoxia in the Gulf of Mexico. Monthly samples from 19 river sites in the Basin sampled over 5 years showed that ? 15N and ? 13C were quite useful in discriminating among four major categories of POM: terrestrial soil, fresh terrestrial vegetation, aquatic macrophytes, and plankton/bacteria The isotopic data, along with ancillary chemical and hydrologic measurements, were also useful for documenting seasonal changes in in-situ processes. A pilot study in 2000-2001, designed to investigate the usefulness of isotopic techniques for determining nutrient sources in 24 medium and large watersheds in the Basin, found that nitrate and POM from basins with different land uses (e.g., row crops, animal farming, urban development, and undeveloped) had moderately distinctive isotopic compositions. The nitrate ? 18O and ? 15N values of the large rivers sites resembled the compositions vers sites resembled the compositions seen in sites dominated by row crops. Sites with livestock tended to have high ? 15N values characteristic of manure, and urban and undeveloped sites tended to have higher ? 18O values characteristic of a significant fraction of atmospheric nitrate. The ? 18O data were critical in showing abrupt changes in nitrate sources with discharge. A more thorough study of nutrient sources in the Ohio River Basin was initiated in 2002. For this study, nitrate, POM, and water were collected 15-20 times each year at 6 small NAWQA-program watersheds in the White River- Miami River basins, and at the 7 large river NASQAN-program sites in the Ohio River Basin. Nitrate samples were analyzed for ? 15N and ? 18O, POM for ? 15N and ? 13C, and water for ? 18O and ? 2H. The ? 15N and ? 13C of fish were used as indicators of nutrient sources. Other studies have indicated that POM consists primarily of phytoplankton and is transported in the water column, particularly size fractions < 1-mm diameter, were the primary food source for food webs in the Ohio and Upper Mississippi Rivers

  7. Satellite-based water balance of the Nile River basin: a multisensor approach

    Science.gov (United States)

    Zaitchik, B. F.; Anderson, M. C.; Ozdogan, M.; Yilmaz, M.

    2013-12-01

    Satellite-informed estimates of distributed hydrologic fluxes and storages in remote, ungauged, or contentious river basins is the subject of active research. Here we review recent developments in remotely sensed water flux and balance estimates for large basins, including the Nile River basin, and present results of a new analysis that applies TRMM, GRACE, and a Meteosat-based implementation of the ALEXI evapotranspiration algorithm to generate spatially and temporally distributed estimates of hydrologic fluxes and storages in the Nile basin. Results are evaluated using previous studies of the Nile water balance, historic river gauge data, and available in situ measurements of distributed fluxes. It is found that the independent estimates of precipitation, water storage changes, and evapotranspiration offered by TRMM, GRACE, and ALEXI, respectively, can be used to close the climatological water balance of the Nile River basin and critical Nile subbasins to first order, but that the technique has limitations at shorter time scales due to random error, at smaller spatial scales, due to resolution limitations, and in the characterization of systematic error due to limited availability of relevant in situ observations. The strengths and limitations of the analysis will be evaluated with respect to alternative methodologies and to resource information needs in the Nile basin.

  8. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin

    Science.gov (United States)

    Constantine, José Antonio; Dunne, Thomas; Ahmed, Joshua; Legleiter, Carl; Lazarus, Eli D.

    2014-12-01

    The role of externally imposed sediment supplies on the evolution of meandering rivers and their floodplains is poorly understood, despite analytical advances in our physical understanding of river meandering. The Amazon river basin hosts tributaries that are largely unaffected by engineering controls and hold a range of sediment loads, allowing us to explore the influence that sediment supply has on river evolution. Here we calculate average annual rates of meander migration within 20 reaches in the Amazon Basin from Landsat imagery spanning 1985-2013. We find that rivers with high sediment loads experience annual migration rates that are higher than those of rivers with lower sediment loads. Meander cutoff also occurs more frequently along rivers with higher sediment loads. Differences in meander migration and cutoff rates between the study reaches are not explained by differences in channel slope or river discharge. Because faster meander migration and higher cutoff rates lead to increased sediment-storage space in the resulting oxbows, we suggest that sediment supply modulates the reshaping of floodplain environments by meandering rivers. We conclude that imposed sediment loads influence planform changes in lowland rivers across the Amazon.

  9. Assessment of in-place oil shale resources of the Green River Formation, Greater Green River Basin in Wyoming, Colorado, and Utah

    Science.gov (United States)

    Johnson, R.C.; Mercier, T.J.; Brownfield, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) recently (2011) completed an assessment of in-place oil shale resources, regardless of grade, in the Eocene Green River Formation of the Greater Green River Basin in southwestern Wyoming, northwestern Colorado, and northeastern Utah. Green River Formation oil shale also is present in the Piceance Basin of western Colorado and in the Uinta Basin of eastern Utah and western Colorado, and the results of these assessments are published separately. No attempt was made to estimate the amount of oil that is economically recoverable because there has not yet been an economic method developed to recover the oil from Green River Formation oil shale.

  10. Soil productive potential of the river basins located in European part of Russia

    Science.gov (United States)

    Mishchenko, Natalia; Shoba, Sergei; Trifonova, Tatiana

    2014-05-01

    The search for integral monitoring indicators of natural ecosystems biosphere functions assessment is becoming really urgent nowadays. From the point of view of ecologic and economic indicators, characterizing ecosystems structure and functioning, soil fertility and vegetation productivity parameters, which have been studied for a long time as biosphere and environment forming functions rank first priority. For integrated characteristic of ecosystems soil and vegetation condition we have suggested to apply the index of "soil-productive potential" (SPP), characterizing the ability of nature and nature-anthropogenic ecosystems for sustained product (phytomass) reproduction under specific soil-bioclimatic conditions. It characterizes ecosystem reserve via the index expressed in numbers and averages the following parameters: • specific phytomass reserve (all living elevated and underground parts of plants in terms of total dry mass t/ hectare are considered); • specific productivity (phytomass augmentation for a year per unit area); • natural soil fertility (humus content, % as a characteristic); • crop-producing power (grain crop-producing power is considered, centner/hectare); • bioclimatic parameters (integrated index, including the sum of biologically active temperatures and moistening coefficient); • soil-ecologic index (SEI). Soil-productive potential allows the assessment of average perennial area resource for phytomass production by natural and nature-anthropogenic ecosystems. For more convenient comparative estimation, characteristics are ranked by dividing them into equal intervals according to 5-number scale with consequent numbers summation to overall index. As a result both soil-productive potential of natural eco-systems and total soil-productive potential of the whole area with a glance to the condition of available agrocenosis are calculated. Soil-productive potential of 12 first-rank major river basins of the European part of Russia have been assessed. Within the largest basin in terms of watershed area of the Volga, the Oka and the Kama (2-nd rank river basins) have been singled out and characterized separately. The method of river basins boundaries overlapping (in digital map scaled 1:1000000) on zonal spaces in «Arc GIS» has been applied. The biggest phytomass reserve is concentrated in the Neva and the Oka river basins, in the southern direction phytomass reserve is gradually declining due to the decrease of forest area. The most productive areas are the Don, the Ural, the Kuban basins. Productivity of the Volga basin ecosystems as a whole is medial (the highest values are typical for the Oka basin). The highest humus content is registered in the Kuban river basin, the lowest - in the North Dvina basin. The most favourable bioclimatic conditions are observed in the Dnieper basin. As a result high values of soil-productive potential are typical for the ecosystems of the Dnieper, the Kuban and the Volga basins where this value is high only due to the Oka basin area. The received values of soil-productive potential were correlated to hydraulogic characteristics of these basins, peculiarities of land use and arable land condition (according to SEI and crop capacity). High discharge module is stated to be typical for the northern rivers basins of little soil-productive potential (the Pechora, the Mezen); river basins of high soil-productive potential are characterized by low or average values of discharge module (the Dnieper, the Oka, the Kuban). The most agriculturally developed area is the Don basin, as here agricultural load reaches the highest limit, about 60% of the area is ploughed up though natural ecosystems and agricultural systems potential is not the highest, that may threaten the proper functioning of the basin. Ecosystem high soil-productive potential in the Kuban basin corresponds to good condition of arable lands, high crop capacity and great agricultural development of the area.

  11. A study on the role and importance of irrigation management in integrated river basin management.

    Science.gov (United States)

    Koç, Cengiz

    2015-08-01

    The purpose of this paper is to identify the role and the importance of irrigation management in integrated river basin management during arid and semi-arid conditions. The study has been conducted at Büyük Menderes Basin which is located in southwest of Turkey and where different sectors (irrigation, drinking and using, industry, tourism, ecology) related to the use and distribution of water sources compete with each other and also where the water demands for important ecological considerations is evaluated and where the river pollution has reached important magnitudes. Since, approximately 73 % of the water resources of the basin are utilized for irrigation; as a result, irrigation management becomes important for basin management. Irrigation operations have an effect on basin soil resources, water users, and environmental and ecological conditions. Thus, the determination of the role and importance of irrigation management require an integrated and interdisciplinary approach. In the studies conducted in Turkey, usually the environmental reactions have been analyzed in the basin studies and so the other topics related to integrated river basin management have not been taken into account. Therefore, this study also is to address these existing gaps in the literature and practice. PMID:26148688

  12. Enhancing Floodplain Management in the Lower Mekong River Basin Using Vegetation and Water Cycle Satellite Observations

    Science.gov (United States)

    Bolten, J. D.; Spruce, J.; Wilson, R.; Strauch, K.; Doyle, T.; Srinivan, R.; Lakshmi, V.; Gupta, M.

    2014-12-01

    The Lower Mekong River Basin shared by China, Burma, Laos, Thailand, Cambodia, and Vietnam, is considered the lifeblood of Southeast Asia. The Mekong Basin is subject to large hydrological fluctuations on a seasonal and inter-annual basis. The basin remains prone to severe annual floods that continue to cause widespread damage and endanger food security and the livelihood of the millions who dwell in the region. Also the placement of newly planned dams primarily for hydropower in the Lower Mekong Basin may cause damaging social, agriculture and fisheries impacts to the region where we may now likely be at a critical 'tipping point'. The primary goal of this project is to apply NASA and USGS products, tools, and information for improved flood and water management in the Lower Mekong River Basin to help characterize, understand, and predict future changes on the basin. Specifically, we are providing and helping transfer to the Mekong River Commission (MRC) and the member countries of Thailand, Cambodia, Lao, Vietnam, and Burma the enhanced Soil and Water Assessment Tool (SWAT) using remotely sensed surface, ground water, and root zone soil moisture along with improved Land Use and Land Cover (LULC) maps. In order to estimate the flood potential and constrain the SWAT Available Water Capacity model parameter over the region, we are assimilated GRACE Terrestrial Water Storage observations into the Catchment Land Surface Model. In addition, a Graphic Visualization Tool (GVT) as been developed to work in concert with the output of the SWAT model parameterized for the Mekong Basin as an adjunct tool of the MRC Decision Support Framework. The project requires a close coordination of the development and assessment of the enhanced MRC SWAT with the guidance of MRC resource managers and technical advisors. This presentation will evaluate the skill of the enhanced SWAT model using qualitative (i.e., MODIS change detection) and quantitative (e.g., streamflow) metrics over one sub-basin of the Lower Mekong River Basin.

  13. Reservoir Operations and Flow Modeling to Support Decision Making in the Delaware River Basin

    Science.gov (United States)

    Quinodoz, H. A.

    2006-12-01

    About five percent of the US population depends on the waters from the Delaware River Basin for its water supply, including New York City and Philadelphia. Water management in the basin is governed by a compact signed in 1961 by the four basin states and the federal government. The compact created the Delaware River Basin Commission (DRBC) and gave it broad powers to plan, regulate, and manage the development of the basin water resources. The compact also recognized a pre-existing (1954) U.S. Supreme Court Decree that grants the City of New York the right to export up to 800 million gallons per day out of the basin, provided that a prescribed minimum flow is met at Montague, New Jersey for the use of the lower-basin states. The Delaware River Basin Compact also allows the DRBC to adjust the releases and diversions under the Decree, subject to the unanimous consent of the decree parties. This mechanism has been used several times over the last 30 years, to implement and modify rules governing drought operations, instream flows, minimum flow targets, and control of salinity intrusion. In every case, decision makers have relied upon extensive modeling of alternative proposals, using a basin-wide daily flow model. Often, stakeholders have modified and used the same model to test and refine their proposals prior to consideration by the decision makers. The flow model has been modified over the years, to simulate new features and processes in a river system partially controlled by more than ten reservoirs. The flow model has proved to be an adaptable tool, able to simulate the dynamics of a complex system driven by conflicting objectives. This presentation reviews the characteristics of the daily flow model in its current form, discuss how model simulations are used to inform the decision-making process, and provide a case study of a recent modification of the system-wide drought operating plan.

  14. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin.

    Science.gov (United States)

    Zhao, Jing; Huang, Qiang; Chang, Jianxia; Liu, Dengfeng; Huang, Shengzhi; Shi, Xiaoyu

    2015-05-01

    The Wei River is the largest tributary of the Yellow River in China. The relationship between runoff and precipitation in the Wei River Basin has been changed due to the changing climate and increasingly intensified human activities. In this paper, we determine abrupt changes in hydro-climatic variables and identify the main driving factors for the changes in the Wei River Basin. The nature of the changes is analysed based on data collected at twenty-one weather stations and five hydrological stations in the period of 1960-2010. The sequential Mann-Kendall test analysis is used to capture temporal trends and abrupt changes in the five sub-catchments of the Wei River Basin. A non-parametric trend test at the basin scale for annual data shows a decreasing trend of precipitation and runoff over the past fifty-one years. The temperature exhibits an increase trend in the entire period. The potential evaporation was calculated based on the Penman-Monteith equation, presenting an increasing trend of evaporation since 1990. The stations with a significant decreasing trend in annual runoff mainly are located in the west of the Wei River primarily interfered by human activities. Regression analysis indicates that human activity was possibly the main cause of the decline of runoff after 1970. PMID:25619963

  15. Isotope characterization of major rivers of Indus Basin, Pakistan

    International Nuclear Information System (INIS)

    Pakistan lies between latitudes 24 deg. and 37 deg. North and longitudes 61 deg. to 76 deg. east. It possesses quite complicated and attractive physiographical features. There are very often a series of mountain ranges possessing deep broad valleys in-between. It includes the famous valley of the Indus having Indus River, which is one of the longest rivers in the World. It has five major tributaries: Bias, Satlej, Ravi, Chenab and Jhelum joining from the eastern side, while a number of small rivers join the Indus on the right side. All these main rivers are perennial. They originate from the mountains. Physiography and climate of the catchments of these rivers vary widely. Going from the catchment of the River Satlej to the catchment of Indus River, altitude increases and temperature decreases. In Northern Areas, mountains are covered with glaciers and some of the peaks are higher than 8000m, which get snowfall even in summer season. The basic sources of these rivers are snowmelt, rainfall and under certain conditions seepage from the formations. From the middle of March to the breaking of monsoon, in mid July, river water is drawn from the melting of snow. During monsoon, rainfall run-off is added to the rivers over and above of snowmelt, so their discharge increases manifold. During 1980-84, samples were collected on monthly basis from the river Satlej at Sulimanki, the river Ravi at Baloki (upstream including Qadirabad-Baloki Link Canal originating from the river Cki Link Canal originating from the river Chenab) and Sidnai including two link canals originating from Trimu Headworks (just after the confluence of the rivers Chenab and Jhelum), Panjnad (combination of five eastern tributaries) and the river Indus at Tarbela and Taunsa. The samples were analyzed for 18O,2H and 3H isotopes. The isotopic data (ranges, mean values) and ?18O-?2H correlations are tabulated

  16. Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10

    Science.gov (United States)

    Morace, Jennifer L.

    2012-01-01

    Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, a reconnaissance was done to assess contaminant concentrations directly contributed to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments and to evaluate instantaneous loadings to the Columbia River Basin from these inputs.

  17. Upper and Middle Tiete River Basin dam-hydraulic system, travel time and temperature modeling

    Science.gov (United States)

    Devkota, Bishnu; Imberger, Jörg

    2012-12-01

    SummaryTiete River System in the State of Sao Paolo, Brazil is characterized by complex hydraulics and operational problems due to series of dams and point and diffuse inflows along the river. A one dimension Lagrangian river model was developed and applied to the 313 km reach of the Upper and Middle Tiete River Basin from the Penha Dam to the head water of Bara Bonita Reservoir, a stretch of river that includes six small to medium size dams (3.4-22 m high) including the Pirapora Reservoir and 26 inflows into the river (11 tributaries, 9 diffuse source areas, and discharges of 4 cities stormwater and 2 wastewater treatment plants. The conservative tracer transport and temperature model that accounts for the short and long wave radiation and heat transfers at the free surface was included and solved using the Crank-Nicholson scheme. The time variable catchment input to the model was the simulated output of the external hydrological model called Runoff Load Model which results were provided by CETESB. The numerical treatment of series of dams and spillway (that included uncontrolled overflow spillway, gate-controlled ogee spillway; and underflow gates and tunnels) and parameterisation of hydraulic jumps are described. Special attention was focused on the high spatial and temporal variation of flows in Tiete River Basin, a result of the large variation in catchment inflows and channel geometry due to dams and reservoirs along the river. Predicted and measured spatial and seasonal variation of flow and temperature profiles along the river show good agreement. The simulated travel time of conservative tracer is compared against the CETESB's 1982 and 1984 field study data in a 254 km reach of the Middle Tiete River that again shows good agreement. Being Lagrangian in construction, this new model is computationally efficient making it an ideal tool for long term simulation for water resource planning, management and operation decision making in a large and complex river basin system.

  18. Analysis of precipitation cycles based on MEM in the Yellow River basin

    Science.gov (United States)

    Li, Z.; Cheng, T.; Song, H.; Li, Z.; Yu, J.

    2015-05-01

    Using the monthly precipitation series of 32 meteorological stations in the Yellow River basin from 1951 to 2003, the precipitation cycles were discussed using the Maximum Entropy Method (MEM), the spatial distribution of the precipitation cycles were analysed, and the possible driving factors of the cycles investigated. The results show that the precipitation in the Yellow River has decadal (60a), inter-decadal (25a and 14a) and inter-annual cycles (9a and 3a). The main oscillations over the whole basin are 3a and 9a. There are clearer inter-decadal variations in the riverhead area with much greater water resources, and north of the region of LanHe main stream. The decadal signals are detected in the inner area with less precipitation and Wei River basin. These differences are possibly related to some physical processes, such as the mutual action of sea and atmosphere, and solar activities.

  19. Initial Sediment Transport Model of the Mining-Affected Aries River Basin, Romania

    Science.gov (United States)

    Friedel, Michael J.; Linard, Joshua I.

    2008-01-01

    The Romanian government is interested in understanding the effects of existing and future mining activities on long-term dispersal, storage, and remobilization of sediment-associated metals. An initial Soil and Water Assessment Tool (SWAT) model was prepared using available data to evaluate hypothetical failure of the Valea Sesei tailings dam at the Rosia Poieni mine in the Aries River basin. Using the available data, the initial Aries River Basin SWAT model could not be manually calibrated to accurately reproduce monthly streamflow values observed at the Turda gage station. The poor simulation of the monthly streamflow is attributed to spatially limited soil and precipitation data, limited constraint information due to spatially and temporally limited streamflow measurements, and in ability to obtain optimal parameter values when using a manual calibration process. Suggestions to improve the Aries River basin sediment transport model include accounting for heterogeneity in model input, a two-tier nonlinear calibration strategy, and analysis of uncertainty in predictions.

  20. Analysing the influence of human activity on runoff in the Weihe River basin

    Science.gov (United States)

    Shen, C.; Qiang, H.

    2015-05-01

    Changing runoff patterns can have profound effects on the economic development of river basins. To assess the impact of human activity on runoff in the Weihe River basin, principal component analysis (PCA) was applied to a set of 17 widely used indicators of economic development to construct general combined indicators reflecting different types of human activity. Grey relational analysis suggested that the combined indicator associated with agricultural activity was most likely to have influenced the changes in runoff observed within the river basin during 1994-2011. Curve fitting was then performed to characterize the relationship between the general agricultural indicator and the measured runoff, revealing a reasonably high correlation (R2 = 0.393) and an exponential relationship. Finally, a sensitivity analysis was performed to assess the influence of the 17 individual indicators on the measured runoff, confirming that indicators associated with agricultural activity had profound effects whereas those associated with urbanization had relatively little impact.

  1. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    International Nuclear Information System (INIS)

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries

  2. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. (Pacific Northwest Lab., Richland, WA (United States)); Frest, T.J. (Deixis Consultants, Seattle, WA (United States))

    1992-08-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries.

  3. Water governance and adaptation to climate change in the Indus River Basin

    Science.gov (United States)

    Yang, Yi-Chen E.; Brown, Casey; Yu, Winston; Wescoat, James; Ringler, Claudia

    2014-11-01

    Conflicting approaches to water governance at multiple scales within large international river basins may have detrimental effects on the productivity of water resources and consequently the economic activities of the basin. In the Indus River Basin, local scale water productivity decisions are affected by international and intra-national scale water governance. Water availability and productivity is modulated by the Indus Waters Treaty between India and Pakistan, and within Pakistan by the agreements governing water allocation between and within provinces. Much of the literature on governance at multiple scales in the Indus basin, and others, has employed qualitative methods of institutional analysis. This paper extends that approach with quantitative modeling of surface water allocation rules at multiple scales and the consequent economic impact on water use and productivity in the Indus River of Pakistan. The effects of the existing water allocation mechanisms on the ability to adapt to possible future climate conditions are examined. The study is conducted using the Indus Basin Model Revised - Multi-Year (IBMR-MY), a hydro-agro-economic model of the Indus River within Pakistan that simulates river and canal flows, groundwater pumping, water use and economic activities with a distributed, partial equilibrium model of the local scale agro-economic activities in the basin. Results suggest that without changes in response to changing conditions, the current governance mechanisms impede the provinces' ability to adapt to changing climate conditions, in ways that are significant, inflicting economic costs under both high and low flow conditions. However surface water allocation between the provinces does not appear to hinder adaptation. The greatest gains for economic water allocation are achieved at the sub-provincial level. The results imply that adaptive mechanisms for water allocation that allow response to changing climate conditions within provinces may be a promising adaptive response in the Indus Basin.

