WorldWideScience

Sample records for river basin volume

  1. Columbia River Basin Seasonal Volumes and Statistics, 1928-1989. 1990 Level Modified Streamflows Computed Seasonal Volumes 61-Year Statistics.

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Crook Company

    1993-04-01

    This report was prepared by the A.G. Crook Company, under contract to Bonneville Power Administration, and provides statistics of seasonal volumes and streamflow for 28 selected sites in the Columbia River Basin.

  2. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  3. Ground-water quality and data on wells and springs in Pennsylvania; Volume III, Delaware River basin

    Science.gov (United States)

    Koester, H.E.; Miller, D.R.

    1982-01-01

    Volume III presents ground-water quality and physical data on about 1,250 wells and springs in the Delaware River Basin in Pennsylvania. Locations are shown on site-location maps derived from the hydrologic unit map. Codes showing the geologic age and aquifer are provided.

  4. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  5. Methodologies for Assessing the Cumulative Environmental Effects of Hydroelectric Development of Fish and Wildlife in the Columbia River Basin, Volume 1, Recommendations, 1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stull, Elizabeth Ann

    1987-07-01

    This volume is the first of a two-part set addressing methods for assessing the cumulative effects of hydropower development on fish and wildlife in the Columbia River Basin. Species and habitats potentially affected by cumulative impacts are identified for the basin, and the most significant effects of hydropower development are presented. Then, current methods for measuring and assessing single-project effects are reviewed, followed by a review of methodologies with potential for use in assessing the cumulative effects associated with multiple projects. Finally, two new approaches for cumulative effects assessment are discussed in detail. Overall, this report identifies and reviews the concepts, factors, and methods necessary for understanding and conducting a cumulative effects assessment in the Columbia River Basin. Volume 2 will present a detailed procedural handbook for performing a cumulative assessment using the integrated tabular methodology introduced in this volume. 308 refs., 18 figs., 10 tabs.

  6. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  7. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  8. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  9. Ecological River Basin Management.

    Science.gov (United States)

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  10. Tools for river basin management

    OpenAIRE

    Cools, Jan

    2012-01-01

    Water resources management can be challenging when confronted with pollution, water shortage, floods, water-related diseases, climate change and variability. In this thesis, it is assessed how the management of a multi-functional river basin can be facilitated through the development and testing of analytical tools in data-poor and data-rich context. A variety of tools and strategies is developed and tested on a variety of stakeholder selected themes, namely: •Cost-effective improvement of wa...

  11. The Rhine River Basin

    OpenAIRE

    Uehlinger, Urs F.; Karl M. Wantzen; Leuven, Rob S.; Arndt, Hartmut

    2009-01-01

    Nine countries are in part or entirely situated within the Rhine catchment, namely Austria, Belgium, France, Germany, Italy (only 51 km²), Liechtenstein, Luxemburg, The Netherlands and Switzerland. With a total length of about 1250 km, a drainage area of 185 260 km² and an average discharge of about 2300 m³/s, the Rhine ranks 9th among Eurasian rivers. The Rhine is the primary artery of one of the most important economic regions of Europe (annual gross domestic product of 1750 billion US$). T...

  12. Red River Basin Mapping 2008-2010

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This LiDAR data covers the Red River Basin with portions of ND, MN, SD and flows into Canada. The US Red River Basin boudnary covers 40,860 sqmi,with the additional...

  13. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Lifeng Li

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  14. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Science.gov (United States)

    2010-07-01

    ... 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section...DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of Charles River Basin...

  15. THE RIVER BASIN APPROACH IN TOURISM PLANNING

    OpenAIRE

    Slara, Agita

    2005-01-01

    The article describes advantages and disadvantages in tourism planning, using the river basins as background territory and borders. Tourism development planning is taking place according administrative territorial borders till nowadays in Latvia and in other tourism destinations in abroad. According tourist and visitor needs and environmental friendly approach it is more appropriate to use river basins in tourism planning. Tourists are not interested in administrative borders, but in qualitat...

  16. River Basin Planning: Theory and Practice

    Science.gov (United States)

    Joeres, Erhard F.

    River Basin Planning is divided into three major parts and an appendix. Part 1, Theory of River Basin Planning, is led by an introductory chapter from the editors emphasizing the major human component in the complex sociotechnical attributes of river basin development. They present a forceful argument for a truly interdisciplinary approach to river basin planning. (The appendix subsequently suggests curriculum development for courses in river basin planning.)Part 2, River Basin Planning: Environmental Issues, is supported by two chapters: one with a focus on soil conservation, the other on ecosystem protection. The soil conservation chapter by I. Douglas illustrates that slow, inadvertent changes may be more damaging in the long run than immediate, direct effects. It postulates that planning for people perforce will require planning for soil conservation as an ongoing activity. The case for environmental protection is somewhat weak because of the singular example chosen for illustration. The Gunung Mulu National Park in Sarawak, Malaysia, is in a fragile, humid, tropical forest region where any change per se is interpreted as being detrimental.

  17. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  18. Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995, Volume I - Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Idaho Department of Fish and Game; US Fish and Wildlife Service; Nez Perce Tribe

    1996-06-01

    Clearwater Hatchery is located on the north bank of the North Fork of the Clearwater River, downstream from Dworshak Dam. It is approximately 72 miles from Lower Granite Dam, and 504 miles from the mouth of the Columbia River. Site elevation is approximately 994 feet above sea level. The hatchery is staffed with 8 FTE`s. Clearwater Hatchery has two pipelines from Dworshak Reservoir. One is attached to a floating platform and is capable of providing various temperatures at varying depths. The other is a stationary intake about 245 feet below the top of the dam. All water is gravity fed to the hatchery. An 18-inch intake pipe provides an estimated 10 cfs with temperature remaining constant at approximately 40T. The primary 42-inch intake pipe can draw water from 5 to 45 feet in depth with temperatures ranging from 55{degrees} to 60{degrees}F and 70 cfs of flow. This report describes the operations of the hatchery.

  19. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    Science.gov (United States)

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  20. UPPER SNAKE RIVER BASIN, PRELIMINARY BASIN EVALUATION

    Science.gov (United States)

    The purpose of this paper was to provide a process and a plan by which the Environmental Protection Agency can insure that water quality goals established in the Water Pollution Control Act Amendments of 1972 are met in the waters of the Upper Snake Basin (17040201, 17040206, 170...

  1. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

    1979-09-01

    This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

  2. Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995 : Volume II, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon Department of Fish and Wildlife; US Fish and Wildlife Service

    1996-06-01

    Big Creek Hatchery is located 16 miles east of Astoria, Oregon and is approximately 3 miles upstream from Big Creek`s confluence with the Columbia River. The site elevation is approximately 75 feet above sea level. The facility includes 2 adult holding ponds, 30 raceways, 1 rearing pond, 64 troughs and 8 stacks of egg incubators. The adult collection and holding ponds are in poor condition and are inadequate to meet current program objectives. There are four water sources for the hatchery: Big Creek, Mill Creek and two springs. Current water rights total 36,158 gpm plus an additional 4.2 cfs reservoir water right. All water supplies are delivered by gravity but can be pumped for reuse if required. The facility is staffed with 9.25 FTE`s. Current practices at the hatchery are described.

  3. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  4. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems. Hot spot assessment included 100 gauge stations in the river basin with discharge measurement by ADCP, turbidity (T) and suspended sediment concentration (SSC), bed load by bed load traps, composition of salt, biochemical oxidation, nitrogen and phosphorous content in water, pH, redox and conductivity values, and also content of heavy metals in water, suspended matter and sediments. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu, and Mo in the Selenga River water which often are higher than MPC for water fishery. Most contrast distribution is characteristic for W and Mo, which is caused by mineral deposits in the Selenga basin. The most severe pollution of aquatic systems in the basin caused by mining activities is characteristic for a small river Modonkul, which flows into Dzhida River (left tributary of Selenga).

  5. Establishing river basin organisations inVietnam: Red River, Dong Nai River and Lower Mekong Delta.

    Science.gov (United States)

    Taylor, P; Wright, G

    2001-01-01

    River basin management is receiving considerable attention at present. Part of the debate, now occurring worldwide, concerns the nature of the organisations that are required to manage river basins successfully, and whether special-purpose river basin organisations (RBOs) are always necessary and in what circumstance they are likely to (i) add to the management of the water resources and (ii) be successful. The development of river basin management requires a number of important elements to be developed to a point where the river basin can be managed successfully. These include the relevant laws, the public and non-government institutions, the technical capabilities of the people, the understanding and motivation of people, and the technical capacity and systems, including information. A river basin organisation (or RBO) is taken to mean a special-purpose organisation charged with some part of the management of the water resources of a particular river basin. Generally speaking, such organisations are responsible for various functions related to the supply, distribution, protection and allocation of water, and their boundaries follow the watershed of the river in question. However, the same functions can be carried out by various organisations, which are not configured on the geographical boundaries of a river basin. This paper outlines recent work on river basin organisation in Vietnam, and makes some comparisons with the situation in Australia. PMID:11419135

  6. Interannual variations of river water storage from a multisatellite approach: a case study for the Rio Negro River basin

    OpenAIRE

    Frappart, Frédéric; Papa, Fabrice; S. Famiglietti, James; Prigent, Catherine; B. Rossow, William; Seyler, Frédérique

    2008-01-01

    Spatio-temporal variations of water volume over inundated areas located in a large river basin have been determined using combined observations from a multi-satellite inundation dataset, the Topex/Poseidon (T/P) altimetry satellite, and in situ hydrographic stations for the water levels over rivers and floodplains. We computed maps of monthly surface water volume change over the period of common availability of T/P and the multisatellite data (1993-2000). The basin of the Negro River, the lar...

  7. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  8. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ...oversight of the Yakima River Basin Water Conservation Program. DATES: The meeting will...review of the implementation of the Water Conservation Program, including the applicable water conservation guidelines of the Secretary used...

  9. SLIDE INVENTORY IN DUBRACINA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Aleksandar Toševski

    2013-12-01

    Full Text Available he slide inventory in Dubra?ina river basin consists of 39 slides. They have been detected by field geomorphological mapping and visual analysis of 1 meter digital elevation model. The slides detected using elevation model are validated by the field checking as well. The outline of all slides is generated using digital elevation model. The total area affected by sliding is 81873 m2 which is 0,44% of researched area. The area, volume, total lenght, width of displaced mass, dip angle of slope on the slide location and dip direction of sliding have been defined for each slide. Slides areas are ranging from 150 to 12956 m2. Minimal total slide lenght from the crown to the tip is 20 m and maximal is 226 m. Angles of slope dip on slide locations are ranging from 10,1° to 28,6° focusing that 76,7% total area affected by sliding has slope dip angle on slide location up to 20°. According to weighting factor calculations lithological unit flysch (E2,3 is marked as the most significant lithological factor of the sliding. All slides are located in the flysch weathering zone where zone crop out. It has been shown that terrain tendency for excessive erosion is very limitative factor in using digital elevation model for the remote slide mapping (the paper is published in Croatian.

  10. Social Learning in European River-Basin Management: Barriers and Fostering Mechanisms from 10 River Basins

    OpenAIRE

    Brad Searle; David Tàbara; Yvonne Rees; Claudia Pahl-Wostl; Erik Mostert; Joanne Tippett

    2007-01-01

    We present and analyze 10 case studies of participatory river-basin management that were conducted as part of the European HarmoniCOP project. The main theme was social learning, which emphasizes the importance of collaboration, organization, and learning. The case studies show that social learning in river-basin management is not an unrealistic ideal. Resistance to social learning was encountered, but many instances of social learning were found, and several positive results were identified....

  11. Sediment fluxes in transboundary Selenga river basin

    Science.gov (United States)

    Belozerova, Ekaterina

    2013-04-01

    Gathering reliable information on transboundary river systems remains a crucial task for international water management and environmental pollution control. Countries located in the lower parts of the river basins depend on water use and management strategies in adjacent upstream countries. One important issue in this context is sediment transport and associated contaminant fluxes across the state borders. The mass flows of dissolved ions, biogens, heavy metal concentrations, as far as suspended sediment concentration (SSC, mg/l) along upper Selenga river and its tributaries based on the literature review and results of field campaigns 2011-2012 were estimated. Based on the water discharges measurements Q, suspended load WR (t/day) and dissolved loads WL were calculated. In the Selenga basin the minimal WR (1,34-3,74 t/day) were found at small rivers. Maximal sediment loads (WR = 15 000 t/day) were found at the upper Orkhon river during flood event. The downstream point (Mongolia-Russia border) was characterized 2 220 t/day in 2011. Generally the prevalence of the accumulation is found through calculating sediment budget for all rivers (?W = WR (downstream) - WR (upstream) bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga river where Mongolia capital Ulaanbaator, gold mine Zaamar and few other mines). The results provide evidence on a connection between increased heavy metal concentrations in water-sediment systems of transboundary rivers and pollutant source zones at industrial and mining centers, both as in-channel erosion and land use.

  12. Digital spatial data as support for river basin management: The case of Sotla river basin

    Directory of Open Access Journals (Sweden)

    Prah Klemen

    2013-01-01

    Full Text Available Many real-world spatially related problems, including river-basin planning and management, give rise to geographical information system based decision making, since the performance of spatial policy alternatives were traditionally and are still often represented by thematic maps. Advanced technologies and approaches, such as geographical information systems (GIS, offer a unique opportunity to tackle spatial problems traditionally associated with more efficient and effective data collection, analysis, and alternative evaluation. This paper discusses the advantages and challenges of the use of digital spatial data and geographical information systems in river basis management. Spatial data on social, environmental and other spatial conditions for the study area of 451.77 km2, the Slovenian part of the Sotla river basin, are used to study the GIS capabilities of supporting spatial decisions in the framework of river basin management.

  13. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

  14. Caracterización de las superficies agrícolas y sus volúmenes de irrigación en la cuenca del río San Juan, México / Characterization of agricultural areas and irrigation volumes in the San Juan river basin, Mexico

    Scientific Electronic Library Online (English)

    José, Návar; Efraín, Rodríguez Téllez.

    2002-04-01

    Full Text Available El manejo sustentable de los recursos hidrológicos de la cuenca del rio San Juan es prioritario para el desarrollo regional del nordeste de México. En este trabajo se cualificaron las superficies agrícolas con riego y se predijeron los caudales necesarios para irrigar la superficie bajo tres diferen [...] tes escenarios de precipitación, como una forma de inventariar la necesidad de agua por el sector agrícola. La superficie agrícola total ascendió a 172 000 ha los cultivos más comunes fueron el maíz, el sorgo y los cítricos. Los caudales de agua necesarios para irrigar la superficie agrícola se aproximaron a 1 319, 1 688 y 188 mm³ año-1 cuando se presentan precipitaciones con un 50, 20 y 80% de ocurrencia en la cuenca del río San Juan. La agricultura bajo riego contribuye a disminuir el gasto, conllevar una mayor extracción de agua de los ríos para satisfacer los usos consuntivos de los cultivos cuando existen sequías. Se enfatiza la necesidad de implementar prácticas de manejo sustentable de recursos hidrológicos como una alternativa para amortiguar los cambios potenciales en las superficies agrícolas. Abstract in english The sustainable management of hydrological resources in the San Juan river basin is top-priority for the regional development of Northeastern Mexico. This research report quantified irrigated agricultural areas, and water volumes required for irrigation were predicted under three rainfall scenarios, [...] as an approach to build an inventory of water requirements by the farming sector. The total agricultural area amounted 172 999 hectares, the commonest crops being corn, sorghum and citric fruits. Water volumes required for irrigation approximated 1 319, 1 688 and 188 mm3 year-1 under probability of rainfall occurrence scenarios of 50, 20 and 80% the San Juan river basin. Irrigation agriculture contributes to reduce expenses, leads to a higher water extraction from rivers to satisfy farming consumption when drought periods occur. The need to implement sustainable hydrological resource management practices is stressed, as an alternative to ameliorate potential changes in agricultural areas.

  15. Saving the Mekong River Basin

    OpenAIRE

    Houba, Harold; Pham Do, Kim Hang; Zhu, Xueqin

    2011-01-01

    The Mekong River (MR) is shared by six countries: China, Myanmar, Thailand, Laos, Cambodia, and Vietnam. Over the years there have been both conflict and cooperation on managing the water resources to meet population growth, climate change and the desire for economic development. Currently, the MR Committee (MRC) has weak policy instruments. This paper exploits an axiomatic bargaining approach to examine how China and the MRC might negotiate effective joint management. We investigate what wel...

  16. [Upper Steele Bayou Projects : Yazoo River Basin, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a collection of documents related to four projects which were proposed by the U.S. Army, Corps of Engineers in the Yazoo River Basin. The Upper Yazoo Basin...

  17. Sustainability Within the Great Monsoon River Basins

    Science.gov (United States)

    Webster, P. J.

    2014-12-01

    For over five millenia, the great monsoon river basins of the Ganges, Brahmaputra and Indus have provided for great and flourishing agrarian civilizations. However, rapid population growth and urbanization have placed stress on the rural sector causing the use of land that is more prone for flood and drought. In addition, increased population and farming have stressed the availability of fresh water both from rivers and aquifers. Additionally, rapid urbanization has severely reduced water quality within the great rivers. Added to these problems is delta subsidence from water withdrawal that, at the moment far surpasses sea level rise from both natural and anthropogenic effects. Finally, there appear to be great plans for river diversion that may reduce fresh water inflow into the Brahmaputra delta. All of these factors fall against a background of climate change, both anthropogenic and natural, of which there is great uncertainty. We an attempt a frank assessment assessment of the sustainability of society in the great basins and make some suggestions of factors that require attention in the short term.

  18. Dynamic management of water transfer between two interconnected river basins

    OpenAIRE

    Cabo, F.; Erdlenbruch, K.; Tidball, M.

    2014-01-01

    This paper analyzes the dynamic interaction between two regions with interconnected river basins. Precipitation is higher in one river-basin while water productivity is higher in the other. Water transfer increases productivity in the recipient basin, but may cause environmental damage in the donor basin. The recipient faces a trade-off between paying the price of the water transfer, or investing in alternative water supplies to achieve a higher usable water capacity. We analyze the design of...

  19. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.; Bredtoft, G. K. T.; Hansen, S.; Michailovsky, Claire Irene B.

    2015-01-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to devel...

  20. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  1. ANOMALOUSLY PRESSURED GAS DISTRIBUTION IN THE WIND RIVER BASIN, WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ronald C. Surdam

    2003-03-31

    Anomalously pressured gas (APG) assets, typically called ''basin-center'' gas accumulations, represent either an underdeveloped or undeveloped energy resource in the Rocky Mountain Laramide Basins (RMLB). Historically, the exploitation of these gas resources has proven to be very difficult and costly. In this topical report, an improved exploration strategy is outlined in conjunction with a more detailed description of new diagnostic techniques that more efficiently detect anomalously pressured, gas-charged domains. The ability to delineate gas-charged domains occurring below a regional velocity inversion surface allows operators to significantly reduce risk in the search for APG resources. The Wind River Basin was chosen for this demonstration because of the convergence of public data availability (i.e., thousands of mud logs and DSTs and 2400 mi of 2-D seismic lines); the evolution of new diagnostic techniques; a 175 digital sonic log suite; a regional stratigraphic framework; and corporate interest. In the exploration scheme discussed in this topical report, the basinwide gas distribution is determined in the following steps: (1) A detailed velocity model is established from sonic logs, 2-D seismic lines, and, if available, 3-D seismic data. In constructing the seismic interval velocity field, automatic picking technology using continuous, statistically-derived interval velocity selection, as well as conventional graphical interactive methodologies are utilized. (2) Next, the ideal regional velocity/depth function is removed from the observed sonic or seismic velocity/depth profile. The constructed ideal regional velocity/depth function is the velocity/depth trend resulting from the progressive burial of a rock/fluid system of constant rock/fluid composition, with all other factors remaining constant. (3) The removal of the ideal regional velocity/depth function isolates the anomalously slow velocities and allows the evaluation of (a) the regional velocity inversion surface (i.e., pressure surface boundary); (b) detection and delineation of gas-charged domains beneath the velocity inversion surface (i.e., volumes characterized by anomalously slow velocities); and (c) variations within the internal fabric of the velocity anomaly (i.e., variations in gas charge). Using these procedures, it is possible to construct an anomalous velocity profile for an area, or in the case of the Wind River Basin, an anomalous velocity volume for the whole basin. Such an anomalous velocity volume has been constructed for the Wind River Basin based on 1600 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. The technology was tested by constructing six cross sections through the anomalous velocity volume coincident with known gas fields. In each of the cross sections, a strong and intense anomalously slow velocity domain coincided with the gas productive rock/fluid interval; there were no exceptions. To illustrate the applicability of the technology, six target areas were chosen from a series of cross sections through the anomalous velocity volume. The criteria for selection of these undrilled target areas were (1) they were characterized by anomalous velocity domains comparable to known gas fields; (2) they had structural, stratigraphic, and temporal elements analogous to one of the known fields; and (3) they were located at least six sonic miles from the nearest known gas field. The next step in the exploration evolution would be to determine if the detected gas-charged domains are intersected by reservoir intervals characterized by enhanced porosity and permeability. If, in any of these targeted areas, the gas-charged domains are penetrated by reservoir intervals with enhanced storage and deliverability, the gas-charged domains could be elevated to drillable prospects. Hopefully, the work described in this report (the detection and delineation of gas-charged domains) will enable operators in the Wind River Basin and elsewhere to reduce risk significantly and increase the rate an

  2. Water balance of the Lepenci river basin, Kosova

    Science.gov (United States)

    Osmanaj, L.; Avdullahi, S.

    2009-04-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. Kosova has four water basins, such as the Basin of river Drini i Bardhe, Ibri, Morava e Binqes and Lepenci. The Basin of river Lepenci is located in South-eastern part of Kosova with surface of 650 km2, belongs to Axios river basin discharging into Aegean Sea. The annual rainfall is 670-1.000 mm and specific runoff 8 - 20 l/s/km2. There are also steep mountains in this area. In this case study we have calculate the water balance of the river Lepenc Basin. The Basin of river Lepenc we have divided in to 3 catchments: of Nerodima river, and upper and lower part of river Lepenci. This basin is covered by three municipalities such as municipality of Ferizaj, Kaçanik and Shterpc. The data on precipitation are obtained from three metering stations, such as the metering station of Ferizaj, Kaçanik and Jazhnice. The obtained records are elaborated. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. In a basin of river Lepenci we have four stations for measuring the discharges and levels: in Ferizaj, and Kaçanik - Nerodime river and in Hani i Elezit - Lepenc river. The river basin Lepenc has two inflowing points, where are Lepenci river in the border with the FYR of Macedonia and Sazli village near Ferizaj. Key works: precipitation, evaporation, flow, river, discharges,

  3. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Science.gov (United States)

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (?5 m); lower coverage of riparian vegetation (?40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (?1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p urban land (r = 0.998; p urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  4. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    Science.gov (United States)

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10? km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10? km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (?5 m); lower coverage of riparian vegetation (?40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (?1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p urban land (r = 0.998; p urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  5. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Umesh S Balpande

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order subbasins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the subsurface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.

  6. Powder River Basin Coal: Powering America

    OpenAIRE

    Timothy J. Considine

    2013-01-01

    Powder River Basin (PRB) coal in Wyoming and Montana is used to produce 18 percent of the electricity consumed in the United States. Coal production from the PRB more than doubled between 1994 and 2009. PRB coal companies produced greater amounts of coal at declining real prices over much of this period through investment in equipment and production systems that achieved massive economies of scale. The bulk of PRB coal is shipped to the middle part of America from Texas in the south to M...

  7. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    2013-01-01

    Hydrological models are widely used by water managers as a decision support tool for both real-time and long-term applications. Some examples of real-time management issues are the optimal management of reservoir releases, flood forecasting or water allocation in drought conditions. Long term-applications include the impact analysis of planned hydraulic structures or land use changes and the predicted impact of climate change on water availability. One of the obstacles hydrologists face in setting up river basin models is data availability, whether because the datasets needed do not exist or because of political unwillingness to share data which is a common problem in particular in transboundary settings. In this context, remote sensing (RS) datasets provide an appealing alternative to traditional in-situ data and much research effort has gone into the use of these datasets for hydrological applications. Many types of RS are now routinely used to set up and drive river basin models. One of the key hydrological state variables is river discharge. It is typically the output of interest for water allocation applications and is also widely used as a source of calibration data as it presents the integrated response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study, the potential for the use of RA over rivers for hydrological applications in data sparse environments is investigated. The research focused on discharge estimation from RA as well as the use of RA for data assimilation to routing models with the objective of improving river discharge forecasts. In the first paper included in this PhD study, the potential for using altimetry for level and discharge monitoring in the Zambezi River basin was assessed. Altimetric levels were extracted using a detailed river mask at 31 VS located on rivers down to 80 m wide. Root mean square errors relative to in-situ levels were found to be between 0.32 and 0.72 m. Discharge was estimated from the altimetric levels for three different data availability scenarios: availability of an in-situ rating curve at the VS, availability of one pair of simultaneous measurement of cross-section and discharge and availability of historical discharge data. For the few VS where in-situ data was available for comparison, the discharge estimates were found to be within 4.1 to 13.8% of mean annual gauged amplitude. One of the main obstacles to the use of RA in hydrological applications is the low temporal resolution of the data which has been between 10 and 35 days for altimetry missions until now. The location of the VS is also not necessarily the point at which measurements are needed. On the other hand, one of the main strengths of the dataset is its availability in near-real time. These characteristics make radar altimetry ideally suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data in a data assimilation framework. The approach chosen was to simulate reach storages using a simple Muskingum routing scheme driven by the output of a rainfall-runoff model and to carry out state updates using the Extended Kalman Filter. The data assimilation approach developed was applied in two case studies: the Brahmaputra and Zambezi River basins. In the Brahmaputra, data from 6 Envisat VS located along the main reach was assimilated. The assimilation improved model performance with Nash-Sutcliffe model efficiency increasing from 0.78 to 0.84 at the outlet of the basin. In the Zambezi River basin, data from 9 Envisat VS located within 2 distinct watersheds was assimilated. Because of the presence of the large Barotse floodplain in the

  8. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and management. In the past, shared and unclear responsibilities, a spatial mismatch between administrative and river basin boundaries, the lack of relevant information, financial resources and implementation capacity resulted in an uncoordinated and partially uncontrolled exploitation of water resources (Livingstone et al. 2009; Horlemann et al. 2012). The recent decision of the Mongolian government to develop river basin management plans and to provide for their implementation through river basin councils and administrations, and the comparatively good data availability resulting from the R&D project, resulted in the decision to jointly develop a science-based river basin management plan for the KRB as a model region for other river basins of the country. References: Hartwig, M.; Theuring, P.; Rode, M. & Borchardt, D. (2012): Suspended sediments in the Kharaa River catchment (Mongolia) and its impact on hyporheic zone functions. Environmental Earth Sciences 65(5):1535-1546. Hofmann, J.; Venohr, M.; Behrendt, H. & Opitz, D. (2010): Integrated Water Resources Management in Central Asia: Nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Science and Technology 62(2):353-363. Horlemann, L. & Dombrowsky, I. (2012): Institutionalising IWRM in developing and transition countries: the case of Mongolia. Environmental Earth Sciences 65(5):1547-1559. Karthe, D.; Borchardt, D. & Hufert, F. (2012a): Implementing IWRM: Experiences from a Central Asian Model Region. In: Pandya, A.B. (Ed.) (2012): India Water Week 2012. Water, Energy and Food Security: Call for Solutions, Part A3, pp. 1-15. Delhi: Ministry of Water Resources, Government of India. Karthe, D.; Sigel, K.; Scharaw, B. et al. (2012b): Towards an integrated concept for monitoring and improvements in water supply, sanitation and hygiene (WASH) in urban Mongolia. Water & Risk 20:1-5. Karthe, D.; Malsy, M.; Kopp, B. & Minderlein, S. (2013): Assessing Water Availibility and its Drivers in the Context of an Integrated Water Resources Man

  9. The water footprint of agricultural products in European river basins

    Science.gov (United States)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  10. The agricultural water footprint of EU river basins

    Science.gov (United States)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  11. Zinc and Its Isotopes in the Loire River Basin, France

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with ?66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays ?66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  12. Social Learning in European River-Basin Management: Barriers and Fostering Mechanisms from 10 River Basins

    Directory of Open Access Journals (Sweden)

    Brad Searle

    2007-06-01

    Full Text Available We present and analyze 10 case studies of participatory river-basin management that were conducted as part of the European HarmoniCOP project. The main theme was social learning, which emphasizes the importance of collaboration, organization, and learning. The case studies show that social learning in river-basin management is not an unrealistic ideal. Resistance to social learning was encountered, but many instances of social learning were found, and several positive results were identified. Moreover, 71 factors fostering or hindering social learning were identified; these could be grouped into eight themes: the role of stakeholder involvement, politics and institutions, opportunities for interaction, motivation and skills of leaders and facilitators, openness and transparency, representativeness, framing and reframing, and adequate resources. Promising topics for further research include the facilitation of the social learning processes, the role of power, and interactions in political and institutional contexts.

  13. Digital spatial data as support for river basin management: The case of Sotla river basin

    OpenAIRE

    Prah Klemen; Lisec Andrej; Lisec Anka

    2013-01-01

    Many real-world spatially related problems, including river-basin planning and management, give rise to geographical information system based decision making, since the performance of spatial policy alternatives were traditionally and are still often represented by thematic maps. Advanced technologies and approaches, such as geographical information systems (GIS), offer a unique opportunity to tackle spatial problems traditionally associated with more efficient and effective data collec...

  14. Water equivalent of snow survey of the Red River Basin and Heart/Cannonball River Basin, March 1978

    International Nuclear Information System (INIS)

    The water equivalent of accumulated snow was estimated in the Red River and Heart/Cannonball River basins and surrounding areas in North Dakota during the period 8 to 17 March 1978. A total of 570 km were flown, covering a 274 km section of the Red River Basin watershed. These lines had been surveyed in March 1974. Twelve flight lines were flown over the North Dakota side of the Red River from a point 23 km south of the Canadian border southward to the city of Fargo, North Dakota. The eight flight lines flown over the Minnesota side of the Red River extended from 23 km south of the Canadian border southward to Breckenridge, Minnesota. Using six flight lines, a total of 120 km were flown in the Heart/Cannonball River Basin, an area southwest of the city of Bismark, North Dakota. This was the first such flight in the Heart/Cannonball River Basin area. Computed weighted average water equivalents on each flight line in the Red River Basin ranged from 4.8 cm to 12.7 cm of water, averaging 7.6 cm for all lines. In the Heart/Cannonball River Basin, the weighted water equivalent ranged from 8.9 cm to 19.1 cm of water, averaging 12.7 cm for all lines. The method used employs the measurement of the natural gamma rays both before and after snow covers the ground

  15. Birds of the Shatan River Basin, Mongolia

    Directory of Open Access Journals (Sweden)

    Onolragchaa Ganbold

    2015-06-01

    Full Text Available In our study we recorded 149 species of birds belonging to 97 genera and 36 families in 15 orders. These bird species compose 32% of Mongolian registered bird fauna. Of these 149 species, 54% are passeriformes. Our observation was held in three different habitats: mountains ranging with rocks and forest (88 species, river basins (45 species, and an area around human habitation, specifically train stations outside towns (16 species. Of our studied bird species, 11 are enlisted in the International Union for Conservation of Nature red list as endangered, vulnerable, or near threatened species, and 144 are known as least concerned. Also 20 species are listed in Annexes I and II of the Convention on International Trade in Endangered Species, and 15 species are listed in Annexes I and II of the Convention on the Conservation of Migratory Species.

  16. Incorporating safety into surface haulage in the Powder River basin

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, W.; Jennings, C.

    1996-12-31

    The Powder River Basin (PRB) coal deposit extends from southeast Montana to northeast Wyoming. This paper describes a number of haulage practices and tools in use at several mines of the southern PRB and the way in which safety has been designed into and implemented for surface haulage of coal and overburden. Experiences described herein focus on the northeastern corner of Wyoming. All the mines in this area rely on safe and efficient movement of enormous volumes of material, and the results achieved in safety underscore the planning and attention to detail present in the PRB. There are currently 12 large surface mines (those greater than 10.0MM tons/year) operating in this area. In 1995, these mines produced over 230.0MM tons of coal.

  17. Nitrogen contamination in the Yellow River basin of China.

    Science.gov (United States)

    Xia, Xinghui; Zhou, Jingsong; Yang, Zhifeng

    2002-01-01

    Nitrogen contamination is one of the most serious problems in the Yellow River of China. This study was conducted to analyze monitoring data on nitrogen contamination for the Yellow River basin in the years 1980, 1990, 1997, and 1999. Several significant results have arisen from the study. First, in conjunction with an increase in economic indexes from the Yellow River's upper basin to its lower basin, the nitrogen concentration in the tributaries also showed an increasing trend from the upper to the lower basin, which, in turn, led to an increase in the nitrogen concentration of the mainstream from the upper to the lower reaches. Second, nitrogen in the river water in the mainstream and the tributaries of the Yellow River was attributed mainly to point sources. In spite of the fact that the ratio of point to nonpoint sources decreased from 2.7 in 1990 to 1.8 in 1997 for total inorganic nitrogen in river water at the Tongguan Station in the lower basin, point sources increased more than nonpoint sources. Third, the ammonium nitrogen and total inorganic nitrogen content of the river water increased significantly in the mainstream and the tributaries during the 1980-1999 period, a change caused by an increase in wastewater discharge and nitrogenous fertilizer application in the Yellow River catchment. PMID:12026096

  18. Snake River Plain Basin-fill aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Snake River Plain aquifer system, which includes both the basaltic and basin-fill aquifers. This dataset does not...

  19. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  20. Landslide Inventory for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified...

  1. UPPER SNAKE RIVER BASIN WATER QUALITY ASSESSMENT, 1976

    Science.gov (United States)

    This package contains information for the Upper Snake River Basin, Idaho (170402, 17040104). The report contains a water quality assessment approach which will assist EPA planners, land agencies, and state and local agencies in identifying probably nonpoint sources and determini...

  2. 2012 Water Levels - Mojave River and the Morongo Groundwater Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — During 2012, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo groundwater basins....

  3. Development of a Systemwide Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, Volume 1, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.

    1994-06-01

    Results of the second year are reported of a basinwide program to harvest northern squawfish in an effort to reduce mortality due to squawfish predation on juvenile salmonids during their migration from natal streams to the ocean. Six papers are included in this report. They are entitled: feasibility investigation of a commercial longline fishery for northern squawfish in the Columbia River downstream from Bonneville dam; evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers; controlled angling for northern squawfish at selected dams on the Columbia and Snake Rivers in 1992; evaluation of harvest technology for squawfish control in Columbia River reservoirs; effectiveness of predator-removal for protecting juvenile fall chinook salmon released from Bonneville Hatchery; and Northern squawfish sport-reward payments.

  4. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    Science.gov (United States)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a lead for the qualitative approximation of the amount of bed load transported along the river reach and thus hydropower project sites.

  5. Chemical character of streams in the Delaware River basin

    Science.gov (United States)

    Anderson, Peter W.; McCarthy, Leo T., Jr.

    1963-01-01

    The water chemistry of streams in the Delaware River basin falls into eight general groups, when mapped according to the prevalent dissolved-solids content and the predominant ions normally found in the water. The approximate regions representing each of these iso-chemical quality groups are shown on the accompanying base map of the drainage basin.

  6. Contributions of small river basins to large-scale hydrology

    Science.gov (United States)

    Gong, Lebing

    2015-04-01

    Data from small river basins can provide useful information to improve our understanding of hydrology of large regions. For instance, climate and hydrology of a large river basin can be well resembled by a number of small river basins. Those small river basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large region. Extrapolation of annual discharge was first tested in the Baltic Sea drainage basin (Gong 2014). Result showed that selected sub-basins that cover 2-4% of the gauged area gave the best resemblance of discharge of the gauged basin area. 200 ensemble estimations from the extrapolation method estimates annual discharge for gauged area consistently well with on average 6% error. Further tests using Mopex dataset in Australia and the U.S., as well as a global-scale application using the GRDC dataset also showed promising results. There are strong correlation of climatic and land surface data between the small basins and large area which share similar discharge dynamic as the small basins. This would help to develop a systematic way to identify those small basins and their link to large-scale hydrological variability. Discharge data all around the world collected from basins of various scales are inter-connected because of the similarities of climate and land surface across scales. This inter-connectivity is evolving over time as a result of the change of climate. Understanding it will not only help with filling data gap in un-gauged regions, but also help to improve our understanding of the change of the hydrological system. Gong, L.: Data-driven scale extrapolation: estimating yearly discharge for a large region by small sub-basins, Hydrol. Earth Syst. Sci., 18, 343-352, doi:10.5194/hess-18-343-2014, 2014.

  7. Greater Green River Basin Production Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  8. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  9. Implication of drainage basin parameters of a tropical river basin of South India

    Science.gov (United States)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2014-07-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  10. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard

    2015-01-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to develop open-source software tools to support hydrologic forecasting and integrated water resources management in Africa. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0-7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators and the performance is compared to persistence and climatology benchmarks. The forecasting system delivers useful forecasts for the Kavango River, which are reliable and sharp. Results indicate that the value of the forecasts is greatest for intermediate lead times between 4 and 7 days.

  11. SUGGESTIONS ON RURAL DEVELOPMENT FOR TUZLA RIVER BASIN (NW TURKEY

    Directory of Open Access Journals (Sweden)

    Vedat ÇALI?KAN

    2012-12-01

    Full Text Available Rural development consists of a wide variety of new activities such as organic farming and livestock, region-specific products, nature conservation and landscape management, rural tourism, and the development of short supply changes. This research aimed to use a SWOT analysis to identify strategies for rural development in the Tuzla River Basin.The Tuzla River Basin is located on the southern side of the Marmara Region and extends in northeast-southwest direction from the Aegean Sea to the western slope of Mt. Ida. This basin is divided into three sections, namely upper, middle and lower sections along the Tuzla River Basin. Some nine villages which represented three basins were selected from 35 villages using the methods of stratified sampling for this study. Some 200 surveys were performed in regard to the household number of each village and at 95% confidence level. According to the survey results, the investigated relation between the form of rural economic activity and the rural development characteristics was determined. SWOT and QSPM analysis techniques were used to explain poor conditions and future possibilities of rural development in the basin. In the rural areas of the basin, the form of agriculture, low-income animal husbandry carried out under natural & traditional conditions, emigration and traditional lifestyle are the causes of obstacles to rural development.

  12. Scenarios of changes of selected components of hydrosphere and biosphere in catchment basin of Hron River and Vah River as consequence of climatic change

    International Nuclear Information System (INIS)

    This text-book consist of the following parts: (1) Hydrologic and climatic relationship of catchment basins; (2) Space interpretation of outputs of climatic scenarios in catchment basins of Hron River and Vah River by geostatistical methods; (3) Teleconnection of annual overflows with SO, NAO, AO and QBO phenomenons; (4) Snow; (5) Mathematical model for modelling of influence of climatic changes on runoff processes; (6) Multi-linear model of transformation of runoff in river-basins; (7) Influence of climatic change on capacity utilization of reserve volume of water reservoir Orava River; (8) Quality of surface waters; (9) Influence of climatic changes on biological factors and soil hydrology; (10) Proposal of framing adaptation arrangements.

  13. Transboundary water issues: The Ganga-Brahmaputra-Meghna River Basin

    International Nuclear Information System (INIS)

    Sharing of water of transboundary rivers among riparian nations has become a cause of major concern in different parts of the globe for quite sometime. The issue in the recent decades has been transformed into a source of international tensions and disputes resulting in strained relationships between riparian nations. Conflicts over sharing of water of the international rivers, like the Tigris, Euphrates and Jordan in the Middle East, the Nile in Northern Africa, the Mekong in South-East Asia, the Ganga-Brahmaputra-Meghna in the Indian subcontinent are widely known. The present paper discusses the water sharing -issue in the Ganga- Brahmaputra-Meghna basin located in the Indian sub continent covering five sovereign countries (namely India, Nepal, China, Bhutan and Bangladesh). Rapidly growing population, expanding agricultural and industrial activities besides the impacts of climate change have resulted in stressed condition in the arena of fresh water availability in the basin. Again occurrence of arsenic in sub-surface water in the lower reaches of the basin in India and Bangladesh has also added a new dimension to the problem. All the rivers of the GBM system exhibit wide variations between peak and lean flows as major part of the basin belongs to the monsoon region, where 80%-90 % of annual rainfall is concentrated in 4-5 months of South -West monsoon in the subcontinent. Over and above, the rivers in GBM system carry huge loads of sediments along with the floodwater and receive huge quantum of different kinds of wastes contaminating the water of the rivers. Again high rate of sedimentation of the major rivers and their tributaries have been affecting not only the carrying capacity of the rivers but also drastically reduced their retention capacity. Almost every year during monsoon about 27% and nearly 60% of the GBM basin lying in India and Bangladesh respectively experience flood. The year round navigation in many rivers has also been affected. All these have serious impacts on the economy of this geo politically sensitive region. It was found that the total water resource of the GBM river system would be unable to meet the prevailing water requirements of the basin, not to speak of the rise in demand of water in the future. It was established that the judicious water demand management and effective control of the over-use, misuse and abuse of water in the respective river basins in each country should get preference over competition for access to additional supply of water to meet the requirements and also adoption of technology which helps that goal to achieve should be made.(Author)

  14. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  15. Optimal water allocation in the Mekong river basin

    OpenAIRE

    RINGLER, Claudia

    2001-01-01

    The Mekong River is the dominant geo-hydrological structure in mainland Southeast Asia, originating in China and flowing through or bordering Myanmar, Laos, Thailand, Cambodia, and Vietnam. Whereas water resources in the wet season are more than adequate to fulfill basin needs, there are regional water shortages during the dry season, when only 1-2% of the annual flow reaches the Delta. Recent rapid agricultural and economic development in the basin has led to increasing competition among the...

  16. Monitoring the Water Quality of the Nation's Large Rivers: Mississippi River Basin NASQAN Program

    Science.gov (United States)

    Coupe, Richard H.; Goolsby, Donald A.

    1999-01-01

    The U.S. Geological Survey (USGS) has monitored water quality in the Mississippi River Basin as part of the National Stream Quality Accounting Network (NASQAN) since 1995, applying a basinwide perspective to understanding water quality on a regional scale (Hooper and others, 1997). The objectives of the Mississippi River Basin NASQAN Program are to provide an ongoing characterization of the concentrations and mass fluxes of sediment and chemicals at key locations in the basin, to determine regional source areas for these materials, and to assess the effect of human influences on observed concentrations and fluxes. NASQAN complements the ongoing USGS National Water-Quality Assessment (NAWQA) Program, which is performing a detailed assessment in 23 subbasins within the Mississippi River Basin (Hirsch and others, 1988). NASQAN monitors the large rivers in the Mississippi River Basin, downstream of NAWQA study units. NASQAN, in conjunction with NAWQA, can provide the data and information needed by other USGS programs, Federal and State agencies, other segments of the scientific community, and by the public to address the present and future status of water quality in the Mississippi River Basin.

  17. Evaluation of Water Quality Index in Lerma River Upper Basin

    OpenAIRE

    Icela D. Barceló-Quintal; Mónica L. Salazar-Peláez; Julisa García-Albortante; Eloisa Domínguez-Mariani; Ulrico J. López-Chuken; Sergio Gómez-Salazar

    2013-01-01

    The Lerma River Upper Basin is located between Almoloya del Rio shallow lakes and Atlacomulco Municipality in the State of Mexico; is a natural resource essential to human activities in its surroundings and serves as a source of electricity and drinking water for Mexico City. However, this river is threatened by over-exploitation of its aquifers, disappearance of many of its wellsprings and uncontrolled discharges of wastewater from all sorts. Thus, the aim of this work was to evaluate the w...

  18. Selected streamflow data for the Delaware River basin

    Science.gov (United States)

    Schopp, Robert D.; Gillespie, Brian D.

    1979-01-01

    Selected streamflow data for the Delaware River basin include runoff-precipitation relationships for 28 selected subbasins for the period 1941-70; low-flow frequency curves for four mainstem Delaware River sites; monthly comparative duration curves and twenty year hydrographs at Montague and Trenton, New Jersey; and flow duration tables based on observed daily streamflow for gaging stations near 21 proposed dam sites. (Woodard-USGS)

  19. Palaeoclimatological perspective on river basin hydrometeorology: case of the Mekong Basin

    Directory of Open Access Journals (Sweden)

    T. A. Räsänen

    2013-05-01

    Full Text Available Globally, there have been many extreme weather events in recent decades. A challenge has been to determine whether these extreme weather events have increased in number and intensity compared to the past. This challenge is made more difficult due to the lack of long-term instrumental data, particularly in terms of river discharge, in many regions including Southeast Asia. Thus our main aim in this paper is to develop a river basin scale approach for assessing interannual hydrometeorological and discharge variability on long, palaeological, time scales. For the development of the basin-wide approach, we used the Mekong River basin as a case study area, although the approach is also intended to be applicable to other basins. Firstly, we derived a basin-wide Palmer Drought Severity Index (PDSI from the Monsoon Asia Drought Atlas (MADA. Secondly, we compared the basin-wide PDSI with measured discharge to validate our approach. Thirdly, we used basin-wide PDSI to analyse the hydrometeorology and discharge of the case study area over the study period of 1300–2005. For the discharge-MADA comparison and hydrometeorological analyses, we used methods such as linear correlations, smoothing, moving window variances, Levene type tests for variances, and wavelet analyses. We found that the developed basin-wide approach based on MADA can be used for assessing long-term average conditions and interannual variability for river basin hydrometeorology and discharge. It provides a tool for studying interannual discharge variability on a palaeological time scale, and therefore the approach contributes to a better understanding of discharge variability during the most recent decades. Our case study revealed that the Mekong has experienced exceptional levels of interannual variability during the post-1950 period, which could not be observed in any other part of the study period. The increased variability was found to be at least partly associated with increased El Niño Southern Oscillation (ENSO activity.

  20. Advection and evolution of river basins in mountain ranges.

    Science.gov (United States)

    Castelltort, S.; Simpson, G.; Willett, S.

    2009-04-01

    Fluvial networks determine to a large extent the structure and geometry of erosive landscapes in mountain ranges. As a consequence it is fundamental to understand how they develop in order to reconstruct and predict landscape evolution in orogens. A particularly important problem with relevance for our future ability of "inverting" landscapes is the degree to which fluvial networks and basin boundaries evolve and change with time. The key question is: are river valleys and basins largely static in the landscape or are they rather dynamic, changing and reorganizing frequently during orogen evolution? A "dynamic" view has long found support in a variety of observations (wind gaps, hanging valleys, inferred changes of sources of clastics) interpreted as evidences of river captures and drainage network changes, and has been reproduced in certain analogue and numerical models. It also seems intuitively reasonable when considered in parallel with the high magnitude and frequency of cenozoic climatic changes combined with the very high rates of vertical and horizontal movements of rocks in active orogens which suggest that landscapes may have changed congruently. However, support for a "static" view has also long existed based on the ubiquitous observation of antecedent rivers and drainage systems cutting through lithological and geological structures (folds and faults), extending behind the main drainage divide in large mountain ranges, or the preservation of superficial cover rocks adjacent to valleys deeply incised into the basement. Spectacular plane deformation of large river basins in the East Himalayan syntaxis also illustrates the possible difficulty encountered by river systems to reorganize (Hallet and Molnar 2001). In the debate over the mechanisms responsible for the consistent width-to-length aspect of the main transverse river basins observed in linear mountain belts of different ages, width and tectonic and climatic regimes (Hovius, 1996), Castelltort and Simpson (2006) have proposed a mechanism which involves (1) the idea that river networks in the lowland plains are incorporated in the orogen as it widens, and (2) that they do not change after their incorporation, thus "importing" a geometry acquired outside of the range independently of the tectonic and climatic influences acting inside the uplifting zone. This mechanisms implies rather a "static" view of river networks which serves as an alternative to models in which river networks continuously reorganize inside uplifting topography in such a way as to maintain a statistical geometry dictated solely by geomorphic processes. In the present work our approach to this problem is to measure and compare the form of river basins in the lowlands and in the uplands of the Himalayas, New-Zealand, Taiwan, the European Alps, the Pyrenees and the Apennines. We first present the method we employ to measure the shape of river basins and the data used. Second, we analyse and discuss our results which show a correlation between the shape of networks developed in the pro-lowlands of active orogens and their upland counterparts whereas such a correlation does not exist on the retro-side of the considered orogens. Our results thus support (1) the horizontal advection of river basins from the pro-lowlands to the pro-uplands, (2) a certain amount of reorganization by widening of basin boundaries, and (3) the existence of a different mechanism of drainage network evolution in the retro-side of the orogens. Castelltort, S., and Simpson, G., 2006, Basin Research, 18: 267-276. Hallet, B. and Molnar, P., 2001. J. Geophys. Res, 106: 13697-13709. Hovius, N., 1996, Basin Research, 8: 29-44.