  4. A LAND USE ANALYSIS OF EXISTING AND POTENTIAL COAL SURFACE MINING AREAS IN THE OHIO RIVER BASIN ENERGY STUDY REGION

    Science.gov (United States)

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. It reports on the land use changes resulting from the surface mining of coal in the Ohio River Basin, which...

  5. Relation between environmental variables and the fish community structure in streams of das Mortes and Xingu river basins – MT, Brazil

    Directory of Open Access Journals (Sweden)

    Priscylla Rodrigues Matos

    2013-09-01

    Full Text Available Environmental variables may determine and structure the composition of fish fauna. Studies comparing differences between physical and chemical variables of water between close river basins are few. This paper aimed to check which limnological variables are related to the distribution of fish species in two river basins. For this, 20 streams were sampled, divided between das Mortes and Xingu river basins. At each point one measured a total of 8 environmental variables. Fishes were collected through trawl. Total richness was 57 species, 29 of them from Xingu river basin, 35 from das Mortes river basin, and 7 species common to both river basins. The analyses showed that the streams in these two basins have distinct limnological and faunal features. The streams in Xingu river basin had lower pH values which may have been influenced by the high rates of organic decomposition. The streams of das Mortes river showed higher values of suspended matter and chlorophyll, probably due to higher degradation of streams and lower vegetation cover levels.

  6. LIVING WITH FLOOD AND SUSTAINABLE LIVELIHOOD DEVELOPMENT IN LOWER BRAHMAPUTRA RIVER BASIN, ASSAM

    OpenAIRE

    Singh, R. B.; Pandey, B. W.; Abhay Shankar Prasad

    2014-01-01

    River basin is considered as the basic hydrologic unit for planning and development of water resources and livelihood. Assam's Brahmaputra valley represents one of the most acutely hazard-prone regions in the country, having a total flood prone area of 3.2 million hectare. The lower Brahmaputra basin, Assam has caused the hazards of annual floods and erosion, bringing misery to the people and shattering the fragile agro-economic base of the region. The important factors causin...

  7. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    OpenAIRE

    E. A. Rosenberg; Clark, E. A.; A. C. Steinemann; Lettenmaier, D. P.

    2012-01-01

    We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC) macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM)...

  8. FACTORS THAT INCREASE DRYNESS PHENOMENON ON SMALL RIVERS IN PRUT BASIN (ANALYSIS OF CONDITIONALITIES)

    OpenAIRE

    Florin Vartolomei

    2012-01-01

    This study aims to analyze factors causing increased of dryness phenomenon on small rivers in Prut basin. Are analyzed, the non-climate components of the landscape (relief, geology, soil,vegetation) and climatic factors on corresponding area(rainfalls). In reporting the number of years that has occurred dryness to number of years of observations showed that the frequency of the dryness phenomenon is over 90 % for basins with areas less than 5km 2. The maximum period recorded without flow for ...

  9. Estimating Total Discharge in the Yangtze River Basin Using Satellite-Based Observations

    OpenAIRE

    Andam?akorful, Samuel A.; Yonglei Zhang; Xiufeng He; Zheng Gong; Ferreira, Vagner G.

    2013-01-01

    The measurement of total basin discharge along coastal regions is necessary for understanding the hydrological and oceanographic issues related to the water and energy cycles. However, only the observed streamflow (gauge-based observation) is used to estimate the total fluxes from the river basin to the ocean, neglecting the portion of discharge that infiltrates to underground and directly discharges into the ocean. Hence, the aim of this study is to assess the total discharge of the Yangtze ...

  10. Modeling and management of water in the Klamath River Basin: overcoming politics and conflicts

    Science.gov (United States)

    Flug, Marshall; Scott, John F.

    1998-01-01

    The network flow model MODSIM, which was designed as a water quantity mass balance model for evaluating and selecting water management alternatives, has been applied to the Klamath River basin. A background of conflicting issues in the basin is presented. The complexity of water quantity model development, while satisfying the many stakeholders and involved special interest groups is discussed, as well as the efforts taken to have the technical model accepted and used, and overcome stakeholder criticism, skepticism, and mistrust of the government.

  11. Antecedent flow conditions and nitrate concentrations in the Mississippi River Basin

    OpenAIRE

    Murphy, J.C.; R. M. Hirsch; L. A. Sprague

    2013-01-01

    The influence of antecedent flow conditions on nitrate concentrations was explored at eight sites in the Mississippi River Basin, USA. Antecedent moisture conditions have been shown to influence nutrient export from small, relatively homogenous basins, but this influence has not been observed at a regional or continental scale. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record (Q ratio), a...

  12. Assessment of flash floods taking into account climate change scenarios in the Llobregat River basin

    OpenAIRE

    Velasco, M.; Cabello, A.; Zappa, M.; Liechti, K.; Versini, P. A.; Barrera-escoda, A.

    2013-01-01

    Global change may imply important changes in the future occurrence and intensity of extreme events. Climate scenarios characterizing these plausible changes were previously obtained for the Llobregat River basin (NE Spain). This paper presents the implementation of these scenarios in the HBV (Hydrologiska Byråns Vattenbalansavdelning) hydrological model. Then, the expected changes in terms of flash flood occurrence and intensity are assessed for two different sub-basins: th...

  13. Risk control of groundwater exploitation for Zhangye basin in the middle reaches of Heihe River basin, China

    Science.gov (United States)

    Guosheng, X.; Ju, Q.; Shuixian, W.; Qin, L.; Fen, L.; Liu, W.

    2015-05-01

    Regulation of the water table is a feasible and effective way to reduce the risk of groundwater exploitation. An index system of groundwater exploitation risk evaluation is developed. The groundwater numerical simulation model is established for Zhangye basin in the middle reaches of Heihe River basin, China. Based on the identification and validation, the model is used for numerical simulation and forecast of groundwater exploitation under the conditions of current and planned development. The results show that the increase of groundwater exploitation amount causes the falling of water table. The increase of groundwater exploitation is 7600 × 104 m3, which can displace the surface water amount of 10 100 × 104 m3. The annual river runoff can increase 7536 × 104 m3. It is beneficial to the let-down flow from Zhengyi Gorge cross-section, and also provides the basis for decision on risk control of groundwater exploitation.

  14. The fish fauna in tropical rivers: The case of the Sorocaba river basin, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Welber Senteio Smith

    2003-09-01

    Full Text Available A survey was carried out on the fish species in the Sorocaba River basin, the main tributary of the left margin of the Tietê River, located in the State of São Paulo, Brazil. The species were collected with gill nets. After identification of the specimens, their relative abundance, weight and standard length were determined. Up to the present moment there are not any studies that focus this subject in this hydrographic basin. Fifty-three species, distributed in eighteen families and six orders were collected. Characiformes were represented by twenty-eight species, Siluriformes by seventeen species, the Gymnotiformes by three species, Perciformes and Cyprinodontiformes by two species, and the Synbranchiformes by one species. Among the collected species there were two exotic. The most abundant species were Astyanax fasciatus and Hypostomus ancistroides. In relation to total weight the most representative species were Hoplias malabaricus and Hypostomus ancistroides. Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus and Hoplias malabaricus were the most representative species in relation to average weight. Largest standard length were recorded for Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia aff. virescens and Cyprinus carpioSe realizó un análisis de las especies de peces de la cuenca del Río Sorocaba, el principal tributario de la margen izquierda del Río Tietê, localizado en el estado de Sao Paulo, Brasil. Las especies fueron recolectadas con redes agalleras. Luego de la identificación de los especímenes, fue determinada su abundancia relativa, peso, y longitud estandar. Hasta el presente, no hay ningún otro estudio que analice estos aspectos en dicha cuenca hidrográfica. Fueron recolectados 55 especies, distribuidas en 18 familias y 6 ordenes. Los Characiformes estuvieron representados por 28 especies, Siluriformes por 17 especies, Gymnotiformes por 3 especies, Perciformes y Cyprinodontiformes por 2 especies, y Synbranchiformes por una especie. Entre estas, se encontró 2 especies exóticas. Las especies más abundantes fueron Astyanax fasciatus y Hypostomus ancistroides. En relación con el peso total, la especie más representativas fueron Hoplias malabaricus y Hypostomus ancistroides. En tanto que, Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus y Hoplias malabaricus fueron las más representativas en relación al preso promedio. Las longitudes estandar más grandes fue encontradas en Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia aff. virescens y Cyprinus carpio

  15. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    Science.gov (United States)

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.

  16. Soil hydrophysical characteristics in the Nitra river basin (Slovakia): Their monitoring, analysis, online publishing

    OpenAIRE

    Igaz, Dusan; Horak, Jan; Sinka, Karol; Kondrlova, Elena

    2014-01-01

    The paper is focused on the purpose made, or local monitoring of areal unit of the Nitra river basin (Slovakia, Central EU with total area 4501 km2) in order to obtain the inputs on soil, moisture and hydrophysical characteristics of the given area. In this study, there was evaluated the share of individual soil texture classes in the Nitra river basin on the basis of map records and its comparison with the soil samples taken from the 111 selected sites. Soil samples were taken from two depth...

  17. Temporal and spatial variations of precipitation in the Jinsha River basin during 1961-2010

    Science.gov (United States)

    Zeng, X.; Zhao, N.; Sun, H.; Ye, L.; Zhai, J.

    2015-05-01

    Knowing the variations of precipitation at the basin scale is very important to study the impacts of climate change on water resources and hydrological processes. To achieve the temporal and spatial variations of precipitation on long time scales and some extreme indicators in the Jinsha River basin, some typical precipitation indices were analysed based on daily precipitation data for 1961-2010 for the research area. The results showed that AP had a certain increasing tendency without passing the significance test, while AP in the lower reach of the basin decreased slightly. PFS had no obvious changes, while MP through a year (except rainfall in September and December) had a slight increasing tendency. In addition, AP and PFS showed obvious spatial differences, and the higher rainfall area was located in the lower basin especially in the Hengduan Mountain area. LRD and MRD increased slightly in the upper and middle regions, while they decreased slightly in the lower basin. HRD increased over most of the whole basin, but it had a decreasing tendency in the headwater region and around Dege station but did not pass the significance test. DD and CDD in one year showed similar spatial change patterns and had an obvious decreasing tendency in the upper and middle basin, while they had an obvious increasing tendency in the lower basin. CWD almost decreased over the whole basin, and decreased significantly in a small part of the lower basin. The temporal changes of the typical precipitation indices may confirm the possible increasing tendency for occurrence of drier climate and even drought events in the downstream of Jinsha River basin.

  18. Quaternary colluvial episodes (Upper Paraná River Hydrographic Basin, Brazil)

    Scientific Electronic Library Online (English)

    Alethea E.M., Sallun; Kenitiro, Suguio.

    2010-09-01

    Full Text Available Depósitos coluviais ocorrem extensivamente na Bacia Hidrográfica do Alto Rio Paraná, no sudeste, sul e centro-oeste do Brasil. Esses depósitos foram reconhecidos como uma unidade aloestratigráfica, e são interpretados como depósitos formados por processos de rastejo durante o Quaternário. Cada perfi [...] l coluvial estudado é muito homogêneo, e indica relativamente períodos longos de estabilidade da paisagem, suficiente para desenvolvimento de espessa cobertura. Estes depósitos foram datados por luminescência para estabelecer cronologicamente períodos de deposição coluvial mais intensa entre 6 e 220 ky B.P. Estes eventos correspondem aproximadamente às transições entre os estágios de isótopos do oxigênio 2-3-4 e 5-6, sugerindo que essa agradação esteve influenciada por mudanças climáticas. Desenvolvimento aluvionar foi correlacionado ao Peniglacial médio a superior da Glaciação Wisconsiana. Os períodos de intensidade ou frequência maior de precipitação que ocorre durante as transições climáticas estão provavelmente correlacionados com os eventos de agradação. A regularidade do registro coluvionar sugere constante soerguimento acompanhado de deposição sedimentar por toda UPRHB devido à atividade neotectônica durante o último milhão de anos. Abstract in english Colluvial deposits occur extensively in the Upper Paraná River Hydrographic Basin (UPRHB) in Southeastern,Southern, and Western central Brazil. These deposits were recognized as an allostratigraphic unit and related to creeping during the Quaternary. Every studied colluvial profile is homogeneous, w [...] hich indicates relatively long periods of landscape stability that is sufficient for the development of a thick soil cover. The deposits were dated by luminescence and indicate periods of more intense colluvial deposition between 6 and 220 ky B.P. These events correspond approximately to the transitions between the oxygen isotope stages 2-3-4 and 5-6, suggesting that this aggradation was influenced by climatic changes. However, the most important alluviation episode was tentatively correlated with the Middle to Upper Pleniglacial of the Wisconsin glaciation. The most intensive and frequent periods of precipitation that occurred during climate transitions are probably correlated with aggradation events. The regularity of the colluvial deposits suggests continuous uplift accompanied by sediment deposition throughout the UPRHB due to neotectonic activity during the last million years.

  19. Long-term behaviour of Chernobyl radionuclides in the Dnieper River Basin

    International Nuclear Information System (INIS)

    The analysis of formation of radioactive contamination of rivers of Belarus, entering the Dnieper basin (Dnieper, Sozh, Iput, Besed, Pripyat), after the accident at the ChNPP is given in the paper. The legitimacies and features of behavior of Chernobyl radionuclides in surface waters and different types of soils on watersheds are detected. Radionuclide concentration dynamics in surface water of Dnieper river basin for period 1987-2006 are present. Transboundary migration of radionuclides through the river networks of Russia, Belarus and Ukraine is estimated. The transboundary migration of 137Cs has decreased markedly with time. On the other hand, the transboundary migration of 90Sr has fluctuated depending on the extent of annual flooding. Long-term behaviour of Chernobyl radionuclides in the difference soil types of Dnieper River watershed are given. Linear velocity of 137Cs, 90Sr for different soil types are found. A forecast of vertical radionuclide migration is made. (author)

  20. HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    John A. McLachlan

    2003-12-01

    In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

  1. Characterization of production commingled from deep basin plays, Wild River region of western Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, R.K.; Flint, D.W. [Forward Energy Group, Calgary, AB (Canada)

    2010-07-01

    More exploration and development investment focus is being directed towards unconventional gas resources as a result of the productivity decline in conventional North American gas reservoirs. The most productive of the unconventional group are tight gas plays. Within the Western Canada Sedimentary Basin (WCSB), the Deep Basin play is the most dominant and the largest source for unconventional gas. Commingling is particularly common in the Wild River region of the Deep Basin area, where up to 8 potential plays may be stacked for completion. This paper discussed the characteristics and distribution of commingled wells in the Wild River region. It also discussed the implications for resource estimates and development in other areas of the Deep Basin, based on the results observed in the Wild River region. Specific issues that were addressed included the impact of these multi-play wells in terms of activity; the location of the commingled play wells; and the plays that are completed most frequently in these commingled wells. This paper also discussed whether recovery per well is improving with experience and whether recovery improved as more plays are completed. Other topics that were discussed included the overall success rate in this area; the density per section of Deep Basin producing wells; and how strategies and results vary by operator. It was concluded that most multiplay wells are drilled to evaluate all 8 Deep Basin intervals, and most are commonly completed in 3 or more plays. 4 refs., 15 figs.

  2. A STATISTICAL AND HYDROLOGICAL ANALYSIS OF THE MAXIMUM FLOW IN THE TERPEZITA RIVER DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    GABRIELA ADINA MORO?ANU

    2015-03-01

    Full Text Available A statistical and hydrological analysis of the maximum flow in the Terpezi?a river drainage basin. Starting from the idea that hydrological and hydrometeorological parameters have a statistical existence over time and a spatial distribution that can be represented by an interaction between the mathematical and geographical elements, the present paper aims to analyze the relationship between maximum flows, hourly rains, flow coefficients and concentration times of the Terpezita Basin. This is the second-largest sub-basin (182km2 in the basin of Desnatui, which is located in the SW of Romania and is a first degree tributary of the Danube. The assessment of the concentration time, which involves the sizes of the liquid flow and specific liquid flow, was attained according to the physical and geographical characteristics of the basin. Thus taking into account the homogenous character from this point of view and the existence of statistically established hydrological and pluviometric background, we could outline the behavior of Terpezi?a River Basin during the extreme hydro-meteorological events. The documentation was completed through an exemplification of previously calculated results, using observations and measurements of the river bed in the vicinity of Terpezita village and processing the values that resulted from the hydro-graph of the 2005 flash-flood.

  3. Asymmetric Responses of Land Water Storage to Two Types of ENSO over the Mississippi River Basin

    Science.gov (United States)

    Liang, Y.; Lo, M.; Yu, J.

    2013-12-01

    The Mississippi River basin covers about 41% of the contiguous U.S. and its opulent water resource nourishes the largest agriculture economy in the North America. ENSO significantly influences the hydroclimate over the Mississippi River basin through modified precipitation and temperature anomalies. Recent recognition reveals that there exist two types of El Niño events- the Central Pacific (CP) El Niño and Eastern Pacific (EP) El Niño. In this study, we found that CP events reduce the Mississippi streamflow from January to June, while EP events greatly enhance the river flow in April and May. The positive precipitation anomalies in March during EP El Niño years cause higher soil water by a lag of 2-3 months in the central and western Mississippi River basin. On the other hand, CP El Niño events induce negative precipitation anomalies, causing lower soil water over the Ohio-Mississippi Valley. As CP El Niño events may become more frequently in a warmer climate, our results imply the potential for a water shortage to occur in the Mississippi river basin in the future.

  4. Use of isotopes to study floodplain wetland and river flow interaction in the White Volta River basin, Ghana.

    Science.gov (United States)

    Nyarko, Benjamin Kofi; Kofi Essumang, David; Eghan, Moses J; Reichert, Barbara; van de Giesen, Nick; Vlek, Paul

    2010-03-01

    Floodplain wetlands influence the timing and magnitude of stream responses to rainfall. In managing and sustaining the level of water resource usage in any river catchment as well as when modelling hydrological processes, it is essential that the role of floodplain wetlands in stream flows is recognised and understood. Existing studies on hydrology within the Volta River basin have not adequately represented the variability of wetland hydrological processes and their contribution to the sustenance of river flow. In order to quantify the extent of floodwater storage within riparian wetlands and their contribution to subsequent river discharges, a series of complementary studies were conducted by utilising stable isotopes, physical monitoring of groundwater levels and numerical modelling. The water samples were collected near Pwalugu on the White Volta River and at three wetland sites adjacent to the river using the grab sampling technique. These were analysed for (18)O and (2)H. The analysis provided an estimate of the contribution of pre-event water to overall stream flow. In addition, the variation in the isotopic composition in the river and wetland water samples, respectively, revealed the pattern of flow and exchange of water between the wetlands and the main river system. PMID:20229387

  5. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    Science.gov (United States)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater basins in regions of complex terrain undergoing similar pressures such as the Andes and Himalayas. First results of the project including a quantitative organigram mapping water availability, water consumption, and the relationships among water stakeholders within the basin will be presented.

  6. Reconstructing the Santa Tecla flash flood in the Ondara River (Ebro Basin, NE Spain)

    Science.gov (United States)

    Balasch, J. C.; Tuset, J.; Ramos, M. C.; Martínez-Casasnovas, J. A.

    2009-09-01

    The Santa Tecla flood may be considered the most catastrophic rainfall event in the modern history of Catalonia (NE Iberian Peninsula), and one of the most important in the Western Mediterranean Basin. This event took place during the night between 22nd and 23rd September 1874, in which torrential convective rainfalls generated significant flash floods in most of the small streams in the southern half of Catalonia (i.e. Ondara, Corb, Francolí and Siurana catchments). More than 570 people died, 150 of which in the town of Tàrrega, by the Ondara River. Despite being one of the last huge floods of the pre-instrumental era and, consequently, without any precipitation or flow data, the event was reconstructed both hydraulically and hydrologically for the Ondara River at Tàrrega (150 km2). Thus, the maximum water level and the temporal evolution of the flood were obtained, respectively, from several epigraphic limnimarks found in Tàrrega and from the event description recorded in historical documents. Additionally, the information from local archaeological sites allowed the reconstruction of the fluvial section at Tàrrega at the end of the 19th century. Finally, some old cellars flooded during the event provided information about sediment concentration at the peak flow. The methodology put into practice for the event reconstruction had two stages. The first stage was the hydraulic modelling, which estimated the peak flow. The input data used were the maximum water level given by the limnimetric marks, a digital terrain model of the river bed shape, and the stream and floodplain roughness and channel slope (which were considered similar to the present ones, according to archaeological data). The hydraulic model used was the unidimensional HEC-RAS (USACE), applied in several cross sections of the Ondara River at Tàrrega. The second stage was the hydrological modelling. The objective of this stage was to derive the event hyetograph from the above calculated peak flow and the hydrologic response of the basin. This hydrologic behaviour, that is the relation between the hyetograph and the hydrograph, was estimated taking into account rainfall duration (6-8 hours according to historical documents), basin characteristics, soil type, soil land use and cover and the antecedent soil moisture, using SCS Curve Number method. After that, a transfer Synthetic Unitary Hydrograph function and a wave propagation method (Muskingum) were applied to describe the discharge evolution and the water routing into the stream channel. The software used in this stage was the HEC-HMS (USACE). The results of the hydraulic simulation at the Sant Agustí street cross section were the following: a) a maximum water depth of 6.16 m above the original river bed, b) a mean water velocity of about 2 m•s-1, c) a peak flow of 996 m3•s-1 (increased by 480 m3•s-1 from the Cercavins River downstream Tàrrega), and d) a specific peak discharge of the event of 6.6 m3•s-1•km-2, which exceeds the values of the 500-year return period floods compiled from the Ebro drainage basin systematic database. From the information obtained in the flooded cellars, the sediment concentration during the peak flow was estimated in 11.2% (in volume), characteristic of a hyperconcentrated flow. The water level reached in the abovepresented cross section is partly explained by the recently discovered Sant Agustí Bridge, buried until now in the river bed. The results of the hydrologic modelling were: a) a surface runoff total volume of 12 hm3, b) a runoff coefficient of about 35.5%, c) a lagtime of 2.5-3 hours, and d) if the previous soil humidity for the Curve Number method was low (situation I), a total rainfall of 225 mm with a peak intensity higher than 100 mm•h-1 is needed; if the previous soil humidity for the Curve Number method was medium (situation II), a total rainfall of 156 mm with a peak intensity of about 70 mm•h-1 occurs. Rainfall values for medium previous moisture condition (II) represent a 1000-year return period according to the regional systematic data.

  7. Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, Southwestern India.

    Science.gov (United States)

    Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N

    2014-04-01

    The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water. PMID:24374620

  8. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin

    OpenAIRE

    Ziv, Guy; Baran, Eric; Nam, So; Rodri?guez-iturbe, Ignacio; Levin, Simon A.

    2012-01-01

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We fi...

  9. Water Quality Analysis of the Songhua River Basin Using Multivariate Techniques

    OpenAIRE

    Li, Shun; Xu, Linyu; Li, Yang

    2009-01-01

    Multivariate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA), were used to evaluate temporal and spatial variations and to interpret a large and complex water quality data sets collected from the Songhua River Basin. The data sets, which contained 14 parameters, were generated during the 7-year (1998-2004) monitoring program at 14 different sites along the rivers. Three significant sampling locati...

  10. Rusumo dam-social challenge in Kagera River Basin : Participation of the affected people

    OpenAIRE

    Nzeyimana, Lazare

    2003-01-01

    From long ago, rivers have always sustained livelihoods of the peoples through the utilisation of different natural resources available in the basin. All over the world, many rivers have been dammed in the spirit of performing various purposes: agricultural irrigation, domestic water supply and power generation or flood control. By the year 2001, the World Commission on Dams brought into focus the debate on damrelated impacts on local economies, societal cultures, livelihoods security and env...

  11. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    OpenAIRE

    CUI, X.; Liu, S.; Wei, X.

    2012-01-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Pla...

  12. Simulation of blue and green water resources in the Wei River basin, China

    Science.gov (United States)

    Xu, Z.; Zuo, D.

    2014-09-01

    The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  13. Cytogenetic and morphological diversity in populations of Astyanax fasciatus (Teleostei, Characidae from Brazilian northeastern river basins

    Directory of Open Access Journals (Sweden)

    Aline Souza Medrado

    2008-01-01

    Full Text Available In the present work, morphometric and cytogenetic analyses were carried out in populations of the fish Astyanax fasciatus (Characidae from Contas and Recôncavo Sul River basins (State of Bahia, Brazil, providing new data on the genetic structure of this species along the region. Based on morphologic measurements, we observed that populations from the same hydrographic basin were more similar to each other (Contas and Preto do Costa Rivers, and remarkably divergent from Recôncavo Sul (Mineiro Stream, as indicated by clustering analysis. Cytogenetic data revealed a same diploid number for all populations (2n = 48, but distinct karyotype formulae (8M+24SM+12ST+4A, FN = 92 in Contas River, 8M+24SM+10ST+6A, FN = 90 in Preto do Costa River, and 8M+18SM+16ST+6A, FN = 90 in Mineiro Stream. Ag-NORs were identified at telomeres on a subtelocentric chromosome pair, although multiple ribosomal sites have been detected in some specimens from Contas River. These results show that A. fasciatus populations from northeastern river basins are well differentiated and present peculiar cytogenetic features when compared to populations from other regions. Therefore, the apparent chromosomal plasticity of this species, likely to represent a complex of cryptic forms, is corroborated. Finally, we demonstrated that morphological features can be successfully used to support other sources of genetic information.

  14. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements are converted to discharge using rating curves of simulated discharge versus observed altimetry. This approach makes it possible to use altimetry data from river cross sections where both in-situ rating curves and accurate river cross section geometry are not available. Model updating based on radar altimetry improved model performance considerably. The Nash-Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet.

  15. Engineering geology of dam sites in parts of the Niger River Basin

    Science.gov (United States)

    Malomo, S.; Olawole, J. F.

    The Niger River Basin in Nigeria holds a national record for the largest dams builts, or being built to date. The dams have been designed for power supply, irrigation, flood control and water supply purposes. A study of the engineering geology of the dam sites should provide an insight into the geological requirements for dam building in the basin and elsewhere. A comprehensive analysis of results of geophysical and engineering geological studies on dam sites in the basin have been carried out. A further engineering geological investigation of dams proposed and those under construction has also been made. The important characteristics of the dam sites have been correlated. The investigations reveal the existence of close similarities between the engineering geology of several dam sites in the basin. The results of the investigations will serve as a useful basis for the planning and development of future dams in the basin and other parts of Africa.

  16. Change and persistence in land surface phenologies of the Don and Dnieper river basins

    International Nuclear Information System (INIS)

    The formal collapse of the Soviet Union at the end of 1991 produced major socio-economic and institutional dislocations across the agricultural sector. The picture of broad scale patterns produced by these transformations continues to be discovered. We examine here the patterns of land surface phenology (LSP) within two key river basins-Don and Dnieper-using AVHRR (Advanced Very High Resolution Radiometer) data from 1982 to 2000 and MODIS (Moderate Resolution Imaging Spectroradiometer) data from 2001 to 2007. We report on the temporal persistence and change of LSPs as summarized by seasonal integration of NDVI (normalized difference vegetation index) time series using accumulated growing degree-days (GDDI NDVI). Three land cover super-classes-forest lands, agricultural lands, and shrub lands-constitute 96% of the land area within the basins. All three in both basins exhibit unidirectional increases in AVHRR GDDI NDVI between the Soviet and post-Soviet epochs. During the MODIS era (2001-2007), different socio-economic trajectories in Ukraine and Russia appear to have led to divergences in the LSPs of the agricultural lands in the two basins. Interannual variation in the shrub lands of the Don river basin has increased since 2000. This is due in part to the better signal-to-noise ratio of the MODIS sensor, but may also be due to a regional drought affecting the Don basin more than the Dnieper basin.

  17. Effects of oil production on water resources in the Kentucky River basin, Kentucky

    International Nuclear Information System (INIS)

    As part of a comprehensive study of water quality in the Kentucky River basin, Kentucky, an area of intense oil-production activity was investigated. Groundwater sampling indicated that shallow groundwater in valley alluvial areas was probably not affected by oil-production activities, that water flooding had decreased the mineral content of water in the oil-production units but not in the overlying formations, and that the character of water in a shallow bedrock formation may reflect mixing of freshwater from the overlying alluvium and mineralized water from deeper units. Surface water from oil-production basins was determined to be a sodium chloride type water, differing from the calcium bicarbonate type water generally found in basins unaffected by oil production. The average annual yields of bromide, chloride, sodium, and strontium from one oil-production basin were at least 10 times greater than from a non-production basin. The largest concentrations of chloride and bromide in the Kentucky River downstream of the oil basins typically occur in the fall of the year, as precipitation and runoff increase following the dry late-summer months. Conceptually, these large concentrations are a result of the flushing of ionic constituents from the oil-production basins that have accumulated during the dry season

  18. Early 21st century snow cover state over the western river basins of the Indus River system

    Science.gov (United States)

    Hasson, S.; Lucarini, V.; Khan, M. R.; Petitta, M.; Bolch, T.; Gioli, G.

    2014-10-01

    In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River system (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001-2012. First, we validate the Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow products from Terra (MOD10A1) and Aqua (MYD10A1) against the Landsat Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) data set, and then improve them for clouds by applying a validated non-spectral cloud removal technique. The improved snow product has been analysed on a seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (upper Indus basin (UIB), Astore, Hunza, Shigar and Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Seasonal average snow cover decreases during winter and autumn, and increases during spring and summer, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitudes/altitudes show higher variability than basins at lower latitudes/middle altitudes. Northeastern and northwestern aspects feature greater snow cover. The mean end-of-summer regional snow line altitude (SLA) zones range from 3000 to 5000 m a.s.l. for all basins. Our analysis provides an indication of a descending end-of-summer regional SLA zone for most of the studied basins, which is significant for the Shyok and Kabul basins, thus indicating a change in their water resources. Such results are consistent with the observed hydro-climatic data, recently collected local perceptions and glacier mass balances for the investigated period within the UIB. Moreover, our analysis shows a significant correlation between winter season snow cover and the North Atlantic Oscillation (NAO) index of the previous autumn. Similarly, the inter-annual variability of spring season snow cover and spring season precipitation explains well the inter-annual variability of the summer season discharge from most of the basins. These findings indicate some potential for the seasonal stream flow forecast in the region, suggesting snow cover as a possible predictor.

  19. Atmospheric-hydrological modeling of severe precipitation and floods in the Huaihe River Basin, China

    Science.gov (United States)

    Lin, Charles A.; Wen, Lei; Lu, Guihua; Wu, Zhiyong; Zhang, Jianyun; Yang, Yang; Zhu, Yufei; Tong, Linying

    2006-10-01

    SummaryOur study focuses on the simulation of heavy precipitation and floods over the Huaihe River Basin (270,000 km 2), one of the seven major river basins in China. The simulation covers two periods in 1998 (June 28-July 3, July 28-August 17) and a third period in 2003 (June 26-July 22). The former two periods, with eight meteorological cases each of duration 72-h, correspond to the Intensive Observation Period of HUBEX/MAGE (Huaihe River Basin Experiment/Monsoon Asian GEWEX Experiment). The period in 2003 with 10 cases is the second most severe flooding event on record. The Canadian atmospheric Mesoscale Compressible Community Model (MC2) is used for precipitation simulation in the hindcast mode for all cases. The Chinese Xinanjiang hydrological model driven by either rain gauge or MC2 precipitation is used to simulate hydrographs at the outlet of the Shiguanhe sub-basin (5930 km 2), part of the Huaihe River Basin. The MC2 precipitation is also evaluated using observations from rain gauges. Over the Huaihe River Basin, MC2 generally overestimates the basin-averaged precipitation. Three of the eight 1998 cases have a percentage error less than 50% with the fourth having an error of 54%, while six of the ten 2003 cases have errors less than 50%. The precipitation over five different sub-regions and the Shiguanhe sub-basin of the Huaihe River Basin from MC2 are also compared with values from the Chinese operational weather prediction model; the latter data are only available for the ten 2003 cases. An excellent result is obtained in the hydrological simulation using rain gauge precipitation as revealed by the Nash-Sutcliffe coefficients of 0.91 for both summers of 1998 and 2003. The simulation using MC2 precipitation shows a reasonable agreement of flood timing and peak discharges with Nash-Sutcliffe coefficients of 0.63 and 0.87 for the two 1998 periods, and 0.60 for 2003. The encouraging results demonstrate the potential of using mesoscale model precipitation for flood forecast, which provides a longer lead time compared to traditional methods such as those based on rain gauges, statistical forecast or radar nowcasts.

  20. Impact of climate change on vegetation dynamics in a West African river basin

    Science.gov (United States)

    Sawada, Y.; Koike, T.

    2012-12-01

    Future changes in terrestrial biomass distribution under climate change will have a tremendous impact on water availability and land productivity in arid and semi-arid regions. Assessment of future change of biomass distribution in the regional or the river basin scale is strongly needed. An eco-hydrological model that fully couples a dynamic vegetation model (DVM) with a distributed biosphere hydrological model is applied to multi-model assessment of climate change impact on vegetation dynamics in a West African river basin. In addition, a distributed and auto optimization system of parameters in DVM is developed to make it possible to model a diversity of phonologies of plants by using different parameters in the different model grids. The simple carbon cycle modeling in a distributed hydrological model shows reliable accuracy in simulating the seasonal cycle of vegetation on the river basin scale. Model outputs indicate that generally, an extension of dry season duration and surface air temperature rising caused by climate change may cause a dieback of vegetation in West Africa. However, we get different seasonal and spatial changes of leaf area index and different mechanisms of the degradation when we used different general circulation models' outputs as meteorological forcing of the eco-hydrological model. Therefore, multi-model analysis like this study is important to deliver meaningful information to the society because we can discuss the uncertainties of our prediction by this methodology. This study makes it possible to discuss the impact of future change of terrestrial biomass on climate and water resources in the regional or the river basin scale although we need further sophistications of the system. Performance of the eco-hydrological model (WEB-DHM+DVM) in Volta River Basin, with basin-averaged leaf area index from model (blue solid line) and AVHRR satellite-derived product (red rectangles).

  1. Flood management in a complex river basin with a real-time decision support system based on hydrological forecasts

    OpenAIRE

    Garci?a Herna?ndez, Javier

    2011-01-01

    During the last decades, the Upper Rhone River basin has been hit by several flood events causing significant damages in excess of 500 million Swiss Francs. From this situation, the 3rd Rhône river training project was planned in order to improve the flood protection in the Upper Rhone River basin in Vaud and Valais Cantons. In this framework, the MINERVE forecast system aims to contribute to a better flow control during flood events in this catchmen...

  2. An Assessment of Soil Properties under Different Landuse Types of the Kallada River Basin, Kerala, India

    Directory of Open Access Journals (Sweden)

    Mathew Suma

    2011-03-01

    Full Text Available A thin layer of soil covers most of the earth's land surface. This layer varying from a few centimeters to 2 or 3 meters in thickness might appear insignificant relative to the bulk of the earth. On the basis of morphological features and physico chemical properties, the soils of the Kallada basin can be classified into broad six groups (1 Coastal alluviam 2 Riverine alluviam 3 Brown hydromorphic 4 Greyish Onattukara soil 5 Laterite soil and 6Forest loam (GSI Map. Twenty four soil profiles were collected from the Kallada river basin for analysis, whose 12 profiles are in one cluster distributed adjoining the Western Ghats crest. As many as 12 profiles were under forest, three under grasslands, three under teak plantations, two under mixed tree crops, two under tea plantation and one each from eucalyptus and rubber plantations. Soil is a rich but fragile ecosystem. It is a three-phase system, composed of solid, liquid and gaseous phases.  In most soils, the solid phase makes up the vast majority of the soil mass, and over half of its volume.  It consists of mineral matter derived from the weathering of rocks and organic matter from the decomposition of plants and animals.  The liquid phase is composed predominantly of water, enriched with dissolved solids, the gaseous phase of air, enriched with carbon dioxide from the respiration of soil animals and plant roots. Physical properties of the soil are determined by the character of solid particles and the way in which they are packed together.

  3. The design and analysis of salmonid tagging studies in the Columbia basin. Volume 8: A new model for estimating survival probabilities and residualization from a release-recapture study of fall chinook salmon (Oncorhynchus tschawytscha) smolts in the Snake River

    International Nuclear Information System (INIS)

    Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake river fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging. These models do not utilize available capture history data from this second year and, thus, produce negatively biased estimates of survival probabilities. A new multinomial likelihood model was developed that results in biologically relevant, unbiased estimates of survival probabilities using the full two years of capture history data. This model was applied to 1995 Snake River fall chinook hatchery releases to estimate the true survival probability from one of three upstream release points (Asotin, Billy Creek, and Pittsburgh Landing) to Lower Granite Dam. In the data analyzed here, residualization is not a common physiological response and thus the use of CJS models did not result in appreciably different results than the true survival probability obtained using the new multinomial likelihood model

  4. Impact of farm dams on river flows; A case study in the Limpopo River basin, Southern Africa

    OpenAIRE

    Meijer, E; E. P. Querner; Boesveld, H.

    2013-01-01

    The study analysed the impact of a farm dam on the river flow in the Limpopo River basin. Two methods are used to calculate the water inflow: one uses the runoff component from the catchment water balance; the other uses the drainage output of the SIMFLOW model. The impact on the flow in a sub-catchment with and without the presence of a farm dam, has been analysed. Different farm dam storage capacities and infiltration rates of the soil were considered. In general, the change in natural flow...

  5. Loss of macronutrients (N, P, K) in the hydrographic basin of the River Ivaí, an affluent of the River Paraná

    OpenAIRE

    Deborah Maria Corrêa Guiraud; Ervim Lenzi; Eduardo Bernardi Luchese; Luzia Otília Bortotti Fávero

    2004-01-01

    Influence of some environmental variables in the loss of macronutrients N, P, K, from the hydrographic basin of the River Ivaí were analysed. Water samples of the river were monthly collected for five consecutive days during a year. In terms of total intervals of average monthly values and total average values experiment results, in mg L-1, were: N (0.32-3.22 and 1.65); K (0.73-2.69 and 1.38); P (not detected-0.39 and 0.076); COD (0.21-36.0 and 12.8); O2(dis) (1.89-8.40 and 5.43); and temper...

  6. Loss of macronutrients (N, P, K) in the hydrographic basin of the River Ivaí, an affluent of the River Paraná

    Scientific Electronic Library Online (English)

    Deborah Maria Corrêa, Guiraud; Ervim, Lenzi; Eduardo Bernardi, Luchese; Luzia Otília Bortotti, Fávero.

    2004-08-01

    Full Text Available Neste estudo foram analisadas algumas variáveis ambientais que influenciam a perda de macronutrientes (N, P e K) na bacia hidrográfica do rio Ivaí, afluente do rio Paraná. As amostras compostas de água foram coletadas mensalmente, em 5 dias consecutivos, durante um ano. No ato da coleta foram medido [...] s, o pH, a temperatura, o O2(dissolvido) e os níveis fluviométricos. O N total foi determinado pelo método de Kjeldahl. Após a digestão das amostras com redução de volume foram determinados, o P total, pelo método espectrofotométrico do UV-Vis com ácido ascórbico e o K total pela técnica da espectrometria da absorção atômica. O DQO foi determinado pelo método da oxidação da matéria orgânica pelo K2Cr2O7, em excesso, em ácido sulfúrico concentrado. Em termos de intervalos das médias mensais, média global, os resultados experimentais foram os seguintes, em mg L-1: N (0,32-3,22 e 1,65); K (0,73-2,69 e 1,38); P (não detectado-0,39 e 0,076); COD (0,21-36,0 e 12,8); O2(diss) (1,89-8,40 e 5,43); e, temperatura (ºC) (16,0-30,8 e 24,6); pH (5,18-8,50 e 7,15). A análise estatística dos dados mostrou que a quantidade de cada macronutriente levada pelas águas do rio Ivaí é diretamente correlacionada aos níveis fluviométricos do rio, em nível de 5% de confiança. As quantidades perdidas em t a-1 foram: N = 25.136,0; K = 21,010,0 e P = 1,161,2, respectivamente. Abstract in english Influence of some environmental variables in the loss of macronutrients N, P, K, from the hydrographic basin of the River Ivaí were analysed. Water samples of the river were monthly collected for five consecutive days during a year. In terms of total intervals of average monthly values and total ave [...] rage values experiment results, in mg L-1, were: N (0.32-3.22 and 1.65); K (0.73-2.69 and 1.38); P (not detected-0.39 and 0.076); COD (0.21-36.0 and 12.8); O2(dis) (1.89-8.40 and 5.43); and temperature (ºC) (16.0-30.8 and 24.6); pH (5.18-8.50 and 7.15). Statistical analysis of data showed that quantity of macronutrient (N, K, P) carried off from the hydrographic basin of the River Ivaí were directly correlated to fluviometric levels (caused by rainfall and floodings) at 5% level of significance. Carried off quantities, in t a-1, were N = 25,136.0; K = 21,010.0 and P = 1,161.2.

  7. Spatial and temporal trends of freshwater mussel assemblages in the Meramec River Basin, Missouri, USA

    Science.gov (United States)

    Hinck, Jo Ellen; McMurray, Stephen E.; Roberts, Andrew D.; Barnhart, M. Christopher; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom

    2012-01-01

    The Meramec River basin in east-central Missouri has one of the most diverse unionoid mussel faunas in the central United States with >40 species identified. Data were analyzed from historical surveys to test whether diversity and abundance of mussels in the Meramec River basin (Big, Bourbeuse, and Meramec rivers, representing >400 river miles) decreased between 1978 and 1997. We found that over 20y, species richness and diversity decreased significantly in the Bourbeuse and Meramec rivers but not in the Big River. Most species were found at fewer sites and in lower numbers in 1997 than in 1978. Federally endangered species and Missouri Species of Conservation Concern with the most severe temporal declines were Alasmidonta viridis, Arcidens confragosus, Elliptio crassidens, Epioblasma triquetra, Fusconaia ebena, Lampsilis abrupta, Lampsilis brittsi, and Simpsonaias ambigua. Averaged across all species, mussels were generally being extirpated from historical sampling sites more rapidly than colonization was occurring. An exception was one reach of the Meramec River between river miles 28.4 and 59.5, where mussel abundance and diversity were greater than in other reaches and where colonization of Margaritiferidae, Lampsilini, and Quadrulini exceeded extirpation. The exact reasons mussel diversity and abundance have remained robust in this 30- mile reach is uncertain, but the reach is associated with increased gradients, few long pools, and vertical rock faces, all of which are preferable for mussels. Complete loss of mussel communities at eight sites (16%) with relatively diverse historical assemblages was attributed to physical habitat changes including bank erosion, unstable substrate, and sedimentation. Mussel conservation efforts, including restoring and protecting riparian habitats, limiting the effects of in-stream sand and gravel mining, monitoring and controlling invasive species, and protecting water quality, may be warranted in the Meramec River basin.