  1. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  2. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  3. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.; Berry, P. A. M.; Smith, R.; Bauer-Gottwein, Peter

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Za...

  4. Land Use and Land Cover Changes in a Tropical River Basin: A Case from Bharathapuzha River Basin, Southern India

    OpenAIRE

    P. A. Azeez; P. P. Nikhil Raj

    2010-01-01

    A study of the spatial and temporal changes in land use and land cover (LULC) was conducted using Remote Sensing and GIS. We analyzed the LULC of Bharathapuzha river basin, south India using multispectral LANDSAT imageries of 1973-2005 time periods. 31% depletion in the natural vegetation cover and 8.7% depletion in wetland agriculture area were seen in the basin during the period. On the other hand the urban spread in the basin increased by 32%. The study highlights the need for a scientific...

  5. COLUMBIA BASIN SALMON POPULATIONS AND RIVER ENVIRONMENT DATA

    Science.gov (United States)

    Data Access in Real Time (DART) provides an interactive data resource designed for research and management purposes relating to the Columbia Basin salmon populations and river environment. Currently, daily data plus historic information dating back to 1962 is accessible online. D...

  6. Flood peaks and discharge summaries in the Delaware River basin

    Science.gov (United States)

    Vickers, A.A.; Farsett, Harry A.; Green, J. Wayne

    1981-01-01

    This report contains streamflow data from 299 continuous and partial-record gaging stations in the Delaware River basin. The location, drainage area, period of record, type of gage, and average flow (discharge) is given for each continuous station. Also included, are annual flood peak discharges and discharges above a selected base, annual and monthly mean discharges, and annual and monthly runoff. (USGS)

  7. The Delaware River Basin Landsat-Data Collection System Experiment

    Science.gov (United States)

    Paulson, R. W. (principal investigator)

    1975-01-01

    The author has identified the following significant results. This experiment successfully demonstrated that standard U.S. Geological Survey field instrumentation could be easily interfaced with the LANDSAT-DCS and the data made to flow smoothly to water resources management agencies. The experiment was conducted in the Delaware River basin. A truly operational system could not be deployed.

  8. Trophic ecology of Saccodon dariensis (Pisces: Parodontidae in Guatapé River tributaries, Magdalena River Basin, Colombia

    Directory of Open Access Journals (Sweden)

    Ana Restrepo-Gómez

    2014-03-01

    Full Text Available Objective. To study the trophic ecology of Saccodon dariensis in the Peñoles and El Cardal streams, Guatape River mid-basin, Magdalena River Basin, Colombia. Materials and methods. To compare differences in size between individuals from the two streams in terms of hydrologic periods, oral polymorphisms or sexes, an analysis of variance was conducted (ANOVA. Volume percentages, frequency of occurrence and the food importance index (FII were determined; a principal component analysis (PCA and an ANOVA was carried out to determine the diet differences between streams, climatic periods, oral polymorphism, sexes and developmental states, as well as a Mann-Whitney pairwise comparison test for each food category. Results. A significant difference was found in size between individuals of the two streams with different oral polymorphism. Algae are the most important food item (FII: 91.9%, followed by Trichoptera and insect remains (FII: 4.3%, and vegetal material (FII: 1.8%. The PCA did not indicate significant differences in diet between streams, climatic periods, oral polymorphisms, sexes or developmental states, but the ANOVA and Mann-Whitney pairwise comparison test indicated differences in oral morphotype, where individuals with a straight mouth consumed more vegetal material. We also observed different proportions in consumption of different algae genera, and increased consumption of insects in ontogeny, this being higher in individuals with a straight mouth. Conclusions. The species is algaevorous. The oral morphotypes of S. dariensis may be related to a trophic polymorphism that confers different trophic habits and differential access to the items that constitute their diet.

  9. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  10. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  11. RUNOFF POTENTIAL OF MURE? RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mure? River Upper Basin Tributaries. The upper basin of the Mure? River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  12. Evaluation of surface water quality and pollution in Lepenica river basin

    Directory of Open Access Journals (Sweden)

    Milanovi? Ana

    2007-01-01

    Full Text Available Lepenica river basin is axis of economic and urban development of Šumadija region. However, because of disorderly water regime of Lepenica river and its tributaries, it appears several hydrologic problems on this territory, as example insufficiency of drinking and irrigating water by one cite, and floods and torrents (especially in Kragujevac valley by other cite. Particular problem is water quality and pollution in river basin. In this paper will be analyzed water quality of Lepenica river and artificial lakes, built in its river basin, according to the data of Republic Hydrometeorologic Institute of Serbia. Also, it will be present polluter cadastre in river basin.

  13. Development of a System-Wide Program, Volume II : Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Nigro, Anthony A. (Oregon Department of Fish and Wildlife); Willis, Charles F. (S.P. Cramer and Associates., Gresham, OR)

    1994-06-01

    The authors report their results of studies to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Three papers are included in this report. They are entitled: (1) Development of a Systemwide Predator Control Program: Indexing and Fisheries Evaluation; (2) Economic, Social and Legal Feasibility of Commercial Sport, and Bounty Fisheries on Northern Squawfish; (3) Columbia River Ecosystem Model (CREM): Modeling Approach for Evaluation of Control of Northern Squawfish Populations using Fisheries Exploitation.

  14. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    International Nuclear Information System (INIS)

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE's commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path

  15. Understanding Socio-Hydrology System in the Kissimmee River Basin

    Science.gov (United States)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards wetland restoration has more weight than the rural population's towards flood protection.

  16. Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins.

    Science.gov (United States)

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-09-01

    To meet good chemical and ecological status, Member States are required to monitor priority substances and chemicals identified as substances of concern at European Union and local/river-basin/national level, respectively, in surface water bodies, and to report exceedances of the environmental quality standards (EQSs). Therefore, standards have to be set at national level for river basin specific pollutants. Pesticides used in dominant crops of several agricultural areas within the catchment of Mediterranean river basins ('Mondego', 'Sado' and 'Tejo', Portugal) were selected for monitoring, in addition to the pesticides included in priority lists defined in Europe. From the 29 pesticides and metabolites selected for the study, 20 were detected in surface waters of the river basins, seven of which were priority substances: alachlor, atrazine, chlorfenvinphos, chlorpyrifos, endosulfan, simazine and terbutryn, all of which exceeded their respective EQS values. QSs for other specific pollutants were calculated using different extrapolation techniques (i.e. deterministic or probabilistic) largely based on the method described in view of the Water Framework Directive. Non-acceptable aquatic risks were revealed for molinate, oxadiazon, pendimethalin, propanil, terbuthylazine, and the metabolite desethylatrazine. Implications of these findings for the classification of the ecological status of surface water bodies in Portugal and at the European level are discussed. PMID:26002046

  17. Flood control and loss estimation for paddy field at midstream of Chao Phraya River Basin, Thailand

    Science.gov (United States)

    Cham, T. C.; Mitani, Y.

    2015-09-01

    2011 Thailand flood has brought serious impact to downstream of Chao Phraya River Basin. The flood peak period started from August, 2011 to the end of October, 2011. This research focuses on midstream of Chao Phraya River Basin, which is Nakhon Sawan area includes confluence of Nan River and Yom River, also confluence of Ping River and Nan River. The main purpose of this research is to understand the flood generation, estimate the flood volume and loss of paddy field, also recommends applicable flood counter measurement to ease the flood condition at downstream of Chao Phraya River Basin. In order to understand the flood condition, post-analysis is conducted at Nakhon Sawan. The post-analysis consists of field survey to measure the flood marks remained and interview with residents to understand living condition during flood. The 2011 Thailand flood generation at midstream is simulated using coupling of 1D and 2D hydrodynamic model to understand the flood generation during flood peak period. It is calibrated and validated using flood marks measured and streamflow data received from Royal Irrigation Department (RID). Validation of results shows good agreement between simulated result and actual condition. Subsequently, 3 scenarios of flood control are simulated and Geographic Information System (GIS) is used to assess the spatial distribution of flood extent and reduction of loss estimation at paddy field. In addition, loss estimation for paddy field at midstream is evaluated using GIS with the calculated inundation depth. Results show the proposed flood control at midstream able to minimize 5% of the loss of paddy field in 26 provinces.

  18. Information technology and decision support tools for stakeholder-driven river basin salinity management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  19. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the

  20. A Review of Integrated River Basin Management for Sarawak River

    OpenAIRE

    Kuok K. Kuok; Sobri Harun; Po-Chan Chiu

    2011-01-01

    Problem statement: Sarawak River was a life-sustaining water source for the residents in Kuching City and surrounding areas. Raw water is treated at Batu Kitang Water Treatment Plant (BKWTP) that supplies more than 98% of the total water production in Kuching City. The raw water supply to BKWTP is not adequate to meet the ever increasing water demand. In order to overcome this problem, four projects had been implemented along Sarawak River for managing and securing water&#...

  1. Demarcation of Groundwater Prospective Zones in Humid Tropical River Basin: A Geospatial Approach

    OpenAIRE

    Girish Gopinath; Sreela Reghu; Reji Srinivas; Rajesh Regunath; Kurian Sajan

    2013-01-01

    roundwater, being a vital resource, needs to be developed with proper understanding about its occurrence in time and space. Unscientific sand mining is a dominant environmental issue in this humid tropical river basin namely Bharathapuzha river basin geographically on central part of Kerala state, southwest part of India. The sandy layers along the river course declines its water holding capacity due to indiscriminate sand mining throughout the river basin. For a sustainable development of wa...

  2. Hazardous materials in aquatic environments of the Mississippi River Basin

    International Nuclear Information System (INIS)

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy's programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993

  3. LBA-ECO LC-02 Tributary Coordinates, Acre River, Tri-national River Basin: 2003-2004

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides coordinates for points at the mouth of tributaries of the Acre River in the Tri-national River Basin in South America. Three Global...

  4. LBA-ECO LC-02 Tributary Coordinates, Acre River, Tri-national River Basin: 2003-2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides coordinates for points at the mouth of tributaries of the Acre River in the Tri-national River Basin in South America. Three Global...

  5. Water resources planning for a river basin with recurrent wildfires.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-09-01

    Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3 km(2) of burned area) with an average flow of 16.4 m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02 mg·L(-1), while in a dry year (2005, 24.4 km(2) of burned area) with an average flow of 2 m(3)·s(-1) the maximum concentration was as high as 0.57 mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species. PMID:25918888

  6. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in the region.

  7. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (1 sample), pH (1 sample), sodium (9 samples), chloride (1 sample), sulfate (2 samples), dissolved solids (7 samples), aluminum (3 samples), iron (8 samples), manganese (6 samples), radon-222 (10 samples), and bacteria (5 samples). Fecal coliform bacteria and Escherichia coli (E. coli) were each detected in one sample. Concentrations of fluoride, nitrate, nitrite, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and uranium, and gross alpha activities, did not exceed existing drinking-water standards in any of the samples collected. Methane concentrations in two samples were greater than 28 milligrams per liter, and the maximum measured concentration was 44.3 milligrams per liter.

  8. Hydrological study of La Paz river basin

    International Nuclear Information System (INIS)

    This work aims to determine the hydrological parameters for the La Paz river, by using tracer techniques and also the determination of the water quality parameters for the study of the behavior along the stream. This study intends the prediction and control of the water contamination by using mathematical modelling

  9. Drought Analysis for River Basins, Using the Hydrological Model SIMGRO

    Science.gov (United States)

    Querner, E.; van Lanen, H.; Rhebergen, W.

    2009-05-01

    Drought is a recurring and worldwide phenomenon, with spatial and temporal characteristics that vary significantly from one region to another. Drought has major impacts on society and affects among others the environment and the economy. Impacts are likely to increase with time as societies demands higher services for water and the environment. This will even be more pronounced in the coming decades with the projected climate change, i.e. droughts are becoming more severe in large parts of the world. The prediction of droughts is an essential part of impact assessment for current and future conditions, as part of integrated land and water management. An important question is how changes in meteorological drought will propagate into hydrological droughts in terms of changes in the groundwater system or in the river flow. The objective of our study is to develop and test tools that quantify the space-time development of droughts in a river basin. The spatial aspect of a hydrological drought (spatially-distributed recharge and groundwater heads), in a river basin brings different challenges with respect to describing the characteristics of a drought, such as: onset, duration, severity and extend. We used the regional hydrological model SIMGRO as a basis to generate the necessary data for the drought analysis. SIMGRO is a distributed physically-based model that simulates regional transient saturated groundwater flow, unsaturated flow, actual evapotranspiration, sprinkler irrigation, stream flow, groundwater and surface water levels as a response to rainfall, reference evapotranspiration, and groundwater abstraction. The model is used within the GIS environment Arc-View, which enables the use of digital data, such as soil map, land use, watercourses, as input data for the model. It is also a tool for analysis, because interactively data and results can be presented, as will be shown. Droughts in different hydrological variables (recharge, groundwater heads, river flow) are identified by applying the fixed threshold concept to spatially-distributed simulated time series. The method captures the development of both the duration and the severity for the area in a drought. For the analysis we applied the model to the Taquari river basin (about 106.000 km2), which is situated in the Pantanal region, the upper part of the Paraguay River Basin, Brazil. The question we will address is: how does a hydrological drought develop and what are the spatial characteristics and what are the underlying mechanisms. Examples of the analysis will be shown that aim at a better understanding of the process involved which are essential; to assess the vulnerability of river basins for hydrological droughts.

  10. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    Science.gov (United States)

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  11. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at reducing system vulnerabilities and the improving the resiliency of the Basin to vulnerable conditions. The Study is the most comprehensive long-term assessment to date of the Basin and it confirmed that without action, the Colorado River system will become increasingly challenged to sustain the communities and resources that rely on its water supply. The Study was conducted by the Bureau of Reclamation and its consultant team (CH2M Hill, Black & Veatch, and the RAND Corporation) and the seven Colorado River Basin States, in collaboration with a broad range of stakeholders throughout the Basin. The Study's strong technical foundation forms a basis from which important discussions can begin regarding possible actions to resolve future supply and demand imbalances in order to help ensure the sustainability of the Colorado River system. This talk will provide an overview of the Study's approach and findings, with a focus on the Study's assessment and characterization of vulnerability under uncertainty.

  12. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    Science.gov (United States)

    Stillwell, Ashlynn S.; Clayton, Mary E.; Webber, Michael E.

    2011-07-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights—a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions—a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m3—enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  13. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    International Nuclear Information System (INIS)

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m3-enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  14. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Directory of Open Access Journals (Sweden)

    S. Zuliziana

    2015-07-01

    Full Text Available Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2. In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2 and the Mekong River Basin (795 000 km2. The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE and average correlation coefficient (r between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k in the Chao Phraya River Basin and to soil detachability over land (Kf in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  15. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Science.gov (United States)

    Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O. C.

    2015-07-01

    Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash-Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  16. GASTROPODS IN THE BASIN OF THE RIVER FOJNI?KA

    Directory of Open Access Journals (Sweden)

    Asia ?i?i?-Mo?i?

    2008-07-01

    Full Text Available The first detailed investigation of Gastropods in the basin of river Fojni?ka has been carried out in 2001–2002. The material has been sampled five times during four seasons (October 2001–September 2002 at 11 sites in the following waterways: the rivers Fojni?ka, Draga?a, Željeznica, Kreševka and Lepenica. Measurement of certain physical and chemical parameters (BOD5, water temperature, pH value, amount of dissolved oxygen, saturation with oxygen and one time measurement of concentration of nitrates and phosphates has been carried out together with collecting of macroinvertebrates of zoobenthos. Since the knowledge of biodiversity of Gastropods in Bosnia and Herzegovina is at the very low level, the main objective of this paper is to give an overview of distribution of Gastropods communities in the Fojni?ka river basin. In these investigations, 11 taxa of Gastropods and 1468 individuals have been determined. The Gastropods made 16% of total settlement of macroinvertebrates of zoobenthos. Dominant species at investigated sites was Ancylus fluviatilis, while species Acicula sp., Saxurinator sp. and Valvata piscinalis were just sporadically recorded. The largest number of individuals (657 and largest number of species (eight was recorded at the mouth of the river Fojni?ka into the river Bosna.

  17. RESEARCHES REGARDING ICHTHYOFAUNA FROM NADRAG RIVER BASIN

    Directory of Open Access Journals (Sweden)

    I. B?N??EAN-DUNEA

    2013-12-01

    Full Text Available On this research is showing the present situation of the fish genostock in the Nadrag River, an important confluent of the Timis river, being part of the Banat hydrographical area. The fish species caught in the investigated area are part of Cyprinidae family. The dominant species is Barbus meridionalis petenyi, followed by Alburnoides bipunctatus, incorporating the investigated area in the European grayling (Thymallus thymallus or the Mediterranean barbel (Barbus meridionalis petenyi zone of the running waters. At present the Barbus meridionalis petentyi population from the area investigated founds itself in a regression, fact that can be connected both with the poaching and with unauthorized hydrotechnic buildings build-up in the last decade.

  18. Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington

    Science.gov (United States)

    Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.

    2015-01-01

    Nutrients such as nitrogen and phosphorus are important for aquatic ecosystem health. Excessive amounts of nutrients, however, can make aquatic ecosystems harmful for biota because enhanced growth and decay cycles of aquatic algae can reduce dissolved oxygen in the water. In Puget Sound marine waters, low dissolved oxygen concentrations are observed in a number of marine nearshore areas, and nutrients have been identified as a major stressor to the local ecosystem. Delivery of nutrients from major rivers in the Puget Sound Basin to the marine environment can be large. Therefore, it is important to identify factors related to how nutrients are retained (attenuated) within streams and rivers in the Puget Sound Basin. Physical, chemical, and biological factors related to nutrient attenuation were identified through a review of related scientific literature.

  19. A Review of Integrated River Basin Management for Sarawak River

    Directory of Open Access Journals (Sweden)

    Kuok K. Kuok

    2011-01-01

    Full Text Available Problem statement: Sarawak River was a life-sustaining water source for the residents in Kuching City and surrounding areas. Raw water is treated at Batu Kitang Water Treatment Plant (BKWTP that supplies more than 98% of the total water production in Kuching City. The raw water supply to BKWTP is not adequate to meet the ever increasing water demand. In order to overcome this problem, four projects had been implemented along Sarawak River for managing and securing water supply to BKWTP. Approach: These four projects are construction of 1.5m height storage weir across Sungai Sarawak Kiri river channel, Kuching Barrage and Shiplock, Bengoh Dam and Kuching Centralized Wastewater Management System (KCWMS. In 2005, 1.5 m height submersible weir was constructed across Sungai Sarawak Kiri channel for increasing the safe yield that can last until year 2010. Kuching Barrage and Shiplock were commissioned in 2000 as barrier to avoid the saline intrusion reaching upper catchment. 24 telemetry stations were installed along Sarawak River for monitoring and regulating the water level. This will preserve high quality water storage at upper catchment of Sarawak River. In year 2010, Bengoh Dam was constructed to ensure adequate raw water will be supplied to BKWTP for meeting the increasing water demand from 2010-2030. This reservoir will store 144 million m3 of fresh water covering reservoir area of 8.77km2. Beyond 2030, the water supply shall not depend solely on fresh water. Results: Black and grey water in Sarawak Catchment was treated through Kuching Centralized Wastewater Management System (KCWMS and recycled for daily used. Conclusion: The treated water that comply Standard A water quality, can distribute for domestic, industrial and irrigation used in nearest future. This will reduce the water demand solely on raw water and create a sustainable living in Kuching City. Beyond 2030, a few alternatives are also proposed for conserving and securing water supply for Kuching city.

  20. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the Snake River Basin averaged 0.45% (SE=0.11%), including age-1-ocean returns, for release years 1996 through 2003. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2003), it was estimated that on average approximately 86% of the total integrated mortality for nontransported, tagged hatchery spring and summer Chinook, and 74% for steelhead, occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the systemwide T/I are weighted averages of the dam-specific T/I ratios for each transport dam (with {ge} 5,000 tagged fish transported), weighted by the probabilities of being transported at each dam. The systemwide T/I compares the observed SAR under the existing transportation system with the expected SAR if the transportation system had not been operated. Estimates of 1.0 indicate that the systemwide transportation program has no effect on SAR, while estimates > 1.0 indicate that the transportation program increases SAR. Excluding the 2001 release group, the geometric mean of the systemwide T/I estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.15 (SE=0.03) for release years 1997 through 2003. The geometric mean of the systemwide T/I estimates for hatchery summer Chinook salmon from the Snake River Basin was 1.28 (SE=0.13) for release years 1997 through 2000 and 2003. Estimates were much higher for the 2001 release groups. These estimates reflect transportation from Lower Granite and/or Little Goose for most release years, depending on the number of tagged smolts actually transported at each dam during each release year. Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Excluding the 2001 release year, the geometric mean of the D estimates for hatchery spring Chinook salmon from the Snake Ri

  1. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale

    DEFF Research Database (Denmark)

    Riegels, Niels; Jensen, Roar

    2011-01-01

    Resource costs of meeting EU WFD ecological status requirements at the river basin scale are estimated by comparing net benefits of water use given ecological status constraints to baseline water use values. Resource costs are interpreted as opportunity costs of water use arising from water scarcity. An optimization approach is used to identify economically efficient ways to meet WFD requirements. The approach is implemented using a river basin simulation model coupled to an economic post-processor; the simulation model and post-processor are run from a central controller that iterates until an allocation is found that maximizes net benefits given WFD requirements. Water use values are estimated for urban/domestic, agricultural, industrial, livestock, and tourism water users. Ecological status is estimated using metrics that relate average monthly river flow volumes to the natural hydrologic regime. Ecological status is only estimated with respect to hydrologic regime; other indicators are ignored in this analysis. The decision variable in the optimization is the price of water, which is used to vary demands using consumer and producer water demand functions. The price-based optimization approach minimizes the number of decision variables in the optimization problem and provides guidance for pricing policies that meet WFD objectives. Results from a real-world application in northern Greece show the suitability of the approach for use in complex, water-stressed basins. The impact of uncertain input values on model outcomes is estimated using the Info-Gap decision analysis framework. © 2010 Elsevier B.V. All rights reserved.

  2. An indicator system for surface water quality in river basins

    OpenAIRE

    Oliveira, R. E. S.; Lima, M. M. C. L.; Vieira, J. M. Pereira

    2005-01-01

    Public utilities, agricultural and industrial economical sectors and ecosystems depend on the water supplied by the natura environment. These water needs, the European Water Framework Directive requirements and the key surface water pollution problems identified at a River Basin scale, lead to the development of a water quality indicator system for surface waters. This is an environmental tool, which allows the assessment of the pressure-stateimpact of human activities on surface water...

  3. Change of extreme rainfall indexes at Ebro River Basin

    OpenAIRE

    J. L. Valencia; Tarquis, A. M.; A. Saá-Requejo; J. M. Gascó

    2012-01-01

    Extreme rainfall events are a serious concern for regional hydrology and agriculture in the Ebro River Basin. Repeated anomalous rainfall in recent decades has had a devastating impact on this region, both socially and economically. Some studies developed in Italy and USA have shown that there is a change in seasonal patterns and an increasing frequency of extreme rainfall events, whereas other studies have pointed out that no global behaviour could be observed in monthly trends due to high c...

  4. Quaternary colluvial episodes (Upper Paraná River Hydrographic Basin, Brazil)

    OpenAIRE

    Alethea E.M. Sallun; Kenitiro Suguio

    2010-01-01

    Colluvial deposits occur extensively in the Upper Paraná River Hydrographic Basin (UPRHB) in Southeastern,Southern, and Western central Brazil. These deposits were recognized as an allostratigraphic unit and related to creeping during the Quaternary. Every studied colluvial profile is homogeneous, which indicates relatively long periods of landscape stability that is sufficient for the development of a thick soil cover. The deposits were dated by luminescence and indicate periods of more inte...

  5. Placentation in dolphins from the Amazon River Basin

    DEFF Research Database (Denmark)

    da Silva, Vera M F; Carter, Anthony M; Ambrosio, Carlos E; Carvalho, Ana F; Bonatelli, Marina; Lima, Marcelo C; Miglino, Maria Angelica

    2007-01-01

    A recent reassessment of the phylogenetic affinities of cetaceans makes it timely to compare their placentation with that of the artiodactyls. We studied the placentae of two sympatric species of dolphin from the Amazon River Basin, representing two distinct families. The umbilical cord branched to supply a bilobed allantoic sac. Small blood vessels and smooth muscle bundles were found within the stroma of the cord. Foci of squamous metaplasia occurred in the allanto-amnion and allantochorion. T...

  6. UV filters bioaccumulation in fish from Iberian river basins.

    Science.gov (United States)

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. PMID:25777957

  7. Integrated landscape management of the Ipel river basin

    OpenAIRE

    Zita IZAKOVI?OVÁ; Július OSZLÁNYI

    2013-01-01

    This paper presents an evaluation of the Ipel river basin, examining its sustainable development. It  devises methodology for integrated landscape management as a basic tool for the implementation of its sustainable development in actual practice. The main objective of this case study is to define the socio-economic and environmental problems, to design measures to eliminate these problems and/or to prevent new problems arising. The ultimate goal is to achieve management practices which are i...

  8. REGIONAL GROUNDWATER FLOW MODELLING OF GASH RIVER BASIN, SUDAN

    OpenAIRE

    ABDALLA E. IBRAHIM; ADIL BALLA ELKRAIL

    2008-01-01

    The three-dimensional groundwater flow model was performed to evaluate the groundwater potentiality and assess the effect of groundwater withdrawal to the regional water level and flow direction in the Gash River basin of Sudan. Data used include periodic water level measurements, meteorological data, digital elevation data and well logs from scientific test wells and domestic water wells drilled in the study area. Transient visual MODFLOW model code was calibrated. Numerical simulation indic...

  9. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    Science.gov (United States)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  10. Detecting runoff variation in Weihe River basin, China

    Science.gov (United States)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  11. Covenant action to facilitate integrated river basin management

    Scientific Electronic Library Online (English)

    Bruce P, Hooper.

    2008-04-01

    Full Text Available This paper outlines elements of best practice integrated river basin management and explores a procedure to implement IRBM. The procedure identifies a 'road map' for improved governance based on a best practice approach, with initial trialling in a UNESCO HELP basin in North America showing some app [...] lication. But even with best practices understood, action is often only minimal and flexible, adaptable institutions are needed to underpin basin management. The covenant concept is one such institution, based on the idea of harnessing mutual trust and obligation between stakeholders. A covenant is 'signed' as a social contract and the idea of covenant described in this paper results from observations of intractable water sharing problems. This paper also outlines the components of a covenant, the factors which require consideration for implementation and ways forward.

  12. Knowledge-based approaches for river basin management

    Directory of Open Access Journals (Sweden)

    P. Mikulecký

    2007-06-01

    Full Text Available Rare attempts to use knowledge technologies and other relevant approaches are found in the river basin management. Some applications of expert systems as well as utilization of soft computing techniques (as neural networks or genetic algorithms are known in an experimental level. Knowledge management approaches still have not been used at all. In this paper we discuss knowledge-based approaches in the river basin management as a difficult yet important direction which could be proven to be helpful. We summarize the research done in the scope of the AQUIN project, one of first Czech knowledge management projects in the river basin management. The project was initiated by the water management company in Pilsen, where dispatchers make decisions about manipulations on the reservoir Nýrsko, the strategic source of drinking water for inhabitants of Pilsen. The project aim was to support dispatchers' decision making under a high degree of uncertainty or data shortage. The research is continued in the scope of a new project AQUINpro, planned for the period of 2006 to 2008.

  13. Northern Rivers Basins human health monitoring program : report

    Energy Technology Data Exchange (ETDEWEB)

    Gabos, S. [Alberta Health, Edmonton, AB (Canada). Health Surveillance

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs.

  14. Occurrence and sources of perfluoroalkyl acids in Italian river basins.

    Science.gov (United States)

    Valsecchi, Sara; Rusconi, Marianna; Mazzoni, Michela; Viviano, Gaetano; Pagnotta, Romano; Zaghi, Carlo; Serrini, Giuliana; Polesello, Stefano

    2015-06-01

    This paper presents a survey on the occurrence and sources of 11 perfluoroalkyl acids (PFAA) in the main river basins in Italy, covering about 40% of the Italian surface area and 45% of the Italian population. Total concentrations of PFAA ranged fromrivers impacted by industrial discharges. Among the rivers directly flowing into the sea, Brenta, Po and Arno present significant concentrations, while concentrations in Tevere and Adige, which are not impacted by relevant industrial activities, are almost all below the detection limits. The total estimated PFAA load of the five rivers was 7.5ty(-1) with the following percentage distribution: 39% PFBS, 32% PFOA, 22% short chain perfluorocarboxylic acids (PFCA), 6% PFOS and 1% long chain PFCA. PFOA and PFOS loads, evaluated in the present work, represent 10% and 2% of the estimated European loads, respectively. In Italy the most important sources of PFAA are two chemical plants which produce fluorinated polymers and intermediates, sited in the basin of rivers Po and Brenta, respectively, whose overall emission represents 57% of the total estimated PFAA load. Both rivers flow into the Adriatic Sea, raising concern for the marine ecosystem also because a significant PFOS load (0.3ty(-1)) is still present. Among the remaining activities, tanneries and textile industries are relevant sources of respectively PFBS and PFOA, together with short chain PFCA. As an example, the total PFAA load (0.12ty(-1)) from the textile district of Prato is equivalent to the estimated domestic emission of the whole population in all the studied basins. PMID:25108894

  15. Towards improving river discharge estimation in ungauged basins: calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet

    Directory of Open Access Journals (Sweden)

    W. C. Sun

    2010-10-01

    Full Text Available Rainfall-runoff models are common tools for river discharge estimation in the field of hydrology. In ungauged basins, the dependence on observed river discharge data for calibration restricts applications of rainfall-runoff models. The strong correlation between quantities of river cross-sectional water surface width obtained from remote sensing and corresponding in situ gauged river discharge has been verified by many researchers. In this study, a calibration scheme of rainfall-runoff models based on satellite observations of river width at basin outlet is illustrated. One distinct advantage is that this calibration is independent of river discharge information. The at-a-station hydraulic geometry is implemented to facilitate shifting the calibration objective from river discharge to river width. The generalized likelihood uncertainty estimation (GLUE is applied to model calibration and uncertainty analysis. The calibration scheme is demonstrated through a case study for simulating river discharge at Pakse in the Mekong Basin. The effectiveness of the calibration scheme and uncertainties associated with utilization of river width observations from space are examined from model input-state-output behaviour, capability of reproducing river discharge and posterior parameter distribution. The results indicate that the satellite observation of the river width is a competent surrogate of observed discharge for the calibration of rainfall-runoff model at Pakse and the proposed method has the potential for improving reliability of river discharge estimation in basins without any discharge gauging.

  16. Towards improving river discharge estimation in ungauged basins: calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet

    Directory of Open Access Journals (Sweden)

    Wenchao Sun

    2010-06-01

    Full Text Available Rainfall-runoff models are common tools for river discharge estimation in the field of hydrology. In ungauged basins, the dependence on observed river discharge data for calibration restricts applications of rainfall-runoff models. The strong correlation between quantities of river cross-sectional water surface width obtained from remote sensing and corresponding in situ gauged river discharge has been verified by many researchers. In this study, a calibration scheme of rainfall-runoff models based on satellite observations of river width at basin outlet is illustrated. One distinct advantage is that this calibration is independent of river discharge information. The at-a-station hydraulic geometry is implemented to facilitate shifting calibration objective from river discharge to river width. The generalized likelihood uncertainty estimation methodology is applied to model calibration and uncertainty analysis. The calibration scheme is demonstrated through a case study for simulating river discharge at Pakse in the Mekong Basin. The effectiveness of calibration scheme and uncertainties associated with utilization of river width observations from space are examined from model input-state-output behaviour, capability of reproducing river discharge, and posterior parameter distribution. The results indicate that the satellite observation of river width is a competent surrogate of observed discharge for the calibration of rainfall-runoff model at Pakse and the proposed method has the potential for improving reliability of river discharge estimation in basins without any discharge gauging.

  17. LBA-ECO CD-06 Amazon River Basin Land and Stream Drainage Direction Maps

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides high-resolution (~500 m) gridded land and stream drainage direction maps for the Amazon River basin, excluding the Rio Tocantins basin. These...

  18. Predicted channel types (Potential for Habitat Improvement in the Columbia River Basin)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  19. Predicted riparian vegetation (Potential for Habitat Improvement in the Columbia River Basin)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  20. 2009-2012 Indiana Statewide Imagery and LiDAR Program: Maumee River Basin Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The counties comprised in this dataset have been chosen based on the relation to the Maumee River basin, a portion of the Lake Erie basin and correlated with the...

  1. THE CONFLUENCE RATIO OF THE TRANSYLVANIAN BASIN RIVERS

    Directory of Open Access Journals (Sweden)

    RO?IAN GH.

    2014-03-01

    Full Text Available There are many possibilities to assess the hydrological and geomorphological evolution of a territory. Among them, one remarks the confluence ratio of the rivers belonging to different catchment areas. The values of this indicator may provide information regarding the stage of evolution of the fluvial landforms in the Transylvanian Basin. Also, the values may serve for the calculation of other parameters of catchment areas like: the degree of finishing of the drainage basin for its corresponding order, the density of river segments within a catchment area etc. To calculate the confluence ratio, 35 catchment areas of different orders have been selected. The confluence ratio varies between 3.04 and 6.07. The large range of values demonstrates the existence of a heterogeneous lithology and of morphological and hydrographical contrasts from one catchment area to the other. The existence of values above 5, correlated also with observations in the field, reveals an accelerated dynamics of the geomorphological processes in those catchment areas. This dynamic is mainly supported by the high landform fragmentation due to the first order rivers. In contrast, the catchment areas that have a confluence ratio below 5 are in a more advanced stage of evolution with stable slopes, unable to initiate new first order river segments.

  2. Columbia River basin fish and wildlife program strategy for salmon

    International Nuclear Information System (INIS)

    Three species of Snake River salmon have been listed as threatened or endangered under the federal Endangered Species Act. In response, the Northwest Power Planning Council worked with the states of Idaho, Montana, Oregon and Washington, Indian tribes, federal agencies and interest groups to address the status of Snake River salmon runs in a forum known as the Salmon Summit. The Summit met in 1990 and 1991 and reached agreement on specific, short-term actions. When the Summit disbanded in April 1991, responsibility for developing a regional recovery plan for salmon shifted to the Council. The Council responded with a four-phased process of amending its Columbia River Basin Fish and Wildlife Program. The first three phases. completed in September 1992, pertain to salmon and steelhead. Phase four, scheduled for completion in October 1993, will take up issues of resident fish and wildlife. This paper deals with the first three phases, collectively known as Strategy for Salmon

  3. The Challenges of Integrated Management of Mekong River Basin in Terms of People’s Livelihood

    OpenAIRE

    Badandi ARAFAT; Shah Md. Atiqul HAQ; Alebel Abebe BELAY; Vuong Quoc CHIEN

    2010-01-01

    Mekong River Basin is a life for many people in six south East Asian countries. The river basin is very productive and has crucial activities like: fishing, agriculture, hydroelectric power, transportation, biodiversity and so on. However, due to mismanagement, political intentions and one way interest only for development, the river basin has already started experiencing complications. The major challenges found out were, huge hydroelectric dam constructions and other projects, high populati...

  4. XXI Century Climatology of Snow Cover for the Western River Basins of the Indus River System

    CERN Document Server

    Hasson, Shabeh ul; Lucarini, Valerio

    2012-01-01

    Under changing climate, freshwater resources of Hindu Kush-Karakoram-Himalaya (HKH) region can be affected by changes in temperature and in amount, type and distribution of precipitation. This can have serious implications for the water supply and in turn threaten the food security and economic wellbeing of Indus basin. Using MODIS daily snow products (Terra & Aqua), this study focuses on the assessment of the 2000-2010 snow cover dynamics on seasonal/annual basis against geophysical parameters (aspect, elevation and slope) for the so called western river basins of Indus River System (IRS), namely Indus, Kabul, Jhelum, Astore, Gilgit, Hunza, Swat, Shigar and Shyok basins. Results show that inputs from MODIS instrument provide unprecedented better opportunity to study by using GIS techniques the snow cover dynamics in the remote areas like HKH region at such hyper-temporal and finer planar resolution. Adapted non-spectral cloud filtering techniques have significantly reduced cloud coverage and improved sno...

  5. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and indicators to use in the analytical evaluation. A software template guides users through this process. For demonstration, the RBAF-C template has been applied to address competing irrigation demand-anadromous fish flow requirements in the Lemhi Basin, Idaho, and the increase in municipal and industrial demand in the Upper Bhima River Basin, India, which affects water supply to downstream irrigation command areas. The RBAF-A is for quantitatively evaluating the current conditions of water resources in a river basin and testing potential scenarios with respect to the sustainability criterion. The primary foundation for quantifying water movement is a river basin model. Upon this, the RBAF-A Interface organizes input data, collects output data from each discipline, and reports the HWB. Within the RBAF-A Interface, the EGS-HWB Calculator collects output time series data, processes the data with respect to space and time, and computes the ecologic, economic, and social well-being. The Reporting Tool presents the scenario output as values and trends in well-being. To demonstrate the technology, the RBAF-A was applied to the Lemhi Basin, Idaho. The RBAF supports the IWRM process by providing a structured and transparent means to understand the water related issues, analyses to conduct, and indicators to select in assessing the sustainability of water programs and policies in river basins.

  6. Savannah River Laboratory seepage basins: Environmental information document

    International Nuclear Information System (INIS)

    The basins are located in the northwestern section of the Savannah River Plant in the 700 Area. The four basins are out of service and are awaiting closure. When in operation, the basins received a total of 128,820 m3 of low-level radioactive wastewater from laboratories located in Buildings 735-A and 773-A. Wastewater with radioactivity less than 100 d/m/mL alpha and/or 50 d/m/mL beta-gamma was discharged to the basins. Low concentrations of radioactive and nonradioactive constituents were found in the sediments beneath the seepage basins and a statistical analysis of monitoring data from the six water-table wells indicates elevated levels of chloride, manganese, and sodium in the groundwater. The closure options considered for the basins are waste removal and closure, no waste removal and closure, and no action. The environmental impact evaluation indicates that the human health risks for all closure options are low. Radioactive risk is dominated by tritium, but there is no significant difference between the closure options because the tritium has leached from the site prior to the closure action. The most significant noncarcinogenic risk results from arsenic. All atmospheric and occupational risks are low. The primary calculated ecological effect is due to direct contact with the basin sediments in the no action option. The relative costs for the various options are $9 million for waste removal and closure, $2.9 million for no waste removal and closure with cap, $2.4 million for no waste removal and closure without cap, and $0.26 million for no action. 36 refs., 27 figs., 98 tabs

  7. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  8. Resilience in Transboundary Water Governance: the Okavango River Basin

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available When the availability of a vital resource varies between times of overabundance and extreme scarcity, management regimes must manifest flexibility and authority to adapt while maintaining legitimacy. Unfortunately, the need for adaptability often conflicts with the desire for certainty in legal and regulatory regimes, and laws that fail to account for variability often result in conflict when the inevitable disturbance occurs. Additional keys to resilience are collaboration among physical scientists, political actors, local leaders, and other stakeholders, and, when the commons is shared among sovereign states, collaboration between and among institutions with authority to act at different scales or with respect to different aspects of an ecological system. At the scale of transboundary river basins, where treaties govern water utilization, particular treaty mechanisms can reduce conflict potential by fostering collaboration and accounting for change. One necessary element is a mechanism for coordination and collaboration at the scale of the basin. This could be satisfied by mechanisms ranging from informal networks to the establishment of an international commission to jointly manage water, but a mechanism for collaboration at the basin scale alone does not ensure sound water management. To better guide resource management, study of applied resilience theory has revealed a number of management practices that are integral for adaptive governance. Here, we describe key resilience principles for treaty design and adaptive governance and then apply the principles to a case study of one transboundary basin where the need and willingness to manage collaboratively and iteratively is high--the Okavango River Basin of southwest Africa. This descriptive and applied approach should be particularly instructive for treaty negotiators, transboundary resource managers, and should aid program developers.

  9. LBA-ECO LC-04 Macrohydrological Routing Data for the Amazon and Tocantins River Basin

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides continental-scale hydrological river flow routing parameter data for the Amazon and Tocantins River basins at 5 minute (~9 km)...

  10. LBA-ECO LC-04 Macrohydrological Routing Data for the Amazon and Tocantins River Basin

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides continental-scale hydrological river flow routing parameter data for the Amazon and Tocantins River basins at 5 minute (~9 km) resolution...

  11. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (principal investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  12. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    Science.gov (United States)

    Zeng, Z.; Liu, J.; Koeneman, P. H.; Zarate, E.; Hoekstra, A. Y.

    2012-08-01

    Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB), a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr-1 in the HRB over 2004-2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production). The remaining 4% was for the industrial and domestic sectors. The "blue" (surface- and groundwater) component of WF was 811 million m3 yr-1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than "green" (soil water) WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

  13. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2012-05-01

    Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr?1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" component of WF was 811 million m3 yr?1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than green WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

  14. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2012-08-01

    Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr?1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" (surface- and groundwater component of WF was 811 million m3 yr?1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than "green" (soil water WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

  15. The politics of model maintenance: The Murray Darling and Brantas River Basins compared

    Directory of Open Access Journals (Sweden)

    Anjali Bhat

    2008-09-01

    Full Text Available This paper explores river basin management in two highly developed basins whose basin governance arrangements are currently undergoing transition: the Murray-Darling basin of Australia and the Brantas basin of Indonesia. Though basin-scale management has been longstanding in both of these cases and the respective models for carrying out integrated river basin management have been considered noteworthy for other countries looking to develop basin institutions, these basin-level arrangements are under flux. This paper indicates some of the difficulties that exist for even widely favoured 'textbook' cases to maintain institutional efficacy within their given shifting contexts. This paper explores drivers behind policy reform and change in scale at which authority is held, concluding with a discussion of the nature of institutional transition given political realities in these basins.

  16. Scenarios of long-term river runoff changes within Russian large river basins

    Science.gov (United States)

    Georgiadi, A. G.; Koronkevich, N. I.; Milyukova, I. P.; Kislov, A. V.; Barabanova, E. A.

    2010-12-01

    The approach for long-term scenario projection of river runoff changes for Russian large river basins in XXI century includes method for scenario estimations for range of probable climatic changes, based on generalization of results of the calculations executed on ensemble of global climatic models and physical-statistical downscaling of their results are developed for mountain regions; hydrological model; method of alternative scenario estimations for water management complex transformation and GIS technologies. The suggested methodology allows to develop long-term scenario projection for: (1) changes of river runoff in large river basins as a result of climate changes and (2) transformations of the water management complex caused by social-economic changes, occurring in the country and their influence on river runoff. As one of the bases of methodology is used model of monthly water balance of RAS Institute of Geography (Georgiadi, Milyukova, 2000, 2002, 2006, 2009). As the climatic scenario the range of probable climatic changes which is estimated by results of calculations for deviations of climatic elements from their recent values which have been carried out on ensemble of global climatic models based on the two most contrasting scenario globally averaged air temperature changes is used. As ensemble of climatic scenarios results of the calculations executed on 10 global climatic models, included in the program of last experiment 20C3M-20th Century Climate in Coupled Models (Meehl et al., 2007), is used. The method for long-term scenario projection for transformation of water management complex characteristics and water consumption was developed. The method includes several blocks (Koronkevich, 1990, Koronkevich et al., 2009): growth of the population and development of an economy; different ways of use and protection of waters, in view of different technologies of prevention and decreasing of pollution of water resources. Development of scenarios assumes pre-projection and actually projection stages. On pre-projection stage the algorithm of calculation is developed; the choice of operational units for the projection is carried out; the modern condition of water resources and its connection with use of water in examined river basins is considered; tendencies in development of an economy and use of water resources during last decades are revealed. On actually projection stages are analyzed available forecasts concerning an expected population and indexes of development for the economy basic branches, and also specific water consumption, taking into account radical methods on prevention of water resources quality deterioration. Results of development of integrated scenarios are submitted by the examples for the largest river basins of Russian plain and Siberia (Volga, Don and Lena river basins).

  17. GIS-based River Flood Hazard Mapping in Urban Area (A Case Study in Kayu Ara River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Behdokht Vosoogh

    2010-12-01

    Full Text Available In the past decades, thousands of lives have been lost, directly or indirectly, by flooding. In fact, of all natural hazards, floods pose the most widely distributed natural hazard to life today. Sungai Kayu Ara river basin which is located in the west part of the Kuala Lumpur in Malaysia was the case study of this research. In order to perform river flood hazard mapping HEC-HMS and HEC-RAS were utilized as hydrologic and hydraulic models, respectively. The generated river flood hazard was based on water depth and flow velocity maps whichwere prepared according to hydraulic model results in GIS environment. The results show that, magnitude of rainfall event (ARI and river basin land-use development condition have significant influences on the river flood hazard maps pattern. Moreover, magnitude of rainfall event caused more influences on the river flood hazard map in comparison with land-use development condition for Sungai Kayu Ara river basin.

  18. Savannah River Site R-Reactor Disassembly Basin In-Situ Decommissioning

    International Nuclear Information System (INIS)

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  19. Towards improving river discharge estimation in ungauged basins: calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet

    OpenAIRE

    Wenchao Sun; Hiroshi Ishidaira; Satish Bastola

    2010-01-01

    Rainfall-runoff models are common tools for river discharge estimation in the field of hydrology. In ungauged basins, the dependence on observed river discharge data for calibration restricts applications of rainfall-runoff models. The strong correlation between quantities of river cross-sectional water surface width obtained from remote sensing and corresponding in situ gauged river discharge has been verified by many researchers. In this study, a calibration scheme of rainfall-runoff models...

  20. Hydrologic effects of climate change in the Delaware River basin

    Science.gov (United States)

    McCabe, Gregory J.; Ayers, Mark A.

    1989-01-01

    The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2??C; a 15 percent increase for a warming of 4??C. A warming of 2?? to 4??C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from -39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. Additional aspects of the subject are discussed.

  1. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    2008-12-03

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release groups were pooled across the entire Snake River Basin upstream of Lower Granite Dam for this report. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.92% with an estimated standard error (dSE) of 0.25% for wild spring and summer Chinook salmon for tagged groups released from 1996 through 2004, omitting age-1-ocean (jack) returns. Only for the 1999 and 2000 release years did the wild Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for wild steelhead from the Snake River Basin averaged 0.63% (dSE = 0.15%), including age-1-ocean returns, for release years 1996 through 2004. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2004), it was estimated that on average approximately 83% of the total integrated mortality for nontransported, tagged wild spring and summer Chinook, and 78% for steelhead (omitting the 2001 release year), occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the dam-specific T/I for Lower Granite Dam were available for the 2003 and 2004 release years for both wild Chinook salmon and wild steelhead. The estimated T/I for Lower Granite was significantly > 1.0 for Chinook in 2004 (P < 0.0001) and for steelhead in both 2003 (P < 0.0001) and 2004 (P < 0.0001), indicating that for these release years, wild fish transported at Lower Granite returned there in higher proportions than fish that were returned to the river at Lower Granite, or that passed Lower Granite without detection as juveniles. Annual estimates of the dam-specific T/I for Little Goose Dam were available for wild Chinook salmon for both 2003 and 2004. The estimated T/I for Little Goose was significantly > 1.0 for wild Chinook in 2004 (P = 0.0024), but not in 2003 (P = 0.1554). Differential post-Bonneville mortality (D) is the ra

  2. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime. Climate change and river ice regime research should also take into account these anthropogenic imp

  3. The cost of noncooperation in international river basins

    Science.gov (United States)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  4. Collaboration in River Basin Management: The Great Rivers Project

    Science.gov (United States)

    Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.

    2008-12-01

    The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or chosen from a predefined tag taxonomy. These comments and tag clouds may be used by the community to filter results and identify models or simulations of interest, e.g, by region, modeling approach, spatiotemporal resolution, etc. Users may discuss methods or results in real-time with a built-in chat feature. Separate user groups may be defined for logical groups of collaboration partners, e.g., expert modelers, land managers, policy makers, school children, or the general public, to optimize the collaboration signal-to-noise ratio for all.

  5. Simulation of upper Kuantan River basin streamflow using SWAT model

    Science.gov (United States)

    Mohd, Mohd Syazwan Faisal; Juneng, Liew; Tangang, Fredolin; Rahman, Nor Faiza Abd; Khalid, Khairi; Haron, Siti Humaira

    2015-09-01

    This paper examines the capabilities of Soil and Water Assessment Tools (SWAT) in simulating streamflow in a tropical watershed - upper Kuantan river basin. Two statistical metrics were used for model evaluation; i) coefficient of determination (R2) and ii) Nash-Sutcliffe efficiency index (NSI). The calibration result shows that there is a good agreement between the observed and simulated monthly streamflow with R2=0.84 and NSI=0.82. For validation the result is acceptable which the value of R2=0.59 and NSI=0.57. The results suggest that SWAT model is able to simulate the hydrologic characteristics of the tropical watershed well.

  6. A History of Flooding in the Red River Basin

    Science.gov (United States)

    Ryberg, Karen R.; Macek-Rowland, Kathleen M.; Banse, Tara A.; Wiche, Gregg J.

    2007-01-01

    The U.S. Geological Survey (USGS), one of the principal Federal agencies responsible for the collection and interpretation of water-resources data, works with other Federal, State, local, tribal, and academic entities to ensure that accurate and timely data are available for making decisions regarding public welfare and property during natural disasters and to increase public awareness of the hazards that occur with such disasters. The Red River of the North Basin has a history of flooding and this poster is designed to increase public awareness of that history and of the factors that contribute to flooding.

  7. Environmental state of aquatic systems in the Selenga River basin

    Science.gov (United States)

    Shinkareva, Galina; Lychagin, Mikhail

    2013-04-01

    The transboundary river system of Selenga is the biggest tributary of Lake Baikal (about 50 % of the total inflow) which is the largest freshwater reservoir in the world. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the environmental state of the river aquatic system. The main source of industrial waste in the Republic of Buryatia (Russia) is mining and in Mongolia it is mainly gold mining. Our study aimed to determine the present pollutant levels and main features of their spatial distribution in water, suspended matter, bottom sediments and water plants in the Selenga basin. The results are based on materials of the 2011 (July-August) field campaign carried out both in Russian and Mongolian part of the basin. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu and Mo in the Selenga River water which often are higher than maximum permissible concentrations for water fishery in Russia. In Russian part of the basin most contrast distribution is found for W and Mo, which is caused by mineral deposits in this area. The study showed that Mo and Zn migrate mainly in dissolved form, since more than 70% of Fe, Al, and Mn are bound to the suspended solids. Suspended sediments in general are enriched by As, Cd and Pb in relation to the lithosphere averages. Compared to the background values rather high contents of Mo, Cd, and Mn were found in suspended matter of Selenga lower Ulan-Ude town. Transboundary transport of heavy metals from Mongolia is going both in dissolved and suspended forms. From Mongolia in diluted form Selenga brings a significant amount of Al, Fe, Mn, Zn, Cu and Mo. Suspended solids are slightly enriched with Pb, Cu, and Mn, in higher concentration - Mo. The study of the Selenga River delta allowed determining biogeochemical specialization of the region: aquatic plants accumulate Mn, Fe, Cu, Cd, and to a lesser extent Zn. Plant species which are the most important for the biomonitoring were identified: Phragmites australis, Ceratophyllum demersum, different pondweeds (Potamogeton pectinatus, Potamogeton crispus, Potamogeton friesii), Myriophyllum spicatum, Batrachium trichophyllum. Among them some species are characterized by a group concentration of heavy metals: pondweeds (Mn, Fe, Cu), Myriophyllum spicatum (Fe, Mn, Cu), Batrachium trichophyllum (Cu, Fe, Mn, Zn). Hornwort (Ceratophyllum demersum) is a concentrator of Mn.

  8. Nature of black water occurrence: northern Green River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Dana, G.F.; Smith, W.W.

    1976-03-01

    A unique black trona water occurs in oil shales of the Wilkins Peak Member of the Green River Formation in the northern part of the Green River Basin, Wyoming. The color of the water is caused by organic acids dissolved in sodium carbonate brine. From 1949 through 1972, 18 wells penetrated the aquifer. Recent drilling has extended the area five miles west, encompassing an estimated area of 20 additional square miles. Because the black water aquifer was of an unknown type, it was cored with a rubber-sleeved core barrel which recovered the core intact. Slow coring and careful measurements pinpointed the aquifer in the subsurface to within a 3-inch length. The aquifer is established as one or two smooth horizontal partings in oil shale rather than cavities created from secondary crystallization. The aquifer is pressurized by overburden rather than gas or hydrostatic pressure.

  9. Po River Basin (Italy) ground water: Resource management problematics

    International Nuclear Information System (INIS)

    For Italy's Po River hydrological basin, artificial reservoirs have a great importance, water reserve is about 1600 million cubic meters for the hydroelectric reservoirs and about 76 million cubic meters for irrigation. The Po Plain is made up of quaternary deposits of the main river and its tributaries. The regional aquifer is mainly a monostratum system even though in some locations it is subdivided into several layers. Due to hydro-geological conditions, the high plain, the area of the best quality groundwater, is affected by high vulnerability to pollutants and by the highest density of hazardous sources. The main problems of anthropogenic pollution of groundwater are related to halogenic compounds, nitrates and herbicides. Such a coincidence requires a careful management of water supply, namely, location of new pumping centres, protection of existing sources and finalized use of water resources of different quality

  10. Environmental information document: Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  11. Wetlands Response to Climate Change across Susquehanna River Basin

    Science.gov (United States)

    Duffy, C.; Yu, X.; Bhatt, G.; Kumar, M.

    2011-12-01

    The Susquehanna River Basin (SRB) lies in the northeastern United States and contains a mosaic of wetlands that range from permanently wet to temporary embedded in a landscape matrix of natural deciduous forest and agriculture. This study explores the prospects for SRB wetlands under modified hydrologic processes induced due to climatic change. Five mesoscale watersheds: Little Juniata River (560 sq. km.), Mahantango Creek (420 sq. km.), Young Womans Creek (120 sq. km.), Muddy Creek (344 sq. km.), and Lackawanna River (860 sq. km.) were selected as representative watersheds to include variability in climate, topography, soil, geomorphology, and land cover across SRB. We explored the broad spatial and temporal patterns across these watersheds between climate and wetland health using groundwater predictions from Penn State Integrated Hydrologic Modeling System (PIHM) -- a spatially distributed fully-coupled physics-based model. Near present (2004-2010) hourly climate data (precipitation, temperature, relative humidity, vapor pressure, wind velocity and solar radiation) were obtained from Phase 2 of the North American Land Data Assimilation System (NLDAS-2), climate reanalysis product. The predicted wetland locations were validated against the National Wetland Inventory. We analyzed the effect of spatial and temporal variability in hydrologic states such as streams, groundwater, and evaporative and hydrologic fluxes on the wetland hydrology. To predict the impacts of climate change on the health of the wetland, meteorological data for two 20 year climate periods (History: 1979-1998 and Scenario: 2046-2065) from Meteorological Research Institute's GCM were used as model forcing. The scenarios output showed different responses across the wetlands in the river basin. The key to this study is that a high resolution spatial and temporal model can resolve the coupled effects of wetlands in the context of complete mesoscale watershed simulations.

  12. Ecosystem-based river basin management: its approach and policy-level application

    Science.gov (United States)

    Nakamura, Takehiro

    2003-10-01

    Integrated Water Resources Management is an approach aimed at achieving sustainable development with a focus on water resources. This management concept is characterized by its catchment approach, inter-sectoral and interdisciplinary approach and multiple management objectives. There is an effort to widen the management scope to include multiple resources and environmental considerations in the river basin management schemes. In order to achieve river basin management objectives and multiple global environmental benefits, an ecosystem approach to river basin management is promoted. The Ecosystem-based River Basin Management aims to maximize and optimize the total value of the ecosystem functions relevant to classified ecosystems within a river basin by conserving and even enhancing these functions for the next generations. A procedure to incorporate such ecosystem functions into policy framework is presented in this paper. Based on this policy framework of the Ecosystem-based River Basin Management, a case study is introduced to apply the concept to the Yangtze River basin. According to the United Nations Environment Programme (UNEP) assessment report, this basin suffers from frequent floods of large magnitudes, which are due to the degradation of ecosystem functions in the basin. In this case, the government of the People's Republic of China introduced Ecosystem Function Conservation Areas to conserve ecosystem functions related to flood events and magnitude, such as soil conservation, agricultural practices and forestry, while producing economic benefits for the local population. Copyright

  13. Hydrological Drought Analysis of Karkheh River Basin in Iran using Variable Threshold Level Method

    Directory of Open Access Journals (Sweden)

    Mahshid Karimi

    2013-12-01

    Full Text Available Drought is an important phenomenon in recent years which caused a lot of problems for most of areas in Iran. Drought lead to water scarcity for people and this problem becomes one of the important challenges for the country. Karkheh River basin is one of the considerable water resources field in Iran and it is located in west parts of Iran. Current paper tries to take one step ahead toward scientific and practical drought management in Karkheh basin by analyzing hydrological drought. In this paper using daily discharge time series of 13 hydrometric stations which are located in the basin and also applying threshold level method, dry periods were extracted and results were analyzed. Results showed that the most volume and the most duration of drought in threshold level of 70% mostly happened within 1998-2000 and 2006-2008. Also the results of the frequency analysis of drought parameters indicted that for maximum deficit volume series Weibull distribution and Generalized Pareto Distribution (GP in accordance with 77% of stations and for maximum duration series, GP distribution in accordance with 54% of stations had the most consistency. Based on this consistency, return period of droughts were also computed and the possibility of drought predictions in future was determined.

  14. Spatial and temporal variations of river nitrogen exports from major basins in China.

    Science.gov (United States)

    Ti, Chaopu; Yan, Xiaoyuan

    2013-09-01

    Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario. PMID:23608986

  15. Development of a systemwide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Volume 2 -- Evaluation: 1993 Annual report

    International Nuclear Information System (INIS)

    An attempt was made to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Modeling simulations based on work in the John Day Reservoir from 1982 through 1988 indicated that if northern squawfish larger than 250 mm fork length were exploited, at a rate of 10--20%, reductions in their numbers and restructuring of their populations could reduce their predation on juvenile salmonids by 50% or more. The authors evaluated the success of three test fisheries conducted in 1993--a sport-reward fishery, a dam-angling fishery, and a trap-net fishery, to achieve a 10--20% exploitation rate on northern squawfish. The authors also began evaluating the response of northern squawfish populations to sustained fisheries. In addition, the authors gathered information regarding the economic, social, and legal feasibility of sustaining each fishery, and report on the structure and function of the fish collection and distribution system

  16. Development of a system wide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Volume 2 - Evaluation: 1993 Annual report; ANNUAL

    International Nuclear Information System (INIS)

    An attempt was made to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Modeling simulations based on work in the John Day Reservoir from 1982 through 1988 indicated that if northern squawfish larger than 250 mm fork length were exploited, at a rate of 10-20%, reductions in their numbers and restructuring of their populations could reduce their predation on juvenile salmonids by 50% or more. The authors evaluated the success of three test fisheries conducted in 1993-a sport-reward fishery, a dam-angling fishery, and a trap-net fishery, to achieve a 10-20% exploitation rate on northern squawfish . The authors also began evaluating the response of northern squawfish populations to sustained fisheries. In addition, the authors gathered information regarding the economic, social, and legal feasibility of sustaining each fishery, and report on the structure and function of the fish collection and distribution system

  17. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Science.gov (United States)

    Nakayama, K.; Maruya, Y.; Matsumoto, K.; Komata, M.; Komai, K.; Kuwae, T.

    2015-11-01

    Total nitrogen (TN), which consists of total particulate nitrogen (TPN) and total dissolved nitrogen (TDN), is transported with not only in river channels but also across the entire river basin, including via ground water and migratory animals. In general, TPN export from an entire river basin to the ocean is larger than TDN in a mountainous region. Since marine derived nutrients (MDN) are hypothesized to be mainly transported as suspended matters from the ground surface, it is necessary to investigate the contribution of MDN to the forest floor (soils) in order to quantify the true role of MDN at the river ecosystem scale. This study investigated TN export from an entire river basin, and also we estimated the contribution of pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) to total oceanic nitrogen input across a river basin. The maximum potential contribution of TN entering the river basin by salmon was found to be 23.8 % relative to the total amount of TN exported from the river basin. The contribution of particulate nitrogen based on suspended sediment from the ocean to the river basin soils was 22.9 % with SD of 3.6 % by using stable isotope analysis (SIA) of nitrogen (?15N).

  18. Evaluating the Effects of LULC Changes and Climate Variability in the Hydrological Response of a Tropical Andean River Basin. The Case of the Boconó River Basin - Venezuela

    OpenAIRE

    Mejia Barazarte, Joel Francisco

    2012-01-01

    This research study aimed to analyze the effects of the spatial changes, particularly inherent to the LULC changes in a tropical River Basin, and its possible impact in the water resources - response. The Boconó River Basin, located in the North Venezuelan Andean Region was selected as study area, being a very representative Andean catchment in which the biophysical and the socio-cultural systems are strongly interacting to generate a quite complex dynamic reflected in the form and intensity ...

  19. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    OpenAIRE

    van der Sluis, T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is discussed and parameters are selected which are descriptive for biodiversity at both the landscape and stand level. Based on these parameters the biodiversity is assessed to describe or quantify imp...

  20. Trend detection in river runoff across Mediterranean river basins: evaluation of results from Moroccan case study

    OpenAIRE

    Oueslati, Ons; De Girolamo, Anna Maria; Lo Porto, Antonio; Abouabdillah, Aziz

    2011-01-01

    The Mediterranean basin is considered among the ecosystems to be especially affected by climate change due to the net decline in precipitations during the last century. This study aims to identify trend in river discharges using a set of graphical and statistical procedures. Annual and monthly continuous streamflow time series from six Mediterranean flow gages in Morocco were checked for possible trend. The rescaled cumulative departure plots of monthly mean flows exhibit a net decreasing tre...

  1. Characteristics of water isotopes and hydrograph separation during the spring flood period in Yushugou River basin, Eastern Tianshans, China

    Indian Academy of Sciences (India)

    Xiaoyan Wang; Zhongqin Li; Edwards Ross; Ruozihan Tayier; Ping Zhou

    2015-02-01

    Many of the river basins in northwest China receive water from melting glaciers and snow in addition to groundwater. This region has experienced a significant change in glacier and snowpack volume over the past decade altering hydrology. Quantifying changes in water resources is vital for developing sustainable strategies in the region. During 2013, a water-isotope source apportionment study was conducted during the spring flood in the Yushugou River basin, northwestern China. The study found significant differences in water isotopes between river water, snowmelt water, and groundwater. During the study period, the isotopic composition of groundwater remained relatively stable. This stability suggests that the groundwater recharge rate has not been significantly impacted by recent hydro-climatic variability. The river water flow rate and water 18O displayed an inverse relationship. This relationship is indicative of snowmelt water injection. The relative contribution of the two sources was estimated using a two-component isotope hydrograph separation. The contribution of snowmelt water and groundwater to Yushugou River were $\\sim$63% and $\\sim$37%, respectively. From the study, we conclude that snowmelt water is the dominant water source to the basin during the spring melt period.

  2. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanovi? Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  3. Tradeoff Analysis Between Economic Development and Climate Change Adaptation Strategies for River Nile Basin Water Resources

    Science.gov (United States)

    Recent Intergovernmental Panel on Climate Change (IPCC) briefings have declared that the growing population in the Nile river basin region (about 160 million, or 57% of the entire population of the basin’s ten riparian countries) is at risk of water scarcity. Adjustment strategies in response to cl...

  4. Calibration and application of TRMM precipitation data in Irrawaddy River Basin

    Science.gov (United States)

    Qu, W.; Lu, J. X.; Zhang, T. T.; Tan, Y. N.; Song, W. L.; Pang, Z. G.

    2015-08-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite rainfall data were assessed and calibrated using limited ground meteorological and hydrological data in Irrawaddy River basin, a watershed with complex terrain conditions but lack of data. A correction factor was determined to adjust TRMM data, taking basin water balance and terrain slopes into consideration. A distributed hydrological model SWAT was established and used to simulate the basin rainfall-runoff processes from 2001 to 2011, driven by the calibrated TRMM rainfall data series. Results show that, in a data scarce basin like Irrawaddy River basin, such a water balanced based TRMM data calibration method is suitable and reliable.

  5. The Amazon. Bio-geochemistry applied to river basin management

    International Nuclear Information System (INIS)

    A hydrochemical model, using hydrograph separation, developed for the Niger basin, has been proposed as a strategic tool for studying the watershed dynamics at any time and space scales. The model is applied to the Amazon basin, including the main channel and its major tributaries. The database corresponds to a sampling and analytical program developed over 8 cruises at 9 stations (about 70 samples), collected in the framework of the CAMREX Project (1982-1984). The model, based on a hydrograph separation of 3 reservoirs, is successful in extrapolating and predicting the geochemical and environmental behaviour of such large basins, naturally submitted to large secular or annual, regular or even catastrophic climatic oscillations. Several topics have been considered. (1) Coherence among the physico-chemical analyses: dissolved species (pH, NH4+, Na+, K+, Ca2+, Mg2+, NO3-, HCO3-, Cl-, DOC-, SO42-, HPO42-, SiO2, O2 and CO2), and inorganic or organic suspended load (fine and coarse fractions FSS, CSS, POCF, POCC). (2) Hydrograph separation in 3 reservoir contributions: RS, the superficial or rapid runoff, RI, the hypodermic or intermediate runoff, including the flood plain contributions, and RB the ground water or base flow. (3) Estimation of the isotopic and physico-chemical features of each of the 3 flow components: RS, RI, and RB. (4) Determination of the 3 hydrological parameters (size of the reservoir, drying up coefficient, and residence time of water), characterizing each of the 3 flow components (RS, RI, and RB), in each of the 9 basins considered. (5) Hydrological and geochemical balances for all the parameters analysed either (a) cruise by cruise for all tributaries and the Amazon River at Obidos, or (b) among each of the 3 river flow components. (6) Isotopic data set of ?18O in waters, tests of coherence of the hydrograph separation model. (7) Relationships between isotopic signatures and morphological or hydroclimatical parameters characterizing the river-soil-vegetation systems. The developed procedure presents a new tool in environmental predictions, emphasizing the potentiality of geochemical interpretation of complex hydrochemical data sets

  6. Perspectives in using a remotely sensed dryness index in distributed hydrological models at river basin scale

    DEFF Research Database (Denmark)

    Andersen, Jens Asger; Sandholt, Inge; Jensen, Karsten Høgh; Refsgaard, J.C.; Gupta, H.

    2002-01-01

    In a previous study a spatially distributed hydrological model, based on the MIKE SHE code, was constructed and validated for the 375 000 km2 Senegal River basin in West Africa. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time-series of precipitation from 112 stations in the basin. The model was calibrated and validated based on river discharge data from nine stations in the basin for 11 years. Calibration and validation res...

  7. Hydrochemistry of the Parauari-Maues Acu river basin (Amazon region, Brazil)

    International Nuclear Information System (INIS)

    The chemical composition of the Parauari-Maues Acu basin is studied through the determination of pH, calcium, magnesium, iron, chloride, sodium, potassium, zinc, copper and manganese. Four expeditions were made and samples were collected in 16 different points of the main course. Chemical analysis of the rivers waters shows seasonal flutuations of the concentrations of the elements in the main river as well as in the main afluents like Nambi river, Amana river and Urupadi river. (Author)

  8. Population Distribution Evolution Characteristics and Shift Growth Analysis in Shiyang River Basin

    OpenAIRE

    Minzhi Chen,; Peizhen Wang; Li Chen

    2014-01-01

    In recent years, the population size and scale of the Shiyang River Basin unceasingly expanding lead to a series of ecological environment: surface water reducing, land desertification and Ground water levels fall, etc. Research evolution characteristics of population distribution and migration growth of Shiyang River Basin contribute to river water resources and the industrial development of the comprehensive management. The article using the distribution of population s...

  9. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    Science.gov (United States)

    Jean-François, Crétaux; Sylvain, Biancamaria; Adalbert, Arsen; Muriel, Bergé-Nguyen; Mélanie, Becker

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2-4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  10. A large-scale model for simulating the fate & transport of organic contaminants in river basins.

    Science.gov (United States)

    Lindim, C; van Gils, J; Cousins, I T

    2016-02-01

    We present STREAM-EU (Spatially and Temporally Resolved Exposure Assessment Model for EUropean basins), a novel dynamic mass balance model for predicting the environmental fate of organic contaminants in river basins. STREAM-EU goes beyond the current state-of-the-science in that it can simulate spatially and temporally-resolved contaminant concentrations in all relevant environmental media (surface water, groundwater, snow, soil and sediments) at the river basin scale. The model can currently be applied to multiple organic contaminants in any river basin in Europe, but the model framework is adaptable to any river basin in any continent. We simulate the environmental fate of perfluoroctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in the Danube River basin and compare model predictions to recent monitoring data. The model predicts PFOS and PFOA concentrations that agree well with measured concentrations for large stretches of the river. Disagreements between the model predictions and measurements in some river sections are shown to be useful indicators of unknown contamination sources to the river basin. PMID:26414740

  11. Drainage basin security of hazardous chemical fluxe in the Yodo River basin.

    Science.gov (United States)

    Matsui, S

    2004-01-01

    The Yodo River basin consists of three major tributary basins (and other small river basins) namely Uji, Katsura and Kizu, which overlap respectively Shiga, Kvoto and Nara prefectures' administrative areas. Lake Biwa, the largest lake in Japan, drains water through the Uji river. The water quality of the lake, in terms of BOD, continuously improved over the last decade. However, the quality in terms of COD did not show any improvement in spite of a large amount of infrastructure finance being introduced. Eutrophication of the lake still continues, showing no improvement in the nitrogen concentration level. Non-point as well as point source control is not strong enough. There is a gap between BOD and COD evaluations of the lake water quality. Hazardous chemical fluxes are estimated based upon PRTR reports of Japan (2001). PCBs are still discharged into the lake, although the report of Shiga Prefecture showed zero discharge. Dace fish monitoring clearly showed that PCB contamination of the fish had not changed since the 1980s in spite of a ban on use and production of PCBs in the 1970s. There is still leakage of PCBs into the lake. The major exposure of dioxins to Japanese is fish rather than meat and eggs. The risk of water contamination must take into consideration not only drinking water safety but also ecological magnification of food chains in water. The ecological health aspect of hazardous chemicals is also important, such as organotins with imposex of sea snails. Finally, public participation in hazardous chemical management is very important using the method of risk communication based upon the annual report of PRTR in Japan. PMID:15195438

  12. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  13. River monitoring from satellite radar altimetry in the Zambezi River basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-07-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied, the accuracies of the different methods were found to be comparable, with RMSE values ranging from 4.1 to 6.5% of the mean annual in situ gauged amplitude for the first method and from 6.9 to 13.8% for the second and third methods. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 5.7 and 7.2% of the mean annual in situ gauged amplitude for the first method and from 8.7 to 13.0% for the second and third methods.

  14. Perfluorinated carboxylic acids discharged from the Yodo River Basin, Japan.

    Science.gov (United States)

    Niisoe, Tamon; Senevirathna, S T M L D; Harada, Kouji H; Fujii, Yukiko; Hitomi, Toshiaki; Kobayashi, Hatasu; Yan, Junxia; Zhao, Can; Oshima, Masayo; Koizumi, Akio

    2015-11-01

    We investigated perfluorinated carboxylic acids (PFCAs) with 7-14 carbon atoms (C7-C14) in the Yodo River system in 2013. C7-C11 were detected at most sampling sites. The range and median of total PFCAs (?PFCAs) concentrations were 1.0-89.7 and 11.2 ng L(-1), respectively. The dominant component was C8 (average for all samples=53.3±8.8%), followed by C7 (19.2±6.7%) and C9 (17.6±7.1%). The levels of C8 were confirmed to decrease greatly over the last 10 years. We assessed the fluxes in C7-C11 discharged from the basin based on the concentrations in river water and river flow rate. The flux of discharged ?PFCAs was 237.0 g d(-1) at the most downriver point of the assessment areas. Considering the variability in flow rate due to precipitation, the annual ?PFCAs flux was estimated to be 86.5-173.4 kg y(-1). Identification and quantification of PFCAs sources is difficult because the strength of the sources changes with time, and available information is quite limited. Further monitoring and investigation are necessary to understand sources of PFCAs, as well as their potential for human exposure. PMID:26037820

  15. Isotope hydrogeochemistry of groundwater in Purna river basin, Maharashtra, India

    International Nuclear Information System (INIS)

    Full text: Purna river basin, mainly located in Akola and Amaravati districts of Maharashtra in India, is an east-west elongated river valley (20 deg. 10'-21 deg. 25' N latitude and 76 deg. 00'-77 deg. 55' E longitude). About 3000 km2 area out of 7500 km2 area of the inland basin is underlain by saline and brackish groundwater. The Quaternary sediments cover much of the area while the basin margins and the basement is composed mainly of the Deccan Traps. In the alluvial belt, the soil (derived from parent basaltic rock) has dense fabric, fertile but poor hydraulic conductivity with high degree of shrink-swell potential. Na+1 is the dominating cation in the soil and Ca+2, Mg+2 decrease with depth. The electrical conductivity of the groundwaters of the area varies from 400 to over 30000 ?S/cm. Some of the earlier studies in the area regarding the origin of salinity suggested intrusion of ancient seawater through Son-Narmada lineament, digenetic alterations, irrigation practices causing accretion and subsequent dissolution of salts in the soil horizons as well as dissolution of salts through the rock matrix. No conclusive inferences could be drawn from these studies. In this study, the problem is tackled by employing isotope and hydrogeochemical techniques. Two sets of water samples from Purna river (Surface water), Dug wells (Shallow aquifer) and tube wells (Deep aquifer) and six piezometer samples were collected from different parts of the Purna river basin and analysed for environmental isotopes as well as major, minor, and trace ions. The interpretation of the results was carried out in the light of other geological information to decipher cause of salinity and delineating recharge and discharge zones of the fresh groundwater in the area. The Piper trilinear plots for fresh waters and saline waters showed that fresh waters are generally Na-HCO3 type whereas saline samples are predominantly Na-Cl type. The hydrochemical facies in saline waters change from HCO3 to Cl type. No linear trend in salinity and depth were observed. It is observed that wherever groundwater flow is less, flushing is less and salinity is more. Computation of molar ionic ratios of the samples suggested that the salts have been derived as a result of weathering of the basalt present in the vicinity. Contribution of local precipitation to groundwater as a direct recharge is insignificant except in hard rock area. The foothills of the Satpura range, which is situated in the north of the basin, act as a recharge zone for fresh groundwaters in the area. Here the alluvium cover is quite thick and it becomes thinner and thinner as it progresses towards Purna River. Ultimately, the alluvium acts as discharge zone along the depression of Purna. The deep aquifers of the area have saline, brackish and fresh waters. The ?D-?18O plot indicates evaporative enrichment. The fresh waters fall near GMWL with a slope of about 8. Brackish waters, falling between saline and fresh waters seems to be mixture of the two waters. This is further inferred as well by the 3H values of the waters. Purna river water samples showed evaporative enrichment. It also indicates contribution of groundwater to the river at some places. A depleted starting isotopic composition for saline groundwater samples compared to present day river water sample indicated either source of saline waters is different from river water or a different climatic conditions existed at the time of recharge in comparison to the present era. ?18O - Cl-1 plot showed that the salinity in the deep aquifers could be due to leaching of salts from the formation as well. The 3H values of the samples showed that the saline aquifers are isolated and not getting modern recharge. However, the brackish water aquifers do get partial recharge from a distant source. The 14C results of the highly saline groundwater samples suggested their uncorrected ages about 4 - 7 ka BP. The ?34S values of the aqueous sulphate samples indicated their non-marine origin. From the study it was concluded that, the deeper saline waters are o

  16. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River Basin, China

    Science.gov (United States)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2013-12-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. However, conventional studies focus on WF from the perspective of administrative region rather than river basin. Decomposition analysis of WF changes from the perspective of the river basin is more scientific. To address this perspective, we built a framework in which the input-output (IO) model and the Structural Decomposition Analysis (SDA) model for WF could be implemented in a river basin by computing IO data for the river basin with the Generating Regional IO Tables (GRIT) method. This framework is illustrated in the Haihe River Basin (HRB), which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1% to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF; however, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy making in other water-limited river basins.

  17. LUCC and the Hydrologic Responses in the Chaobaihe River Basin Based on Remote Sensing

    Science.gov (United States)

    Wang, G.; Xia, J.

    2004-05-01

    The Miyun Reservoir is the most important water source to Beijing City. In recent decades, the inflow to the reservoir presented a decreasing trend, which seriously threaten the water use of Beijing. In order to analyze the reasons, based on the terrain and land use information from GIS and RS (Remote Sensing), we revised the Bagrov evapotranspiration estimation method, introduced a water loss model under conditions of human impacts, and established a distributed monthly water balance model applied to the Chaobeihe river basin controlled by Miyun Reservoir. The hydrometerologic data from 1961 to 1966, when human impacts were slight, was used to calibrate and verify the model, and the data from 1973 to 1990, when human impacts were significant, were used to model simulation and analysis. Take the year 1966 as background, the scenario analysis, which concentrated on the impact of land cover change on evapotranspiration, showed: without considering the spatial distribution of land cover, if the size of forest area increases one time, the runoff will decrease by about 2.8% (the evapotranspiration increases); if the size of meadow area increases one time, the runoff will increase by about 5.6% (the evapotranspiration decreases); if the size of dry land area increases one time, the runoff will increase by about 2.0% (the evapotranspiration decreases); the change amplitudes for the three scenarios are within 6%. However, from 1960 to 1990, the areas of the three land-use types did not change so much, and if the water loss model is not involved, the observed runoff volume is 10.7% less than simulated one for the Chaohe river basin and 24.8% for the Baihe river basin, which means we should consider not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation constructions. After take the water loss estimation into account, the simulation results indicated that the water loss had a increasing tendency from 1973 to 1990, and the water loss became much stable in the late 1980s only for Chaohe river basin; within one year, water loss varied with seasons, especially in summer, the reservoirs and water-soil conservation constructions held up the flood water and made runoff lost, but the springs were water supply period. Hydraulic constructions is of great benefit to human and ecologic protection, on the other hand, these engineering measures can reallocate water resources in time and space, and will influence the stream flow in a sense.

  18. Potential of using WATCH forcing data to model a low land river basin of the upper Murray-Darling basin in Australia

    Science.gov (United States)

    Kundu, D.; Van Ogtrop, F. F.; Vervoort, R. W.

    2014-12-01

    Scattered station based climate data is often not sufficient to describe the dynamics of the catchment processes and efficiently manage the water resources. Therefore, a lot of focus has been to identify alternative distributed data sources, such as; remotely sensed data or global re-analysis data. Hence, this study uses the Water and Global Change (WATCH) forcing data, based on 40 years ECMWF Re-Analysis (ERA-40), to model a semi-arid low land flood plain river basin in a data sparse region. The semi-distributed Soil Water Assessment Tool (SWAT) was used to model the river basin (Warrego, 52140.6 square km) located in the upper Murray-Darling basin in Eastern Australia. Multi station model calibration was achieved using the Sequential Uncertainty Fitting -2 (SUFI-2) algorithm with the Nash Sutcliffe Efficiency (NSE) as the goal function against monthly observed flow data. Modelling of a low land river system is highly challenging, due to topographic heterogeneity, nonlinear climatic behavior and sparse observed flow data with extended periods of zero flows. Preliminary simulation results indicate a NSE of 0.26 to 0.86 for the calibration period and 0.04 to 0.47 for the validation period. Furthermore, the volume fraction explained by the model ranged from 0.69 to 2.71 in the validation period. While the unsatisfactory results may be attributed to the SWAT modelling framework, which struggles with modelling flow in flat flood plains, the study does reveal the potential to use remotely sensed data in low land river basins with little or no climate data.

  19. Estimation of nutrient contributions from the ocean across a river basin using stable isotope analysis

    Directory of Open Access Journals (Sweden)

    K. Nakayama

    2015-04-01

    Full Text Available Since marine derived nutrients (MDN are transported not only in river channels but also across the entire river basin, including via ground water and migratory animals, it is necessary to investigate the contribution of MDN to the forest floor (soils in order to quantify the true role of MDN at the river ecosystem scale. This study investigated the contribution of pink (Oncorhynchus gorbuscha and chum salmon (O. keta to total oceanic nitrogen (TN input across a river basin using stable isotope analysis (SIA of nitrogen (?15N. The contribution of TN entering the river basin by salmon was 23.8 % relative to the total amount of TN exported from the river basin, providing a first estimate of MDN export for a river basin. The contribution of nitrogen from the ocean to the river basin soils was between 22.9 and 23.8 %. Furthermore, SIA showed that the transport of oceanic TN by sea eagles (Haliaeetus spp. was greater than that by bears (Ursus arctos, which had previously been that bears are thought to be the major animal transporter of nutrients in the northern part of Japan.

  20. Investigation into impacts of land-use changes on floods in the upper Huaihe River basin, China

    Science.gov (United States)

    Yu, M.; Li, Q.; Lu, G.; Wang, H.; Li, P.

    2015-06-01

    To investigate the agricultural land-use change on flood regime, the upper Huaihe River basin above the Dapoling station was selected as the case study site. Based on topography, land-use, hydrological and meteorological data in 1990s and 2010s, the improved distributed Xinanjiang model, with potential evapotranspiration being computed by coupling a dual-source evapotranspiration model with a simplified plant growth model, was adopted to simulate the daily and hourly rainfall-runoff processes over 1990s and 2010s, and then the effects of land-use change on flood volume, flood peak, occurring time of flood peak, the percentage of surface runoff component were investigated respectively. The results was interesting and indicated that impacts of land-use change on flood characteristics varied significantly with land-use types. The outputs could provide valuable references for flood risk management and water resources management in the Huaihe River basin.

  1. Copula-based risk evaluation of droughts across the Pearl River basin, China

    Science.gov (United States)

    Zhang, Qiang; Xiao, Mingzhong; Singh, Vijay P.; Chen, Xiaohong

    2013-01-01

    Daily precipitation data for the period of 1960-2005 from 42 precipitation gauging stations in the Pearl River basin were analyzed using the Mann-Kendall trend test and copula functions. The standardized precipitation index method was used to define drought episodes. Primary and secondary return periods were also analyzed to evaluate drought risks in the Pearl River basin as a whole. Results indicated that: (1) in general, the drought tendency was not significant at a 95 % confidence level. However, significant drought trends could be found in November, December, and January and significant wetting trends in June and July. The drought severity and drought durations were not significant at most of the precipitation stations across the Pearl River basin; (2) in terms of drought risk, higher drought risk could be observed in the lower Pearl River basin and lower drought risk in the upper Pearl River basin. Higher risk of droughts of longer durations was always corresponding to the higher risk of droughts with higher drought severity, which poses an increasing challenge for drought management and water resources management. When drought episodes with higher drought severity occurred in the Pearl River basin, the regions covered by higher risk of drought events were larger, which may challenge the water supply in the lower Pearl River basin. As for secondary return periods, results of this study indicated that secondary return periods might provide a more robust evaluation of drought risk. This study should be of merit for water resources management in the Pearl River basin, particularly the lower Pearl River basin, and can also act as a case study for determining regional response to drought changes as a result of global climate changes.

  2. Application of uncertainty and sensitivity analysis in river basin management.

    Science.gov (United States)

    Xu, Y; Mynett, A E

    2006-01-01

    Considering uncertainty in the decision-making process in river basin management is important because uncertainty is regarded as one of the main obstacles to sound decision-making. In case of high uncertainty, the risks of making a wrong decision could be quite high, which may have severe consequences. This paper applies a screening sensitivity analysis method, the Morris method, to investigate the propagation of uncertainty from factors in a flood damage model into the model outputs and explores the importance of factors based on the sensitivity analysis. Uncertainty reduction in the most influential factors identified by the Morris method is proposed as a means to reduce the uncertainty in model outputs. In this way the risks of making a wrong decision could be reduced. The results in this paper show that the Morris method is an efficient approach to help reduce the uncertainty in model outputs. PMID:16532734

  3. Understanding wellbore stability challenges in Horn River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Safdar; Ansari, Sajjad; Han, Hongxue; Khosravi, Nader [Schlumberger (Canada)], email: safdar.khan@slb.com

    2011-07-01

    The industry must spend hundreds of millions of dollars each year because of wellbore instability problems. Shale formations are a major source of wellbore instabilities, and these problems have been particularly acute in the Horn River Basin (HRB), the largest gas shale field in Canada. Shale formations have laminated structures and, therefore, significant differences in mechanical properties parallel and perpendicular to bedding planes; anisotropic estimated horizontal stresses can be caused by these differences. Failure to consider this feature can have very serious consequences for drilling. The authors studied cases where operators had faced severe drilling challenges; then they performed a comprehensive post-mortem analysis of these wells, identified possible causes for problem zones and made recommendations for addressing these problems in future drilling. Three of the key reasons are that shale anisotropy was not properly characterized, that anisotropic stresses were not considered in the pre-spud analysis, and that the attack angle with respect to shale bedding planes was inappropriate.

  4. Assessing interannual water balance of La Plata river basin

    Scientific Electronic Library Online (English)

    C. M., KREPPER; V., VENTURINI.

    2009-10-01

    Full Text Available El río Paraná es el más importante de la Cuenca de La Plata, sustentando economías regionales en tres países. Durante las últimas décadas, se han producido cambios significativos en la cuenca del Paraná, debido a la deforestación y sustitución de cultivos. Esto pudo haber modificado la respuesta de [...] la cuenca en términos de caudales del río Paraná. El objetivo principal de este trabajo es analizar la estructura de la serie temporal de evapotranspiración (ET(t)) de la Cuenca Superior del Paraná. En primer lugar se estudió la relación entre las variables en la ecuación del balance hídrico y luego se aplicó un análisis de espectro singular (SSA, por sus siglas en inglés) para determinar las señales presentes en las series de ET(t). El estudio de correlación muestra que ET(t) está correlacionada con las precipitaciones en las subcuencas del norte y no está correlacionada en la más austral. Las series temporales ET(t)1 ET(t)3 y ET(t)4 muestran una señal de baja frecuencia mientras que las señales dentro del rango ENSO son estadísticamente significativas en ET(t)1, y ET(t)4 , aunque están presentes en las otras subcuencas (ET(t)2, y ET(t)3)como señales débiles. En la Cuenca de La Plata ET(t) estaría afectada tanto por los cambios en las propiedades físicas de la cuenca como por la presencia de la señal en el rango ENSO de las precipitaciones. Abstract in english The Paraná river is the most important component of the La Plata basin, sustaining regional economies in three countries. In the last decades, significant regional changes such as deforestation and crop substitution have been taken place in the Paraná basin. This fact could have modified the basin r [...] esponse in terms of the Paraná streamflow. The main objective of this paper is to analyze the structure of the evapotranspiration (ET(t)) time series of the upper Paraná basin. We analyzed the relationship between the variables in the water balance equation, then we applied a singular spectral analysis (SSA) to learn more about the temporal structure of the ET(t) time series. The correlation study shows that ET(t) is correlated with precipitations in the northern sub-basins but it is not correlated at all in the southern basin. The time structure of ET(t)1 ET(t)3 and ET(t)4 exhibit low-frequency signals while the ENSO-range signals are statistically significant in ET(t)1 and ET(t)4 although it also appears in ET(t)2 and ET(t)3 as a weak signals. Looking at the whole basin, ET(t) would be affected either by changes in the basin physical properties or by the ENSO-range signals present in precipitation.

  5. Alternative Water Allocation in Kyrgyzstan: Lessons from the Lower Colorado River Basin and New South Wales

    Directory of Open Access Journals (Sweden)

    Nazir Mirzaev

    2010-08-01

    Full Text Available Focus group discussions and a modeling approach were applied to determine policy and regulatory refinements for current water allocation practices in Kyrgyzstan. Lessons from the Lower Colorado River basin, Texas and New South Wales, Australia were taken into consideration. The paper analyzes the impact of adopting some of these interventions within the socio-environmental context that currently prevails in Kyrgyzstan. The optimization model for water distribution at the river-basin scale was developed using GAMS 2.25 software. Application of the model to the Akbura River basin indicated efficiencies in the proposed institutional rules especially in low water years.

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and...

  7. Natural and anthropics effects in the silts production of the Magdalena River basin

    International Nuclear Information System (INIS)

    The Magdalena River basin sediment yield is 689 +/- 528 t km2 yr1 with maximum values up to 2000 t km2 yr1. Multiple regression analysis indicates that runoff and maximum discharges are the major control s to explain Magdalena basin sediment yield variance. A numerical model with 58% efficiency, (p< 0.01) and 11% relative root mean square error (RRMSE) was obtained to describe the Magdalena basin sediment yield. Time series analyses show that sediment loads have upward trends in 68% of the Magdalena river basin

  8. Hydrological and hydrochemical impact studies in the urbanised Petrusse river basin (Luxembourg)

    Science.gov (United States)

    Pfister, L.; Iffly, J.; Guignard, C.; Krein, A.; Matgen, P.; Salvia-Castellvi, M.; van den Bos, R.; Tailliez, C.; Barnich, F.; Hofmmann, L.

    2009-04-01

    On the basis of ancient topographical maps, the growing urbanisation of the Petrusse river basin (42.9 km2) has been documented on 50-year time steps since 1770. While until the 1950's urban areas remained below 10% of total basin area, they are now close to 50%. This rapid change has consisted mainly in a change from cropland into built areas. As a direct consequence of these considerable changes in landuse, the basin presumably has undergone significant modifications of both its hydrological regime and the quality of the flowing surface waters. In the framework of a national monitoring programme, the Petrusse basin has been progressively equipped with 3 recording streamgauges between 1999 and 2003. Several meteorological stations are located in the immediate vicinity of the basin. The hydrological regime revealed by the 15-minute recordings of the streamgauges is very specific to heavily urbanised basins, i.e. characterised by quick reactions to incoming rainfall, as well as very limited contributions from sub-surface and groundwater reservoirs. A conceptual hydrological model has been used to evaluate roughly the impact of the progressive urbanisation of the Petrusse basin since 1770 on the rainfall-runoff relationship. Major changes were found for summer months, with significantly higher peak discharges and increasingly rapid reactions to rainfall events. However, the limitations of the spatial density of rainfall recordings (only 1 rainfall measurement site available between 1854 - 1949) cause severe shortcomings in the accuracy of the incoming rainfall estimations, especially in the case of convective rainfall events. This in turn also considerably reduces the accuracy of the historical rainfall-runoff simulations. Between 2002 and 2004, several monitoring campaigns have been carried out in the Petrusse basin in order to determine the impact of sewer system contributions from the urbanised areas to the water quality within the Petrusse. The investigations have shown a very strong so-called first-flush effect. During dry sequences, numerous deposits on roads and roofs (heavy metals, oils, etc.) accumulate, before being washed away during the first minutes of rainfall events and being ultimately being transported to the Petrusse river via the sewer systems, causing considerable pollution peaks. Current investigations target a reduction of this pollution. The involved volumes of polluted water are of such extent, that they cannot be dealt with by conventional waste water treatment systems. The currently existing rainfall measurement network around the city of Luxembourg has a spatial resolution that is still too low to capture accurately convective rainfall events. A new rainfall measurement approach will soon be tested to estimate spatio-temporal rainfall dynamics with a high resolution above the city of Luxembourg. Based on a combination of conventional raingauges, weather radar and microwave measurements (via cell-phone networks) this approach is supposed to provide data that might ultimately contribute to a real-time management of the first flush pollutions in the Petrusse river basin.

  9. Heavy minerals as a tool to reconstruct river activity during the Weichselian glaciation (Toru? Basin, Poland)

    OpenAIRE

    Weckwerth, Piotr; Chabowski, Marek

    2013-01-01

    The heavy-mineral composition of the Weichselian fluvial successions deposited by an ephemeral meandering river and by a sand-bed braided river in the Toru? Basin (central Poland) was analysed. On the basis of a lithofacies analysis, in combination with the composition of the heavy-mineral assemblages, the fluvial processes and river-channel morphology were reconstructed. This allows determining the provenance of the fluvial deposits and the rivers’ discharge regimes. A model is propo...

  10. Mining and Seasonal Variation of the Metals Concentration in the Puyango River Basin—Ecuador

    OpenAIRE

    Edwin Cueva; Oscar Betancourt; Maria Eugenia Garcia; Jean Remy D. Gimaraes

    2012-01-01

    The Puyango River Basin covers approximately an area of 4400 km2, it is located in Southern of Ecuador, with Calera and Amarillo rivers as tributaries. In this region, one of the main activities is small scale gold and silver mining. Currently there are 110 processing plants on the bank of Calera and Amarillo rivers, causing a significant degradation of natural resources. A seasonal comparison of metal concentrations in surface water, sediments and particulate matter from the Puyango River an...

  11. UPPER SNAKE RIVER PRIORITY BASIN ACCOMPLISHMENT PLAN, APRIL 1973

    Science.gov (United States)

    The Upper Snake Accomplishment Basin (17040104, 170402, 170501) is defined as the Idaho and Oregon portions of 2 STORET Basins, the Upper Snake Basin and the Central Snake Basin. The Basin drains approximately 62,100 square miles in Southern Idaho and Southeastern Oregon. Four ...

  12. Yakima River Basin Phase II Fish Screen Evaluations, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jessica A.; McMichael, Geoffrey A.; Chamness, Mickie A.

    2003-03-01

    In 2002, the Pacific Northwest National Laboratory evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. Pacific Northwest National Laboratory collected data to determine whether velocities in front of the screens and in the bypasses met National Marine Fisheries Service criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. In addition, Pacific Northwest National Laboratory conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2002, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Marine Fisheries Service. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to increase safe juvenile fish passage. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris should be improved at some sites.

  13. Economic Peculiarities of the Romanian Tisa River Basin

    Directory of Open Access Journals (Sweden)

    ANA-MARIA POP

    2010-01-01

    Full Text Available A possible answer to the current challenges of the Tisa catchment area, correlated with water management, social and economic development, environmental conservation, is the transnational initiative of the five countries drained by the tributaries of the Tisa River. In this context, the spatial development has a major impact on the Romanian Tisa catchment area by providing the economic cohesion. The purpose of the present paper is to define the current status of economy in the Romanian Tisa River Basin, through the filter of achieving the level of competitiveness claimed by the national, European, or global authorities. By setting several quantitative indicators, analyzed for a standard territorial level (NUTS 3, for a definite time interval (2002-2007, those more or less competitive economic branches, activities or aspects of the analyzed territory were identified, and, at the same time, the elements that “hinder” development, the traditional remnants, or the existing entrepreneurial initiatives. On the basis of relevant indicators, the calculation of an index of competitiveness was proposed at territorial level, the results certifying a certain level of competitiveness for the region under consideration.

  14. Flood forecasting and early warning system for Dungun River Basin

    International Nuclear Information System (INIS)

    Floods can bring such disasters to the affected dweller due to loss of properties, crops and even deaths. The damages to properties and crops by the severe flooding are occurred due to the increase in the economic value of the properties as well as the extent of the flood. Flood forecasting and warning system is one of the examples of the non-structural measures which can give early warning to the affected people. People who live near the flood-prone areas will be warned so that they can evacuate themselves and their belongings before the arrival of the flood. This can considerably reduce flood loss and damage and above all, the loss of human lives. Integrated Flood Analysis System (IFAS) model is a runoff analysis model converting rainfall into runoff for a given river basin. The simulation can be done using either ground or satellite-based rainfall to produce calculated discharge within the river. The calculated discharge is used to generate the flood inundation map within the catchment area for the selected flood event using Infowork RS.