  8. Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    2001-12-31

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilities in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and 360 basin wildrye grass plugs planted and 190 pounds of native grass seed broadcast on terraces between River Mile 10 and 12.5 within the existing Wildhorse Creek Project Area. Approximately 70 pounds of native grasses were seeded in the existing McKay Creek Project Area at approximately River Mile 21.5. Financial and in-kind cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Department of Agriculture, U.S. Fish and Wildlife Service, National Fish and Wildlife Federation and the Umatilla National Forest for the enhancements at River Mile 37.4 Umatilla River and within the Buckaroo Creek Watershed. Monitoring continued to quantify effects of habitat enhancements in the upper basin. Maximum, minimum and average daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 94 existing and two newly established photo points to document habitat recovery. Umatilla Basin Watershed Assessment efforts were continued under a subcontract with Washington State University. This endeavor involves compiling existing information, identifying data gaps, determining habitat-limiting factors and recommending actions to improve anadromous fisheries habitat. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs.

  9. Projected impacts of climate change on the flow regime from Bârlad River Basin, Romania

    Science.gov (United States)

    Mic, Rodica Paula; Corbus, Ciprian; Matreata, Marius

    2015-04-01

    The paper presents the partial results, obtained within the CLIMHYDEX project (www.climhydex.meteoromania.ro), regarding the assessment of the climate change impact on flow regime from Bârlad River Basin by long term hydrological simulation. To estimate the impact of variability and climate change on monthly mean, seasonal and annual flow regime, in the Bârlad River Basin, the long-term simulations were performed, by means of CONSUL hydrological model, using as input data series of precipitation and temperature resulted from the data processing obtained from simulations of climate evolution by means of regional climate model REMO having spatial resolution of 10 km. The CONSUL model is a deterministic hydrological mathematical model which allows the simulation of flow in small as well as in large and complex basins, divided into homogeneous units (sub-basins). The model enables the computing of discharge hydrographs on sub-basins, their routing and composition on the main river and tributaries. Using of CONSUL model assumed the calibration of model parameters, an operation that was performed by the simulation of flow from the period 1975 - 2010 in the analysed river basin. Calibration of model parameters was performed in two stages: based on events and global. Calibration based on events was made considering 25 rainfall-runoff events, chosen to cover a wide range of possible situations in the case of floods formation. Global calibration of rainfall-runoff model parameters was done by simulating the flow on considered calibration period. Flow simulations using the CONSUL model, having optimal parameters derived from the calibration process, were conducted for two periods: the reference period 1971 - 2000 and the future period 2021 - 2050 respectively, at 9 hydrometric stations from the river basin analysed. For the input data in the CONSUL model, i.e. precipitation and temperature series, averaged on the sub-basins corresponding to the gauge stations, a comparative analysis was performed, for the two periods considered, highlighting the general trends of variation at annual level and for every season and month. Comparative analysis of water flow simulation in Bârlad river basin were performed, with the CONSUL hydrological model, for both reference and future period, regarding the mean monthly, seasonal and multiannual flow regime. Following the analysis of mean monthly discharges in Bârlad River Basin, as main results obtained for the variation trends of meteorological parameters we could notice a significant increase of discharges in July and October and their decrease in April, August, September and November which indicates a decrease of the probability of occurrence of extreme events in these months. Regarding the seasonal variation of mean discharges in Bârlad River Basin, the results indicated their decrease in all seasons, with a more pronounced decrease in the spring and autumn seasons. Generally, for the Bârlad River Basin the simulations have indicated a decrease trend of the mean annual discharges, up to -13.4%.

  10. Columbia River Basin Daily MACA-VIC Results

    U.S. Geological Survey, Department of the Interior — This archive contains daily downscaled meteorological and hydrological projections for the Columbia Basin in the United States at 1/16-deg resolution utilizing 9...

  11. Inorganic arsenic speciation at river basin scales: the Tinto and Odiel rivers in the Iberian Pyrite Belt, SW Spain.

    Science.gov (United States)

    Sarmiento, A M; Nieto, J M; Casiot, C; Elbaz-Poulichet, F; Egal, M

    2009-04-01

    The Tinto and Odiel rivers are heavily affected by acid mine drainage from mining areas in the Iberian Pyrite Belt. In this work we have conducted a study along these rivers where surface water samples have been collected. Field measurements, total dissolved metals and Fe and inorganic As speciation analysis were performed. The average total concentration of As in the Tinto river (1975 microg L(-1)) is larger than in the Odiel river (441 microg L(-1)); however, the mean concentration of As(III) is almost four times higher in the Odiel. In wet seasons the mean pH levels of both rivers (2.4 and 3.2 for the Tinto and Odiel, respectively) increase slightly and the amount of dissolved total arsenic tend to decrease, while the As(III)/(V) ratio strongly increase. Besides, the concentration of the reduced As species increase along the water course. As a result, As(III)/(V) ratio can be up to 100 times higher in the lower part of the basins. An estimation of the As(III) load transported by both rivers into the Atlantic Ocean has been performed, resulting in about 60 kg yr(-1) and 2.7t yr(-1) by the Tinto and Odiel rivers, respectively. PMID:19135765

  12. HAZARDS, VULNERABILITY AND ASSOCIATED HYDROLOGICAL RISKS IN THE HYDROGRAPHICAL BASIN OF THE RIVER UZ, TRIBUTARY OF THE RIVER TROTU?

    Directory of Open Access Journals (Sweden)

    MIFTODE IOANA DELIA

    2015-03-01

    Full Text Available As a consequence of the climatic change that has occurred in the last decade, the number of occurrences of extreme phenomena, follows an increasing trend with material and human casualties. The prevention of flash floods requires the complex and paramount importance action of responsible agencies. The river Uz is one of the most important tributaries of the Trotu? River; its basin has a high density hydrographical network. Using the data from the Basin Water Administration, Siret – Bac?u, it has been possible to establish the flash floods’ occurrence frequency, as well as their tendencies. Based on this information, the hazard maps were drawn together with the risk and vulnerability involved, thus fulfilling the objectives of the study; it substantiates that the flood risks increases in proportion with the decrease in altitude of the landscape, the densely populated zones are especially vulnerable.

  13. Reconstructing the small river basin sediment budget and associated particle-bound contaminants redistribution (Chern River, European Russia)

    Science.gov (United States)

    Belyaev, Vladimir; Aseeva, Elena; Golosov, Valentin

    2015-04-01

    Reconstruction of the basin-scale sediment budget and associated particle-bound pollutants redistribution was carried out within the upper part of the Chern River basin (133 km2). It involved application of integrated approach based on use of several independent techniques. The study river basin is located on the border between the Orel and Kursk Regions of the Central European Russia nearby the Mikhailovskiy opencast iron ore mine and processing plant, which are believed to be the main local sources of air-borne pollutants. In addition, the basin was contaminated by radionuclide fallout after the Chernobyl accident in 1986. Combination of geomorphic, geochemical, soil survey and geodetic methods has allowed authors to evaluate dynamics of sediment and contaminants redistribution for the last 50 years (since the beginning of a mining activity) within the upper part of the basin upstream from the reservoir, located in the middle reach of the main valley. Main techniques applied were field description of soil or sediment sections, the 137Cs radioactive tracer (for estimation average soil loss rates from eroding cultivated hillslopes and for reconstruction of accumulation rates and sediment microstratigraphy for deposition locations such as main river floodplain and bottoms of small dry valleys), chemical analysis (content of selected heavy metals and As - both in mobile forms by atomic absorption spectroscopy and total by X-ray fluorescence spectrometry, organic C content, pH), geomorphic and detailed geodetic survey of selected key sections of the Chern River floodplain, calculation of average soil erosion rates for cultivated area of the studied part of the basin by the empirical model. In addition, two detailed bottom sediment cores were taken from the reservoir bottom which intercepts practically all the sediment delivered from the upper part of the basin. Integrating the obtained data, it has been found out that substantial changes of the sediment budget took place within the studied part of the Chern River basin between periods before and after 1986 (as the main time mark was indicated by the Chernobyl-associated 137Cs peak detected in almost all sampled sections in deposition zones). These involved significant decrease of sedimentation in the reservoir (from 29% to 6.3% of basin-scale sediment production from cultivated hillslopes) and on the main river floodplain (from 14% to 4.5%) and consequent increase of deposition in small dry valleys (from 27-32% to 60-65%). This can be explained by combination of anthropogenic impact (dramatic decrease of cultivated area after the Soviet Union collapse and gradual recovery of local agriculture until the present time) and climate change (significant decrease of spring snowmelt runoff with increase of frequency of intensive runoff-generating rainstorms during the warm season). In terms of the contaminants redistribution, it was found that practically simultaneous commencement of the mining and industrial activity and sharp increase in application of chemical fertilizers in agriculture caused detectable heavy metal pollution within the basin only during the late 1950s - early 1960s. As a result concentrations of Zn and As in the floodplain sediment layers dated to that period increased dramatically, exceeding the maximum allowable levels.

  14. ??????????????????? Water Resources Management and Decision Supporting System of the Yangtze River Basin

    Directory of Open Access Journals (Sweden)

    ??

    2012-06-01

    Full Text Available ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????–??–??–??(?????????????????????????????????????? The current weakness of water resource management in the YangtzeRiver basinwas discussed, and future necessity and key function of supporting system based on water resource model for integrated management were analyzed in this paper. The system should take into account of climate-change pushed hydrological cycle, water demanding prediction, water resource optimal allocation and emergent water diversion, etc. The pilot system will be developed firstly for water resource simulation, prediction, allocation and optimization in the Han River, and then extend to Yangtze River basin.

  15. Characterizing the Role of Lake Storage Dynamics in the Congo River Basin

    Science.gov (United States)

    Raoufi, R.; Beighley, E., II; Lee, H.; Alsdorf, D. E.

    2014-12-01

    Although the Congo River is the world's second largest, behind the Amazon, in terms of annual discharge and rain forest extent, our level of hydrologic understanding is somewhat limited largely due to a lack of in-situ measurements. This point is even more important in the context of how large tropical wetlands impact global hydrologic and carbon cycles. For example, although the Amazon and Congo are both large tropical rivers, their wetlands appear to function differently. The Congo River is also unique in that it is the only major river to cross the equator twice, which results in a year-round rainfall from the movement of the Inter Tropical Convergence Zone (ITCZ). To better understand how the Congo River wetlands function and their role in global carbon cycle, we first characterize the spatial and temporal distribution of water stores and fluxes throughout the basin. Given the limited in-situ measurements, a combination of modeling and remotely sensed measurements are used. Here, we specifically focus on the role of lake storage dynamics in the Congo River discharge. The Hillslope River Routing (HRR) hydrologic model, Tropical Rainfall Measuring Mission (TRMM) precipitation (3B42v7), Moderate Resolution Imaging Spectroradiometer (MODIS) albedo ( MCD43C3), leaf area index (MCD15A2), land surface temperature (MOD11C1 and MYD11C1) and land cover (MCD12C1), water level changes from radar altimetry, and LandSat based extent measurements over major water bodies are used to estimate basin-wide total water storage variations. The HRR model results, which include hourly water dynamics for the Congo and surrounding basins for the period 2002-2012, are also compared to NASA's Gravity Recovery and Climate Experiment (GRACE) measurements in order to assess the impact of GRACE signal leakage over the Congo Basin.

  16. Development of a Systemwide Predator Control Program, Volume I : Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin, 1993 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Willis, Charles F.; Ward, David L.

    1995-06-01

    Modified Merwin trap nets were tested by an experimental fishery in the Columbia River downstream from McNary Dam to determine their effectiveness in selectively harvesting northern squawfish (Ptychocheilus oregonensis) over 11 inches in total length. The fishery was evaluated for its potential to supplement exploitation rates of the sportreward and dam-angling fisheries to achieve the objectives of the northern squawfish management program. Special consideration was given to the potential for, and impact on, incidental catches of adult salmonids (Oncorhynchus spp.) listed as threatened and endangered under the Endangered Species Act (ESA). Preseason site and data surveys identified suitable fishing locations where physical parameters are favorable to trap-net deployment and northern squawfish habitat was present. A total of 16 floating trap nets were operated from June 2 through August 4, 1993. We made 1,392 sets with a mean soak time of 2.9 hours. The total catch was 45,803 fishes including 10,440 (23% of the total catch) northern squawfish of which 1,688 (4% of the total catch) were large (greater than 11 inches in total length). Mean catch rate was 0.3 large northern squawfish per hour of soak time. Nearly all incidentally captured fishes were released alive and in good condition. Bycatch of adult salmonids totaled 1,036 fishes (2% of the total catch). Operational criteria, designed to limit incidental take of salmonids, restricted the fishing time, dates, and locations. In addition, lack of prior operating experience with the gear type and limited gear effectiveness in high velocities found in the free-flowing river below Bonneville Dam contributed to the low harvest rate for northern squawfish. We determined that a large scale floating trap-net fishery outside the boat restricted zones (BRZs) of hydropower projects would not significantly improve the exploitation rate of northern squawfish either above or below Bonneville Dam.

  17. The River Basin Model: Computer Output. Water Pollution Control Research Series.

    Science.gov (United States)

    Envirometrics, Inc., Washington, DC.

    This research report is part of the Water Pollution Control Research Series which describes the results and progress in the control and abatement of pollution in our nation's waters. The River Basin Model described is a computer-assisted decision-making tool in which a number of computer programs simulate major processes related to water use that…

  18. HYDROLOGIC SENSITIVITIES OF THE SACRAMENTO-SAN JOAQUIN RIVER BASIN, CA TO GLOBAL WARMING

    Science.gov (United States)

    The hydrologic sensitivities of four medium-sized mountainous catchments in the Sacramento and San Joaquin River basins to long-term global warming were analyzed. he hydrologic response of these catchments, all of which are dominated by spring snowmelt runoff, were simulated by t...

  19. Salmonid Gamete Preservation in the Snake River Basin, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    1999-03-01

    Steelhead (Oncorhynchus mykiss) and salmon (Oncorhynchus tshawytscha)populations in the Northwest are decreasing. The Nez Perce Tribe (Tribe) was funded in 1998 by the Bonneville Power Administration to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin.

  20. A One Century Record of Changes at Nenskra and Nakra River Basins Glaciers, Causasus Mountains, Georgia

    Directory of Open Access Journals (Sweden)

    Levan G. Tielidze

    2015-03-01

    Full Text Available The article considers the variability of Nenskra and Nakra River basins glaciers’ parameters in the years of 1911-2014. Nenskra and Nakra River basins are located on the southern slope of the Great Caucasus, between the Kharikhra, Shdavleri and Tsalgmili ranges, in Georgia, in particular in the Enguri River basin. In our research we used the catalogue of the glaciers of Georgia compiled by K. Podozerskiy in 1911. We also used the military topographic maps with the scale of 1:25,000 and 1:50,000 drawn up in 1960 (in former Soviet Union, where there are the glaciers mapped in detail and the ends of their ice tongues on the southern slope of Great Caucasus of those times. We also used the remote sensing method, which is the best modern way for the study of the dynamics of glaciers and this method is remarkable by a quick obtaining of results. The spectral images of the Landsat L8 OLI/TIRS (Operational Land Imager and Thermal Infrared Sensor (USGS received from the “Landsat” artificial satellite are the necessary materials for our study. We also used the field survey materials of 2014 (GPS data. The latest statistical information is also given about the glaciers located in the individual river basins; their morphological types, exposition and the dynamics are considered according to the individual years.

  1. Assessment of coal geology, resources, and reserve base in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Scott, David C.; Luppens, James A.

    2013-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated in-place resources of 1.07 trillion short tons of coal in the Powder River Basin, Wyoming and Montana. Of that total, with a maximum stripping ratio of 10:1, recoverable coal was 162 billion tons. The estimate of economically recoverable resources was 25 billion tons.

  2. Variability in land water storage from GRACE and ENVISAT, and rainfall in South American river basins

    Science.gov (United States)

    Xavier, L.; Cazenave, A.; Bonnet, M.; Rotunno, O.

    2008-12-01

    Previous work has demonstrated the capability of GRACE to capture important aspects of the hydrological cycle, in particular seasonal and interannual fluctuations in land water storage of large river basins. Part of this behaviour can be immediately assigned to seasonal/interannual fluctuations of precipitation. In this study, we investigate existing correlations between GRACE water storage (two GRACE products are used and compared, the GRGS and GSFC/Mascons solutions), ENVISAT-based surface water levels and precipitation data over four large river basins of South America (Orinoco, Amazon, Tocantins and Parana). At the seasonal time scale, precipitation and total water storage correlate well in the Parana basin, with a few weeks lag of storage with respect to forcing. Over the Amazon, Tocantins and Orinoco, the two variables also correlate well. But in some years, storage response to forcing is enhanced, suggesting that other terms of the water balance (e.g., runoff) play a significant role. To investigate this, discharge data at the most downstream stations in these river basins are analysed, while the water balance is studied using outputs of global hydrological models available over the same time span as GRACE data. We also analyse water level data from ENVISAT altimetry over the main rivers. Finally, we study the interannual connection between rainfall and water storage, using among others, Empirical Orthogonal Functions (EOF). Compared to the seasonal cycle, the interannual signal displays larger regional variability both in precipitation and water storage.

  3. Ants (Hymenoptera: Formicidae and termites (Termitidae: Isoptera, Moron River basin, Carabobo, Venezuela: Preliminary data

    Directory of Open Access Journals (Sweden)

    Riera-Valera, M. A.

    2009-01-01

    Full Text Available Nineteen ant species of six subfamilies (Dolichoderinae, Ecitoninae, Ectatomminae, Formicinae,Myrmicinae and Ponerinae and two termite species (Termitidae from Morón River basin (Carabobo, Venezuela arelisted here as part of a preliminary arthropod research. Despite of reporting a low number of taxa, this work constitutesthe first record of ants from Morón, Carabobo state, Venezuela.

  4. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    Science.gov (United States)

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  5. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  6. Integrated Hatchery Operations : Existing Policy Affecting Hatcheries in the Columbia River Basin, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shelldrake, Tom

    1993-05-01

    Collected together in this document is relevant laws and policy of the US Fish and Wildlife Service, Washington State Department of Wildlife, Oregon State, Washington Department of Fisheries, and Idaho Department of Fish and Game as they affect hatcheries in the Columbia River Basin.

  7. Ants (Hymenoptera: Formicidae) and termites (Termitidae: Isoptera), Moron River basin, Carabobo, Venezuela: Preliminary data

    OpenAIRE

    Riera-Valera, M. A.; Pérez-Sánchez, A J; Perozo, J.

    2009-01-01

    Nineteen ant species of six subfamilies (Dolichoderinae, Ecitoninae, Ectatomminae, Formicinae,Myrmicinae and Ponerinae) and two termite species (Termitidae) from Morón River basin (Carabobo, Venezuela) arelisted here as part of a preliminary arthropod research. Despite of reporting a low number of taxa, this work constitutesthe first record of ants from Morón, Carabobo state, Venezuela.

  8. Evolution of tertiary intermontane fluvial system of Powder River Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Exploration and development of economic coal and uranium deposits of the Tertiary Fort Union and Wasatch Formations provided data related to the evolution of depositional systems in the Powder River Basin. In ascending order, the Paleocene Fort Union Formation consists of the Tullock, Lebo, and Tongue River Members. The overlying Eocene Wasatch Formation consists of the conglomeratic Kingsbury and Moncrief Members and laterally equivalent finer grained deposits. Evolution of fluvial deposition in the basin was determined from sandstone percent maps. A high proportion of sandstones in the Tullock Member and combined Tongue River Member and Wasatch Formation formed in interconnected east-west and north-south belts. The east-west belts represent alluvial fans, as well as braided and meandering tributary streams. The north-south belts reflect meandering and anastomosing trunk streams fed by basin margin tributaries. The sandstones of the Lebo Shale show east-west trends and represent deposits of fluvio-deltaic systems that filled a western, closed-lacustrine basin. The lake in this basin may have formed during localized subsidence along the Buffalo deep fault. These contrasting styles of fluvial deposition were largely controlled by extrabasinal and intrabasinal tectonics associated with Laramide orogeny

  9. Implementing into GIS a Tool to Automate the Calculation of Physiographic Parameters of River Basins

    Directory of Open Access Journals (Sweden)

    Roberto Franco-Plata

    2013-04-01

    Full Text Available The physiographic characterization of a basin is a fundamental element as it defines the hydrological behavior of that basin. The present work deals with the development and implementation of a tool that allows calculating in an automated manner the physiographic parameters of a basin, as well as those of the surface runoff and main river, besides other graphic elements: hypsometric curve, equivalent rectangle and profile of the main river. Such a tool was developed under Visual Basic 6 programming language and the spatial geographic component ArcObjects by ESRI; they enabled the development of a library as a final product (.dll, which can be loaded and implemented in ArcMap software. In the methodology a Conceptual Model was established, from which it was possible to identify the requirements and methods to obtain the parameters, as well as the conception and implementation of the Logical Model that includes the specific functions and also the input structures, processes and data output. Finally, the tool was tested with actual data from El Caracol river basin, located in central-southern Mexico, which showed the easiness and usefulness of it, besides the effectiveness of the results, not leaving aside the time and resources saved by the user when characterizing a basin, compared with other conventional processes.

  10. Lidar-based biomass assessment for the Yukon River Basin

    Science.gov (United States)

    Peterson, B.; Wylie, B. K.; Stoker, J.; Nossov, D.