  15. Review and analysis of Powder River Basin, Wyoming, production trends

    Energy Technology Data Exchange (ETDEWEB)

    Mavor, M. [Tesseract Corp., Salt Lake City, UT (United States); Russell, B. [Energy Navigator Inc., Calgary, AB (Canada)

    2002-07-01

    The coalbed methane (CBM) properties of the Powder River Coal Basin in Montana and Wyoming were reviewed with reference to expected productivity from several coal seams, CBM decline curve analysis and production trends. The issue of whether CBM formation evaluation efforts are consistent with production data was examined along with contrast production data from different seams with different dates of first production. A map depicting the TICORA Tesseract Redstone GRI study area was presented along with a list of important coal properties. The coal is ranked as subbituminous C, it has a thickness of 64 feet, an in-situ storage capacity of 23 scf/ton, and an in-situ gas content of 22 scf/ton. The average pressure is 152.6 psia, the critical desorption pressure is 135.6 psia, and the absolute permeability is 632 md. The CBM options include primary and enhanced recovery modeling, multicomponent gas sorption, unlimited number of wells and layers, as well as absolute permeability-gas content dependence. An exponential CBM decline curve for Powder River Coal is predicted because the absolute permeability is high and constant, the effective permeability is constant (with natural fracture porosity and fluid saturations), and there is low gas content. It was summarized that the peak gas rate is relatively in proportion to the ultimate gas recovery. It was also noted that more recent wells are not performing as well as older wells. 14 figs.

  16. SWOT data assimilation for operational reservoir management on the upper Niger River Basin

    Science.gov (United States)

    Munier, S.; Polebistki, A.; Brown, C.; Belaud, G.; Lettenmaier, D. P.

    2015-01-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission will provide two-dimensional maps of water elevation for rivers with width greater than 100 m globally. We describe a modeling framework and an automatic control algorithm that prescribe optimal releases from the Selingue dam in the Upper Niger River Basin, with the objective of understanding how SWOT data might be used to the benefit of operational water management. The modeling framework was used in a twin experiment to simulate the "true" system state and an ensemble of corrupted model states. Virtual SWOT observations of reservoir and river levels were assimilated into the model with a repeat cycle of 21 days. The updated state was used to initialize a Model Predictive Control (MPC) algorithm that computed the optimal reservoir release that meets a minimum flow requirement 300 km downstream of the dam. The data assimilation results indicate that the model updates had a positive effect on estimates of both water level and discharge. The "persistence," which describes the duration of the assimilation effect, was clearly improved (greater than 21 days) by integrating a smoother into the assimilation procedure. We compared performances of the MPC with SWOT data assimilation to an open-loop MPC simulation. Results show that the data assimilation resulted in substantial improvements in the performances of the Selingue dam management with a greater ability to meet environmental requirements (the number of days the target is missed falls to zero) and a minimum volume of water released from the dam.

  17. Detection of Flooding Responses at the River Basin Scale Enhanced by Land use Change

    Science.gov (United States)

    McCormick, Brian C.; Eshleman, Keith N.; Griffith, Jeff L.; Townsend, Philip A.

    2009-01-01

    The Georges Creek watershed (area 187.5 sq km) in western Maryland (United States) has experienced land use changes (>17% of area) associated with surface mining of coal. The adjacent Savage River watershed (area 127.2 sq km) is unmined. Moments of flood frequency distributions indicated that climatic variability affected both watersheds similarly. Normalizing annual maximum flows by antecedent streamflow and causative precipitation helped identify trends in flooding response. Analysis of contemporary storm events using Next Generation Weather Radar (NEXRAD) stage III precipitation data showed that Georges Creek floods are characterized by higher peak runoff and a shorter centroid lag than Savage River floods, likely attributable to differences in current land use. Interestingly, Georges Creek produces only two thirds of the storm-flow volume as Savage River, apparently because of infiltration into abandoned deep mine workings and an associated transbasin diversion constructed circa 1900. Empirical trend analysis is thus complicated by both hydroclimatic variability and the legacy of deep mining in the basin.

  18. Rainfall-runoff modeling and preliminary regional flood characteristics of small rural watersheds in the Arkansas River basin in Colorado

    Science.gov (United States)

    Livingston, Russell K.

    1981-01-01

    Both recorded and synthetic rainfall-runoff and annual peak-discharge data for 17 rural watersheds were analyzed to evaluate the magnitude, frequency, and volume of floods in the plains region of the Arkansas River basin in Colorado. Flood-frequency relations from analysis of recorded data were weighted or combined with flood-frequency relations from analysis of synthetic data to provide improved estimates of selected flood characteristics for 15 of these watersheds. The 10-, 25-, 50-, and 100-year peak discharges were regionalized using multiple-regression and station-year methods. Regression relations were developed to determine peak discharge from effective drainage area (standard error of estimate 30 to 50 percent) and flood volume from peak discharge (standard error of estimate 62 percent) for ungaged basins between 0.5 and 15 square miles in size. Using these two flood characteristics, a dimensionless hydrograph method provides synthetic hydrographs very similar in shape to recorded flood hydrographs. (USGS)

  19. Scale-dependent controls on the metabolic organization of river basins

    Science.gov (United States)

    Caylor, K.; Rodriguez-Iturbe, I.

    2012-04-01

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. Recently, a principle of equal metabolic rate per unit area throughout the basin structure has been developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. While the empirical evidence suggests that river basin metabolic activity is linked with the fractal geometry of the network, a challenge remains in understanding how and when such organization plays a determining role in governing basin hydrological dynamics. In this presentation, I will review prior work seeking to understand the role of vegetation in governing basin response and propose use of geomorphological scaling laws as means for determining the potential for surface pattern (i.e. vegetation structure) to impact the dynamical behavior of river basin metabolism.

  20. Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China

    Directory of Open Access Journals (Sweden)

    X. Q. Feng

    2013-07-01

    Full Text Available Zhalong National Nature Preserve is a large wetland reserve on the Songnen Plain in Northeast China. Wetlands in the preserve play a key role in maintaining regional ecosystem function and integrity. Global climate change and intensified anthropogenic activities in the region have raised great concerns over the change of natural flow regime, wetland degradation and loss. In this study, two key hydrologic components in the preserve, water surface area and water volume, as well as their variations during the period 1985–2006, were investigated with a spatially-distributed hydrologic modeling system (SWAT. A wetland module was incorporated into the SWAT model to represent hydrological linkages between the wetland and adjacent upland areas. The modified modeling system was calibrated with streamflow measurements from 1987 to 1989 and was validated for the period 2005–2006. The calibration achieved a Nash efficiency coefficient (Ens of 0.86, and the validation yielded an Ens of 0.66. In the past 20 yr, water surface area in the Zhalong wetland fluctuated from approximately 200 km2 to 1145 km2 with a rapid decreasing trend through the early 2000s. Consequently, water volume decreased largely in the preserve, especially in the dry seasons. The situation changed following the implementation of a river diversion in 2001. Overall, the modeling yielded plausible estimates of hydrologic changes in this large wetland reserve, building a foundation for assessing ecological water requirements and developing strategies and plans for future water resources management within the river basin.

  1. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    Science.gov (United States)

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  2. River monitoring from satellite radar altimetry in the Zambezi River Basin

    Directory of Open Access Journals (Sweden)

    C. I. Michailovsky

    2012-03-01

    Full Text Available Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. In this study, retracked Envisat altimetry data was extracted over the Zambezi River Basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements to be obtained for rivers down to 80 m wide with an RMSE relative to in situ levels of 0.32 to 0.72 m at different locations. The altimetric levels were then converted to discharge using three different methods adapted to different data-availability scenarios: first with an in situ rating curve available, secondly with one simultaneous field measurement of cross-section and discharge, and finally with only historical discharge data available. For the two locations at which all three methods could be applied the accuracies of the different methods were found to be comparable, with RMSE values ranging from 5.5 to 7.4 % terms of high flow estimation relative to in situ gauge measurements. The precision obtained with the different methods was analyzed by running Monte Carlo simulations and also showed comparable values for the three approaches with standard deviations found between 8.2 and 25.8 % of the high flow estimates.

  3. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    International Nuclear Information System (INIS)

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  4. Timber Harvest Change in the Little North Santiam River Basin, Oregon, 1995 to 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Using available aerial photos from approximately a 15-year period, changes in timber harvest were mapped in the Little North Santiam River Basin, Oregon. Timber...

  5. Geochemical behavior of radionuclides and heavy metals in soils from Corumbatai River basin (SP), Brazil

    International Nuclear Information System (INIS)

    The purpose of this research was to study the geochemical behavior of radionuclides and heavy metals in soils of agricultural use at Corumbatai River basin (SP). The natural concentration and variability in sedimentary rocks at Corumbatai river basin follow the trend Ca > Mg > K > Na, with the concentration of heavy metals and radionuclides. The distribution of exposure rate in soils shows the occurrence of higher values towards south of the Corumbatai river basin, region where are applied phosphate fertilizers, amendments and 'vinhaca' in sugar cane crops. Heavy metals and radionuclides incorporated in phosphate fertilizers and amendments are annually added during the fertilization process in the sugar cane crops, but if they are utilized in accordance with the recommended rate, they do not rise the concentration levels in soils up to hazards levels. Thus, they are lower transferred from soils to sugar cane at Corumbatai river basin, not offering hazard to the ecosystem and animal or human health. (author)

  6. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Maughan and Perry Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Maughan, E.K., and Perry, W.J., Jr., 1986, Lineaments and...

  7. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Anna Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following U.S. Geological Survey Professional Paper: Anna, L.O., 1986, Geologic...

  8. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Structural Features

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Anna, L.O., 1986, Geologic framework of the ground water...

  9. Digital geospatial data points of the Paleozoic and older rocks of the Upper Colorado River Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These digital point data of altitudes of the Paleozoic and older rocks of the Upper Colorado River Basin (UCRB) were created for the purpose of developing a...

  10. Digital geospatial dataset of the top of Paleozoic rocks in the Upper Colorado River Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These raster data of the top surface of the Paleozoic formation of the Upper Colorado River Basin (UCRB) were created for the purpose of developing a generalized...

  11. Head Scarp Boundary for the Landslides in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Polygons represent head scarps and flank scarps associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part...

  12. 1:250,000-scale geology of the Carson River Basin, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital continuous geologic data for the Carson River Basin, Nevada and California. It was compiled from individual county 1:250,000-scale...

  13. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Slack Lineaments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents lineaments in the Powder River Basin as identified in the following publication: Slack, P. B., 1981, Paleotectonics and hydrocarbon...

  14. Thickness of the middle Fort Union hydrogeologic unit in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the middle Fort Union hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that...

  15. Altitude of the top of the upper Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the upper Fort Union aquifer in the Powder River basin. The data...

  16. Thickness of the lower Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the lower Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be...

  17. Thickness of the upper Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the upper Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be...

  18. Altitude of the top of the lower Fort Union aquifer in the Powder River structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the lower Fort Union aquifer in the Powder River basin. The data...

  19. Aerial photo mosaic of the Tillamook and Trask Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  20. Aerial photo mosaic of the Wilson and Kilchis Rivers, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  1. Drainage areas for selected stream-sampling stations, Missouri River Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — As part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA), an investigation of the Missouri River Basin is being conducted to...

  2. LBA-ECO CD-06 Amazon River Basin Land and Stream Drainage Direction Maps

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides high-resolution (~500 m) gridded land and stream drainage direction maps for the Amazon River basin, excluding the Rio Tocantins...

  3. Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents the extent and spatial distribution of irrigated agricultural lands in the Upper Colorado River Basin for 2007-10. The boundaries in this...

  4. HENRY'S FORK AND SNAKE RIVER BASIN, IDAHO - WATER QUALITY REPORT, 1973

    Science.gov (United States)

    Reported problems in the Henrys Fork and Snake River Basin (17040202, 17040203, 17040201) include bacteria levels exceeding water quality standards, dissolved oxygen standards violations, and excessive algal blooms resulting in aesthetic problems and contributing to DO depression...

  5. Point of Rocks, Black Butte faults, Green River Basin, Wyoming (grbfltg.shp)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a line representation of faults in a portion of the the Green River Basin. The fault data are part of the National Coal Resource...

  6. Organochlorine pesticides in fishes and sediments from the Tensas River Basin, Lousiana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The aquatic habitats of the Tensas River Basin in northeastern Louisiana have been heavily impacted by sediment and agrichemical runoff due to intensive drainage,...

  7. LBA-ECO CD-06 Soil Classification Map, Ji-Parana River Basin, Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a digital map of soil orders for the Ji-Parana River Basin, in the state of Rondonia, Brazil (Western Amazonia). Soil orders were manually...

  8. LBA-ECO CD-06 Soil Classification Map, Ji-Parana River Basin, Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a digital map of soil orders for the Ji-Parana River Basin, in the state of Rondonia, Brazil (Western Amazonia). Soil orders were...

  9. LBA-ECO CD-06 Physical, Political, and Hydrologic Maps, Ji-Parana River Basin, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains physical, hydrologic, political, demographic, and societal maps for the Ji-Parana River Basin, in the state of Rondonia, Brazil....

  10. LBA-ECO CD-06 Physical, Political, and Hydrologic Maps, Ji-Parana River Basin, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains physical, hydrologic, political, demographic, and societal maps for the Ji-Parana River Basin, in the state of Rondonia, Brazil. These data...

  11. Aerial photo mosaic of the Miami River, Tillamook basin, Oregon in 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Tillamook Bay subbasins and Nehalem River basins encompass 1,369 and 2,207 respective square kilometers of northwestern Oregon and drain to the Pacific Ocean....

  12. Location of Photographs Showing Landslide Features in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data points represent locations of photographs taken of landslides in the Little North Santiam River Basin, Oregon. Photos were taken in spring of 2010 during field...

  13. Landslide Deposit Boundaries for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been...

  14. A New Hydrological Method for Estimating the River Bed and Drainage Basin Components of Erosion and Suspended Sediment Fluxes in River Basins

    Directory of Open Access Journals (Sweden)

    A.V. Gusarov

    2012-04-01

    Full Text Available This paper uses the results of river suspended sediment flux (SSF analysis to propose a new hydrological method for quantitatively estimating the river bed and drainage basin (sheet erosion, rill and gully erosion components of total erosion intensity in river basins. The suggested method is based on the establishment of the functional power connection between mean monthly water discharges (WD, Q i and suspended sediment fluxes (r i calculated for the low-water-discharge phases of a river?s hydrological regime in various (on mean annual water discharges years: r i = a×Q i (where a, ì are some empirical coefficients, and further extrapolation of this connection for other phases of the hydrological regime. Thus, the extrapolation allows us to calculate (in a long-term annual SSF the proportions of sediments originating in river beds and drainage basins. The proposed method is tested using a long-term (not less than 10 years series of observations for WD and SSF of 124 chiefly small and midsize rivers of the East-European plain, the Urals, the Eastern Carpathians, the Ciscaucasia and the Caucasus, and Central Asian mountains, containing data on the mean monthly values of WD and SSF. The paper also compares the method with other methods for estimating the components of erosion intensity and SSF..

  15. Transport and Retention of Nitrogen, Phosphorus and Carbon in North America’s Largest River Swamp Basin, the Atchafalaya River Basin

    Directory of Open Access Journals (Sweden)

    Y. Jun Xu

    2013-04-01

    Full Text Available Floodplains and river corridor wetlands may be effectively managed for reducing nutrients and carbon. However, our understanding is limited to the reduction potential of these natural riverine systems. This study utilized the long-term (1978–2004 river discharge and water quality records from an upriver and a downriver location of the Atchafalaya River to quantify the inflow, outflow, and inflow–outflow mass balance of total Kjeldahl nitrogen (TKN = organic nitrogen + ammonia nitrogen, nitrate + nitrite nitrogen (NO3 + NO2, total phosphorous (TP, and total organic carbon (TOC through the largest river swamp basin in North America. The study found that, over the past 27 years, the Atchafalaya River Basin (ARB acted as a significant sink for TKN (annual retention: 24%, TP (41%, and TOC (12%, but a source for NO3 + NO2 nitrogen (6%. On an annual basis, ARB retained 48,500 t TKN, 16,900 t TP, and 167,100 t TOC from the river water. The retention rates were closely and positively related to the river discharge with highs during the winter and spring and lows in the late summer. The higher NO3 + NO2 mass outflow occurred throughout spring and summer, indicating an active role of biological processes on nitrogen as water and air temperatures in the basin rise.

  16. Use of narrative scenarios for evaluating drought management responses in the Upper Colorado River Basin (Invited)

    Science.gov (United States)

    Wilby, R. L.; Miller, K.; Yates, D. N.; Kaatz, L.

    2013-12-01

    Drought and water scarcity are already recurrent features of the Upper Colorado River Basin. Climate model projections (such as CMIP3 and CMIP5) show large uncertainty in future precipitation and river flow for the region. However, there is consensus amongst the models that air temperatures will rise, implying earlier and shorter melt seasons, increased risk of wildfire, outbreak of mountain pine beetle die back, and changing in-stream habitat over coming decades. Hence, future water supply and demand planning must be sufficiently flexible to accommodate multiple, uncertain, and interacting stressors on the water system. This paper describes a decision-centered approach for evaluating drought management options under changed climate conditions, taking into account other co-stressors. The framework comprises three main elements: 1) a model of the water collection and rights system; 2) adaptation options for maintaining overall water for supply; and 3) plausible narratives of future conditions for stress-testing the system/option set configuration. We demonstrate our approach using the Colorado River to Glenwood Springs as a case study. The Water Evaluation And Planning (WEAP) model was selected as a parsimonious tool for rapid appraisal of the Shoshone Call Relaxation Agreement (SCRA) under various narrative scenarios. The SCRA allows relaxation of a senior water right at Shoshone power plant when upstream reservoir storage is forecast to be below 80% and April-July flow in the Colorado is expected to be less than 85% of average. An extended call relaxation may be triggered when a domestic lawn water ban has been invoked by the Denver Board of Water Commissioners. These measures are designed to enable capture of more spring melt to maintain overall volumetric water entitlements regardless of climate variability and change. The SCRA was assessed in terms of frequency of trigger conditions, volume of water stored, and amount of water that is potentially harvested by varying the window of the call relaxation period. Stress tests were applied using combinations of higher air temperatures, single and multi-season precipitation anomalies, partial burn or die back of forest areas in headwater basins, and dust on snowpack events. Temperature and precipitation scenarios were informed by evidence from palaeoclimatic reconstructions, climate model experiments, and regional downscaling. WEAP parameters were adjusted in transparent and physically plausible ways to represent the effects of indirect climate stressors. Overall, the Shoshone case study shows the extent to which increased ';rule flexibility' could yield greater water supply certainty despite climate variability and change. More generally, we demonstrate how decision-centered and narrative approaches can strengthen water planning and adaptation despite large uncertainty about future stressors on river basin properties.

  17. Water Accounting Plus for Water Resources Reporting and River Basin Planning:

    OpenAIRE

    P. Karimi

    2014-01-01

    This thesis introduces Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. WA+ is a simple, yet comprehensive and understandable water accounting framework that provides a standardized way of data collection and a presentation system that describes the overall land and water management situation in complex river basins. WA+ tracks water depletions rather than withdrawals...

  18. Water Framework Directive and Nature Conservation: Review of River Basin Management Planning in Germany

    OpenAIRE

    SCHMIDT Catrin; Wendler, Wiebke; STRATMANN Lars; ALBRECHT Juliane; Hofmann, Martin

    2012-01-01

    By the end of 2009, programmes of measures and river basin management plans under the European Water Framework Directive (WFD) had for the first time been set up for all 10 river basin districts inGermany. They provide the water management planning tools for achieving good status of surface and groundwater by 2015. Since a good ecological status for many water bodies cannot be attained by this deadline, the Directive provides for two supplementary planning cycles running to 2021 and 2027 resp...

  19. Universal Multifractal description applied to precipitation pattern in the Ebro River Basin

    OpenAIRE

    Valencia Delfa, José Luis; Saa Requejo, Antonio; Gascó Montes, José María; Tarquis Alfonso, Ana Maria

    2010-01-01

    Water supplies in the Ebro River Basin are increasingly stressed, especially during the summer season. The year-to-year fluctuations in rainfall over this area exert vital influence on the regional hydrology, agriculture and several related industries in the region. Repeated anomalous rainfall in recent decades has had a devastating impact on this region, both socially and economically. We characterised the change in the rainfall variability pattern in the Ebro River Basin using universal mul...

  20. MORPHOMETRIC ANALYSIS AND PRIORITIZATION OF WATERSHED FOR SOIL RESOURCE MANAGEMENT IN YERALA RIVER BASIN

    OpenAIRE

    R. S. Shikalgar

    2013-01-01

    The development of morphometric techniques was a major advance in the quantitative description of thegeometry of the drainage basins and its network. Watershed prioritization on the basis of morphometric parametersis necessary in order to develop a sustainable watershed management plan. The present study aims to assess thelinear and shape morphometric parameters and prioritization of twenty three sub-watersheds of Yerala river basinfor soil resource management. Yerala river basin has an area ...

  1. Real-time remote sensing driven river basin modeling using radar altimetry

    OpenAIRE

    Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-Gottwein, Peter; Berry, P. A. M.; SMITH, R.G.; Yakovlev, A.; Siegfried, T.U.

    2011-01-01

    Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models. In this study, we evaluate the potential of informing a river basin model with real-time rada...

  2. Real-time remote sensing driven river basin modelling using radar altimetry

    OpenAIRE

    S. J. Pereira-Cardenal; N. D. Riegels; Berry, P. A. M.; SMITH, R.G.; Yakovlev, A.; Siegfried, T.U.; P. Bauer-Gottwein

    2010-01-01

    Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models.

    In this study, we evaluate the potential of informing a river basin mode...

  3. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale

    DEFF Research Database (Denmark)

    Riegels, Niels; Jensen, Roar; Benasson, Lisa; Banou, Stella; Møller, Flemming; Bauer-Gottwein, Peter

    2011-01-01

    Resource costs of meeting EU WFD ecological status requirements at the river basin scale are estimated by comparing net benefits of water use given ecological status constraints to baseline water use values. Resource costs are interpreted as opportunity costs of water use arising from water scarcity. An optimization approach is used to identify economically efficient ways to meet WFD requirements. The approach is implemented using a river basin simulation model coupled to an economic post-proces...

  4. Evaluation of Groundwater Chemistry of a Central Kerala River Basin, India using Multivariate Analysis

    OpenAIRE

    Girish Gopinath; Resmi T. R.

    2011-01-01

    Statistical processing of data was necessary to arrive at a reasonable conclusion regarding the chemical behavior of groundwater in a river basin. Multivariate analysis was done to elucidate the groundwater chemistry of a Central Kerala River basin. Hydrochemical parameters like EC, pH, TDS, TH, Ca, Mg, Na, K, Cl, F, HCO 3 +CO 3 , SO 4 , total Fe were estimated in the pre- monsoon and post-monsoon seasons. Factor and cluster analysis differentiated two distinct contributing components to the ...

  5. Effects of climate change and human activities on runoff in the Nenjiang River Basin, Northeast China

    OpenAIRE

    Dong, L. Q.; Zhang, G. X.(Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China); Y. J. Xu

    2012-01-01

    The Nenjiang River Basin (NRB) is an important grain-production region with abundant wetlands in Northeast China. Climate change and anthropogenic activities have dramatically altered the spatial and temporal distribution of regional stream discharge and water resources, which poses a serious threat to wetland ecosystems and sustainable agriculture. In this study, we analyzed 55-yr (1956–2010) rainfall and runoff patterns in the river basin to quantitatively evaluate the impact of human ...

  6. Real-time remote sensing driven river basin modeling using radar altimetry

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-Gottwein, Peter; Berry, P.A.M.; Smith, R.G.; Yakovlev, A.; Siegfried, T.U.

    2011-01-01

    Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote and poorly monitored areas and are increasingly used to force, calibrate, and update hydrological models. In this study, we evaluate the potential of informing a river basin model with real-time radar a...

  7. Sustainable Development in Transboundary Water Resource Management : A Case Study of the Mekong River Basin

    OpenAIRE

    Kim, Kyungmee

    2011-01-01

    Global climate change, environmental degradation and demographic changes has emphasizedthe sustainable development of Mekong river basin. The research uses the theoreticalframework that sustainable development in the transboundary water resource management ismost likely to be achieved through the policy making based on the ‘regional approach’ andthe ‘alternative development strategy.’ The aim of this research is to investigate themanagement of Mekong river basin within the theoretical framewo...

  8. A contribution to drinking water sources protection strategies in a portuguese river basin

    OpenAIRE

    Vieira, J. M. Pereira; Duarte, António A. L. Sampaio; Pinho, José L. S.; Boaventura, Rui A. Rocha

    1999-01-01

    The need and growing interest on raw water sources protection is a great concern in river basin planning and management. Problems related to drinking water sources can range from shortage of water to water quality degradation mainly due to intensive urbanisation and industrial policies as well as uncontrolled agricultural practices. The river Cavado basin, located in the north-western region of Portugal, has a very intensive use for water supply, irrigation and hydropower generation. N...

  9. Use of Precipitation - Runoff Models to Generate Hydrologic Scenarios in a High-altitude Andean Basin of the Ecuadorian Amazon Region. Case study of the Quijos River Basin.

    Science.gov (United States)

    Galarraga, R.; McClain, M.; Ortega, F.; Estacio, A.; Febres, A.

    2007-05-01

    Little is known of the hydrology and meteorology of the expansive Andean Amazon region in South America, which extends for approximately 600.000 Km2 and represents around the 10% of the total Amazon region. Climatic processes that occur in the Andean part of the Amazon influence the middle and lower parts of the Amazon Region. Consequently, there is a need to understand the hydro-climatic characteristics in the high lands of the Andean Amazon. Understanding hydrologic processes in the Andean Amazon is challenged by the lack of hydro meteorological data at all levels. Especially challenging is the absence of data at the appropriate scale for adequate calibration and verification of mathematical models, mainly for understanding precipitation - runoff of high altitude watersheds located on the western most part of the Amazon. The study area is located on the upper part of the Napo River named the Quijos river basin after the junction of the Oyacachi River with a surface area of about 2.500,00 Km2. It is composed mainly of high altitude lands named Paramo, Andean grass lands, primary cloudy forest known for their high water retention and regulatory capacity. The models used in the Quijos river basin in the upper part of the Amazon region of Ecuador are precipitation-runoff models widely used around the world. The Simulator for Water Resources in Rural Basins - Water Quality (SWRRBWQ ) (Arnold et. al. 1990, Williams et. al. 1985), works on a daily time steps basis with daily values of meteorological data both observed in the field or generated by the model, and by sub diving the main basin into a suitable number of sub basins with a meteorological station in it The second model used is the Hydrologic Modeling System from the Hydrologic Engineering Center which is a precipitation - runoff model run at a daily basis as well. Input data sets are basic climate data as precipitation, evapotranspiration, temperature, relative humidity basin wide at daily basis; land cover, soil type, soil characteristics, hydrographic characteristics, as well as registered discharge information in several control points of the basin, that were used for calibration purposes. Several runs of the models were done in order to assess parameter sensibility of the models using appropriate parameter for each case. Calibration for the two models were done for a period where enough information exists even though the time record for verification purposes is well ahead of time so it is assumed that basin wide conditions have not change in time. Three hydrologic scenarios for future discharge prediction based on conservation policies, urbanization, deforestation, or land use change on the area were generated by using HEC-HMS model for the January 1984 - December 1987 period because of its better performance in comparison to the SWRRBWQ model. Scenarios one and two showed almost no difference with the original discharge but scenario three showed an increase in water discharge with time. Results show that in high altitude basins the HEC-HMS performs better than SWRRBWQ model in determining mainly peak discharges but differed in reproducing the total volume of run-off, keeping a good agreement to reproduce seasonality patterns of water discharge. Better information of basin wide characteristics like soil antecedent moisture conditions, land cover, and surface albedo during the calibration period is needed in order to improve model results mainly in volume discharge.

  10. The fish fauna in tropical rivers: the case of the Sorocaba River basin, São Paulo, Brazil.

    Science.gov (United States)

    Smith, Welber Senteio; Petrere Júnior, Miguel; Barrella, Walter

    2003-01-01

    A survey was carried out on the fish species in the Sorocaba River basin, the main tributary of the left margin of the Tietê River, located in the State of São Paulo, Brazil. The species were collected with gill nets. After identification of the specimens, their relative abundance, weight and standard length were determined. Up to the present moment there are not any studies that focus this subject in this hydrographic basin. Fifty-three species, distributed in eighteen families and six orders were collected. Characiformes were represented by twenty-eight species, Siluriformes by seventeen species, the Gymnotiformes by three species, Perciformes and Cyprinodontiformes by two species, and the Synbranchiformes by one species. Among the collected species there were two exotic. The most abundant species were Astyanax fasciatus and Hypostomus ancistroides. In relation to total weight the most representative species were Hoplias malabaricus and Hypostomus ancistroides. Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus and Hoplias malabaricus were the most representative species in relation to average weight. Largest standard length were recorded for Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia aff. virescens and Cyprinus carpio. PMID:15162785

  11. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  12. Uranium isotopic investigations and radiocarbon measurements of river-groundwater systems, Sabarmati basin, Gujarat, India

    International Nuclear Information System (INIS)

    Measurements of uranium concentrations, 234U/238U activity ratios along the Sabarmati river and adjacent phreatic aquifers and radiocarbon in confined aquifers in the Watrak-Shedi sub-basin, part of Sabarmati basin, have been carried out. The uranium isotope distributions show marked seasonal variations in river waters, whereas they are within experimental uncertainties in the groundwaters adjacent to the river bed. The observed seasonal variations indicate the presence of a groundwater component in Sabarmati river, and its contribution to the total river flow appears to be maximum during summer. Apparent radiocarbon ages of confined aquifers in Watrak-Shedi sub-basin show that the groundwater flow is in the NE-SW direction with a velocity of 6-7 m/a. (orig.)

  13. Uranium isotopic investigations and radiocarbon measurements of river-groundwater systems, Sabarmati Basin, Gujarat, India

    International Nuclear Information System (INIS)

    Measurements of uranium concentrations, and 234U/238U activity ratios along the Sabarmati River and adjacent phreatic aquifers, and radiocarbon in confined aquifers in the Watrak-Shedi sub-basin, part of the Sabarmati basin, have been carried out. The uranium isotope distributions show marked seasonal variations in river waters, whereas they are within experimental uncertainties in the groundwaters adjacent to the river bed. The observed seasonal variations indicate the presence of a groundwater component in the Sabarmati River, and its contribution to the total river flow appears to be maximum during summer. Apparent radiocarbon ages of confined aquifers in the Watrak-Shedi sub-basin show that the groundwater flow is in the NE-SW direction with a velocity of 6-7m/a. (author)

  14. Sediment supply as a driver of river evolution in the Amazon Basin

    Science.gov (United States)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river meandering: a review of progress in theory and modelling. Earth Surface Processes and Landforms, 36(1), 20-38.

  15. Assessing the Resilience of a River Management Regime: Informal Learning in a Shadow Network in the Tisza River Basin

    Directory of Open Access Journals (Sweden)

    Geza Molnar

    2008-06-01

    Full Text Available Global sources of change offer unprecedented challenges to conventional river management strategies, which no longer appear capable of credibly addressing a trap: the failure of conventional river defense engineering to manage rising trends of disordering extreme events, including frequency and intensity of floods, droughts, and water stagnation in the Hungarian reaches of the Tisza River Basin. Extreme events punctuate trends of stagnation or decline in the ecosystems, economies, and societies of this river basin that extend back decades, and perhaps, centuries. These trends may be the long-term results of defensive strategies of the historical river management regime that reflect a paradigm dating back to the Industrial Revolution: "Protect the Landscape from the River." Since then all policies have defaulted to the imperatives of this paradigm such that it became the convention underlying the current river management regime. As an exponent of this convention the current river management regimes' methods, concepts, infrastructure, and paradigms that reinforce one another in setting the basin's development trajectory, have proven resilient to change from wars, political, and social upheaval for centuries. Failure to address the trap makes the current river management regime's resilience appear detrimental to the region's future development prospects and prompts demand for transformation to a more adaptive river management regime. Starting before transition to democracy, a shadow network has generated multiple dialogues in Hungary, informally exploring the roots of this trap as part of a search for ideas and methods to revitalize the region. We report on how international scientists joined one dialogue, applying system dynamics modeling tools to explore barriers and bridges to transformation of the current river management regime and develop the capacity for participatory science to expand the range of perspectives that inform, monitor, and revise learning, policy, and the practice of river management.

  16. Framework design for remote sensing monitoring and data service system of regional river basins

    Science.gov (United States)

    Fu, Jun'e.; Lu, Jingxuan; Pang, Zhiguo

    2015-08-01

    Regional river basins, transboundary rivers in particular, are shared water resources among multiple users. The tempo-spatial distribution and utilization potentials of water resources in these river basins have a great influence on the economic layout and the social development of all the interested parties in these basins. However, due to the characteristics of cross borders and multi-users in these regions, especially across border regions, basic data is relatively scarce and inconsistent, which bring difficulties in basin water resources management. Facing the basic data requirements in regional river management, the overall technical framework for remote sensing monitoring and data service system in China's regional river basins was designed in the paper, with a remote sensing driven distributed basin hydrologic model developed and integrated within the frame. This prototype system is able to extract most of the model required land surface data by multi-sources and multi-temporal remote sensing images, to run a distributed basin hydrological simulation model, to carry out various scenario analysis, and to provide data services to decision makers.

  17. Causes of Variations in Water Quality and Aquatic Ecology in Rivers of the Upper Mississippi River Basin, Minnesota and Wisconsin

    Science.gov (United States)

    Stark, James R.

    1996-01-01

    Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.

  18. The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results

    Science.gov (United States)

    de Sherbinin, A. M.; Glennie, P.

    2014-12-01

    The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.

  19. EVALUATING POINT-NONPOINT SOURCE WATER QUALITY TRADING IN A RARITAN RIVER BASIN SUB-WATERSHED

    Science.gov (United States)

    This project addresses water quality issues in the Raritan River Basin of New Jersey. It will build upon an existing study that determined the technical feasibility of implementing a point-nonpoint source water quality trading program in the Basin. Water quality trading is ...

  20. Enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins: experiences from the Lower Mekong River Basin

    OpenAIRE

    Douven, W.; Mul, M.L.; B. F. Álvarez; L. H. Son; N. Bakker; Radosevich, G.; Van der Zaag, P.

    2012-01-01

    This paper analyses the design and impact of capacity building programmes aimed at enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins. Case study is a programme developed by the Mekong River Commission (MRC). A post training evaluation was applied to assess its impact in terms of individual capacity enhancement and change (use and application of knowledge, factors hampering application, and change in function and opport...

  1. Enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins: Experiences from the Lower Mekong River Basin:

    OpenAIRE

    Douven, W.; Mul, M.L.; B. Fernández-Álvarez; Lam Hung, S.; N. Bakker; Radosevich, G.; Van der Zaag, P.

    2012-01-01

    This paper analyses the design and impact of capacity building programmes aimed at enhancing capacities of riparian professionals to address and resolve transboundary issues in international river basins. The case study is a programme developed by the Mekong River Commission (MRC). A post-training evaluation was applied to assess its impact in terms of individual capacity enhancement and change (use and application of knowledge, factors hampering application, and change in function and opport...

  2. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    Science.gov (United States)

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    This study provides information on channel and flood-plain processes and historical trends to guide effective restoration and monitoring strategies for the Sprague River Basin, a primary tributary (via the lower Williamson River) of Upper Klamath Lake, Oregon. The study area covered the lower, alluvial segments of the Sprague River system, including the lower parts of the Sycan River, North Fork Sprague River, South Fork Sprague River, and the entire main-stem Sprague River between the confluence of the North Fork Sprague and the South Fork Sprague Rivers and its confluence with the Williamson River at Chiloquin, Oregon. The study included mapping and stratigraphic analysis of flood-plain deposits and flanking features; evaluation of historical records, maps and photographs; mapping and analysis of flood-plain and channel characteristics (including morphologic and vegetation conditions); and a 2006 survey of depositional features left by high flows during the winter and spring of 2005–06.

  3. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    U.S. Geological Survey

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  4. LIVING WITH FLOOD AND SUSTAINABLE LIVELIHOOD DEVELOPMENT IN LOWER BRAHMAPUTRA RIVER BASIN, ASSAM

    Directory of Open Access Journals (Sweden)

    R. B. Singh

    2014-04-01

    Full Text Available River basin is considered as the basic hydrologic unit for planning and development of water resources and livelihood. Assam's Brahmaputra valley represents one of the most acutely hazard-prone regions in the country, having a total flood prone area of 3.2 million hectare. The lower Brahmaputra basin, Assam has caused the hazards of annual floods and erosion, bringing misery to the people and shattering the fragile agro-economic base of the region. The important factors causing floods in Assam are heavy rainfall, inadequate capacity of river, severe soil erosion, river bed silting, landslides, earthquakes, poor drainage, deforestation and practice of shifting cultivation or Jhoom as well as physical and anthropogenic causes. This paper focuses on the managing floods through specific structural measures such as reservoirs, embankments, channel improvement, town protection, river turning works, watershed management, inter-basin transfer, bank protection and anti-erosion work. Nonstructural methods to control the floods and soil erosion should be through flood forecasting, flood plain zoning, changing cropping pattern and public participation in management works. The paper also provides various flood mitigation processes for the challenges faced in the lower Brahmaputra basin, Assam for sustainable development. This paper mainly focuses on measurement of vulnerability and identification of vulnerable issues of Lower Brahmaputra basin with respect to various magnitude levels. The present study attempts to formulate a kind of sustainable livelihood development strategy for the development of lower Brahmaputra river basin, Assam. An analysis of major resources as well as critical problems has been done in order to identify the potential and challenges for the river basin, so that a sustainable development strategy can be formulated. It has been attempted to look into the integration at the spatial, sectoral and institutional level, while identifying the sustainable strategy for river basin, Assam.

  5. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  6. Elements for an integrated resource planning in the framework of river basins: a study for the Cuiaba River Basin; Elementos para um planejamento integrado de recursos no ambito de bacias hidrograficas: um estudo para a bacia do rio Cuiaba

    Energy Technology Data Exchange (ETDEWEB)

    Dorileo, Ivo Leandro; Bajay, Sergio Valdir [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico. Dept. de Energia], e-mail: ildorileo@sigmanet.com.br, e-mail: bajay@fem.unicamp.br

    2008-07-01

    A new approach in energy planning in Brazil, IRP - Integrated Resources Planning for River Basins, gathers three main determinants of development: water, electricity and piped gas. This paper argues, briefly, the need of this planning, of indicative character, integrated with the River Basin Plans, and it presents a retrospective analysis concerning water, electricity and LPG demands of the economy sectors from Cuiaba River Basin region, priority elements to aid the prospective studies and to carry out process related to the IRP. (author)

  7. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, S.L.; McMichael, Geoffrey A.; Neitzel, D.A.

    1999-12-01

    Pacific Northwest National Laboratory (PNNL) evaluated 19 Phase II screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. The sites were examined to determine if they were being effectively operated and maintained to provide fish a safe, efficient return to the Yakima River.

  8. Spatial Misfit in Participatory River Basin Management: Effects on Social Learning, a Comparative Analysis of German and French Case Studies

    Directory of Open Access Journals (Sweden)

    Bernhard Barraqué

    2008-06-01

    Full Text Available With the introduction of river basin management, as prescribed by the European Water Framework Directive (WFD, participatory structures are frequently introduced at the hydrological scale without fully adapting them to the decision-making structure. This results in parallel structures and spatial misfits within the institutional settings of river basin governance systems. By analyzing French and German case studies, we show how social learning (SL is impeded by such misfits. We also demonstrate that river basin-scale institutions or actors that link parallel structures are essential for promoting river basins as management entities, and for encouraging SL between actors at the river basin scale. In the multi-scale, multi-level settings of river basin governance, it is difficult to fully exclude spatial misfits. Thus, it is important to take our insights into account in the current transition of water management from the administrative to the hydrological scale to get the greatest benefit from SL processes.

  9. Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010

    Science.gov (United States)

    Nystrom, Elizabeth A.

    2012-01-01

    Water samples were collected from 10 production and domestic wells in the Delaware River Basin in New York and from 20 production and domestic wells in the St. Lawrence River Basin in New York from August through November 2010 to characterize groundwater quality in the basins. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria.

  10. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  11. Environmental arsenic epidemiology in the Mekong river basin of Cambodia.

    Science.gov (United States)

    Phan, Kongkea; Kim, Kyoung-Woong; Hashim, Jamal Hisham

    2014-11-01

    We investigated relationship of arsenicosis symptoms with total blood arsenic (BAs) and serum albumin (SAlb) of residents in the Mekong River basin of Cambodia. We found that arsenicosis patients had significantly higher BAs and lower SAlb than asymptomatic villagers (Mann-Whitney U test, pArsenicosis symptoms were found to be 76.4% (1.764 times) more likely to develop among individuals having an SAlb?44.3gL(-1) than among those who had an SAlb>44.3gL(-1) (OR=1.764, 95% CI=0.999-3.114) and 117.6% (2.176 times) as likely to occur among those with BAs>5.73µgL(-1) than for those having BAs?5.73µgL(-1) (OR=2.176, 95% CI=1.223-3.872). Furthermore, a significant negative correlation was also found between BAs and SAlb (rs (199)=-0.354, parsenicosis symptoms. PMID:25262072

  12. Pyomyositis in the upper Negro river basin, Brazilian Amazonia

    DEFF Research Database (Denmark)

    Borges, Alvaro Humberto Diniz; Faragher, Brian

    2012-01-01

    Pyomyositis remains poorly documented in tropical Latin America. We therefore performed a retrospective review of cases admitted to a hospital in the upper Negro river basin during 2002-2006. Seasonality was assessed by the cosinor model and independent predictors of outcome were identified by logistic regression. Determinants of time-to-fever resolution were analysed using Cox regression. No seasonal trend was observed (p=0.284) among 82 hospitalised patients. The disease predominated in young males and the most commonly affected part of the body was the lower limb (68 [63.5%] out of 107 lesions). Staphylococcus aureus was the only identified infecting organism (18 of 20 culture results, 90%). Complications occurred in 17 patients (20.7%) and the case fatality rate was 2.4%. Children were more likely to present with eosinophilia than adults (OR= 4.20, 95% CI 1.08-16.32, p=0.048), but no other significant differences regarding clinical presentation and outcomes were observed. The time-to-fever resolution was the only independent determinant of poor outcome (OR=1.52, 95% CI 1.22-1.92, p

  13. Pyomyositis in the upper Negro river basin, Brazilian Amazonia.

    Science.gov (United States)

    Borges, Alvaro H D; Faragher, Brian; Lalloo, David G

    2012-09-01

    Pyomyositis remains poorly documented in tropical Latin America. We therefore performed a retrospective review of cases admitted to a hospital in the upper Negro river basin during 2002-2006. Seasonality was assessed by the cosinor model and independent predictors of outcome were identified by logistic regression. Determinants of time-to-fever resolution were analysed using Cox regression. No seasonal trend was observed (p=0.284) among 82 hospitalised patients. The disease predominated in young males and the most commonly affected part of the body was the lower limb (68 [63.5%] out of 107 lesions). Staphylococcus aureus was the only identified infecting organism (18 of 20 culture results, 90%). Complications occurred in 17 patients (20.7%) and the case fatality rate was 2.4%. Children were more likely to present with eosinophilia than adults (OR= 4.20, 95% CI 1.08-16.32, p=0.048), but no other significant differences regarding clinical presentation and outcomes were observed. The time-to-fever resolution was the only independent determinant of poor outcome (OR=1.52, 95% CI 1.22-1.92, p<0.001) and was significantly longer in patients treated with combined antibiotic therapy than in those treated with single antibiotics (HR=0.523, 95% CI 0.296-0.926, p=0.026). Further studies to determine the best antibiotic therapy modality for the treatment of pyomyositis are required. PMID:22819770

  14. Lumped conceptual hydrological model for Purna river basin, India

    Indian Academy of Sciences (India)

    V D Loliyana; P L Patel

    2015-12-01

    In present study, a lumped conceptual hydrological model, NAM (MIKE11), is calibrated while optimizing the runoff simulations on the basis of minimization of percentage water balance (% WBL) and root mean square error (RMSE) using measured stream flow data of eight years from 1991 to 1998 for Yerli catchment (area = 15,701 km2) of upper Tapi basin, Maharashtra in Western India. The sensitivity of runoff volume and peak-runoff has been undertaken with reference to nine NAM parameters using the data of calibration period. The runoff volume and peak-runoff have been found to be highly sensitive with reference to maximum water content in root zone storage (Lmax) and overland flow coefficient (CQOF) respectively. On the other hand, runoff volume is found to be moderately sensitive with maximum water content in surface storage (Umax). The calibrated model has been validated for independent stream flow data of Yerli gauging site for years 2001–2004, and Gopalkheda gauging site for years 1991–1998 and 2001–2004. The model performance has been assessed using statistical performance indices, and compared the same with their yardsticks suggested in published literature. The simulated results demonstrated that calibrated model is able to simulate hydrographs satisfactorily for Yerli (NSE = 0.86–0.88, r = 0.93–0.96, EI = 1.05–1.12) as well as Gopalkheda subcatchments (NSE = 0.76–0.92 and r = 0.88–0.96, EI = 0.89–0.91) at monthly time scale. The model also performs reasonably well in simulating the annual hydrographs at daily time scale. The calibrated model may be useful in prediction of water yield and flooding conditions in the Purna catchment.

  15. Assessing Management Regimes in Transboundary River Basins: Do They Support Adaptive Management?

    Directory of Open Access Journals (Sweden)

    Eduard Interwies

    2008-06-01

    Full Text Available River basin management is faced with complex problems that are characterized by uncertainty and change. In transboundary river basins, historical, legal, and cultural differences add to the complexity. The literature on adaptive management gives several suggestions for handling this complexity. It recognizes the importance of management regimes as enabling or limiting adaptive management, but there is no comprehensive overview of regime features that support adaptive management. This paper presents such an overview, focused on transboundary river basin management. It inventories the features that have been claimed to be central to effective transboundary river basin management and refines them using adaptive management literature. It then collates these features into a framework describing actor networks, policy processes, information management, and legal and financial aspects. Subsequently, this framework is applied to the Orange and Rhine basins. The paper concludes that the framework provides a consistent and comprehensive perspective on transboundary river basin management regimes, and can be used for assessing their capacity to support adaptive management.

  16. Spatial and temporal variations in the occurrences of wet periods over major river basins in India

    Indian Academy of Sciences (India)

    N R Deshpande; N Singh

    2010-10-01

    This study highlights the hydro-climatic features of the ?ve wet periods contributing in different percentages to the annual rainfall total over major river basins in India.Spatial and temporal variations in the parameters such as starting date,duration and rainfall intensity of these wet periods throughout India have been discussed using daily gridded rainfall data for the period 1951 –2007.An attempt is also made here,to assess the impact of global SSTs on the start and duration of the wet periods in Indian river basins. It is observed that,for almost all river basins in India,the 10%wet period occurs in the months of July/August with an average duration of 1 –3 days and rainfall intensity varying from 44 to 89 mm/day.The duration of the wet period contributing 90%to the annual rainfall varies from 112 days in the central parts of India to 186 days in the northern parts of the country.Signi ?cant increase in the rainfall intensity has been observed in the case of some river basins of central India. The late start of 75%wet period along the West Coast and in peninsular river basins has been observed with increase in Nino 3.4 SSTs (MAM),while increase in the duration of the 75%wet period over the Krishna basin is associated with increase in Nino 3.4 SSTs (concurrent JJAS).

  17. The Role of Cooperation and Information Exchange in Transnational River Basins: the Zambezi River case

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Soncini-Sessa, R.

    2012-12-01

    The presence of multiple, institutionally independent but physically interconnected decision-makers is a distinctive features of many water resources systems, especially of transnational river basins. The adoption of a centralized approach to study the optimal operation of these systems, as mostly done in the water resources literature, is conceptually interesting to quantify the best achievable performance, but of little practical impact given the real political and institutional setting. Centralized management indeed assumes a cooperative attitude and full information exchange by the involved parties. However, when decision-makers belong to different countries or institutions, it is very likely that they act considering only their local objectives, producing global externalities that negatively impact on other objectives. In this work we adopt a Multi-Agent Systems framework, which naturally allows to represent a set of self-interested agents (decision-makers and/or stakeholders) acting in a distributed decision-making process. According to this agent-based approach, each agent represents a decision-maker, whose decisions are defined by an explicit optimization problem considering only the agent's local interests. In particular, this work assesses the role of information exchange and increasing level of cooperation among originally non-cooperative agents. The Zambezi River basin is used to illustrate the methodology: the four largest reservoirs in the basin (Ithezhithezhi, Kafue-Gorge, Kariba and Cahora Bassa) are mainly operated for maximizing the economic revenue from hydropower energy production with considerably negative effects on the aquatic ecosystem in the Zambezi delta due to the alteration of the natural flow regime. We comparatively analyse the ideal centralized solution and the current situation where all the decision-makers act independently and non-cooperatively. Indeed, although a new basin-level institution called Zambezi Watercourse Commission (ZAMCON) should be established in the next future, Zambia recently refused to sign and ratify the ZAMCON Protocol and the road toward a fully cooperative framework is still long. Results show that increasing levels of information exchange can help in mitigating the conflict generated by a non-cooperative setting as it allows the downstream agents, i.e. Mozambique country, to better adapt to the upstream management strategies. Furthermore, the role of information exchange depends on the considered objectives and it is particularly relevant for environmental interests.

  18. Contaminants of emerging concern in the lower Stillaguamish River Basin, Washington, 2008-11

    Science.gov (United States)

    Wagner, Richard J.; Moran, Patrick W.; Zaugg, Steven D.; Sevigny, Jennifer M.; Pope, Judy M.

    2014-01-01

    A series of discrete water-quality samples were collected in the lower Stillaguamish River Basin near the city of Arlington, Washington, through a partnership with the Stillaguamish Tribe of Indians. These samples included surface waters of the Stillaguamish River, adjacent tributary streams, and paired inflow and outflow sampling at three wastewater treatment plants in the lower river basin. Chemical analysis of these samples focused on chemicals of emerging concern, including wastewater compounds, human-health pharmaceuticals, steroidal hormones, and halogenated organic compounds on solids and sediment. This report presents the methods used and data results from the chemical analysis of these samples.

  19. River Modeling in Large and Ungauged Basins: Experience of Setting up the HEC RAS Model over the Ganges-Brahmaputra-Meghna Basins

    Science.gov (United States)

    Hossain, F.; Maswood, M.

    2014-12-01

    River modeling is the processing of setting up a physically-based hydrodynamic model that can simulate the water flow dynamics of a stream network against time varying boundary conditions. Such river models are an important component of any flood forecasting system that forecasts river levels in flood prone regions. However, many large river basins in the developing world such as the Ganges, Brahmaputra, Meghna (GBM), Indus, Irrawaddy, Salween, Mekong and Niger are mostly ungauged. Such large basins lack the necessary in-situ measurements of river bed depth/slope, bathymetry (river cross section), floodplain mapping and boundary condition flows for forcing a river model. For such basins, proxy approaches relying mostly on remote sensing data from space platforms are the only alternative. In this study, we share our experience of setting up the widely-used 1-D river model over the entire GBM basin and its stream network. Good quality in-situ measurements of river hydraulics (cross section, slope, flow) was available only for the downstream and flood prone region of the basin, which comprises only 7% of the basin area. For the remaining 93% of the basin area, we resorted to the use of data from the following satellite sensors to build a workable river model: a) Shuttle Radar Topography Mission (SRTM) for deriving bed slope; b) LANDSAT/MODIS for updating river network and flow direction generated by elevation data; c) radar altimetry data to build depth versus width relationship at river locations; d) satellite precipitation based hydrologic modeling of lateral flows into main stem rivers. In addition, we referred to an extensive body of literature to estimate the prevailing baseline hydraulics of rivers in the ungauged region. We measured success of our approach by systematically testing how well the basin-wide river model could simulate river level dynamics at two measured locations inside Bangladesh. Our experience of river modeling was replete with numerous hurdles that we did not anticipate, and often required a change in plan. In this study we summarize these key hurdles faced and offer a step by step approach to setting up river models for large ungauged river basins. Such a guide can be useful for the community wishing to set up RAS type models in basins such as Niger, Mekong, Irrawaddy, Indus etc.

  20. Malheur River Basin cooperative bull trout/redband trout research project, annual report FY 1999; ANNUAL

    International Nuclear Information System (INIS)

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99

  1. Thermal effects of dams in the Willamette River basin, Oregon

    Science.gov (United States)

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  2. Conceptual model of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    Science.gov (United States)

    Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.

    2014-01-01

    The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area includes parts of Montana, North Dakota, South Dakota, and Wyoming in the United States and Manitoba and Saskatchewan in Canada. The glacial aquifer system is contained within glacial drift consisting primarily of till, with smaller amounts of glacial outwash sand and gravel deposits. The lower Tertiary and Upper Cretaceous aquifer systems are contained within several formations of the Tertiary and Cretaceous geologic systems, which are hydraulically separated from underlying aquifers by a basal confining unit. The lower Tertiary and Upper Cretaceous aquifer systems each were divided into three hydrogeologic units that correspond to one or more lithostratigraphic units. The period prior to 1960 is defined as the predevelopment period when little groundwater was extracted. From 1960 through 1990, numerous flowing wells were installed near the Yellowstone, Little Missouri and Knife Rivers, resulting in local groundwater declines. Recently developed technologies for the extraction of petroleum resources, which largely have been applied in the study area since about 2005, require millions of gallons of water for construction of each well, with additional water needed for long-term operation; therefore, the potential for an increase in groundwater extraction is high. In this study, groundwater recharge and discharge components were estimated for the period 1981–2005. Groundwater recharge primarily occurs from infiltration of rainfall and snowmelt (precipitation recharge) and infiltration of streams into the ground (stream infiltration). Total estimated recharge to the Williston and Powder River control volumes is 4,560 and 1,500 cubic feet per second, respectively. Estimated precipitation recharge is 26 and 15 percent of total recharge for the Williston and Powder River control volumes, respectively. Estimated stream infiltration is 71 and 80 percent of total recharge for the Williston and Powder River control volumes, respectively. Groundwater discharge primarily is to streams and springs and is estimated to be about 97 and 92 percent of total discharge for the W

  3. A water quality model for shallow river-lake systems and its application in river basin management

    OpenAIRE

    Kneis, David

    2007-01-01

    This work documents the development and application of a new model for simulating mass transport and turnover in rivers and shallow lakes. The simulation tool called 'TRAM' is intended to complement mesoscale eco-hydrological catchment models in studies on river basin management. TRAM aims at describing the water quality of individual water bodies, using problem- and scale-adequate approaches for representing their hydrological and ecological characteristics. The need for such flexible water ...

  4. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1997-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  5. Soil erosion assessment of a Himalayan river basin using TRMM data

    Science.gov (United States)

    Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.

    2015-04-01

    In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.

  6. Suspended-sediment transport in the Big Eau Pleine River Basin, central Wisconsin

    Science.gov (United States)

    Hindall, S.M.

    1978-01-01

    Suspended-sediment yields in the Big Eau Pleine River basin are low to moderate in comparison with other drainage basins in Wisconsin. Average annual yield in the Big Eau Pleine River near Stratford is 32.tons per square mile, with an annual yield ranging from 1.0 to 64 tons per square mile. Fenwood Creek at Bradley and Freeman Creek at Halder, two smaller tributary basins, have average annual yields of 3.3 and 7.9 tons per square mile, respectively. Suspended-sediment concentrations in the basin ranged from 0 to 960 milligrams per liter, with a median concentration at the Stratford site of 13 milligrams per liter. Ninety percent of the material transported by the streams of the Big Eau Pleine basin is finer than sand and is made up of about equal percentages of silt and clay.

  7. Impact of deforestation on local precipitation patterns over the Da River basin, Vietnam

    Science.gov (United States)

    Anghileri, Daniela; Spartà, Daniele; Castelletti, Andrea; Boschetti, Mirco

    2014-05-01

    Change in land cover, e.g. from forest to bare soil, might severely impact the hydrological cycle at the river basin scale by altering the balance between rainfall and evaporation, ultimately affecting streamflow dynamics. These changes generally occur over decades, but they might be much more rapid in developing countries, where economic growth and growing population may cause abrupt changes in landscape and ecosystem. Detecting, analysing and modelling these changes is an essential step to design mitigation strategies and adaptation plans, balancing economic development and ecosystem protection. In this work we investigate the impact of land cover changes on the water cycle in the Da River basin, Vietnam. More precisely, the objective is to evaluate the interlink between deforestation and precipitation. The case study is particularly interesting because Vietnam is one of the world fastest growing economies and natural resources have been considerably exploited to support after-war development. Vietnam has the second highest rate of deforestation of primary forests in the world, second to only Nigeria (FAO 2005), with associated problems like abrupt change in run-off, erosion, sediment transport and flash floods. We performed land cover evaluation by combining literature information and Remote Sensing techniques, using Landsat images. We then analysed time series of precipitation observed on the period 1960-2011 in several stations located in the catchment area. We used multiple trend detection techniques, both state-of-the-art (e.g., Linear regression and Mann-Kendall) and novel trend detection techniques (Moving Average on Shifting Horizon), to investigate trends in seasonal pattern of precipitation. Results suggest that deforestation may induce a negative trend in the precipitation volume. The effect is mainly recognizable at the beginning and at the end of the monsoon season, when the local mechanisms of precipitation formation prevail over the large scale ones.

  8. Regional Cooperation Efforts in the Mekong River Basin: Mitigating river-related security threats and promoting regional development

    Directory of Open Access Journals (Sweden)

    Susanne Schmeier

    2009-01-01

    Full Text Available The development of international rivers is often perceived as leading to conflicts or even water wars. However, as the development of the Mekong River shows, cooperation has not only prevailed in the last decades, but River Basin Organizations (RBOs, established to mitigate river-related conflicts and/or develop the river basin, have also contributed to the emergence of more general cooperation structures, mainly by creating spill-over effects in other issue-areas, bringing cooperation to policy fields beyond the river itself. This article assesses the contribution of the Mekong River Commission (MRC and the Greater Mekong Sub-Region (GMS to the sustainable development of the Mekong Region as well as to the promotion of regional cooperation in mainland South-East Asia in general. --- Die Entwicklung grenzu?berschreitender Flu?sse wird oft mit Konflikten oder gar Kriegen um Wasser assoziiert. Wie jedoch die Entwicklung im Mekong-Becken zeigt, waren die vergangenen Jahrzehnte nicht nur von Kooperation gezeichnet, sondern Flussbeckenorganisationen konnten außerdem dazu beitragen, weitreichendere Kooperationsstrukturen zu entwickeln, die sich auf andere Politikfelder ausdehnen. Dieser Artikel bescha?ftigt sich mit dem Beitrag der Mekong River Commission (MRC und der Greater Mekong Sub-Region (GMS zur nachhaltigen Entwicklung in der Mekong Region sowie zur Fo?rderung allgemeiner regionaler Kooperation im Festla?ndischen Su?dostasien.

  9. Simulated effects of climatic change on runoff and drought in the Delaware River Basin

    Science.gov (United States)

    Ayers, Mark A.; Tasker, Gary D.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.

    1990-01-01

    Various projection of climatic change were applied to watershed models of the Delaware River basin. Simulations indicate that a warming could reduce annual runoff by as much as 25 percent if current precipitation patterns continue. Simulations indicate that the largest changes in basin drought are in response to relatively small changes in precipitation. Basin drought was less sensitive to increases in temperature, reservoir capacity, ground-water pumpage during drought, and consumptive water use--in that order of importance. The effects of global warming on basin runoff and drought cannot be determined precisely, as yet, principally because of the unreliability of precipitation projections.

  10. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the model including descriptions of the various components and the results of its application on two case study areas.

  11. Water-Energy-Food Nexus in a Transboundary River Basin: The Case of Tonle Sap Lake, Mekong River Basin

    Directory of Open Access Journals (Sweden)

    Marko Keskinen

    2015-10-01

    Full Text Available The water-energy-food nexus is promoted as a new approach for research and policy-making. But what does the nexus mean in practice and what kinds of benefits does it bring? In this article we share our experiences with using a nexus approach in Cambodia’s Tonle Sap Lake area. We conclude that water, energy and food security are very closely linked, both in the Tonle Sap and in the transboundary Mekong River Basin generally. The current drive for large-scale hydropower threatens water and food security at both local and national scales. Hence, the nexus provides a relevant starting point for promoting sustainable development in the Mekong. We also identify and discuss two parallel dimensions for the nexus, with one focusing on research and analysis and the other on integrated planning and cross-sectoral collaboration. In our study, the nexus approach was particularly useful in facilitating collaboration and stakeholder engagement. This was because the nexus approach clearly defines the main themes included in the process, and at the same time widens the discussion from mere water resource management into the broader aspects of water, energy and food security.

  12. Flathead River Basin Hydrologic Observatory, Northern Rocky Mountains

    Science.gov (United States)

    Woessner, W. W.; Running, S. W.; Potts, D. F.; Kimball, J. S.; Deluca, T. H.; Fagre, D. B.; Makepeace, S.; Hendrix, M. S.; Lorang, M. S.; Ellis, B. K.; Lafave, J.; Harper, J.

    2004-12-01

    We are proposing the 22, 515 km2 glacially-sculpted Flathead River Basin located in Montana and British Columbia as a Hydrologic Observatory. This hydrologic landscape is diverse and includes large pristine watersheds, rapidly developing intermountain valleys, and a 95 km2 regulated reservoir and 510 km2 lake. The basin has a topographic gradient of over 2,339 m, and spans high alpine to arid climatic zones and a range of biomes. Stream flows are snow-melt dominated and underpinned by groundwater baseflow. The site headwaters contain 37 glaciers and thousands of square kilometers of watersheds in which fire and disease are the only disturbances. In contrast, the HO also contains watersheds at multiple scales that were dominated by glaciers within the last 100 years but are now glacier free, impacted by timber harvests and fires of varying ages to varying degrees, modified by water management practices including irrigation diversion and dams, and altered by development for homes, cities and agriculture. This Observatory provides a sensitive monitor of historic and future climatic shifts, air shed influences and impacts, and the consequences of land and water management practices on the hydrologic system. The HO watersheds are some of the only pristine watersheds left in the contiguous U.S.. They provide critical habitat for key species including the native threaten bull trout and lynx, and the listed western cutthroat trout, bald eagle, gray wolf and the grizzly bear. For the last several thousand years this system has been dominated by snow-melt runoff and moderated by large quantities of water stored in glacial ice. However, the timing and magnitude of droughts and summer flows have changed dramatically. With the information that can be gleaned from sediment cores and landscape records at different scales, this HO provides scientists with opportunities to establish baseline watershed conditions and data on natural hydrologic variability within the system. Such a context frames the current and further observations and assists with translating measured changes into links with the varied HO ecosystems.

  13. Quantitative predictions of streamflow variability in the Susquehanna River Basin

    Science.gov (United States)

    Alexander, R.; Boyer, E. W.; Leonard, L. N.; Duffy, C.; Schwarz, G. E.; Smith, R. A.

    2012-12-01

    Hydrologic researchers and water managers have increasingly sought an improved understanding of the major processes that control fluxes of water and solutes across diverse environmental settings and large spatial scales. Regional analyses of observed streamflow data have led to advances in our knowledge of relations among land use, climate, and streamflow, with methodologies ranging from statistical assessments of multiple monitoring sites to the regionalization of the parameters of catchment-scale mechanistic simulation models. However, gaps remain in our understanding of the best ways to transfer the knowledge of hydrologic response and governing processes among locations, including methods for regionalizing streamflow measurements and model predictions. We developed an approach to predict variations in streamflow using the SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling infrastructure, with mechanistic functions, mass conservation constraints, and statistical estimation of regional and sub-regional parameters. We used the model to predict discharge in the Susquehanna River Basin (SRB) under varying hydrological regimes that are representative of contemporary flow conditions. The resulting basin-scale water balance describes mean monthly flows in stream reaches throughout the entire SRB (represented at a 1:100,000 scale using the National Hydrologic Data network), with water supply and demand components that are inclusive of a range of hydrologic, climatic, and cultural properties (e.g., precipitation, evapotranspiration, soil and groundwater storage, runoff, baseflow, water use). We compare alternative models of varying complexity that reflect differences in the number and types of explanatory variables and functional expressions as well as spatial and temporal variability in the model parameters. Statistical estimation of the models reveals the levels of complexity that can be uniquely identified, subject to the information content and uncertainties of the hydrologic and climate measurements. Assessment of spatial variations in the model parameters and predictions provides an improved understanding of how much of the hydrologic response to land use, climate, and other properties is unique to specific locations versus more universally observed across catchments of the SRB. This approach advances understanding of water cycle variability at any location throughout the stream network, as a function of both landscape characteristics (e.g., soils, vegetation, land use) and external forcings (e.g., precipitation quantity and frequency). These improvements in predictions of streamflow dynamics will advance the ability to predict spatial and temporal variability in key solutes, such as nutrients, and their delivery to the Chesapeake Bay.

  14. Assessment of spatial and temporal patterns of green and blue water flows in inland river basins in Northwest China

    Science.gov (United States)

    Zang, C. F.; Liu, J.; van der Velde, M.; Kraxner, F.

    2012-03-01

    In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management in these has mainly focused on blue water but ignored green water. Here we report on spatial and temporal patterns of both blue and green water flows simulated by the Soil and Water Assessment Tool (SWAT) for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.09 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and large areas of glaciers in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 88.0% in the 2000s for the entire river basin, varying from around 80-90% in up- and mid-stream sub-basins to above 95% in downstream sub-basins. This is much higher than reported green water coefficient in many other river basins. The spatial patterns of green water coefficient were closely linked to dominant land covers (e.g. glaciers in upstream and desert in downstream) and climate conditions (e.g. high precipitation in upstream and low precipitation in downstream). There are no clear consistent historical trends of change in green and blue water flows and green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments for the entire Heihe river basin at sub-basin level. The results are helpful for formulating reasonable water policies to improve water resources management in the inland river basins of China.

  15. Multiple scale flood simulation in the Delaware River Basin: Hurricane Ivan

    Science.gov (United States)

    Kindl da Cunha, Luciana; Smith, James; Lynn, Mary

    2013-04-01

    Tropical cyclones shape the upper tail of flood peak distributions in the Delaware River Basin, as well as other major drainage basins of the eastern US. During Hurricane Ivan (Sept, 2004) peak flows ranking in the upper 10% of the peak flow distribution were observed in many sites. In this study we apply a fully-distributed, physically-based, and calibration-free hydrological model (CUENCAS) to simulate inland flooding caused by Ivan for basin scales ranging from one to thousands of square kilometers. As input to the hydrological model we use the Stage IV rainfall fields produced by The National Weather Service. Stage IV is a post-processed product based on the merging of radar and gauge rainfall data. We show that simulation uncertainties decrease as basin scales increase. Small basin hydrological simulations are strongly affected by rainfall space-time variability, hydrological response heterogeneities due to natural (infiltration and basin shape) and artificial basin properties (dams), and by input and model structural uncertainties. These small-scale heterogeneities and uncertainties are averaged out by the effect of the river network that links different areas in the basin and organizes flow transport. Consequently, good results are obtained for basins larger than 1,000 km2.

  16. GIS-based River Flood Hazard Mapping in Urban Area (A Case Study in Kayu Ara River Basin, Malaysia)

    OpenAIRE

    Behdokht Vosoogh; Ismail Abustan; Rozi bin Abdullah; Sina Alaghmand,

    2010-01-01

    In the past decades, thousands of lives have been lost, directly or indirectly, by flooding. In fact, of all natural hazards, floods pose the most widely distributed natural hazard to life today. Sungai Kayu Ara river basin which is located in the west part of the Kuala Lumpur in Malaysia was the case study of this research. In order to perform river flood hazard mapping HEC-HMS and HEC-RAS were utilized as hydrologic and hydraulic models, respectively. The generated river flood hazard was ba...

  17. Sensitivity of the hydrologic cycle in Tana river basin to climate change

    International Nuclear Information System (INIS)

    The Tana River basin in Kenya has four distinct climates along it's gradient from cool humid in mount Kenya region through arid and semi arid in the lower plains to semi humid coastal climate. From the highlands of mount Kenya to the plateau on the lowlands, the river traverses some sections which have high potential for hydro-electric power generation. The government has constructed water reovirus to collect water for electricity generation. The influence of the reovirus have also caused climate modification. The aim of the study was to investigate the sensitivity of the river flows in the Tana river to climate change. The study indicates that, as long as temperature increment of up to 2 degrees centigrade are accompanied by positive changes (greater than 10%) in rainfall over the basin, then the hydrologic cycle adjust itself accordingly to give a positive response (increased runoff) in terms of the river at the outlet

  18. Tracing nutrient sources in the Mississippi River Basin, United States of America

    International Nuclear Information System (INIS)

    To provide information for the development of management strategies to reduce N loads and enhance N attenuation mechanisms, isotopic techniques have been used to investigate the sources and cycling of nutrients at a number of sites in the Mississippi Basin (which includes the Ohio and Missouri River Basins). About half of the POM in the Mississippi (and other big rivers in the USA) is composed of plankton and/or heterotrophic bacteria. This suggests that in-situ productivity may be a significant source of bioavailable organic matter contributing to the hypoxia in the Gulf of Mexico. Monthly samples from 19 river sites in the Basin sampled over 5 years showed that ? 15N and ? 13C were quite useful in discriminating among four major categories of POM: terrestrial soil, fresh terrestrial vegetation, aquatic macrophytes, and plankton/bacteria The isotopic data, along with ancillary chemical and hydrologic measurements, were also useful for documenting seasonal changes in in-situ processes. A pilot study in 2000-2001, designed to investigate the usefulness of isotopic techniques for determining nutrient sources in 24 medium and large watersheds in the Basin, found that nitrate and POM from basins with different land uses (e.g., row crops, animal farming, urban development, and undeveloped) had moderately distinctive isotopic compositions. The nitrate ? 18O and ? 15N values of the large rivers sites resembled the compositions seen in sites dominated by row crops. Sites with livestock tended to have high ? 15N values characteristic of manure, and urban and undeveloped sites tended to have higher ? 18O values characteristic of a significant fraction of atmospheric nitrate. The ? 18O data were critical in showing abrupt changes in nitrate sources with discharge. A more thorough study of nutrient sources in the Ohio River Basin was initiated in 2002. For this study, nitrate, POM, and water were collected 15-20 times each year at 6 small NAWQA-program watersheds in the White River- Miami River basins, and at the 7 large river NASQAN-program sites in the Ohio River Basin. Nitrate samples were analyzed for ? 15N and ? 18O, POM for ? 15N and ? 13C, and water for ? 18O and ? 2H. The ? 15N and ? 13C of fish were used as indicators of nutrient sources. Other studies have indicated that POM consists primarily of phytoplankton and is transported in the water column, particularly size fractions < 1-mm diameter, were the primary food source for food webs in the Ohio and Upper Mississippi Rivers

  19. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will summarize recent results (Behrendt et al. 2009, Schernewski et al. 2009, Schernewski et al. in press, Schernewski et al. submitted) and give an overview how Climate Change and socio-economic transformation processes in the river basin will effect coastal water quality during the next decades. The opportunities and threats of a changing lagoon ecosystem for tourism and fisheries, the major economic activities, will be shown.

  20. Soil productive potential of the river basins located in European part of Russia

    Science.gov (United States)

    Mishchenko, Natalia; Shoba, Sergei; Trifonova, Tatiana

    2014-05-01

    The search for integral monitoring indicators of natural ecosystems biosphere functions assessment is becoming really urgent nowadays. From the point of view of ecologic and economic indicators, characterizing ecosystems structure and functioning, soil fertility and vegetation productivity parameters, which have been studied for a long time as biosphere and environment forming functions rank first priority. For integrated characteristic of ecosystems soil and vegetation condition we have suggested to apply the index of "soil-productive potential" (SPP), characterizing the ability of nature and nature-anthropogenic ecosystems for sustained product (phytomass) reproduction under specific soil-bioclimatic conditions. It characterizes ecosystem reserve via the index expressed in numbers and averages the following parameters: • specific phytomass reserve (all living elevated and underground parts of plants in terms of total dry mass t/ hectare are considered); • specific productivity (phytomass augmentation for a year per unit area); • natural soil fertility (humus content, % as a characteristic); • crop-producing power (grain crop-producing power is considered, centner/hectare); • bioclimatic parameters (integrated index, including the sum of biologically active temperatures and moistening coefficient); • soil-ecologic index (SEI). Soil-productive potential allows the assessment of average perennial area resource for phytomass production by natural and nature-anthropogenic ecosystems. For more convenient comparative estimation, characteristics are ranked by dividing them into equal intervals according to 5-number scale with consequent numbers summation to overall index. As a result both soil-productive potential of natural eco-systems and total soil-productive potential of the whole area with a glance to the condition of available agrocenosis are calculated. Soil-productive potential of 12 first-rank major river basins of the European part of Russia have been assessed. Within the largest basin in terms of watershed area of the Volga, the Oka and the Kama (2-nd rank river basins) have been singled out and characterized separately. The method of river basins boundaries overlapping (in digital map scaled 1:1000000) on zonal spaces in «Arc GIS» has been applied. The biggest phytomass reserve is concentrated in the Neva and the Oka river basins, in the southern direction phytomass reserve is gradually declining due to the decrease of forest area. The most productive areas are the Don, the Ural, the Kuban basins. Productivity of the Volga basin ecosystems as a whole is medial (the highest values are typical for the Oka basin). The highest humus content is registered in the Kuban river basin, the lowest - in the North Dvina basin. The most favourable bioclimatic conditions are observed in the Dnieper basin. As a result high values of soil-productive potential are typical for the ecosystems of the Dnieper, the Kuban and the Volga basins where this value is high only due to the Oka basin area. The received values of soil-productive potential were correlated to hydraulogic characteristics of these basins, peculiarities of land use and arable land condition (according to SEI and crop capacity). High discharge module is stated to be typical for the northern rivers basins of little soil-productive potential (the Pechora, the Mezen); river basins of high soil-productive potential are characterized by low or average values of discharge module (the Dnieper, the Oka, the Kuban). The most agriculturally developed area is the Don basin, as here agricultural load reaches the highest limit, about 60% of the area is ploughed up though natural ecosystems and agricultural systems potential is not the highest, that may threaten the proper functioning of the basin. Ecosystem high soil-productive potential in the Kuban basin corresponds to good condition of arable lands, high crop capacity and great agricultural development of the area.

  1. Allozyme comparison of two populations of Rineloricaria (Siluriformes, Loricariidae) from the Ivaí River, upper Paraná River basin, Brazil

    Scientific Electronic Library Online (English)

    Daniel M., Limeira; Erasmo, Renesto; Cláudio H., Zawadzki.

    Full Text Available Two allopatric morphotypes of the genus Rinelocaria were compared through the allozyme electrophoresis technique: one morphotype, R. pentamaculata, from the Keller River in the middle stretch of the Ivaí River basin and the other, R. aff. pentamaculata, from the São João River in the upper portion o [...] f the Ivaí River basin. The morphotype from the São João River was collected upstream from the São João waterfall, which is about 80 m deep. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD) were analyzed, which allowed to score 22 loci. Only loci Aat-2, Est-3 and Mdh-C showed polymorphism. The two samples differed in allele frequencies at the three polymorphic loci. The average expected heterozygosity for all loci was 0.0806 ± 0.0447 in the Keller River sample. For the São João River morphotype, this value was 0.0489 ± 0.0350. Nei' s genetic identity and distance between the two populations were respectively 0.9789 and 0.0213. Wright's F IS, F IT and F STover all loci were estimated as 0.3121, 0.4021 and 0.1309, respectively. We consider that the two morphotypes represent species in statu nascendi.

  2. A study on the role and importance of irrigation management in integrated river basin management.

    Science.gov (United States)

    Koç, Cengiz

    2015-08-01

    The purpose of this paper is to identify the role and the importance of irrigation management in integrated river basin management during arid and semi-arid conditions. The study has been conducted at Büyük Menderes Basin which is located in southwest of Turkey and where different sectors (irrigation, drinking and using, industry, tourism, ecology) related to the use and distribution of water sources compete with each other and also where the water demands for important ecological considerations is evaluated and where the river pollution has reached important magnitudes. Since, approximately 73% of the water resources of the basin are utilized for irrigation; as a result, irrigation management becomes important for basin management. Irrigation operations have an effect on basin soil resources, water users, and environmental and ecological conditions. Thus, the determination of the role and importance of irrigation management require an integrated and interdisciplinary approach. In the studies conducted in Turkey, usually the environmental reactions have been analyzed in the basin studies and so the other topics related to integrated river basin management have not been taken into account. Therefore, this study also is to address these existing gaps in the literature and practice. PMID:26148688

  3. Application of YHyM/BTOPMC to evaluate hydrological response of Kali Gandaki River Basin (KGRB) in Western Nepal

    Science.gov (United States)

    Manandhar, S.; Pandey, V. P.; Ishidaira, H.; Kazama, F.

    2011-12-01

    Snowmelt runoff is an important source of water resources in the mountainous basins of Nepal. Modeling snowmelt runoff is challenging especially when snow observations are unavailable. In order to overcome the data shortage, YHyM/BTOPMC, a physically-based distributed hydrological model integrated with a simple degree-day based snow accumulation/melt sub-model was applied to evaluate hydrological response of Kali Gandaki River Basin (KGRB) in Western Nepal. It is apparent that temperature in Nepal is increasing, progressively higher for high elevations and precipitation is becoming more erratic. Hence, the snowmelt process, river runoff and water availability in KGRB is sensitive to the increasing climate change. The objective of this study is to assess the hydrological response of the basin to different climatic perturbation. Assessing the runoff pattern/water availability situation is very important in flood risk management, water use planning and in overall management of water resources. Public domain global data along with daily measured temperature and rainfall data were used in this study. The model was calibrated and validated using daily observed discharges and the stream flow in KGRB can be predicted with an acceptable degree of accuracy. The model performance was tested through the Nash-Sutcliffe efficiency objective function and by the volume ratio of simulated to observed discharge. Annual temporal variability of stream-flow was also plotted to ensure the response of KGRB to temperature and precipitation changes.

  4. Enhancing Floodplain Management in the Lower Mekong River Basin Using Vegetation and Water Cycle Satellite Observations

    Science.gov (United States)

    Bolten, J. D.; Spruce, J.; Wilson, R.; Strauch, K.; Doyle, T.; Srinivan, R.; Lakshmi, V.; Gupta, M.

    2014-12-01

    The Lower Mekong River Basin shared by China, Burma, Laos, Thailand, Cambodia, and Vietnam, is considered the lifeblood of Southeast Asia. The Mekong Basin is subject to large hydrological fluctuations on a seasonal and inter-annual basis. The basin remains prone to severe annual floods that continue to cause widespread damage and endanger food security and the livelihood of the millions who dwell in the region. Also the placement of newly planned dams primarily for hydropower in the Lower Mekong Basin may cause damaging social, agriculture and fisheries impacts to the region where we may now likely be at a critical 'tipping point'. The primary goal of this project is to apply NASA and USGS products, tools, and information for improved flood and water management in the Lower Mekong River Basin to help characterize, understand, and predict future changes on the basin. Specifically, we are providing and helping transfer to the Mekong River Commission (MRC) and the member countries of Thailand, Cambodia, Lao, Vietnam, and Burma the enhanced Soil and Water Assessment Tool (SWAT) using remotely sensed surface, ground water, and root zone soil moisture along with improved Land Use and Land Cover (LULC) maps. In order to estimate the flood potential and constrain the SWAT Available Water Capacity model parameter over the region, we are assimilated GRACE Terrestrial Water Storage observations into the Catchment Land Surface Model. In addition, a Graphic Visualization Tool (GVT) as been developed to work in concert with the output of the SWAT model parameterized for the Mekong Basin as an adjunct tool of the MRC Decision Support Framework. The project requires a close coordination of the development and assessment of the enhanced MRC SWAT with the guidance of MRC resource managers and technical advisors. This presentation will evaluate the skill of the enhanced SWAT model using qualitative (i.e., MODIS change detection) and quantitative (e.g., streamflow) metrics over one sub-basin of the Lower Mekong River Basin.

  5. Reservoir Operations and Flow Modeling to Support Decision Making in the Delaware River Basin

    Science.gov (United States)

    Quinodoz, H. A.

    2006-12-01

    About five percent of the US population depends on the waters from the Delaware River Basin for its water supply, including New York City and Philadelphia. Water management in the basin is governed by a compact signed in 1961 by the four basin states and the federal government. The compact created the Delaware River Basin Commission (DRBC) and gave it broad powers to plan, regulate, and manage the development of the basin water resources. The compact also recognized a pre-existing (1954) U.S. Supreme Court Decree that grants the City of New York the right to export up to 800 million gallons per day out of the basin, provided that a prescribed minimum flow is met at Montague, New Jersey for the use of the lower-basin states. The Delaware River Basin Compact also allows the DRBC to adjust the releases and diversions under the Decree, subject to the unanimous consent of the decree parties. This mechanism has been used several times over the last 30 years, to implement and modify rules governing drought operations, instream flows, minimum flow targets, and control of salinity intrusion. In every case, decision makers have relied upon extensive modeling of alternative proposals, using a basin-wide daily flow model. Often, stakeholders have modified and used the same model to test and refine their proposals prior to consideration by the decision makers. The flow model has been modified over the years, to simulate new features and processes in a river system partially controlled by more than ten reservoirs. The flow model has proved to be an adaptable tool, able to simulate the dynamics of a complex system driven by conflicting objectives. This presentation reviews the characteristics of the daily flow model in its current form, discuss how model simulations are used to inform the decision-making process, and provide a case study of a recent modification of the system-wide drought operating plan.

  6. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Evaluating Wetland Restoration Projects in the Columbia River Estuary using Hydroacoustic Telemetry Arrays to Estimate Movement, Survival, and Residence Times of Juvenile Salmonids, Volume XXII (22).

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Russell W.; Skalski, John R.

    2008-08-01

    Wetlands in the Columbia River estuary are actively being restored by reconnecting these habitats to the estuary, making more wetland habitats available to rearing and migrating juvenile salmon. Concurrently, thousands of acoustically tagged juvenile salmonids are released into the Columbia River to estimate their survival as they migrate through the estuary. Here, we develop a release-recapture model that makes use of these tagged fish to measure the success of wetland restoration projects in terms of their contribution to populations of juvenile salmon. Specifically, our model estimates the fraction of the population that enter the wetland, survival within the wetland, and the mean residence time of fish within the wetland. Furthermore, survival in mainstem Columbia River downstream of the wetland can be compared between fish that remained the mainstem and entered the wetland. These conditional survival estimates provide a means of testing whether the wetland improves the subsequent survival of juvenile salmon by fostering growth or improving their condition. Implementing such a study requires little additional cost because it takes advantage of fish already released to estimate survival through the estuary. Thus, such a study extracts the maximum information at minimum cost from research projects that typically cost millions of dollars annually.

  7. Spatial Patterns of Suspended Sediment Yield in the Upper Indus River Basin, Northern Pakistan

    Science.gov (United States)

    Ali, K.; de Boer, D. H.; Martz, L. W.

    2004-05-01

    The Indus River is one of the world`s largest rivers in term of water discharge and sediment loads, and the backbone of Pakistan`s economy for agriculture and hydropower. Much of its flow originates in the mountains of the Himalayas, Karakoram and Hindu Kush. The suspended sediment load, which constitutes the main portion of the total load in mountain rivers, creates major water resources management problems such as siltation of reservoirs, damage to turbines, and a reduction in water quality. An understanding of the spatial pattern of suspended sediment yield in the upper Indus River basin is, therefore, essential for effective water resources development in northern Pakistan. Discharge and suspended sediment concentration records are available for 17 active and discontinued hydrological stations (with drainage areas ranging from 600 to 166,000 km2) operated by the Pakistan Water and Power Development Authority. The objective of this study is to delineate the spatial pattern of suspended sediment yield in the basin by analyzing the available hydrological database. Sediment yields have been calculated by constructing sediment rating curves. Physiographic characteristics, hydrologic regimes and climatic patterns of the basin have also been investigated. The results show that the upper Indus River basin can be subdivided into three regions based on suspended sediments yield. This division reflects the contrasting hydrological regimes of the basin. Region 1 comprises the high elevation, glacierized areas of the Karakoram Mountains in the northernmost part of the basin. This region extends downstream to Partab Bridge on the Indus River, and excludes areas around Nanga Parbat, which acts as a barrier to the monsoon. The sediments are mainly derived from the Shyok, Shigar, Hunza and Gilgit sub-basins during the period of increasing summer runoff in June. This runoff is caused by the melt of glaciers and permanent snow pack, and peaks in July and August, when almost the entire annual sediment load is transported. The mean annual sediment yield is greatest in the 28% glaciated Hunza River basin which accounts for more than 2800 t km-2 year-1. Region 2 is characterized by the sediment yields that result from an interaction of monsoon rains and glacier-melt. This region extends from Partab Bridge to Besham Qila. The Astore River produces the highest specific discharges in the basin, which are from southwest flanks of Nanga Parbat. Region 3 includes the area between Besham Qila and Tarbela Dam with the Gorband, Siran and Brandu tributaries. This part of the basin is mainly rain fed with little snow, and experience two types of rainfall: summer monsoon rains, and late winter and early spring rainfall produced by disturbances coming from the west that derive sediment on the hill slopes. This results in two separate peaks in the sediment loads, in March and July, respectively. This study can be further extended to construct a sediment budget for the upper Indus River. A sediment budget would result in a better understanding of the sediment dynamics by providing an accounting of the fluxes and fate of sediment in the drainage basin. The upper Indus exists in natural basin conditions without significant human impacts. As the sparse gauging network in this large basin is rapidly decreasing in density, the upper Indus basin represents a good case study for investigating the sediment dynamics in a data-sparse river as a contribution to the Prediction in Ungauged Basins (PUB) program.

  8. Assessment of in-place oil shale resources of the Green River Formation, Greater Green River Basin in Wyoming, Colorado, and Utah

    Science.gov (United States)

    Johnson, R.C.; Mercier, T.J.; Brownfield, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) recently (2011) completed an assessment of in-place oil shale resources, regardless of grade, in the Eocene Green River Formation of the Greater Green River Basin in southwestern Wyoming, northwestern Colorado, and northeastern Utah. Green River Formation oil shale also is present in the Piceance Basin of western Colorado and in the Uinta Basin of eastern Utah and western Colorado, and the results of these assessments are published separately. No attempt was made to estimate the amount of oil that is economically recoverable because there has not yet been an economic method developed to recover the oil from Green River Formation oil shale.

  9. UPPER/MIDDLE SNAKE RIVER BASIN STATUS REPORT, 1975

    Science.gov (United States)

    The Snake River (17040104, 170402, 170501) begins with relatively high water quality, with nutrient levels below those considered potentially causative to algal activity. Below Heise, nutrient concentrations rise and the quality of the river is degraded. Phosphorus enters the S...

  10. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    Science.gov (United States)

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  11. Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

    Science.gov (United States)

    Haefner, Ralph J.; Simonson, Laura A.

    2010-01-01

    The Tuscarawas River Basin drains approximately 2,600 square miles in eastern Ohio and is home to 600,000 residents that rely on the water resources of the basin. This report summarizes the hydrologic conditions in the basin, describes over 400 publications related to the many factors that affect the groundwater and surface-water resources, and presents new water-quality information and a new water-level map designed to provide decisionmakers with information to assist in future data-collection efforts and land-use decisions. The Tuscarawas River is 130 miles long, and the drainage basin includes four major tributary basins and seven man-made reservoirs designed primarily for flood control. The basin lies within two physiographic provinces-the Glaciated Appalachian Plateaus to the north and the unglaciated Allegheny Plateaus to the south. Topography, soil types, surficial geology, and the overall hydrology of the basin were strongly affected by glaciation, which covered the northern one-third of the basin over 10,000 years ago. Within the glaciated region, unconsolidated glacial deposits, which are predominantly clay-rich till, overlie gently sloping Pennsylvanian-age sandstone, limestone, coal, and shale bedrock. Stream valleys throughout the basin are filled with sands and gravels derived from glacial outwash and alluvial processes. The southern two-thirds of the basin is characterized by similar bedrock units; however, till is absent and topographic relief is greater. The primary aquifers are sand- and gravel-filled valleys and sandstone bedrock. These sands and gravels are part of a complex system of aquifers that may exceed 400 feet in thickness and fill glacially incised valleys. Sand and gravel aquifers in this basin are capable of supporting sustained well yields exceeding 1,000 gallons per minute. Underlying sandstones within 300 feet of the surface also provide substantial quantities of water, with typical well yields of up to 100 gallons per minute. Although hydraulic connection between the sandstone bedrock and the sands and gravels in valleys is likely, it has not been assessed in the Tuscarawas River Basin. In 2001, the major land uses in the basin were approximately 40 percent forested, 39 percent agricultural, and 17 percent urban/residential. Between 1992 and 2001, forested land use decreased by 2 percent with correspondingly small increases in agricultural and urban land uses, but from 1980 to 2005, the 13-county area that encompasses the basin experienced a 7.1-percent increase in population. Higher population density and percentages of urban land use were typical of the northern, headwaters parts of the basin in and around the cities of Akron, Canton, and New Philadelphia; the southern area was rural. The basin receives approximately 38 inches of precipitation per year that exits the basin through evapotranspiration, streamflow, and groundwater withdrawals. Recharge to groundwater is estimated to range from 6 to 10 inches per year across the basin. In 2000, approximately 89 percent of the 116 million gallons per day of water used in the basin came from groundwater sources, whereas 11 percent came from surface-water sources. To examine directions of groundwater flow in the basin, a new dataset of water-level contours was developed by the Ohio Department of Natural Resources. The contours were compiled on a map that shows that groundwater flows from the uplands towards the valleys and that the water-level surface mimics surface topography; however, there are areas where data were too sparse to adequately map the water-level surface. Additionally, little is known about deep groundwater that may be flowing into the basin from outside the basin and groundwater interactions with surface-water bodies. Many previous reports as well as new data collected as part of this study show that water quality in the streams and aquifers in the Tuscarawas River Basin has been degraded by urban, suburban, and rural

  12. Analysing the influence of human activity on runoff in the Weihe River basin

    Science.gov (United States)

    Shen, C.; Qiang, H.

    2015-05-01

    Changing runoff patterns can have profound effects on the economic development of river basins. To assess the impact of human activity on runoff in the Weihe River basin, principal component analysis (PCA) was applied to a set of 17 widely used indicators of economic development to construct general combined indicators reflecting different types of human activity. Grey relational analysis suggested that the combined indicator associated with agricultural activity was most likely to have influenced the changes in runoff observed within the river basin during 1994-2011. Curve fitting was then performed to characterize the relationship between the general agricultural indicator and the measured runoff, revealing a reasonably high correlation (R2 = 0.393) and an exponential relationship. Finally, a sensitivity analysis was performed to assess the influence of the 17 individual indicators on the measured runoff, confirming that indicators associated with agricultural activity had profound effects whereas those associated with urbanization had relatively little impact.

  13. Initial Sediment Transport Model of the Mining-Affected Aries River Basin, Romania

    Science.gov (United States)

    Friedel, Michael J.; Linard, Joshua I.

    2008-01-01

    The Romanian government is interested in understanding the effects of existing and future mining activities on long-term dispersal, storage, and remobilization of sediment-associated metals. An initial Soil and Water Assessment Tool (SWAT) model was prepared using available data to evaluate hypothetical failure of the Valea Sesei tailings dam at the Rosia Poieni mine in the Aries River basin. Using the available data, the initial Aries River Basin SWAT model could not be manually calibrated to accurately reproduce monthly streamflow values observed at the Turda gage station. The poor simulation of the monthly streamflow is attributed to spatially limited soil and precipitation data, limited constraint information due to spatially and temporally limited streamflow measurements, and in ability to obtain optimal parameter values when using a manual calibration process. Suggestions to improve the Aries River basin sediment transport model include accounting for heterogeneity in model input, a two-tier nonlinear calibration strategy, and analysis of uncertainty in predictions.

  14. Climate change and the origin and development of rice cultivation in the Yangtze River basin, China.

    Science.gov (United States)

    Yasuda, Yoshinori

    2008-11-01

    The forest hunter-gatherers of the middle Yangtze River basin, who were the first to invent pottery and led a sedentary lifestyle, may have begun to cultivate rice during the Bølling-Allerød interstadial global warming period. The earliest rice cultivation may have dated back to 14,000 calibrated (cal.) years before present (YBP). The global warming at 9000 cal. YBP in the early Holocene brought the development of the rice cultivation to the middle Yangtze River basin. On the other hand, ancient rice-cultivating and piscatorial society met a crisis at 4200-4000 cal. YBP that was characterized by a significant cooling of the climate. This climate deterioration led the northern wheat/barley-cultivating pastoral people to migrate to the south and invade, ultimately bringing about the collapse of the rice-cultivating and piscatorial society in the Yangtze River basin. PMID:19205127

  15. Emergence and Evolution of Endogenous Water Institutions in an African River Basin: Local Water Governance and State Intervention in the Pangani River Basin, Tanzania:

    OpenAIRE

    Komakech, C.H.

    2013-01-01

    Water management challenges in basins of Sub-Saharan Africa and in other parts of the world are increasing due to rapid urbanisation, poverty and food insecurity, energy demands, and climate change. Nearly half of the world population live in cities, and this is estimated to reach two-thirds of the world's population by the year 2050. The need to improve water services in cities poses new challenges to river basin management. Water transfer from other sectors to cities is an obvious way of re...

  16. Warming may create substantial water supply shortages in the Colorado River basin

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2007-01-01

    The high demand for water, the recent multiyear drought (1999-2007), and projections of global warming have raised questions about the long-term sustainability of water supply in the southwestern United States. In this study, the potential effects of specific levels of atmospheric warming on water-year streamflow in the Colorado River basin are evaluated using a water-balance model, and the results are analyzed within the context of a multi-century tree-ring reconstruction (1490-1998) of streamflow for the basin. The results indicate that if future warming occurs in the basin and is not accompanied by increased precipitation, then the basin is likely to experience periods of water supply shortages more severe than those inferred from the longterm historical tree-ring reconstruction. Furthermore, the modeling results suggest that future warming would increase the likelihood of failure to meet the water allocation requirements of the Colorado River Compact.

  17. Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10

    Science.gov (United States)

    Morace, Jennifer L.

    2012-01-01

    Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, a reconnaissance was done to assess contaminant concentrations directly contributed to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments and to evaluate instantaneous loadings to the Columbia River Basin from these inputs.

  18. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    International Nuclear Information System (INIS)

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries

  19. The design and analysis of salmonid tagging studies in the Columbia basin. Volume 8: A new model for estimating survival probabilities and residualization from a release-recapture study of fall chinook salmon (Oncorhynchus tschawytscha) smolts in the Snake River

    International Nuclear Information System (INIS)

    Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake river fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging. These models do not utilize available capture history data from this second year and, thus, produce negatively biased estimates of survival probabilities. A new multinomial likelihood model was developed that results in biologically relevant, unbiased estimates of survival probabilities using the full two years of capture history data. This model was applied to 1995 Snake River fall chinook hatchery releases to estimate the true survival probability from one of three upstream release points (Asotin, Billy Creek, and Pittsburgh Landing) to Lower Granite Dam. In the data analyzed here, residualization is not a common physiological response and thus the use of CJS models did not result in appreciably different results than the true survival probability obtained using the new multinomial likelihood model

  20. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    Science.gov (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul A.

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek basin were used in the water-quality load models.

  1. Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand

    OpenAIRE

    Sharma, D.; Das Gupta, A.; Babel, M.S.

    2007-01-01

    Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma transformation, is applied to improve the frequency and amount of raw GCM precipitation at the grid...

  2. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-01-01

    Water scarcity and rapid economic growth have increased the pressure on water resources and environment in Northern China, causing decreased groundwater tables, ecosystem degradation, and direct economic losses due to insufficient water supply. The authors applied the water value method, a variant of stochastic dynamic programming, to optimize water resources management in the Ziya River basin. Natural runoff from the upper basin was estimated with a rainfall-runoff model autocalibrated using in...

  3. Modeling and management of water in the Klamath River Basin: overcoming politics and conflicts

    Science.gov (United States)

    Flug, Marshall; Scott, John F.

    1998-01-01

    The network flow model MODSIM, which was designed as a water quantity mass balance model for evaluating and selecting water management alternatives, has been applied to the Klamath River basin. A background of conflicting issues in the basin is presented. The complexity of water quantity model development, while satisfying the many stakeholders and involved special interest groups is discussed, as well as the efforts taken to have the technical model accepted and used, and overcome stakeholder criticism, skepticism, and mistrust of the government.