    2010-12-01

    Climate change is expected to have a significant impact on high-latitude forests in terms of their ability to sequester carbon as expressed as pools of standing total biomass and soil organic matter. Above ground biomass is an important driver in ecosystem process models used to assess, predict, and understand climate change impacts. Therefore, it is of compelling interest to acquire accurate assessments of current biomass levels for these high-latitude forests, a particular challenge because of their vastness and remoteness. At this time, remote sensing is the only feasible method through which to acquire such assessments. In this study, the use of lidar data for estimating shrub and tree biomass for the Yukon Flats region of Alaska’s Yukon River Basin (YRB) is demonstrated. The lidar data were acquired in the late summer and fall of 2009 as were an initial set of field sampling data collected for training and validation purposes. The 2009 field campaigns were located near Canvasback Lake and Boot Lake in the YRB. Various tallies of biomass were calculated from the field data using allometric equations (Bond-Lamberty et al. 2002, Yarie et al. 2007, Mack et al. 2008). Additional field data were also collected during two 2010 field campaigns at different locations in the Yukon Flats. Linear regressions have been developed based on field-based shrub and tree biomass and various lidar metrics of canopy height calculated for the plots (900 m^2). A multiple linear regression performed at the plot level resulted in a strong relationship (R^2=0.88) between observed and predicted biomass at the plot level. The coefficients for this regression were used to generate a shrub and tree biomass map for the entire Yukon Flats study area covered by lidar. This biomass map will be evaluated using additional field data collected in 2010 as well as other remote sensing data sources. Furthermore, additional lidar metrics (e.g. height of median energy) are being derived from the raw lidar data set and are expected to result in improved biomass products for the YRB as they have been shown to be highly predictive of biomass in other biomes. The results of this project represent the first step in a larger effort to collect lidar and field data for various study sites across the YRB for biomass estimations to train large-scale mapping efforts using Landsat imagery and radar data. Bond-Lamberty, B., C. Wang, and S.T. Gower. 2002. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32: 1441-1450. Mack, M., K. Treseder, K. Manies, J. Harden, E. Schuur, J. Vogel, J. Randerson, and F.S. Chapin III. 2008. Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska, Ecosystems v.11:209-225. Yarie, J., E. Kane, and M. Mack. 2007. Aboveground Biomass Equations for the Trees of Interior Alaska. AFES Bulletin 115.

  11. Fish communities of the Buffalo River Basin and nearby basins of Arkansas and their relation to selected environmental factors, 2001-2002

    Science.gov (United States)

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Most of the length of the Buffalo River lies within the boundaries of Buffalo National River, a unit of the National Park Service; the upper 24 river kilometers lie within the boundary of the Ozark National Forest. Much of the upper and extreme lower parts of the basin on the south side of the Buffalo River is within the Ozark National Forest. During the summers of 2001 and 2002, fish communities were sampled at 52 sites in the study area that included the Buffalo River Basin and selected smaller nearby basins within the White River Basin in north-central Arkansas. Water quality (including nutrient and bacteria concentrations) and several other environmental factors (such as stream size, land use, substrate size, and riparian shading) also were measured. A total of 56 species of fish were collected from sites within the Buffalo River Basin in 2001 and 2002. All 56 species also were collected from within the boundaries of Buffalo National River. Twenty-two species were collected from headwater sites on tributaries of the Buffalo River; 27 species were collected from sites within or immediately adjacent to the Ozark National Forest. The list of species collected from Buffalo National River is similar to the list of species reported by previous investigators. Species richness at sites on the mainstem of the Buffalo River generally increased in a downstream direction. The number of species collected (both years combined) increased from 17 at the most upstream site to 38 near the mouth of the Buffalo River. In 2001 and 2002, a total of 53 species of fish were collected from sites outside the Buffalo River Basin. Several fish community metrics varied among sites in different site categories (mainstem, large tributary, small tributary, headwater, and developed out-of-basin sites). Median relative abundances of stonerollers ranged from about 25 to 55 percent and were highest at headwater and developed out-of-basin sites and lowest at mainstem sites. The relative abundances at the headwater and developed out-of-basin sites were significantly different from the relative abundances at the mainstem sites. Percentages of individuals of algivorous/herbivorous, invertivorous, and piscivorous species at headwater sites were significantly lower than values at mainstem and developed out-of-basin sites. Percentages of individuals of invertivorous species at mainstem sites were significantly higher than values at small tributary, headwater, and developed out-of-basin sites. Percentages of top carnivores at mainstem sites were significantly higher than values at tributary and headwater sites. The numbers of darter, sculpin, plus madtom species at mainstem, large tributary, and developed out-of-basin sites were significantly higher than values at other sites, and the values at small tributary sites and headwater sites were each significantly different from values at the other four types of sites. The number of lithophilic spawning species at large tributary sites was not significantly different from values at mainstem and developed out-of-basin sites, but values for small tributary and headwater sites each were significantly different from values for all other categories. Index of biotic integrity scores varied among the site categories. Scores for mainstem sites were significantly larger than all but large tributary site scores. Scores for headwater sites were significantly smaller than mainstem and large tributary site scores. Several analyses of the data described in this report suggest that drainage area is the most important single factor influencing fish communities of the Buffalo River Basin and nearby basins. Species richness increases with increasing drainage area and some species are restricted to smaller streams while other species are more common in larger streams. Some community metrics also are related to land use and related factors

  12. Estimating resource costs of water use at the river basin scale

    Science.gov (United States)

    Riegels, N.; Jensen, R. A.; Bensasson, L.; Bauer-Gottwein, P.

    2009-12-01

    The European Union Water Framework Directive (WFD), introduced in 2000, outlines requirements for economic analysis in water resources planning at the river basin scale. The WFD requires member states to identify river basins in their territories, ensure an economic analysis of water use in each basin, and develop water pricing policies that ensure full cost recovery of water use, including environmental and resource costs. The interpretation of what is meant by environmental and resource costs has been the subject of some debate. Current practice defines environmental costs as costs imposed by the loss of environmental use and non-use values due to water abstraction. Resource costs are considered equivalent to scarcity costs, and exist where economic uses of water are constrained by limited supplies. This analysis presents an efficient and practical approach for the assessment of resource or scarcity costs at the river basin scale, with results from a case study application in northern Greece. Resource costs are estimated by optimizing the overall value of water use at the river basin scale and comparing to the values estimated given existing water allocation policies. Water use values are disaggregated into 6 categories: urban/domestic use, irrigation, livestock, industry, tourism, and hydropower. Urban/domestic use is measured using consumer’s surplus, while the other categories are measured using producer’s surplus. The approach is implemented using a river basin simulation model coupled to an economic post-processor; the simulation model and post-processor are run from a central controller that iterates until an optimal allocation is found. The decision variable in the optimization is the price of water, which is used to vary demands using consumer demand functions and producer supply functions. The approach is efficient and practical because it can be used with existing simulation models and does not require development of specialized optimization tools. The price-based optimization approach minimizes the number of decision variables in the optimization problem and provides guidance for pricing policies that satisfy WFD cost recovery requirements. Results from a real-world application in northern Greece show the suitability of the approach for use in complex, water-stressed basins. Preliminary results also show how the approach can be used to estimate resource/scarcity costs of complying with WFD environmental flow requirements at the river basin scale.

  13. Hydrological recurrence as a measure for large river basin classification and process understanding

    Directory of Open Access Journals (Sweden)

    R. Fernandez

    2014-07-01

    Full Text Available Hydrologic functions of river basins are summarized as water collection, storage and discharge, which can be characterized by the dynamics of hydrological variables including precipitation, evaporation, storage and runoff. In some situations these four variables behave more in a recurrent manner by repeating in a similar range year after year or in other situations they exhibit more randomness with higher variations year by year. The degree of recurrence in runoff is important not only for water resources management but also for hydrologic process understandings, especially in terms of how the other three variables determine the degree of recurrence in runoff. The main objective of this paper is to propose a simple hydrologic classification framework applicable to global scale and large basins based on the combinations of recurrence in the four variables. We evaluate it by Lagged Autocorrelation, Fast Fourier Transforms and Colwell's Indices of variables obtained from EU-WATCH dataset composed by eight hydrologic and land surface model outputs. By setting a threshold to define high or low recurrence in the four variables, we classify each river basin into 16 possible classes. The overview of recurrence patterns at global scale suggested that precipitation is recurrent mainly in the humid tropics, Asian Monsoon area and part of higher latitudes with oceanic influence. Recurrence in evaporation was mainly dependent on the seasonality of energy availability, typically high in the tropics, temperate and subarctic regions. Recurrence in storage at higher latitudes depends on energy/water balances and snow, while that in runoff is mostly affected by the different combinations of these three variables. According to the river basin classification 10 out of the 16 possible classes were present in the 35 largest river basins in the world. In humid tropic region, the basins belong to a class with high recurrence in all the variables, while in subtropical region many of the river basins have low recurrence. In temperate region, the energy limited or water limited in summer characterizes the recurrence in storage, but runoff exhibits generally low recurrence due to the low recurrence in precipitation. In the subarctic and arctic region, the amount of snow also influences the classes; more snow yields higher recurrence in storage and runoff. Our proposed framework follows a simple methodology that can aid in grouping river basins with similar characteristics of water, energy and storage cycles. The framework is applicable at different scales with different datasets to provide useful insights into the understanding of hydrologic regimes based on the classification.

  14. Stratigraphic architecture, bedload extraction, and mass balance of Holocene fluvial sediments in a tectonically subsiding basin within the Ganges-Brahmaputra River delta, Bangladesh

    Science.gov (United States)

    Sincavage, R.; Goodbred, S. L., Jr.; Pickering, J.; Wilson, C.; Paola, C.; Hossain, S.; Steckler, M. S.; Seeber, L.

    2014-12-01

    The Brahmaputra River occupied the tectonically active Sylhet Basin in eastern Bangladesh three times during the Holocene. With samples from more than 200 closely-spaced (3-5 km) boreholes, we take advantage of these discrete channel occupations and the high trapping efficiency of the subsiding basin to investigate dispersal of fluvial sediments. Experiment and theory suggest that depositional units transition from channels to lobes as transported sediment mass declines below ~30% of the total measured at the basin head. We test these ideas by reconstructing the geometry and grain size distributions of a large (30 m thick x 80 km wide) sand lobe formed during the mid-Holocene occupation (~7000-4000 years BP) of Sylhet Basin. Based on estimates of modern sediment discharge in the system, the volume of this sediment lobe is insufficient to account for the entire sediment budget. The smaller sediment volume is likely a consequence of reduced sediment discharge during a weakened monsoon. Additional sediment is likely to have also been routed out of the basin via an outlet located approximately along the modern Meghna River channel. Facies within Sylhet Basin can be characterized as stacked braidbelt sands in the proximal portion of the system, with isolated sand lenses further downstream, indicating a transition from a highly mobile braidbelt to a less mobile distributary system. The majority of bed load is extracted within a distance of ~150 km from the avulsion node, approximately coincident with the regional backwater reach of the Bengal Basin, suggesting a link between the hydraulic and "morphodynamic" backwater reaches of the system. Downstream fining is more rapid in sediments associated with the long-term occupation of Sylhet Basin, for which sediment is trapped over a relatively short distance within the sand wedge of central Sylhet Basin, than those from the early- and late-Holocene occupations, for which sediment is distributed over a longer path that follows the course of the Old Brahmaputra River. Fine-grained sediments preserved in the system do not display measureable downstream fining. The increased rate of sediment extraction in the eastern part of the basin is likely coupled with a subsidence maximum (~7 mm/year) associated with the foredeep of the Dauki thrust fault.

  15. Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture

    Science.gov (United States)

    Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2013-04-01

    Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first SMOS soil moisture values available at the closest DGG node immediately after saturation produced by the rain. The results are shown as maps of precipitation and soil moisture obtained using a V4 integration method between a linear and nearest neighbour methods. Surface runoff maps are consequently obtained using the SCS-CN equation given earlier. These results have also been compared to COSMO-CLM model simulations for the same periods. It is envisaged to obtain precipitation maps from MSG-SEVIRI data.

  16. Optimal application of conceptual rainfall-runoff hydrological models in the Jinshajiang River basin, China

    Science.gov (United States)

    Tayyab, M.; Zhou, J.; Zeng, X.; Chen, L.; Ye, L.

    2015-05-01

    For specific research areas different hydrological models have shown different characteristics. By comparing different hydrological models on the same area we should get better and more authentic results. The objective of this research study is to highlight the importance of model selection for specific research areas. For the Jinshajiang River basin, three conceptual hydrological models including the Xin'anjiang model, the Antecedent precipitation index (API) model and the Tank model are applied to select the most suitable model for flood forecasting, based on the hourly rainfall and hourly discharge data. Data were analysed by comparing the simulation outputs of the three models with the Nash-Sutcliffe efficiency and Correlation coefficient index. Results showed that the performance of the three models were not very different. On the basis of data need and the characteristics of the research basin, the Xin'anjiang model was selected as the optimal and practical conceptual hydrological model for the Jinshajiang River basin.

  17. Fish, lower Ivinhema River basin streams, state of Mato Grosso do Sul, Brazil.

    Directory of Open Access Journals (Sweden)

    Súarez, Y. R.

    2008-01-01

    Full Text Available The Ivinhema River basin is one of the main tributaries of the western portion of Paraná River. However,few data are available on the fish communities of its streams. Monthly samples were made in seven streams of the lowerportion of the basin, in the state of Mato Grosso do Sul, using a rectangular sieve 1.2 x 0.8 m, with 2 mm mesh size.Forty-six fish species were found in these streams. The richness estimated according to the bootstrap procedure was 50species. At least two of the captured species were not previously recorded for the upper Paraná basin, indicating theneed of new sampling effort in this region.

  18. Radioecological study of the interest zones in Somes river hydrographic basin

    International Nuclear Information System (INIS)

    Our research refers to the transfer of radioelements from water and mud to talophitae and unicellular algae organisms. The measurement of these elements was done for delimiting the radioactive zones of interest in the hydrographic basin of Somes. We demonstrated that the algae are biological indicators of the radioactivity in a river basin. A series of samples were examined by high-resolution gamma spectroscopy in our laboratory and at VUB Cyclotron Brussels with a Ge-Re detector for intercomparing. Uranium and its descendants were analyzed, as well as 137 Cs resulting from the Chernobyl fallout, which we found again accumulated in the mud of mountain lakes. A migration of the radionuclides from old barren gangue deposits of old polymetallic mines in the Somes river basin was noticed. (authors)

  19. Using radar altimetry to update a routing model of the Zambezi River Basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; Bauer-Gottwein, Peter

    2012-01-01

    Satellite radar altimetry allows for the global monitoring of lakes and river levels. However, the widespread use of altimetry for hydrological studies is limited by the coarse temporal and spatial resolution provided by current altimetric missions and the fact that discharge rather than level is needed for hydrological applications. To overcome these limitations, altimetry river levels can be combined with hydrological modeling in a dataassimilation framework. This study focuses on the updating of a river routing model of the Zambezi using river levels from radar altimetry. A hydrological model of the basin was built to simulate the land phase of the water cycle and produce inflows to a Muskingum routing model. River altimetry from the ENVISAT mission was then used to update the storages in the reaches of the Muskingum model using the Extended Kalman Filter. The method showed improvements in modeled flows relative to the baseline.

  20. Simulation and economics of coalbed methane production in the Powder River basin

    International Nuclear Information System (INIS)

    This paper reports that coalbed methane has emerged as a significant resource for natural gas production in the United States, with estimates of gas-in-place of 400 trillion cubic feet. In Wyoming the largest coalbed methane resources occur in the Greater Green River, Powder River, and Wind River Basins. Very little of the gas has been exploited. This paper examines the potential of coalbed methane production in the Powder River basin by history matching early production from five gas wells in the Rawhide Butte field using a commercially available coalbed methane simulator, COALGAS. Sensitivity studies showed the most important parameters for establishing production were permeability, initial desorption pressure and drainage area. Langmuir constants, desorption time, porosity, well-bore diameter and skin were comparatively less important for long term production. An economic analysis showed that, based on current capital and operating costs obtained from industrial companies, the development of coalbed methane in the Powder River Basin may be economic if the gas sales price is greater than approximately $1/Mscf

  1. Snow cover dynamics and hdyrological regime of the Aksu river basin, NorthwWestern China

    Science.gov (United States)

    li, J.; Liu, S.; Guo, W.; Wei, J.; Bao, W.

    2013-12-01

    A major proportion of flow in the Tarim River is contributed by its snow- and glacier-fed river catchments situated in the Tianshan ranges. It is therefore essential to understand the cryosphere dynamics in this area for water resource management. The MODIS MOD10A2 remote-sensing database of snow cover products from March 2000 to December 2012 was selected to analyse the snow cover changes in the Aksu River basin (the snow- and glacier-fed sub-catchment of the Tarim River). A database of monthly flows for the Akesu River at Xida Bridge over a period of 40 yr and climate data (precipitation and temperature) from meteorological stations within the catchment was made available to investigate the hydrological regime in the area. Analysis of remotely sensed cryosphere suggest a shrink of glacier in the area. The decrease in snow cover may be the result of an increase in winter and annual temperature caused by global warming. The increasing of runoff most cause by the rising temperature causing the more melt water. The impact of global warming is very effective especially imapact the low elevation part of the basin. because a large part of the basin area lies under high altitudes where the temperature remains negative throughout most of the year.

  2. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    Science.gov (United States)

    Bout-Roumazeilles, V.; Riboulleau, A.; ChâTelet, E. Armynot; Lorenzoni, L.; Tribovillard, N.; Murray, R. W.; Müller-Karger, F.; Astor, Y. M.

    2013-02-01

    The mineralogical composition of 95 surface sediment samples from the Cariaco Basin continental shelf and Orinoco delta was investigated in order to constrain the clay-mineral main provenance and distribution within the Cariaco Basin. The spatial variability of the data set was studied using a geo-statistical approach that allows drawing representative clay-mineral distribution maps. These maps are used to identify present-day dominant sources for each clay-mineral species in agreement with the geological characteristics of the main river watersheds emptying into the basin. This approach allows (1) identifying the most distinctive clay-mineral species/ratios that determine particle provenance, (2) evaluating the respective contribution of local rivers, and (3) confirming the minimal present-day influence of the Orinoco plume on the Cariaco Basin sedimentation. The Tuy, Unare, and Neveri Rivers are the main sources of clay particles to the Cariaco Basin sedimentation. At present, the Tuy River is the main contributor of illite to the western part of the southern Cariaco Basin continental shelf. The Unare River plume, carrying smectite and kaolinite, has a wide westward propagation, whereas the Neveri River contribution is less extended, providing kaolinite and illite toward the eastern Cariaco Basin. The Manzanares, Araya, Tortuga, and Margarita areas are secondary sources of local influence. These insights shed light on the origin of present-day terrigenous sediments of the Cariaco Basin and help to propose alternative explanations for the temporal variability of clay mineralogy observed in previously published studies.

  3. Environmental sensitivity mapping for oil spills in the Canhanduba River Basin, Santa Catarina State, Southern Brazil

    Directory of Open Access Journals (Sweden)

    Morgana F. Francini

    2009-02-01

    Full Text Available Oil spills may cause serious damage to natural resources and anthropogenic activities. In order to mitigate such adverse impacts, contingency planning based on environmental sensitivity mapping has been developed, encompassing potential areas, where such situation may occur. Recently, an oil distribution company, TRANSPETRO, put into operation a new facility in the Canhanduba River Basin, in Itajaí, Santa Catarina State, Southern Brazil. This facility receives and sends off diverse pipelines containing a great variety of oil products, crossing over the main stretch of the river and its tributaries. Canhanduba River supplies water to part of the city of Itajaí and the oil distribution facility, as well as all pipelines are located up river of water collecting point to supply that town. Therefore, environmental sensitivity maps of Canhanduba drainage were done in order to support decision makers in case of manage any oil spill episode in that area. Firstly, rapid environmental assessment protocols - RAPs to evaluate physical river habitats were conducted to portrait their integrity in distinct stretches along the river basin. Finally, environmental sensitivity maps attributes like ecosystem sensitivity, natural resources, and anthropogenic activities were identified nearby pipelines crossings and graded according to its intensity in each observation site, in order to estimate environmental sensitivity indexes (ESI and make up the maps. RAPs’ results indicated that in the great majority of river stretches, environmental integrity varies between bad and fair, while ESIs were relatively high, varying from 6 to 9. An environmental sensitivity map (1:50.000 scale was generated to this area displaying the major attributes and the distinct ESIs along the river basin.