  4. LIVING WITH FLOOD AND SUSTAINABLE LIVELIHOOD DEVELOPMENT IN LOWER BRAHMAPUTRA RIVER BASIN, ASSAM

    OpenAIRE

    Singh, R.B.; B. W. Pandey; Abhay Shankar Prasad

    2014-01-01

    River basin is considered as the basic hydrologic unit for planning and development of water resources and livelihood. Assam's Brahmaputra valley represents one of the most acutely hazard-prone regions in the country, having a total flood prone area of 3.2 million hectare. The lower Brahmaputra basin, Assam has caused the hazards of annual floods and erosion, bringing misery to the people and shattering the fragile agro-economic base of the region. The important factors causin...

  5. An Integrated Approach to a Complete Carbon Budget for the Delaware River Basin

    Science.gov (United States)

    Birdsey, R.; Jenkins, J.; Murdoch, P.; Pan, Y.; Hom, J.

    2005-12-01

    We combined integrated measurement and monitoring of vegetation, soil, and water with process and empirical models to estimate carbon stocks and dynamics of the Delaware River Basin. Agencies operating in the basin accepted the challenge of designing an integrated monitoring strategy by augmenting existing monitoring systems. Watersheds are logical conceptual units for integrating environmental information on a regional scale, because aquatic systems integrate the biogeochemistry of large areas with well-defined boundaries. Scaling is also possible within watersheds because there is a hierarchical physiography, from small catchments to whole river basins. At the largest scale of the whole river basin, we used remote sensing and data from existing sample plot networks maintained by the USDA Forest Service and Natural Resources Conservation Service. We used estimators from the FORCARB-2 carbon accounting model to estimate basin-wide change in forest carbon stocks. At the smallest scale, we added land and water measurements to existing intensive monitoring sites maintained by the U.S. Geological Survey and the National Park Service, and estimated complete land and water carbon budgets. At an intermediate scale, we used remote sensing and intensive sampling of selected small watersheds that had contrasting conditions defined primarily by degree of residential development. At all scales, we used the PnET-CN ecosystem process model to estimate and map biomass and productivity, and the SPARROW empirical model to estimate carbon transport by water. Initial results show that the Basin is a small net carbon sink, although within the basin, southern areas are losing carbon while northern areas are gaining carbon primarily because of land-use change. To extend this work for decision support, we are developing methods to query data and models from these different scales so that estimates can be made for any watershed within the river basin. We are also evaluating the watershed approach to see how well it may complement an airshed approach based on flux towers and ecosystem process models.

  6. Large-scale hydrodynamic modeling of the middle Yangtze River Basin with complex river-lake interactions

    Science.gov (United States)

    Lai, Xijun; Jiang, Jiahu; Liang, Qiuhua; Huang, Qun

    2013-06-01

    The flow regime in the middle Yangtze River Basin is experiencing rapid changes due to intensive human activities and ongoing climate change. The middle reach of Yangtze River and the associated water system are extremely difficult to be reliably modeled due to highly complex interactions between the main stream and many tributaries and lakes. This paper presents a new Coupled Hydrodynamic Analysis Model (CHAM) designed for simulating the large-scale water system in the middle Yangtze River Basin, featured with complex river-lake interactions. CHAM dynamically couples a one-dimensional (1-D) unsteady flow model and a two-dimensional (2-D) hydrodynamic model using a new coupling algorithm that is particularly suitable for large-scale water systems. Numerical simulations are carried out to reproduce the flow regime in the region in 1998 when a severe flood event occurred and in 2006 when it experienced an extremely dry year. The model is able to reproduce satisfactorily the major physical processes featured with seasonal wetting and drying controlled by strong river-lake interactions. This indicates that the present model provides a promising tool for predicting complex flow regimes with remarkable seasonal changes and strong river-lake interactions.

  7. Temporal and spatial variations of precipitation in the Jinsha River basin during 1961-2010

    Science.gov (United States)

    Zeng, X.; Zhao, N.; Sun, H.; Ye, L.; Zhai, J.

    2015-05-01

    Knowing the variations of precipitation at the basin scale is very important to study the impacts of climate change on water resources and hydrological processes. To achieve the temporal and spatial variations of precipitation on long time scales and some extreme indicators in the Jinsha River basin, some typical precipitation indices were analysed based on daily precipitation data for 1961-2010 for the research area. The results showed that AP had a certain increasing tendency without passing the significance test, while AP in the lower reach of the basin decreased slightly. PFS had no obvious changes, while MP through a year (except rainfall in September and December) had a slight increasing tendency. In addition, AP and PFS showed obvious spatial differences, and the higher rainfall area was located in the lower basin especially in the Hengduan Mountain area. LRD and MRD increased slightly in the upper and middle regions, while they decreased slightly in the lower basin. HRD increased over most of the whole basin, but it had a decreasing tendency in the headwater region and around Dege station but did not pass the significance test. DD and CDD in one year showed similar spatial change patterns and had an obvious decreasing tendency in the upper and middle basin, while they had an obvious increasing tendency in the lower basin. CWD almost decreased over the whole basin, and decreased significantly in a small part of the lower basin. The temporal changes of the typical precipitation indices may confirm the possible increasing tendency for occurrence of drier climate and even drought events in the downstream of Jinsha River basin.

  8. Particle tracking for selected groundwater wells in the lower Yakima River Basin, Washington

    Science.gov (United States)

    Bachmann, Matthew P.

    2015-01-01

    The Yakima River Basin in south-central Washington has a long history of irrigated agriculture and a more recent history of large-scale livestock operations, both of which may contribute nutrients to the groundwater system. Nitrate concentrations in water samples from shallow groundwater wells in the lower Yakima River Basin exceeded the U.S. Environmental Protection Agency drinking-water standard, generating concerns that current applications of fertilizer and animal waste may be exceeding the rate at which plants can uptake nutrients, and thus contributing to groundwater contamination.

  9. Quaternary colluvial episodes (Upper Paraná River Hydrographic Basin, Brazil)

    Scientific Electronic Library Online (English)

    Alethea E.M., Sallun; Kenitiro, Suguio.

    2010-09-01

    Full Text Available Depósitos coluviais ocorrem extensivamente na Bacia Hidrográfica do Alto Rio Paraná, no sudeste, sul e centro-oeste do Brasil. Esses depósitos foram reconhecidos como uma unidade aloestratigráfica, e são interpretados como depósitos formados por processos de rastejo durante o Quaternário. Cada perfi [...] l coluvial estudado é muito homogêneo, e indica relativamente períodos longos de estabilidade da paisagem, suficiente para desenvolvimento de espessa cobertura. Estes depósitos foram datados por luminescência para estabelecer cronologicamente períodos de deposição coluvial mais intensa entre 6 e 220 ky B.P. Estes eventos correspondem aproximadamente às transições entre os estágios de isótopos do oxigênio 2-3-4 e 5-6, sugerindo que essa agradação esteve influenciada por mudanças climáticas. Desenvolvimento aluvionar foi correlacionado ao Peniglacial médio a superior da Glaciação Wisconsiana. Os períodos de intensidade ou frequência maior de precipitação que ocorre durante as transições climáticas estão provavelmente correlacionados com os eventos de agradação. A regularidade do registro coluvionar sugere constante soerguimento acompanhado de deposição sedimentar por toda UPRHB devido à atividade neotectônica durante o último milhão de anos. Abstract in english Colluvial deposits occur extensively in the Upper Paraná River Hydrographic Basin (UPRHB) in Southeastern,Southern, and Western central Brazil. These deposits were recognized as an allostratigraphic unit and related to creeping during the Quaternary. Every studied colluvial profile is homogeneous, w [...] hich indicates relatively long periods of landscape stability that is sufficient for the development of a thick soil cover. The deposits were dated by luminescence and indicate periods of more intense colluvial deposition between 6 and 220 ky B.P. These events correspond approximately to the transitions between the oxygen isotope stages 2-3-4 and 5-6, suggesting that this aggradation was influenced by climatic changes. However, the most important alluviation episode was tentatively correlated with the Middle to Upper Pleniglacial of the Wisconsin glaciation. The most intensive and frequent periods of precipitation that occurred during climate transitions are probably correlated with aggradation events. The regularity of the colluvial deposits suggests continuous uplift accompanied by sediment deposition throughout the UPRHB due to neotectonic activity during the last million years.

  10. Distribution of extreme rainfall events over Ebro River basin

    Science.gov (United States)

    Saa, Antonio; Tarquis, Ana Maria; Valencia, Jose Luis; Gascó, Jose Maria

    2010-05-01

    The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X > x) ? x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section. The evolution of the distribution in the second XXth century and the impact on the extreme values model. After realized the analyses it does not appreciate difference in the distribution throughout the time which suggests that this region does not appreciate increase of the extreme values both for the number of dry consecutive days and for the value of the rainfall References: Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values,. Springer-Verlag Krishnamoorthy K. (2006), Handbook of Statistical Distributions with Applications, Chapman & Hall/CRC. Bodini A., Cossu A. (2010). Vulnerability assessment of Central-East Sardinia (Italy) to extreme rainfall events. Natural Hazards and Earth System Sciences. 61-72

  11. Savannah River Laboratory Seepage Basins: Waste site assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Looney, B.B.; Nichols, R.L.

    1989-09-05

    This Waste Site Assessment for the SRL Seepage Basins is the second in a series of documents being prepared to support development of an appropriate closure plan for these basins. The closure of these basins will be designed to provide protection to human health and the environment and to meet the provisions of the Consent Decree. A Technical Data Summary for these basins has already been submitted as part of the Consent Decree. This Site Assessment Report includes a waste site characterization, and a discussion of closure options for the basins. A closure option is recommended in this report, but details of the recommended closure are not provided in this report since they will be provided in a subsequent closure plan. The closure plan is the third document required under the Consent Decree. 18 refs., 16 figs., 10 tabs.

  12. HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    John A. McLachlan

    2003-12-01

    In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

  13. K East basin sludge volume estimates for integrated water treatment system

    International Nuclear Information System (INIS)

    This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin

  14. Using river discharge to access the quality of different precipitation datasets over large-scale basins

    Science.gov (United States)

    Dutra, Emanuel; Balsamo, Gianpaolo; Wetterhall, Fredrik; Florian Pappenberger, ,; Yamazaki, Dai

    2015-04-01

    River discharge is a natural integrator of meteorological variables. The integration is made over a spatial domain (catchment) which is geophysically appropriate, and over time. It takes into account the correlations and covariances between several meteorological variables in a meaningful way, integrating information from a multidimensional variable space. Furthermore, river discharge observations are available and generally reliable. Therefore, river discharge is an important variable to consider in when evaluating the water balance of large-scale basins. In this study we evaluate different precipitation corrections applied to the ECMWF ERA-Interim reanalysis in terms of long-term means and variability of river discharge over several large-scale basins. We compare the original ERA-Interim dataset, the precipitation correction used in the production of the ERA-Interim/Land dataset (adjusted using GPCP) and the WFDEI dataset (adjusted using CRU). Global simulations with the ECMWF land surface model HTESSEL were performed with the different datasets and the simulated runoff routed using the river-floodplain model CaMa-Flood. Preliminary results highlight the deficiencies of ERA-Interim in several tropical basins (e.g. Congo) while the precipitation adjustments in ERA-Interim/Land and in WFDEI degrade the simulations in several northern hemisphere basins dominated by cold processes (e.g. Mackenzie).

  15. MAPPING OF RIVER WATER QUALITY USING INVERSE DISTANCE WEIGHTED INTERPOLATION IN OGUN-OSUN RIVER BASIN, NIGERIA

    Directory of Open Access Journals (Sweden)

    ADEBAYO OLUBUKOLA OKE

    2013-09-01

    Full Text Available Sustainable management of water resources involves inventory, conservation, efficient utilization, and quality management. Although, activities relating to quantity assessment and management in terms of river discharge and water resources planning are given attention at the basin level, water quality assessment are still being done at specific locations of major concern. The use of Geographical Information System (GIS based water quality information system and spatial analysis with Inverse Distance Weighted interpolation enabled the mapping of water quality indicators in Ogun and Ona catchment of Ogun-Osun River Basin, Nigeria. Using 27 established gauging stations as sampling locations, water quality indicators were monitored over 12 months covering full hydrological season. Maps of seasonal variations in 10 water quality indicators as impacted by land-use types were produced. This ensured that trends of specific water quality indicator and diffuse pollution characteristics across the basin were better presented with the variations shown along the river courses than the traditional line graphs. The production of water quality maps will improve monitoring, enforcement of standards and regulations towards better pollution management and control. This strategy holds great potential for real time monitoring of water quality in the basin with adequate instrumentation.

  16. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    Science.gov (United States)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater basins in regions of complex terrain undergoing similar pressures such as the Andes and Himalayas. First results of the project including a quantitative organigram mapping water availability, water consumption, and the relationships among water stakeholders within the basin will be presented.

  17. The fish fauna in tropical rivers: The case of the Sorocaba river basin, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Welber Senteio Smith

    2003-09-01

    Full Text Available A survey was carried out on the fish species in the Sorocaba River basin, the main tributary of the left margin of the Tietê River, located in the State of São Paulo, Brazil. The species were collected with gill nets. After identification of the specimens, their relative abundance, weight and standard length were determined. Up to the present moment there are not any studies that focus this subject in this hydrographic basin. Fifty-three species, distributed in eighteen families and six orders were collected. Characiformes were represented by twenty-eight species, Siluriformes by seventeen species, the Gymnotiformes by three species, Perciformes and Cyprinodontiformes by two species, and the Synbranchiformes by one species. Among the collected species there were two exotic. The most abundant species were Astyanax fasciatus and Hypostomus ancistroides. In relation to total weight the most representative species were Hoplias malabaricus and Hypostomus ancistroides. Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus and Hoplias malabaricus were the most representative species in relation to average weight. Largest standard length were recorded for Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia aff. virescens and Cyprinus carpioSe realizó un análisis de las especies de peces de la cuenca del Río Sorocaba, el principal tributario de la margen izquierda del Río Tietê, localizado en el estado de Sao Paulo, Brasil. Las especies fueron recolectadas con redes agalleras. Luego de la identificación de los especímenes, fue determinada su abundancia relativa, peso, y longitud estandar. Hasta el presente, no hay ningún otro estudio que analice estos aspectos en dicha cuenca hidrográfica. Fueron recolectados 55 especies, distribuidas en 18 familias y 6 ordenes. Los Characiformes estuvieron representados por 28 especies, Siluriformes por 17 especies, Gymnotiformes por 3 especies, Perciformes y Cyprinodontiformes por 2 especies, y Synbranchiformes por una especie. Entre estas, se encontró 2 especies exóticas. Las especies más abundantes fueron Astyanax fasciatus y Hypostomus ancistroides. En relación con el peso total, la especie más representativas fueron Hoplias malabaricus y Hypostomus ancistroides. En tanto que, Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus y Hoplias malabaricus fueron las más representativas en relación al preso promedio. Las longitudes estandar más grandes fue encontradas en Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia aff. virescens y Cyprinus carpio

  18. The fish fauna in tropical rivers: The case of the Sorocaba river basin, SP, Brazil

    Scientific Electronic Library Online (English)

    Welber, Senteio Smith; Miguel, Petrere; Walter, Barrella.

    2003-09-01

    Full Text Available Se realizó un análisis de las especies de peces de la cuenca del Río Sorocaba, el principal tributario de la margen izquierda del Río Tietê, localizado en el estado de Sao Paulo, Brasil. Las especies fueron recolectadas con redes agalleras. Luego de la identificación de los especímenes, fue determin [...] ada su abundancia relativa, peso, y longitud estandar. Hasta el presente, no hay ningún otro estudio que analice estos aspectos en dicha cuenca hidrográfica. Fueron recolectados 55 especies, distribuidas en 18 familias y 6 ordenes. Los Characiformes estuvieron representados por 28 especies, Siluriformes por 17 especies, Gymnotiformes por 3 especies, Perciformes y Cyprinodontiformes por 2 especies, y Synbranchiformes por una especie. Entre estas, se encontró 2 especies exóticas. Las especies más abundantes fueron Astyanax fasciatus y Hypostomus ancistroides. En relación con el peso total, la especie más representativas fueron Hoplias malabaricus y Hypostomus ancistroides. En tanto que, Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus y Hoplias malabaricus fueron las más representativas en relación al preso promedio. Las longitudes estandar más grandes fue encontradas en Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia aff. virescens y Cyprinus carpio Abstract in english A survey was carried out on the fish species in the Sorocaba River basin, the main tributary of the left margin of the Tietê River, located in the State of São Paulo, Brazil. The species were collected with gill nets. After identification of the specimens, their relative abundance, weight and standa [...] rd length were determined. Up to the present moment there are not any studies that focus this subject in this hydrographic basin. Fifty-three species, distributed in eighteen families and six orders were collected. Characiformes were represented by twenty-eight species, Siluriformes by seventeen species, the Gymnotiformes by three species, Perciformes and Cyprinodontiformes by two species, and the Synbranchiformes by one species. Among the collected species there were two exotic. The most abundant species were Astyanax fasciatus and Hypostomus ancistroides. In relation to total weight the most representative species were Hoplias malabaricus and Hypostomus ancistroides. Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus and Hoplias malabaricus were the most representative species in relation to average weight. Largest standard length were recorded for Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia aff. virescens and Cyprinus carpio

  19. Development of a Systemwide Predator Control Program, Volume I : Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin, 1993 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Willis, Charles F.; Ward, David L.

    1995-06-01

    Modified Merwin trap nets were tested by an experimental fishery in the Columbia River downstream from McNary Dam to determine their effectiveness in selectively harvesting northern squawfish (Ptychocheilus oregonensis) over 11 inches in total length. The fishery was evaluated for its potential to supplement exploitation rates of the sportreward and dam-angling fisheries to achieve the objectives of the northern squawfish management program. Special consideration was given to the potential for, and impact on, incidental catches of adult salmonids (Oncorhynchus spp.) listed as threatened and endangered under the Endangered Species Act (ESA). Preseason site and data surveys identified suitable fishing locations where physical parameters are favorable to trap-net deployment and northern squawfish habitat was present. A total of 16 floating trap nets were operated from June 2 through August 4, 1993. We made 1,392 sets with a mean soak time of 2.9 hours. The total catch was 45,803 fishes including 10,440 (23% of the total catch) northern squawfish of which 1,688 (4% of the total catch) were large (greater than 11 inches in total length). Mean catch rate was 0.3 large northern squawfish per hour of soak time. Nearly all incidentally captured fishes were released alive and in good condition. Bycatch of adult salmonids totaled 1,036 fishes (2% of the total catch). Operational criteria, designed to limit incidental take of salmonids, restricted the fishing time, dates, and locations. In addition, lack of prior operating experience with the gear type and limited gear effectiveness in high velocities found in the free-flowing river below Bonneville Dam contributed to the low harvest rate for northern squawfish. We determined that a large scale floating trap-net fishery outside the boat restricted zones (BRZs) of hydropower projects would not significantly improve the exploitation rate of northern squawfish either above or below Bonneville Dam.

  20. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.; Berry, P.; Bauer-Gottwein, Peter

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-sca...

  1. Hydrological regime and water resource assessment in the Arno river basin (Italy)

    International Nuclear Information System (INIS)

    Isotopic and chemical composition of water samples from the Arno river and its main tributaries were measured during different seasons and different flow rate conditions. The relationship between the main river and the different tributaries has been described, and a simple hydrological model of the whole basin proposed. A rough evaluation of anthropic source of some of the major chemical components in solution were attempted. (author)

  2. Factors controlling sediment yield in a major South American drainage basin: the Magdalena River, Colombia

    OpenAIRE

    Restrepo, Juan D.; Kjerfve, Bjo??rn; Hermelin Arbaux, Michel; Restrepo, Juan C.

    2005-01-01

    The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium- sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield ...

  3. Abiotic Typology of Surface Water Bodies in the Hydrographic Basin of the Arie? River

    OpenAIRE

    GHEORGHE ?ERBAN; R?ZVAN-HORA?IU B?TINA?

    2010-01-01

    Monitoring according to the Water Frame Directive (2000/60/E.C.) guidelines demands the identification of river water bodies, typology, and investigation of reference conditions within each river basin. The identification of “water bodies” based on geographical and hydromorphological determinants is to enable the status to be accurately described and compared to environmental objectives of the Directive. A surface water body has to be a discrete element of surface water, which is not to overl...

  4. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin

    OpenAIRE

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Simon A. Levin

    2012-01-01

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We fi...

  5. Empowering Water Quality Management in Lamtakhong River Basin, Thailand Using WASP Model

    OpenAIRE

    Nares Chuersuwan; Subuntith Nimrat; Sukanda Chuersuwan

    2013-01-01

    This research aimed at empowering local authorities on water quality management in the Lamtakhong river basin, Thailand with the assist of a water quality model, namely Water quality Analysis Simulation Program (WASP). Organic overcapacity and consequent dissolved oxygen depletion was recently the primary water quality issue of the river. WASP was successfully calibrated and validated using collected monthly hydrologic and water quality data from the year 2008 to 2009. The model was found to ...

  6. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India

    Science.gov (United States)

    Rai, Praveen Kumar; Mohan, Kshitij; Mishra, Sameer; Ahmad, Aariz; Mishra, Varun Narayan

    2014-11-01

    The study indicates that analysis of morphometric parameters with the help of geographic information system (GIS) would prove a viable method of characterizing the hydrological response behaviour of the watershed. It is also well observed that remote sensing satellite data is emerging as the most effective, time saving and accurate technique for morphometric analysis of a basin. This technique is found relevant for the extraction of river basin and its stream networks through ASTER (DEM) in conjunction with remote sensing satellite data (Landsat etm+, 2013 and georeferenced survey of Indian toposheet, 1972). In this study, Kanhar basin a tributaries of Son River has been selected for detailed morphometric analysis. Seven sub-watersheds are also delineated within this basin to calculate the selected morphometric parameters. Morphometric parameters viz; stream order, stream length, bifurcation ratio, drainage density, stream frequency, form factor, circulatory ratio, etc., are calculated. The drainage area of the basin is 5,654 km2 and shows sub-dendritic to dendritic drainage pattern. The stream order of the basin is mainly controlled by physiographic and lithological conditions of the area. The study area is designated as seventh-order basin with the drainage density value being as 1.72 km/km2. The increase in stream length ratio from lower to higher order shows that the study area has reached a mature geomorphic stage.

  7. Change and persistence in land surface phenologies of the Don and Dnieper river basins

    International Nuclear Information System (INIS)

    The formal collapse of the Soviet Union at the end of 1991 produced major socio-economic and institutional dislocations across the agricultural sector. The picture of broad scale patterns produced by these transformations continues to be discovered. We examine here the patterns of land surface phenology (LSP) within two key river basins-Don and Dnieper-using AVHRR (Advanced Very High Resolution Radiometer) data from 1982 to 2000 and MODIS (Moderate Resolution Imaging Spectroradiometer) data from 2001 to 2007. We report on the temporal persistence and change of LSPs as summarized by seasonal integration of NDVI (normalized difference vegetation index) time series using accumulated growing degree-days (GDDI NDVI). Three land cover super-classes-forest lands, agricultural lands, and shrub lands-constitute 96% of the land area within the basins. All three in both basins exhibit unidirectional increases in AVHRR GDDI NDVI between the Soviet and post-Soviet epochs. During the MODIS era (2001-2007), different socio-economic trajectories in Ukraine and Russia appear to have led to divergences in the LSPs of the agricultural lands in the two basins. Interannual variation in the shrub lands of the Don river basin has increased since 2000. This is due in part to the better signal-to-noise ratio of the MODIS sensor, but may also be due to a regional drought affecting the Don basin more than the Dnieper basin.

  8. Late Piocene - Pleistocene evolution of river terrace in Zhongwei Basin, northeastern margin of Tibetan Plateau, China

    Science.gov (United States)

    Liang, H.; Zhang, K.

    2014-12-01

    Northeastern margin of the Tibetan Plateau is a key area to understand the formation and evolution of the plateau. We describe the feature of terraces derived from deposit or down-cutting of the Yellow River in Zhongwei Basin that records the evolution of landform in this region. After clarifying the correlation among terrace remnants, we determine the age of certain terraces by TCN and ESR. The TCN dating yields age for lowest terrace buried in the basin of 2.40±0.38 Ma, and the ESR dating for upper three terraces on hillslope adjacent the margin of the basin of 2.08±0.21Ma, 1.88±0.35Ma and 1.48±0.11Ma respectively. The fact that buried terrace is older than the ones distribute on high elevation suggests that spatial variation in vertical motions of the basin. Taken with the observation and ages of these landform features, we infer to a deceleration of depression in center of the basin after terrace was buried in Late Piocene, then the basin started to uplift rapidly, causing the river gradient to steepen locally and erosion of the channel to intensify, resulting to the terrace on high elevation nearby the basin.

  9. Change and persistence in land surface phenologies of the Don and Dnieper river basins

    Energy Technology Data Exchange (ETDEWEB)

    Kovalskyy, V; Henebry, G M, E-mail: geoffrey.henebry@sdstate.ed [Geographic Information Science Center of Excellence (GIScCE), South Dakota State University, 1021 Medary Avenue, Wecota Hall 506B, Brookings, SD 57007-3510 (United States)

    2009-10-15

    The formal collapse of the Soviet Union at the end of 1991 produced major socio-economic and institutional dislocations across the agricultural sector. The picture of broad scale patterns produced by these transformations continues to be discovered. We examine here the patterns of land surface phenology (LSP) within two key river basins-Don and Dnieper-using AVHRR (Advanced Very High Resolution Radiometer) data from 1982 to 2000 and MODIS (Moderate Resolution Imaging Spectroradiometer) data from 2001 to 2007. We report on the temporal persistence and change of LSPs as summarized by seasonal integration of NDVI (normalized difference vegetation index) time series using accumulated growing degree-days (GDDI NDVI). Three land cover super-classes-forest lands, agricultural lands, and shrub lands-constitute 96% of the land area within the basins. All three in both basins exhibit unidirectional increases in AVHRR GDDI NDVI between the Soviet and post-Soviet epochs. During the MODIS era (2001-2007), different socio-economic trajectories in Ukraine and Russia appear to have led to divergences in the LSPs of the agricultural lands in the two basins. Interannual variation in the shrub lands of the Don river basin has increased since 2000. This is due in part to the better signal-to-noise ratio of the MODIS sensor, but may also be due to a regional drought affecting the Don basin more than the Dnieper basin.

  10. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements are converted to discharge using rating curves of simulated discharge versus observed altimetry. This approach makes it possible to use altimetry data from river cross sections where both in-situ rating curves and accurate river cross section geometry are not available. Model updating based on radar altimetry improved model performance considerably. The Nash-Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet.

  11. [Research on spatial characteristic of non-point source pollution in Liaohe River basin].

    Science.gov (United States)

    Wang, Xue-Lei; Cai, Ming-Yong; Zhong, Bu-Qing; Yao, Yan-Juan; Yin, Shou-Jing; Wu, Di

    2013-10-01

    The spatial characteristic of non-point source pollution in the Liaohe River was studied. Coupling the remote sensing data and non-point source (NPS) models, a method of assessing NPS pollution by pixel unit was developed, aiming to analyse the NPS pollution characteristic of Liaohe River basin in 2010, in turn to identify the main polluted areas and prevention measures. The work will provide technical supports for pollution prevention in Liaohe River basin. The results showed that in 2010, the total discharge of total nitrogen (TN) was 1.03 x 10(5) t, the total phosphorus (TP) was 6.8 x 10(3) t, the chemical oxygen demand (COD) was 1.31 x 10(5) t and the ammonia nitrogen (NH+4 -N) was 1. 8 x 10(4) t. The main pollution source of NPS was from agriculture. The contributions of NPS pollution to water quality were 67.4% , 76.4% , 39.4% and 21.9% for TN, TP, COD and NH+4 -N, respectively. The south of Liaohe River basin was the most serious polluted area, followed by the northeast areas. In this research, a method was build to estimate the NPS loads based on remote sensing pixel and the spatial characteristic of non-point source pollution in Liaohe River in 2010 was analysed, which will provide support for pollution prevention in Liaohe River. PMID:24364294

  12. An Assessment of Soil Properties under Different Landuse Types of the Kallada River Basin, Kerala, India

    Directory of Open Access Journals (Sweden)

    Mathew Suma

    2011-03-01

    Full Text Available A thin layer of soil covers most of the earth's land surface. This layer varying from a few centimeters to 2 or 3 meters in thickness might appear insignificant relative to the bulk of the earth. On the basis of morphological features and physico chemical properties, the soils of the Kallada basin can be classified into broad six groups (1 Coastal alluviam 2 Riverine alluviam 3 Brown hydromorphic 4 Greyish Onattukara soil 5 Laterite soil and 6Forest loam (GSI Map. Twenty four soil profiles were collected from the Kallada river basin for analysis, whose 12 profiles are in one cluster distributed adjoining the Western Ghats crest. As many as 12 profiles were under forest, three under grasslands, three under teak plantations, two under mixed tree crops, two under tea plantation and one each from eucalyptus and rubber plantations. Soil is a rich but fragile ecosystem. It is a three-phase system, composed of solid, liquid and gaseous phases.  In most soils, the solid phase makes up the vast majority of the soil mass, and over half of its volume.  It consists of mineral matter derived from the weathering of rocks and organic matter from the decomposition of plants and animals.  The liquid phase is composed predominantly of water, enriched with dissolved solids, the gaseous phase of air, enriched with carbon dioxide from the respiration of soil animals and plant roots. Physical properties of the soil are determined by the character of solid particles and the way in which they are packed together.

  13. Resistant river basins as recorder of distributed crustal deformation: examples from New Zealand and Lebanon

    Science.gov (United States)

    Castelltort, S.; Goren, L.; Willett, S.; Champagnac, J.; Herman, F.

    2011-12-01

    Rivers are useful markers of crustal deformation because they deform together with the rocks over which they flow. For instance, at the scale of individual faults, offset rivers and alluvial fans have been used to reconstruct past slip rates(1), while the basins of major rivers have been utilized to estimate pervasive crustal strain at the continental scale(2). However, river basins have also been claimed to reorganize into similar equilibrium forms(3) independently of the tectonic regime. According to this latter view, river basins cannot serve as reliable markers of deformation since their boundaries adjust dynamically during deformation by processes of capture and divide migration. Here we show that both views are correct under different conditions, as different basins in the same tectonic field may or may not be persistent and record the history of deformation, depending on the relation between their geomorphic position and the nature and directionality of the strain field. To demonstrate this new understanding we study the planform of drainage basins along two major transpressive plate boundaries that partly show patterns that are spatially consistent with the assumed tectonic regime: the Alpine Fault in the South Island of New Zealand which marks the boundary between the Pacific and the Australian plates, and the Dead Sea Fault in Lebanon which strands the Africa-Arabia plate boundary. First we use a combination specific river basin modeling and planview morphometric analysis to unravel deformation from reorganization and identify the basins that may serve as reliable deformation markers. Then we use these reliable markers to constrain the slip rate over these two plate boundaries. Our analysis results show that, both in New Zealand and in Lebanon, a significant proportion of up to 55% of the plate motion over geological time scales is absorbed by distributed deformation away from the plate boundary. (1)--Allen, C. R. Transcurrent Faults in Continental Areas. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 258, 82-89 (1965). (2)--Hallet, B. & Molnar, P. Distorted drainage basins as markers of crustal strain east of the Himalaya. J. Geophys. Res. 106, 13697-13709, doi:10.1029/2000jb900335 (2001). (3)--Hovius, N. Regular spacing of drainage outlets from linear mountain belts. Basin Res. 8, 29-44 (1996).

  14. Applications of Soil and Water Assessment Tool for Runoff Modeling of Karam River Basin in Madhya Pradesh

    OpenAIRE

    Manaswi C.M., A.K Thawait

    2014-01-01

    The SWAT 2010 model was applied to the Karam river basin tributary of Narmada for runoff modeling. The capability of the model was tested for a period 38 year (1976- 2012). Karam river which meets the Narmada river basin at Dhar district in Madhya Pradesh. Two rain gauge stations are influencing the project catchment area namely, Nalacha and Mhow. Yearly rain fall and runoff data for 38 year were collected for the study. Using Arc GIS sub watershed boundaries, d...

  15. Hydrological mofelling of large river basins using the ECOMAG software complex

    Science.gov (United States)

    Motovilov, Yuri

    2014-05-01

    According to some hydrologists, the characteristic scale of river basins when using traditional physically based models of runoff formation is limited to the size of a small (elementary) river basin. Within its limits, these models can describe hydrological processes on the different parts of the slopes and in the river network in great detail. For hydrological simulation of large river basins, it is reasonable to use greater calculated cells of hundreds and even thousands square kilometers. The problem is to find a new (compared to the point) computational elements of a certain scale, generalization (filtering) of micro-scale fluctuations of the characteristics that are of secondary importance at this level of consideration and parameterization of hydrological processes models at the meso- and macroscale levels. In this case, such a spatial refinement as in detailed physically based models is not longer needed to describe hydrological processes, since aggregate models operate with flows averaged over the elementary catchments. In particular, such an ideology is adopted in a hydrological semi-distributed model ECOMAG, where a major river basin is covered with a grid of elementary catchments, for each of which a physically based model with lumped parameters is described by a system of ordinary differential equations, most of which obtained by integrating the basic equations of detailed physically based models over space. For solving practical and research tasks with the help of up-to-date informational and technological background, a software complex (SC) was developed on the basis of the ECOMAG model with a daily time step resolution, which included a specialized geographical information system (GIS), databases of archival and operational data on hydrological, meteorological and water management monitoring for the whole Russia, watershed characteristics, as well as the command shell. An ability of hydrological simulation of large river basins using SC ECOMAG is illustrated by examples of simulated dynamics of spatial patterns of the terrestrial water cycle components (soil moisture, snow water equivalent, runoff characteristics) and their comparison with the patterns of the respective observed components obtained from the monitoring datasets for the Volga River basin (area 1 380 000 km2) and the Lena River basin (area 2 488 000 km2) for multi-year periods. The results of using SC ECOMAG for application in operational practice of the Russian Federal Water Resources Agency for management of the Volga-Kama and the Angara-Yenisei cascade reservoirs are shown also. * The work was supported by the Russian Foundation for Basic Research (Grant 13-05-00791)

  16. Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    2001-12-31

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilities in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and 360 basin wildrye grass plugs planted and 190 pounds of native grass seed broadcast on terraces between River Mile 10 and 12.5 within the existing Wildhorse Creek Project Area. Approximately 70 pounds of native grasses were seeded in the existing McKay Creek Project Area at approximately River Mile 21.5. Financial and in-kind cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Department of Agriculture, U.S. Fish and Wildlife Service, National Fish and Wildlife Federation and the Umatilla National Forest for the enhancements at River Mile 37.4 Umatilla River and within the Buckaroo Creek Watershed. Monitoring continued to quantify effects of habitat enhancements in the upper basin. Maximum, minimum and average daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 94 existing and two newly established photo points to document habitat recovery. Umatilla Basin Watershed Assessment efforts were continued under a subcontract with Washington State University. This endeavor involves compiling existing information, identifying data gaps, determining habitat-limiting factors and recommending actions to improve anadromous fisheries habitat. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs.

  17. Columbia River Basin Daily MACA-VIC Results

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This archive contains daily downscaled meteorological and hydrological projections for the Columbia Basin in the United States at 1/16-deg resolution utilizing 9...

  18. Projected impacts of climate change on the flow regime from Bârlad River Basin, Romania

    Science.gov (United States)

    Mic, Rodica Paula; Corbus, Ciprian; Matreata, Marius

    2015-04-01

    The paper presents the partial results, obtained within the CLIMHYDEX project (www.climhydex.meteoromania.ro), regarding the assessment of the climate change impact on flow regime from Bârlad River Basin by long term hydrological simulation. To estimate the impact of variability and climate change on monthly mean, seasonal and annual flow regime, in the Bârlad River Basin, the long-term simulations were performed, by means of CONSUL hydrological model, using as input data series of precipitation and temperature resulted from the data processing obtained from simulations of climate evolution by means of regional climate model REMO having spatial resolution of 10 km. The CONSUL model is a deterministic hydrological mathematical model which allows the simulation of flow in small as well as in large and complex basins, divided into homogeneous units (sub-basins). The model enables the computing of discharge hydrographs on sub-basins, their routing and composition on the main river and tributaries. Using of CONSUL model assumed the calibration of model parameters, an operation that was performed by the simulation of flow from the period 1975 - 2010 in the analysed river basin. Calibration of model parameters was performed in two stages: based on events and global. Calibration based on events was made considering 25 rainfall-runoff events, chosen to cover a wide range of possible situations in the case of floods formation. Global calibration of rainfall-runoff model parameters was done by simulating the flow on considered calibration period. Flow simulations using the CONSUL model, having optimal parameters derived from the calibration process, were conducted for two periods: the reference period 1971 - 2000 and the future period 2021 - 2050 respectively, at 9 hydrometric stations from the river basin analysed. For the input data in the CONSUL model, i.e. precipitation and temperature series, averaged on the sub-basins corresponding to the gauge stations, a comparative analysis was performed, for the two periods considered, highlighting the general trends of variation at annual level and for every season and month. Comparative analysis of water flow simulation in Bârlad river basin were performed, with the CONSUL hydrological model, for both reference and future period, regarding the mean monthly, seasonal and multiannual flow regime. Following the analysis of mean monthly discharges in Bârlad River Basin, as main results obtained for the variation trends of meteorological parameters we could notice a significant increase of discharges in July and October and their decrease in April, August, September and November which indicates a decrease of the probability of occurrence of extreme events in these months. Regarding the seasonal variation of mean discharges in Bârlad River Basin, the results indicated their decrease in all seasons, with a more pronounced decrease in the spring and autumn seasons. Generally, for the Bârlad River Basin the simulations have indicated a decrease trend of the mean annual discharges, up to -13.4%.

  19. Diversity of hydrologic responses to summer and winter warming in the Columbia River basin

    Science.gov (United States)

    Vano, J. A.; Pierce, D. W.; Das, T.; Cayan, D. R.; Lettenmaier, D. P.

    2011-12-01

    Increased temperatures will lead to fundamental changes in the seasonal distribution of streamflow and the management of water resources, especially in the western United States. Understanding the potential of these changes is, however, complicated by the wide range of projections from climate models, which can obscure the basin-specific hydrologic characteristics that control hydrologic sensitivities to climate change, and a coarse spatial scale that does not easily translate to local water management applications. We report a set of controlled experiments that evaluate, using the Variable Infiltration Capacity (VIC) land-surface hydrologic model at one-sixteenth degree latitude and longitude resolution, the sensitivities of annual and seasonal streamflow over the Columbia River basin to imposed temperature changes. Other work aligned with this effort has shown that western U.S. basins, including the Columbia basin as a whole, are more sensitive to warming in the summer than in the winter in terms of annual streamflows. We further examine the spatial character of these sensitivities in the Columbia using sub-basin level (eight digit Hydrologic Unit Code scale, or cataloging unit) responses in the United States and similar sub-basin level (National Hydro Network Work Unit) responses in Canada. Within the Columbia River basin and Puget Sound region, there are 226 of these watershed units, with an average area of 3000 km2, and these watershed units have a great diversity of hydroclimatology, vegetation, soils, and topography. We contrast the range of hydrologic sensitivities across the watershed units with that of the Columbia River basin as a whole. We find that the difference in hydrologic response between summer and winter warming is controlled in substantial part by the relatively high elevation, cold Canadian portion.

  20. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Science.gov (United States)

    Gao, P.; Geissen, V.; Ritsema, C. J.; Mu, X.-M.; Wang, F.

    2013-03-01

    Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P control erosion without restricting stream flow.

  1. Characterizing the Role of Lake Storage Dynamics in the Congo River Basin

    Science.gov (United States)

    Raoufi, R.; Beighley, E., II; Lee, H.; Alsdorf, D. E.

    2014-12-01

    Although the Congo River is the world's second largest, behind the Amazon, in terms of annual discharge and rain forest extent, our level of hydrologic understanding is somewhat limited largely due to a lack of in-situ measurements. This point is even more important in the context of how large tropical wetlands impact global hydrologic and carbon cycles. For example, although the Amazon and Congo are both large tropical rivers, their wetlands appear to function differently. The Congo River is also unique in that it is the only major river to cross the equator twice, which results in a year-round rainfall from the movement of the Inter Tropical Convergence Zone (ITCZ). To better understand how the Congo River wetlands function and their role in global carbon cycle, we first characterize the spatial and temporal distribution of water stores and fluxes throughout the basin. Given the limited in-situ measurements, a combination of modeling and remotely sensed measurements are used. Here, we specifically focus on the role of lake storage dynamics in the Congo River discharge. The Hillslope River Routing (HRR) hydrologic model, Tropical Rainfall Measuring Mission (TRMM) precipitation (3B42v7), Moderate Resolution Imaging Spectroradiometer (MODIS) albedo ( MCD43C3), leaf area index (MCD15A2), land surface temperature (MOD11C1 and MYD11C1) and land cover (MCD12C1), water level changes from radar altimetry, and LandSat based extent measurements over major water bodies are used to estimate basin-wide total water storage variations. The HRR model results, which include hourly water dynamics for the Congo and surrounding basins for the period 2002-2012, are also compared to NASA's Gravity Recovery and Climate Experiment (GRACE) measurements in order to assess the impact of GRACE signal leakage over the Congo Basin.

  2. Trends and future challenges of water resources in the Tigris-Euphrates Rivers basin in Iraq

    Science.gov (United States)

    Issa, I. E.; Al-Ansari, N. A.; Sherwany, G.; Knutsson, S.

    2013-12-01

    Iraq is one of the riparian countries within basins of Tigris-Euphrates Rivers in the Middle East region. The region is currently facing water shortage problems due to the increase of the demand and climate changes. In the present study, average monthly water flow measurements for 15 stream flow gaging stations within basins of these rivers in Iraq with population growth rate data in some of its part were used to evaluate the reality of the current situation and future challenges of water availability and demand in Iraq. The results showed that Iraq receives annually 70.29 km3 of water 45.4 and 25.52 km3 from River Tigris and Euphrates respectively. An amount of 18.04 km3 is supplied by its tributaries inside Iraq. The whole amount of water in the Euphrates Rivers comes outside the Iraqi borders. Annual decrease of the water inflow is 0.1335 km3 yr-1 for Tigris and 0.245 km3 yr-1 for Euphrates. This implies the annual percentage reduction of inflow rates for the two rivers is 0.294 and 0.960% respectively. Iraq consumes annually 88.89% (63.05 km3) of incoming water from the two rivers, where about 60.43 and 39.57% are from Rivers Tigris and Euphrates respectively. Water demand increases annually by 0.896 km3; of which 0.5271 and 0.475 km3 within Tigris and Euphrates basins respectively. The average water demand in 2020 will increase to 42.844 km3 yr-1 for Tigris basin and for Euphrates 29.225 km3 yr-1 (total 72.069 km3 yr-1), while water availability will decrease to 63.46 km3 yr-1. This means that the overall water shortage will be restricted to 8.61 km3.

  3. Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan

    OpenAIRE

    A. A. Tahir; Chevallier, P; Y. Arnaud; Ahmad, B.

    2011-01-01

    A major proportion of flow in the Indus River is contributed by its snow- and glacier-fed river catchments situated in the Himalaya, Karakoram and Hindukush ranges. It is therefore essential to understand the cryosphere dynamics in this area for water resource management. The MODIS MOD10A2 remote-sensing database of snow cover products from March 2000 to December 2009 was selected to analyse the snow cover changes in the Hunza River basin (the snow- and glacier-fed sub-catchment of the Indus ...

  4. Suspended-sediment budget for the Kankakee River Basin, 1993-95

    Science.gov (United States)

    Holmes, R.R., Jr.

    1997-01-01

    A suspended-sediment budget was constructed for the Kankakee River Basin using suspended-sediment data collected from January 1993 through December 1995 at six existing U.S. Geological Survey streamflow-gaging stations. The Iroquois River delivered almost twice as much suspended-sediment load to the Kankakee River main stem as did the Kankakee River above its junction with the Iroquois River. For the Iroquois River, the portion of the drainage area in Illinois contributed 86 percent of the total suspended-sediment load measured during the study. In contrast, for the Kankakee River upstream from the junction with the Iroquois, the portion of the drainage area in Illinois contributed only 17 percent of the total suspended-sediment load measured during the study. A net increase in total suspended-sediment load of 659,000 tons was measured in the main stem Kankakee River from the mouth of the Iroquois River to the streamflow-gaging station at Wilmington, Ill. This portion of the Kankakee River drainage had the highest suspended-sediment yield at 861 tons per day per square mile.

  5. Reconstructing the small river basin sediment budget and associated particle-bound contaminants redistribution (Chern River, European Russia)

    Science.gov (United States)

    Belyaev, Vladimir; Aseeva, Elena; Golosov, Valentin

    2015-04-01

    Reconstruction of the basin-scale sediment budget and associated particle-bound pollutants redistribution was carried out within the upper part of the Chern River basin (133 km2). It involved application of integrated approach based on use of several independent techniques. The study river basin is located on the border between the Orel and Kursk Regions of the Central European Russia nearby the Mikhailovskiy opencast iron ore mine and processing plant, which are believed to be the main local sources of air-borne pollutants. In addition, the basin was contaminated by radionuclide fallout after the Chernobyl accident in 1986. Combination of geomorphic, geochemical, soil survey and geodetic methods has allowed authors to evaluate dynamics of sediment and contaminants redistribution for the last 50 years (since the beginning of a mining activity) within the upper part of the basin upstream from the reservoir, located in the middle reach of the main valley. Main techniques applied were field description of soil or sediment sections, the 137Cs radioactive tracer (for estimation average soil loss rates from eroding cultivated hillslopes and for reconstruction of accumulation rates and sediment microstratigraphy for deposition locations such as main river floodplain and bottoms of small dry valleys), chemical analysis (content of selected heavy metals and As - both in mobile forms by atomic absorption spectroscopy and total by X-ray fluorescence spectrometry, organic C content, pH), geomorphic and detailed geodetic survey of selected key sections of the Chern River floodplain, calculation of average soil erosion rates for cultivated area of the studied part of the basin by the empirical model. In addition, two detailed bottom sediment cores were taken from the reservoir bottom which intercepts practically all the sediment delivered from the upper part of the basin. Integrating the obtained data, it has been found out that substantial changes of the sediment budget took place within the studied part of the Chern River basin between periods before and after 1986 (as the main time mark was indicated by the Chernobyl-associated 137Cs peak detected in almost all sampled sections in deposition zones). These involved significant decrease of sedimentation in the reservoir (from 29% to 6.3% of basin-scale sediment production from cultivated hillslopes) and on the main river floodplain (from 14% to 4.5%) and consequent increase of deposition in small dry valleys (from 27-32% to 60-65%). This can be explained by combination of anthropogenic impact (dramatic decrease of cultivated area after the Soviet Union collapse and gradual recovery of local agriculture until the present time) and climate change (significant decrease of spring snowmelt runoff with increase of frequency of intensive runoff-generating rainstorms during the warm season). In terms of the contaminants redistribution, it was found that practically simultaneous commencement of the mining and industrial activity and sharp increase in application of chemical fertilizers in agriculture caused detectable heavy metal pollution within the basin only during the late 1950s - early 1960s. As a result concentrations of Zn and As in the floodplain sediment layers dated to that period increased dramatically, exceeding the maximum allowable levels.

  6. HAZARDS, VULNERABILITY AND ASSOCIATED HYDROLOGICAL RISKS IN THE HYDROGRAPHICAL BASIN OF THE RIVER UZ, TRIBUTARY OF THE RIVER TROTU?

    Directory of Open Access Journals (Sweden)

    MIFTODE IOANA DELIA

    2015-03-01

    Full Text Available As a consequence of the climatic change that has occurred in the last decade, the number of occurrences of extreme phenomena, follows an increasing trend with material and human casualties. The prevention of flash floods requires the complex and paramount importance action of responsible agencies. The river Uz is one of the most important tributaries of the Trotu? River; its basin has a high density hydrographical network. Using the data from the Basin Water Administration, Siret – Bac?u, it has been possible to establish the flash floods’ occurrence frequency, as well as their tendencies. Based on this information, the hazard maps were drawn together with the risk and vulnerability involved, thus fulfilling the objectives of the study; it substantiates that the flood risks increases in proportion with the decrease in altitude of the landscape, the densely populated zones are especially vulnerable.

  7. Fish communities of the Buffalo River Basin and nearby basins of Arkansas and their relation to selected environmental factors, 2001-2002

    Science.gov (United States)

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Most of the length of the Buffalo River lies within the boundaries of Buffalo National River, a unit of the National Park Service; the upper 24 river kilometers lie within the boundary of the Ozark National Forest. Much of the upper and extreme lower parts of the basin on the south side of the Buffalo River is within the Ozark National Forest. During the summers of 2001 and 2002, fish communities were sampled at 52 sites in the study area that included the Buffalo River Basin and selected smaller nearby basins within the White River Basin in north-central Arkansas. Water quality (including nutrient and bacteria concentrations) and several other environmental factors (such as stream size, land use, substrate size, and riparian shading) also were measured. A total of 56 species of fish were collected from sites within the Buffalo River Basin in 2001 and 2002. All 56 species also were collected from within the boundaries of Buffalo National River. Twenty-two species were collected from headwater sites on tributaries of the Buffalo River; 27 species were collected from sites within or immediately adjacent to the Ozark National Forest. The list of species collected from Buffalo National River is similar to the list of species reported by previous investigators. Species richness at sites on the mainstem of the Buffalo River generally increased in a downstream direction. The number of species collected (both years combined) increased from 17 at the most upstream site to 38 near the mouth of the Buffalo River. In 2001 and 2002, a total of 53 species of fish were collected from sites outside the Buffalo River Basin. Several fish community metrics varied among sites in different site categories (mainstem, large tributary, small tributary, headwater, and developed out-of-basin sites). Median relative abundances of stonerollers ranged from about 25 to 55 percent and were highest at headwater and developed out-of-basin sites and lowest at mainstem sites. The relative abundances at the headwater and developed out-of-basin sites were significantly different from the relative abundances at the mainstem sites. Percentages of individuals of algivorous/herbivorous, invertivorous, and piscivorous species at headwater sites were significantly lower than values at mainstem and developed out-of-basin sites. Percentages of individuals of invertivorous species at mainstem sites were significantly higher than values at small tributary, headwater, and developed out-of-basin sites. Percentages of top carnivores at mainstem sites were significantly higher than values at tributary and headwater sites. The numbers of darter, sculpin, plus madtom species at mainstem, large tributary, and developed out-of-basin sites were significantly higher than values at other sites, and the values at small tributary sites and headwater sites were each significantly different from values at the other four types of sites. The number of lithophilic spawning species at large tributary sites was not significantly different from values at mainstem and developed out-of-basin sites, but values for small tributary and headwater sites each were significantly different from values for all other categories. Index of biotic integrity scores varied among the site categories. Scores for mainstem sites were significantly larger than all but large tributary site scores. Scores for headwater sites were significantly smaller than mainstem and large tributary site scores. Several analyses of the data described in this report suggest that drainage area is the most important single factor influencing fish communities of the Buffalo River Basin and nearby basins. Species richness increases with increasing drainage area and some species are restricted to smaller streams while other species are more common in larger streams. Some community metrics also are related to land use and related factors

  8. Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China

    Science.gov (United States)

    Zhang, Qiang; Sun, Peng; Li, Jianfeng; Xiao, Mingzhong; Singh, Vijay P.

    2015-07-01

    The Tarim River basin is dominated by arid climate, and agriculture plays a key role in the regional socioeconomic development. The basin is subjected to frequent droughts which are a common natural hazard. Based on Standardized Precipitation Index at 3-, 6-, and 12-month timescales, drought hazard index and composite drought vulnerability indices, drought risk and drought vulnerability are evaluated. Results indicate that (1) drought hazard is higher in northern and eastern parts of the Tarim River basin at 3- and 6-month timescales, while it is high in central and northwestern parts at a 12-month timescale and (2) drought vulnerability is higher in northwestern and southwestern parts of the basin, and the highest drought vulnerability is identified in the southwestern part. Results also indicate significant relations between drought vulnerability and the percentage of farmers, dependency ratio, and the percentage of drought-induced agricultural loss. Results of this study can be useful for drought hazard mitigation as well as for planning and management of agricultural activities and agricultural irrigation in the Tarim River basin.

  9. Morphometric analysis of Kunderu river basin, Kurnool district, A.P, India for watershed management.

    Science.gov (United States)

    Raju, G Sudarsana; Babu, K Raghu

    2012-01-01

    Morphometric analysis has been carried out to assess the drainage characteristics of Kunderu river basin of India. The basin is mostly dendritic to subdendritic in nature. Bifurcation ratio of successive orders has shown a gradual decrease from one order to next and this is attributed to differences in rock types and stage of development. The high values for lower stream orders indicate that the lower streams are mostly found in mountainous and highly dissected areas and the low bifurcation ratio approaching a value of in higher order streams indicates the flow of these streams in a flat to rolling terrain. The drainage density ranged from 0.54 to 0.76 and stream frequencies ranged from 0.09 to 0.23 in Kunderu river sub-basins. The drainage density and drainage frequency are low, which indicate a higher recharge of groundwater and a higher transmissibity of aquifers. The low drainage density ranged from 0.54 to 0.76 for sub-basins and low stream frequencies ranged from 0.09 to 0.23 in Kunderu river sub-basins, indicating a higher recharge of groundwater. PMID:23741862

  10. Evolution of tertiary intermontane fluvial system of Powder River Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Exploration and development of economic coal and uranium deposits of the Tertiary Fort Union and Wasatch Formations provided data related to the evolution of depositional systems in the Powder River Basin. In ascending order, the Paleocene Fort Union Formation consists of the Tullock, Lebo, and Tongue River Members. The overlying Eocene Wasatch Formation consists of the conglomeratic Kingsbury and Moncrief Members and laterally equivalent finer grained deposits. Evolution of fluvial deposition in the basin was determined from sandstone percent maps. A high proportion of sandstones in the Tullock Member and combined Tongue River Member and Wasatch Formation formed in interconnected east-west and north-south belts. The east-west belts represent alluvial fans, as well as braided and meandering tributary streams. The north-south belts reflect meandering and anastomosing trunk streams fed by basin margin tributaries. The sandstones of the Lebo Shale show east-west trends and represent deposits of fluvio-deltaic systems that filled a western, closed-lacustrine basin. The lake in this basin may have formed during localized subsidence along the Buffalo deep fault. These contrasting styles of fluvial deposition were largely controlled by extrabasinal and intrabasinal tectonics associated with Laramide orogeny

  11. Integrated Hatchery Operations : Existing Policy Affecting Hatcheries in the Columbia River Basin, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shelldrake, Tom

    1993-05-01

    Collected together in this document is relevant laws and policy of the US Fish and Wildlife Service, Washington State Department of Wildlife, Oregon State, Washington Department of Fisheries, and Idaho Department of Fish and Game as they affect hatcheries in the Columbia River Basin.

  12. Ants (Hymenoptera: Formicidae and termites (Termitidae: Isoptera, Moron River basin, Carabobo, Venezuela: Preliminary data

    Directory of Open Access Journals (Sweden)

    Riera-Valera, M. A.

    2009-01-01

    Full Text Available Nineteen ant species of six subfamilies (Dolichoderinae, Ecitoninae, Ectatomminae, Formicinae,Myrmicinae and Ponerinae and two termite species (Termitidae from Morón River basin (Carabobo, Venezuela arelisted here as part of a preliminary arthropod research. Despite of reporting a low number of taxa, this work constitutesthe first record of ants from Morón, Carabobo state, Venezuela.

  13. Modeling water-quality loads to the reservoirs of the Upper Trinity River Basin, Texas, USA

    Science.gov (United States)

    Water quality modeling efforts have been conducted for 12 reservoirs in ten watersheds in Upper Trinity River Basin located in north Texas. The reservoirs are being used for water supply to the populated area around the Dallas-Fort Worth Metro and the water quality of some of these reservoirs has b...

  14. Status of Biodiversity and Its Conservation in the Kobadak River Basin of Maheshpur Upazila, Jhenaidah, Bangladesh

    Science.gov (United States)

    Uddin, Jashim Md.

    2015-01-01

    This research project represents the Status of Biodiversity and Its Conservation of Kobadak River basin of Maheshpur Upazila. The study was designed to develop a set of information about the present condition of biodiversity of the study area. Both primary and secondary data have been used to fulfill the survey successfully. Primary data have been…

  15. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    Science.gov (United States)

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  16. Isotopic research on groundwater in the Basin of the Natisone River (Northeast Italy)

    International Nuclear Information System (INIS)

    In the Natisone river basin, the possibilities of water supply and defining risks from particular types of pollution were studied. Stable isotopes of hydrogen, oxygen and carbon in water or in dissolved species, as well as tritium content in water and precipitation, were used as natural tracers to follow the recharge and discharge of surface streams and aquifers. 2 refs, 4 figs

  17. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  18. Salmonid Gamete Preservation in the Snake River Basin, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    1999-03-01

    Steelhead (Oncorhynchus mykiss) and salmon (Oncorhynchus tshawytscha)populations in the Northwest are decreasing. The Nez Perce Tribe (Tribe) was funded in 1998 by the Bonneville Power Administration to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin.

  19. Water risk assessment for river basins in China based on WWF water risk assessment tools

    Science.gov (United States)

    Wei, N.; Qiu, Y.; Gan, H.; Niu, C.; Liu, J.; Gan, Y.; Zhou, N.

    2014-09-01

    Water resource problems, one of the most important environmental and socio-economic issues, have been a common concern worldwide in recent years. Water resource risks are attracting more and more attention from the international community and national governments. Given the current situations of water resources and the water environment, and the characteristics of water resources management and information statistics of China, this paper establishes an index system for water risk assessment in river basins of China based on the index system of water risk assessment proposed by the World Wide Fund For Nature (WWF) and German Investment and Development Co., Ltd (DEG). The new system is more suitable for Chinese national conditions and endorses the international assessment index. A variety of factors are considered to determine the critical values of classification for each index, and the indexes are graded by means of 5-grade and 5-score scales; the weights and calculation methods of some indexes are adjusted, with the remaining indexes adopting the method of WWF. The Weighted Comprehensive Index Summation Process is adopted to calculate the integrated assessment score of the river basin. The method is applied to the Haihe River basin in China. The assessment shows that the method can accurately reflect the water risk level of different river basins. Finally, the paper discusses the continuing problems in water risk assessment and points out the research required to provide a reference for further study in this field.

  20. LAND USE CHANGE DUE TO URBANIZATION FOR THE NEUSE RIVER BASIN

    Science.gov (United States)

    The Urban Growth Model (UGM) was applied to analysis of land use change in the Neuse River Basin as part of a larger project for estimating the regional and broader impact of urbanization. UGM is based on cellular automation (CA) simulation techniques developed at the University...

  1. Physically-based Flood Modeling Driven by Radar Rainfall in the Upper Guadalupe River Basin, Texas

    Science.gov (United States)

    Sharif, H. O.; Chintalapudi, S.; El Hassan, A.

    2011-12-01

    The upstream portion of the Guadalupe River Basin (Upper Guadalupe River Basin) is prone to frequent flooding due to its physiographic properties (thin soils, exposed bedrock, and sparse vegetation). The Upper Guadalupe River watershed above Comfort, Texas drains an area of 2,170 square kilometers. This watershed is located at the central part of the Texas Hill Country. This study presents hydrologic analysis of the June 2002, November-2004, and August-2007 flood events that occurred in Upper Guadalupe River Basin. The physically based, distributed-parameter Gridded Surface Subsurface Hydrologic Analysis (GSSHA) hydrologic model was used to simulate the above flooding events. The first event was used in model while the other two were used for validation. GSSHA model was driven by both rain gauge and Multi-sensor Precipitation Estimator (MPE) rainfall inputs. Differences in simulation results were compared in terms of the hydrographs at different locations in the basin as well as the spatial distribution of hydrologic processes. GSSHA simulations driven by MPE rainfall match very well the USGS observed hydrograph. GSSHA simulation driven by rain gauge rainfall for June-2002 storm event underestimated the peak flow.

  2. Application of Integrated Flood Analysis System (IFAS) for Dungun River Basin

    International Nuclear Information System (INIS)

    The Northeast monsoon happening during the months of October until January is the major rainy season found in the eastern part of Peninsular Malaysia. The Dungun river basin (1,858 km2) is exposed to this season thus experiencing characteristically regular flooding due to the prolong rainfall events. The annual rainfall over the river basins are 2,880 mm with great proportion falling in the months of December (19.4%). This study is to apply the Integrated Flood Analysis System (IFAS) model which Dungun river basin has been chosen for this study as the catchments have range of flood and relevant data that can be used to develop the model. The satellite data used in this study is provided by JAXA Global Rainfall Watch. The main feature of this real-time flood analysis model is the satellite-based rainfall data input employed during the model creation phase. The performance of the model for the river basins from satellite and ground-based rainfall data are compared using three error analysis methods.

  3. Comparison of the Abiotic Preferences of Macroinvertebrates in Tropical River Basins

    OpenAIRE

    Everaert, Gert; De Neve, Jan; Boets, Pieter; Dominguez-Granda, Luis; Mereta, Seid Tiku; Ambelu, Argaw; Hoang, Thu Huong; Peter L. M. Goethals; Thas, Olivier

    2014-01-01

    We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae) and physical-chemical water quality conditions. Within the investigated physical-chemic...

  4. Stratigraphic architecture, bedload extraction, and mass balance of Holocene fluvial sediments in a tectonically subsiding basin within the Ganges-Brahmaputra River delta, Bangladesh

    Science.gov (United States)

    Sincavage, R.; Goodbred, S. L., Jr.; Pickering, J.; Wilson, C.; Paola, C.; Hossain, S.; Steckler, M. S.; Seeber, L.

    2014-12-01

    The Brahmaputra River occupied the tectonically active Sylhet Basin in eastern Bangladesh three times during the Holocene. With samples from more than 200 closely-spaced (3-5 km) boreholes, we take advantage of these discrete channel occupations and the high trapping efficiency of the subsiding basin to investigate dispersal of fluvial sediments. Experiment and theory suggest that depositional units transition from channels to lobes as transported sediment mass declines below ~30% of the total measured at the basin head. We test these ideas by reconstructing the geometry and grain size distributions of a large (30 m thick x 80 km wide) sand lobe formed during the mid-Holocene occupation (~7000-4000 years BP) of Sylhet Basin. Based on estimates of modern sediment discharge in the system, the volume of this sediment lobe is insufficient to account for the entire sediment budget. The smaller sediment volume is likely a consequence of reduced sediment discharge during a weakened monsoon. Additional sediment is likely to have also been routed out of the basin via an outlet located approximately along the modern Meghna River channel. Facies within Sylhet Basin can be characterized as stacked braidbelt sands in the proximal portion of the system, with isolated sand lenses further downstream, indicating a transition from a highly mobile braidbelt to a less mobile distributary system. The majority of bed load is extracted within a distance of ~150 km from the avulsion node, approximately coincident with the regional backwater reach of the Bengal Basin, suggesting a link between the hydraulic and "morphodynamic" backwater reaches of the system. Downstream fining is more rapid in sediments associated with the long-term occupation of Sylhet Basin, for which sediment is trapped over a relatively short distance within the sand wedge of central Sylhet Basin, than those from the early- and late-Holocene occupations, for which sediment is distributed over a longer path that follows the course of the Old Brahmaputra River. Fine-grained sediments preserved in the system do not display measureable downstream fining. The increased rate of sediment extraction in the eastern part of the basin is likely coupled with a subsidence maximum (~7 mm/year) associated with the foredeep of the Dauki thrust fault.

  5. Generalized hydrogeology and ground-water budget for the C Aquifer, Little Colorado River Basin and parts of the Verde and Salt River Basins, Arizona and New Mexico

    Science.gov (United States)

    Hart, Robert J.; Ward, John J.; Bills, Donald J.; Flynn, Marilyn E.

    2002-01-01

    The C aquifer underlies the Little Colorado River Basin and parts of the Verde and Salt River Basins and is named for the primary water-bearing rock unit of the aquifer, the Coconino Sandstone. The areal extent of this aquifer is more than 27,000 square miles. More than 1,000 well and spring sites were identified in the U.S. Geological Survey database for the C aquifer in Arizona and New Mexico. The C aquifer is the most productive aquifer in the Little Colorado River Basin. The Little Colorado River is the primary surface-water feature in the area, and it has a direct hydraulic connection with the C aquifer in some areas. Spring discharge as base flow from the C aquifer occurs predominantly in the lower 13 miles of the Little Colorado River subsequent to downward leakage into the deeper Redwall-Muav Limestone aquifer. Ground-water mounds or divides exist along the southern and northeastern boundaries of the Little Colorado River Basin. The ground-water divides are significant boundaries of the C aquifer; however, the location and persistence of the divides potentially can be affected by ground-water withdrawals. Ground-water development in the C aquifer has increased steadily since the 1940s because population growth has produced an increased need for agricultural, industrial, and public water supply. Ground-water pumpage from the C aquifer during 1995 was about 140,000 acre-feet. Ground-water budget components for the C aquifer were evaluated using measured or estimated discharge values. The system was assumed to be in a steady-state condition with respect to natural recharge and discharge, and the stability of discharge from major springs during the past several decades supported the steady-state assumption. Downward leakage to the Redwall-Muav Limestone aquifer is a major discharge component for the ground-water budget. Discharge from the C aquifer is estimated to be 319,000 acre-feet per year.

  6. Environmental setting and water-quality issues in the lower Tennessee River basin

    Science.gov (United States)

    Kingsbury, James A.; Hoos, Anne B.; Woodside, M.D.

    1999-01-01

    The goals of the National Water-Quality Assessment Program are to describe current water-quality conditions for a large part of the Nation's water resources, identify water-quality changes over time, and identify the primary natural and human factors that affect water quality. The lower Tennessee River Basin is one of 59 river basins selected for study. The water-quality assessment of the lower Tennessee River Basin study unit began in 1997. The lower Tennessee River Basin study unit encompasses an area of about 19,500 square miles and extends from Chattanooga, Tennessee, to Paducah, Kentucky. The study unit had a population of about 1.5 million people in 1995.The study unit was subdivided into subunits with relatively homogeneous geology and physiography. Subdivision of the study unit creates a framework to assess the effects of natural and cultural settings on water quality. Nine subunits were delineated in the study unit; their boundaries generally coincide with level III and level IV ecoregion boundaries. The nine subunits are the Coastal Plain, Transition, Western Highland Rim, Outer Nashville Basin, Inner Nashville Basin, Eastern Highland Rim, Plateau Escarpment and Valleys, Cumberland Plateau, and Valley and Ridge.The lower Tennessee River Basin consists of predominantly forest (51 percent) and agricultural land (40 percent). Activities related to agricultural land use, therefore, are the primary cultural factors likely to have a widespread effect on surface- and ground-water quality in the study unit. Inputs of total nitrogen and phosphorus from agricultural activities in 1992 were about 161,000 and 37,900 tons, respectively. About 3.7 million pounds (active ingredient) of pesticides was applied to crops in the lower Tennessee River Basin in 1992.State water-quality agencies identified nutrient enrichment and pathogens as water-quality issues affecting both surface and ground water in the lower Tennessee River Basin. Water-quality data collected by State and Federal agencies between 1980 and 1996 were summarized to characterize surface- and ground-water quality of the subunits with respect to these issues. Median concentrations of nitrogen species generally were less than 1 milligram per liter in surface and ground water in all subunits, and were highest throughout the subunits that had the largest percentages of agricultural land use. Median phosphorus concentrations also were less than 1 milligram per liter in all subunits. Phosphatic limestones present in two subunits had a larger effect on phosphorus concentrations in surface and ground water than did the amount of agricultural land use in these subunits. Median counts of fecal coliform were higher in surface water than in ground water in all subunits. The highest median counts in surface water were in the Valley and Ridge (7,500 colonies per 100 milliliters) and the Outer Nashville Basin subunits (5,000 colonies per 100 milliliters). Highest median counts in ground water were in the Inner and Outer Nashville Basin subunit. Natural setting likely has an important effect with respect to fecal contamination of surface and ground water in the lower Tennessee River Basin.

  7. Optimal application of conceptual rainfall-runoff hydrological models in the Jinshajiang River basin, China

    Science.gov (United States)

    Tayyab, M.; Zhou, J.; Zeng, X.; Chen, L.; Ye, L.

    2015-05-01

    For specific research areas different hydrological models have shown different characteristics. By comparing different hydrological models on the same area we should get better and more authentic results. The objective of this research study is to highlight the importance of model selection for specific research areas. For the Jinshajiang River basin, three conceptual hydrological models including the Xin'anjiang model, the Antecedent precipitation index (API) model and the Tank model are applied to select the most suitable model for flood forecasting, based on the hourly rainfall and hourly discharge data. Data were analysed by comparing the simulation outputs of the three models with the Nash-Sutcliffe efficiency and Correlation coefficient index. Results showed that the performance of the three models were not very different. On the basis of data need and the characteristics of the research basin, the Xin'anjiang model was selected as the optimal and practical conceptual hydrological model for the Jinshajiang River basin.

  8. Fish, lower Ivinhema River basin streams, state of Mato Grosso do Sul, Brazil.

    Directory of Open Access Journals (Sweden)

    Súarez, Y. R.

    2008-01-01

    Full Text Available The Ivinhema River basin is one of the main tributaries of the western portion of Paraná River. However,few data are available on the fish communities of its streams. Monthly samples were made in seven streams of the lowerportion of the basin, in the state of Mato Grosso do Sul, using a rectangular sieve 1.2 x 0.8 m, with 2 mm mesh size.Forty-six fish species were found in these streams. The richness estimated according to the bootstrap procedure was 50species. At least two of the captured species were not previously recorded for the upper Paraná basin, indicating theneed of new sampling effort in this region.

  9. Water and Fisheries: The Sensitivity of Water Supply in the Tana River Basin to Climate Change

    International Nuclear Information System (INIS)

    Wether climatic change would cause water supply in the dry areas of the earth to diminish or not is a major question. The main objective of this study was to determine wether the water supply in the Tana river Basin of Kenya would diminish in quality as a result of climate change. The Tana River Basin is the immense economic importance to Kenya and is the lifeline of Kenya's electricity supply, accounting for about 70% of the country's electricity supply. The basin houses about 30% of the country's population and 38% of the total irrigable land. A diminished water supply in this content would, therefore, hamper the economic development of the country.Kenya receives, on average, an annual rainfall of 600 mm, and hence classified as arid to semi-arid. This makes it vulnerable to adverse effects of climate change

  10. Managing High Runoff Discharge in the Urbanized Basins of Asa River Catchment Area of Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    K. A. Iroye

    2010-08-01

    Full Text Available Incidence of flood has been on the increase in Ilorin for sometime; and this exemplifies the problem operating in most urban centres in Nigeria. Increase in runoff production in an urbanized catchment is a function, among other factors of to increase in percentage paved area brought about by deforestation activities and poor environmental attitude of the people. This study examines the relationship between runoff discharge and basin characteristics in Ilorin. Data used were collected directly from the field over a period of one calendar year. Rainfall data were collected in each basin using a standard rainguage of 20cm orifice while basin discharge was collected twice daily (8.00am and 6.30pm using fabricated staff gauge graduated in centimeter. Basin morphometric attributes were computed from topographic map while landuse map was prepared from satellite imagery. Soil samples were collected and analysed for particle size distribution. The result obtained indicates that basin size and landuse have profound influence on the explanation of discharge in the basins. The study thus, recommends a number of options to efficient basin management in the city.
    Keywords: Managing; High runoff discharge; Urbanized basin; Asa river catchment; Ilorin; Nigeria

  11. Using radar altimetry to update a routing model of the Zambezi River Basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; Bauer-Gottwein, Peter

    2012-01-01

    Satellite radar altimetry allows for the global monitoring of lakes and river levels. However, the widespread use of altimetry for hydrological studies is limited by the coarse temporal and spatial resolution provided by current altimetric missions and the fact that discharge rather than level is needed for hydrological applications. To overcome these limitations, altimetry river levels can be combined with hydrological modeling in a dataassimilation framework. This study focuses on the updating of a river routing model of the Zambezi using river levels from radar altimetry. A hydrological model of the basin was built to simulate the land phase of the water cycle and produce inflows to a Muskingum routing model. River altimetry from the ENVISAT mission was then used to update the storages in the reaches of the Muskingum model using the Extended Kalman Filter. The method showed improvements in modeled flows relative to the baseline.

  12. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    Science.gov (United States)

    Bout-Roumazeilles, V.; Riboulleau, A.; ChâTelet, E. Armynot; Lorenzoni, L.; Tribovillard, N.; Murray, R. W.; Müller-Karger, F.; Astor, Y. M.

    2013-02-01

    The mineralogical composition of 95 surface sediment samples from the Cariaco Basin continental shelf and Orinoco delta was investigated in order to constrain the clay-mineral main provenance and distribution within the Cariaco Basin. The spatial variability of the data set was studied using a geo-statistical approach that allows drawing representative clay-mineral distribution maps. These maps are used to identify present-day dominant sources for each clay-mineral species in agreement with the geological characteristics of the main river watersheds emptying into the basin. This approach allows (1) identifying the most distinctive clay-mineral species/ratios that determine particle provenance, (2) evaluating the respective contribution of local rivers, and (3) confirming the minimal present-day influence of the Orinoco plume on the Cariaco Basin sedimentation. The Tuy, Unare, and Neveri Rivers are the main sources of clay particles to the Cariaco Basin sedimentation. At present, the Tuy River is the main contributor of illite to the western part of the southern Cariaco Basin continental shelf. The Unare River plume, carrying smectite and kaolinite, has a wide westward propagation, whereas the Neveri River contribution is less extended, providing kaolinite and illite toward the eastern Cariaco Basin. The Manzanares, Araya, Tortuga, and Margarita areas are secondary sources of local influence. These insights shed light on the origin of present-day terrigenous sediments of the Cariaco Basin and help to propose alternative explanations for the temporal variability of clay mineralogy observed in previously published studies.

  13. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2013-04-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  14. Water Allocation Policy Modeling for the Dong Nai River Basin: An Integrated Perspective

    Science.gov (United States)

    Ringler, Claudia; Huy, Nguyen Vu; Msangi, Siwa

    2006-12-01

    Recent water sector reforms and increased scarcity and vulnerability of water resources, combined with declining public funding available for large scale infrastructure investment in the sector, have led to a greater awareness by the Government of Vietnam for the need to analyze water resource allocation and use in an integrated fashion, at the basin scale, and from a perspective of economic efficiency. In this study we focus on the development, application, and selected policy analyses using an integrated economic hydrologic river basin model for the Dong Nai River Basin in southern Vietnam. The model framework depicts the sectoral structure and location of water users (agriculture, industry, hydropower, domestic, and the environment) and the institutions for water allocation in the basin. Water benefit functions are developed for the major water uses subject to physical limitations and to constraints of system control and policy. Based on this modeling framework, we will analyze policies that can affect water allocation and use at the basin level, including both basin-specific and general macroeconomic policies.

  15. Simulation and economics of coalbed methane production in the Powder River basin

    International Nuclear Information System (INIS)

    This paper reports that coalbed methane has emerged as a significant resource for natural gas production in the United States, with estimates of gas-in-place of 400 trillion cubic feet. In Wyoming the largest coalbed methane resources occur in the Greater Green River, Powder River, and Wind River Basins. Very little of the gas has been exploited. This paper examines the potential of coalbed methane production in the Powder River basin by history matching early production from five gas wells in the Rawhide Butte field using a commercially available coalbed methane simulator, COALGAS. Sensitivity studies showed the most important parameters for establishing production were permeability, initial desorption pressure and drainage area. Langmuir constants, desorption time, porosity, well-bore diameter and skin were comparatively less important for long term production. An economic analysis showed that, based on current capital and operating costs obtained from industrial companies, the development of coalbed methane in the Powder River Basin may be economic if the gas sales price is greater than approximately $1/Mscf

  16. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations. PMID:20665109

  17. Application of diatom biotic indices in the Guadalquivir River Basin, a Mediterranean basin. Which one is the most appropriated?

    Science.gov (United States)

    Martín, Gonzalo; Toja, Julia; Sala, Silvia Estela; de los Reyes Fernández, María; Reyes, Isabel; Adela Casco, María

    2010-11-01

    The diatom community was studied in 110 sites within the Guadalquivir River catchment area, South Spain, in order to test the applicability of diatom biotic indices developed in other European regions to this site and to provide a useful tool for monitoring water quality in the river basin. We identified 399 taxa and calculated five diatomic indices (Specific Polluosensitivity Index (IPS), Biological Diatom Index, Trophic Diatom Index, Index of the European Economic Community, and Diatom-based Eutrophication Pollution Index (EPI-D)). Since the indices analyzed were highly correlated, their results could be compared. The indices that gave the best results were the EPI-D followed by the IPS, the latter being the most widely used index in Iberian catchments. Nevertheless, the EPI-D presented certain advantages: (1) this index correlated the best with the water chemistry in the catchment area; (2) EPI-D is not sensitive to the presence of taxa belonging to the Achnanthidium minutissimum complex frequently present in the Guadalquivir basin. Nevertheless, EPI-D retains its effectiveness and thus constitutes an easier index for application from a taxonomical standpoint. We estimated the general water quality of the entire basin on the basis of EPI-D. According to these results, 55% of the sites had either high or good water quality. The species that better characterized each water quality category in the study area were: A. minutissimum (high and good), Amphora pediculus (moderate), Nitzschia frustulum (poor), and Nitzschia capitellata (bad). PMID:20072812

  18. Features of global hydrological processes using the Variable Infiltration Capacity Model simulation: focusing on five major river basins

    Science.gov (United States)

    Wang, K.; Niu, J.; Chen, J.

    2013-12-01

    This study adopts a semi-distributed hydrological model, Variable Infiltration Capacity (VIC), to simulate the global terrestrial hydrological processes and analyze the variation of main processes, including precipitation, runoff, evapotranspiration, and soil moisture. To run the VIC model, we use the daily gridded precipitation product at a higher resolution (1°×1°) from the Global Precipitation Climatology Project (GPCP). Besides, other daily meteorological data (including maximum and minimum daily temperatures) are derived from the NCAR/NCEP Reanalysis data. VIC model is run at a daily temporal step and 1° latitude-longitude spatial resolution for the period 1997-2008. The streamflow observations from five major continental river basins in the world (the Amazon River basin, the Mississippi River basin, the Yangtze River basin, the Rhine River basin and the Nile River basin) are used to verify the VIC simulation results. Then, this study quantifies the contributions of precipitation to soil moisture change, evapotranspiration and runoff over these five major river basins. This study also detects the response of those hydrological processes to the increase of temperature, which will benefit the regional environment and water management.

  19. Environmental sensitivity mapping for oil spills in the Canhanduba River Basin, Santa Catarina State, Southern Brazil

    Directory of Open Access Journals (Sweden)

    Morgana F. Francini

    2009-02-01

    Full Text Available Oil spills may cause serious damage to natural resources and anthropogenic activities. In order to mitigate such adverse impacts, contingency planning based on environmental sensitivity mapping has been developed, encompassing potential areas, where such situation may occur. Recently, an oil distribution company, TRANSPETRO, put into operation a new facility in the Canhanduba River Basin, in Itajaí, Santa Catarina State, Southern Brazil. This facility receives and sends off diverse pipelines containing a great variety of oil products, crossing over the main stretch of the river and its tributaries. Canhanduba River supplies water to part of the city of Itajaí and the oil distribution facility, as well as all pipelines are located up river of water collecting point to supply that town. Therefore, environmental sensitivity maps of Canhanduba drainage were done in order to support decision makers in case of manage any oil spill episode in that area. Firstly, rapid environmental assessment protocols - RAPs to evaluate physical river habitats were conducted to portrait their integrity in distinct stretches along the river basin. Finally, environmental sensitivity maps attributes like ecosystem sensitivity, natural resources, and anthropogenic activities were identified nearby pipelines crossings and graded according to its intensity in each observation site, in order to estimate environmental sensitivity indexes (ESI and make up the maps. RAPs’ results indicated that in the great majority of river stretches, environmental integrity varies between bad and fair, while ESIs were relatively high, varying from 6 to 9. An environmental sensitivity map (1:50.000 scale was generated to this area displaying the major attributes and the distinct ESIs along the river basin.

  20. Water quality in the Mobile River Basin, Alabama, Georgia, and Mississippi, and Tennessee, 1999-2001

    Science.gov (United States)

    Atkins, J. Brian; Zappia, Humbert; Robinson, James L.; McPherson, Ann K.; Moreland, Richard S.; Harned, Douglas A.; Johnston, Brett F.; Harvill, John S.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Mobile River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Mobile River Basin summarized in this report are discussed in detail in other reports that can be accessed from the Mobile River Basin Web site (http://al.water.usgs.gov/pubs/mobl/mobl.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  1. Study of interaction of shallow groundwater and river along the Cisadane and Ciliwung river of Jakarta basin and its management using environmental isotopes

    International Nuclear Information System (INIS)

    The environmental isotopes were employed to study the interaction of shallow groundwater and river along the Cisadane River and Ciliwung River in Jakarta basin. The rapid growth and development of Jakarta and its surrounding cities, coupled with increasing industrial and other business sectors have impacted on the demand of the water supply for the area. These investigations have been conducted to determine the interaction between shallow groundwater and the river. The 14C results showed that the groundwater samples (above 40 m) which were close to the river influenced the iso-age contour of 14C, which indicated the contributions of river water. The analysis of stable isotopes 18O and Deuterium from the river implied that the river water from upstream to downstream was influenced by the mixing of the river water with the human activities in the upstream (the isotopic compositions becoming enriched). Further, the 18O and Deuterium data revealed that rivers of Cisadane and Ciliwung are contributing to recharge the shallow groundwater in Jakarta, especially in the nearby river bank. In general, the quality of the shallow groundwater along the rivers is good and is suitable as fresh water resource. Due to pollution and declining water table problems in the Jakarta basin, the artificial recharge wells is shown to be a good way out to delineate the problems as indicated by pilot project conducted at Kelurahan Kramat Jati, using infiltration basin method. (author)

  2. Uncertainty in climate change projections of discharge for the Mekong River Basin

    Directory of Open Access Journals (Sweden)

    D. G. Kingston

    2010-08-01

    Full Text Available The Mekong River Basin comprises a key regional resource in Southeast Asia for sectors that include agriculture, fisheries and electricity production. Here we explore the potential impacts of climate change on freshwater resources within the river basin. We quantify uncertainty in these projections associated with GCM structure and climate sensitivity, as well as from hydrological model parameter specification. This is achieved by running pattern-scaled GCM output through a semi-distributed hydrological model (SLURP of the basin. These pattern-scaled GCM outputs allow investigation of specific thresholds of global climate change including the postulated 2 ºC threshold of "dangerous" climate change as simulated using outputs from seven different GCMs. Detailed analysis of results based on HadCM3 climate scenarios reveals a relatively small but non-linear response of annual river discharge to increasing global mean temperature, ranging from a 5.4% decrease to 4.5% increase. Intra-annual (monthly changes in river discharge are greater (from ?16% to +55%, with greatest decreases in July and August, greatest increases in May and June and result from complex and contrasting intra-basin changes in precipitation, evaporation and snow storage/melt. Whilst overall results are highly GCM dependent (in both direction and magnitude, this uncertainty is primarily driven by differences in GCM projections of future precipitation. In contrast, there is strong consistency between GCMs in terms of both increased potential evapotranspiration and a shift to an earlier and less substantial snowmelt season. Indeed, in the upper Mekong (Lancang sub-basin, the temperature-related signal in discharge is strong enough to overwhelm the precipitation-related uncertainty in the direction of change in discharge, with scenarios from all GCMs leading to increased river flow from April–June, and decreased flow from July–August.

  3. Erosion-induced massive organic carbon burial and carbon emission in large Asian river basins: an example of the Yellow River basin

    Science.gov (United States)

    Ran, L.; Lu, X.

    2012-12-01

    Soil erosion and terrestrial deposition of soil organic carbon (SOC) can potentially play a significant role in global carbon cycling. Assessing the fate of SOC during erosion and subsequent transport and sedimentation processes is of critical importance. Using hydrological records of soil erosion and sediment load, and compiled organic carbon (OC) data, budgets of the eroded soils and OC induced by water in the Yellow River basin for the period 1950-2010 are analyzed. The Yellow River basin has experienced intense soil erosion due to the integrated impact of natural process and human activity. Over the period, about 134.2 Gt of soils and 1.24 Gt of OC have been eroded from slope lands. Among the produced sediment, approximately 63% of it was deposited on land, while only 37% of it was discharged into the ocean. For the OC budget, approximately 0.57 Gt was buried on land and 0.25 Gt was delivered into the ocean, which account for 46.2% and 20.3% of the total eroded OC, respectively. Particularly, more than half of the terrestrially redeposited OC (about 51%) was buried in reservoirs and behind silt check dams, revealing the importance of dam sedimentation in burying the eroded OC. The remaining 33.5% or 0.415 Gt of OC was decomposed and emitted into the atmosphere during the erosion and transport processes, which validates the commonly used assumption that 20-40% of the eroded OC will be oxidized after erosion. In the 1950s when soil erosion was very severe, the decomposed OC induced by soil erosion could be as high as 0.05 Gt/yr. An increasingly intense human activity coupled with climate change in the large Asian river basins like Yellow River would trigger more significant impacts on sediment and carbon cycling in the future.

  4. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.

    Science.gov (United States)

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A

    2012-04-10

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin. PMID:22393001

  5. Ecological vulnerability analysis: a river basin case study.

    Science.gov (United States)

    Ippolito, A; Sala, S; Faber, J H; Vighi, M

    2010-08-15

    Assessing and quantifying ecosystem vulnerability is a key issue in site-specific ecotoxicological risk assessment. In this paper, the concept of vulnerability, particularly referred to aquatic ecosystems is defined. Sensitivity to stressors, susceptibility for exposure and recovery capability are described as component of vulnerability of biological communities. The potential for habitat changes must also be considered in ecosystem vulnerability assessment. A procedure based on the application of an ecosystem vulnerability index is proposed. The method allows the assessment of vulnerability of riverine ecosystems to multiple stressors. The procedure is applied to two river systems in northern Italy: River Serio, subject to strong human pressure, and River Trebbia, in semi-natural conditions, as reference system. Macrozoobenthos is chosen as the indicator community. The actual quality of River Serio was evaluated as the result of the multiple stressor pressure on the reference system. Values and limitations of the approach are discussed. PMID:19880159

  6. Monitoring of perfluoroalkyl substances in the Ebro and Guadalquivir River basins (Spain)

    Science.gov (United States)

    Lorenzo, Maria; Campo, Julian; Andreu, Vicente; Pico, Yolanda; Farre, Marinella; Barcelo, Damia

    2015-04-01

    Relevant concentrations of a broad range of pollutants have been found in Spanish Mediterranean River basins, as consequence of anthropogenic pressures and overexploitation (Campo et al., 2014). In this study, the occurrence and sources of 21 perfluoroalkyl substances (PFASs) were determined in water and sediment of the Ebro and Guadalquivir River basins (Spain). PFASs are persistent, bio-accumulative and toxic, which make them a hazard to human health and wildlife. The Ebro and Guadalquivir Rivers are the two most important rivers of Spain. They are representative examples of Mediterranean rivers heavily managed, and previous researches have reported their high pesticide contamination (Masiá et al., 2013). Analytes were extracted by solid phase extraction (SPE) and determined by liquid chromatography coupled to tandem mass spectrometry (LC/MS-MS). In water samples, from 21 analytes screened, 11 were found in Ebro samples and 9 in Guadalquivir ones. In both basins, the most frequents were PFBA, PFPeA, PFHxS and PFOS. Maximum concentration was detected for PFBA, with 251.3 ng L-1 in Ebro and 742.9 ng L-1 in Guadalquivir. Regarding the sediment samples, 8 PFASs were detected in those coming from Ebro basin and 9 in those from Guadalquivir. The PFASs most frequently detected were PFBA, PFPeA, PFOS and PFBS. Maximum concentration in Ebro samples was detected for PFOA, with 32.4 ng g-1 dw, and in Guadalquivir samples for PFBA with 63.8 ng g-1 dw. Ubiquity of these compounds in the environment was proved with high PFAS concentration values detected in upper parts of the rivers. Results confirm that most of the PFASs are only partially eliminated during the secondary treatment suggesting that they can be a focal point of contamination to the rivers where they can bio-accumulate and produce adverse effects on wildlife and humans. Acknowledgment The Spanish Ministry of Economy and Competitiveness has supported this work through the projects SCARCE-CSD2009-00065, CGL2011-29703-C02-01 and CGL2011-29703-C02-02 References Campo, J., Pérez, F., Masiá, A., Picó, Y., Farré, M., Barceló, D., 2014. Perfluoroalkyl substance contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain). Science of the Total Environment DOI: 10.1016/j.scitotenv.2014.05.094. Masiá, A., Campo J., Vázquez-Roig, P., Blasco, C., Picó Y., 2013. Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J. Hazard. Mater. 263P, 95-104.

  7. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ronald C. Surdam

    1999-08-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general--and the Riverton Dome area specially--is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi{sup 2} and 30 mi {sup 2}) and a variety of other necessary geological and geophysical information.

  8. River Basin Scale Management and Governance: Competing Interests for Western Water

    Science.gov (United States)

    Lindquist, Eric

    2015-04-01

    One of the most significant issues in regard to how social scientists understand environmental and resource management is the question of scale: what is the appropriate scale at which to consider environmental problems, and associated stakeholders (including hydrologists) and their interests, in order to "govern" them? Issues of scale touch on the reality of political boundaries, from the international to the local, and their overlap and conflict across jurisdictions. This presentation will consider the questions of environmental management and governance at the river basin scale through the case of the Boise River Basin (BRB), in southwest Idaho. The river basin scale provides a viable, and generalizable, unit of analysis with which to consider theoretical and empirical questions associated with governance and the role of hydrological science in decision making. As a unit of analysis, the "river basin" is common among engineers and hydrologists. Indeed, hydrological data is often collected and assessed at the basin level, not at an institutional or jurisdictional level. In the case of the BRB much is known from the technical perspective, such as infrastructure and engineering factors, who manages the river and how, and economic perspectives, in regard to benefits in support of major agricultural interests in the region. The same level of knowledge cannot be said about the political and societal factors, and related concepts of institutions and power. Compounding the situation is the increasing probability of climate change impacts in the American West. The geographic focus on the Boise River Basin provides a compelling example of what the future might hold in the American West, and how resource managers and other vested interests make or influence river basin policy in the region. The BRB represents a complex and dynamic environment covering approximately 4,100 square miles of land. The BRB is a highly managed basin, with multiple dams and diversions, and is regarded as a highly desirable amenity and ecosystem service provider for the region. It is also a very polarizing construct as diverse interests engaged in basin decision making do not share the same values, perceptions, and constituents. Although regulatory and jurisdictional decision making is in the hands of a few agencies (US Army Corps of Engineers and US Bureau of Reclamation, for example), it is estimated that up to 300 different interests and groups are engaged in using, supporting, and attempting to influence the decisions associated with the Boise River and its myriad uses. Building on previous river basin governance research in the US and Europe, the work presented here is framed on a policy network approach, and focuses on four main factors of the BRB: the type of stakeholder and their perceptions of the BRB as a resource or amenity, role(s) of the stakeholder in the network, interactions between network members and the public, and the role of science, uncertainty and the impact of climate change. This contribution addresses many of the question raised in the HS5.7 call for abstracts and will be of interest to a wide audience.

  9. A new species of Tyttocharax (Characiformes: Characidae: Stevardiinae) from the Güejar river, Orinoco river Basin, Colombia

    Scientific Electronic Library Online (English)

    César, Román-Valencia; Carlos A., García-Alzate; Raquel I, Ruiz-C; C, Donald; B, Taphorn.

    2012-09-01

    Full Text Available Una nueva especie de Tyttocharax se describe para la cuenca del río Güejar, Serranía de La Macarena en Colombia. Tyttocharax metae es un nuevo registro del género para la cuenca del río Orinoco. La combinación de los siguientes caracteres distingue a Tyttocharax metae de sus congéneres: presencia de [...] ganchos óseos en los radios de las aletas pectorales y caudal; ganchos óseos en los radios de la aleta anal de mayor tamaño que los de las aletas pélvicas; radios de las aletas pectorales i,5-6,i; tres radios simples en la aleta dorsal; ausencia de una aleta adiposa; cuatro escamas entre la línea lateral y el origen de la aleta anal, y cuatro escamas entre la línea lateral y las aletas pélvicas. Se incluyen datos ecológicos del hábitat propio del nuevo taxón Abstract in english A new Tyttocharax species from the Güejar River system, near the Macarena Mountains in Colombia is described. This is the first record for the genus from the Orinoco basin. The combination of the following characters distinguish Tyttocharax metae from its congeners: presence of bony hooks on the pec [...] toral and caudal-fin rays; bony hooks on the anal-fin rays larger than those on the pelvic-fin rays; pectoral-fin rays i,5-6,i; presence of three unbranched dorsal-fin rays; absence of an adipose fin; four scales rows between the anal-fin origin and the lateral line; and four scale rows between the pelvic-fin and the lateral line. Ecological characteristics of the habitat of the new species are also presented.

  10. A combined linear optimisation methodology for water resources allocation in Alfeios River Basin (Greece) under uncertain and vague system conditions

    Science.gov (United States)

    Bekri, Eleni; Yannopoulos, Panayotis; Disse, Markus

    2013-04-01

    In the present study, a combined linear programming methodology, based on Li et al. (2010) and Bekri et al. (2012), is employed for optimizing water allocation under uncertain system conditions in the Alfeios River Basin, in Greece. The Alfeios River is a water resources system of great natural, ecological, social and economic importance for Western Greece, since it has the longest and highest flow rate watercourse in the Peloponnisos region. Moreover, the river basin was exposed in the last decades to a plethora of environmental stresses (e.g. hydrogeological alterations, intensively irrigated agriculture, surface and groundwater overexploitation and infrastructure developments), resulting in the degradation of its quantitative and qualitative characteristics. As in most Mediterranean countries, water resource management in Alfeios River Basin has been focused up to now on an essentially supply-driven approach. It is still characterized by a lack of effective operational strategies. Authority responsibility relationships are fragmented, and law enforcement and policy implementation are weak. The present regulated water allocation puzzle entails a mixture of hydropower generation, irrigation, drinking water supply and recreational activities. Under these conditions its water resources management is characterised by high uncertainty and by vague and imprecise data. The considered methodology has been developed in order to deal with uncertainties expressed as either probability distributions, or/and fuzzy boundary intervals, derived by associated ?-cut levels. In this framework a set of deterministic submodels is studied through linear programming. The ad hoc water resources management and alternative management patterns in an Alfeios subbasin are analyzed and evaluated under various scenarios, using the above mentioned methodology, aiming to promote a sustainable and equitable water management. Li, Y.P., Huang, G.H. and S.L., Nie, (2010), Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method, Elsevier Ltd, Advances in Water Resources, 33: 1105-1117. doi:10.1016/j.advwatres.2010.06.015 Bekri, E.S., Disse, M. and P.C.,Yannopoulos, (2012), Methodological framework for correction of quick river discharge measurements using quality characteristics, Session of Environmental Hydraulics - Hydrodynamics, 2nd Common Conference of Hellenic Hydrotechnical Association and Greek Committee for Water Resources Management, Volume: 546-557 (in Greek).