  4. Isotope characterization of major rivers of Indus Basin, Pakistan

    International Nuclear Information System (INIS)

    Pakistan lies between latitudes 24 deg. and 37 deg. North and longitudes 61 deg. to 76 deg. East. It possesses quite complicated and attractive physiographical features. There are very often a series of mountain ranges possessing deep broad valleys in-between. It includes the famous valley of the Indus that has been the cradle of ancient civilization like those of the delta area of Nile and the valley of the Tigris Euphrates. Indus River is one of the longest rivers in the World. It has five major tributaries viz. Bias, Satlej, Ravi, Chenab and Jhelum joining from eastern side, while a number of small rivers join the Indus on the right side. All these main rivers are perennial. They originate from the mountains. Physiography and climate of the catchments of these rivers vary widely. Going from the catchment of the River Satlej to the catchment of Indus River, altitude increases and temperature decreases. In Northern Areas, mountains are covered with glaciers and some of the peaks are higher than 8000m, which get snowfall even in summer season. The basic sources of these rivers are snowmelt, rainfall and under certain conditions seepage from the formations. For certain rivers the source of snow is seasonal which falls in winter and melts in summer. From the middle of March to the breaking of monsoon, in mid July, river water is drawn from the melting of snow. During monsoon, rainfall run-off is added to the rivers over and above that from melting of snow so their dische that from melting of snow so their discharge increases manifold. During 1980-84, samples were collected on monthly basis from the river Satlej at Sulimanki, the river Ravi at Baloki (upstream including Qadirabad-Baloki Link Canal originating from the river Chenab) and Sidnai including two link canals originating from Trimu Headworks just after the confluence of the rivers Chenab and Jhelum, the rivers Chenab at Marala, mixed water of the rivers Chenab and Jhelum, the river Indus at Taunsa and Panjnad (after joining the other tributaries). The samples were analyzed for 18O, 2H and 3H isotopes. All the rivers have wide ranges of stable isotopes and tritium. The river Indus at Taunsa has relatively the most depleted values of ?18O and ?2H because of major contribution of snowmelt coming from glaciated peaks in Northern Areas. Tritium is also higher due to some contribution of snow fallen during high tritium period in 1960s. Isotopic data of pure snowmelt collected during 1992-94 show that ?18O (-15.9 to -12.2 per mille) and ?2H (-115 to -82 per mille) are even more depleted along with still high tritium ranging from 25 to 65TU, which supports the above finding. Isotopic signatures of the river Indus at Panjnad get enriched due to contribution of other tributaries, which have enriched isotopic values. The rivers Sutlej and Ravi have he most enriched values of ?18O and ?2H because their catchments have relatively low altitude and contribution of snowmelt is also less. River Chenab at Marala has the widest ranges of ?18O and ?2H because of mixing of snowmelt originating from higher altitudes and rainfall of piedmont areas. Data of Trimu, which show the combined effect of the rivers Chenab and Jhelum is almost similar to that of Marala. The ?18O and ?2H monitored at both of these stations i.e. Marala and Trimu during 1990-93 have average values of -10 per mille and -61 per mille and -9.4 and 59 per mille respectively, which are slightly different than the previous record. It also observed that temporal variations of both the ?18O and ?2H in rivers are cyclic especially in the rivers Indus, Jhelum and Chenab depending on the contributions of snowmelt and rains i.e. enriched during monsoon. The ?18O and ?2H data also give information about source of moisture. The winter runoff and snowmelt have relatively depleted isotopic signatures and higher d-excess indicating the source of moisture from the West (Mediterranean Sea) while the d-excess in monsoon is relatively less along with enriched isotopic values, which is also confirmed by the meteorological i

  5. Features of global hydrological processes using the Variable Infiltration Capacity Model simulation: focusing on five major river basins

    Science.gov (United States)

    Wang, K.; Niu, J.; Chen, J.

    2013-12-01

    This study adopts a semi-distributed hydrological model, Variable Infiltration Capacity (VIC), to simulate the global terrestrial hydrological processes and analyze the variation of main processes, including precipitation, runoff, evapotranspiration, and soil moisture. To run the VIC model, we use the daily gridded precipitation product at a higher resolution (1°×1°) from the Global Precipitation Climatology Project (GPCP). Besides, other daily meteorological data (including maximum and minimum daily temperatures) are derived from the NCAR/NCEP Reanalysis data. VIC model is run at a daily temporal step and 1° latitude-longitude spatial resolution for the period 1997-2008. The streamflow observations from five major continental river basins in the world (the Amazon River basin, the Mississippi River basin, the Yangtze River basin, the Rhine River basin and the Nile River basin) are used to verify the VIC simulation results. Then, this study quantifies the contributions of precipitation to soil moisture change, evapotranspiration and runoff over these five major river basins. This study also detects the response of those hydrological processes to the increase of temperature, which will benefit the regional environment and water management.

  6. Helminth parasites in freshwater fish from the Papaloapan river basin, Mexico.

    Science.gov (United States)

    Salgado-Maldonado, Guillermo; Aguilar-Aguilar, Rogelio; Cabañas-Carranza, Guillermina; Soto-Galera, Eduardo; Mendoza-Palmero, Carlos

    2005-05-01

    A checklist based on previously published records and original data is presented for the helminth parasites reported in 35 fish species from nine families from the Rio Papaloapan basin, east Mexico. The checklist contains 85 taxa from 39 helminth families. Trematodes and nematodes were the most abundant taxonomic groups. The helminth fauna in the fish of the Papaloapan River basin predominantly consists of Neotropical species that are largely autogenic. The introduced species Centrocestus formosanus was the most widely distributed helminth, infecting 16 host species. Ten of the recorded helminth species have only been found in fish from the Papaloapan. This inventory contributes 157 new host records, and reports the presence of 30 helminth species in the Papaloapan for the first time . This inventory shows the richness of helminth parasite species in the fish of the Papaloapan River basin in comparison with the other hydrological basins in Mexico. It also demonstrates that this fauna is typically Neotropical and quite similar to that from the neighboring basins of the Grijalva-Usumacinta system and the Yucatan Peninsula. The data also suggest highly effective transmission between environments within the same basin and that the regional parasite fauna is strongly influenced by fish community composition. PMID:15812673

  7. Water Allocation Policy Modeling for the Dong Nai River Basin: An Integrated Perspective

    Science.gov (United States)

    Ringler, Claudia; Huy, Nguyen Vu; Msangi, Siwa

    2006-12-01

    Recent water sector reforms and increased scarcity and vulnerability of water resources, combined with declining public funding available for large scale infrastructure investment in the sector, have led to a greater awareness by the Government of Vietnam for the need to analyze water resource allocation and use in an integrated fashion, at the basin scale, and from a perspective of economic efficiency. In this study we focus on the development, application, and selected policy analyses using an integrated economic hydrologic river basin model for the Dong Nai River Basin in southern Vietnam. The model framework depicts the sectoral structure and location of water users (agriculture, industry, hydropower, domestic, and the environment) and the institutions for water allocation in the basin. Water benefit functions are developed for the major water uses subject to physical limitations and to constraints of system control and policy. Based on this modeling framework, we will analyze policies that can affect water allocation and use at the basin level, including both basin-specific and general macroeconomic policies.

  8. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2013-04-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  9. Stationarity of annual flood peaks during 1951-2010 in the Pearl River basin, China

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Xiao, Mingzhong; Xu, Chong-Yu

    2014-11-01

    The assumption of stationarity of annual peak flood (APF) records at 28 hydrological stations across the Pearl River basin, China, is tested. Abrupt changes in mean and variance are tested using the Pettitt technique and the Loess method. Trends of APFs are analyzed using the Mann-Kendall method and the Spearman technique. And then the stationarity of the APF series is further investigated by GAMLSS models and long-term persistence. Results indicate that: (1) abrupt changes in mean and variance have similar influences on the changing properties of APFs, such as stationarity. Abrupt changes in mean and variance are only field significant in the East River basin; (2) the change points have a considerable impact on the detection of trends, and these may be attributed to the fact that a abrupt increase or decrease in mean values will affect the trend variations. Besides, for the APF series being free of change points and trend, the GAMLSS models also corroborate stationarity of the APF series; (3) the nonstationarity in the Pearl River basin is mainly due to the existence of the change point. However, the APF series with change points in mean and/or variance are also characterized by long-term persistence, and thus it is infeasible to assert that the abrupt behaviors and/or trends of the APF series are the result of human activities or long-term persistence, especially in the East River basin. Results of this study will provide information for management of water resources and design of hydraulic facilities in the Pearl River basin in a changing environment.

  10. Developing Climate-Informed Ensemble Streamflow Forecasts over the Colorado River Basin

    Science.gov (United States)

    Miller, W. P.; Lhotak, J.; Werner, K.; Stokes, M.

    2014-12-01

    As climate change is realized, the assumption of hydrometeorologic stationarity embedded within many hydrologic models is no longer valid over the Colorado River Basin. As such, resource managers have begun to request more information to support decisions, specifically with regards to the incorporation of climate change information and operational risk. To this end, ensemble methodologies have become increasingly popular among the scientific and forecasting communities, and resource managers have begun to incorporate this information into decision support tools and operational models. Over the Colorado River Basin, reservoir operations are determined, in large part, by forecasts issued by the Colorado Basin River Forecast Center (CBRFC). The CBRFC produces both single value and ensemble forecasts for use by resource managers in their operational decision-making process. These ensemble forecasts are currently driven by a combination of daily updating model states used as initial conditions and weather forecasts plus historical meteorological information used to generate forecasts with the assumption that past hydroclimatological conditions are representative of future hydroclimatology. Recent efforts have produced updated bias-corrected and spatially downscaled projections of future climate over the Colorado River Basin. In this study, the historical climatology used as input to the CBRFC forecast model is adjusted to represent future projections of climate based on data developed by the updated projections of future climate data. Ensemble streamflow forecasts reflecting the impacts of climate change are then developed. These forecasts are subsequently compared to non-informed ensemble streamflow forecasts to evaluate the changing range of streamflow forecasts and risk over the Colorado River Basin. Ensemble forecasts may be compared through the use of a reservoir operations planning model, providing resource managers with ensemble information regarding changing future water supply, availability, and reservoir management. Further efforts seek to combine the utility of hydrologic models with a dynamic evapotranspiration component to evaluate impacts due to changes in evapotranspiration rates or develop unique climate patterns with the use of a stochastic weather generator.

  11. Uncertainty in climate change projections of discharge for the Mekong River Basin

    Directory of Open Access Journals (Sweden)

    D. G. Kingston

    2010-08-01

    Full Text Available The Mekong River Basin comprises a key regional resource in Southeast Asia for sectors that include agriculture, fisheries and electricity production. Here we explore the potential impacts of climate change on freshwater resources within the river basin. We quantify uncertainty in these projections associated with GCM structure and climate sensitivity, as well as from hydrological model parameter specification. This is achieved by running pattern-scaled GCM output through a semi-distributed hydrological model (SLURP of the basin. These pattern-scaled GCM outputs allow investigation of specific thresholds of global climate change including the postulated 2 ºC threshold of "dangerous" climate change as simulated using outputs from seven different GCMs. Detailed analysis of results based on HadCM3 climate scenarios reveals a relatively small but non-linear response of annual river discharge to increasing global mean temperature, ranging from a 5.4% decrease to 4.5% increase. Intra-annual (monthly changes in river discharge are greater (from ?16% to +55%, with greatest decreases in July and August, greatest increases in May and June and result from complex and contrasting intra-basin changes in precipitation, evaporation and snow storage/melt. Whilst overall results are highly GCM dependent (in both direction and magnitude, this uncertainty is primarily driven by differences in GCM projections of future precipitation. In contrast, there is strong consistency between GCMs in terms of both increased potential evapotranspiration and a shift to an earlier and less substantial snowmelt season. Indeed, in the upper Mekong (Lancang sub-basin, the temperature-related signal in discharge is strong enough to overwhelm the precipitation-related uncertainty in the direction of change in discharge, with scenarios from all GCMs leading to increased river flow from April–June, and decreased flow from July–August.

  12. AN INTEGRATED APPROACH FOR ENVIRONMENTAL IMPACT STUDIES ON SOIL EROSION IN VAMSADHARA RIVER BASIN, INDIA.

    Directory of Open Access Journals (Sweden)

    E.Amminedu

    2013-07-01

    Full Text Available The environmental impact studies on floods of Vamsadhara river basin have been attempted utilizing remote sensing, geotechnical, geomorphological, hydrometeorological and sedimentation data. Various thematic maps on vegetation/crop cover, soils, slope and rainfall are superposed to demarcate the probable areas, prone to erosion. The study reveals that the area with sparse vegetation and shifting cultivation coupled with heavy rainfall in the steep slopes has been subjected to the removal of the fine fertile top soil through runoff, resulting in sedimentation and silting up of the river course in the lower reach of the Vamsadhara river basin. The increase in the flood frequency in the recent years (1980-2010 may be due to the environmental degradation brought about to the vegetation/crop cover practices in the catchment area.

  13. Validation studies on indexed sequential modeling for the Colorado River Basin

    International Nuclear Information System (INIS)

    This paper reports on a method called indexed sequential modeling (ISM) that has been developed by the Western Area Power Administration to estimate reliable levels of project dependable power capacity (PDC) and applied to several federal hydro systems in the Western U.S. The validity of ISM in relation to more commonly accepted stochastic modeling approaches is analyzed by applying it to the Colorado River Basin using the Colorado River Simulation System (CRSS) developed by the U.S. Bureau of Reclamation. Performance of ISM is compared with results from input of stochastically generated data using the LAST Applied Stochastic Techniques Package. Results indicate that output generated from ISM synthetically generated sequences display an acceptable correspondence with results obtained from final convergent stochastically generated hydrology for the Colorado River Basin

  14. Incorporation of GIS Based Program into Hydraulic Model for Water Level Modeling on River Basin

    Directory of Open Access Journals (Sweden)

    Hadi Memarian

    2012-01-01

    Full Text Available Water resources management usually requires that hydraulic, ecological, and hydrological models be linked. The Hy- drologic Engineering Center River Analysis System (HEC-RAS hydraulic model and the Hydrologic Engineering Center Geospatial River Analysis System (HEC-GEORAS, imitates flow and water profiles in the Neka river basin’s downstream flood plain. Hydrograph phases studied during the flood seasons of 1986-1999 and from 2002-2004 were used to calibrate and verify the hydraulic model respectively. Simulations of peak flood stages and hydrographs’ evaluations are congruent with studies and observations, with the former showing mean square errors between 4.8 - 10 cm. HECRAS calculations and forecast flood water levels. Nash-Sutcliffe effectiveness (CR3 is more than 0.92 along with elevated levels of water which were created with some effectiveness (CR5 of 0.94 for the validation period. The coupled two models show good performance in the water level modeling.

  15. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-05-02

    ...Advisory Committee Act, the Bureau of Reclamation announces that the Colorado River...comments to Mr. Kib Jacobson, Bureau of Reclamation, Upper Colorado Regional Office...any time. While you can ask us in your comment to withhold...

  16. Monitoring of perfluoroalkyl substances in the Ebro and Guadalquivir River basins (Spain)

    Science.gov (United States)

    Lorenzo, Maria; Campo, Julian; Andreu, Vicente; Pico, Yolanda; Farre, Marinella; Barcelo, Damia

    2015-04-01

    Relevant concentrations of a broad range of pollutants have been found in Spanish Mediterranean River basins, as consequence of anthropogenic pressures and overexploitation (Campo et al., 2014). In this study, the occurrence and sources of 21 perfluoroalkyl substances (PFASs) were determined in water and sediment of the Ebro and Guadalquivir River basins (Spain). PFASs are persistent, bio-accumulative and toxic, which make them a hazard to human health and wildlife. The Ebro and Guadalquivir Rivers are the two most important rivers of Spain. They are representative examples of Mediterranean rivers heavily managed, and previous researches have reported their high pesticide contamination (Masiá et al., 2013). Analytes were extracted by solid phase extraction (SPE) and determined by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS). In water samples, from 21 analytes screened, 11 were found in Ebro samples and 9 in Guadalquivir ones. In both basins, the most frequents were PFBA, PFPeA, PFHxS and PFOS. Maximum concentration was detected for PFBA, with 251.3 ng L-1 in Ebro and 742.9 ng L-1 in Guadalquivir. Regarding the sediment samples, 8 PFASs were detected in those coming from Ebro basin and 9 in those from Guadalquivir. The PFASs most frequently detected were PFBA, PFPeA, PFOS and PFBS. Maximum concentration in Ebro samples was detected for PFOA, with 32.4 ng g-1 dw, and in Guadalquivir samples for PFBA with 63.8 ng g-1 dw. Ubiquity of these compounds in the environment was proved with high PFAS concentration values detected in upper parts of the rivers. Results confirm that most of the PFASs are only partially eliminated during the secondary treatment suggesting that they can be a focal point of contamination to the rivers where they can bio-accumulate and produce adverse effects on wildlife and humans. Acknowledgment The Spanish Ministry of Economy and Competitiveness has supported this work through the projects SCARCE-CSD2009-00065, CGL2011-29703-C02-01 and CGL2011-29703-C02-02 References Campo, J., Pérez, F., Masiá, A., Picó, Y., Farré, M., Barceló, D., 2014. Perfluoroalkyl substance contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain). Science of the Total Environment DOI: 10.1016/j.scitotenv.2014.05.094. Masiá, A., Campo J., Vázquez-Roig, P., Blasco, C., Picó Y., 2013. Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J. Hazard. Mater. 263P, 95-104.

  17. A new species of Tyttocharax (Characiformes: Characidae: Stevardiinae from the Güejar river, Orinoco river Basin, Colombia

    Directory of Open Access Journals (Sweden)

    César Román-Valencia

    2012-09-01

    Full Text Available A new Tyttocharax species from the Güejar River system, near the Macarena Mountains in Colombia is described. This is the first record for the genus from the Orinoco basin. The combination of the following characters distinguish Tyttocharax metae from its congeners: presence of bony hooks on the pectoral and caudal-fin rays; bony hooks on the anal-fin rays larger than those on the pelvic-fin rays; pectoral-fin rays i,5-6,i; presence of three unbranched dorsal-fin rays; absence of an adipose fin; four scales rows between the anal-fin origin and the lateral line; and four scale rows between the pelvic-fin and the lateral line. Ecological characteristics of the habitat of the new species are also presented.Una nueva especie de Tyttocharax se describe para la cuenca del río Güejar, Serranía de La Macarena en Colombia. Tyttocharax metae es un nuevo registro del género para la cuenca del río Orinoco. La combinación de los siguientes caracteres distingue a Tyttocharax metae de sus congéneres: presencia de ganchos óseos en los radios de las aletas pectorales y caudal; ganchos óseos en los radios de la aleta anal de mayor tamaño que los de las aletas pélvicas; radios de las aletas pectorales i,5-6,i; tres radios simples en la aleta dorsal; ausencia de una aleta adiposa; cuatro escamas entre la línea lateral y el origen de la aleta anal, y cuatro escamas entre la línea lateral y las aletas pélvicas. Se incluyen datos ecológicos del hábitat propio del nuevo taxón

  18. A new species of Tyttocharax (Characiformes: Characidae: Stevardiinae) from the Güejar river, Orinoco river Basin, Colombia

    Scientific Electronic Library Online (English)

    César, Román-Valencia; Carlos A., García-Alzate; Raquel I, Ruiz-C; C, Donald; B, Taphorn.

    2012-09-01

    Full Text Available Una nueva especie de Tyttocharax se describe para la cuenca del río Güejar, Serranía de La Macarena en Colombia. Tyttocharax metae es un nuevo registro del género para la cuenca del río Orinoco. La combinación de los siguientes caracteres distingue a Tyttocharax metae de sus congéneres: presencia de [...] ganchos óseos en los radios de las aletas pectorales y caudal; ganchos óseos en los radios de la aleta anal de mayor tamaño que los de las aletas pélvicas; radios de las aletas pectorales i,5-6,i; tres radios simples en la aleta dorsal; ausencia de una aleta adiposa; cuatro escamas entre la línea lateral y el origen de la aleta anal, y cuatro escamas entre la línea lateral y las aletas pélvicas. Se incluyen datos ecológicos del hábitat propio del nuevo taxón Abstract in english A new Tyttocharax species from the Güejar River system, near the Macarena Mountains in Colombia is described. This is the first record for the genus from the Orinoco basin. The combination of the following characters distinguish Tyttocharax metae from its congeners: presence of bony hooks on the pec [...] toral and caudal-fin rays; bony hooks on the anal-fin rays larger than those on the pelvic-fin rays; pectoral-fin rays i,5-6,i; presence of three unbranched dorsal-fin rays; absence of an adipose fin; four scales rows between the anal-fin origin and the lateral line; and four scale rows between the pelvic-fin and the lateral line. Ecological characteristics of the habitat of the new species are also presented.

  19. K West Basin sludge volume estimates for integrated water treatment system

    International Nuclear Information System (INIS)

    This document provides estimates of the volume of sludge (1) expected from Integrated Process Strategy (IPS) processing of the fuel elements and (2) in the fuel storage canisters in K West Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of KE canister sludge density. Revision 1 revised the volume estimates of sludge based on additional data from evaluations of material from the KW Basin fuel subsurface examinations and KW canister sludge characterization data. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KW Basin

  20. K East basin sludge volume estimates for integrated water treatment system

    International Nuclear Information System (INIS)

    This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin

  1. Streamflow model of the six-country transboundary Ganges-Bhramaputra and Meghna river basin

    Science.gov (United States)

    Rahman, K.; Lehmann, A.; Dennedy-Frank, P. J.; Gorelick, S.

    2014-12-01

    Extremely large-scale river basin modelling remains a challenge for water resources planning in the developing world. Such planning is particularly difficult in the developing world because of the lack of data on both natural (climatological, hydrological) processes and complex anthropological influences. We simulate three enormous river basins located in south Asia. The Ganges-Bhramaputra and Meghna (GBM) River Basins cover an area of 1.75 million km2 associated with 6 different countries, including the Bengal delta, which is the most densely populated delta in the world with ~600 million people. We target this developing region to better understand the hydrological system and improve water management planning in these transboundary watersheds. This effort uses the Soil and Water Assessment Tool (SWAT) to simulate streamflow in the GBM River Basins and assess the use of global climatological datasets for such large scale river modeling. We evaluate the utility of three global rainfall datasets to reproduce measured river discharge: the Tropical Rainfall Measuring Mission (TRMM) from NASA, the National Centers for Environmental Prediction (NCEP) reanalysis, and the World Metrological Organization (WMO) reanalysis. We use global datasets for spatial information as well: 90m DEM from the Shuttle Radar Topographic Mission, 300m GlobCover land use maps, and 1000 km FAO soil map. We find that SWAT discharge estimates match the observed streamflow well (NSE=0.40-0.66, R2=0.60-0.70) when using meteorological estimates from the NCEP reanalysis. However, SWAT estimates diverge from observed discharge when using meteorological estimates from TRMM and the WMO reanalysis.

  2. Process innovations to minimize waste volumes at Savannah River

    International Nuclear Information System (INIS)

    The Savannah River Plant (SRP) temporarily stores high-level radioactive waste in underground storage tanks. Approximately 2.85 x 10/sup 5/ cubic meters of waste have evaporated to 1.15 x 10/sup 5/ cubic meters since plant startup in the early 1950's. Sixty percent of the radioactivity is contained in the approximate 10 volume percent stored as alkaline sludge. The remainder of the waste and radioactivity is stored as alkaline salt cake and salt solution. The waste management process development objective for permanent disposal is to concentrate the radioactivity into the smallest practical volume

  3. River Basin Scale Management and Governance: Competing Interests for Western Water

    Science.gov (United States)

    Lindquist, Eric

    2015-04-01

    One of the most significant issues in regard to how social scientists understand environmental and resource management is the question of scale: what is the appropriate scale at which to consider environmental problems, and associated stakeholders (including hydrologists) and their interests, in order to "govern" them? Issues of scale touch on the reality of political boundaries, from the international to the local, and their overlap and conflict across jurisdictions. This presentation will consider the questions of environmental management and governance at the river basin scale through the case of the Boise River Basin (BRB), in southwest Idaho. The river basin scale provides a viable, and generalizable, unit of analysis with which to consider theoretical and empirical questions associated with governance and the role of hydrological science in decision making. As a unit of analysis, the "river basin" is common among engineers and hydrologists. Indeed, hydrological data is often collected and assessed at the basin level, not at an institutional or jurisdictional level. In the case of the BRB much is known from the technical perspective, such as infrastructure and engineering factors, who manages the river and how, and economic perspectives, in regard to benefits in support of major agricultural interests in the region. The same level of knowledge cannot be said about the political and societal factors, and related concepts of institutions and power. Compounding the situation is the increasing probability of climate change impacts in the American West. The geographic focus on the Boise River Basin provides a compelling example of what the future might hold in the American West, and how resource managers and other vested interests make or influence river basin policy in the region. The BRB represents a complex and dynamic environment covering approximately 4,100 square miles of land. The BRB is a highly managed basin, with multiple dams and diversions, and is regarded as a highly desirable amenity and ecosystem service provider for the region. It is also a very polarizing construct as diverse interests engaged in basin decision making do not share the same values, perceptions, and constituents. Although regulatory and jurisdictional decision making is in the hands of a few agencies (US Army Corps of Engineers and US Bureau of Reclamation, for example), it is estimated that up to 300 different interests and groups are engaged in using, supporting, and attempting to influence the decisions associated with the Boise River and its myriad uses. Building on previous river basin governance research in the US and Europe, the work presented here is framed on a policy network approach, and focuses on four main factors of the BRB: the type of stakeholder and their perceptions of the BRB as a resource or amenity, role(s) of the stakeholder in the network, interactions between network members and the public, and the role of science, uncertainty and the impact of climate change. This contribution addresses many of the question raised in the HS5.7 call for abstracts and will be of interest to a wide audience.

  4. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    Science.gov (United States)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of the Kaoping, Tsengwen, and Taimali River basins in southern Taiwan, and on the disaster impacts and damages in these river basins due to Typhoon Morakot in 2009. The data was offered by the National Science and Technology Center for Disaster Reduction, Taiwan, as well as collected from the National Land Use Investigation, official census statistics and questionnaire surveys. 3. Results We use an MCDA to create a composite vulnerability index, and this index is incorporated into a GIS analysis to demonstrate the results of integrated vulnerability assessment throughout the river basins. Results of the vulnerability assessment indicate that the most vulnerable areas are almost all situated in the regions of middle and upper reaches of the river basins. Through the examining of DDM, it shows that the vulnerability factors play a critical role in determining disaster damages. Findings also present that the losses and casualties caused by Typhoon Morakot increase with elevation, urban and agricultural developments, proximity to rivers, and decrease with levels of income and adaptive capacity. Finally, we propose the adaptive options for minimizing vulnerability and risk, as well as for integrated river basin governance.

  5. Isotope Investigations of Major Rivers of Indus Basin, Pakistan

    International Nuclear Information System (INIS)

    Indus River is one of the longest rivers in the World. It has five major tributaries joining from eastern side, the Bias, Satlej, Ravi, Chenab and Jhelum, while a number of small rivers join the Indus on the west side. These perennial rivers originate from mountains covered with glaciers. Isotopic (18O, 2H, 3H) monitoring of these rivers was carried out between 2002 and 2005 to study temporal variations of these isotopes at different control points and to understand water cycles and hydrological processes in the catchments of these rivers. The headwaters of the main Indus River (the Hunza, Gilgit and Kachura tributaries) display the most depleted ?18O (-14.5 to -11.0 per mille ) and ?2H (-106.1 to -72.6 per mille ) values due to precipitation at very high altitudes and very low temperatures. Generally these waters have low d-excess, which indicates that the moisture source is the Indian Ocean. The high d-excess in some winter (November-February) samples from the Hunza and Gilgit indicate the dominance of Mediterranean moisture sources. Kachura station has a ?18O- ?2H line with a slope of 4 and low d-excess, indicating an evaporation effect in Kachura Lake. The Indus River become enriched in isotopes going downstream towards the Arabian Sea because of contributions from rains at low altitude plains and a baseflow mainly recharged by local rains. At tail stations, evaporation and contributil stations, evaporation and contribution from baseflow are responsible for isotopic enrichment. Low tritium in some samples also indicates a baseflow contribution of (relatively older groundwater). The Chenab River has the widest variation in ?18O and ?2H, and the slope of the ?18O- ?2H line is 6.1, which is due to the variable contribution of snowmelt at high altitudes and rains at low altitudes. High d-excess in snowmelt and low d-excess in monsoons show that the moisture source in winter is generally western (Mediterranean) and that monsoon conditions predominantly originate from the Indian Ocean. The Kabul River has experiences a wide variation in isotopic values, probably due to variable contribution from the Swat River, which carries snowmelt. High d-excess associated with depleted isotopic values indicates a dominance of Mediterranean moisture sources in winter, while a low d-excess associated with enriched isotopic values, which typically occurs during summer monsoons points to the Bay of Bengal as the major source of moisture. The Jhelum River and its tributaries upstream of Mangla Lake experience enriched ?18O and ?2H due to the low altitude of its catchment. Precipitation in the catchment results from Indian Ocean moisture sources, and there is not any significant evaporation effect. Isotopic variations in the river Ravi appears to be mainly due to water diversions from the western rivers through link canals. (author)

  6. APPLICATIONS OF GEOGRAPHICAL INFORMATION SYSTEM AND REMOTE SENSING TECHNIQUES IN HYPSOMETRIC ANALYSIS OF MAN RIVER BASIN IN AKOLA AND BULDHANA DISTRICTS, MAHARASHTRA, INDIA

    Directory of Open Access Journals (Sweden)

    Khadri, S.F.R

    2014-04-01

    Full Text Available Hypsometric analysis of watershed (area-elevation analysis has generally been used to reveal the stages of geomorphic development (stabilized, mature and young. Hypsometric integral quantifies the geologic stages of development and erosion prone-ness of the watersheds. Hypsometric integral is estimated by the graphical plot of the measured contour elevation and encompassed area by using empirical formulae. In the present study, hypsometric integral values were estimated for Man River Basin which is a tributary of PurnaRiver located in Akola and Buldhana districts of Maharashtra. The watershed was delineated into seven sub-watersheds and hypsometric analysis was carried out for all of them using digital contour maps, which was generated using Arc/Info GIS. Three different approaches were used for estimation of hypsometric integrals and to compare the procedural approach and consequences on erosion status. It was evident from the study that the hypsometric integral calculated by elevation-relief ratio method was more accurate and easy to calculate within GIS environment. The hypsometric integral values for all the sub-watersheds of Man River Basin 0.5. In the study area, two stages of erosion cycle development, namely equilibrium and youthful stages are identified.The hypsometric curve is related to the volume of the soil mass in the basin and the amount of erosion that had occurred in a basin against the remaining mass (Hurtrez et al., 1999. It is a continuous function of nondimensional distribution of relative basin elevations with the relative area of the drainage basin (Strahler, 1952. This surface elevation has been extensively used for topographic comparisons because of its revelation of three-dimensional information through two-dimensional approach (Harrison et al., 1983; Rosenblatt and Pinet, 1994. Comparisons of the shape of the hypsometric curve for different drainage basins under similar hydrologic conditions provides a relative insight into the past soil movement of basins. Thus, the shape of the hypsometric curves explains the temporal changes in the slope of the original basin. Strahler (1952 interpreted the shape of the hypsometric curves by analyzing numerous basins and classified the basins as young (convex upward curves, mature (S-shaped hypsometric curves which is concave upwards at high elevations and convex down-ward at low elevations and peneplain or distorted (concave up-ward curves. There is frequent variation in the shape of the hypsometric curve during the early geomorphic stages of development followed by minimal variation after the watershed attains a stabilized or mature stage.

  7. River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows

    Science.gov (United States)

    Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.

    2014-12-01

    Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.

  8. A two-stage climate adaptation framework for improving irrigation planning in the Niger River Basin

    Science.gov (United States)

    Taner, M. U.; Brown, C. M.; Lownsbery, K.

    2013-12-01

    The Niger River Basin is marked with high intra-annual and interannual climate variability and deep future climate uncertainty. This presents an intimidating context for the development of infrastructure investment strategies, which are needed for economic development and food security within the basin. Of interest is the ability to adaptively manage an infrastructure system through the use of seasonal forecasts and planning decisions such that the climate variability and change effects are mitigated. This study presents a sampling stochastic dynamic programming (SSDP) model for the development of adaptive management decisions consistent with seasonal hydrologic forecasts. The proposed framework is demonstrated for the Upper Niger region of the Niger Basin, consisting of multiple reservoirs and a large irrigation system, 'Office Du Niger'. The approach is compared with 'stationarity-based' operations and strategies optimized for projected climate changes. Results indicate that updating seasonal planning decisions is a promising option for climate change adaptation for the Niger and similar basins elsewhere.

  9. Analysis of meteorological droughts for the Saskatchewan River Basin using univariate and bivariate approaches

    Science.gov (United States)

    Masud, M. B.; Khaliq, M. N.; Wheater, H. S.

    2015-03-01

    This study is focused on the Saskatchewan River Basin (SRB) that spans southern parts of Alberta, Saskatchewan and Manitoba, the three Prairie Provinces of Canada, where most of the country's agricultural activities are concentrated. The SRB is confronted with immense water-related challenges and is now one of the ten GEWEX (Global Energy and Water Exchanges) Regional Hydroclimate Projects in the world. In the past, various multi-year droughts have been observed in this part of Canada that impacted agriculture, energy and socio-economic sectors. Therefore, proper understanding of the spatial and temporal characteristics of historical droughts is important for many water resources planning and management related activities across the basin. In the study, observed gridded data of daily precipitation and temperature and conventional univariate and copula-based bivariate frequency analyses are used to characterize drought events in terms of drought severity and duration on the basis of two drought indices, the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Within the framework of univariate and bivariate analyses, drought risk indicators are developed and mapped across the SRB to delineate the most vulnerable parts of the basin. Based on the results obtained, southern parts of the SRB (i.e., western part of the South Saskatchewan River, Seven Persons Creek and Bigstick Lake watersheds) are associated with a higher drought risk, while moderate risk is noted for the North Saskatchewan River (except its eastern parts), Red Deer River, Oldman River, Bow River, Sounding Creek, Carrot River and Battle River watersheds. Lower drought risk is found for the areas surrounding the Saskatchewan-Manitoba border (particularly, the Saskatchewan River watershed). It is also found that the areas characterized with higher drought severity are also associated with higher drought duration. A comparison of SPI- and SPEI-based analyses suggests only little effect of considering temperature, in the form of evapotranspiration, on identifying drought vulnerable areas. It is expected that the findings of the study will be helpful in the management and efficient utilization of the water resources of this important river basin in Canada.

  10. Glacier characteristics and changes in the Sary-Jaz River Basin (Central Tien Shan, Kyrgyzstan) – 1990–2010

    OpenAIRE

    Osmonov, Azamat; Bolch, Tobias; Xi, Chen; Kurban, Alishir; Guo, Wanqing

    2013-01-01

    The water discharge from the heavily glacierized Sary-Jaz River Basin (Eastern Kyrgyzstan) is of high importance for the very arid Tarim Basin located in Xinjiang (north-western China). We investigated glacier changes in the entire Sary-Jaz River Basin, which covers a large part of the Central Tien Shan, for the period from 1990 to 2010 based on Landsat ‘TM’/‘ETM+’data. We found 1310 glaciers (>0.1 km²), which covered 2055 ± 41.1 km² (?18% of the entire basin) in 1990. The glacie...

  11. Mining and Seasonal Variation of the Metals Concentration in the Puyango River Basin—Ecuador

    Directory of Open Access Journals (Sweden)

    Edwin Cueva

    2012-11-01

    Full Text Available The Puyango River Basin covers approximately an area of 4400 km2, it is located in Southern of Ecuador, with Calera and Amarillo rivers as tributaries. In this region, one of the main activities is small scale gold and silver mining. Currently there are 110 processing plants on the bank of Calera and Amarillo rivers, causing a significant degradation of natural resources. A seasonal comparison of metal concentrations in surface water, sediments and particulate matter from the Puyango River and its effluents is made. It was done a differentiation between natural contaminations with the anthropogenic one generated by mining activity. Samples were taken during dry season (2004 and rainy season (2006, and analyzed physicochemical parameters, anions and cations and the concentrations of heavy metals. The results show a clear influence of gold mining in Puyango River contamination, starting with its tributaries, Calera and Amarillo rivers, which have the highest concentrations of heavy metals from the basin, corresponding with the location of the mineral processing plants.

  12. Simulation of daily streamflows at gaged and ungaged locations within the Cedar River Basin, Iowa, using a Precipitation-Runoff Modeling System model

    Science.gov (United States)

    Christiansen, Daniel E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted a study to examine techniques for estimation of daily streamflows using hydrological models and statistical methods. This report focuses on the use of a hydrologic model, the U.S. Geological Survey's Precipitation-Runoff Modeling System, to estimate daily streamflows at gaged and ungaged locations. The Precipitation-Runoff Modeling System is a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The Cedar River Basin was selected to construct a Precipitation-Runoff Modeling System model that simulates the period from January 1, 2000, to December 31, 2010. The calibration period was from January 1, 2000, to December 31, 2004, and the validation periods were from January 1, 2005, to December 31, 2010 and January 1, 2000 to December 31, 2010. A Geographic Information System tool was used to delineate the Cedar River Basin and subbasins for the Precipitation-Runoff Modeling System model and to derive parameters based on the physical geographical features. Calibration of the Precipitation-Runoff Modeling System model was completed using a U.S. Geological Survey calibration software tool. The main objective of the calibration was to match the daily streamflow simulated by the Precipitation-Runoff Modeling System model with streamflow measured at U.S. Geological Survey streamflow gages. The Cedar River Basin daily streamflow model performed with a Nash-Sutcliffe efficiency ranged from 0.82 to 0.33 during the calibration period, and a Nash-Sutcliffe efficiency ranged from 0.77 to -0.04 during the validation period. The Cedar River Basin model is meeting the criteria of greater than 0.50 Nash-Sutcliffe and is a good fit for streamflow conditions for the calibration period at all but one location, Austin, Minnesota. The Precipitation-Runoff Modeling System model accurately simulated streamflow at four of six uncalibrated sites within the basin. Overall, there was good agreement between simulated and measured seasonal and annual volumes throughout the basin for calibration and validation sites. The calibration period ranged from 0.2 to 20.8 percent difference, and the validation period ranged from 0.0 to 19.5 percent difference across all seasons and total annual runoff. The Precipitation-Runoff Modeling System model tended to underestimate lower streamflows compared to the observed streamflow values. This is an indication that the Precipitation-Runoff Modeling model needs more detailed groundwater and storage information to properly model the low-flow conditions in the Cedar River Basin.

  13. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    Science.gov (United States)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent on water use. Assessment of agricultural sector vulnerability, which is the key water user in the basin, led to identification of the potential adaptation measures and discussion with relevant national and river basin authorities and the major stakeholders. Proposed adaptation measures range from technical - such as rehabilitation of irrigation systems to reduce water losses, modernize water reservoirs and adjust river regulation to environmental flow needs, changing land use and crop diversification - to policy and finance measures, including revision of subsidies, economic consideration of ecosystem services, etc. Next steps include a more detailed assessment of economics, effectiveness and feasibility of the initially proposed adaptation measures and additional research.

  14. Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae) inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin

    OpenAIRE

    Borba, R.S.; C. H. Zawadzki; de Oliveira, Claudio; Fernández Perdices, Ana I.; Parise-Maltempi, P.P.; Alves, A.L.

    2013-01-01

    In this study, phylogenetic and phylogeographic analyses of populations identified as Hypostomus strigaticeps from the upper Paraná River basin were conducted in order to test whether these different populations comprises cryptic species or structured populations and to assess their genetic variability. The sequences of the mitochondrial DNA ATP sintetase (subunits 6/8) of 27 specimens from 10 populations (one from Mogi-Guaçu River, five from Paranapanema River, three from Tietê River and one...

  15. Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009

    Science.gov (United States)

    Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.

    2012-01-01

    The Concho River Basin is part of the upper Colorado River Basin in west-central Texas. Monotonic trends in streamflow statistics during various time intervals from 1916-2009 were analyzed to determine whether substantial changes in selected streamflow statistics have occurred within the Concho River Basin. Two types of U.S. Geological Survey streamflow data comprise the foundational data for this report: (1) daily mean discharge (daily discharge) and (2) annual instantaneous peak discharge. Trend directions are reported for the following streamflow statistics: (1) annual mean daily discharge, (2) annual 1-day minimum discharge, (3) annual 7-day minimum discharge, (4) annual maximum daily discharge, and (5) annual instantaneous peak discharge. The South Concho, Middle Concho, and North Concho Rivers drain the upper part of the Concho River Basin. The North and South Concho Rivers converge in San Angelo, Tex., to form the Concho River. The Concho River flows east from San Angelo to its confluence with the Colorado River east of Paint Rock, Tex. The trend analyses principally focused on application of the nonparametric Kendall's Tau statistical test to detect monotonic trends (dependency) in streamflow with time; in other words, Kendall's Tau is a test of temporal independence of streamflow with time. A positive Tau indicates an upward monotonic streamflow trend; conversely, a negative Tau indicates a downward monotonic streamflow trend. Hence, the trend analysis reported here is limited to direction and not magnitude of streamflow change. Six U.S. Geological Survey streamflow-gaging stations were selected for analysis. Streamflow-gaging station 08128000 South Concho River at Christoval has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1931-95, 2002-9. Streamflow-gaging station 08128400 Middle Concho River above Tankersley has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1962-95, 2002-9. Streamflow-gaging station 08128500 Middle Concho River near Tankersley has no significant trends in the streamflow statistics considered for the period 1931-60. Streamflow-gaging station 08134000 North Concho River near Carlsbad has downward trends for annual mean daily discharge, annual 7-day minimum daily discharge, annual maximum daily discharge, and annual instantaneous peak discharge for the period 1925-2009. Streamflow-gaging stations 08136000 Concho River at San Angelo and 08136500 Concho River at Paint Rock have downward trends for 1916-2009 for all streamflow statistics calculated, but streamflow-gaging station 08136000 Concho River at San Angelo has an upward trend for annual maximum daily discharge during 1964-2009. The downward trends detected during 1916-2009 for the Concho River at San Angelo are not unexpected because of three reservoirs impounding and profoundly regulating streamflow.

  16. ??????????????? The Theories and Assessment of Vulnerability of Water Resource in Haihe River Basin

    Directory of Open Access Journals (Sweden)

    ??

    2012-10-01

    Full Text Available ????????????????????????????????????????????????????????????????????????????????????????????????????????????????1998?~2008?8??(????????????????????????1998??????????????????????????????????????????????????????????????????????????This paper explains the concept of water resources vulnerability. Research on the vulnerability as-sessment of water resources at home and abroad has been reviewed, including the establishment of an index system, determination of weight coeffients and selection of the method of comprehensive assessment. Finally, an assessment index system of nine indicators is built based on Haihe River Basin, and the principal compo-nent analysis method is applied in 8 provinces of the basin from 1998-2008. A comprehensive evaluation and comparison in the whole country is also given. The result suggests that the water resources of Haihe River Basin is more vulnerable, which is consistent with the practical cases. Take the year 1998 as an example, the impact on water vulnerability of the main components is shown in water system, social system and so on. Above all, the assessment result is satisfying, which can provide reference for the reasonable planning and use of the water resources in Haihe River Basin.

  17. The costs of uncoordinated infrastructure management in multi-reservoir river basins

    Science.gov (United States)

    Jeuland, Marc; Baker, Justin; Bartlett, Ryan; Lacombe, Guillaume

    2014-10-01

    Though there are surprisingly few estimates of the economic benefits of coordinated infrastructure development and operations in international river basins, there is a widespread belief that improved cooperation is beneficial for managing water scarcity and variability. Hydro-economic optimization models are commonly-used for identifying efficient allocation of water across time and space, but such models typically assume full coordination. In the real world, investment and operational decisions for specific projects are often made without full consideration of potential downstream impacts. This paper describes a tractable methodology for evaluating the economic benefits of infrastructure coordination. We demonstrate its application over a range of water availability scenarios in a catchment of the Mekong located in Lao PDR, the Nam Ngum River Basin. Results from this basin suggest that coordination improves system net benefits from irrigation and hydropower by approximately 3–12% (or US12-53 million/yr) assuming moderate levels of flood control, and that the magnitude of coordination benefits generally increases with the level of water availability and with inflow variability. Similar analyses would be useful for developing a systematic understanding of the factors that increase the costs of non-cooperation in river basin systems worldwide, and would likely help to improve targeting of efforts to stimulate complicated negotiations over water resources.