  11. Linking local vulnerability to climatic hazard damage assessment for integrated river basin management

    Science.gov (United States)

    Hung, Hung-Chih; Liu, Yi-Chung; Chien, Sung-Ying

    2015-04-01

    1. Background Major portions of areas in Asia are expected to increase exposure and vulnerability to climate change and weather extremes due to rapid urbanization and overdevelopment in hazard-prone areas. To prepare and confront the potential impacts of climate change and related hazard risk, many countries have implemented programs of integrated river basin management. This has led to an impending challenge for the police-makers in many developing countries to build effective mechanism to assess how the vulnerability distributes over river basins, and to understand how the local vulnerability links to climatic (climate-related) hazard damages and risks. However, the related studies have received relatively little attention. This study aims to examine whether geographic localities characterized by high vulnerability experience significantly more damages owing to onset weather extreme events at the river basin level, and to explain what vulnerability factors influence these damages or losses. 2. Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including exposure, biophysical, socioeconomic, land-use and adaptive capacity factors) that could serve as proxies for attributes of local vulnerability. This framework is applied by combining geographical information system (GIS) techniques with multicriteria decision analysis (MCDA) to evaluate and map integrated vulnerability to climatic hazards across river basins. Furthermore, to explain the relationship between vulnerability factors and disaster damages, we develop a disaster damage model (DDM) based on existing disaster impact theory. We then synthesize a Zero-Inflated Poisson regression model with a Tobit regression analysis to identify and examine how the disaster impacts and vulnerability factors connect to typhoon disaster damages and losses. To illustrate the proposed methodology, the study collects data on the vulnerability attributes of the Kaoping, Tsengwen, and Taimali River basins in southern Taiwan, and on the disaster impacts and damages in these river basins due to Typhoon Morakot in 2009. The data was offered by the National Science and Technology Center for Disaster Reduction, Taiwan, as well as collected from the National Land Use Investigation, official census statistics and questionnaire surveys. 3. Results We use an MCDA to create a composite vulnerability index, and this index is incorporated into a GIS analysis to demonstrate the results of integrated vulnerability assessment throughout the river basins. Results of the vulnerability assessment indicate that the most vulnerable areas are almost all situated in the regions of middle and upper reaches of the river basins. Through the examining of DDM, it shows that the vulnerability factors play a critical role in determining disaster damages. Findings also present that the losses and casualties caused by Typhoon Morakot increase with elevation, urban and agricultural developments, proximity to rivers, and decrease with levels of income and adaptive capacity. Finally, we propose the adaptive options for minimizing vulnerability and risk, as well as for integrated river basin governance.

  12. Radio telemetry data (Characterizing migration and survival for juvenile Snake River sockeye salmon between the upper Salmon River basin and Lower Granite Dam)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project estimates survival and characterizes the migration of juvenile sockeye salmon between the upper Salmon River basin in central Idaho and Lower Granite...

  13. Hydrologic Setting and Conceptual Hydrologic Model of the Walker River Basin, West-Central Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. Between 1882 and 2008, agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-ft. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes the hydrologic setting of the Walker River basin and a conceptual hydrologic model of the relations among streams, groundwater, and Walker Lake with emphasis on the lower Walker River basin from Wabuska to Hawthorne, Nevada. The Walker River basin is about 3,950 square miles and straddles the California-Nevada border. Most streamflow originates as snowmelt in the Sierra Nevada. Spring runoff from the Sierra Nevada typically reaches its peak during late May to early June with as much as 2,800 cubic feet per second in the Walker River near Wabuska. Typically, 3 to 4 consecutive years of below average streamflow are followed by 1 or 2 years of average or above average streamflow. Mountain ranges are comprised of consolidated rocks with low hydraulic conductivities, but consolidated rocks transmit water where fractured. Unconsolidated sediments include fluvial deposits along the active channel of the Walker River, valley floors, alluvial slopes, and a playa. Sand and gravel deposited by the Walker River likely are discontinuous strata throughout the valley floor. Thick clay strata likely were deposited in Pleistocene Lake Lahontan and are horizontally continuous, except where strata have been eroded by the Walker River. At Walker Lake, sediments mostly are clay interbedded with alluvial slope, fluvial, and deltaic deposits along the lake margins. Coarse sediments form a multilayered, confined-aquifer system that could extend several miles from the shoreline. Depth to bedrock in the lower Walker River basin ranges from about 900 to 2,000 feet. The average hydraulic conductivity of the alluvial aquifer in the lower Walker River basin is 10-30 feet per day, except where comprised of fluvial sediments. Fluvial sediments along the Walker River have an average hydraulic conductivity of 70 feet per day. Subsurface flow was estimated to be 2,700 acre-feet per year through Double Spring. Subsurface discharge to Walker Lake was estimated to be 4,400 acre-feet per year from the south and 10,400 acre-feet per year from the north. Groundwater levels and groundwater storage have declined steadily in most of Smith and Mason Valleys since 1960. Groundwater levels around Schurz, Nevada, have changed little during the past 50 years. In the Whisky Flat area south of Hawthorne, Nevada, agricultural and municipal pumpage has lowered groundwater levels since 1956. The water-level decline in Walker Lake since 1882 has caused the surrounding alluvial aquifer to drain and groundwater levels to decline. The Wabuska streamflow-gaging station in northern Mason Valley demarcates the upper and lower Walker River basin. The hydrology of the lower Walker River basin is considerably different than the upper basin. The upper basin consists of valleys separated by consolidated-rock mountains. The alluvial aquifer in each valley thins or pinches out at the downstream end, forcing most groundwater to discharge along the river near where the river is gaged. The lower Walker River basin is one surface-water/groundwater system of losing and gaining reaches from Wabuska to Walker Lake, which makes determining stream losses and the direction and amount of subsurface flow difficult. Isotopic data indicate surface water and groundwater in the lower Walker River basin are from two sources of precipitation that have evaporated. The Walker River, groundwater along the Wassuk Range, and Walker Lake plot along one evaporation line. Groundwater along th

  14. Glacier characteristics and changes in the Sary-Jaz River Basin (Central Tien Shan, Kyrgyzstan) – 1990–2010

    OpenAIRE

    Osmonov, Azamat; Bolch, Tobias; Xi, Chen; Kurban, Alishir; Guo, Wanqing

    2013-01-01

    The water discharge from the heavily glacierized Sary-Jaz River Basin (Eastern Kyrgyzstan) is of high importance for the very arid Tarim Basin located in Xinjiang (north-western China). We investigated glacier changes in the entire Sary-Jaz River Basin, which covers a large part of the Central Tien Shan, for the period from 1990 to 2010 based on Landsat ‘TM’/‘ETM+’data. We found 1310 glaciers (>0.1 km²), which covered 2055 ± 41.1 km² (?18% of the entire basin) in 1990. The glaciers shrank by ...

  15. Analysis of meteorological droughts for the Saskatchewan River Basin using univariate and bivariate approaches

    Science.gov (United States)

    Masud, M. B.; Khaliq, M. N.; Wheater, H. S.

    2015-03-01

    This study is focused on the Saskatchewan River Basin (SRB) that spans southern parts of Alberta, Saskatchewan and Manitoba, the three Prairie Provinces of Canada, where most of the country's agricultural activities are concentrated. The SRB is confronted with immense water-related challenges and is now one of the ten GEWEX (Global Energy and Water Exchanges) Regional Hydroclimate Projects in the world. In the past, various multi-year droughts have been observed in this part of Canada that impacted agriculture, energy and socio-economic sectors. Therefore, proper understanding of the spatial and temporal characteristics of historical droughts is important for many water resources planning and management related activities across the basin. In the study, observed gridded data of daily precipitation and temperature and conventional univariate and copula-based bivariate frequency analyses are used to characterize drought events in terms of drought severity and duration on the basis of two drought indices, the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Within the framework of univariate and bivariate analyses, drought risk indicators are developed and mapped across the SRB to delineate the most vulnerable parts of the basin. Based on the results obtained, southern parts of the SRB (i.e., western part of the South Saskatchewan River, Seven Persons Creek and Bigstick Lake watersheds) are associated with a higher drought risk, while moderate risk is noted for the North Saskatchewan River (except its eastern parts), Red Deer River, Oldman River, Bow River, Sounding Creek, Carrot River and Battle River watersheds. Lower drought risk is found for the areas surrounding the Saskatchewan-Manitoba border (particularly, the Saskatchewan River watershed). It is also found that the areas characterized with higher drought severity are also associated with higher drought duration. A comparison of SPI- and SPEI-based analyses suggests only little effect of considering temperature, in the form of evapotranspiration, on identifying drought vulnerable areas. It is expected that the findings of the study will be helpful in the management and efficient utilization of the water resources of this important river basin in Canada.

  16. SNAKE RIVER BASIN, WATER QUALITY CONTROL AND MANAGEMENT, SEPTEMBER 1968

    Science.gov (United States)

    This report summarizes the findings of studies which have provided the impetus to Federal-State water pollution control planning in the Snake Basin (17040104, 170402, 170501) since 1962. It tells where pollution exists and why it exists. It tells what corrective action has alre...

  17. 75 FR 38833 - Walker River Basin Acquisition Program

    Science.gov (United States)

    2010-07-06

    ...Revised Draft EIS, and a Final EIS and Record of Decision (ROD) will not be prepared. FOR FURTHER INFORMATION CONTACT: Mrs. Caryn Huntt DeCarlo, Lahontan Basin Area Office at 775-884-8352, or e-mail chunttdecarlo@usbr.gov. SUPPLEMENTARY...

  18. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    Science.gov (United States)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent on water use. Assessment of agricultural sector vulnerability, which is the key water user in the basin, led to identification of the potential adaptation measures and discussion with relevant national and river basin authorities and the major stakeholders. Proposed adaptation measures range from technical - such as rehabilitation of irrigation systems to reduce water losses, modernize water reservoirs and adjust river regulation to environmental flow needs, changing land use and crop diversification - to policy and finance measures, including revision of subsidies, economic consideration of ecosystem services, etc. Next steps include a more detailed assessment of economics, effectiveness and feasibility of the initially proposed adaptation measures and additional research.

  19. Discovering the Cubango-Okavango river basin. A geomorphological description of the Angolan rivers and its fish assemblages and the ecological implications of future human development

    OpenAIRE

    Preiswerk, Sebastian Benedikt Coimbra

    2013-01-01

    The years fly by but the African continet and its enourmos richness remains an undiscovered treasure. The Angolan province Cuando-Cubango includes one of the biggest watersheds of the African continent, the Cubango-Okavango river basin. One of the rivers where most parts remains untouched and in a pristine form. Ongoing water resources planning intends to regulate large parts of the basin and to intensify human uses. In order to better understand and to analize ecological respo...

  20. Microbial source markers assessment in the Bogotá River basin (Colombia).

    Science.gov (United States)

    Venegas, Camilo; Diez, Hugo; Blanch, Anicet R; Jofre, Juan; Campos, Claudia

    2015-09-01

    The microbiological indicators traditionally used to assess fecal contamination are insufficient to identify the source. The aim of this study was to detect microbial markers to identify the source of fecal pollution in the Bogotá River (Colombia). For this, we determined non-discriminating indicators such as Escherichia coli, somatic coliphages and phages infecting strain RYC2056 of Bacteroides, and potential source tracking markers as phages infecting strains GA17, HB13, and CA8 of Bacteroides, sorbitol-fermenting bifidobacteria, and molecular markers of Bifidobacterium adolescentis, Bifiodobacterium dentium, and Bacteroidetes in raw municipal wastewaters, slaughterhouse wastewaters, and the Bogotá River. Bacteriophages infecting Bacteroides strain GA17 and the molecular markers identified the wastewater sources. In contrast, sorbitol-fermenting bifidobacteria failed regarding specificity. In the Bogotá River, phages infecting strain GA17 were detected in all samples downstream of Bogotá, whereas they should be concentrated from 1 l samples in upstream samples containing less than 10(3) E. coli/100 ml to be detected. In the river water, the fraction of positive detections of molecular markers was lower than that of phages infecting strain GA17. The ratio SOMCPH/GA17PH was shown also to be a good marker. These results provide information that will allow focusing measures for sanitation of the Bogotá River. PMID:26322765

  1. Regional Impacts of Climate Change in the Caribou Chilcotin Region, Fraser River Basin, BC, Canada

    Science.gov (United States)

    Bennett, K. E.; Werner, A. T.; Salathé, E. P.; Schnorbus, M.; Nelitz, M.; David, R. R.

    2009-05-01

    The terrain and climate of British Columbia (BC) is some of the most complex in the country, and is likely going to face unprecedented changes in hydrology due to the impacts of climate change. The Pacific Climate Impacts Consortium (PCIC) was formed in 2005 to produce tools to determine how water resources in BC and its surrounding provinces, territories and states are being affected by climate change. PCIC's first large-scale watershed modelling project implemented, in collaboration with the River Forecast Centre and the University of Washington, the Variable Infiltration Capacity (VIC) model in several major BC watersheds. Future scenarios were developed to analyse the impacts of climate change on snowpack, streamflow and soil moisture in these basins. The current study focuses on the methods to develop future scenarios and the results of the hydrologic modelling. Six different GCM emissions scenarios were selected for BC from the AR4 scenarios. A modified bias correction and statistical downscaling (BCSD) technique created at the University of Washington was used to downscale GCM results to the scale of gridded historical forcings data to generate transient-daily time step, regional-scale projections of future climate change. These forcings were then used to drive the VIC macro-scale hydrologic model. A comparison of forcings for the historical period (1961-1990) from the downscaled GCM data to the forcings created from the observed records on the monthly-timescale demonstrated that the downscaled data captured the range of variability present in the 1961-1990 period in large and medium sized basins quite well. Accurately downscaling data for application in small basins was more difficult. Daily results created with the original BCSD technique were unrealistic in places and problematic for application in hydrologic models, such as VIC that depend on an accurate daily temperature range to model evaporation and snowpack. Results for the Fraser Basin study include projected increases in winter mean precipitation (+15%, PCIC 2007) and increases in annual mean temperature (+2.5oC, PCIC 2007), which translate to changes in both streamflow volume and timing that will occur across the region. Other water balance components are also affected for example, despite an increase in winter time precipitation, warmer temperatures result in reduced snow accumulation. Higher winter time peak flows, and reduced snowpack storage and early season soil moisture results in lower water availability over summer periods. Hydrologic outputs from the VIC model and statistically downscaled GCM data were subsequently applied in stream temperature and fish habitat models to estimate the range of vulnerabilities of freshwater ecosystems to climate change in the Caribou Chilcotin region of the Fraser Basin. These changes could have impacts on fish habitats, hydro-power, agriculture and municipal water demand.

  2. Province-based self-remediation efficiency of the Tha Chin river basin, Thailand.

    Science.gov (United States)

    Thaipichitburapa, P; Meksumpun, C; Meksumpun, S

    2010-01-01

    The Tha Chin River Basin located in the great central basin of Thailand is used for water supply, aquaculture, transportation, and recreation as well as a sink for wastewater discharges. Because of gradual deterioration of water quality and fishery resources, this study aimed to explain recent status of the river self-remediation efficiency that was influenced by nutrient inputs and outputs from the river system. Field surveys were carried out during May 2007 (early rainy season) and October 2007 (late rainy season) within the Tha Chin River located in 4 provinces; Chainat, Suphan Buri, Nakhon Pathom, and Samut Sakhon. The nutrient budgets in each province section were analyzed. Results indicated that the river was in eutrophic condition all year round. High nitrogen and phosphorus loads from surrounding agricultural land use, agro-industry, and community continuously flew into the river system. Those nutrient concentrations were higher in the early rainy season than the late rainy season. The lowest river zone (in Samut Sakhon province) indicated highest dissolved inorganic nitrogen (DIN) and orthophosphate phosphorus (P) discharges of 145.54 and 36.14 tons/day, respectively. The highest remediation efficiency of the river (ca 60% of the total input) was found in the uppermost area of Suphan Buri province. The lowest remediation efficiency (ca 12%) was found in Samut Sakhon province. From the overall view, long term monitoring of river and estuarine DIN and P should be conducted. To make better condition of aquatic environment and fishery resource in each province-based section, the controls of DIN and P remediation efficiencies (e.g. by effective management of flow speed) at 20 and 50%, respectively, were recommended. PMID:20706006

  3. Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae) inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin

    OpenAIRE

    Borba, R.S.; Zawadzki, C.H.; Oliveira, Claudio; Fernández Perdices, Ana I.; Parise-Maltempi, P.P.; A. L. Alves

    2013-01-01

    In this study, phylogenetic and phylogeographic analyses of populations identified as Hypostomus strigaticeps from the upper Paraná River basin were conducted in order to test whether these different populations comprises cryptic species or structured populations and to assess their genetic variability. The sequences of the mitochondrial DNA ATP sintetase (subunits 6/8) of 27 specimens from 10 populations (one from Mogi-Guaçu River, five from Paranapanema River, three from Tietê River and one...

  4. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    International Nuclear Information System (INIS)

    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  5. Development of hydropower energy in Turkey: The case of Coruh river basin

    Energy Technology Data Exchange (ETDEWEB)

    Akpinar, Adem [Guemueshane University, Civil Engineering Department, 29000 Guemueshane (Turkey); Koemuercue, Murat ihsan; Kankal, Murat [Karadeniz Technical University, Civil Engineering Department, 61080 Trabzon (Turkey)

    2011-02-15

    The main objective in doing the present study is to investigate the sustainable development of hydropower plants in the Coruh river basin of Turkey, which is least problem river of Turkey in respect to international cooperation as compared with Turkey's other trans-boundary waters. Initial studies concerning the hydropower production potential in Coruh basin had been carried out by Turkish authorities in the late 1960s. Total installed power capacity and annual average energy generation of 37 dams and run of river (without storage) hydropower plants developed at various project stages by The Electrical Power Resources Survey and Development Administration (EiE) in Coruh basin are 3132.70 MW and 10.55 TWh/yr, respectively. Today, this generation value corresponds 6.45% of Turkey's energy consumption in 2006 while it meets 6.3% of total electricity energy production of Turkey which is equal to 167.9 TWh/yr in 2006. Besides, this potential developed at various project stages in Coruh basin will provide 24.1% of Turkey's hydroelectric energy generation being equal to 43.8 TWh/yr in 2006. (author)

  6. Groundwater model of the Blue River basin, Nebraska-Twenty years later

    Science.gov (United States)

    Alley, W.M.; Emery, P.A.

    1986-01-01

    Groundwater flow models have become almost a routine tool of the practicing hydrologist. Yet, surprisingly little attention has been given to true verification analysis of studies using these models. This paper examines predictions for 1982 of water-level declines and streamflow depletions that were made in 1965 using an electric analog groundwater model of the Blue River basin in southeastern Nebraska. Analysis of the model's predictions suggests that the analog model used too low an estimate of net groundwater withdrawals, yet overestimated water-level declines. The model predicted that almost all of the net groundwater pumpage would come from storage in the Pleistocene aquifer within the Blue River basin. It appears likely that the model underestimated the contributions of other sources of water to the pumpage, and that the aquifer storage coefficients used in the model were too low. There is some evidence that groundwater pumpage has had a greater than predicted effect on streamflow. Considerable uncertainty about the basic conceptualization of the hydrology of the Blue River basin greatly limits the reliability of groundwater models developed for the basin. The paper concludes with general perspectives on groundwater modeling gained from this post-audit analysis. ?? 1986.

  7. Adaptation for river basins: connecting policy goals to the water resources system.

    Science.gov (United States)

    Aerts, J

    2005-01-01

    This paper focuses on a methodology called 'generic adaptation methodology for river basins' (AMR) that provides guidance to water managers seeking: (1) potential adaptation measures to climate change and climate variability, (2) measuring impacts, and (3) evaluating adaptations. The methodology uses basic elements addressed in existing adaptation research and is designed for a participatory setting involving various stakeholders. In AMR, the water resources system is seen as an economic asset that provides 'goods and services' for both humans and ecosystems. The innovative aspect of AMR is that it distinguishes impacts to water management objectives and impacts to the physical state of water resources in a river basin in a relatively simple iterative approach. Both impact types are quantified using indicators. The framework and results are demonstrated for a case study in the Walawe basin (Sri Lanka). It is explained that actually implementing adaptations in policy making can be difficult in trans-boundary river basins as each riparian country has its own policy objectives and hence ways of dealing with adaptation. PMID:15918365

  8. Hydrological extremes in the Aksu-Tarim River Basin: Climatology and regime shift

    Science.gov (United States)

    Tao, Hui; Borth, Hartmut; Fraedrich, Klaus; Schneidereit, Andrea; Zhu, Xiuhua

    2015-06-01

    Precipitation data between 1961 and 2010 from 39 meteorological stations in the Tarim River Basin are analyzed to classify and investigate hydrological drought and wetness conditions by using the standardized precipitation index (SPI). The leading time and spatial variability of hydrological drought has been investigated by applying a principal component analysis and Varimax rotation to the SPI on a time scale of 24 months. The results suggest that the western basin is characterized by a clear tendency towards wetter conditions after the middle of the 1980s, which results from an increase in the number of wet extremes and can be considered as a regime shift. Subdividing the period of analysis into two parts (1961-1986 and 1987-2010) this change can be clearly seen in a shift of the probability distribution function of precipitation events. Composite analyses of monthly mean geopotential height fields and wind fields of the ERA-40 data set show that enhanced wetness in the Tarim River Basin after the middle of 1980s is closely related to cyclonic anomalies on the European continent and circulation anomalies over mid-latitude of the Northern Hemisphere. Further correlation analysis between the principal components of SPI and large circulation indices shows that hydrological extremes in the Tarim River Basin correlate with indices related to the polar vortex and subtropical high.

  9. Optimizing Water and Land Resources in International River Basins: Scientific and Policy Challenges

    Science.gov (United States)

    Richey, J. E.

    2007-12-01

    One of the most salient of contemporary issues in Global Change is the dynamics of water movement across large river basins to the sea, and the politics thereof. Increases in resource demand rise directly with increases in population and the generation of wealth. Significant medium to longterm climate change and altered frequency and severity of extreme events will likely complicate the priority setting and decision-making processes. Conflicts arising from regional inequities in access to and capture of water will be exacerbated in the years ahead, with a growing human population and with the stresses that global changes will impose on water quality and availability. Understanding the subtle relations between the forcing provided by seasonal and interannual variability in climate expressed across an evolving landscape provides important insight into the processes controlling the intrinsic dynamics of meso-scale river basins, while providing important information for basin managers. Case studies of international river basins (Amazon, Zambezi, Mekong, Huang-He) illustrate the importance of the application and extension of information systems based on NASA and NOAA platforms and synthetic models for resolving the science issues pertaining to resource agendas required by emerging initiatives of such entities as the World Bank and Global Environment Facility.

  10. Groundwater recharge modeling in the Densu River Basin of Ghana using environmental tritium

    International Nuclear Information System (INIS)

    The Densu River basin, located in the southern part of Ghana,is one of the largest river basins in Ghana, where the large population (about 80%) depends on groundwater for commercial, agriculture and domestic activities. However, the increased demand of groundwater from the aquifer systems, which consist mainly of fractured rocks and weathered formations is challenged by declines in water levels in boreholes and wells, and drying up of some wells. Despite the fact that both geology and hydrogeology are important in understanding the low yields of aquifers in the basin, hydrogeological studies, recharge, have received little attention. Previous recharge studies in the Densu River basin have mainly employed classical methods or qualitative approaches. However, for an overall assessment of groundwater resources, quantitative approaches should also be integrated in recharge studies. It is in this regard that this research has been undertaken with the objective of determining the groundwater recharge, mean residence time and the flow rate using environmental tritium based on lumped parameter model, in the form of a code written on MATLAB software. The tritium and precipitation data used for the determination of the input function in the model were obtained from the IAEA-WMO network station at Sao Tome, since Ghana does not have a network station. Tritium is latitude dependent. Hence, Sao Tome, which is closer to the coast of Ghana (and by extension the Densu basin) and in the same equatorial region, serves as a good reference station for tritium data. However, tritium and precipitation data of Sao Tome are incomplete. Therefore, these data were extended from 1976 to 2007 using the GMTP model and the correlation equation developed by the IAEA. The extension of data was important for effective comparison with the measured tritium values from the Densu basin, since 2007 was the time groundwater was sampled for tritium measurement. The input function was validated by using tritium data from two other IAEA-WMO monitoring stations, Manaus in Brazil and Entebbe in Uganda, which are in the same latitude band as Ghana (Densu basin). The tritium values estimated using the input function determined for Sao Tom,e ranged from 5.3 to 1.3 TU. These values indicated groundwater recharge, and by comparing the values with the measured tritium data from the Densu basin (5.1-1.2 TU), a mean residence time of 20 years was obtained for the groundwater in the basin. The mean residence time was used to determine the groundwater flow rate and was found to be 180mm/y. This compares favourably well with previously estimated groundwater flow rate of 94--182 mm/y in the Densu basin. (au)

  11. Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009

    Science.gov (United States)

    Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.

    2012-01-01

    The Concho River Basin is part of the upper Colorado River Basin in west-central Texas. Monotonic trends in streamflow statistics during various time intervals from 1916-2009 were analyzed to determine whether substantial changes in selected streamflow statistics have occurred within the Concho River Basin. Two types of U.S. Geological Survey streamflow data comprise the foundational data for this report: (1) daily mean discharge (daily discharge) and (2) annual instantaneous peak discharge. Trend directions are reported for the following streamflow statistics: (1) annual mean daily discharge, (2) annual 1-day minimum discharge, (3) annual 7-day minimum discharge, (4) annual maximum daily discharge, and (5) annual instantaneous peak discharge. The South Concho, Middle Concho, and North Concho Rivers drain the upper part of the Concho River Basin. The North and South Concho Rivers converge in San Angelo, Tex., to form the Concho River. The Concho River flows east from San Angelo to its confluence with the Colorado River east of Paint Rock, Tex. The trend analyses principally focused on application of the nonparametric Kendall's Tau statistical test to detect monotonic trends (dependency) in streamflow with time; in other words, Kendall's Tau is a test of temporal independence of streamflow with time. A positive Tau indicates an upward monotonic streamflow trend; conversely, a negative Tau indicates a downward monotonic streamflow trend. Hence, the trend analysis reported here is limited to direction and not magnitude of streamflow change. Six U.S. Geological Survey streamflow-gaging stations were selected for analysis. Streamflow-gaging station 08128000 South Concho River at Christoval has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1931-95, 2002-9. Streamflow-gaging station 08128400 Middle Concho River above Tankersley has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1962-95, 2002-9. Streamflow-gaging station 08128500 Middle Concho River near Tankersley has no significant trends in the streamflow statistics considered for the period 1931-60. Streamflow-gaging station 08134000 North Concho River near Carlsbad has downward trends for annual mean daily discharge, annual 7-day minimum daily discharge, annual maximum daily discharge, and annual instantaneous peak discharge for the period 1925-2009. Streamflow-gaging stations 08136000 Concho River at San Angelo and 08136500 Concho River at Paint Rock have downward trends for 1916-2009 for all streamflow statistics calculated, but streamflow-gaging station 08136000 Concho River at San Angelo has an upward trend for annual maximum daily discharge during 1964-2009. The downward trends detected during 1916-2009 for the Concho River at San Angelo are not unexpected because of three reservoirs impounding and profoundly regulating streamflow.

  12. Analysis of land cover change impact on flood events using remote sensing, GIS and hydrological models: a case study of the Nyando River Basin in Kenya

    International Nuclear Information System (INIS)

    In this study, land cover changes in the Nyando River basin (3500 km2) of Kenya were analyzed and their impact of floods quantified. Three Landsat satellite images for 1973, 1986 and 2000 were acquired, processed and classified based on seven major land cover classes prevalent in the basin using a hybrid of supervised and non supervised classification procedures. The detected land cover changes, together with a DEM and a soil map of the basin, were then used to estimate physically based parameters for the selected hydrological models. The models were then used to estimate local and flood peak discharges and volumes arising from selected storm events for each state of the classified land cover dataset. To further understand how changes in the land cover may impact on the flood hydrology, three scenarios that represent quite extreme alternatives were formulated to study the possible bandwidth during floods. Land cover classification results revealed immense land degradation over the span of study. Forests reduced by an area of 488 km2 representing a 20% decline, while agricultural fields expanded by 581 km2 representing a 16% increase over the same period of time (1973-2000). Hydrological modeling results indicated that the basin underwent significant increase in the peak discharge value. The flood peak discharges in the whole basin were noted to have increased by at least 16% over the period of 1973 -2000.Flood volumes were also noted to have increased by at least 10% over the same period of time. (author)

  13. Environmental flows allocation in river basins: Exploring allocation challenges and options in the Great Ruaha River catchment in Tanzania

    Science.gov (United States)

    Kashaigili, Japhet J.; Kadigi, Reuben M. J.; Lankford, Bruce A.; Mahoo, Henry F.; Mashauri, Damus A.

    Provision for environmental flows is currently becoming a central issue in the debate of integrated water resources management in river basins. However, the theories, concepts and practical applications are still new in most developing countries with challenging situations arising in complex basins with multiple water uses and users and increasing water demands and conflicts exemplified by the Great Ruaha River catchment in Tanzania. The research has shown that a flow of 0.5-1 m 3/s for Great Ruaha River through the Ruaha National Park is required to sustain the environment in the park during the dry season. But a question is how can this be achieved? This paper reviews the challenges and suggests some options for achieving environmental water allocation in river basins. The following challenges are identified: (a) the concept of environmental flows is still new and not well known, (b) there is limited data and understanding of the hydrologic and ecological linkages, (c) there is insufficient specialist knowledge and legislative support, (d) there are no storage reservoirs for controlled environmental water releases, and (e) there are contradicting policies and institutions on environmental issues. Notwithstanding these challenges, this paper identifies the options towards meeting environmental water allocation and management: (a) conducting purposive training and awareness creation to communities, politicians, government officials and decision makers on environmental flows, (b) capacity building in environmental flows and setting-up multidisciplinary environmental flows team with stakeholders involvement, (c) facilitating the development of effective local institutions supported by legislation, (d) water harvesting and storage and proportional flow structures design to allow water for the environment, and (e) harmonizing policies and reform in water utilization and water rights to accommodate and ensure water for the environment.

  14. Distributions of median nutrient and chlorophyll concentrations across the Red River Basin, USA.

    Science.gov (United States)

    Longing, D; Haggard, B E

    2010-01-01

    Acquisition and compilation of water-quality data for an 11-yr time period (1996-2006) from 589 stream and river stations were conducted to support nutrient criteria development for the multistate Red River Basin shared by Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. Ten water-quality parameters were collected from six data sources (USGS, Arkansas Department of Environmental Quality, Louisiana Department of Environmental Quality, Oklahoma Conservation Commission, Oklahoma Water Resources Board, and Texas Commission on Environmental Quality), and an additional 13 parameters were acquired from at least one source. Median concentrations of water-quality parameters were calculated at each individual station and frequency distributions (minimum, 10th, 25th, 50th, 75th, 90th percentiles, and maximum) of the median concentrations were calculated. Across the Red River Basin, median values for total nitrogen (TN), total phosphorus (TP), and sestonic chlorophyll-a (chl-a) ranged from water-quality parameters as the first step to support states in developing nutrient criteria to protect designated uses in the multijurisdictional Red River Basin. PMID:21284293

  15. Dynamics of meteorological and hydrological droughts in the Neman river basin

    International Nuclear Information System (INIS)

    The analysis of drought dynamics in the Neman river basin allows an assessment of extreme regional climate changes. Meteorological and hydrological warm period droughts were analyzed in this study. Meteorological droughts were identified using the standardized precipitation index, and hydrological droughts using the streamflow drought index. The whole river basin was analyzed over the period from 1961 to 2010. Precipitation data from Vilnius meteorological station (from 1887) and discharge data from Smalininkai (Neman) hydrological station (from 1811) were used for an evaluation of meteorological and hydrological drought recurrence over a long-term period. It was found that the total area dryness has decreased over the last 50 years. A statistically significant increase in standardized precipitation index values was observed in some river sub-basins. An analysis of drought recurrence dynamics showed that there was no indication that the number of dangerous drought was increased. It was determined that the standardized precipitation index cannot successfully identify the hydrological summer droughts in an area where the spring snowmelt forms a large part of the annual flow. In particular, the weak relationship between the indices was recorded in the first half of the summer, when a large part of the river runoff depends on accumulated water during the spring thaw. (letter)

  16. Application of hydrometeorological coupled European flood forecasting operational real time system in Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Yi-qi YAN

    2009-12-01

    Full Text Available This study evaluated the application of the European flood forecasting operational real time system (EFFORTS to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydrometeorological data. Various GIS layers were collected and developed to meet the demands of the distributed hydrological model in the EFFORTS. The model parameters were calibrated and validated based on more than ten years of historical hydrometeorological data from the study area. The San-Hua Basin (from the Sanmenxia Reservoir to the Huayuankou Hydrological Station, the most geographically important area of the Yellow River, was chosen as the study area. The analysis indicates that the EFFORTS enhances the work efficiency, extends the flood forecasting lead time, and attains an acceptable level of forecasting accuracy in the San-Hua Basin, with a mean deterministic coefficient at Huayuankou Station, the basin outlet, of 0.90 in calibration and 0.96 in validation. The analysis also shows that the simulation accuracy is better for the southern part than for the northern part of the San-Hua Basin. This implies that, along with the characteristics of the basin and the mechanisms of runoff generation of the hydrological model, the hydrometeorological data play an important role in simulation of hydrological behavior.

  17. Spatial-temporal variation of precipitation concentration and structure in the Wei River Basin, China

    Science.gov (United States)

    Huang, Shengzhi; Huang, Qiang; Chen, Yutong; Xing, Li; Leng, Guoyong

    2015-05-01

    It is of significant importance to investigate precipitation structure and precipitation concentration due to their great impact on droughts, floods, soil erosion, as well as water resources management. A complete investigation of precipitation structure and its distribution pattern in the Wei River Basin was performed based on recorded daily precipitation data in this study. Two indicators were used: concentration index based on daily precipitation (CID), to assess the distribution of rainy days, and concentration index based on monthly precipitation (CIM), to estimate the seasonality of the precipitation. Besides, the modified Mann-Kendall trend test method was employed to capture the variation trends of CID and CIM. The results indicate that: (1) the 1-3-day events are the predominant precipitation events in terms of the occurrence and fractional contribution; (2) the obvious differences in the CID of various areas are found in the Wei River Basin, and the high CID values mainly concentrate in the northern basin, conversely, the southern basin has a relatively low CID value; (3) high CIM values are primarily in the western and northern basin, reflecting a remarkable seasonality of precipitation in these regions; and (4) all of the stations show a downward trend of CIM, which indicates that the monthly precipitation distribution tends to be more uniform.

  18. Evaluation of water resources monitoring networks: study applied to surface waters in the Macaé River Basin

    Directory of Open Access Journals (Sweden)

    Carolina Cloris Lopes Benassuly

    2012-04-01

    Full Text Available Knowledge of hydrological phenomena is required in water resources monitoring, in order to structure the water management, focusing on ensuring its multiple uses while allowing that resource´s control and conservation. The effectiveness of monitoring depends on adequate information systems design and proper operation conditions. Data acquisition, treatment and analysis are vital for establishing management strategies, thus monitoring systems and networks shall be conceived according to their main objectives, and be optimized in terms of location of data stations. The generated data shall also model hydrological behavior of the studied basin, so that data interpolation can be applied to the whole basin. The present work aimed to join concepts and methods that guide the structuring of hydrologic monitoring networks of surface waters. For evaluating historical series characteristics as well as work stations redundancy, the entropy method was used. The Macaé River Basin’s importance is related to the public and industrial uses of water in the region that is responsible for more than 80% of Brazilian oil and gas production, what justifies the relevance of the research made. This study concluded that despite of its relatively short extension, the Macaé River Basin should have higher monitoring network density, in order to provide more reliable management data. It also depicted the high relevancy of stations located in its upper course.

  19. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and spring and summer chinook salmon, from 1992 through 2001, are stored in two independent locations at the University of Idaho (UI) and Washington State University (WSU). Two large freezer tanks are located at each university. Recommendations for future gene banking efforts include the need for establishment of a regional genome resource bank, an emphasis on cryopreserving wild unmarked fish, continued fertility trials, and genetic analysis on all fish represented in the germplasm repository.

  20. Evaluating the influence of source basins on downstream water quality in the Mississippi River

    Science.gov (United States)

    Clark, G.M.; Broshears, R.E.; Hooper, R.P.; Goolsby, D.A.

    2002-01-01

    Chemical variability in the Mississippi River during water years 1989 to 1998 was evaluated using stream discharge and water-quality data in conjunction with the DAFLOW/BLTM hydraulic model. Model simulations were used to identify subbasin contributions of water and chemical constituents to the Mississippi River upstream from its confluence with the Ohio and the Mississippi River and at the Atchafalaya Diversion in Louisiana. Concentrations of dissolved solids, sodium, and sulfate at the Thebes site showed a general decreasing trend, and concentrations of silica and nitrate showed a general increasing trend as the percentage of discharge from the Mississippi River upstream from Grafton increased. Concentrations of most chemical constituents in the Mississippi River at the Atchafalaya Diversion exhibited a decreasing trend as the percentage of water from the Ohio River increased. Regression models were used to evaluate the importance of the source of water to the water chemistry in the Mississippi River at Thebes and the Atchafalaya Diversion. The addition of terms in regression equations to account for the percent of water from subbasins improved coefficients of determination for predicting chemical concentrations by as much as nine percent at the Thebes site and by as much as 48 percent at the Atchafalaya Diversion site. The addition of source-water terms to regression equations increased the estimated annual loads of nitrate and silica delivered from the Mississippi River Basin to the Gulf of Mexico by as much as 14 and 13 percent, respectively.

  1. Nutrient (N, P) budgets for the Red River basin (Vietnam and China)

    Science.gov (United States)

    Quynh, Le Thi Phuong; Billen, Gilles; Garnier, Josette; ThéRy, Sylvain; FéZard, CéDric; Minh, Chau Van

    2005-06-01

    In order to examine the degree of human-induced alteration of the nitrogen and phosphorus cycles at the scale of a tropical watershed of regional dimension, the budgets of these two elements were estimated in the four main sub-basins (Da, Lo, Thao, and Delta) of the Red River system (156 448 km2, Vietnam and China). The four sub-basins differ widely in population density (from 101 inhabitants km-2 in the upstream basins to more than 1000 inhabitants km-2 in the delta), land use, and agricultural practices. In terms of agricultural production, on the one hand, and consumption of food and feed on the other, the upstream sub-basins are autotrophic systems, exporting agricultural goods, while the delta is a heterotrophic system, depending on agricultural goods imports. The budget of the agricultural soils reveals great losses of nitrogen, mostly attributable to denitrification in rice paddy fields and of phosphorus, mostly caused by erosion. The budget of the drainage network shows high retention/elimination of nitrogen (from 62 to 77% in the upstream basins and 59% in the delta), and of phosphorus, with retention rates as high as 80% in the Da and Lo sub-basins which have large reservoirs in their downstream course (Hoa Binh on the Da and Thac Ba on the Lo). The total specific delivery estimated at the outlet of the whole Red River System is 855 kg km-2 yr-1 total N and 325 kg km-2 yr-1 total P. Nitrogen rather than phosphorus seems to be the potential limiting factor of algal growth in the plume of the Red River in Tonkin Bay.

  2. Monitoring Land Use/Land Cover Changes in a River Basin due to Urbanization using Remote Sensing and GIS Approach

    Science.gov (United States)

    Shukla, S.; Khire, M. V.; Gedam, S. S.

    2014-11-01

    Faster pace of urbanization, industrialization, unplanned infrastructure developments and extensive agriculture result in the rapid changes in the Land Use/Land Cover (LU/LC) of the sub-tropical river basins. Study of LU/LC transformations in a river basin is crucial for vulnerability assessment and proper management of the natural resources of a river basin. Remote sensing technology is very promising in mapping the LU/LC distribution of a large region on different spatio-temporal scales. The present study is intended to understand the LU/LC changes in the Upper Bhima river basin due to urbanization using modern geospatial techniques such as remote sensing and GIS. In this study, the Upper Bhima river basin is divided into three adjacent sub-basins: Mula-Mutha sub-basin (ubanized), Bhima sub-basin (semi-urbanized) and Ghod sub-basin (unurbanized). Time series LU/LC maps were prepared for the study area for a period of 1980, 2002 and 2009 using satellite datasets viz. Landsat MSS (October, 1980), Landsat ETM+ (October, 2002) and IRS LISS III (October 2008 and November 2009). All the satellite images were classified into five LU/LC classes viz. built-up lands, agricultural lands, waterbodies, forests and wastelands using supervised classification approach. Post classification change detection method was used to understand the LU/LC changes in the study area. Results reveal that built up lands, waterbodies and agricultural lands are increasing in all the three sub-basins of the study area at the cost of decreasing forests and wastelands. But the change is more drastic in urbanized Mula-Mutha sub-basin compared to the other two sub-basins.

  3. Distributed model of rainfall and snowmelt runoff generation for a mountainous river basin

    Science.gov (United States)

    Kuchment, Lev; Demidov, Victor; Gelfan, Alexander

    2010-05-01

    The distributed physically based model of snowmelt runoff generation for a mountainous river basin which allows for taking into account horisontal and vertical heterogeneity of hydrological processes has been developed. The model is based on a finite-element schematization of the river basin and includes the description of processes of snow cover formation, snow and ice melting, evaporation and infiltration, overland and subsurface flow, water movement in the river network. Choice of finite element areas is based on difference in topography, soil, vegetation, land use. In the basin, 512 finite element areas and 64 finite-elements of river channels have been singled out. The input data (the air temperature, precipitation, air humidity, wind speed and cloudiness) are calculated using available observations, as well as interpolation and extrapolation procedures accounted for vegetation and exposition of finite-element areas. The case-study was carried out for the upper part of the Kuban River basin (the North Caucasus region). The catchment covers an area of 16,900 km2 and includes the highest Caucasus peak Elbrus (5600 m). The highest meteorological station is located at the altitude 2039 m. The flood runoff is commonly of mixed rainfall-snowmelt origin. The ice melt gives about 10% of annual runoff. Six parameters of the model have been calibrated, against the observed hydrographs and snow measurements. The test of the model was carried out on the basis of observed hydrographs for 11 year period, including the catastrophic flood of 2002. The satisfied correspondences of observed and calculated hydrographs have been obtained.

  4. EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.

    2011-10-24

    The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

  5. Irrigation-based livelihood trends in river basins: theory and policy implications for irrigation development

    Science.gov (United States)

    Lankford, Bruce

    This paper examines irrigation development and policy in Tanzania utilising a livelihoods and river basin perspective. On the basis of observations, the author argues that river basins theoretically exhibit a sigmoid curve of irrigation development in three stages; proto-irrigation, irrigation-momentum and river basin management. This model arises from two governing factors. Firstly, irrigation is a complex livelihood activity that, although has benefits, also has costs, risks and alternatives that integrate across many systems; farmers implicitly understand this and enter into or keep out of irrigation accordingly. In the proto-irrigation stage, irrigators are less common, and irrigation is felt to be a relatively unattractive livelihood. In the irrigation-momentum stage, irrigators are drawn very much to irrigation in providing livelihood needs. Hence, given both of these circumstances, governments should be cautious about policies that call for the need to ‘provide irrigation’ (when farmers may not wish to irrigate) or to further increase it (when farmers already have the means and will to do so). Second, irrigation consumes water, generating externalities. Thus if irrigation momentum proceeds to the point when water consumption directly impacts on other sectors and livelihoods, (e.g. pastoralists, downstream irrigation, the environment) decision-makers should focus not necessarily on irrigation expansion, but on water management, allocation and conflict mediation. This three-stage theoretical model reminds us to take a balanced ‘livelihoods river-basin’ approach that addresses real problems in each given stage of river basin development and to develop policy accordingly. The paper contains a discussion on livelihood factors that affect entry into irrigation. It ends with a series of recommendations on policy; covering for example new large-scale systems; problems solving; and the use of an irrigation-river basin livelihoods approach. The recommendations here might be useful for governments and other implementing and donor agencies in Sub-Sahara Africa (where irrigation has greater potential than it currently enjoys) that are considering irrigation as policy instrument for improving rural livelihoods.

  6. Morphometric Parameters of the Calabar River Basin: Implication for Hydrologic Processes

    OpenAIRE

    Eze Bassey Eze; Joel Efiong

    2010-01-01

    The study examined the morphometric parameters of the Calabar River Basin with emphasis on its implicationfor hydrologic processes. Data for this study were obtained from topographic map which were subject to fieldconfirmation. The result revealed that the basin area was 1 514km2. There were 223 streams with a total streamlength of 516.34km. The textural dissection was considered to be low as drainage density, stream frequency anddrainage intensity values were 0.34km-1, 0.15km-1 and 0.05 resp...

  7. Field trip guidebook to the hydrogeology of the Rock-Fox River basin of Southeastern Wisconsin

    Science.gov (United States)

    Holt, C. L. R., Jr.; Cotter, R.D.; Green, J.H.; Olcott, P.G.

    1970-01-01

    On this trip we will examine some hydrogeologic characteristics of glacial features and emphasize ground-water management within the Rock-Fox River basin. Field stops will include the hydrogeology of a classical glacial terrane--the Kettle moraine--and the management of ground-water resources for industrial, municipal, agricultural, and fish-culture purposes. Descriptions of the geology, soils, water availability and characteristics, water quality, water use, and water problems within the basin are given in the accompanying U.S. Geological Survey Hydrologic Atlas (HA-360). This atlas is a product of the cooperative program of University Extension--the University of Wisconsin Geological and Natural History Survey.

  8. Preliminary analysis of ERTS-relayed water resources data in the Delaware River Basin

    Science.gov (United States)

    Paulson, R. W.

    1973-01-01

    Preliminary analysis of ERTS-DCS data from water-resources stations in the Delaware River Basin indicates that the Data-Collection System is performing well. Data-Collections Platforms have been successfully interfaced with five stream-gaging station and three ground-water observation wells and are being interfaced with 12 water-quality monitors in the basin. Data are being relayed during four or five ERTS orbital passes per day, which is within the design specifications of the ERTS-DCS.

  9. UPPER SNAKE RIVER BASIN WATER QUALITY STATUS, 1973

    Science.gov (United States)

    Historically, the Upper Snake River, Idaho from Milner Dam to the Idaho-Wyoming border (170402, 17040104) has experienced high bacteria concentrations and massive algal blooms. Algal blooms not only affect aesthetics, but also contribute to depressions of dissolved oxygen. The ...

  10. Concentrations of heavy metals in river sediments of the Canes River Basin, the state of Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Research about chimism in the Bengalas river basin was performed as a part of the environmental study project developed in the area, encompassing several knowledge fields. Among these, Environmental Geochemistry played an important role. This work presents the results related to heavy metals in stream sediments, indicating its origins (natural or anthropic) and its availability for aquatic biota. The basin under study has 135.07 Km2, laying in the oriental portion of the Teresópolis country, 100 Km far from the of Rio de Janeiro city. The rivers forming the Bengalas basin cut Pre-Cambrian terrain, formed by Orthognaiss takes 70% of the area, post-tectonic granite(20%), migmatite gneiss (10%) and gabro dikes. The methodology used was the determination of the content of heavy metals through sequencial extraction technique, consisting in the selective remove of metals in the geochemical fractions found in the sediments, cation exchange (bioavailable), carbonaceous, reducible and organic (potentially bioavailable) and residual (non available).The analyze of the results showed that iron was present in all sequential phases and predominated in the residual phase The same behavior was verified for zinc and copper. Manganese had the best distribution through the fractions due to its redox character, allowing bigger solubility and transportation; it appeared in the exchange, residual, organic and carbonaceous phases. Cadmium was found only in the carbonaceous phase, confirming its geochemical tendency. Chrome, on the other hand, was present in the residual and organic phase, while lead was found in the residual and carbonaceous phase

  11. Surface-water sampling stations, National Water-Quality Assessment, Yellowstone River Basin, Montana, North Dakota, and Wyoming

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — As part of the U.S. Geological Survey's National Water-Quality Assessment Program, an investigation of the Yellowstone River Basin study unit is being conducted to...

  12. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Bedrock Geology

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the area of bedrock geology types in square meters compiled for every catchment of MRB_E2RF1 catchments for Major River Basins...

  13. 78 FR 17643 - Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13

    Science.gov (United States)

    2013-03-22

    ...DEFENSE Department of the Army, U.S. Army Corps of Engineers Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13 AGENCY: U.S. Army Corps of Engineers, DoD. ACTION:...

  14. Top of Head Scarp and Internal Scarps for Landslide Deposits in the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Data points represent head scarps, flank scarps, and minor internal scarps (linear) associated with landslide deposits in the Little North Santiam River Basin,...

  15. Population structure and genetic characteristics of summer steelhead (Onchorhynchus mykiss) in the Deschutes River Basin, Oregon: Final report: January 2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Deschutes River Basin represents a region of substantial diversity among anadromous and resident forms of Oncorhynchus mykiss. However, the current distribution...

  16. National Assessment of Oil and Gas Project - Powder River Basin Province (033) Regions of Oil and Gas Potential

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Regions of high or low potential for oil and gas resources in the Powder River Basin generally indicate where continuous oil and gas resources are more or less...

  17. Digitial data points of water-level observations for the Mesozoic aquifers in the Upper Colorado River Basin