  18. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    International Nuclear Information System (INIS)

    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  19. Groundwater model of the Blue River basin, Nebraska-Twenty years later

    Science.gov (United States)

    Alley, W.M.; Emery, P.A.

    1986-01-01

    Groundwater flow models have become almost a routine tool of the practicing hydrologist. Yet, surprisingly little attention has been given to true verification analysis of studies using these models. This paper examines predictions for 1982 of water-level declines and streamflow depletions that were made in 1965 using an electric analog groundwater model of the Blue River basin in southeastern Nebraska. Analysis of the model's predictions suggests that the analog model used too low an estimate of net groundwater withdrawals, yet overestimated water-level declines. The model predicted that almost all of the net groundwater pumpage would come from storage in the Pleistocene aquifer within the Blue River basin. It appears likely that the model underestimated the contributions of other sources of water to the pumpage, and that the aquifer storage coefficients used in the model were too low. There is some evidence that groundwater pumpage has had a greater than predicted effect on streamflow. Considerable uncertainty about the basic conceptualization of the hydrology of the Blue River basin greatly limits the reliability of groundwater models developed for the basin. The paper concludes with general perspectives on groundwater modeling gained from this post-audit analysis. ?? 1986.

  20. Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data.

    Science.gov (United States)

    Masiá, Ana; Campo, Julián; Navarro-Ortega, Alícia; Barceló, Damià; Picó, Yolanda

    2015-01-15

    Through an extensive sampling in the Llobregat River basin, the presence of 50 currently used pesticides in water, sediment, and biota was assessed. Pesticides were detected primarily in water (up to 56% of the analytes), whereas their presence in sediments was more intermittent, and in biota was scarce. Those at high concentrations in water were the benzimidazoles (carbendazim in 22% of the samples up to 697 ng L(-1)), the organophosphorus (malathion in 54% of the samples up to 320 ng L(-1)), and the ureas (diuron in 54% of the samples up to 159 ng L(-1)). However, this pattern differed in sediments and biota, which were contaminated primarily with organophosphorus (higher Kow) (chlorpyrifos 93% of sediments up to 131 ng g(-1)). According to the results of this study, pesticide residues in the Llobregat River basin do not seem to represent a high risk to biota, even though some algae and fish can be affected. Nevertheless, the monitoring program can be very useful to control the contamination of the river basin, as the availability of historical data on the basin confirmed background contamination in the last 20 years. PMID:25034205

  1. Modeling a tropical rainforest river basin in the Philippines using the distributed hydrologic model MOBIDIC

    Science.gov (United States)

    Castillo, A. E.

    2013-12-01

    The MOdello Bilancio Idrologico DIstributo e Continuo (MOBIDIC), a distributed physics-based hydrologic model that solves both mass and energy balance, was used to investigate a 103 sq. km. mountainous river basin in southern Philippines. The basin is covered by tropical rain forest (TRF) with small patches of upland crop cultivation, and underlain by thin clayey soil over porous volcanic tuff geology. Aside from being the first application of MOBIDIC on a TRF basin, this paper also demonstrates how a sophisticated hydrologic model can be developed using freely- and globally-available remotely-sensed data, plus only minimal field observations and streamflow measurements. Based on simulation of water years 2009-2012, the average annual rainfall of 3,877 mm was partitioned into 22% quick flow, 38% base flow, 37% evapotranspiration, and 3% recharge to the regional groundwater system. The vegetation intercepts about 12% of the total rainfall, and the soil layer is almost always at or above field capacity. Simulations of some scenarios indicate that climate change will have greater impact than loss of vegetative cover, and the impact is more signicant on the low flow than the peak flow regime. Hopefully, these insights will be of use to local decision makers as they improve their systems for water supply, watershed management, and climate change impact mitigation. Maps of the Tamugan River Basin showing the location, topography, river network and hydromet stations Effects of loss of vegetation

  2. Agro-hydrologic Landscapes in the Upper Mississippi and Ohio River Basins

    Science.gov (United States)

    Schilling, Keith E.; Wolter, Calvin F.; McLellan, Eileen

    2015-03-01

    A critical part of increasing conservation effectiveness is targeting the "right practice" to the "right place" where it can intercept pollutant flowpaths. Conceptually, these flowpaths can be inferred from soil and slope characteristics, and in this study, we developed an agro-hydrologic classification to identify N and P loss pathways and priority conservation practices in small watersheds in the U.S. Midwest. We developed a GIS framework to classify 11,010 small watersheds in the Upper Mississippi and Ohio River basins based on soil permeability and slope characteristics of agricultural cropland areas in each watershed. The amount of cropland in any given watershed varied from 60 %. Cropland areas were classified into five main categories, with slope classes of 5 %, and soil drainage classes of poorly and well drained. Watersheds in the Upper Mississippi River basin (UMRB) were dominated by cropland areas in low slopes and poorly drained soils, whereas less-intensively cropped watersheds in Wisconsin and Minnesota (in the UMRB) and throughout the Ohio River basin were overwhelmingly well drained. Hydrologic differences in cropped systems indicate that a one-size-fits-all approach to conservation selection will not work. Consulting the classification scheme proposed herein may be an appropriate first-step in identifying those conservation practices that might be most appropriate for small watersheds in the basin.

  3. Selection of additional evapotranspiration and precipitation measurement points considering characteristic of river basin, in surface hydrological investigation

    International Nuclear Information System (INIS)

    The Horonobe Underground Research Center of Japan Nuclear Cycle Development Institute (JNC) has been investigating surface hydrological features in and around the Horonobe Underground Research Laboratory (URL) area as a part of Horonobe URL project. The main purpose of the surface hydrological investigations is to estimate the infiltration rate into the deep underground which is one of the most important boundary conditions of the groundwater flow system. In this work, the characteristics of total four basins which had not been covered by the investigation of the fiscal year 2000 and 2001 were analyzed. One is Shimizu River basin and the others are three basins within Penke-Ebekorobestsu River basin. The characteristics of these four basins were analyzed for the purpose of data acquisition on precipitation and evapotranspiration in and around the URL area. The results of the work show that the area covered by broadleaf trees is the largest, that of pastureland is the 2nd largest and that covered by needle-leaf trees is the 3rd largest in and around the URL area. The results also show that the average undulation at the two river basins, namely the Shimizu River basin and the Penke-Ebekorobestsu River basin, is smaller than in other river basins in Horonobe town. In addition, the result of the study of applicability of methods estimating evapotranspiration to the river basins in the URL area shows that the profile method and the Bowen ratio/Energy balance method are sui Bowen ratio/Energy balance method are suitable for broadleaf tree areas while the Penman method fits to pasturelands. Based on these results, locations of additional precipitation and evapotranspiration measuring points in the URL area were selected. Three candidate points were selected for evapotranspiration measurement and another set of three points were selected for precipitation measurement. (author)

  4. Lithium isotopes in the Loire River Basin, France

    OpenAIRE

    Millot, Romain; Desaulty, Anne-marie

    2014-01-01

    Assessing the behaviour of lithium and the distribution of Li isotopes during river weathering is of major importance for studying water/rock interactions at the surface of the Earth. Lithium (6Li ~ 7.5% and 7Li ~ 92.5%) is a fluid-mobile element and, due to the large relative mass difference between its two stable isotopes, it is subject to significant low temperature mass fractionation which provides key information on the nature of erosion processes. The Loire River in central France is ap...

  5. Effects of global change in the Czech Part of the River Elbe Basin and adaptation options

    Science.gov (United States)

    Koch, Hagen; Kaltofen, Michael; Kaden, Stefan; Grünewald, Uwe

    2010-05-01

    In Integrated Water Resources Management planning the effects of changing natural conditions (natural water availability) and socio-economic development (water demand) must be taken into consideration. Climate change will influence the water availability. In some sectors, e.g. agricultural irrigation, also the water demand is influenced by climatic conditions. Both, the development of natural water availability and water demand, are connected with certain levels of uncertainty. Therefore, scenarios of socio-economic development and climate change are required for Integrated Water Resources Management planning. The river Elbe basin (catchment area approximately 150,000 km²) is located in central Europe. The river Elbe basin is a trans boundary river basin. One third is located in the Czech Republic upstream of Germany, where two thirds of the basin is located. Therefore, inflows from the Czech part are important for instance for navigation in the German part. For navigation an inflow to Germany of 100 m3/s is required. Due to climate change the inflows are expected to decline. In the project GLOWA-Elbe a water management model for the whole river Elbe basin was developed. The model for the Czech part includes among others 52 reservoirs, 20 thermoelectric power plants, 70 hydroelectric power plants, 30 industrial users, 15 agricultural irrigation users, 40 public water utilities, and 160 waste water treatment plants. Two global socio-economic trends are renationalized and used in the simulations. Renationalized climate data are used to simulate the effects of climate change on natural discharges. Using the water management model the effects of global change on inflows from the Czech Republic to Germany are simulated. Using this model is it analyzed, if reservoir management in the Czech part can sustain a required inflow of 100 m3/s to Germany.

  6. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and spring and summer chinook salmon, from 1992 through 2001, are stored in two independent locations at the University of Idaho (UI) and Washington State University (WSU). Two large freezer tanks are located at each university. Recommendations for future gene banking efforts include the need for establishment of a regional genome resource bank, an emphasis on cryopreserving wild unmarked fish, continued fertility trials, and genetic analysis on all fish represented in the germplasm repository.

  7. Long-term monitoring of aquatic birds wintering in the Romanian Prut River basin

    Directory of Open Access Journals (Sweden)

    GACHE Carmen

    2006-09-01

    Full Text Available Beginning with the winter of 1992, we performed a continuous ornithological survey in different wintering areas belong the Prut River basin. We took in our attention the most important dam lakes, fishponds and some observatory points on the Prut River valley. We created a database about the trend and the actual situation of waterfowls’ population in this part of Romania, identifying the best sites for birds’ during the cold season and monitoring the activities that disturb the birds’ life, estimating the human pressure level in these areas. The wintering avifauna is formed by 100 birds’ species (43,85% from the total avifauna of Prut River basin – 228 species, 31 being aquatic birds – 21 species belonged to the order Anseriformes. The hiemal appearance (November – February/March in the last years of our study of Prut River basin showed thousands of geese and ducks that represents the numerically most representative birds’ group of the winter avifauna, followed by Coot (Fulica atra. We followed the global contribution of these species to the total wintering waterfowls’ population, during the whole period of study

  8. Dynamics of meteorological and hydrological droughts in the Neman river basin

    International Nuclear Information System (INIS)

    The analysis of drought dynamics in the Neman river basin allows an assessment of extreme regional climate changes. Meteorological and hydrological warm period droughts were analyzed in this study. Meteorological droughts were identified using the standardized precipitation index, and hydrological droughts using the streamflow drought index. The whole river basin was analyzed over the period from 1961 to 2010. Precipitation data from Vilnius meteorological station (from 1887) and discharge data from Smalininkai (Neman) hydrological station (from 1811) were used for an evaluation of meteorological and hydrological drought recurrence over a long-term period. It was found that the total area dryness has decreased over the last 50 years. A statistically significant increase in standardized precipitation index values was observed in some river sub-basins. An analysis of drought recurrence dynamics showed that there was no indication that the number of dangerous drought was increased. It was determined that the standardized precipitation index cannot successfully identify the hydrological summer droughts in an area where the spring snowmelt forms a large part of the annual flow. In particular, the weak relationship between the indices was recorded in the first half of the summer, when a large part of the river runoff depends on accumulated water during the spring thaw. (letter)

  9. Hydrogeochemistry of the surface waters of the Ebro River Basin (Spain): a view through Li-B-Sr isotopes

    OpenAIRE

    Millot, Romain; Guerrot, Catherine; Petelet Giraud, Emmanuelle; Brenot, Agnès; Négrel, Philippe

    2012-01-01

    In the present study, we report hydrogen, oxygen, lithium, boron and strontium isotope measurements (d2H, d18O, d7Li, d11B and 87Sr/86Sr) together with major and trace elements in the dissolved load of 25 river samples collected within the Ebro River Basin in Spain. The Ebro River Basin is mainly dominated by carbonates and evaporites from the Paleozoic and Mesozoic terrains. The Ebro river mainstream was sampled at Amposta one time per month between June 2005 and May 2006. And secondly, the ...

  10. Assessment of Potential Dam Sites in the Kabul River Basin Using GIS

    Directory of Open Access Journals (Sweden)

    RASOOLI Ahmadullah

    2015-02-01

    Full Text Available The research focuses on Kabul River Basin (KRB water resources infrastructure, management and development as there are many dams already in the basin and many dams are planned and are being studied with multi-purposes objectives such as power generation, irrigation and providing water to industry and domestics. KB has been centralized all water resources related information in an integrated relational geo-database this KB is centralized repository for information river basin management with the main objectives of optimizing information collection, retrieval and organization. In addition, in this paper information and characteristics of the KRB has been presented such as drainage network or hydrology, irrigation, population, climate and surface pattern other necessary features of the basin by the use of GIS in order to invest and implement infrastracture projects. The first step in doing any kind of hydrologic modeling involves delineating streams and watersheds, and getting some basic watershed properties such as area, slope, flow length, stream network density, etc. Traditionally this was (and still is being done manually by using topographic/contour maps. With the availability of Digital Elevation Models (DEM and GIS tools, watershed properties can be extracted by using automated procedures. The processing of DEM to delineate watersheds is referred to as terrain pre-processing. Besides that, it produced the necessary thematic maps, base maps and other detailed maps for illustrating of basin characteristics and features GIS Based.

  11. Spatial-temporal variation of precipitation concentration and structure in the Wei River Basin, China

    Science.gov (United States)

    Huang, Shengzhi; Huang, Qiang; Chen, Yutong; Xing, Li; Leng, Guoyong

    2015-05-01

    It is of significant importance to investigate precipitation structure and precipitation concentration due to their great impact on droughts, floods, soil erosion, as well as water resources management. A complete investigation of precipitation structure and its distribution pattern in the Wei River Basin was performed based on recorded daily precipitation data in this study. Two indicators were used: concentration index based on daily precipitation (CID), to assess the distribution of rainy days, and concentration index based on monthly precipitation (CIM), to estimate the seasonality of the precipitation. Besides, the modified Mann-Kendall trend test method was employed to capture the variation trends of CID and CIM. The results indicate that: (1) the 1-3-day events are the predominant precipitation events in terms of the occurrence and fractional contribution; (2) the obvious differences in the CID of various areas are found in the Wei River Basin, and the high CID values mainly concentrate in the northern basin, conversely, the southern basin has a relatively low CID value; (3) high CIM values are primarily in the western and northern basin, reflecting a remarkable seasonality of precipitation in these regions; and (4) all of the stations show a downward trend of CIM, which indicates that the monthly precipitation distribution tends to be more uniform.

  12. System of prediction and warning of floods in the water basin of Struma/ Strymonas River

    International Nuclear Information System (INIS)

    Struma is collecting waters from four countries: Bulgaria, Serbia, FYROM and Greece. Most of its basin area is located in Bulgaria and Greece, while the upper part of its basin is in Bulgaria. There are important hydro technical structures just below the Bulgarian-Greek border, and the floods generated in the Bulgarian part of the basin could significantly affect the security of those structures and their operational rules. That is why several years ago a project related to flood warning at Struma/ Strymonas river basin was formulated and its first phase was completed in 2000. The main objective of the project was to demonstrate the principal possibility for issuing reliable warnings for hazardous flood events with sufficient lead-time to organize flood mitigation measures. The project implementation team included various scientists from the Agricultural University of Athens-Greece (leader), from the Center of Remote Sensing, Bristol University-UK, and from the National Institute of Meteorology and Hydrology of Sofia - Bulgaria. The work program of the first project phase included a range of activities implemented by the Bulgarian and Greek team members, coordinated by the Agricultural University of Athens. Among the activities of the Project are included: a) a preliminary model for peak flood hydrographs and specifications of an early warning system, b) a real time flood forecasting by routing flood hydrographs through the system of the river and Kerkini lake, c) thestem of the river and Kerkini lake, c) thematic maps of vegetation and land cover derived by satellite remote sensing, d) satellite snow monitoring in the basin, e) an adaptation of the Alladin Weather Forecast Model at the hydrological basin and scaling of the Crocus Snow Model at a preliminary stage, and f) development of a geo environmental recording system.(Author)

  13. EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.

    2011-10-24

    The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

  14. Monitoring Land Use/Land Cover Changes in a River Basin due to Urbanization using Remote Sensing and GIS Approach

    Science.gov (United States)

    Shukla, S.; Khire, M. V.; Gedam, S. S.

    2014-11-01

    Faster pace of urbanization, industrialization, unplanned infrastructure developments and extensive agriculture result in the rapid changes in the Land Use/Land Cover (LU/LC) of the sub-tropical river basins. Study of LU/LC transformations in a river basin is crucial for vulnerability assessment and proper management of the natural resources of a river basin. Remote sensing technology is very promising in mapping the LU/LC distribution of a large region on different spatio-temporal scales. The present study is intended to understand the LU/LC changes in the Upper Bhima river basin due to urbanization using modern geospatial techniques such as remote sensing and GIS. In this study, the Upper Bhima river basin is divided into three adjacent sub-basins: Mula-Mutha sub-basin (ubanized), Bhima sub-basin (semi-urbanized) and Ghod sub-basin (unurbanized). Time series LU/LC maps were prepared for the study area for a period of 1980, 2002 and 2009 using satellite datasets viz. Landsat MSS (October, 1980), Landsat ETM+ (October, 2002) and IRS LISS III (October 2008 and November 2009). All the satellite images were classified into five LU/LC classes viz. built-up lands, agricultural lands, waterbodies, forests and wastelands using supervised classification approach. Post classification change detection method was used to understand the LU/LC changes in the study area. Results reveal that built up lands, waterbodies and agricultural lands are increasing in all the three sub-basins of the study area at the cost of decreasing forests and wastelands. But the change is more drastic in urbanized Mula-Mutha sub-basin compared to the other two sub-basins.

  15. A poorly known case of watershed transposition between the São Francisco and upper Paraná river basins

    OpenAIRE

    Orlando Moreira Filho; Paulo Andreas Buckup

    2005-01-01

    During construction of the Furnas hydroelectric power dam in the upper rio Paraná basin in the early 1960s, the rio Piumhi drainage outflow was diverted into the headwaters of the São Francisco river basin. The rio Piumhi was a right bank tributary of the rio Grande, which unites with the rio Paranaíba to form the rio Paraná. The transposition allowed the entire fish fauna of the rio Piumhi and associated swamps, lakes, and tributaries to intermingle with the fish fauna of the São Franci...

  16. Morphometric Parameters of the Calabar River Basin: Implication for Hydrologic Processes

    OpenAIRE

    Eze Bassey Eze; Joel Efiong

    2010-01-01

    The study examined the morphometric parameters of the Calabar River Basin with emphasis on its implicationfor hydrologic processes. Data for this study were obtained from topographic map which were subject to fieldconfirmation. The result revealed that the basin area was 1 514km2. There were 223 streams with a total streamlength of 516.34km. The textural dissection was considered to be low as drainage density, stream frequency anddrainage intensity values were 0.34km-1, 0.15km-1 and 0.05 resp...

  17. 137Cs distribution and geochemistry of Lena River (Siberia) drainage basin lake sediments

    International Nuclear Information System (INIS)

    The Lena River is the second largest river that discharges into the Arctic Ocean. It is therefore important to determine not only the direct impact its discharge has on the 137Cs concentration of the Arctic, but also the potential its drainage basin has as a 137Cs source. 137Cs surface sediment concentrations and inventory values, which range from 4.97 to 338 Bq kg-1 and 357 to 1732 Bq m-2, respectively, were determined for the Lena River drainage basin lake samples, via gamma analysis. The average geochemical and mineralogical composition of a subset of samples was also determined using neutron activation analysis, X-ray diffraction and X-ray fluorescence spectrometry techniques. Results of these geochemical analyses allowed for the identification of key geochemical factors that influence the distribution of 137Cs in the Lena River drainage basin. 137Cs profiles indicate that Lena River drainage basin lacustrine sediments serve as a record of 137Cs fallout. Based on the downcore 137Cs, %illite, %smectite, %Al and %Mn distribution patterns, it was concluded that a small fraction of non-selectively bound 137Cs was remobilized at depth in some cores. Inconsistencies between the actual 137Cs fallout record and the 137Cs profiles determined for the lake sediments were attributed to 137Cs remobilization in subsurface sediments. In addition to establishing the agreement between the global atmospheric fallout record and the downcore 137Cs distribution pcord and the downcore 137Cs distribution patterns determined for these sediments, results indicate that 137Cs deposited during periods of maximum atmospheric release was buried and is not susceptible to surface erosion processes. However, mean 137Cs concentrations of the lacustrine surface sediments (125 Bq kg-1) are still significantly higher than those of the nearby Lena River estuary (11.22 Bq kg-1) and Laptev Sea (6.00 Bq kg-1). Our study suggests that the Lena River drainage basin has the potential to serve as a source of 137Cs to the adjacent Arctic Ocean

  18. Recent trends in sediment load of the tropical (Peninsular) river basins of India

    Science.gov (United States)

    Panda, Dileep K.; Kumar, A.; Mohanty, S.

    2011-02-01

    The tropical river basins of India are important because of the coastal ecosystem that they sustain and the densely populated economic zones that they serve. Th